
Problem 8.33. A random pulse has amplitude A and duration T but starts at an arbitrary time t0.  That is, 
the random process is defined as 
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where rect(t) is defined in Section 2.9. The random variable t0 is assumed to be uniformly distributed over 
[0,T] with density 
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(a) What is the autocorrelation function of the random process X(t)? 
(b) What is the spectrum of the random process X(t)? 

 
 
Solution 
First note that the process X(t) is not stationary. This may be demonstrated by computing 
the mean of X(t) for which we use the fact that 
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combined with the fact that 
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Consequently, we have 
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Thus the mean of the process is dependent on t, and the process is nonstationary. 
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Problem 8.33 continued 
 
 
We take a similar approach to compute the autocorrelation function. First we break the 
situation into a number of cases: 
 
i) For any t < 0, s < 0, t > 2T, or s > 2T, we have that 
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ii) For 0 ≤ t < s ≤ 2T, we first assume t0 is known 
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Evaluating the unconditional expectation, we have 
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where the second maximum takes care of the case where the lower limit on the 
integral is greater than the upper limit. 
 

iii) For 0 ≤ s < t ≤ 2T, we use a similar argument to obtain 
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Problem 8.33 continued 
 
Combining all of these results we have the autocorrelation is given by 
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This result depends upon both t and s, not just t-s, as one would expect for a non-
stationary process. 
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