
Problem 8.34 Given that a stationary random process X(t) has an autocorrelation function RX(τ) and a 
power spectral density SX(f), show that: 

(a) The autocorrelation function of dX(t)/dt, the first derivative of X(t) is equal to the negative of the 
second derivative of RX(τ). 

(b) The power spectral density of dX(t)/dt is equal to 4π2f2SX(f). 
 
Hint: Use the results of Problem 2.24. 
 
Solution 

(a) Let )()( t
dt
dXtY = , and from the Wiener-Khintchine relations, we know the 

autocorrelation of Y(t) is the inverse Fourier transform of the power spectral density of Y. 
Using the results of part (b), 
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from the differential properties of the Fourier transform, we know that differentiation in 
the time domain corresponds to multiplication by j2πf in the frequency domain. 
Consequently, we conclude that 

 
[ ]

)(

)()2()(

2

2

21

τ
τ

π

X

XY

R
d
d

fSfjfR

−=

−= −F
 

 
 

 
 
 
 
 

Continued on next slide 
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Problem 8.34 continued 
 

(b) Let )()( t
dt
dXtY = , then the spectrum of Y(t) is given by (see Section 8.8) 
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where  is the Fourier transform of Y(t) from –T to +T.  By the properties of 
Fourier transforms  so we have 
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Note that the expectation occurs at a particular value of f; frequency plays the role of an 
index into a family of random variables. 
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