Problem 9.9 A sample function

$$x(t) = A_c \cos(2\pi f_c t) + w(t)$$

is applied to a low-pass *RC* filter. The amplitude A_c and frequency f_c of the sinusoidal component are constant, and w(t) is white noise of zero mean and power spectral density $N_0/2$. Find an expression for the output signal-to-noise ratio with the sinusoidal component of x(t) regarded as the signal of interest.

Solution

The noise variance is proportional to the noise bandwidth of the filter so from Example 8.16,

$$\mathbf{E}[n^2(t)] = B_N N_0 = \frac{1}{4RC} N_0$$

and the signal power is $A_c^2/2$ fir a sinusoid, so the signal-to-noise ratio is given by

$$SNR = \frac{A_c^2}{2\left(\frac{N_0}{4RC}\right)} = \frac{2A_c^2 RC}{N_0}$$