Problem 10.16. Show that if *T* is a multiple of the period of f_c , then the terms $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$ are orthogonal over the interval $[t_0, T + t_0]$.

Solution

$$\int_{t_0}^{T+t_0} \sin(2\pi f_c t) \cos(2\pi f_c t) dt = \int_{t_0}^{T+t_0} \frac{1}{2} \sin(4\pi f_c t) dt$$
$$= \frac{1}{8\pi f_c} \left[-\cos(4\pi f_c t) \right]_{t_0}^{T+t_0}$$
$$= -\frac{1}{8\pi f_c} \left[\cos(4\pi f_c (t_0 + T)) - \cos(4\pi f_c t_0) \right]$$
$$= \frac{-1}{4\pi f_c} \sin(4\pi f_c t_0 + 2\pi f_c T) \cdot \sin(2\pi f_c T)$$

where we have used the equivalence $\cos A - \cos B = 2\sin[(A+B)/2]\sin[(B-A)/2)]$. If *T* is a multiple of the period of f_c , then $f_cT = \text{integer}$, and $\sin(2\pi f_cT) = 0$.

Therefore, $\int_{t_0}^{t_0+T} \sin(2\pi f_c t) \cos(2\pi f_c t) dt = 0$. That is, $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$ are orthogonal over the interval $[t_0, t_0+T]$.