Problem 10.3 If $g(t) = c \operatorname{rect} \left[\frac{\alpha(t - T/2)}{T} \right]$, determine c such g(t) satisfies Eq. (10.10) where $\alpha > 1$.

Solution

From the definition of the rect(.) function,

$$g(t) = c \operatorname{rect}\left(\frac{\alpha(t - T/2)}{T}\right)$$

$$= \begin{cases} c & |t - T/2| < T/(2\alpha) \\ 0 & \text{otherwise} \end{cases}$$

Substituting this into Eq. (10.10)

$$T = \int_0^T |g(t)|^2 dt$$
$$= c^2 \int_{T/2 - T/(2\alpha)}^{T/2 + T/(2\alpha)} 1^2 dt$$
$$= c^2 T/\alpha$$

And so $c = \sqrt{\alpha}$.