
Chapter 3
Amplitude Modulation

Problem 3.1.
For 100 percent modulation, is it possible for the envelope of AM to become zero for some time
t? Justify your answer.

Solution
By definition, the envelope of AM signals is Ac|t + kam(t)|, where Ac is the carrier amplitude, ka is
the amplitude sensitivity of the modulator, and m(t) is the message signal. The envelope will
assure the zero value if and only if

So long as this condition is satisfied, then the envelope of the AM signal will assume the value
zero.

Problem 3.2.
For a particular case of AM using sinusoidal modulating wave, the percentage modulation is 20
percent. Calculate the average power in (a) the carrier and (b) each side frequency, expressing
your results as percentages of total transmitted power.

Solution
For sinusoidal modulation, the AM wave is defined by

For m(t) = Amcos(2πfmt), we have (see Example 3.1)

(a) The average power in the carrier, expressed as a percentage of the total transmitted power, is
(with µ = 20%)

Expressing this result as a percentage, the result reads as 98%.

(b) The average power in each side frequency is therefore approximately 1%.

Problem 3.3
In AM, spectral overlap is said to occur if the lower sideband for positive frequencies overlaps
with its image for negative frequencies. What condition must the modulated wave satisfy if we are
to avoid spectral overlap? Assume that the message signal m(t) is of a low-pass kind with
bandwidth W.
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Solution
The lowest frequency of the lower sideband is fc - W, where fc is the carrier frequency and W is the
message bandwidth. To avoid spectral overlap, we must therefore satisfy the condition:

Hence, fc must always be greater than the message bandwidth W.

Problem 3.4
A square-law modulator for generating an AM wave relies on the use of a nonlinear device (e.g.,
diode); Fig. 3.8 depicts the simplest form of such a modulator. Ignoring higher order terms, the
input-output characteristic of the diode-load resistor combination in this figure is represented by
the square law:

where

is the input signal, v2(t) is the output signal developed across the load resistor, and a1 and a2 are
constants.
(a) Determine the spectral content of the output signal v2(t).
(b) To extract the desired AM wave from v2(t), we need a band-pass filter (not shown in Fig. 3.8).

Determine the cutoff frequencies of the required filter, assuming that the message signal is
limited to the band-W < f < W.

(c) To avoid spectral distortion by the presence of undesired modulation products in v2(t), the
condition fc > 2W must be satisfied; validate this condition.

Solution
The output signal is

(1)

(a) The expression inside the first set of square brackets defines the desired AM wave:

which represents an AM wave with

defining the amplitude sensitivity of the modulator.
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(b) The required band-pass filter must have a passband centered on fc and a bandwidth equal to
2W.

(c) The expression inside the second set of square brackets of Eq. (1) defines the undesired
modulated products. The terms that matter are:

• The term a2m2(t), whose highest frequency component is 2W.

• The term a2Ac
2cos2(2π fct), whose frequency is 2 fc.

To extract the desired AM wave we therefore require:
Condition 1:
(fc + W) < 2fc
or fc > W
Condition 2:
(fc - W) > 2W
or fc > 3W
If therefore we satisfy condition 2, then condition 1 is automatically satisfied.

Problem 3.5
For the sinusoidally DSB-SC modulation considered in Problem 3.5, what is the average power in
the lower or upper side-frequency, expressed as a percentage of the average power in the DSB-SC
modulated wave?

Solution
With the carrier suppressed at the modulator output, the average power in either side frequency is
50% of the average power of the modulated wave.

Problem 3.6.
The sinusoidally modulated DSB-SC wave of Example 3.2 is applied to a product modulator
using a locally generated sinusoid of unit amplitude, and which is synchronous with the carrier
used in the modulation.
(a) Determine the output of the product modulator, denoted by v(t).
(b) Identify the two sinusoidal terms in v(t) that are produced by the upper side frequency of the

DSB-SC modulated wave, and the remaining two sinusoidal terms produced by the lower side
frequency.

Solution
(a) From Example 3.2, the DSB-SC modulated is defined by

Applying s(t) and cos(2πfct) to a product modulator yields
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(1)

(b) The two sinusoidal terms inside the first set of square brackets in Eq. (1) are produced by the
upper side frequency at fc + fm. The other two sinusoidal terms inside the second set of
brackets are produced by the lower side frequency fc - fm.

Note that with fc > fm, the first and third terms in v(t), both of which relate to carrier
frequency 2fc are removed by a low-pass filter. This would then leave the second and fourth
sinusoidal terms, both of frequency fm, as the only output of the filter. The coherent detector
thus reproduces the original modulating wave of frequency fm, with the output consisting of
two contributions, one due to the upper side frequency and the other due to the lower side
frequency.

Problem 3.7
The coherent detector for the demodulation of DSB-SC fails to operate satisfactorily if the
modulator experiences spectral overlap. Explain the reason for this failure.

Solution
The DSB-SC modulated wave is defined by

Spectral overlap occurs if the condition fc > W is violated, in which case the lower sideband
overlaps with its image.

However, when s(t) is applied to a coherent detector, the resulting output is

The spectral description of v(t) is shown in Fig. 1, assuming that fc < W:

Recovery of the original signal is possible only if
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But this condition is being violated because of the spectral overlap.
Hence, once spectral overlap is permitted, no coherent detector can recover the original

modulating signal.

Problem 3.8
As just mentioned, the phase discriminator in the Costas receiver of Fig. 3.16 consists of a
multiplier followed by a time-averaging unit. Referring to this figure, do the following:
(a) Assuming that the phase error φ is small compared to one radian, show that the output g(t) of

the multiplier component is approximately .

(b) Furthermore, passing g(t) through the time-averaging unit defined by

where the averaging interval 2T is long enough compared to the reciprocal of the bandwidth of
g(t), show that the output of the phase discriminator is proportional to the phase-error φ
multiplied by the dc (direct current) component of m2(t). The amplitude of this signal (acting
as the control signal applied to the voltage-controlled oscillator in Fig. 3.16) will therefore
always have the same algebraic sign as that of the phase error φ, which is how it should be.

Solution
(i) Referring to the Costas receiver in Fig. 3.16 in the text, we see that the output of the in-phase

channel is and the output of the quadrature channel is . The

output of the multiplier in the phase discriminator is therefore

(1)

If the phase error φ is small compared to one radian, we may use the approximations:

in which case the multiplier output g(t) simplifies approximately to .

(ii) Passing g(t) through the time-averaging unit yields the phase discriminator output
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where

is the dc component of m2(t) or, equivalently, the average power of m(t).

Problem 3.9
Verify that the outputs of the receiver in Fig. 3.17(b) are as indicated in the figure, assuming
perfect synchronism between the receiver and transmitter.

Solution
The transmitted signal is

Hence, the product modulator output of upper channel in Fig. 3.17(b) is

Passing v1(t) through the low-pass filter yields , so long as there is no spectral

overlap, that is, fc > W.
Consider next the lower channel of the figure. The product-modulator output is

Passing v2(t) through the low-pass filter yields , as indicated in the figure.

Problem 3.10
Using Eqs. (3.22) and (3.23), show that for positive frequencies the spectra of the two kinds of
SSB modulated waves are defined as follows:
(a) For the upper SSB,

(b) For the lower SSB,
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(c) Write down the formulas for these two kinds of SSB modulation that pertain to negative
frequencies.

Solution
According to Eq. (3.24):

where  is the Hilbert transform of m(t). Taking the Fourier transform of s(t):

From Eq. (3.22):

Hence,
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and
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where the term containing M(f - fc) pertains to positive frequencies and the term containing
M(f + fc) pertains to negative frequencies. Therefore for positive frequencies and f > fc, Eq. (2)
simplifies to

(3)

For 0 < f < fc, S(f) = 0.

(b) From Eq. (3.24), also recall that the plus sign in this formula corresponds to the lower SSB,
for which we find that for f < fc:

Therefore for positive frequencies and f < fc, we have

(4)

On the other hand, for f > fc we have S(f) = 0.

(c) For negative frequencies, we focus on terms containing M(f + fc), in light of which we get the
following results:
(i) For upper SSB:

(5)

(ii) For lower SSB:

(6)

Problem 3.11
Show that if the message signal m(t) is low-pass, then the Hilbert transform is also low-pass
with the same bandwidth as m(t).

Solution
The Fourier transform of the Hilbert transform  is defined by
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where M(f) = F[m(t)]. To illustrate, let the spectrum M(f) be as shown in Fig. 1(a). Then, the

corresponding spectrum is as shown in part (b) of the figure. The spectrum is
therefore also low-pass, occupying the frequency band -W < f < W just like M(f).

Problem 3.12
Starting with Eq. (3.23) for a SSB modulated wave, show that the product-modulator output in the
coherent detector of Fig. 3.12 (assuming perfect synchronism with the transmitter) in response to
this modulated wave contains a new SSB modulated wave with carrier frequency 2fc.

Solution
Suppose we focus on the upper SSB in Eq. (3.23) (i.e., use the minus sign in this formula). Then

Applying this modulated wave to the coherent detector of Fig. 3.12 with the phase error φ= 0, we
first get the product-modulated output

Comparing this formula with that for s(t), we see that v(t) contains a new upper SSB modulated
wave with carrier frequency 2fc. This same statement also applies to the lower SSB modulated
wave s(t).

Problem 3.13
For the low-pass filter in Fig. 3.12 (assuming perfect synchronism) to suppress the undesired SSB
wave, the following condition must hold
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fc > W, fc = carrier frequency, and W = message bandwidth
Justify this condition

Solution
Continuing with the solution to Problem 3.12, we see that the product-modulator output v(t) also
contains a scaled version of the original message signal m(t). For positive frequencies,the highest
frequency component of m(t) is W, and the lowest frequency of the new upper SSB modulated
wave is 2fc - W. For the low-pass filter to reject this SSB modulated wave, we require that
2fc - W > W, or simply fc > W. Under this condition, the detector output is

Problem 3.14
Validate the statement that the high-frequency components in Eq. (3.36) represent a VSB wave
modulated onto a carrier of frequency 2fc.

Solution
The high-frequency components in Eq. (3.36) are defined by the formula

(1)

Referring to Eq. (3.33), the spectrum of the incoming VSB modulated wave is

(2)
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2. By the same token, the second term in Eq. (1), namely, M(f + 2fc)H(f + fc) is equal to the

second term in Eq. (2), namely, M(f + fc)H(f) shifted to the left by fc.
Since Eq. (2) represents a VSB wave modulated onto carrier frequency fc, it follows that Eq. (1)
represents a VSB wave modulated onto the new carrier frequency 2fc.

Problem 3.15
Derivation of the synthesizer depicted in Fig. 3.25(b) follows directly from Eq. (3.39). However,
derivation of the analyzer depicted in Fig. 3.25(a) requires more detailed consideration. Given that
fc > W and
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show that the analyzer of Fig. 3.25(a) yields sI(t) and sQ(t) as its two outputs.

Solution
Consider first the upper channel in Fig. 3.25(a). Multiplying (see Eq. (3.39))

by the carrier 2cos(2πfct), we get

where

represents a new linearly modulated signal with carrier frequency 2fc. Provided that both sI(t) and
sQ(t) are limited to the band -W < f < W and we pass v1(t) through a low-pass filter of cutoff

frequency W as in Fig. 3.25(a), then  is rejected provided that fc > W.

Consider next the lower channel in Fig. 3.25(a). Multiplying s(t) by -2sin(2πfct), we get

where

is a new linearly modulated signal with carrier frequency 2fc. Hence, passing v2(t) through a low-

pass filter as in Fig. 3.25(a), is rejected again provided that the cutoff frequency W of the
low-pass filter satisfies the condition fc > W.

Problem 3.16
Starting with the complex low-pass system depicted in Fig. 3.26(c), show that the y(t) derived in
Eq. (3.45) is identical to the actual output y(t) in Fig. 3.26(a).

Solution
According to Fig. 3.25(a), we have

(1)
and according to Fig. 3.25(b),

(2)
From Eq. (3.44) we note that

              for f > 0 (3)
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, f > 0 (4)

Finally, noting that for f > 0

and

,

we readily see that Eq. (3) is a rewrite of Eq. (1), which validates the outputs displayed in Fig.
3.26.

Problem 3.17

(a) We are given

and

Invoking the definition of AM wave

we now write

(1)

where

is the modulation factor. Next, we use the trigonometric identity
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This spectrum is depicted in Fig. 1.

(b) Comparing the AM spectrum of Fig. 1 with the corresponding AM spectrum of Fig. 3.3(c) on
page 105 of the text, we may make two observations:
• The frequency locations of the spectral components of these two AM waves are identical.
• The only difference between them is that the upper side-frequency fc + fm in Fig. 1 is the

negative of the upper side-frequency fc + fm in Fig. 3.3(c).

Note: The following correction in the first printing of the book should be made. The modulating
wave should read as follows:

Problem 3.18

(a) We are given
fc = 50Hz

and
fm = 1Hz

The resulting AM wave is

(1)
A percentage modulation of 75% corresponds
20k = 0.75
or
k = 0.0375
Accordingly, we may rewrite Eq. (1) as

(2)
Equation (2) is plotted in Fig. 1.

(b) Expanding the AM wave s(t) of Eq. (2) into its spectral components, we write
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Figure 1
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The power developed across a 100-ohm load by this AM wave is therefore

This result shows that the carrier contributes about 80% of the power delivered to the load.

Figure 1: Problem 3.18

P
1
2
--- 50( )2

100
------------- 1

2
--- 18.75( )2

100
-------------------- 1

2
--- 18.75( )2

100
--------------------+ +=

12.5 3.426+=

15.926 watts=

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−100

−80

−60

−40

−20

0

20

40

60

80

100

time,t

s(
t)

Problem. 3.18
14



Problem 3.19

We are given

(1)

The AM wave is therefore defined by

(2)

The message signal m(t) is plotted in Fig. 1(a) with its maximum value of 1/2 and minimum value
of -1/2 at t = 1 and t = -1, respectively.

(a) Percentage modulation = 50%

with , it follows that ka = 1 for 50% modulation. For this example, Eq. (1) takes

the form

(3)

Let t be measured in seconds. Then, for the envelope of the AM wave to be clearly visible, the
period of the carrier, 1/fc, must be small compared to the time taken for the message signal
m(t) to reach its peak value. To satisfy this requirement, we let

which corresponds to

Setting the carrier amplitude Ac = 1 volt, and fc = 10Hz, Eq. (3) is plotted in part (b) of Fig. 1.

(b) Percentage modulation = 100%
In this case, we have ka = 2. Correspondingly, Eq. (1) assumes the form

(4)

Keeping Ac = 1 volt, and fc = 10Hz as in case (a), Eq. (4) is plotted in Fig. 1(c).

(c) Percentage modulation = 125%
In this third and final example, we have ka = 2.5. Hence, Eq. (1) now assumes the form

(5)

Keeping c = 1 volt, and fc = 10Hz as before, Eq. (5) is plotted in Fig. 1(d).

m t( ) t

1 t
2

+
-------------=

s t( ) Ac 1 kam t( )+[ ] 2π f ct( )cos=

Ac 1
kat

1 t
2

+
-------------+

 
 
 

2π f ct( )cos=

ka m t( ) max 0.5=

m t( ) max
1
2
---=

s t( ) Ac 1 t

1 t
2

+
-------------+ 

  2π f ct( )cos=

1
f c
------ 10Hz=

f c 10Hz=

s t( ) Ac 1 2t

1 t
2

+
-------------+ 

  2π f ct( )cos=

s t( ) Ac 1 2.5t

1 t
2

+
-------------+ 

  2π f ct( )cos=
15



Comparing the AM waveforms plotted in parts (b), (c) and (d) of Fig. 1, we may make the
following observations:
• The AM wave of Fig. 1(b) is undermodulated
• The AM wave of Fig. 1(c) is on the verge of overmodulation
• The AM wave of Fig. 1(d) is overmodulated
16



Figure 1: Problem 3.19
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Figure 1 (continued): Problem 3.19
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close all;
 clear all;
 clc;

 Sampling_freq = 10;      %in kHz
 t = -2:1/(Sampling_freq*1e3):2;
 figure;
 s1  = 50*(1 + 0.75*cos(2*pi*t)).*cos(100*pi*t);
 plot(t,s1);
 xlabel(’time,t’);
 ylabel(’s(t)’);
 title(’Problem. 3.18’);

 figure;
 Sampling_freq = 1;
 t = [];
 t = -10:1/(Sampling_freq*1e3):10;
 m = t./(1 +t.^2);
 plot(t,m);
 axis([ -10 10  -0.55 0.55]);
 xlabel(’time,t’);
 ylabel(’m(t)’);
 title(’Problem. 3.19’);

 figure;
 Sampling_freq = 1;
 t = [];
 t = -10:1/(Sampling_freq*1e3):10;
 s2 = (1 + t./(1 +t.^2)).*cos(20*pi*t);
 plot(t,s2);
 xlabel(’time,t’);
 ylabel(’s(t)’);
 title(’Problem. 3.19(a)’);

 figure;
 Sampling_freq = 1;
 t = [];
 t = -10:1/(Sampling_freq*1e3):10;
 s3 = ( 1 + 2*t./(1 +t.^2)).*cos(20*pi*t);
 plot(t,s3);
 xlabel(’time,t’);
 ylabel(’s(t)’);
 title(’Problem. 3.19(b)’);

 figure;
 Sampling_freq = 1;
 t = [];
 t = -10:1/(Sampling_freq*1e3):10;
 s3 = ( 1 + 2.5*t./(1 +t.^2)).*cos(20*pi*t);
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 plot(t,s3);
 xlabel(’time,t’);
 ylabel(’s(t)’);
 title(’Problem. 3.19(c)’);

 Sampling_freq = 10;
 t = [];
 t = -1:1/(Sampling_freq*1e3):1;
 for i=1:4
     s5 = (1+ 0.5*cos(2*pi*t)).*cos(10*pi*t + (i-1)*pi/4);
     figure;
     plot(t,s5);
     xlabel(’time,t’);
     ylabel(’s(t)’);
     axis([ -1.10 1.10  -1.6 1.6]);
     title([’Theta=’,num2str((i-1)*45)]);
     grid on;
 end
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Problem 3.20

(a) Let the input voltage vi consist of a sinusoidal wave of frequency (i.e., half the desired

carrier frequency) and the message signal m(t), as shown by
(1)

Then, the output current io is

Assume that m(t) occupies the frequency interval -W < f < W. Then, the amplitude spectrum of
the output current io is as shown Fig. 1:

From this spectrum we see that in order to extract a DSB-SC wave with carrier frequency fc
from io, we need a bandpass filter with mid-band frequency fc and bandwidth 2W, the two of
which satisfy the requirement:

that is, fc > 6W
Therefore, to use the given nonlinear device as a product modulator, we may use the

configuration: shown in Fig. 2.

1
2
--- f c

vi Ac π f ct( ) m t( )+cos=

io a1vi a3vi
3

+=

a1 Ac π f ct( ) m t( )+cos[ ] a3 Ac π f ct( ) m t( )+cos[ ] 3
+=

a1 Ac π f ct( ) m t( )+cos[ ] 1
4
---a3Ac

3 3 π f ct( ) 3 π f ct( )cos+cos[ ]+=

3
2
---a3Ac

2
m t( ) 1 2π f ct( )cos+[ ] 3a3Ac π f ct( )m

2
t( ) a3m

3
t( )+cos+ +

-3W  -W  0 W   3W
-fc

 fc3fc
2

-
3fc
2

 fc
2

-
fc
2

2W                    4W                                                  4W                      2W

f

Io(f)

Figure 1

f c W
f c

2
------ 2W+>–

o

o..

~Accos(πfct)

m(t)

   a3Ac
2m(t)cos(2πfct)3

2

  Nonlinear
     device BPF

Figure 2
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(b) To generate an AM wave with carrier frequency fc, we require a sinusoidal component of
frequency fc to be added to the DSB-SC generated in the manner described under (a). To
achieve this requirement, we may use a configuration involving a pair of the nonlinear devices
and a pair of identical bandpass filters, as depicted in Fig. 3.

The resulting AM wave is therefore . Thus, the choice of the

dc level A0 at the input of the lower branch controls the percentage modulation of the AM
wave.

The nonlinear device defined in Eq. (1) cannot be used for demodulation. The reason for
saying so is that Eq. (1) lacks a square-law term, which is essential for demonstration (i.e.,
recovery of the message signal from an incoming AM wave).

Problem 3.21

We are given

and

The AM wave is therefore

(1)

The focus in this problem is to see how varying the phase φaffects the waveform of the AM signal
s(t). We may thus set the following parameters:
µ = kaAm = 0.5
Ac = 1 volt

. ..

~

~

Σ

BPF

BPF

  Nonlinear
     device

  Nonlinear
     device

Accos(πfct)

Accos(πfct)

m(t)

A0

AM wave

Figure 3

3
2
---a3Ac

2
A0 m t( )+[ ] 2π f ct( )cos

m t( ) Ac 2π f mt( )cos=

c t( ) Ac 2π f ct φ+( )cos=

s t( ) 1 kam t( )+[ ] c t( )=

Ac 1 kaAm 2π f mt( )cos+[ ] 2π f ct φ+( )cos=

Ac 1 µ 2π f mt( )cos+[ ] 2π f ct φ+( )cos=
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fm = 1Hz
and
fc = 5Hz
Then, Eq. (1) assumes the form

(2)
Equation (2) is plotted in Fig. 1 for the prescribed values φ = 0o, 45o, 90o, and 135o. Examining
these four waveforms, we may make the following observation:
• Insofar as the envelope of the AM wave is concerned, varying the carrier phase φhas no effect

whatsoever on the waveform of the envelope, which is intuitively satisfying.
• The only visible effect of varying the carrier phase φ is a shift in the uniformly spaced zero-

crossings of the AM wave.

s t( ) 1 0.5 2πt( )cos+[ ] 10πt φ+( )cos=
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Figure 1: Problem 3.21
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Figure 1 (continued): Problem 3.21
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Problem 3.22

For the solution to this problem, see Fig. 2 in the solution to Problem 3.20.

Problem 3.23

(a) For fc = 1.25 kHz, the spectra of the message signal m(t), the product modulator output s(t),
and the coherent detector output v(t) are as shown in Fig. 1, respectively:

Figure 1

.  .  .  . .  .  .  .
-1                    0                       1

M(f)

f (kHz)

(a)

S(f)
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                        0         0.25     1.25     2.25-2.25    -1.25    -0.25

(b)

.  .  .  . .  .  .  .

V(f)

f (kHz)
-1                     0                      1

(c)
26



(b) For the case when fc = 0.75, the respective spectra are as shown in Fig. 2:

Figure 2

To avoid sideband-overlap, the carrier frequency fc must be equal to or greater than 1 kHz. The
lowest carrier frequency is therefore 1 kHz for each sideband of the modulated wave s(t) to be
uniquely determined by m(t).

Problem 3.24

The noncoherent carrier is

and the DSB-SC modulated wave is m(t)cos(2πfct). The composite signal is therefore

where

Applying the composite signal s(t) to an ideal envelope detector produces the output

  .    .    .    .

M(f)

f (kHz)  .    .    .    .
-1                                      0                                      1

S(f)

                      f (kHz)
-0.75                 0                   0.75

  .    .    .    .

M(f)

f (kHz)  .    .    .    .
-1                                      0                                      1
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s t( ) Ac 2π f ct φ+( )cos m t( ) 2π f ct( )cos+=

Ac φ m t( )+cos[ ] 2π f ct( ) Ac φ 2π f ct( )sinsin–cos=

sI t( ) 2π f ct( ) sQ t( ) 2π f ct( )sin–cos=

sI t( ) Ac φ m t( )+cos=

sQ t( ) Ac φsin=

a t( ) sI
2

t( ) sQ
2

t( )+[ ]
1 2⁄

=

Ac φ m t( )+cos( )2[ ] Ac φsin( )2
+

1 2⁄
=

Ac
2 φ 2Ac φm t( )cos+

2
m

2
t( ) Ac

2 φ2
sin+ +cos[ ]

1 2⁄
=
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(1)

(a) For φ = 0, Eq. (1) reduces to

(2)

which consists of the message signal m(t) plus a dc bias equal to the carrier amplitude.

(b) For  and |m(t)| << Ac/2, we may approximate Eq. (1) as follows:

(3)

With |cosφ| < 1, and |m(t)| << Ac/2, we may approximate Eq. (3) further as

(4)

When φ is close to zero, the detector output in Eq. (4) is very close to the value defined in Eq.
(2). However, when φ approaches 90o, cosφ approach zero, then the envelope detector output
in Eq. (4) reduces to a dc component equal to Ac with no significant trace of the message
signal m(t) being visible. If therefore the phase error φ is variable, then the envelope detector
output a(t) varies in a corresponding way, which could be undesirable.

Problem 3.25

(a) The effect of a frequency error ∆f in the local oscillator used in the coherent detector shows
itself as follows:

Applying the DSB-SC modulated wave s(t)

to a coherent detector employing  yields the product modulator output (see Fig. 1)

(1)

Ac
2 2Ac φm t( )cos+ m

2
t( )+[ ]

1 2⁄
=

a t( ) Ac
2 2Acm t( ) m

2
t( )+ +[ ]

1 2⁄
=

Ac m t( )+=

φ 0≠

a t( ) Ac
2 2Ac φmcos t( )+[ ]

1 2⁄
≈

Ac 1
2
Ac
------ φm t( )cos+

1 2⁄
=

a t( ) Ac 1
1
Ac
------ φmcos t( )+≈

Ac φmcos t( )+=

c ′ t( ) 2π f c ∆f+( )t( )cos=

s t( ) Ac 2π f ct( )m t( )cos=

c ′ t( )
v t( ) s t( )c ′ t( )=

Ac 2π f ct( ) 2π f ct 2π∆ft+( )m t( )coscos=

s(t) v(t)                                         o(t)
 Low-pass
     filter

c’(t)
Figure 1
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Using the trigonometric identity

we may rewrite Eq. (1) as

(2)

Next, passing v(t) through the low-pass filter in Fig. 1 removes the high-frequency component,
producing the output

(3)

which exhibits beats at the error frequency ∆f.

Problem 3.26

The message signal is defined by the rectangular pulse

(1)

The SSB modulated wave is defined by

where is the Hilbert transform of m(t). The in-phase and quadrature components of s(t) are
respectively defined by

The envelope of s(t) is therefore

(2)

The Hilbert transform of the rectangular pulse of Eq. (1) was determined in Problem 2.52 of
Chapter 2; it is reproduced here for a pulse of unit amplitude and duration T:

(3)

where ln denotes the natural logarithm. From Eq. (3) we see that assumes an infinitely
large value at t = T/2 and t = -T/2. Correspondingly, the envelope of the SSB modulator exhibits
peaks at the beginning and end of the input pulse.

A Bcoscos
1
2
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2
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=
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Problem 3.27

(a) The frequency error ∆f = 20 Hz. Since this frequency error is positive and the incoming SSB
wave contains the upper sideband, the frequency components of the demodulated signal are
shifted downward by ∆f, compared with the message signal. The demodulated signal therefore
consists of three frequency components: 80, 180, and 380 Hz.

(b) When the lower sideband is transmitted, the frequency components of the demodulated signal
are shifted upward by ∆f, compared with the message signal. The demodulated signal
therefore consists of three frequency components: 120, 220, and 420 Hz.

Problem 3.28

The energy of the carrier over a bit duration is defined by

(1)

Using the identity

we rewrite Eq. (1) as

(2)

Typically, the carrier frequency fc is high compared to the bit rate 1/Tb; we may therefore set the
integral term in Eq. (2) approximately equal to zero, in which case we write

(3)

For the energy E to equal unity, we may solve Eq. (3) for the carrier amplitude Ac, obtaining

which is the desired result. On this basis, we express the carrier as

E c
2

t( ) td
0

T b

∫=
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2 2πft( )2

cos td
0
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θ2
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1
2
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E
1
2
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1
2
--- Ac

2
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∫+d
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2
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1
2
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2
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2

T b
------=

c t( ) 2
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Problem 3.29

(a) Using the terminated series expansion we may express the diode

current i, normalized with respect to I0, as

(1)

(b) Given

(2)

we find that substitution of Eq. (2) into (1) yields

(3)

Next, using the identities

we may rewrite Eq. (3) in the form:

x–( ) 1 x– x
2

2
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3

6
-----–+≈exp

i
I 0
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V T
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1
2
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  2 1
6
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cos

1
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1
2
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For fm - 1 kHz and fc = 100 kHz, we thus find that the discrete amplitude spectrum of the diode
current i (for f > 0) is as shown in Fig. 1.

(c) From the amplitude spectrum of Fig. 1 we see that in order to extract an AM wave with carrier
frequency fc from the diode current i, we need a band-pass filter that passes only the frequency
components: 99, 100 and 101 kHz, corresponding to fc - fm, fc, and fc + fm, respectively. We
therefore require a band-pass filter with center frequency 100 kHz and bandwidth 2 kHz.

(d) The resulting band-pass filter output is

The percentage modulation is therefore 36.2 percent.

Problem 3.30

The multiplexed signal is defined by

Therefore, the spectrum of s(t) is

where M1(f) = F(m1(t)] and M2(f) = F(m2(t)]. The spectrum of the received signal is therefore

To recover m1(t), we multiply r(t) [i.e., the inverse Fourier transform of R(f)] by cos(2πfct) and
then pass the resulting output through a low-pass filter, which is designed to have a cutoff
frequency equal to the message bandwidth W. The signal produced at the filter output has the
following spectrum
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Desired AM waveFigure 1

i
I 0
----- 0.406 2π f ct( ) 0.148 2π f ct( ) 2π f mt( )coscos+cos–=
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R f( ) H f( )S f( )=
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j
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--- R f f c–( ) R f f c+( )+[ ]=
32



(1)

The condition H(fc + f) = H*(fc - f) is equivalent to H(f + fc) = H(f - fc); this follows from the fact
that for a real-valued impulse response h(t), we have H(-f) = H*(f). Hence, substituting this
condition in Eq. (1), we get

The low-pass filter output therefore has a spectrum equal to (Ac/2)H(f - fc)M1(f).
Similarly, to recover m2(t), we multiply r(t) by sin(2πfct), and then pass the resulting signal

through a low-pass filter. In this case, we get an output with a spectrum equal to
(Ac/2)H(f - fc)M2(f).

Problem 3.31

(a) The SSB wave su(t) is defined by

(1)

and its Hilbert transform is defined by

(2)

In Eq. (2), we have used the following properties of the Hilbert transform:
(a) The Hilbert transform of m(t)cos(2πfct) is m(t)sin(2πfct)

(b) The Hilbert transform of  is

We may therefore use Eqs. (1) and (2) to write

(3)

(4)

Adding Eqs. (3) and (4) and solving for m(t), we get

(5)

Next, we use Eqs. (1) and (2) to write

(6)
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(7)

Subtracting Eq. (6) from Eq. (7) and then solving for , we get

(8)

Equations (5) and (8) are the desired results for part (a) of the problem.

(b) The SSB wave sl(t) is defined by

(9)

and its Hilbert transform is defined by

(10)

where again we have made use of the above-mentioned properties of the Hilbert transform.
Therefore, using Eqs. (9) and (10) we write

(11)

(12)

Adding Eqs. (11) and (12) and then solving for m(t), we get

(13)

Next, we use Eqs. (11) and (12) to write

(14)

(15)

Subtracting Eq. (15) from Eq. (14) and then solving for , we get

(16)

Equations (13) and (16) are the desired results for part (b) of the problem.

su t( ) 2π f ct( )cos
Ac

2
------ m t( ) 2π f ct( ) 2π f ct( ) m̂ t( ) 2π f ct( )2

cos+cossin[ ]=

m̂ t( )

m̂ t( ) 2
Ac
------ ŝu t( ) 2π f ct( ) su t( ) 2π f ct( )sin–cos[ ]=

sl t( )
Ac

2
------ m t( ) 2π f ct( ) m̂ t( ) 2π f ct( )sin+cos[ ]=

ŝl t( )
Ac

2
------ m t( ) 2π f ct( ) m̂ t( ) 2π f ct( )cos–sin[ ]=

sl t( ) 2π f ct( )cos
Ac

2
------ m t( ) 2π f ct( ) m̂ t( ) 2π f ct( ) 2π f ct( )cossin+

2
cos[ ]=

ŝl t( ) 2π f ct( )sin
Ac

2
------ m t( ) 2π f ct( ) m̂ t( ) 2π f ct( ) 2π f ct( )sincos–

2
sin[ ]=

m t( ) 2
Ac
------ sl t( ) 2π f ct( ) ŝl t( ) 2π f ct( )sin+cos[ ]=

sl t( ) 2π f ct( )sin
Ac

2
------ m t( ) 2π f ct( ) 2π f ct( )sin m̂ t( ) 2π f ct( )2

sin+cos[ ]=

ŝl t( ) 2π f ct( )cos
Ac

2
------ m t( ) 2π f ct( ) 2π f ct( ) m̂ t( ) 2π f ct( )2

cos–cossin[ ]=

m̂ t( )

m̂ t( ) 2
Ac
------ sl t( ) 2π f ct( ) ŝl t( ) 2π f ct( )cos–sin[ ]=
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(c) From Eqs. (15) and (16), we see that the message signal m(t) may be recovered from su(t) or
sl(t) by using the scheme shown in Fig. 1.

Problem 3.32

We will approach the solution to this problem by showing that, as postulated in the problem, if the
in-phase component HI(f) of the complex low-pass filter’s transfer function and its quadrature
component HQ(f) satisfy the following relations

                          for -W < f < W (1)

and
             for -W < f < W (2)

then, starting with the frequency-discrimination basis for generating a VSB modulated wave s(t),
we may express s(t) containing a vestige of the lower sideband as follows:

(3)

where is obtained by passing the message signal m(t) through the quadrature filter defined
by HQ(f).

To proceed, from Eq. (3.44) in the text, recall the relation

, f > 0 (4)

The corresponding relation for negative frequencies is described by

, f < 0 (5)

Using frequency discrimination as the basis for generating the VSB modulated wave s(t), we
express the spectrum of s(t) as

(6)

where M(f) = F[s(t)]. Next, using Eqs., (4) and (5) in (6), we write

(7)

cos(2πfct)

+

+
S Message

signal

sl(t)
or
su(t)

    Hilbert
transformer

sin(2πfct)
Figure 1

H I f( ) 1=

H Q f–( ) H Q f( )–=

s t( )
Ac

2
------m t( ) 2π f ct( )

Ac

2
------m ′ t( ) 2π f ct( )sin–cos=

m ′ t( )

1
2
---H̃ f f c–( ) H f( )=

1
2
---H̃

*
f f c+( ) H f( )=

S f( )
Ac

2
------ M f f c–( ) M f f c+( )+[ ] H f( )=

S f( )
Ac

4
------ M f f c–( ) M f f c+( )+[ ] H̃ f f c–( )H̃

*
f f c+( )[ ]=

Ac

4
------M f f c–( )H̃ f f c–( )

Ac

4
------M f f c+( )H̃

*
f f c+( )+=
35



where it is recognized that the cross-product terms

are both zero, because the individual

factors in each product term occupy completely disjoint frequency bands. Setting

and

we expand Eq. (7) as

(8)

Using the all-pass property of HI(f) defined in Eq. (1) and the odd-function property of HQ(f)
defined in Eq. (2), we may simplify Eq. (8) as

(9)

Transforming Eq. (9) into the time domain, we obtain the formula of Eq. (3) for the VSB
modulated wave s(t).

As noted earlier, is obtained by passing the message signal m(t) through the quadrature
filter. In accordance with the description of HQ(f) depicted in the problem, we may depict the
frequency response of the quadrature filter as in Fig. 1, where fv denotes the vestigial bandwidth.

The important point to note from the solution to this problem is that Eq. (3) includes SSB
modulation as a special case. Specifically, if fv = 0, then the frequency response depicted in Fig. 1
simplifies to a signum function. Correspondingly, Eq. (3) reduces to a SSB modulated wave
containing the upper sideband.

M f f c–( )H̃
*

f f c+( ) and M f f c+( )H̃
*

f f c–( )

H̃ f( ) H I f( ) jH Q f( )+=

H̃
*

f( ) H I f( ) jH Q f( )–=

S f( )
Ac

4
------ M f f c–( )H I f f c–( ) M f f c+( )H I f f c+( )+[ ]=

j
Ac

4
------ M f f c–( )H Q f f c–( ) M f f c+( )H Q f f c+( )–[ ]+

S f( )
Ac

4
------ M f f c–( ) M f f c+( )+[ ]=

j
Ac

4
------ M f f c–( ) M f f c+( )–[ ] H Q f( )+

m ′ t( )

HQ(f))

-W             -fv       0
fv W

f

Figure 1
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