
Chapter 4
Angle Modulation

Problem 4.1.
Using Eq. (4.7), show that FM waves also violate the principle of superposition.

Solution
From Eq. (4.7), the FM wave is defined by

Suppose m(t) = m1(t) + m2(t). Then,

(1)

Suppose next the two message signals m1(t) and m2(t) are applied individually to the frequency
modulator. Then in response to m1(t), we have

(2)

Likewise, for m2(t) we have

(3)

From Eqs. (1) through (3), we readily see that

In other words, the principle of superposition (basic to linear systems) is violated. Hence,
frequency modulation is a nonlinear process.

Problem 4.2
Suppose that the linear modulating wave

is applied to the scheme shown in Fig. 4.3(a). The phase modulator is defined by Eq. (4.4). Show
that if the resulting FM wave is to have exactly the form as that defined in Eq. (4.7), then the
phase-sensitivity factor kp of the phase modulator is related to the frequency sensitivity factor kf in
Eq. (4.7) by the formula

where T is the interval over which the integration in Fig. 4.3(a) is performed. Justify the
dimensionality of this expression.

Solution
According to Fig. 4.3(a), the FM wave is defined by
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(1)

where T is an integration constant.
According to Eq. (4.7), the FM wave is defined by

(2)

If Eqs. (1) and (2) are to be identical, then we require that

Dimensionality of this expression is justified as follows:
1. kf is measured in hertz per volt. Therefore, 2πkfT has the dimensions of cycles, per volt and

therefore radians per volt.
2. kp is itself measured in radians per volt.

Problem 4.3
The Cartesian baseband representation of band-pass signals discussed in Section 3.8.1 is well-
suited for linear modulation schemes exemplified by the amplitude modulation family. On the
other hand, the polar baseband representation

is well-suited for nonlinear modulation schemes exemplified by the angle modulation family. The
a(t) in this new representation is the envelope of s(t) and φ(t) is its phase.

Starting with the baseband representation [see Eq. (3.39)]

where sI(t) is the in-phase component and sQ(t) is the quadrature component, we may write

and

Show that the polar representation of s(t) in terms of a(t) and φ(t) is exactly equivalent to its
Cartesian representation in terms of sI(t) and sQ(t).

Solution
We are given

and

Hence, expanding the polar representation of s(t), we write
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(1)

Since , it follows that

and

Hence,
(2)

and
(3)

Substituting Eqs. (2) and (3) into (1), we get

which is the Cartesian representation of s(t).

Problem 4.4
Consider the narrow-band FM wave approximately defined by Eq. (4.17). Building on Problem
4.3, do the following:
(a) Determine the envelope of this modulated wave. What is the ratio of the maximum to the

minimum value of this envelope?
(b) Determine the average power of the narrow-band FM wave, expressed as a percentage of the

average power of the unmodulated carrier wave.
(c) By expanding the angular argument of the narrow-band FM wave s(t)

in the form of a power series and restricting the modulation index β to a maximum value of
0.3 radian, show that

What is the value of the harmonic distortion for β = 0.3 radian?

Hint: For small x, the following power series approximation

holds. In this approximation, terms involving x5 and higher order ones are ignored, which is
justified when x is small compared to unity.

Solution
(a) From Eq. (4.17), the narrow-band FM wave is approximately defined by

(1)

The envelope of s(t) is therefore
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         for small β

The maximum value of a(t) occurs when , yielding

The minimum value of a(t) occurs when , yielding

The ratio of the maximum to the minimum value is therefore

(b) Expanding Eq. (1) into its individual frequency components, we may write

The average power of s(t) is therefore

The average power of the unmodulated carrier is

Hence,

(c) The angle θ(t) is defined by

Setting

and using the approximation (based on the Hint), we may approximate θ(t) as

Ideally, we should have (see Eq. (4.15))

The harmonic distortion produced by using the narrow-band approximation is therefore
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The maximum absolute value of D(t) for β = 0.3 is therefore

which is small enough for it to be ignored in practice.

Problem 4.5
Strictly speaking, the FM wave of Eq. (4.15) produced by a sinusoidal modulating wave is a
nonperiodic function of time t. Demonstrate this property of frequency modulation.

Solution
Starting with Eq. (4.15) we write

(1)

For the FM wave s(t) to be a periodic function of time, we require that the condition

(2)

be satisfied for a period equal to 1/fm. Replacing t with t + (1/fm) in Eq. (1), we write

(3)

In general, the carrier frequency fc is a noninteger multiple of the modulation frequency fm.

Accordingly, and therefore the condition of Eq. (2) for periodicity is

violated.

Problem 4.6
Using a well-known trigonometric identity involving the product of the sine of an angle and the
cosine of another angle, demonstrate the two results just described under points 1 and 2.

Solution
The incoming FM wave is defined by (see Eq. (4.57))

(1)

The internally generated output of the VCO is defined by (see Eq. (4.59))
(2)

Multiplying s(t) by r(t) yields
(3)

Using the trigonometric identity
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we may rewrite Eq. (3) as

(4)

Except for a scaling factor, the first term of Eq. (4) defines the double-frequency term (identified
under point 1 on page 179) and the second term of the equation defines the difference-frequency
term (identified under point 2 of the same page).

Problem 4.7
Using the linearized model of Fig. 4.15(a), show that the model is approximately governed by the
integro-differential equation

Hence, derive the following two approximate results in the frequency domain:

(a)

(b)

where

is the open-loop transfer function. Finally, show that when L(f) is large compared with unity for
all frequencies inside the message band, the time-domain version of the formula in part (b)
reduces to the approximate form in Eq. (4.68).

Solution
According to condition 1 stated on p.178 of the text, the frequency of the VCO is set equal to the
carrier frequency fc. According to condition 2 on the same page, the VCO output has a 90o phase
shift with respect to the unmodulated carrier. In light of these two conditions, we note starting
with the equation

the integral in the left-hand side of the equation is the convolution of φe(t) and h(t). Therefore,
applying the Fourier transform to this equation and using two properties of the fourier transform
pertaining to differentiation and convolution, we get

(1)
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(a) Solving Eq. (1) for , we get

(2)

where

(b) Next, from Eq. (4.63) we have

Therefore

And, from Eq. (4.65) we have

Therefore

Eliminating E(f) between these two transform-related equations, we get

(3)

Eliminating  between Eqs. (1) and (3), we get

Since

then

and so we get the desired result

(4)

Finally, when L(f) >> 1 for all f, Eq. (4) simplifies further as
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The time-domain version of this formula reads as follows

which is a repeat of Eq. (4.67).

Problem 4.8

For the PM case, we have by definition

whose angle is

The instantaneous frequency is therefore

,

(1)

which is equal to fc + Akp/2πT0 except for the instants that the message signal has discontinuities.
At these instants, the phase shifts by -kpA/T0 radians.Accordingly, the PM wave has the waveform
depicted in Fig. 1

For the FM case, we have

and the modulated wave is defined by
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The modulated wave is therefore depicted in Fig. 2.

Problem 4.9

The instantaneous frequency of the mixer output is as shown in Fig. 1:

The presence of negative frequency merely indicates that the phasor representing the difference
frequency at the mixer output has reversed its direction of rotation.

Let N denote the number of beat cycles in one period. Then, noting that N is equal to the
number of shaded areas shown in Fig. 1, we deduce that

Since f0τ << 1, we have the approximate result

Therefore, the number of beat cycles counted over one second is equal to

Problem 4.10
By definition, the instantaneous frequency fi is related to the phase θ(t) as

which may be rewritten as

(1)

where ∆θ and ∆t are small changes in the phase θ(t) and time t. We are given
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from which we infer that
(2)

Substituting Eq. (2) into (1) yields

which is the desired result.

Problem 4.11

The phase-modulated wave is defined by

,

(1)

If βp < 0.3, then for all time t we approximately have

Correspondingly, we may approximate Eq. (1) as follows:

(2)

The spectrum of s(t) is therefore

Problem 4.12

(a) From Table A3.1 in Appendix 3, we find (by interpolation) that J0(β) is zero for the following
values of modulation index:
β = 2.44,
β = 5.52,
β = 8.65,
β = 11.8,
and so on.

(b) The modulation index is defined by
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Therefore, the frequency sensitivity factor is

(1)

We are given fm = 1 kHz and Am = 2 volts. Hence, with J0(β) = 0 for the first time when
β = 2.44, the use of Eq. (1) yields

 hertz/volt
Next, we note that J0(β) = 0 for the second time when β = 5.52. Hence, the corresponding
value of Am for which the carrier component is reduced to zero is

Problem 4.13

(a) The frequency deviation is

The corresponding value of the modulation index is

Using Carson’s rule, the transmission bandwidth of the FM wave is therefore

(b) Using the universal curve of Fig. 4.9, we find that for β = 5:

Therefore, the transmission bandwidth is

which is greater than the value calculated by Carson’s rule.

(c) If the amplitude of the modulating wave is doubled, we find that

Thus, using Carson’s rule we now obtain the transmission bandwidth
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On the other hand, using the universal curve of Fig. 4.9, we get

and BT = 2.75 MHz.

(d) If fm is doubled, β = 2.5. Then, using Carson’s rule, BT = 1.4 MHz. Using the universal curve,
(BT/∆f ) = 4, and

Problem 4.14

(a) The angle of the PM wave is defined by

where βp = kpAm. The instantaneous frequency of the PM wave is therefore

(1)

Based on Eq. (1), we see that the maximum frequency deviation in a PM wave varies linearly
with the modulation frequency fm.

Using Carson’s rule, we find that the transmission bandwidth of the PM wave is
approximately (for the case when βp is small compared to unity)

(2)

Equation (2) shows that BT varies linearly with the modulation frequency fm.

(b) In an FM wave, the transmission bandwidth BT is approximately equal to 2∆f, assuming that
the modulation index β is small compared to unity. Therefore, for an FM wave, BT is
effectively independent of the modulation frequency fm.

Problem 4.15

Consider first the action of the mixer with the two inputs: voltage-controlled oscillator (VCO)
output and crystal oscillator output. The mixer produces an output of its own whose frequency is
the difference between the instantaneous frequency of the VCO and the crystal oscillator
frequency.

The mixer output is applied to the frequency discriminator followed by a low-pass filter. By
design, the output produced by the frequency discriminator has an instantaneous amplitude that is
proportional to the instantaneous frequency of the FM signal applied to its input. Accordingly, the
amplitude of the signal produced by the frequency discriminator is proportional to the difference
between the VCO frequency and the crystal oscillator frequency.
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In light of these considerations, we may now make the following statements:
• When the FM signal s(t) produced at the VCO output has exactly the correct frequency, the

low-pass filter output is zero.
• Deviations in the carrier frequency of the FM signal s(t) from its assigned value will cause the

frequency discriminator-filter output to produce a dc output with a polarity determined by the
sense of the carrier-frequency drift in the FM signal s(t). This dc signal, after suitable
amplification is, in turn, applied to the VCO in such a way as to modify the instantaneous
frequency of the VCO in a direction that tends to restore the carrier frequency of the FM
 signal s(t) to its correct value.
In summary, the application of feedback applied to the VCO in the manner described in Fig.

4.19 has the beneficial effect of stabilizing the carrier frequency of the FM signal produced at the
VCO output.

Problem 4.16

From Fig. 4.20, we see that the envelope detector input is

Using a well-known trigonometric identity, we write
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where we have made use of the fact that π∆fT << 1. We may therefore rewrite Eq. (1) as

(4)

Accordingly, the envelope detector output is the envelope of v(t), namely,

which, except for a bias term, is proportional to the modulating wave.

Problem 4.17

Consider first the message signal

applied to a frequency modulator. The signal produced by this modulator is defined by

, t > 0 (1)

where C is the constant of integration.
Consider next the message signal

applied to a phase modulator. The signal produced by this second modulator is defined by

, t > 0 (2)

For the FM signal s1(t) of Eq. (1) and the PM signal of Eq. (2) to be exactly equal for t > 0, we
require that the following conditions be satisfied:
(i) πkfa1   = kpb2
(ii) 2πkfa0 = kpb1
(iii) 2πkfC  = kpb0

Problem 4.18
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We are given that the IF filter has a bandwidth of 200 kHz centered on the frequency fIF = 10.7
MHz. This filter will therefore pass frequencies inside the range defined by the two extremes:

low-end: 10.7 - 0.2 = 10.5 MHz
high-end: 10.7 + 0.2 = 10.9 MHz

The image lies inside the band 109.4 to 129.4 MHz, which is positioned well outside the passband
of the IF filter. Therefore, the IF filter will suppress the translated band centered on the image
frequency fimage.

Problem 4.19

The instantaneous frequency of the modulated wave s(t) is shown in Fig. 1

We may thus express s(t) as follows

(1)

The Fourier transform of s(t) is therefore

(2)

The second term of Eq. (2) is recognized as the difference between the Fourier transforms of two
RF pulses of unit amplitude, one having a frequency equal to fc + ∆f and the other having a
frequency equal to fc. Hence, assuming that fcT >> 1, we may express the Fourier transform S(f) of
Eq. (2) as follows:

t

fi(t)

fc + ∆f

fc

0 T
2

T
2

-
Figure 1

s t( )

2π f ct( ),cos t T
2
---–<

2π f c ∆f+( )t[ ] ,cos
T
2
--- t

T
2
---≤ ≤–

2π f ct( ),cos
T
2
--- t<











=

S f( ) 2π f ct( ) j2πft–( )expcos td
∞–

T 2⁄–

∫=

2π( f c ∆ f )t+[ ] j2πft–( )expcos td
T 2⁄–

T 2⁄–

∫+

2π f ct( ) j2πft–( )expcos td
T 2⁄

∞–

∫+

2π f ct( ) j2πft–( )expcos td
∞–

∞–

∫=

2π( f c ∆ f )t 2π f ct( )cos–+[ ]cos{ } j2πft–( )exp td
T 2⁄–

T 2⁄–

∫+
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(3)

Problem 4.20

The filter input is

The complex envelope of v1(t) is

The impulse response h(t) of the filter is defined in terms of the complex impulse response as
follows

With h(t) defined by

we have

The complex envelope of the filter output is therefore (except for a scaling factor)1

(1)

where in the last line we have used the definition of the Fourier transform to write

Hence, from Eq. (1), we obtain the

1. It turns out that the scaling factor equals 1/2; to be exact, we should write

For details, see the 4th edition of the book:
S. Haykin, Communication Systems, pp. 725-734, 4th edition, Wiley.

S f( )

1
2
---δ f f c–( ) T

2
--- c T f f c– ∆f–( )[ ] T

2
--- c T f f c–( )[ ] ,sin–sin+ f 0>

1
2
---δ f f c+( ) T

2
--- c T f f c ∆f+ +( )[ ] T

2
--- c T f f c+( )[ ] ,sin–sin+ f 0<









≈

v1 t( ) g t( )s t( )=

g t( ) 2π f ct πk t
2

–( )cos=

ṽ1 t( ) g t( ) jπk t
2

–( )exp=

h̃ t( )

h t( ) Re h̃ t( ) j2π f ct( )exp[ ]=

h t( ) 2π f ct πk t
2

+( ),cos=

h̃ t( ) jπk t
2( )exp=

ṽo t( ) 1
2
--- h̃ t( )★ ṽi t( )=

ṽo t( ) h̃ t( )★ ṽi t( )=

g τ( ) jπkτ2
–( ) jπk t τ–( )[ ] 2expexp τd

∞–

∞
∫=

jπk t
2( ) g τ( ) 2 jπktτ–( )exp τd

∞–

∞
∫exp=

jπk t
2( )G kt( )exp=

G kt( ) g τ( ) j– 2πktτ( )exp τd
∞–

∞
∫=
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(2)

Equation (2) shows that the envelope of the filter output is, except for a scaling factor, equal to the
magnitude of the Fourier transform of the input signal g(t) with kt playing the role of frequency f.

Problem 4.21

For convenience of the discussion, we assume time-domain symmetry around the origin t = 0.
Accordingly, in theory, the signal produced by the amplitude limiter component of the band-pass
limiter due to s1(t) consists of an infinite sequence of harmonically related angle-modulated
components with two properties:
• The components are centered on odd multiples of the carrier frequency fc.
• The components have progressively decreasing amplitudes.
Typically, the carrier frequency fc of an FM signal is large compared to the transmission
bandwidth BT of the FM signal. It follows therefore that provided this condition is satisfied, that
is, fc is large enough compared to BT, then the filter component of the band-pass limiter will
effectively suppress all the spectral components coming out of the limiter except for the one
component centered on fc.

In light of these observations that are intuitively satisfying, we may now state that if fc is large
enough compared to BT, then the output s2(t) produced by the band-pass limiter in response to the
input s1(t) is defined by the FM signal

where the amplitude A is a constant.

Problem 4.22

(a) Starting with Eq. (4.15) for sinusoidal FM, we write
(1)

where fm is the modulation frequency and β is the modulation index. Correspondingly, the
Fourier transform of s(t) is defined for an arbitrary value of β (see Eq. (4.31))

(2)

where Jn(β) is the nth order Bessel function of the first kind. Passing s(t) through a linear
channel of transfer function H(f) produces an output signal y(t) whose Fourier transform is
defined by

(3)

Applying the inverse Fourier transform to Y(f) yields the output signal

ṽ0 t( ) G kt( )=

s2 t( ) A 2π f ct 2πk f m τ( ) τd
0

t

∫+cos=

s t( ) Ac 2π f ct β 2π f mt( )sin+[ ]cos=

S f( )
Ac

2
------ J n β( ) δ f f c– n f m–( ) δ f f c n f m+ +( )+[ ]

n=-∞

∞

∑=

Y f( ) H f( )S f( )=

Ac

2
------ J n β( ) H f c+nf m( )δ f f c– -n f m( ) H f c– -n f m( )δ f + f c+n f m( )+[ ]

n=-∞

∞

∑=
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(4)

For a channel with real-valued impulse response, we have H(f) = H*(-f) where the asterisk
denotes complex conjugation. We may therefore rewrite Eq. (4) as

(5)

where Re denotes the real-time operator.

(b) Following the development of the universal curve plotted in Fig. 4.9, let nmax denote the
largest value of n in Eq. (5) for which the condition

is satisfied so as to preserve the effective frequency content of the FM signal s(t). We may then
approximate Eq. (5) as

(6)

Expressing the transfer function H(f) in the polar form
(7)

we may rewrite Eq. (6) as

(8)

From the discussion presented in Section 2.7, recall that the transmission of a signal through a
linear channel (filter) is distortionless provided that two conditions are satisfied:
(i) The amplitude response |H(f)| is constant over the band -B < f < B, where B is the channel

bandwidth.
(ii) The phase response φ(f) is a linear function of the frequency f inside the band -B < f < B.
Accordingly, in the context of our present discussion, the FM transmission through the
channel of transfer function H(f) introduces two forms of linear distortion:
(i) Amplitude distortion, which arises when the condition

 is constant for 0 < n < nmax

is violated.
(ii) Phase distortion, when the condition

 is a linear function of n for 0 < n < nmax

is violated.

y t( )
Ac

2
------ J n β( ) H f c n f m+( ) j2π f c n f m+( )t( )exp[ ]

n=-∞

∞

∑=

H f c– n f m–( ) j– 2π f c n f m+( )t( )exp+

y t( ) 1
2
--- Ac J n β( ) H f c n f m+( ) j2π f c n f m+( )t( )exp[ ]

n=-∞

∞

∑≈

H
*

f c n f m+( ) j– 2π f c n f m+( )t( )exp+

Ac J n β( )Re H f c n f m+( ) j2π f c n f m+( )t( )exp[ ]
n=-∞

∞

∑=

J n β( ) 0.1>

y t( ) Ac J n β( )Re H f c n f m+( ) j2π f c n f m+( )t( )exp[ ]
n=-nmax

nmax

∑≈

H f( ) H f( ) jφ f( )( )exp=

y t( ) Ac J n β( ) H f c n f m+( ) 2π f c n f m+( )t φ f c n f m+( )+( )cos
n=-nmax

nmax

∑≈

H f c n f m+( )

θ f c n f m+( )
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Problem 4.23

(a) Consider the FM version of angle modulation. Let the instantaneous frequency of the
modulator be a linear function of the first derivative of the message signal m(t), as shown by

Then, correspondingly, the instantaneous phase is defined by

where it is assumed that m(0) = 0. In this scenario, the modulated signal is defined by

which is recognized as phase modulation.
Suppose next that fi(t) is a linear function of the second derivative of m(t), as shown by

Correspondingly, we have

where it is assumed that dm(t)/dt is zero at t = 0. The modulated wave assumes the new form

We may generalize these results by stating that if the input to a frequency modulator is the nth
derivative of the message signal m(t), then the corresponding modulated wave is defined by

where it is assumed that dn-1m(t)/dtn-1 is zero at time t = 0.
Consider next the scenario where the input to the frequency modulator involves integrals

of the message signal m(t). Starting with  as the input to the modulator, we write

and, correspondingly,

The resulting modulated signal is defined by

f i t( ) f c k1
d
dt
-----m t( )+=

θi t( ) 2π f i t( ) td
0

t

∫=

2π f ct 2πk1m t( )+=

s t( ) Ac θi t( )( )cos=

Ac 2π f ct θi t( )m t( )+[ ]cos=

f i t( ) f c k2
d

2
m t( )
dt

2
-----------------+=

θi t( ) 2π f ct 2πk2
dm t( )

dt
--------------+=

s t( ) Ac 2π f ct 2πk2
dm t( )

dt
--------------+ 

 cos=

s t( ) Ac 2π f ct 2πkn
d

n-1
m t( )

dt
n-1

---------------------+
 
 
 

cos=

m τ( ) τd
0

t

∫
f i t( ) f c c1 m τ( ) τd

0

t

∫+=

θi t( ) 2π f ct 2πc1 m τ( ) τd
0

λ
∫ 

  dλ+=
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Unlike the modulation scenario involving derivatives of m(t), we can see that when
considering the scenario involving integrals of m(t), mathematical formulation of the
modulated signal s(t) becomes increasingly more complicated.

(b) There could be a practical benefit from using a frequency-modulation strategy involving
integrals of the message signal m(t) if m(t) happens to be corrupted by additive noise. In such
a scenario, the integration process tends to reduce the corruptive influence of the additive
noise by smoothing it out. However, the drawback of such a modulation strategy is two-fold:
(i) Mathematical analysis of ordinary FM is complicated enough. Using integrals of the

message signal as the input to the frequency modulator makes the problem even more
complicated.

(ii) Likewise, designs of the transmitter and receiver become even more complicated.
Statements similar to (i) and (ii) apply to the use of second and higher derivatives of the
message signal m(t) as the input to the frequency modulator. The only exception here is the
first derivative of m(t), in which case the frequency modulator produces a phase modulated
version of the signal. One other point to note is that if the message signal m(t) is corrupted by
additive noise, the operation of differentiation will enhance the presence of the noise
component, which is undesirable.

To conclude, the “simple” forms of angle modulation exemplified by the ordinary FM and
ordinary PM discussed in the chapter are good enough from a theoretical as well as practical
perspective.

Problem 4.24

(a) We are given a nonlinear channel’s input-output relation:

(1)

where vi(t) is the input and vo(t) is the output; a1, a2, and a3 are fixed parameters. The input
signal is defined by

(2)

where

(3)

where m(t) is the message signal and kf is the frequency sensitivity of the frequency
modulator. Substituting Eq. (2) into (1) yields

(4)

Using the trigonometric identities:

s t( ) Ac 2π f ct 2πc1 m τ( ) τd
0

λ
∫ 

  dλ
0

t

∫+cos=

vo t( ) a1vi t( ) a2vi
2

t( ) a3vi
3

t( )+ +=

vi t( ) Ac 2π f ct φ t( )+( )cos=

φ t( ) 2πk f m τ( ) τd
0

t

∫=

vo t( ) a1Ac 2π f ct φ t( )+( ) a2Ac
2 2π f ct φ t( )+( )2
cos+cos=

a3Ac
3 2π f ct φ t( )+( )3
cos+

θ2
cos

1
2
--- 1 2θ( )cos+( )=
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we may rewrite Eq. (4) as

(5)

Equation (5) shows that the channel output consists of the following components:

• A dc component,

• Frequency modulated component of frequency fc, phase φ(t) and amplitude

• Frequency modulated component of frequency 2fc, phase 2φ(t) and amplitude

• Frequency modulated component of frequency 3fc, phase 3φ(t) and amplitude

(b) To remove the nonlinear distortion and thereby extract a replica of the original FM signal vi(t),
it is necessary to separate the FM component with carrier frequency fc in vo(t) from the higher
order FM components. Let ∆f denote the frequency deviation of the original FM signal and W
denote the highest frequency component of the message signal m(t). Then, using Carson’s rule
and noting that the frequency deviation above 2fc is doubled (which is the component nearest
to the original FM signal), we find that the necessary condition for separating the desired FM
signal with carrier frequency fc from that with carrier frequency 2fc is

or
(6)

(c) To extract a replica of the original FM signal vi(t), we need to pass the channel output vo(t)
through a band-pass filter of midband frequency fc and bandwidth 2(∆f + W). The resulting
filter output is

(7)

where φ(t) is defined by Eq. (3).

Problem 4.25

(a) The loop filter in the second-order phase-locked loop (PLL) is defined by

θ3
cos

1
4
--- 1 3θ( )cos+( )=

vo t( ) 1
2
---a2Ac

2
a1Ac

3
4
---a3Ac

3
+ 

 + 2π f ct φ t( )+( )cos=

1
2
---a2Ac

2 4π f ct 2φ t( )+( ) 1
4
---a3Ac

3 6π f ct 3φ t( )+( )cos+cos+

1
2
---a2Ac

2

a1Ac
3
4
---a3Ac

3
+ 

 

1
2
---a2Ac

2

1
4
---a3Ac

3

2 f c 2∆f W+( ) f c ∆f W–+>–

f c 3∆f 2W+>

v ′o t( ) a1Ac
3
4
---a3Ac

3
+ 

  2π f ct φ t( )+( )cos=
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(1)

where a is a filter parameter. The Fourier transform of phase error φe(t) (i.e., the phase
difference between the phase of the FM signal applied to the PLL and the phase of the FM
signal produced by the VCO) in the PLL is defined by (see part (a) of Problem 4.7)

(2)

where the loop transfer function is itself defined by

(3)

The Φ1(f) in Eq. (2) is the Fourier transform of the angle φ1(t) in the FM signal applied to the
PLL. Substituting Eq. (1) into (3) and expanding terms, we get

(4)

Define the natural frequency of the loop

(5)

and the dampling factor

(6)

We may then recast Eq. (4) in terms of the loop parameters fn and  as follows:

(7)

(b) Suppose the FM signal applied to the PLL is a single-tone modulating signal, for which the
phase input is defined by

(8)

Then, invoking the use of Eq. (7), we find that the corresponding phase error φe(t) is defined
by

(9)

where

(10)

and

(11)

H f( ) 1 a
jf
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Φe f( ) 1
1 L f( )+
---------------------Φ1 f( )=
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Φe f( )
jf( )2

aK0⁄

1 jf( ) a⁄[ ] jf( )2
aK0⁄[ ]+ +

----------------------------------------------------------------------
 
 
 

Φ1 f( )=

f n aK0=

ζ
K0

4a
-------=

ζ
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1 2ζ j f f n⁄( ) j f f n⁄( )2
+ +

---------------------------------------------------------------------
 
 
 

=

φ1 t( ) β 2π f mt( )sin=

φe t( ) φeo 2π f mt ψ+( )cos=

φeo

∆ f f m⁄( ) f m f n⁄( )

1 f m f n⁄( )2
–( )

2
4ζ2

f m f n⁄( )2
+[ ]

1 2⁄----------------------------------------------------------------------------------------------=

ψ π
2
---

2ζ f m f n⁄( )

1 f m f n⁄( )2
–

----------------------------------
1–
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One other thing we need to do is to evaluate the Fourier transform of the PLL output v(t). For
this purpose, we first note that the Fourier transform of v(t) is related to Φ1(f) as follows (see
part (b) of Problem 4.7)

(12)

where kv is the frequency sensitivity of the VCO. Using Eqs. (1), (3), and (12), we may write

(13)

In light of the PLL theory presented herein, we may make two important observations for an
incoming FM signal of fixed frequency deviation produced by a sinusoidal modulating signal
m(t):
(i) The frequency response that defines the phase error φe(t) is representative of a band-pass

filter, as shown by Eq. (10).
(ii) The frequency response of the PLL output v(t) is representative of a low-pass filter, as

shown by Eq. (13).
Therefore, by appropriately choosing the damping factor and natural frequency fn, which
determine the frequency response of the PLL, it is possible to restrain the phase error φe(t) to
always remain small and yet, at the same time, the modulating (message) signal is reproduced
at the PLL output with minimum distortion.

V f( ) jf
kv
----- L f( )

1 L f( )+
---------------------Φ1 f( )=

V f( )
j f f n⁄( ) 1 2ζ j f f n⁄( )+[ ]

1 2ζ j f f n⁄( ) j f f n⁄( )2
+ +

---------------------------------------------------------------------
 
 
 

Φ1 f( )=

ζ
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