
Chapter 5
Pulse Modulation: Transition from
Analog to Digital Communications

Problem 5.1
(a) Using the material presented in Section 2.5, justify the mathematical relationships listed at the

bottom of the left-hand side of Table 5.1, which pertain to ideal sampling in the frequency
domain.

(b) Applying the duality property of the Fourier transform to part (a), justify the mathematical
relationships listed at the bottom of the right-hand side of this table, which pertain to ideal
sampling in the time-domain.

Solution
1. Entry 1 on the left-hand side of Table 5.1:

• The relationship

where and fs = 1/Ts, is a rewrite of Eq. (2.87) with one trivial change,
namely, the replacements of To and fo by Ts and fs, respectively.

• The Fourier transform pair

is also a rewrite of Eq. (2.88) except for the replacement of To and fo with Ts and fs,
respectively.

2. Entry 2 on the right-hand side of Table 5.2:
• The relationship

is an exact reproduction of the equality in Eq. (5.2).
• The Fourier-transform pair

is an exact reproduction of the Fourier-transform pair listed in Eq. (5.2).

Problem 5.2
Show that as the sampling period Ts approaches zero, the formula for the discrete-time Fourier
transform Gδ(f) approaches the Fourier transform G(f).

Solution
From Eq. (5.3), we have
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The sampling period Ts = -1/(2W). We may therefore rewrite this equation as

In the limit, as Ts approaches zero, the discrete time nTs, approaches continuous time t. Moreover,
the summation over n approaches the integral

Correspondingly, Gδ(f) approaches the continuous Fourier transform G(f). We may therefore state
that the formula for the discrete Fourier transform Gδ(f) given in Eq. (5.3) approaches the formula
for the Fourier transform:

as the sampling period Ts approaches zero.

Problem 5.3
Show that

Solution

Problem 5.4
This problem is intended to identify a linear filter for satisfying the interpolation formula of Eq.
(5.7), albeit in a non-physically realizable manner. Equation (5.7) is based on the premise that the
signal g(t) is strictly limited to the band -W < f < W. With this specification in mind, consider an
ideal low-pass filter whose frequency response H(f) is as depicted in Fig. 5.2(c). The impulse
response of this filter is defined by (see Eq. (2.25))
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Suppose that the correspondingly instantaneously sampled signal gδ(t) defined in Eq. (5.1) is
applied to this ideal low-pass filter. With this background, use the convolution integral to show
that the resulting output of the filter is defined exactly by the interpolation formula of Eq. (5.7).

Solution
From Eq. (5.5), we have

,            -W < f < W

According to this equation, G(f) is low-pass with its frequency content confined to the range
-W < f < W. Since G(f) is the Fourier transform of g(t), we can also write

,           -W < f < W

Hence, the reconstruction filter defined by the left-hand side of this Fourier-transform pair is low-
pass with its passband confined to the range W < f < W.

Problem 5.5
Specify the Nyquist rate and the Nyquist interval for each of the following signals:
(a) g(t) = sinc(200t)

(b) g(t) = sinc2(200t)

(c) g(t) = sinc(200t) + sinc2(200t)

Solution
(a) The highest frequency component of

is 100 Hz. Hence, the Nyquist rate is 200 Hz and the Nyquist interval is 5 ms.

(b) The highest frequency component of

is twice that of g(t) in part (a); it is so because squaring a band-limited single has the effect of
doubling its highest frequency component. Hence, the Nyquist rate of

is 400 Hz and the Nyquist interval is 2.5 ms.

(c) The highest frequency component of the composite signal

is determined by the component . Hence, the Nyquist rate of this third signal is
400 Hz and the Nyquist interval is 2.5 ms.
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Problem 5.6
Consider uniform sampling of the sinusoidal wave

Determine the Fourier transform of the sampled waveform for the following sampling period:
(a) Ts = 0.25s
(b) Ts = 1s
(c) Ts = 1.5s

Solution
We are given

the frequency of which is 0.5 Hz.

(a) For the sampling period Ts = 0.25, we have

(b) For Ts = 1s,

(c) For Ts = 1.5,

Problem 5.7
Consider a continuous-time signal defined by

The signal g(t) is uniformly sampled to produce the infinite sequence . Determine
the condition which the sampling period Ts must satisfy so that the signal g(t) is uniquely
recovered from the sequence {g(nTs)}.
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Solution
The signal

is limited to the band -0.5 < f < 0.5 Hz. The Nyquist rate for this signal must therefore exceed
2 x 0.5 = 1 Hz. Correspondingly, the permissible sampling interval must satisfy the condition
Ts < 1s.

Problem 5.8
Starting with Eq. (5.9), show that the Fourier transform of the rectangular pulse h(t) is given by

What happens to H(f)/T as the pulse duration T approaches zero?

Solution
Given

the required Fourier transform is

Since

it follows that
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Problem 5.9
Using Eqs. (5.23) and (5.25), respectively, derive the slope characteristics of Eqs. (5.24) and
(5.26).

Solution
(a) The logarithmic law is defined by (see Eq. (5.23)

Therefore, differentiation with respect to |m| yields

Equivalently, we may write

(b) The A-law is defined by (see Eq. (5.25):

Hence, differentiation of |v| with respect to |m| yields

Equivalently, we may write

Problem 5.10
The best that a linear delta modulator can do is to provide a compromise between slope-overload
distortion and granular noise. Justify this statement.

Solution
(a) In linear delta modulation, if we make the step-size ∆ too small, then the system suffers from

slope overload distortion.
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(b) On the other hand, if we make the step-size ∆ too large relative to the local slope characteristic
of the message signal m(t), then the system suffers from granular distortion.

For a fixed sampling rate 1/Ts and with ∆ as the only variable, the best that the linear delta
modulator can do is to choose a step-size ∆ that will provide a compromise between these two
forms of quantization noise.

Problem 5.11
 Justify the two statements just made on sources of noise in a DPCM system.

Solution
1. When the step-size is too small and the input signal is changing too rapidly, the DPCM is

unable to track the input signal, resulting in slope-overload distortion similar to linear delta
modulation.

2. DPCM uses a quantizer in the transmitter. Hence, like pulse-code modulation, DPCM suffers
from quantization noise.

Problem 5.12

(a) The PAM wave is defined by

(1)

where g(t) is the pulse shape, and µ is the modulation
factor. The PAM wave is equivalent to the convolution of the instantaneously sampled signal

 and the pulse shape g(t), as shown by
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Let .
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For Ts = 1s, the ideally sampled spectrum is

(4)

which is plotted in Fig. 2(c).
The actual sampled spectrum is defined by

(5)

which is plotted in Fig. 1(b).

(b) The ideal reconstruction filter would retain the centre 3 delta functions of S(f). With no
aperture effect, the two outer delta functions would have amplitude µ/2. The aperture effect
distorts the reconstructed signal by attenuating the high-frequency portion of the message
signal.

Figure 1

Problem 5.13

At f = 1/2Ts, which corresponds to the highest frequency component of the message signal for a
sampling rate equal to the Nyquist rate, we find from Eq. (5.17) that the amplitude response of the
equalizer normalized to that at zero frequency is defined by
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ime
where the ratio T/Ts is equal to the duty cycle. In Fig. 1, Eq. (1) is plotted as a function of T/Ts.
Ideally, the graph should be equal to one for all values of T/Ts, as indicated by the dashed
horizontal line in Fig. 1. For a duty cycle of 25 percent, it is approximately equal to 1.04, which
exceeds the ideal case by about 4%.

Problem 5.14

(a) The Nyquist rate for s1(t) and s2(t) is 160 Hz. Therefore, the factor must be greater than

160, and the maximum R is 3.
(b) With R = 3, we may use the following signal format displayed in Fig. 1 to multiplex the

signals s1(t) and s2(t) into a new signal, and then multiplex s3(t) and s4(t) and s5(t) including
markers for synchronization.
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Based on the signal format shown in Fig. 1, we may develop the multiplexing system shown in
Fig. 2.
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Problem 5.15

Problem 5.16

(a) An alternating sequence of 1’s and 0’s
On-off signaling: The signal g(t) consists of a periodic train of rectangular pulses with pulse
duration T = T0/2, where T0 is the period.
Bipolar return-to-zero signaling: The signal g(t) consists of a periodic train of pulses of
duration T and of alternating polarity.

Problem:(5.15a)
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(b) A long sequence of 1’s followed by a long sequence of 0’s
On-off signaling: The signal g(t) consists of a unit step function defined for negative time, that
is, u(-t).
Bipolar return-to-zero signaling: The signal g(t) consists of pulses of alternating polarity,
followed by a long period of zero volts.

(c) An alternating sequence of 1’s followed by a single 0 and then a long sequence of 1’s
On-off signaling: The signal g(t) consists of a dc component minus a rectangular pulse (of the
same amplitude as the dc component).
Bipolar return-to-signal signaling: The signal g(t) consists of two identically periodic
sequences of pulses separated by a period of zero volts.

The line codes just described are plotted in Fig. 1.

1          0          1          0          1          0          1          0
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Bip[olar return-to-
zero signaling

(a)

(a) An alternating sequence of 1’s and 0’s

1          1          1          1          0          0          0          0
On-off signaling

Bipolar return-to-
zero signaling

(b)

(b) A long sequence of l’s followed by a long sequence of 0’s
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Figure 1

Problem 5.17

The quantizer has the following input-output curve plotted in Fig. 1

At the sampling instants we have:

And the coded waveform is (assuming on-off signaling):
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Problem 5.18

We are given
- Audio signal bandwidth, W = 15 kHz
- Number of uniform quantization levels = 512 levels
- Encoding : binary

(a) The Nyquist rate is 2W = 30 kHz.

(b) To accommodate 512 quantization levels, we require a binary code with B bits, which would
have to satisfy the following requirement:

2B = 512
Hence, B = 9. The sampling period Ts = 1/30 milliseconds must be divided into 9 bits. The
minimum sampling rate is therefore
30 x 9 = 270 kilobits/second
           = 0.27 megabits/second

Problem 5.19

(a) We are given
- Video bandwidth = 4.5 MHz
- Sampling rate = 15% in excess of the Nyquist rate
- Uniform quantization using 1024 levels
- Binary encoding

(b) The Nyquist rate is 2 x 4.5 = 9 MHz.
Actual sampling rate = 9 x 1.15 = 10.35 MHz
The sampling period is therefore

This sampling rate must be divided into B bits, where

2B = 1024
Hence, B = 10. The bit duration is therefore

The permissible bit rate is therefore 103.5 megabits/s.
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Problem 5.20

The transmitted code words, representing the PCM waveform

Accordingly, the sampled analog signal from which these code words are derived is shown in Fig.
1.

Problem 5.21

The modulating wave is

The slope of m(t) is given by

The maximum slope of m(t) is therefore equal to 2πfmAm.
The maximum average slope of the approximating signal ma(t) produced by the delta

modulator is δ/Ts, where δ is the step size and Ts is the sampling period. The limiting value of Am

is therefore given by

or
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Assuming a load of 1 ohm, the transmitted power is . Therefore, the maximum power that

may be transmitted without slope-overload distortion is equal to .

Problem 5.22

Sampling rate = 64 kHz
Voice signal bandwidth = W = 3.1 kHz
Maximum signal amplitude Amax = 10 volts

(a) To avoid slope overload, we must satisfy the following requirement (see Problem 5.21)

Solving for the step size ∆, we write

(1)

Substituting the given values into Eq. (1) yields

or

Effectively, provided that the step size ∆ is 0.33 volt, then slope-overload distortion is avoided.

(b) Let denote the granular noise, viewed as a function of time t. The average power of
granular noise (analogous to quantization noise in PCM), is defined by

With ∆ set at 0.33 volt, the average power of granular noise is therefore 0.03 watts (assuming
that the power is calculated for a load of 1 ohm).

(c) The minimum channel bandwidth needed to transmit the DM encoded signal is the inverse of
the sampling rate, that is, 64 kHz.

Problem 5.23

The values calculated in parts (a), (b) and (c) of Problem 5.22 also hold for a sinusoidal signal of
peak amplitude 10 volts and frequency 3.1 kHz.
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Problem 5.24

The transmitting prediction filter operates on exact samples of the signal while the receiving
prediction filter operates on quantized samples. Hence, unlike the DPCM system described in
Section 5.8, the prediction filters in the transmitter and receiver of Fig. 5.26 operate on different
signals.

Problem 5.25

(a) In theory, any physical signal (exemplified by audio and video signals) has a spectrum that
gradually decreases towards zero. From Fourier transform theory, we know that any signal
cannot simultaneously have finite duration and finite bandwidth. Therefore, theoretically
speaking, given a physical signal of finite duration, the band of frequencies occupied by that
signal is infinitely large. Accordingly, when the signal is sampled in accordance with the
Nyquist sampling theorem, there will always be some distortion produced by sampling the
signal due to the aliasing phenomenon.

(b) In practice, however, we usually limit the sampling rate to some finite value, depending on the
application of interest. For example, for telephonic communication, it has been found
experimentally that 3.1 kHz is considered to be adequate for describing the “effective”
bandwidth of a voice signal, be that for a male or female. Thus, choosing a rate of 8 kHz is
considered to be adequate for the uniform sampling of a voice signal in telephonic
communication. In reality, there is some distortion produced by the sampling process, but for
all practical purposes, the distortion is not significant enough to be perceived by a human
listener. Indeed, it is for this reason that a sampling rate of 8 kHz is the universally accepted
standard for the sampling of voice signals transmitted over a telephone line.

Similar remarks apply to the sampling of video signals; naturally, the sampling rate used
for video signals is much higher than 8 kHz,

Problem 5.26

Let 2W denote the bandwidth of a narrowband signal with carrier frequency fc. The in-phase and
quadrature components of this signal are both low-pass signals with a common bandwidth of W.
According to the sampling theorem, there is no information loss if the in-phase and quadrature
components are sampled at a rate higher than 2W. For the problem at hand, we have
fc    = 100 kHz
2W = 10 kHz
Hence, W = 5 kHz, and the minimum rate at which it is permissible to sample the in-phase and
quadrature components is 10 kHz.

From the sampling theorem, we also know that a physical waveform can be represented over the
interval  by

(1)

∞ t ∞< <–

g t( ) anφn t( )
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∞
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where  is a set of orthogonal functions defined as

where n is an integer and fs is the sampling frequency. If g(t) is a low-pass signal limited to W Hz,
and fs > 2W, then the coefficient an can be shown to equal g(n/fs). That is, for fs > 2W, the
orthogonal coefficients are simply the values of the waveform that are obtained when the
waveform is sampled every 1/fs second.

As already mentioned, the narrowband signal is two-dimensional, consisting of in-phase and
quadrature components. In light of Eq. (1), we may represent them as follows, respectively:

Hence, given the in-phase samples and quadrature samples , we may reconstruct

the narrowband signal g(t) as follows:

where fc = 100 kHz and fs > 10 kHz, and where the same set of orthonormal basis functions is
used for reconstructing both the in-phase and quadrature components.

Problem 5.27

(a) The commutator at the output of the bipolar chopper switches between the direct path and
inverted path at the frequency fs. In effect, every 1/fs seconds, the output of the chopper
consists of the input x(t) -- via the direct path -- for 1/2fs seconds followed by the inverted
version of x(t) -- via the inverted path -- for the remaining 1/2fs seconds of the commutation
period. For one period of the commutation process, we may thus write

(1)

Equation (1) repeats itself every 1/fs seconds.

(b) Equation (1) may be equivalently expressed as follows:
(2)

where c(t) consists of the square wave (see Fig. 1)

φn t( ){ }

φn t( )
π f s t n f s⁄–( ){ }sin

π f s t n f s⁄–( )
--------------------------------------------------=

gI t( ) gI n f s⁄( )φn t( )
n=-∞

∞

∑=

gQ t( ) gQ n f s⁄( )φn t( )
n=-∞

∞

∑=

gI
n
f s
----- 

  gQ
n
f s
----- 

 

g t( ) gI t( ) 2π f ct( ) gQ t( ) 2π f ct( )sin–cos=

gI
n
f s
----- 

  2π f ct( ) gQ
n
f s
----- 

  2π f ct( )sin–cos φn t( )
n=-∞

∞

∑=

y t( )
x t( ) for 0 t 1 2 f s( )⁄≤ ≤

x t( )– for 1 2 f s( ) t 1 f s⁄≤ ≤⁄






=

y t( ) c t( )x t( )=
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(3)

By inspection, we may make three observations from Fig. 1:
(i) The dc component of c(t) is zero.
(ii) The Fourier series representation of c(t) consists of sine components with a

 fundamental frequency fs.
(iii) The even harmonic components of c(t) are all zero.
Accordingly, we may represent c(t) by the Fourier series:

(4)

where bn is defined by

(5)

We may thus express the Fourier series of the commutation function c(t) as

(6)

Using Eq. (6) in (2) yields

(7)

The Fourier transform of y(t) is therefore defined by

c t( )
1 + for 0 t 1 2 f s( )⁄≤ ≤

1– for 1 2 f s( ) t 1 f s⁄≤ ≤⁄






=

-1/fs           -1/2fs    0                     1/2fs          1/fs

c(t)

+1

t

-1

c t( ) b1 2π f st( ) b3 6π f st( ) b5 10π f st( ) …+sin+sin+sin=

bn f s c t( ) 2πn f st( )sin td
0

1 f s⁄

∫=

f s 2πn f st( )sin t f s 2πn f st( )sin td
1 2 f s⁄–

1 f s⁄

∫–d
0

1 2 f s⁄

∫=

1–
2πn
---------- 2πn f st( )cos[ ] t=0

1 2 f s⁄ 1
2πn
---------- 2πn f st( )cos[ ] t= 1 2 f s⁄( )

1 f s⁄
+=

1
2πn
---------- nπ( ) 1–cos( )–

1
2πn
---------- nπ( ) nπ( )cos–cos( )+=

2
πn
------ for n 1 3 5 …, , ,=

0 for n 0 2 4 …, , ,=





=

c t( ) 2
π
--- 2π f st( ) 2

3π
------ 6π f st( ) 2

5π
------ 10π f st( ) …+sin+sin+sin=

y t( ) 2
π
--- 2π f st( )x t( ) 2

3π
------ 6π f st( )x t( ) 2

5π
------ 10π f st( ) …+sin+sin+sin=

Y f( ) 1
jπ
------ X f f s–( ) X f f s+( )–[ ]=
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(8)

where X(f) is the Fourier transform of the input x(t).
Figure 2 displays the relationship between the two Fourier transforms: X(f) and Y(f). Note

that X(f) can only be recovered from Y(f) only through a band-pass filter with bandwidth 2W
centered on fs.

Figure 2

Problem 5.28

(a) Consider a periodic waveform x(t) whose Fourier transform is defined by

(1)

where f0 is the fundamental frequency of x(t). In effect, we are assuming that x(t) is the result
of prefiltering a periodic signal with period 1/f0 and all harmonic components in excess of the
mth component have been suppressed. The highest frequency of x(t) is therefore mf0.

Suppose now x(t) is purposely sampled at the rate
(2)

where 0 < a < 1. The sampling rate fs is clearly less than the Nyquist rate 2mf0, hence the
possibility of aliasing. From Eq. (5.2) in the text, recall that the Fourier transform of the
sampled version of x(t) is defined by

(3)

Substituting Eq. (1) into (3) yields

(4)

1
j3π
--------- X f 3 f s–( ) X f 3 f s+( )–[ ]+

1
j5π
--------- X f 5 f s–( ) X f 5 f s+( )–[ ] …+ +

2w2w

fsfs3f s 3f s

f

jY(f)

f

X(f)

X(0)

w-w 0

0

X f( ) ckδ f k f 0–( )
k= m–

m

∑=

f s 1 a–( ) f 0=

1
f s
----- X δ f( ) X f i f s–( )

i=-∞

∞

∑=

X f i f 0– ai f 0+( )
i=-∞

∞

∑=

1
f s
----- X δ f( ) ckδ f i k+( ) f 0– ai f 0+( )

k= m–

∞

∑
i=-∞

∞

∑=
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To proceed further with this equation, we will use induction to solve Problem 5.28.

(i) Let m = 1, for which Eq. (1) reads as
(5)

This spectrum represents a sinusoidal wave of amplitude 2c1, superimposed on a dc bias of
c0; see Fig. 1(a). For this case, Eq. (4) simplifies to

(6)

Evaluating Eq. (5) yields the sampled spectrum depicted in Fig. 1(b).

X f( ) c0δ f( ) c1 δ f f 0–( ) δ f f 0+( )+[ ]+=

1
f s
----- X δ f( ) ckδ f i k+( ) f 0– a f 0+( )

k= 1–

∞

∑
i=-∞

∞

∑=

[c0δ f i f 0– ai f 0+( )
i=-∞

∞

∑=

ciδ f i 1+( ) f 0– ai f 0+( )+

ciδ f i 1–( ) f 0– ai f 0+( )]+

X(f)

c0

c0 c0

-f0                     0 f0
f

1
fs

Xδ(f)

f
-2f0 -f0 0 f0 2f0

-f0 - af0 f0 + af0 f0 - af0 f0 + af0

              (a)

              (b)

   Figure 1

-af0 af0

X(f)

-f0                   0 f0
f

Xδ(f)/fs

f
-2f0 -f0 0 f0 2f0

                   (a)

c0
      c1 c1

af0 2af0 f0 - 2af0

                    (b)
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(ii) Next, let m = 2, for which we deduce that the relationship between the original spectrum
X(f) and the sampled spectrum Xδ(f)/fs is pictured as shown in Fig. 2. The results displayed
here follow from the evaluation of Eq. (4) for m = 2.

Based on the results depicted in Figs. 1 and 2, we may draw the following conclusions:
• The part of the spectrum Xδ(f)/fs centered on the origin f = 0 is a compressed version of

the original spectrum X(f).
• The original spectrum X(f) can be recovered from Xδ(f)/fs by using a low-pass filter,

provided there is no spectral overlap. In both figures, there is no spectral overlap. For
this to be so, in Fig. 1(b) with m = 1 we must choose

or

(7)

In the case of Fig. 2(b) with m = 2, we must choose

or

(8)

Generalizing these two results, we may say that spectral overlap in the sampled
spectrum Xδ(f)/fs is avoided provided that we choose

However, the choice of 1/2m does not leave any room for the design of a realizable
low-pass reconstruction filter. This last provision is made by choosing

(9)

• From Fourier transform theory, we recall that spectral compression in the frequency
domain corresponds to signal expansion in the frequency domain. We therefore
conclude that provided the choice of parameter a satisfies Eq. (9), then we may use the
scheme described in Fig. 5.28 to expand the time display of a periodic waveform with
highest frequency component mf0 and do so with a realizable reconstruction filter,
provided that parameter a satisfies the condition of Eq. (9).

Problem 5.29

Consider Fig. 1(a) that shows the mirror rotating counter clockwise about the horizontal axis at a
rate of 2πf radians per second. At a given time t, the angular position of the position of the narrow
horizontal strip on the television screen as seen in the mirror forms an angle of 2πft with respect to
the coordinate axes. The position of the narrow strip relative to the origin as seen in the mirror is
described by

which is the sampled version of the complex exponential

f 0 a f 0–( ) a f 0>

a
1
2
---<

f 0 2a f 0–( ) 2a f 0>

a
1
4
---<

a
1

2m
-------<

a
1

2M 1+
------------------<

x T s( ) j2πf T s( )exp=

x t( ) j2πft( )exp=
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(a) If there is exactly one revolution of the mirror between frames on the television screen, then
the rotation speed of the mirror matches the sampling rate of the video signal. In this situation,
the horizontal strip on the television screen does not appear to be rotating, as illustrated in Fig.
1(a).

(b) If however the mirror rotates at an angle less than π radians between television frames, then
the rotation of the narrow strip as seen in the mirror appears like a left-to-right motion (i.e.,
backwards), as illustrated in Fig. 1(c). This situation implies that

That is, with Ts = 1/60 seconds, the rotation rate of the mirror defined by w = 2πf is

which is one half of the television’s sampling rate. If the rotation rate of the mirror satisfies
this condition, then no aliasing occurs and the rotation of the mirror is visually consistent with
the left-to-right motion.

On the other hand, if the mirror rotates between π and 2π radians between television
frames, then the rotation of the mirror appears to be visually inconsistent with linear motion,
as illustrated in Fig. 1(d). This inconsistent situation occurs when

or, with Ts = 1/60 seconds,

2πf T s π<

w 60π radians/second<

π 2πf T s 2π<<

30 f 60 hertz< <

. . . .

....

. . . .

.

(a)

(b)

(c)

(d)

t = 3              t = 2              t = 1             t = 0

t = 3              t = 2              t = 1             t = 0

t = 3              t = 2              t = 1             t = 0

Direction of travel

Direction of travelFigure 1
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Problem 5.30

The first-order hold corresponds to extrapolating into the future with a straight line, as shown in
Fig.1.

Specifically, the impulse response of the first-order hold may be expressed as

(1)

Equivalently, we may express h(t) as

(2)

where u(t) is the unit step function.

(a) Taking the Fourier transform of Eq. (2) and using the Fourier-transform pairs of Table A6.2,
we may therefore express the frequency response of the first-order hold as

which, after collecting and simplifying terms, yields

(3)

2

1
0

-1

-2

t
2T

T

h(t)

Figure 1

h t( )
t T+( ) T⁄ for 0 t T≤ ≤
t T–( ) T⁄– for T t 2T≤ ≤

0 elsewhere





=

h t( ) u t( ) t
T
---u t( ) 2u t T–( )–+=

2
t T–

T
-----------u t T–( )– u t 2T–( ) t 2T–

T
---------------u t 2T–( )+ +

H f( ) 1
j2πf
------------ 1

T j2πf( )2
------------------------

2
j2πf
------------ j2πfT–( )exp–+=

2

T j2πf( )2
------------------------–

1
j2πf
------------ j4πfT–( ) 1

T j2πf( )2
------------------------ j4πfT–( )exp+exp+

H f( ) T 1 j2πfT+( ) 1 j2πfT–( )exp–
j2 πfT( )

------------------------------------------ 
  2

=
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(b) Figure 2 shows the magnitude and phase responses of the first-order hold.

(c) For perfect reconstruction of the original analog signal, we need an equalizer whose transfer
function is the inverse of H(f) of Eq. (3), as shown by

(4)

For a duty cycle (T/Ts) = 0.1, the use of Eq. (4) yields

(d) For the sinusoidal input

and fs = 100Hz and T - 0.01, Fig. 3(c) shows the response produced by the first-order hold.
Part (b) of the figure shows the corresponding response of the sample-and-hold filter.
Comparing these two parts of Fig. 3, we may make the following observations:
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Problem 5.31

(a) Starting with the Fourier-transform pair

(1)
and applying the differentiation property of the Fourier transform to Eq. (1), we write

or, equivalently

(2)
Multiplying the left-hand side of Eq. (1) by A and invoking the linearity property of the
Fourier transform, we go on to write

Simplifying terms:

(3)
Finally, applying the dilation property of the Fourier transform to Eq. (3). we get
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–( )exp π f
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–( )exp
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----- πt
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–( ) j2πf π f
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–( )expexp
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(4)

The left-hand side of this transform pair is recognized as the time function (see Eq. (5.39))

(5)

From Fig. 5.22, we see that the maximum value of v(t) is +1. To find this maximum, we
differentiate v(t) with respect to time t and set the result equal to zero, obtaining

Cancelling common terms and solving for tmax/τ, we get

(6)

Using this value in Eq. (5):

With v(tmax) = 1, it follows that

(b) The formula used to plot the spectrum of Fig. 5.23 is defined by the Fourier transform on the
right-hand side of Eq. (4), that is,

(7)

A
t
τ
-- 

  π t
τ
-- 

  2
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 exp j– τ f A π f
2τ2
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-- 
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τ
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