
Chapter 7
Digital Band-pass Modulation Techniques

Problem 7.1
Invoking the band-pass assumption, show that

regardless of how the bit duration Tb is exactly related to fc so long as fc >> 1/Tb.

Solution
Let

Using the trigonometric identity

we may express I(Tb) as

So long as , we may set , in which case, , thereby obtaining

the desired result.

Problem 7.2
Show that Eq. (7.8) is invariant with respect to the carrier phase φc (i.e., it holds for all φc).

Solution
Assuming a carrier phase φc, the carrier is itself written as . Then Eq. (7.7)

modifies to

where we have made use of the trigonometric identity
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Hence, with |b(t)|2 remaining essentially constant over one complete cycle of ,

we have

 for all φc

Correspondingly, we may write

   for all φc.

Problem 7.3
Although QPSK and OQPSK signals have different waveforms, their magnitude spectra are iden-
tical; but their phase spectra differ by a nonlinear phase component. Justify the validity of this
two-fold statement.

Solution
In QPSK, the modulated signal is defined by (see Eq. (7l15))

(1)

where 0 < t < T the index i = 1,2,3,4, depending on which particular dibit is sent. For a specific
index i, the in-phase component of SQPSK(t) is therefore

,             0 < t < T (2a)

and its quadrature component is

,             0 < t < T (2b)

In OQPSK, the in-phase component is left intact but the quadrature component is delayed by T/2
(half symbol period). Accordingly, for the same index i in QPSK, we may express the in-phase
component of OQPSK as

,            0 < t < T (3a)

and its quadrature component as

(3b)

Let bI(t) denote a rectangular pulse of duration T, representing the in-phase component of the
QPSK signal and bQ(t) denote the corresponding quadrature component. Then, in light of Eqs.
(2) and (3), we may express the complex envelope of QPSK as

,                        0 < t < T (4)

and

,               0 < t < T (5)

Applying the Fourier transform to Eqs. (4) and (5), we correspondingly have
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(6)

and

(7)

From Eqs. (6) and (7), it therefore follows that for the QPSK

(8a)

and

(8b)

Similarly, for the OQPSK

(9a)

and

(9b)

For a square wave input, we typically find that the cross-product term 2BI(f)BQ(f)sin(πfT) is small

compared to the composite term . Accordingly, from Eqs. (8a) and (9a), it fol-

lows that for all practical purposes, the magnitude spectra and are

identical. In direct contrast, however, from Eqs. (8b) and (9b), we find that the corresponding
phase spectra are not only different but the difference between them is a nonlinear function of
frequency f.

Note: In the problem statement, the following correction should be made:
The term “linear phase component” is replaced by “nonlinear phase component”.

Problem 7.4
Show that the modulation process involved in generating Sunde’s BFSK is nonlinear.

Solution
Let

,   for symbol 1

and

,   for symbol 0

where fc is the unmodulated carrier frequency. We may therefore express the instantaneous fre-
quency of Sunde’s BFSK signal as
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,        0 < t < Tb (1)

where

Correspondingly, we may define the BFSK signal itself as

(2)

Recognizing that

and

we may rewrite Eq. (2) in the new form

(3)

where 0 < t < Tb; the minus sign corresponds to symbol 0 and the plus sign corresponds to sym-
bol 1. Equation (3) reveals the following two characteristics of Sunde’s BFSK:
(i) The in-phase component of s(t) is independent of the incoming binary data stream.
(ii) The incoming binary data stream only affects the quadrature component.
It is because of property (ii) that we may go on to state that Sunde’s BFSK is nonlinear.

Problem 7.5
To summarize matters, we may say that MSK is an OQPSK where the symbols in the in-phase
and quadrature components (on a dibit-by-dibit basis) are weighted by the basic pulse function

where Tb is the bit duration, and rect(t) is the rectangular function of unit duration and unit
amplitude. Justify this summary.

Solution

With , it follows that
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and

Following Eqs. (7.29) and (7.30), we next note that the binary waves a1(t) and a2(t), constituting
the MSK signal, are extracted from the incoming binary data stream through demultiplexing and
offsetting in a manner similar to OQPSK. Since a1(t) and a2(t) are themselves weighted by the
sinusoidal functions cos(2πf0t) and sin (2πf0t), we may go on to state that the in-phase and
quadrature components of the MSK signal are weighted (on a dibit-by-dibit basis) by the basic
pulse function

Problem 7.6
The sequence 11011100 is applied to an MSK modulator. Assuming that the angle θ(t) of the
MSK signal is zero at time t = 0, plot the trellis diagram that displays the evolution of θ(t) over
the eight binary symbols of the input sequence.

Solution
Evolution of the phase θ(t) of the MSK signal produced by the sequence 11011100 is displayed
in Fig. 1.

Problem 7.7
The process of angle modulation involved in the generation of an MSK signal is linear. Justify this
assertion.

Solution
We first recognize from Problem 7.5 that MSK is an OQPSK signal with only a basic difference:
(i) In OQPSK, the weighting applied to the in-phase and quadrature components of the

modulated signal (on a dibit-by-dibit basis) is in the form of a rectangular function. On the
other hand, in MSK, the corresponding weighting functions are sinusoidal.

(ii) The OQPSK is the result of a linear modulation process.
In light of these two points, we may therefore state that the angle modulation process involved in
generating MSK is a linear process.
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Problem 7.8
A simple way of demodulating an MSK signal is to use a frequency discriminator, which was
discussed in Chapter 4 on angle modulation. Justify this use and specify the linear input-output
characteristic of the discriminator.

Solution
The MSK signal is basically an FSK signal, as shown by

where

The plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0.
We may therefore demodulate s(t) by using a frequency discriminator whose input-output

characteristic is described in Fig. 1

Problem 7.9
Starting with Eq. (7.41), prove the orthogonality property of Eq. (7.42) that characterizes M-ary
FSK.

Solution
From Eq. (7.41), we have

Applying Eq. (7.42), we therefore have
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 for all integer k and l
which is the desired result.

Problem 7.10
Justify Eqs. (7.47) and (7.49).

Solution
Starting with Eq. (7.47), we write

(1)

For fc = n/Tb for some integer n, Eq. (1) takes the form

, n integer

Similarly, for symbol 0, we have

Problem 7.11

(a) The transmission bandwidth of the BASK signal is effectively defined by

where Tb is the bit duration. With Tb = l µs, we therefore have
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(b)

In the waveform plotted in Fig. 1, time t is measured in microseconds.

Problem 7.12

Comparing the BASK waveform plotted in Fig. 1 of this solution with that of the BASK signal
considered in Problem 7.11, we see that continuity in time is not maintained in Fig. 1 of the
solution to Problem 7.12, when a succession of 1s is transmitted.

Problem 7.13

(a)
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(b)

Notes:
(i) In both Figures 1 and 2, time t is measured in microseconds.
(ii) For clarity of presentation, the carrier frequency in both figures has been scaled down

from 7 MHZ to 1 MHZ.
(iii) In Fig. 1 of the solution, there is synchronism between the carrier phase and the times at

which the incoming data switch for symbol 1 or 0 or vice versa. No such synchronism
exists in Fig. 2.

Problem 7.14

(a) The transmission bandwidth of the QPSK signal is

where T is the symbol (dibit) duration and Tb is the bit duration. With Tb = 1µs, it follows
therefore that
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(b)

Notes:
(i) Time t in Fig. 1 is measured in microseconds.
(ii) For clarify of presentation, we have plotted the QPSK waveform using a carrier of 1

MHz instead of 6 MHz.
(iii) Synchronism between the timing waveform representing the incoming binary data

stream and the clock responsible for generating the carrier is assumed.

Problem 7.15

(a) The transmission bandwidth of OQPSK is exactly the same as that of QPSK, which, for the
problem at hand, is 1 MHz.

(b)
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In plotting the OQPSK waveform in Fig. 1, we have followed the same notes made in the
solution to Problem 7.14 on QPSK.

Problem 7.16

(a) The transmission bandwidth of Sunde’s BFSK is greater than that of the corresponding BPSK.
This means that for the problem at hand, it will be greater than 1 MHz. In particular,
examining the spectrum shown in Fig. 7.12, we see that the main lobe occupies a bandwidth
of 3 Hz for the bit duration Tb = 1s. Therefore, scaling this result for Tb = 1µs, we may say that
the corresponding transmission bandwidth is

which is 50% greater than that of the corresponding BPSK.

(b)

Notes:
In plotting the BFSK waveform in Fig. 1, we have followed the same notes outlined in the
solution to Problem 7.14.

Problem 7.17

(a) Examining the continuous phase FSK waveform plotted in Fig. 7.1(c), we observe the
following two points (assuming that time t is measured in seconds):

(i) The carrier for symbol 00 occupies 3 complete cycles. Therefore,

(ii) The carrier for symbol 11 occupies 5 complete cycles. Therefore,

Hence, the frequency excursion is
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(b) The frequency parameter f0 is defined by (see Eq. (7.34))

Problem 7.18

In plotting the MSK waveform and its constituents shown in Fig. 1, the following two points
should be noted:
(i) Time t is measured in microseconds.
(ii) Synchronism is assumed between the timing waveform responsible for generating the

incoming binary sequences (and therefore the constituent sequences sI(t) and sQ(t)) and the
clock responsible for generating the carrier.

Problem 7.19

The bit duration is

The carrier frequency is
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From Eq. (7.19), the frequency excursion is

From Eqs. (7.21) and (7.22), we have

(a) The instantaneous frequency of the MSK signal is therefore

Specifically, fi(t) alternates between these two values.

(b) When the incoming data sequence consists of all 1s, we have
   for all time t

Problem 7.20

Extraction of the bit-timing may proceed as follows:
(i) Given the MSK signal s(t), a band-pass analyzer is used to extract the in-phase component

sI(t) and quadrature component sQ(t).
(ii) From the first line of Eq. (7.31), and Eqs. (7.33) and (7.34), we have

which depends on the bit duration Tb alone.
(iii) From Eq. (7.32), we recall that whenever two successive binary symbols in the original

data stream are the same, then θ(t) is negative and therefore the ratio r(t) is positive. On
the other hand, from Eq. (7.33), we recall that whenever two successive binary symbols
are different, then θ(t) is positive and therefore the ratio r(t) is negative.

Hence, by observing the zero-crossings of the waveform obtained from r(t) = [sQ(t)/sI(t)], it
should be possible to extract the timing waveform.
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Problem 7.21

The envelope of BFSK is constant with time, whereas the envelope of BASK is variable.
Accordingly, the noncoherent receiver of Fig. 7.18 for BFSK offers the following practical
advantages over the noncoherent receiver of Fig. 7.17 for BASK:
(i) Reduced sensitivity to nonlinear transmission.
(ii) Improved performance in the presence of channel noise and interference.

Problem 7.22

For the noncoherent receiver of Fig. 7.29 to offer an identical performance to the noncoherent
receiver of Fig. 7.18, the following conditions must be satisfied:
(i) The bit-timing circuitry of both receivers must be equally accurate.
(ii) The common bandwidth of the band-pass filter must occupy at the minimum the main

spectral lobe of the incoming BFSK signal. As such, a reasonably good choice for this
bandwidth is the reciprocal of 2Tb, where Tb is the bit duration.

(iii) With one band-pass filtered centred on f1 and the other centred on f2, the frequencies f1
and f2 must be separated from each other by at least 1/(2Tb).

These three conditions do not guarantee the exact equivalence of the two noncoherent receivers of
Figs. 7.18 and 7.19, but, for all practical purposes, would assure identical performance.

Problem 7.23

(a) The transmission bandwidth of DSK signal is the same as that of the corresponding BPSK.
Therefore, for a bit duration Tb = 1µs, the bandwidth is

(b) In plotting the DPSK waveform shown in Fig. 1, we have followed three points:
(i) Time t is measured in microseconds.
(ii) For clarity of presentation, a carrier frequency fc = 1 MHz has been used in place of

fc = 6 MHz.
(iii) Synchronism is assumed between the timing circuitry responsible for line encoding

the incoming binary data stream and the clock responsible for generating the carrier.

BT
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(c) Decoding in the receiver is first accomplished by multiplying the received signal by cos(2πfct)
and then low-pass filtering. Next, the low-pass filter output is applied to a DPSK decoder.
Thus, starting with a reference bit 1 and assuming perfect transmission (i.e., zero channel
noise), the receiver output is the same as the original binary sequence, namely, 11100101.

Problem 7.24

(a) The noiseless PSK signal is given by

Since m(t) = +1, it follows that

Therefore,
(1)

The VCO output is

The multiplier output in the phase-locked loop is therefore

The loop filter removes the double-frequency components, producing the output

0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time,t

s(
t)

Problem (7.23)−DPSK−first reference bit = 1

Figure 1

s t( ) Ac 2π f ct k pm t( )+[ ]cos=

Ac 2π f ct( ) k pm t( )[ ] Ac 2π f ct( ) k pm t( )[ ]sinsin–coscos=

k pm t( )[ ]cos k p±( )cos k p( )cos= =

k pm t( )[ ]sin k p±( )sin k p( )sin± m t( ) k p( )sin= = =

s t( ) Ac k p( ) 2π f ct( ) Acm t( ) k p( ) 2π f ct( )sinsin–coscos=

r t( ) Av 2π f ct θ t( )+[ ]sin=

r t( )s t( ) 1
2
--- AcAv k p( ) θ t( )[ ]sin 4π f ct θ t( )+[ ]sin+{ }cos=

1
2
--- Ac Avm t( ) k p( ) θ t( )( ) 4π f ct θ t( )+[ ]cos+cos{ }sin–

e t( ) 1
2
--- Ac Av k p( ) θ t( )[ ] 1

2
--- AcAvm t( ) k p( ) θ t( )[ ]cossin–sincos=
15



Note that if kp = π/2, (i.e., the carrier is fully deviated), there would be no carrier component
for the PLL to track.

(b) Since the error signal tends to drive the loop into lock (i.e., θ(t) approaches zero), the loop
filter output reduces to

which is proportional to the desired data signal m(t). Hence, the phase-locked loop may be
used to recover the original message m(t).

Problem 7.25

(a) The correlation coefficient of the signals s0(t) and s1(t) is

(1)

Since fc >> ∆f, then we may ignore the second term in Eq. (1), obtaining

(b) The dependence of ρ on ∆f is as shown in Fig. 1. The two signals s0(t) and s1(t) are orthogonal
when ρ = 0. Therefore, the minimum value of ∆f for which they are orthogonal is 1/2Tb.
s0(t) and s1(t) are orthogonal when ρ = 0. Therefore, the minimum value of ∆f for which they
are orthogonal is 1/2Tb.

e t( ) 1
2
--- AcAv k p( )m t( )sin–=

ρ
s0 t( )s1 t( ) td

0

T b

∫
s0

2
t( ) td

0

T b

∫
1 2⁄

s1
2

t( ) td
0

T b

∫
1 2⁄----------------------------------------------------------------------------=

Ac
2 2π f c

1
2
---∆f+ 

  t 2π f c
1
2
---– ∆f 

  tcoscos
0

T b

∫
1
2
--- Ac

2
T b

1 2⁄ 1
2
--- Ac

2
T b

1 2⁄---------------------------------------------------------------------------------------------------------------------------=

1
T b
------ 2π∆ft( ) 4π f ct( )cos+cos[ ] td

0

T b

∫=

1
2πT b
-------------

2π∆f T b( )sin

∆f
---------------------------------

4π f cT b( )sin

2 f c
--------------------------------+=

ρ
2π∆f T b( )sin

2πT b∆f
---------------------------------≈ c 2∆f T b( )sin=
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Problem 7.26

(a) The given binary FSK signal is defined by

(1)

Equation (1) may be expressed in the equivalent form
(2)

where

(3)

and

(4)

The digitally modulated signals s1(t) and s2(t) are recognized as two complementary BASK
signals, operating in parallel. In light of Eqs. (1) through (4), we may construct the two-
transmitter equivalence depicted in Fig. 1.

1.0Correlation
 coefficient

ρ

1/2Tb

1.4
2Tb

0.7
 Tb

=

 1
Tb

 -1
2Tb

-1
Tb

0

-0.216

∆f

Figure 1

sFSK t( )

2Eb

T b
--------- 2π f 1t θ1+( )cos for symbol 0

2Eb

T b
--------- 2π f 2t θ2+( )cos for symbol 1











=

sFSK t( ) s1 t( ) s2 t( )+=

s1 t( )
2Eb

T b
--------- 2π f 1t θ1+( )cos for symbol 0

0 for symbol 1





=

s2 t( )
0 for symbol 0

2Eb

T b
--------- 2π f 2t θ2+( )cos for symbol 1







=
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(a)

(b)

Problem 7.27

From the description of minimum-shift keying presented in Section 7.4, we recall the following:
• The transmission of symbol 1 increases the phase of the MSK signal by π/2 radians.
• The transmission of symbol 0 decreases the phase of the MSK signal by π/2 radians.
Accordingly, we may justify the entries listed in Table 7.4 as follows:
(a) When θ(0) = 0, the transmission of symbol 0 yields

(b) When θ(0) = π radians, the transmission of symbol 1 yields

which, in modulo-2π arithmetic, is equivalent to

BFSK s(t)
Binary
data
stream
b(t)

s1(t)

s2(t)

s(t)
Binary
data
stream
b(t)

BASK(1)

BASK(2)

Σ

(a)

(b)Figure 1

0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time,t

s(
t)

Problem (7.26)− f1=2Hz & f2=1Hz for BFSK

θ T b( ) π 2 radians⁄–=

θ T b( ) π π 2⁄+ 3π 2 radians⁄= =
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(c) When θ(0) = π radians, the transmission of symbol 0 yields

(d) When θ(0) = 0, the transmission of symbol 1 yields

Problem 7.28

The idea of quadrature multiplexing rests on the following premise: Two signals can be
transmitted over a common channel, provided that two conditions are satisfied:
(i) The two signals are orthogonal to each other.
(ii) They both occupy the same bandwidth.
This principle is satisfied by quadriphase-shift keying (QPSK), as demonstrated next.

Consider the QPSK signal defined by

(1)

This signal can be decomposed into the sum of two BPSK signals, defined as follows:

(2)

and

(3)

In light of Eqs. (1) through (3), we may write
(4)

which means that s1(t) and s2(t) can be transmitted simultaneously on a common channel and be
detected separately at the receiver. This statement is justified on two accounts:

θ T b( ) 3π 2⁄ 2π– π 2 radians⁄–= =

θ T b( ) π π 2⁄( )– +π 2 radians⁄= =

θ T b( ) 0 π 2⁄+ +π 2 radians⁄= =

s t( )

2E
T

------- 2π f ct( ),cos dibit 00

2E
T

------- 2π f ct( ),( )sin– dibit 01

2E
T

------- 2π f ct π+( ),cos dibit 11

2E
T

------- 2π f ct π+( ),cos– dibit 10
 











 

=

s1 t( )

2E
T

------- 2π f ct( ),cos dibit 00

2E
T

------- 2π f ct π+( ),cos dibit 11
 





 

=

s2 t( )

2E
T

-------– 2π f ct( ),sin dibit 01

2E
T

-------– 2π f ct π+( ),sin dibit 10
 
 
 
 
 
 
 

=

s t( ) s1 t( ) s2 t( )+=
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(i) Both s1(t) and s2(t) occupy exactly the same bandwidth, as their magnitude spectra are
identical.

(ii) They are orthogonal over the symbol period T, as shown by

which is zero by the band-pass assumption, provided that the carrier frequency fc is high
enough.

The assertion embodied in Eq. (4) holds for any clockwise or counterclockwise rotation of the
QPSK constellation defined in Eq. (1).

Consider next the 8-PSK defined by

(5)

Following what we did with the QPSK signal of Eq. (1), we may decompose the 8-PSK of Eq. (5)
as follows:

whose constituents are defined by

s1 t( )s2 t( )
0

T

∫ 2E
T

------- 2π f ct( ) 2E
T

-------– 
  2π f ct( )sincos td

0

T

∫=

-
E
T
--- 4 π f ct( )sin td

0

T

∫=

s ′ t( )

2E
T

------- 2π f ct( ),cos symbol 000

2E
T

------- 2π f ct π
4
---+ 

  ,cos symbol 001

2E
T

------- 2π f ct π
2
---+ 

  ,cos symbol 101

2E
T

------- 2π f ct 3π
4

------+ 
  ,cos symbol 111

2E
T

------- 2π f ct π+( ),cos symbol 011

2E
T

------- 2π f ct 5π
4

------+ 
  ,cos symbol 010

2E
T

------- 2π f ct 3π
2

------+ 
  ,cos symbol 110

2E
T

------- 2π f ct 7π
4

------+ 
  ,cos symbol 100































=

s t( ) s ′1 t( ) s ′2 t( )+=
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(6)

and

(7)

Basically, the signal is a rewrite of the QPSK signal s(t) of Eq. (1). The signal is a

rotated version of s(t). The two constituent QPSK signals and satisfy the common

bandwidth requirement (i). However, they fail to satisfy requirement (ii). To demonstrate this
failure, let us test the first components of  and  for orthogonality by writing

(8)

The integral term of Eq. (8) may be set equal to zero under the band-pass assumption, provided

that the carrier frequency fc is high enough. But the first term, namely, is nonzero. We

therefore conclude that the orthogonality requirement is violated by the two QPSK signals

s ′1 t( )

2E
T

------- 2π f ct( ),cos symbol 000

2E
T

------- 2π f ct π
2
---+ 

  ,cos symbol 101

2E
T

------- 2π f ct π+( ),cos symbol 011

2E
T

------- 2π f ct 3π
2

------+ 
  ,cos symbol 110

 













 

=

s ′2 t( )

2E
T

------- 2π f ct π
4
---+ 

  ,cos symbol 001

2E
T

------- 2π f ct 3π
4

------+ 
  ,cos symbol 111

2E
T

------- 2π f ct 5π
4

------+ 
  ,cos symbol 010

2E
T

------- 2π f ct 7π
4

------+ 
  ,cos symbol 100

















=

s ′1 t( ) s ′2 t( )

s ′1 t( ) s ′2 t( )

s ′1 t( ) s ′2 t( )

s ′1 t( )s ′2 t( )
0

T

∫ 2E
T

------- 2π f ct( ) 2E
T

------- 2π f ct π
4
---+ 

 cos⋅cos td
0

T

∫=

2E
T

------- 2π f ct( ) 2π f ct π
4
---+ 

  tdcoscos
0

T

∫=

E
T
--- π

4
--- 

  4π f ct π
4
---+ 

 cos+cos td
0

T

∫=

E
T
--- T

2
-------

E
T
--- 4π f ct π

4
---+ 

 cos td
0

T

∫+⋅=

E 2⁄
s ′1 t( )
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and . Hence, The “conquer and divide” approach theorem cannot be exploited beyond the

QPSK signal.

Problem 7.29

To simplify the presentation, hereafter we concentrate on the complex envelope (i.e., complex
baseband signal) of the QPSK signal, and likewise for the OQPSK signal. Otherwise, the phase
spectra of the QPSK and OQPSK signals would become dominated by the contribution of the
carrier, which complicates the graphical plots.

Figure 1 plots the phase spectrum of the QPSK signal with a square wave applied to each
of the I- and Q-channels. The phase spectrum has impulses spaced uniformly at the symbol rate,
corresponding to the phase discontinuities that occur at the symbol rate.

Figure 2 plots the phase spectrum of the corresponding OQPSK spectrum, with the same
square wave applied to each of the I- and Q-channels. The phase spectrum of Fig. 2 is similar to
that of Fig. 1 for the QPSK in that both of them consist of a series of impulses. However, in Fig. 2
the impulses are shifted in frequency as well as amplitude. Moreover, the impulses in Fig. 2 are
spaced by twice the symbol rate, because every second harmonic is cancelled out.

The phase spectra plotted in figs. 1 and 2 depend on the symbol rate of the incoming
square wave and the way in which the square wave is positioned with respect to the origin (i.e.,
time t = 0).

Finally, Fig. 3 plots the phase difference between the QPSK and OQPSK. From this figure
we readily see that this phase difference is a nonlinear function of frequency.

Note
The last sentence in the statement of Problem 7.29 should be corrected as follows:

“Hence, justify the assertion made in Drill Problem 7.3 that these two methods differ
by a nonlinear phase component.”

Also, add the following:
Hint: Use the complex envelope for the representation of QPSK and OQPSK signals.

s ′2 t( )
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Phase spectrum of QPSK with square wave in each of I and Q-channels

Figure 1

Phase spectrum of OQPSK with square wave in each of I and Q-channels

Figure 2
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The phase difference spectrum

Figure 3

Problem 7.30

(a) Running the Matlab script provided in Appendix 7, the plots shown in Fig. 1 are obtained.
The top plot of the figure shows the time-domain version of the bandpass signal. The carrier
appears to show a small amount of amplitude modulation but this is due to the sampling
process; if the sampling rate is increased by a factor of four, this amplitude modulation
disappears as we would expect with rectangular pulse-shaping. The bottom plot of Fig. 1
shows the frequency-domain version of the bandpass signal. The plot is in the form of a
(sin x)/x spectrum that is centered at the carrier frequency of 10 Hz, and the first null is offset
by the bit rate of 1 Hz. The spectrum is not perfectly symmetric about the carrier due to
aliasing, which affects the higher frequency components.

(b) We modify the provided Matlab script by inserting the statement
b = bIp + j*bQp;
and modifying the two statements
subplot(2,1,1), plot(t,real(b));       % time display
[spec,freq] = spectrum(b,nFFT,nFFT/4,nFFT/2,Fs);
With these changes, we obtain the plots shown in Fig. 2. The top plot of the figure shows the
time-domain sequence of random data with rectangular pulse shaping. The bottom plot shows
the (sin x )/x magnitude spectrum centered at the origin. In part (a), distortion of both the time-
domain and frequency domain signals was noted due to the limitations of the sampling rate. In
part (b), these distortions are much less evident. Consequently, if we simulate signals at
complex baseband, then we may use much lower sampling rates (and thus less computational
requirements) than for bandpass signals and obtain the same accuracy.
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Figure 1

Figure 2

Problem 7.31

We modify the script of Problem 7.30(a) by replacing
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Pulse Shape = ones(1,Fs); % rectangular pulse shape
With the lines
B0   = 0.5;                                   % (Hz)
t    = [-2.001: 1/Fs : +2.001]         % time scale for pulse shape
rcos = sinc(4*B0*t) ./ (1-16*B0^2*t.^2);  % from Eq.(6.20)
Pulse Shape = rcos;

Doing so, we obtain the graphs plotted in Fig. 1. The top graph of the figure shows the
time-domain version of the bandpass signal, including the amplitude modulation that occurs with
raised cosine pulse-shaping. The bottom graph of the figure shows the raised cosine spectrum of
the transmitted signal. Presence of the effects of aliasing is evident in the plot due to the spurious
signal present at 0 Hz in the magnitude spectrum.

If we make changes similar to those of Problem 7.30(b), then we obtain the plots shown in
Fig. 2. The top graph of the figure shows the baseband I-channel consisting of a random data
stream with raised cosine pulse shaping. The bottom graph of the figure shows the magnitude
spectrum of the complex baseband signal. There is no evidence of significant aliasing effects in
this figure. The effects of aliasing are less evident in the raised-cosine case, because the spectrum
is much more constrained than it is with rectangular pulse-shaping.
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Figure 2
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