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ECE2FH3
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Term 11, January — April 2012

MATLAB Examples and Exercises (Set 1)

Prepared by: Dr. M. H. Bakr and C. He

Example: Given the points M(0.1,-0.2,-0.1), N(-0.2,0.1,0.3) and P(0.4,0,0.1), find: a) the vector R, , b)
the dot product R, * R, , ¢) the projection of R,, on Rpy and d) the angle between Rym and Rpw.
Write a MATLAB program to verify your answer.

N (-0.2,0.1,0.3)

P(0.4,0,0.1)

Figure 1.1 The points used in the example of Set 1.
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Analytical Solution:

a) Ry =Ryuo—Ryo / >

=(0.1a, -0.2a,-0.1a,)—(-0.2a, +0.1a,+0.3a,)
=0.3a,-0.3a,-0.4a,
b) Rpy =Ryo—Rpo
=(0.1a,-0.2a,-0.1a,)—(0.4a, +0.1a,)
=-0.3a, -0.2a,-0.2a,
R *Rey =(0.38, —0.3a, - 0.4a,)+(-0.3a, —0.2a, - 0.2a,)
=0.3x(-0.3)+(—0.3)x(—0.2) + (—0.4) x (-0.2)
= -0.09+0.06+0.08 = 0.05 S
ENM .IZPM R,
pm *Fpm
~ 0.05
(=0.3)* +(-0.2)* +(-0.2)
=-0.088a, —0.059%a, —0.059%,

9) projRPMRNM =

(-0.3a,-0.2a, -0.2a,)

R *R
d) cosf=——w"em
| RNM | |RPM |
3 0.05
J(0.3)7 +(=0.3)> +(=0.4)> 1/(=0.3)> + (=0.2)* + (=0.2)’
=0.208
0 =cos ' 0.208=1.36
Definition
Let u and v be two nonzero vectors in R" . The cosine of the
angle @ between these vectors is cos@ = |u| |V i 0<6<r
Ufs|v
u
0
v

Figure 1.2 The angle between two vectors.

This problem 1is a direct
application to vector algebra. It
requires clear understanding of
the basic definitions used in
vector analysis.

The vector

Ry can be

obtained by subtracting the
vector R,, from vectorR,,,
where O is the origin.

Definition

Let u=(u,,...,u,)

and v=(v ,....,v,)

be two vectors in R". The dot
product of u and v is defined
by

UsV=U V, +---+U V,

The dot product assigns a real
number to each pair of vectors.

Definition

The projection of a vector v
onto a nonzero vector U in R"

is denoted proj , v and is defined

by

proj, v =

u
UeU

¢\‘<

proj,v !

Figure 1.3 The projection of
one vector onto another.
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MATLAB SOLUTION:

clc; %clear the command line
clear; %remove all previous variables

O0=[0 0 O]%the origin ’///////,//v
M=[0.1 -0.2 -0.1];%Point M

N=[-0.2 0.1 0.3];%Point N

P=[0.4 0 O0.1]%Point P

R_MO=M-0;%vector R_MO

R_NO=N-0;%vector R_NO

R_PO=P-0;%vector R_PO

R_NM=R_MO-R_NO;%vector R_NM
R_PM=R_MO-R_PO;%vector R_PM

R_PM_dot_R_NM=dot(R_PM,R_NW);%the dot
product of R_PM and R_NM

To declare and initialize vectors or points in a
MATLAB program, we simply type N=[-0.2 0.1
0.3] for example, and MATLAB program will
read this as N=-0.2a,+0.la,+0.3a, , a 3-D

vector. If we type N=[-0.2 0.1] MATLAB
program will read this as N=-0.2a,+0.1a,, a 2-D

vector.

Some of the functions are already available in the
MATLAB library so we just need to call them.
For those not included in the library, the variables
are utilized in the formulas we derived in the
analytical part.

R_PM _dot R _PM=dot(R_PM,R_PM);%the dot product of R _PM and R _PM

Proj_R NM_ON_R_PM=(R_PM_dot_R_NM/R_PM_dot_R_PM)*R_PM;%the projection of R_NM ON R_PM

Mag_R_NM=norm(R_NM) ;%the magnitude of R_NM
Mag_R_PM=norm(R_PM);%the magnitude of R _PM

COS_theta=R_PM_dot_R_NM/(Mag_R_PM*Mag_R_NM);%this is the cosine value of the angle

between R_PM and R_NM

theta=acos(COS_theta);%the angle between R_PM and R_NM

R NM=
0.3000 -0.3000 -0.4000
R PM dot R NM =
0.0500

Proj R. NM_ON R PM =

-0.0882 -0.0588 -0.0588

theta =

The running result is shown in the
left,
radians here.

note that 6 is given in

1.3613

>>
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Exercise: Given the vectors R;=as+2a,+3a,, R,=3axt+2a,ta,. Find a) the dot product R, « R,, b) the
projection of R,on R,, ¢) the angle between R, and R,. Write a MATLAB program to verify your
answer.
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Term 11, January — April 2012

MATLAB Examples and Exercises (Set 2)

Prepared by: Dr. M. H. Bakr and C. He

Example: The open surfaces p =2.0mand p =4.0m,z=3.0m andz=5.0m, and ¢ =20° and ¢ =

60° identify a closed surface. Find a) the enclosed volume, b) the total area of the enclosed surface. Write

a MATLAB program to verify your answers.

Wi ~
~
L ~
/// \>\\
// //—‘——\\K \\
/ // ~ \) \
| \ N
N S =i N -7 U
: \X,” =~ // :
z - ~
= = N
T T |
-~ \ \\ / I_-J\
= N ~ - “ /
~ ~< -

Figure 2.1 The enclosed volume for the example of Set 2.
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Analytical Solution:

The closed surface in this problem is shown in Figure
2.1 and Figure 2.2. To find the volume Vv of a closed
surface we first find out dv, the volume element. In
cylindrical ~ coordinates, dv is given by
dv = pd¢d pdz as shown in Figure 2.2. Once we get

the expression of dv, we integrate dv over the entire
volume.

dv

dv = pdgd pdz / \
V:J"ﬂdv L ‘)

=j!jpd¢dpdz

[ oo

$=20°

dv

- _00 7=
= [ pdp i dg[ e

20
180

1 =4 =Sz S5
_Ep L_2X¢¢_i2z Z|Z:3

1 s 2 6 2 p—
=—x(4" -2 )x(—rm——m)x(5-3

2 ( ) (18 T )x(5-3)
_8 r_8378 dz

’ d

r pdg

When evaluating an integral, we have to convert
degree to radian for all angles, otherwise this will

result in a wrong value for the integral. Figure 2.2. The unit volume.
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The area of the closed surface is given by
Senclosed S+S +S +S +S +S

We need to find dS, ,dS,, ..., and dS, and to integrate
them over their boundary. It is obvious that S,=S,
andS;=S,. The surfaces S, and S, have similar shapes

as we can see from the following expressions,

ds, = pd¢dz|p=2 =2d¢dz and
dS,=pd ¢dz|p=4 =4 d¢dz

The steps to evaluate the area of each surface are
executed as follows:

ds, = pdgdz

s, = [ ds,
=fjpd¢dz
_2j w0 d¢j dz
248l

6 2
= 2x(—7——71)x(5-3
TRARTEIA

8
=—7zm’

s, = [ ds,
S

=de¢dz

= 4j " d¢ j; dz

|ZS

_4¢| BT

6 2
=4x(—1——m)x(5-3
(7 ™63

16
=—zm’

S6

— C—

/ s, N
V N

ds]

N

Figure 2.3 The closed surface.
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dS, = pdgdp

s, = [[ds,
S

S
p=4 z=5
- J.p=2 dpJ‘Z=3 dz
p=4 z=5
= p|p:2 X Z|Z:3
=(4-2)x(5-3)
=4 m?
S =5, +S5,+25;, +28S,
=§7T+£7Z'+2Xiﬂ'+2x
9 3
=24.755 m?

closed

dz
ds,

Figure 2.4 The surfaces Sz and Ss and their
incremental elements.
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MATLAB SOLUTION:
As shown in the figure to the right, the approximate value
of the enclosed volume is

P m n p m n
VEY SIS AV =D (o1« AB) X (Ap) X (AZ)

k=1 j=1 i=l k=1 j=1 i=l

We write a MATLAB program to evaluate this expression.
To do this, our program evaluates all element volumes
AV, ; » and increase the total volume by Av, ;, each time.

We cover all elements Av,;, through 3 loops with

counters I in the inner loop, j in the middle loop and K in
the outer loop. The approach used to evaluate the surfaces
is similar to that of the volume. The MATLAB code is
shown in the next page.

~ X~ x

g
|

L,

N W

\
\
\

L

Il
—_

Figure 2.5 The discretized volume.
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MATLAB code:

clc; %clear the command line

clear; %remove all previous variables

V=0;%initialize volume of the closed surface to 0
S1=0;%sinitialize the area of S1t0 0
S52=0;%initialize the area of S1to 0
S3=0;%initialize the area of S1to 0
S54=0;%initialize the area of S1to 0
S5=0;%initialize the area of S1to 0
S6=0;%initialize the area of S1to0 0
rho=2;%initialize rho to the its lower boundary
z=3;%initialize z to the its lower boundary

phi=pi/9;%initialize phi to the its lower boundary

Number_of_rho_Steps=100; %initialize the rho discretization
Number_of_phi_Steps=100;%initialize the phi discretization

Number_of_z_Steps=100;%initialize the z discretization

drho=(4-2)/Number_of_rho_Steps;%The rho increment
dphi=(pi/3-pi/9)/Number_of_phi_Steps;%The phi increment

dz=(5-3)/Number_of_z_Steps;%The z increment

% %the following routine calculates the volume of the enclosed surface
for k=1:Number_of_z_Steps
for j=1:Number_of_rho_Steps
for i=1:Number_of_phi_Steps
V=V+rho*dphi*drho*dz;%add contribution to the volume

end

rho=rho+drho;%p increases each time when z has been traveled from its lower boundary to its upper

boundary
end
rho=2;%reset rho to its lower boundary

end
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% %the following routine calculates the area of S1 and S2
rho1=2;%radius of S1
rho2=4;%radius of s2
for k=1:Number_of_z_Steps
for i=1:Number_of_phi_Steps
S1=81+rho1*dphi*dz;%get contribution to the the area of S1
S2=82+rho2*dphi*dz;%get contribution to the the area of S2
end
end
% %the following routing calculate the area of S3 and S4
rho=2;%reset rho to it's lower boundaty
for j=1:Number_of_rho_Steps
for i=1:Number_of_phi_Steps
S3=S83+rho*dphi*drho;%get contribution to the the area of S3

end

rho=rho+drho;%p increases each time when phi has been traveled from it's lower boundary to it's upper

boundary
end
S4=83;%the area of S4 is equal to the area of S3

% %the following routing calculate the area of S5 and S6
for k=1:Number_of_z_Steps
for j=1:Number_of_rho_Steps
S5=85+dz*drho;%get contribution to the the area of S3
end
end
S6=S5;%the area of S6 is equal to the area of S6
S=S1+S2+S3+S4+S5+S6;%the area of the enclosed surface
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Running Result

Command Window A X

W
Vo=

5.3497

24,7272

E

By comparing, we see that the result of our analytical solution is close to the result of our MATLAB
solution.
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Exercise: The surfacesr=0and r=2, ¢ =45°, ¢ =90°, & =45 "and & =90° define a closed surface.

Find the enclosed volume and the area of the closed surface S. Write a MATLAB program to verify your
answer.

Figure 2.6 The surface of the exercise of Set 2.
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MATLAB Examples and Exercises (Set 3)

Prepared by: Dr. M. H. Bakr and C. He

Example: An infinite uniform linear charge p, =2.0 nC/m lies along the X axis in free space, while point

charges of 8.0 nC each are located at (0, 0, 1) and (0, O, -1). Find E at (2, 3, 4). Write a MATLAB
program to verify your answer.

AZ

Figure 3.1 The charges of the example of Set 3.
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Analytical Solution:
Based on the principle of superposition, the electric field at

. Qe
P (2 3,4)is E= E+E,+E, where Eand E,are the \
P

electric fields generated by the point charges 1 and 2, R
respectively, and E; is the electric field generated by the (a)

line charge. The electrical field generated by a point charge
is given by a

Q »
E =—" "R
P 4ng, R &

where R is the vector pointing from the point charge to the \
observation point as shown in Figure 3.2 (a).

For the point charge Q,:
R, =(2a,+3a,+4a,)—(a,) =2a, +3a, +3a,

1= Ql 3 Rl
4re, IR, |
-9
= 810 +(2a,+3a,+3a,)
4 x10_9><(\/22+32+32)
T
=1.395a, +2.093a, +2.093a, A
For the point charge Q, :
R,=(2a,+3a,+4a,)-(-a,)=2a, +3a, +5a, (b)
Q,
E,=—=—R 1 a
? 472'(90 ‘ R2 ‘3 ’ dL _s\ r’p
8x107° L a
_ ~(2a,+3a, +5a,) AN

47r><31><109x(\/22+32+52) L N

6
=0.615a, +0.922a, +1.537a, \

|

|

|

i
y
EL dE,
(©

Figure 3.2. The different field
components

d
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As we can see from Figure 3.2(b), for any point A on the line charge we can always find one and only one
point A' whose electric field at P has the same magnitude but the opposite sign of that of A in the
direction which is parallel to the line charge. This is because the linear charge is infinitely long. Therefore
we only need to find the electric field in the direction perpendicular to the line charge. As shown in
Figure 3.2(c) each incremental length of line charge dL acts as a point charge and produces an
incremental contribution to the total electric field intensity. The magnitude of dE, is thus:

__ Q@ = pd
Y dzg, |RP 4z, (L +d?)

therefore the magnitude of dE | is

: pdL d p.d dL
dE, =dE, sinf@= =
L ) Ame, (L +d%) J(12+d?) 4me, (U +d?)"
L= pd = dL . L

andE, = dE, ="+ this integral is given in the formula sheet

Lp J-L:—oo P 471'80 J‘L:—oc (LZ + d2)3/2 ( g g )

L=00
_ pd L |

E

v s, g d*JL*+d? ‘LHO

_pd % 1 _ -1 _pd % 1 -1 __ P
d> 27g,d

Cam, | L [ “dze, \d*V1+0 d*J140
d*, 1+ E d”, |1+ E
L=oo L=—00

Then we have to find a -
R, =(2a,+3a,+4a,)—(2a,) =3a, +4a,
R, 3a,+4a, 3 4

na, = = =>a, +—a,
POIR, 344> 575

therefore

EL:ELp:ELpap

2x107° 3 4
= X —ay+gaz

27[><L><1079 x5
36z

=4.32a,+5.76a,
and
E=E +E,+E_=2.0la,+7.34a,6+9.39a, V/m
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MATLAB solution :
To find the electric field generated by the infinite line charge, we can replace the infinite linear charge by
a sufficiently long finite line charge. In this problem, our line charge has a length of one hundred times of
the distance from the observation point to the line charge, and its center is located at C (2, 0, 0) as shown
in Figure 3.3. We divide the line charge into many equal segments, and evaluate the electric field
generated by each segment in the way we evaluate the electric field generated by a single point charge.
Finally, we evaluate the summation of the electric fields generated by all those segments. The summation
should be very close to the electric field generated by the infinite linear charge. This approach can be
summarized by the mathematical expression'
) n n oL AL

E = E =) — | .

- Z §4ﬂ8|R| z47zg|R| '
where E, is the electric field generated by the ith segment, R, is the vector from the ith segment to the
observation point, AQ is the charge of a single segment, AL is the length of the segment and n is the total

number of the segments.

length of line charge=100d C (2,0, 0)

v x
Figure 3.3 The discretization used in the MATLAB program.
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MATLAB code :

clc; %clear the command line

clear; %remove all previous variables
Q1=8e-9;%charges on Q1

Q2=8e-9;%charges on Q2

pL=2e-9;%charge density of the line
Epsilono=8.8419e-12;%Permitivity of free space

P=[2 3 4];%coordinates of observation point

A=[0 0 1];%coordinates of Q1

B=[0 O -1];%coordinates of Q2

C=[2 0 0];%coordinates of the center of the line charge
Number_of L Steps=100000;%the steps of L

%%the following routine calculates the electric fields at the
%%observation point generated by the point charges

R1=P-A; %the vector pointing from Q1 to the observation point
R2=P-B; %the vector pointing from Q2 to the observation point
RiMag=norm(R1);%the magnitude of R1

R2Mag=norm(R2) ;%the magnitude of R1
E1=Q1/(4*pi*Epsilono*R1Mag”™3)*R1;%the electric Field generated by Q1
E2=Q2/ (4*pi*Epsilono*R2Mag”"3)*R2;%the electric field generated by Q2

%%the following routine calculates the electric field at the
%%observation point generated by the line charge
d=norm(P-C);%the distance from the observation point to the center of the line
length=100*d;%the length of the line
dL_V=length/Number_of L_Steps*[1 0 0];%vector of a segment
dL=norm({dL_V);%length of a segment
EL=[0 O O];%initialize the electric field generated by EL
C_segment=C-( Number_of L_Steps/2*dL_V-dL_V/2);%the center of the First segment
for i=1: Number_of L_Steps
R=P-C_segment;%the vector seen from the center of the first segment to the
observation point
RMag=norm(R) ;%the magnitude of the vector R
EL=EL+dL*pL/ (4*pi*Epsilono*RMag”"3)*R;%get contibution from each segment
C_segment=C_segment+dL_V;%the center of the i-th segment
end

E=E1+E2+EL;% the electric field at P
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Running result
Command Window 7 X
v E
E =

2.0102 T.3345 9.3890

E

Comparing the MATLAB answer with the analytical answer we see that there is very little difference

between them. This little difference is caused by the finite length of the steps of L and the finite line
charge that we used to replace the infinite one.
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Exercise: A finite uniform linear charge p, =4 nC/m lies on the xy plane as shown in Figure 3.4, while

point charges of 8 nC each are located at (0, 1, 1) and (0, -1, 1). Find E at (0, 0 ,0). Write a MATLAB
program to verify your answer.

AZ

, =8nC

(0,7,0)

Figure 3.4 The charges of the exercise of Set 3.
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MATLAB Examples and Exercises (Set 4)

Prepared by: Dr. M. H. Bakr and C. He

Example: A surface charge of 5.0 C/m” is located in the X-z plane in the region -2.0 m < X <2.0 m

and -3.0 m <y <3.0 m. Find analytically the electric field at the point (0, 4.0, 0) m. Verify your answer
using a MATLAB program that applies the principle of superposition.

z

A

b P(0,0,4)

Figure 4.1 The surface charge of the example of Set 4.
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Analytical solution:

As can be seen in Figure 4.2 , for any point A on the surface
charge, we can find another point A" whose electric field at P
has the same magnitude but the opposite sign of that of A in
the direction parallel to the surface charge. Hence the electric
field at P has only a z component .

dQ = p,dS = p,dxdy

_ . 4dQ
47g|R[
dE, =dE cosé
IR, | 4 4
cosf = = =
IR| \/(x—0)2+(y—0)2+(4—0)2 JX Y +16
_ pgdxdz Ps

- dxdy

dE, =
4re|R [ m ﬂg(M)
i

ol
g N
e =

sdxdy
(m)

-dxdy

wm)

xdy (leta’=y>+16)

e

_Ps (V3 X

ol

:&Jy: 4 dy
7& 2 (y? 4164y’ +20

let y:x/%tana
then dy =+20sec’ ada, y* +20 =/20seca,

and y*+16=20tan’ ¢ +16

EAZ (EA'Z)

Figure 4.2 The field components.

Figure 4.3 Field decomposition.
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therefore
E _ 4P _[%az V20sec® ada
z a=a, (\/ﬁseca)(20tan2a+l6)

_4ps J~a=a2 secada
me Je=a 20tan’ a +16

1
da
_4ps J’ = cosg V20
g e s

e

cos’ a
_4ps J~a=az cosada

7 Je=a 20sin’* @ +16cos’ &

_4pS Ia:az cosada _pS J-y=3 cosada
ne Je=a 4sin* @ +16  7me Yv=3sin‘a +4

z

y

let U=singa then du =cosada therefore Figure 4.4 u=sina = /yz 420 :

u=u, du
E, = &J' -
e = U +4
=3
1 ul’
:&x—arctan—
e 2

y=-3
as we can see from Figure 4.4,y =20 tan o

and U =sina. The relationship between U and z is given by

u=—J3
JY +20
therefore
1 U u=3/+29
Ey =&x—arctan—
e 2 2|50
3
-6 T
_ S0 L arctan Y29 — 4.880810*
1 9 2
ax——x10

671
E=E,a, =4.8898x10"a, V/m
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MATLAB Solution:
To write a MATLAB code to solve this problem, we equally divide the surface into many cells each with a

length Ay and a width AX. Each cell has a charge of AQ = p, AXAy. When AX and Ay are very small, the
electric field generated by this cell is very close to that generated by a point charge with a charge AQ
located at the center of the cell. Hence the electric field generated by the surface charge at point P is given
by

. o P AXAY
E:ZZAE“ :Z- IWR“
i= i

where R . is the vector pointing from the center of a cell to the observation point, as shown in Figure 4.5.

N
The location of the center of a cell is given by X = —2+%+Ax(i -1, y= —3+%+Ay(j —1) and z=0.

The MATLAB code is given in the next page.

Figure 4.5 The utilized discretization in the MATLAB code.
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MATLAB code:

clc; %clear the command line
clear; %remove all previous variables

Epsilono=8.854e-12; %use permittivity of air
D=5e-6; %the surface charge density

P=[0 O 4]; %the position of the observation point
E=zeros(1,3); % initialize E=(0 ,0, 0)

Number_of x Steps=100;%initialize discretization in the x direction
Number_of y Steps=100;%initialize discretization in %the z direction

x_lower=-2; %the lower boundary of x

X_upper=2; %the upper boundary of X

y_lower=-3; %the lower boundary of y

y_upper=-2; %the upper boundary of y

dx=(x_upper- x_lower)/Number_of_x_Steps; %the x increment or the width of a grid
dy=(y_upper- y_lower)/Number_of y Steps; %The y increment or the length of a grid
ds=dx*dy; %the area of a single grid

dQ=D*ds; % the charge on a single grid

for j=1: Number_of y Steps
for i=1: Number_of x Steps
x= x_lower +dx/2+(i-1)*dx; %the x component of the center of a grid
y_lower +dy/2+(J-1)*dy; %the y component of the center of a grid

R=P-[x y 0];% vector R is the vector seen from the center of the grid to the

observation point
RMag=norm(R); % magnitude of vector R
E=E+(dQ/ (4*Epsilono*pi* RMag "3))*R; % get contribution to the E field
end
end
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Running result:
Command Window X
|>» E
IE =
1.0e+004 *

-0.0000 0.o0ao 4.8833

| &5

Comparing the MATLAB answer and the analytical answer we see that there is a slight difference. This
difference is a result of the finite discretization of the surface S.
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Exercise: Given the surface charge density, p,=2.0 xC/m’, existing in the region p <1.0 m,z =0, and
zero elsewhere, find E at P (p =0, z=1.0) and write a MATLAB program to verify your answer.

L P(p=0, z=1)

Figure 4.6 The problem of the exercise of Set 4.
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MATLAB Examples and Exercises (Set 5)

Prepared by: Dr. M. H. Bakr and C. He

Example: A point charge Q=1.0 x#C is located at the origin. Write a MATLAB program to plot the
electric flux lines in the three-dimensional space.

=1.0 uC

Figure 5.1 Point charge Q =1.0 xC located at the origin.

Analytical Solution:

The electric flux density resulting from a point charge is given by D = 2 (\?R ; R, where R is the vector
V4
pointing from the point charge to the observation point.

MATLAB Solution:

We first introduce two MATLAB functions that can help us to create a field vector plot.

1 meshgrid
Syntax:
[X,Y] meshgrid(x,y)

[X,Y,Z] = meshgrid(X,y,z)
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The rows of the output array X are copies of the vector x while columns of the output array Y are copies of
the vector y. [X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x) .For instance if we want to
create a two-dimensional mesh grid as shown in Figures 5.2 and 5.3, we simply type [X Y]= meshgrid(-
1:1:2,-1:1:3), then X and Y is initialized as two-dimensional matrices

-1 0 1 2 -1 -1 -1 -1
-1 0 1 2 0 0 0 O
X=/-1 01 2,Y=(1 1 1 1
-1 0 1 2 2 2 2 2
-1 01 2 3 3 3 3

If we compare the matrices X and Y with the mesh grids we see that matrix X stores the x components

of all the points in the mesh grids and Y stores the y components of those points. [X,Y,Z] = meshgrid(x,
y,z)is the 3-dementional version of mesh grids. [X,Y,Z] = meshgrid(0:1:4,0: 1:4,0:1:2) creates the
mesh grids shown in Figure 5.4, and matrix X , Y and Z is given by

012 3 4 012 3 4 012 3 4
012 3 4 012 3 4 012 3 4
XGuh)=10 1 2 3 4| X(G:2)=(0 1 2 3 4| X(:53)=|0 1 2 3 4
012 3 4 012 3 4 012 3 4
012 3 4 01 2 3 4 012 3 4
0 00 0O 0 00 0O 000 0O
11 1 1 1 1 1 1 1 1 I 11 11
YG.,)=12 2 2 2 2| YER2)=(12 2 2 2 2 Y&L3)=(2 2 2 2 2
3 33 33 3 33 33 3 33 33
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 00 0O 11111 2. 22 2 2
0 00 0O 11111 2. 22 2 2
Z¢,:,)=10 0 0 0 0| Z(::2)=|1 1 1 1 1 72(::3)=12 2 2 2 2
0 00 0O 11111 2.2 2 2 2
0 00 0O 11111 2 22 2 2
Similar to the two-dimensional version, the matrices X, Y and Z store the X, y, and z components of all the

plotting points, respectively.

2 quiver/quiver3

Syntax:

quiver(X,Y,x _data,y data)
quiver3(X,Y,Z,x_data,y data,z_data)
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A quiver plot displays vectors as arrows with components (x_data, y_data) at the points (X, Y). For example,
the first vector is defined by components x_data(1),y data(1) and is displayed at the point X(1),Y(1). The
command quiver(X,Y,x_data,y data) plots vectors as arrows at the coordinates specified in each
corresponding pair of elements in x and y. The matrices X, Y, x_data, and y_data must all have the same
size. The following MATLAB code plots the vector a, +0.5a, at each plotting point in the mesh grids as

shown in Figure 5.3.

PlotXmin=-1;

PlotXmax=2;

PlotYmin=-1;

PlotYmax=3;

NumberOfXPlottingPoints=4;

NumberOfYPlottingPoints=5;
PlotStepX=(PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);
PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1);

[X,Y]=meshgrid(PlotXmin:PlotStepX:PlotXmax,
PlotYmin:PlotStepY:PlotYmax);

for j=1:NumberOfYPlottingPoints
for i=1:NumberOfXPlottingPoints
x_data(j,i1)=1;
y_data(j,i)=0.5;
end
end
quiver(X,Y,x _data,y data)

quiver3(X,Y,Z,x _data,y data,z_data) is used to plot vectors in three-dimensional space. The
arguments X,Y,Z,x_data,y_data and z_data are three-dimensional matrices.

y
A Y A a, +0.5a,
/
3 3
/ /
2 2
1 1
X et Pt Pt Pl .
-1 ]o 1 2 -1 o 1 2
- / /
— -1
Figure 5.2 mesh grid created by Figure 5.3 field plot of the

[X Y]= meshgrid(-1:1:2,-1:1:3). vector ax+0.5ay.
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Figure 5.4 The mesh grid created by [X,Y,Z] = meshgrid(0:1:4,0:1:4,0:1:2).

MATLAB code:
clc; %clear the command line
clear; %remove all previous variables

PlotXmin=-2;%lowest x value on the plot space

PlotXmax=2;%%maximum x value on the plot space

PlotYmin=-2;%lowest y value on the plot space

PlotYmax=2;%maximum y value on the plot space

PlotZmin=-2;%lowest z value on the plot space

PlotZmax=2;%maximum z value on the plot space

NumberOfXPlottingPoints=5;%number of plotting points along the x axis
NumberOfYPlottingPoints=5;%number of plotting points along the y axis
NumberOfzZPlottingPoints=5;%number of plotting points along the z axis
PlotStepX=(PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the X
direction

PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1);%plotting step in the y
direction

PlotStepzZ=(PlotZmax-PlotZmin)/(NumberOfZPlottingPoints-1);%plotting step in the z
direction

[X,Y,Z]=meshgrid(PlotXmin:PlotStepX:PlotXmax,

PlotYmin:PlotStepY:PlotYmax,PlotZmin:PlotStepZ:PlotZmax) ;%build arrays of plot space

Fx=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints) ;%x

component of flux density

Fy=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints) ;%y

component of flux density

Fz=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints);%z

component of the flux density
Q=le-6;%point charge

C=[0 O 0O];%location of the point charge
F=[0 O O]:%initialize the flux density
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for k=1:NumberOfZPlottingPoints
for j=1:NumberOfYPlottingPoints
for i=1:NumberOfXPlottingPoints

Xplot=X(k,j,1);%x coordinate of current plot point
Yplot=Y(k,J,i);%y coordinate of current plot point

Zplot=Z(k,J,1);%z coordinate of current plot point

P=[Xplot Yplot Zplot];%position vector of observation points

R=P-C; %vector pointing from point charge to the current observation

point
Rmag=norm(R) ;%magnitude of R
it (Rmag>0)% no flux line defined at the source
R_Hat=R/Rmag;%unit vector of R
F=Q*R_Hat/ (4*pi*Rmag”2);%flux density of current observation point
Fx(k,j,1)=F(1,1);%get x component at the current observation point
Fy(k,j,1)=F(1,2);%get y component at the current observation point
Fz(k,j,1)=F(1,3);%%get z component at the current observation point
end
end
end
end

quiver3(X,Y,Z,Fx,Fy,Fz)

Running result:

25

Figure 5.5 Plot of the electric flux resulting from a point charge located at the origin.
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Exercise: Two line charges with linear densities of 1.0 £ C/m and -1.0 g C/m lie on the x-y plane parallel
to the x-axis as shown in Figure 5.6. Write a MATLAB program to plot the electric flux lines in the
region bounded by the dashed lines. Change the length of the linear charges to extend from—16 to 16 in
the x direction and plot the flux lines in the same region again.

A
y
T —— |
| 5 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: p.=1u C/m :
| |
| 1 |
| |
1 I 1 1 >
=51 - 4 5
| 4 | X
| |
: p.=—lu C/m —1 :
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
R |
s

Figure 5.6 line charges with charge density of o = 1.0 4C/m located at y=1.0 and y=-1.0 on the x-y
plane.
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Prepared by: Dr. M. H. Bakr and C. He

Example: A point charge of 1.0 C is located at (0, 0, 1). Find analytically the total electric flux going
through the infinite xy plane as shown in Figure 6.1. Verify your answer using a MATLAB program.

Figure 6.1 The point charge of Q = 1.0 C and the infinite x-y plane.
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Analytical solution:
The total flux going through a surface is given by

Y= J.I D;-ds
S

where ds is a vector whose direction is normal to the surface element ds and has a magnitude of ds,
and Dy is the electric flux density passing through ds. In this problem (See Figure 6.2)
Q
=——a
S 4zR? R
ds = ds(—a,) = —dxdya,
therefore the flux is given by

)
= || Dgeds = ||| —=a; |«(—dxdya, ).
v=J[owds=[]{ ;Lo J-tva,)
This is the general method to evaluate the electric flux passing through a surface. However, for certain
problems we can create a Gaussian surface to find out the flux passing through the surface and avoid
evaluating any integral. The Gaussian surface we created for this problem is shown in Figure 6.3, where
Sep and S are two parallel planes symmetric relative to the point charge Q. Based on Gauss’s law,
the total flux passing through the enclosed surface is
Wtotal = \Vtop + \‘ljbottom + \‘ljsidel + \VsideZ + Wside?ﬁ + \ljside4 = Charge enclosed = Q

are symmetric relative to the point charge Q,

\Vtop = \Vbottom :

bottom

since S, and S

top bottom

Using the same reason
Wsidel - \ljsideZ = \Vside3 - \ljside4

and since
Q Qd
o <——x(2Ld)=——
Vsiaer 472 x( ) 2L
ﬂ —>0asL—o>w
2zL
we have

Vg > 0asL >

Henceas L - o
\Iltotal = Wtop + \Vbottom =2 \Ilbottom = Q

Q
Wbottom = E = 05 C
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Figure 6.2 The electric flux through a surface element resulting from a point charge.

Figure 6.3 The electric field intensity at a point A is greater than any other point A' on the plane
S Since L<L'. It follows that the flux through S, , v, , is smaller than (Area of S, )x

('|electric field density at point A|).
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MATLAB Solution:

To write a MATLAB program, we replace the infinite plane with a finite one with a very large area. We
equally divide this plane into a number of surface elements each has an area of AS. We then evaluate the
flux Ay passing through each cell and add all the Ay together. This approach can be summarized by:

EEDIIS HEDIPI RIS 22(4 R R,JJ( AS, ja,)
=1 =l =1 =l =1 =l

where R, ; is the vector pointing from the point charge to the center of the cell with indices i and j. Note that

all AS, ; have the same direction—a, .

MATLAB code
clc; %clear the command line
clear; %remove all previous variables

Q=1;%the point charge
C=[0 O 1];%location of the point charge;
az=[0 0 1];% unit vector in the z direction

X_lower=-100;%the lower boundary of x of the plane
X_upper=100;% the upper boundary of x of the plane
y_lower=-100;%the lower boundary of y of the plane
y_upper=100;%the upper boundary of y of the plane
Number_of x_ Steps=400;%step in the x direction
Number_of y Steps=400;%step in the y direction
dx=(x_upper-x_lower)/Number_of_x_Steps;%the x increment
dy=(y_upper-y_lower)/Number_of y Steps;%the y increment

Flux=0;%initialize the flux to O

for j=1:Number_of y Steps
for i=1:Number_of x_Steps
ds=dx*dy;%the area of current element
x=x_lower+0.5*dx+(i-1)*dx;%x component of the center of a grid
y=y_lower+0.5*dy+(J-1)*dy;%y component of the center of a grid
P=[x y 0];%the center of a grid
R=P-C;%vector R is the vector pointing from the point charge to the center of a
grid
RMag=norm(R) ;%magnitude of R
R_Hat=R/RMag;%unit vector in the direction of R
R_surface=-az;%unit vector of direction of the surface element
Flux=Flux+Q*ds*dot(R_surface,R_Hat)/(4*pi*RMag”2);%get contribution to the flux
end
end
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Running result:

=r o flux
flux =
0.4955

=

Comparing the MATLAB answer and the analytical answer we see that there is a good agreement
between them. The small difference between the two answers is attributed to the finite discretizations of
the surface S, and to utilizing a finite plane instead of the actual infinite plane.
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Exercise: A linear charge p, =2.0 uC/m lies on the y-z plane as shown in Figure 6.4. Find the electric

flux passing through the plane extending from 0 to 1.0 m in the x direction and from —oo to o in the y
direction. Write a MATLAB program to verify your answer.

Figure 6.4 a linear charge extending from (0,—1, 1) to (0, 1, 1) and a plane with infinite length
and finite width.
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Example: A ring linear charge with a charge density p, =2.0nC/m is located on the x-y plane as shown

in Figure 7.1. Find the potential difference between point A (0, 0, 1.0) and point B (0, 0, 2.0). Write a
MATLAB program to verify your answer.

z
A

B(0,0,2.0) m

A(0,0,1.0) m

p=1.0m

p.=2.0nC/m

Figure 7.1 A ring linear charge with charge density of p, =2.0 nC/m on the x-y plane.
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Analytical Solution:
The potential difference between points A and B is given by

A

Vas =—|, E-dL
where dL =a_dp+a,pdg+a,dz in cylindrical coordinate.
Since straight line BA is along the -z direction, p and ¢
are both constant. This means dp=0 and d¢=0,
hencedL =a,dz .

A z=1
"N =—[ E-dL=-

z=2.

.0 z=1.0
0E-azdz:— E,dz.

z=20 ‘!
For points on the positive z-axis we have

47e, |R |
___ ppdg z
4re, (22 +p2) 2 + p
pprdg

letu=2>+p" (note that p=1.0 is a constant)
then du = 2zdz

pLp e 1
V,p=— ——du
AB 480 u=u, 432

(-8}

z=1.0

u=u,

u=u,

_pp 1
280 sz+p2 z=2.0

_2.Ox10_9x1.0x[ 1 1 j

It 10° \WLOP+1.0° 2.0 +1.0°
3

6
=294V

Figure 7.2 vector R pointing from the
element length dl to the observation point
6 is the angle between dE, and dE.
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MATLAB solution :

To find the potential difference between A and B we can divide the integral path to many short segments
and evaluate the potential difference along these segments. The summation of those potential differences
will be very close to the voltage difference between A and B. However, we have to find out the electric
field at each segment first. This can be done by dividing the ring charge to many segments, evaluating the
electric field generated by each segment and adding all the electric field contributions together. This

approach can be summarized using the mathematical expression:
m

Vg =D AV,

Figure 7.3 The ring charge is divided along thea,direction and the integral path is divided along
the —a, direction.
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MATLAB code :
clc; %clear the command line
clear; %remove all previous variables

Epsilono=1e-9/(36*pi); %use permitivity of free space

rho_L=2e-9;% the line charge density

rho=1.0; %the ring has a radius of 1.0;

A=[0 0 1];%the coordinate of point A

B=[0 0 2];%the coordinate of point B

Lv=A-B;%integral path

Number_of L Steps=50; %initialize discretization in the L direction
dLv=Lv/Number_of L _Steps;%%vector of the diffential length
Number_of Phi_Steps=50; %initialize the Phi discretization
dPhi=(2*pi)/Number_of Phi_Steps; %The step in the phi direction

V=0;%initialize the potential difference to zero
for j=1:Number_of L_Steps
E=[0 O O];:;%initialize the elctric field to zero
P=B+0.5*dLv+(j-1)*dLv;%coordinates of observation point
for i=1:Number_of Phi_Steps
Phi=0.5*dPhi+(i-1)*dPhi; %Phi of current volume element
dlength=rho*dPhi ;%length of current segment of the ring
dQ=rho_L*dlength;%the charges on current segment
x=rho*cos(Phi); %x coordinate of current volume element
y=rho*sin(Phi); %y coordinate of current volume element
z=0; %z coordinate of current volume element
C=[x y Zz]; %coordinate of volume element
R=P-C; %vector pointing from the current element to the observation point
RMag=norm(R); %get distance from the current volume element to the
observation point
E=E+(dQ/ (4*pi*Epsilono*RMag”™3))*R; %get contribution to the elctric field
end
V=V+(-dot(dLv,E));%get contribution to the voltage
end

Running result
>>V
V=
29.3931
>>

Comparing both answers, we see that our MATLAB solution and the analytical solution are consistent.
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Exercise: A volume charge density of p, =1/ r’ uC/m> exists in the region bounded

byl.0 m<r<1.5 m. Find the potential difference between the point A (3.0, 4.0, 12.0) and the point B
(2.0, 2.0, 2.0), as shown in Figure 7.4. Write a MATLAB program to verify your answer.

-A (3.0,4.0,12.0)

*B (2.0,2.0,2.0)

Figure 7.4 A volume charge density of = 1 C/m?® in the region bounded byl1.0 m<r<1.5m.
A p H
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5x10*

P
electric energy stored in the region bounded byl.0 m< p<2.0m, 20 m<z<2.0 mand0< ¢ <27z, as

Example: An electric field E = a, V/mexists in cylindrical coordinates. Find analytically the

shown in Figure 8.1.Verify your answer using a MATLAB program.

p,=20m

\ /

— By

X g h

Figure 8.1 The region bounded byl.0 m< p<2.0m, =20 m<z<20mand0<¢<2r.
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Analytical solution:
The energy stored in a region is given by

W, =%ﬂ &,E2dv
\

where E is the magnitude of the electric field at the volume element dv which is given by

5%x10*

E=El=- V/m

In cylindrical coordinate we have dv = pd pd¢dz , therefore

We == [[] o El
\

z 7 5x10*
S e e P

25><10 &, ,[Z:ZOOV Zzsz 20ld pdgdz

10 p
25><10 &‘OJ-Z 20J~¢ 27r p20

, dgdz

_2.5><10 & 20
_Txln(Z)J‘Z:_ZOﬂO dz

z=2.0

9
:252& In(2)x27 2~

2.5x10° XLXIO_Q

236” xIn(2)x 27 x4 =0.19254 ]

MATLAB Solution:

To write a MATLAB program to evaluate the energy stored in the given region, we can divide the region
into many small volume elements and evaluate the energy in each of these elements. Finally, the
summation of these energies will be close to the total energy stored in the given region. The approach can
be summarized using the mathematical expression:
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MATLAB code:
clc; %clear the command line
clear; %remove all previous variables

Epsilono=1e-9/(36*pi); %use permitivity of free space
rho_upper=2.0;%upper bound of rho

rho_lower=1.0;%lower bound of rho

phi_upper=2*pi ;%upper bound of phi

phi_lower=0;%lower bound of phi

z_upper=2;%upper bound of z

z_lower=-2;%lower bound of z

Number_of rho_Steps=50; %initialize discretization in the rho direction
drho=(rho_upper-rho_lower)/Number_of rho _Steps; %The rho increment
Number_ of z Steps=50; %initialize the discretization in the z direction
dz=(z_upper-z_lower)/Number_of z Steps; %The z increment

Number_of phi_Steps=50; %initialize the phi discretization
dphi=(phi_upper-phi_lower)/Number_of phi_Steps; %The step in the phi direction

WE=0;%the total engery stored in the region
for k=1:Number_of phi_Steps
for j=1:Number_of z Steps
for i=1:Number_of rho_ Steps
rho=rho_lower+0.5*drho+(i-1)*drho; %radius of current volume element
z=z_lower+0.5*dz+(j-1)*dz; %z of current volume element
phi=phi_lower+0.5*dphi+(k-1)*dphi; %phi of current volume element
EMag=5e4/rho;%magnitude of electric field of current volume element
dvV=rho*drho*dphi*dz;%volume of current element
dWE=0.5*Epsi lono*EMag*EMag*dV;%energy stored in current element
WE=WE+dWE ;%get contribution to the total energy
end %end of the i loop
end %end of the j loop
end %end of the k loop

Running result:
>>WE

WE =

0.1925
>>

Comparing the two answers, we see that our MATLAB solution and analytical solution are consistent.
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Exercise: Given the surface charge density p, = 2.0 4C/m’ existing in the region r =1.0 m, 0 < ¢ < 27,

0< @ <rmand is zero elsewhere (See Figure 8.2) . Find analytically the energy stored in the region
bounded by 2.0 m<r<3.0m,0<¢<27rand0<f<z. Write a MATLAB program to verify your

ansSwer.

Figure 8.2 The surface charge density p, =2.0  C/m® at r=1.0m.
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MATLAB Examples and Exercises (Set 9)

Prepared by: Dr. M. H. Bakr and C. He

Example: Let J=400sin@/(r> +4) a, A/m°. Find the total current flowing through that portion of the

spherical surface r=0.8, bounded by0.17r <8 <0.37, and 0<¢@<2x. Verify your answer using a
MATLAB program.

Figure 9.1 Surface bounded by r=0.8,0.17 <8< 0.37 and0<¢< 27 .
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Analytical solution:
The current flowing through a surface is given by

I=J'J-dS
S

where dS =r’sin#d@d¢ a, in spherical coordinate. It follows that we have:

|—”(4?°S+“;9 j-(rzsinededqﬁar)
4= 2”.[6 037 400r sin” @

0=0.17

2 0 Ydodg

40012 r0=037 pg=2x
T 14 I Lf:o
400r* (o=037,
=2 L:OM (sm2 Hdﬁ)x¢
~400r?
r’+4
400r < Je=o‘sn[1 cos(ZH)} 4o

sin” 0d¢d o

6=0.17

¢=2r

¢=0

<2z T Gin® 0d6
6=0.17

2 2
let u =28 then du = 2d & and we have

2 u=0.6r
|=400r ><27r_[ 0.6 lx[l_cosu}du

r +4 6=0.17 N

214 w=02:2 |2 2
400r> 1 sinu)""
== X —U—

214 (2 2 ) on

2 : .
:4(())(;;05 ﬂx[(lxoﬁﬂ_s1n0.67zj_(lx0‘2ﬂ_sm0.27zﬂ
00+

=77.42 A

MATLAB Solution:

To write a MATLAB program to evaluate the current flowing through the given surface, we divide that
surface into many small surfaces and evaluate the currents flowing through each surface element. The
summation of these elemental currents will be close to the actual current flowing through the given
surface. This approach can be summarized by the following expression:

ZmZZJ,J AS; |

j=1 i=l1

=33

j=1 i=l

n

( 400sin 6,

—, J-(r2sin6’i,jdt9i,jd¢ a,)




ECE2FH3 - Electromagnetics |
MATLAB Examples and Exercises (Set 9)

Page: 51

MATLAB code:
clc; %clear the command line

clear; %remove all previous variables

R=0.8;%the radius of the surface

Theta_lower=0.1*pi;%lower boundary of theta

Theta_upper=0.3*pi;%upper boundary of theta

Phi_lower=0;%lower boundary of phi

Phi_upper=2*pi;%upper boundary of phi

Number_of_Theta_Steps=20; %initialize the discretization in the Theta direction

dTheta=(Theta_upper-Theta_lower)/Number_of_Theta_Steps; % The Theta increment

Number_of_Phi_Steps=20;%initialize the discretization in the Phi direction

dPhi=(Phi_upper-Phi_lower)/Number_of_Phi_Steps;% The Phi increment

1=0; %initialize the total current

for j=1:Number_of_Phi_Steps

for i=1:Number_of_Theta_Steps
Theta=Theta_lower+0.5*dTheta+(i-1)*dTheta; %Theta of current surface element
Phi=Phi_lower+0.5*dPhi+(j-1)*dPhi; %Phi of current surface element
x=R*sin(Theta)*cos(Phi); %x coordinate of current surface element
y=R*sin(Theta)*sin(Phi); %y coordinate of current surface element
z=R*cos(Theta); %z coordinate of current surface element
a_r=[sin(Theta)*cos(Phi) sin(Theta)*sin(Phi) cos(Theta)];% the unit vector in the R direction
J=(400%sin(Theta)/(R*R+4))*a_r; %the current density of current surface element
dS=R*R*sin(Theta)*dTheta*dPhi*a_r;%the area of current surface element
I=l+dot(J,dS);%get contribution to the total current
end

end

Runnini result:

Command ¥Findow

2 1

I=

77. 4180

2

Comparing the answers we see that our MATLAB solution and analytical solution are consistent.
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Exercise: A rectangular conducting plate lies in the Xy plane, occupying the region 0 < x<5.0m, 0<y <
5.0 m. An identical conducting plate is positioned parallel to the first one at z=10.0 m. The region
between the plates is filled with a material having a conductivity o(x) =€ S/m. It is known that an
electric field intensity E =-50a, V/m exists within the material. Find: (a) the potential difference V,,
between the two plates; (b) the total current flowing between the plates; (C) the resistance of the material.

AZ

/ B \

Figure 9.2 The volume between the conducting plates is filled with a material having conductivity
o(x)=e*" S/m.
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Prepared by: Dr. M. H. Bakr and C. He

Example: An infinite line charge with charge density p, = p, lies on the z axis. Two infinite conducting
planes are located at y=a and y=a—h and both have zero potential. Find the voltage at any given point
(%,Y).If p,=1.0x107 C/m, a=1.0m and h = 2.0 m, plot the contours of the voltage.

y
A
A
y=a
PL= P _
B
y=a-h

Figure 10.1 The infinite line charge and the two ground planes.
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Analytical solution:

The potential difference in an electric field resulting from a line
charge is given by:

for py, 2 py ,vdL=a,dp

A P

P

M Pm
.‘.VMN:—IN E-dL:—J. Ldp:—ﬁlnp ™,
M

P 2TEP 2re ppN

therefore V,,, = AL
2re

n 2
Pw
If we define the voltage at p=p, =1 to be zero, then the

PL
2re
Since the conducting planes have zero potential, image charges
are required in order to cancel out the voltage created by the
original charge. In this problem, as shown in Figure 10.2 we need
infinite number of images to maintain the zero voltage of the
conducting planes. The next steps is to find the coordinates and
polarities of all image charges. Let’s first consider a point
P (X5,Yp)and a straight line y=Yy, as shown in Figure 10.3.

potential at p= p,, 1s V,, =— In p,, .

The image of P relative to the straight line can be obtained by

{XP, =X, {xp, =X,
, = = P! (XpazyL_yP)

Yo =YL =YL Y Yo =2Y, —Yp

This expression will be used later. To find the coordinates and
polarities of the images, we can divide all the images into two
groups. If we only count the first image of plane B and all the sub-
images created by that first image, then the images that we counted
are put into group 1 (shown in Figure 10.4). If we only count the
first image of plane A and all the sub-images created by that first
image, then the images that we counted are put into group 2
(shown in Figure 10.5). In group 1, the y coordinate of the first
image is Yy, =2y, —Y, where Yy, is the y coordinate of plane A

and Yy, is the y coordinate of the original charge. Then for the
second image Yy, =2Y; —Y,, for the third image y, =2y, -V, and

so on. In group 2, the y coordinate of the first image is
Y, =2Yg —Y,, for the second imagey, =2y, —Y,, for the third

image Y, =2Y;—Y, and so on. The following table summarizes
the polarities and Yy coordinates of all images.

* P

° —p,

Ay

Po

Figure 10.2

Y%
infinite  number of

images are required to maintain
zero potential on the conducting

plates

Ay
P'(Xe1 Ye:)
Ve = YL{‘
Yo~ ypi
P (X, ¥e)

Figure 10.3 image of a point P
relative to the straight line y =y,
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group 1

level y coordinate polarity

1 2a—2h — oY, =2Y,—Y,

2 2h +

3 2a—4h —

4 4h +

3 2a-6h - 1

6 6h - A y=Ya=2
group 2

level y coordinate  polarity Yo =0 > X

1 2a - 5

—y,=a-h

2 ~2h T yYe e

3 2a+2h _ lY|:2yB_y<)

4 —4h +

3 2a+4h - Figure 10.4 images of group 1.
6 —6h +

From the table above we can find that y; ... =2nh (n€Z,n = 0)
OF Yinage = 2@+ 2nh (n € Z). Since the original charge hasa y

coordinate of Yy, =0 which can be rewritten as y, =2nh (n=0),
the voltage at point (X, y)is given by

N=00 _p 5 oo p :

Vv =n;0%1n\/x2+(y—2nh) +n§%1n\/xz+(y_2a_2nh)
p K - :
:%é[—ln\/xu(y—znh) +Iny|x> +(y—2a-2nh) }

MATLAB solution:

To plot the contour of the voltage, we can use the expression we
derived to evaluate voltages at all plotting points, then store the
voltages in a two-dimensional matrix.

o Vi=2Ya— Y,
Ay
A y=ys=a
Yo =0 » X
B y=yz=a-h
o ¥V, =2y Y,

Figure 10.5 images of group 2.
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MATLAB code:

clc; %clear the command window

clear; %clear all variables

a=1;%value of a

h=2;%value of h

rho_L=1.0e-7;

Epsilono=8.854e-12;%permitivity of free space

NumberOfXPlottingPoints=100; %number of plotting points along the x axis
NumberOfYPlottingPoints=100; %number of plotting points along the y axis
Negative_infinite=-40;%use a finite number to replace negative infinite
Positive_infinite=40;%use a finite number to replace positive infinite
V=zeros(NumberOfYPlottingPoints,NumberOfXPlottingPoints); % the matrix used to store the voltages at plotting
points

PlotXmin=a-h; %lowest x value on the plot plane

PlotXmax=a; %maximum x value on the plot plane

PlotYmin=PlotXmin; %lowest z value on the plot plane

PlotYmax=PlotXmax; %maximum z value on the plot plane

PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1); %plotting step in the x direction
PlotStepY=(PlotY max-PlotYmin)/(NumberOfYPlottingPoints-1); %plotting step in the Y direction

[xmesh,ymesh] = meshgrid(PlotXmin:PlotStepX:PlotXmax,PlotYmin:PlotStepY:PlotYmax); %creates a mesh grid
for j=1:NumberOfYPlottingPoints %repeat for all plot points in the y direction
for i=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction
xplot=PlotXmin+(i-1)*PlotStepX; %x coordinate of current plotting point
yplot=PlotYmin+(j-1)*PlotStepY; %y coordinate of current plotting point
P=[xplot yplot]; %position vector of current plotting point
for n=Negative_infinite:Positive_infinite
x1=0;%x coordinate of the image in the first term
y1=2*"n*h;%y coordinate of the image in the first term
C1=[x1,y1];%position of the image in the first term
x2=0;%x coordinate of the image in the second term
y2=2*a+2*n*h;%y coordinate of the image in the second term

C2=[x2 y2]; %position of the image in the second term
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R1=P-C1;%vector point from current plotting point to the image in the first term
R2=P-C2;%vector point from current plotting point to the image in the second term
R1mag=norm(R1);%the distance from current plotting point to the image in the first term
R2mag=norm(R2);%the distance from current plotting point to the image in the second term
V(j,i)=V(j,i)-rho_L*log(R1mag)/(2*pi*Epsilono)+rho_L*log(R2mag)/(2*pi*Epsilono); %get the voltage

contribution to current plotting point

end
end

end

surf(xmesh,ymesh,V); %obtain the surface figure

xlabel('x(m)");% label x

ylabel('y(m)");% label y

zlabel('V(V)'");% label z

figure;

[C,h] = contour(xmesh,ymesh,V);%obtain the contour figure

set(h,'ShowText','on',' TextStep',get(h,'LevelStep")); %label the contour

xlabel('x(m)"); % label x

ylabel('y(m)'); % label y

Running result:

10000 w7

8000 |

yim) T ()

Figure 10.6 3D surface of the voltage.
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0.8 B

0.6

0.4r-

0.2

0.2+

0.41

0.6

-0.81 B

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 10.7 The voltage contours.

Exercise: A point charge Q and four conducting lines with zero potential are shown in Figure 10.8. Derive
an expression for the voltage at any point (X,Y). If Q=1.0uCand a=1.0 m, use the expression you

derived to write a MATLAB program that plot the contour of the voltage.

y=-a

Figure 10.8 The charge distribution of the exercise of Set 10.
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Example: Two perfect dielectrics have relative permittivities ¢,, =3 and &, =6. The planar interface
between them is the surface Xx+y+2z=1. The origin lies in region 1. If
E, =24.0a,+36.0a,6+42.0 a, V/m, find E,. Write a MATLAB program to determine the field E, for

arbitrary values of the permittivities &; and &
Analytical solution:

The electric field intensity is continuous in the tangential direction of the boundary and the electric flux
density is continuous in the normal direction of the boundary.

Dy, D
EN2 E2 ?N 2
&, V
—> | &

—_ > — >

Figure 11.1 The continuity of the electric field intensity and the electric flux density vectors,
E. =E, and Dy, =Dy, -

The unit vector that is normal to the surface is

a :i where f = X+ y+ 2z, therefore
oIvE

a,+a, +2a 1
ay=——" L =—(a +a,+2a,)
la,+a,+2a,| 6
This normal will point in the direction of increasing f , which will be away from origin, or into region 2.
Then we can find the electric field intensity in region 1. The normal component is given by

Ev =(E a,)a, = [(24:;1x +36a, + 42az)-i(ax +a, +2a, )}x%(ax +a,+2a, ) =24a, +24a, +48a,

J6
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Now we can calculate the tangential component

E; =E,—E,, =(24a,+36a, +42a,)—(24a, +24a,+ 483, ) =12a, —6a, .

Since the electric field intensity is continuous in the tangential direction of the boundary, we have
E.,=E; =12a,-6a, .

In the normal direction, the electric flux density is continuous, hence

D, =Dy, = &,6Ey, =&,6Ey, = Ey, =-LE,, =%(24ax +24a, +48a,)=12a, +12a, +24a,

rl
Finally, by adding the normal component and the tangential component together, we find the electric field
in region 2,

E,=E,,+E,,=(12a,-6a,)+(12a, +12a, +24a, ) =12a, +24a,+18a, V/m.

MATLAB code:

clc; %clear the command line

clear; %remove all previous variables

aN=[1 1 2]/sqrt(6); % unit vector normal to the planar interface

% prompt for input values

disp('Please enter E1, er1 and er2 )

E1=input('E1="); % the electric field intensity in region 1

er1=input('er1="); % the relative permittivity in region 1

er2=input('er2="); % the relative permittivity in region 2

% perform calculations

E_N1=(dot(E1,aN))*aN; % the normal component of electric field intensity in region 1
E_T1=E1-E_Nf1; % the tangential component of electric field intensity in region 1
E_T2=E_T1; % the tangential component of electric field intensity in region 2
E_N2=E_N1*er1/er2; % the normal component of electric field intensity in region 2
E2=E_T2+E_N2; % the electric field intensity in region 2

% display results

disp('The electric field intensity in region 2 is ')

E2

Running result: Please enter El, erl and er:
El=[z24 38 4az]
erl=3
er==A

The electric field intensity in region 2 is

EZ =

12,0000 Z4, 0000 15. 0000
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Exercise: In the region z <0, the relative permittivity is &,, =1, and the electric field intensity is
E=1.0a,+1.0a, V/m. In the region 0 <z <9 cm, there are four layers of different dielectrics, as shown

in Figure 11.2. Find the total energy stored in the region bounded by
0<x<1x10” m, 0<y<1x10? m, and 0<z<9x10” m. Write a MATLAB program to verify your

calculation.

z

h,=4x10" m
y

E,=4 }
X
£,=3 } h,=3x10" m
e =2 h =2x10"* m
L } 1 z=0
E=a, +a, &ro =1

Figure 11.2 The geometry of the exercise of Set 11.
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Example: A parallel-plate is filled with a nonuniform dielectric characterized by &, =2+2x10°x>, where
X is the distance from the lower plate in meters. If S = 0.02 m” and d = 1.0 mm, find the capacitance C.
Write a MATLAB program that finds the energy stored in this capacitor if the charge on the positive plate
is Q=4.0x10" C. Use the formula W, =Q?/2C to evaluate the capacitance and compare your results.

X
A

++ + + + + F ++ + + ++

£ =2+2x10°%

Figure 12.1 The geometry of the example of Set 12.

Analytical solution:

We can use the Q-method to find the capacitance. This can be done by first assuming a total charge of Q
on the positive plate and then finding the potential difference V between the two plates. Finally, we can
evaluate the capacitance by using C=Q/V. A total charge of Q is on the positive plate, and since the plate
can be seen as an infinite plate (\/g > d ), we can simply assume a uniform charge density on the plates.
The electric flux density is given by

024
S
and the electric field intensity is given by
E= b __Q a,.
£, E,E)S

By knowing the electric field intensity we can find the voltage difference between the two plates,
x=d x=d

x=d
V=-— E-dL=- - Q adx Q

X
dx = arctan| ———
x=0 x=0 5,—508 '[X 0 2+2X106 ? goS V1 0° ( V1 Jx_o
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= Larctan(lOOOd )
2000¢&,S
Now, we can find the capacitance
1 -9
c=y - 2 __2000ss P56, 0 OB g e
S, _ _ 73 .
v _Q arctan (10000 ) arctan (1000d ) arctan(1000x107)

2000¢,5

MATLARB solution:
We will write a MATLAB program to find the energy stored in the capacitance then use the formula
W, =Q?/2C to evaluate the capacitance. The energy stored in the capacitor is given by
2 2
W, :lj grgoEZdV=l b dV:l b
2 Jvol 2 Jvol grgo 2 Jvol grgo

dv

Consider a very thin layer of this capacitor. Since the relative dielectric &, varies only in the X direction,

we can assume the dielectric is the same everywhere in the very thin layer. Also we note that the electric
flux density is constant along the X direction. Therefore we can write a program that divides the capacitor
into many thin layers and evaluate the energy stored in each layer. We then add all the energy stored in
these layers together to obtain the total energy stored in the capacitor. By knowing the energy stored in the

capacitor, we can calculate the capacitance by usingC = Q” / 2W,

MATLAB code:
clc; %clear the command line

clear; %remove all previous variables
% initialize variables

eo=1e-9/(36*pi); % the permittivity in free space

Q=4e-9; % charges on the positive plate
S=0.02; % area of the capacitor

d=1e-3; % thickness of the capacitor
Ds=Q/S; % electric flux density

Number_of_x_steps=100; %number of steps in the x direction
dx=d/Number_of_x_steps; %x increment
% perform calculations
W=0; % initialize the total energy
for k=1:Number_of_x_steps
x=0.5*dx+(k-1)*dx; %current radius
er=2+2*x*x*1e6;  %current relative permittivity
dW=0.5"Ds*Ds*S*dx/(er*eo); % energy stored in a thin layer
W=W+dW,; % get contribution to the total energy
end

C=Q"2/(2*W)
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Running result:
g

4. 5032e-010

Comparing the answers we see that our MATLAB solution and analytical solution are consistent.

Exercise: A very long coaxial capacitor has an inner radius of p, .. =1.0x10" mand an outer radius of

Pimer =5-0x107° m. It is filled with a nonuniform dielectric characterized by ¢ =10°p. Find the
capacitance of a 0.01 m long capacitor of this kind. Write a MATLAB program that finds the energy
stored in this capacitor if the charge on the inner plate is Q=5.0x10" C . Use the formula

W, =Q’/2C to evaluate the capacitance again and compare your results.

pouter

Figure 12.2 The cross section of the coaxial capacitor of the exercise of Set 12.
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Example: Consider the configuration of conductors and potentials shown in Figure 13.1. Derive an
expression for the voltage at any point (X, Yy) inside the conductors. Write a MATLAB program that plots

the contours of the voltage and the lines of the electric field.

A Y
1.0 m 1.0V .
Gap Gap
oV ov
p X
O RY% 1.0m

Figure 13.1 The configuration of the example of Set 13.
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Analytical solution:
The governing equation is the Laplace equation given by:
oV oV

~+— =0, 0<x<1.0, 0<y<l1.0
ox~ oy
V(0,y)=0, V(1.0,y)=0;
V(x,00=0, V(x1.0)=1.0

oV oV
+— =0, where X is a funtion of X and Y is a function of y. It follows

ox> oy

Let V = XY be the solution of

that we have

oV +62V =X"Y+XY"=0
ox> oy’
X"+ A°X =0

Y2 =0

X =, cos AX+C, sin AX

Y =c,cosh Ay +c,sinh Ay
Boundary condition V (0, y) =0 indicates V(0,y)=X(0)Y =0,= X(0)=c,cos0+c¢,sin0=0 =¢, =0
therefore | X =, sin AX| (1)

Boundary condition V (1.0, y) =0 indicates V (1.0,y) = X(1.0)Y =0,= X(1.0)=C,sinA=0 = (2)
Boundary condition V (X,0) =0 indicates V (X,0) = XY (0)=0,=Y (0)=c,cos A =0 = ¢, =0 ,therefore
Y =c,sinh Ay| (3)
With equation (1), (2) and (3), we have

V, = XY, = A sin(nzx)sinh(nzy).

The general solution for the Laplace equation is thus given by

V= i A, sinh(nzy)sin(nzXx)

n=1

Now, the last boundary condition V(x,1.0) =1.0 indicates that

V(x,1.0)= i A, sinh(nz)sin(nzx) =1.0.

n=1

Multiplying both sides by sin(nzx) and integrating

-2 cos(n7zx)|xzl _2-2cos(nz) 2-2x(=1)" A 2-2x(=1)"
nz |X:0 nz nz Nz sinh(nr)

= A sinh(nz) =2 "sin(nzx)dx =

Therefore,
v =3 222XCD Gy sin(n)
v Nz sinh(nz)
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MATLAB code:
NumberOfXPlottingPoints=40; %number of plotting points along the x axis

NumberOfYPlottingPoints=40; %number of plotting points along the y axis

Positive_infinite=160;%use a finite number to replace positive infinite

V=zeros(NumberOfYPlottingPoints,NumberOfXPlottingPoints); % the matrix used to store the voltages at plotting points

PlotXmin=0; %lowest x value on the plot plane

PlotXmax=1; %maximum x value on the plot plane

PlotYmin=0; %lowest y value on the plot plane

PlotYmax=1; %maximum y value on the plot plane

PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1); %plotting step in the x direction

PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1); %plotting step in the y direction

[xmesh,ymesh] = meshgrid(PlotXmin:PlotStepX:PlotXmax,PlotYmin:PlotStepY:PlotYmax);

for j=1:NumberOfYPlottingPoints %repeat for all plot points in the y direction

for i=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction
xplot=PlotXmin+(i-1)*PlotStepX;%x coordinate of current plotting point
yplot=PlotYmin+(j-1)*PlotStepY; %y coordinate of current plotting point
for n=1:Positive_infinite
V(j,)=V(j,i)+(2-2*(-1)*n)*sinh(n*pi*yplot)*sin(n*pi*xplot)/(n*pi*sinh(n*pi)); %get the voltage contribution
end
end

end

surf(xmesh,ymesh,V);%obtain the surface figure

xlabel('x(m)");% label x

ylabel('y(m)");% label y

zlabel('V(V)'");% label z

figure;

[C,h] = contour(xmesh,ymesh,V);%obtain the contour figure

set(h,'ShowText','on',' TextStep',get(h,'LevelStep")); %label the contour

xlabel('x(m)'); % label x

ylabel('y(m)'); % label y

figure;

contour(xmesh,ymesh,V); [px,py] = gradient(V);

hold on,quiver(xmesh,ymesh,-px,-py,3),hold off,%obtain the electric field map by using E=-Gradient(V)

xlabel('x(m)"); % label x

ylabel('y(m)'); % label
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Running result:
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Figure 13.3 Contours of the voltage in the region 0< x<1, and 0< y<1.
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Figure 13.4 The electric field lines in the region 0< x<1, and 0< y< 1.
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Exercise: Consider the configuration of conductors and potentials shown in Figure 13.2. Derive an

expression for the voltage at any point (X, Y)inside the conductors. Write a
the contours of the voltage and the lines of the electric field.

MATLAB program that plots

AY
10m -1.0V "
Gap Gap
ov 10OV
|/Galp
> X
O (RY 1.0 m

Figure 13.5 The geometry of the exercise of Set 13.
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MATLAB Examples and Exercises (Set 14)

Prepared by: Dr. M. H. Bakr and C. He

Example: Consider the shown cross section of a square coaxial cable. The inner conductor has a voltage
of 1.0 V while the outer conductor is grounded. The cable is assumed long enough and variations in
potential and field in the normal direction can be ignored (2D problem). Write a MATLAB program that
solves Laplace equation in the area between the two conductors. Plot the contours of the voltage and the
lines of the electric field.

Figure 14.1 The geometry of the example of Set 14.
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Analytical solution: The governing
equation is the Laplace equation: y
oV oV
8X2 + ay2 :0 X
NI ViV v,
X |, h
N| V-V 1
. URIDEE S
vl v \ td
OV ox|, ox|. V,+V,-2V, D
2 T - 2 V
oX~ |, h h h 4
and similarly,
OV| V4V, -2V,

oy’ 0 h? Figure 14.2 A portion of a region containing a two-
dimensional potential field, divided into square of
side h. The potential V,is approximately equal to the

Substituting in Laplace equation
V|, V| LV AV, V4V, -4V,

PYE ay2| = hZ 0 average of the potentials at the four neighboring
0 0 1
points.
or
v :Vl +V, +V, +V,
0

4
=4V, +V, +V, +V; +V, = 0| (1)
For points on the inner square of the cable, the voltage is given by
V, =1.0| (2)

Then we can obtain a system of linear equations whose unknowns are the voltages of the points inside the
cable. Assume there are n divisions along the X direction and m divisions along the y direction, then we have
total number of mxn linear equations, and the system of linear equations is given by

a‘l,l a‘l,2 al,3 a‘l,mx(n—Z) a'1,m><(n—1) a'1,m><n Vl b1
a‘2,1 a2,2 a‘2,3 a‘Z,mx(n—Z) a2,m><(n—1) a'2,m><n V2 2
a‘3,1 a3,2 a3,3 a3,m><(n—2) a3,m><(n—1) aﬂ,mxn V3 b3
amx(n—Z),l a‘mx(n—Z),2 amx(n—Z),3 amx(n—Z),mx(n—Z) amx(n—Z),mx(n—l) amx(n—Z),mxn Vm><(n—2) bmx(n—l)
amx(n—l),l a‘mx(n—l),Z amx(n—l),3 amx(n—l),mx(n—z) amx(n—l),mx(n—l) amx(n—l),mxn me(n—l) bmx(n—l)
amxn,l amxn,2 amxn,3 amxn,mx(n—Z) amxn,mx(n—l) amxn,mxn Vm><n bmxn
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This system of linear equations can be solved through a MATLAB program. The key point of writing a
MATLAB program is to construct the matrix A and the vector b. Figure 14.3 explains the construction of
the matrix A and the vector b. In Figure 14.3(a), the point i is near the upper left corner of the cable. The
voltage of this point is the average of the four neighboring points,

Vout +V0ut +Vi+1 +Vi+n _4Vi =0,0r V +Vi+n _4Vi = 2’Vout .

Now, in the matrix A, a; =—4 because a,; is the coefficient of V,. Also, a

and V,

i+n >

i+1

=1 because a

i,i+1

il = L, & jin

and a . are the coefficients of V. respectively. In the vector b, b. is assigned a value of

2V, which is the constant on the right hand of the equation. Other possible locations of a point inside the
cable are shown in Figure 14.3 (b), (c¢), and (d). Our MATLAB create equations for all the points inside
the cable and store the corresponding coefficients in A and b. The voltages of all the points inside the

cable can be evaluated.

i+1

(2) (b)

oV =V

— YVinner

(c) (d)

Figure 14.3(a) V, is the voltage on the left corner of the cable; (b) V; is the voltage on the top of the
cable; (c) V, is a nodal voltage inside the inner square of the cable; and (d) V, is the voltage of a
point inside the cable that is not next to the boundary.
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MATLAB code:
VOut=0;%voltage on outer conductor

VIn=1.0;%voltage on inner conductor
NumberOfXPoints=50; %number of points in the x direction
NumberOfYPoints=NumberOfXPoints; %number of points in the y direction
NumberOfUnKnowns=NumberOfXPoints*NumberOfYPoints; %this is the total number of unknowns
A=zeros(NumberOfUnKnowns, NumberOfUnKnowns); %this is the matrix of coefficients
b=zeros(NumberOfUnKnowns,1);%this is the right hand side vector
jleft=(NumberOfXPoints+1)/3;%index of inner conductor left side
jright=2%jleft;%index of inner conductor right side
ibottom=(NumberOfYPoints+1)/3;%index of inner conductor Bottom side
itop=2*itop;%index of inner conductor Top side
EquationCounter=1; %this is the counter of the equations
for i=1:NumberOfXPoints %repeat for all rows
for j=1:NumberOfYPoints %repeat for all columns
if((i>=ibottom&i<=itop)&(j>=jleft&j<=jright)) % V=1 for all points inside the inner conductor
A(EquationCounter, EquationCounter)=1;
b(EquationCounter,1)=VIn;
else
A(EquationCounter, EquationCounter)=-4;
if(==1) this is the first column
b(EquationCounter, 1)=b(EquationCounter,1)-VOut; % left point is on boundary
else%store the coefficient of the left point
A(EquationCounter,EquationCounter-1)=1.0;
end
if((==NumberOfYPoints) % this is the last column
b(EquationCounter, 1)= b(EquationCounter,1)-VOut;%on right boundary
else %store coefficient of right boundary
A(EquationCounter, EquationCounter+1)=1.0;
end
if(i==1) % this is the first row
b(EquationCounter,1)=b(EquationCounter,1)-VOut; %top point is on boundary
else %store coefficient of top point
A(EquationCounter, EquationCounter-NumberOfXPoints)=1;
end
if(i==NumberOfXPoints) % this is the last row
b(EquationCounter,1)=b(EquationCounter,1)-VOut; %bottom point is on boundary

else%store coefficient of bottom point
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A(EquationCounter, EquationCounter+NumberOfXPoints)=1.0;
end
end
EquationCounter=EquationCounter+1;
end

end
V=A\b; %obtain the vector of voltages
V_Square=reshape(V, NumberOfXPoints, NumberOfYPoints); %convert values into a rectangular matrix
surf(V_Square); %obtain the surface figure
figure;
[C,h] = contour(V_Square); % obtain the contour figure
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool;
figure;
contour(V_Square);
[px,py] = gradient(V_Square);
hold on, quiver(-px,-py), hold off%obtain the electric field map by using E=-Gradient(V)

Running result:

1-\- .

Dax

Ddx Wﬁm
e M A

ol

Figure 14.4 The surface of the voltage inside the cable.
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Figure 14.5 Contours of the voltage inside the cable.
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Figure 14.6 Electric field lines inside the cable.
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Exercise: Consider the configuration of conductors and potentials shown in Figure 14.7. Write a
MATLAB program that solves Laplace equation in the area bounded by the conductors. Plot the contours

of the voltage and the lines of the electric field.

Gap_ sov. 9P 5oy G;p
LY A -t 2 cm >
2cm | 100V
ov ov
4 cm Y
ov
hA
|< 4 cm >|

Figure 14.7 The configuration of the exercise of Set 14.
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MATLAB Examples and Exercises (Set 15)

Prepared by: Dr. M. H. Bakr and C. He

Example: A current sheet K =5.0 a, A/mflows in the region —0.15 m<x<-0.15m. Calculate H at

P(0,0,0.25). Write a MATLAB program to verify your answer and plot the magnetic field in the x-y
plane in the region —0.5 m<x<0.5mand 0.5 m<z<0.5m.

X-Z plane
oP
K=5.0a, A/m z
>
>
g y

Figure 15.1 The example of Set 15.
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Analytical solution:

As shown in Figure 15.2, since IdL = KdS , the magnetic field resulting from a surface element
_ldLxR  KxRdS

dH, = AR R where R is a vector pointing from the surface element to the observation point,
V4 V4

R=0P-0OC=025a,-(xa,+ya,)=-xa,-ya,+025a,.

The cross product of K and R is given by

a a a
- ’ 5 0 0 0 0
KxR=|0 5 0 |=a, -a, +a, =1.25a, +5xa,, therefore,
-y 0.25 -x 0.25 -X -y
-x -y 025
1.25a,+5x a, )dxd
dH, = ( X Z) 3 /zy , and the magnetic field resulting from the current sheet is
47:(x2 +y° +)
16

x=015 cy=o .25 @, +5X a,
Hp = [ dH, = |

x=—0.15 J y=— 1
Ar| X+ Yy +—
16

X=0.15 py=oo 1.25a, X=0.15 ¢y=oo 5x a,
N J‘x:—o,ls .[y:_oo e dxdy + L:—o,ls jy:_m E dxdy
Az Xyt +— 4| X+ Yy +—
16 16

We note that the z component is anti-symmetric in X about the origin (odd parity). Since the limits are
symmetric, the integral of the z component over Y is zero. We are left with

—dxdy

y:oo
HP _ Ix:o,ls J~y:oo 1_253.X 3/2dXdy _ 1.25 aXJ-x:o.ls y dx

x=—0.15 J y=—o0 1 4 x=-0.15 ) 1 ) ) 1
Ar| X +y +— Xt — [ Xy +—

16 16 16],_,

zgaxj«x:ms 1 B -1 dx

472- x=—0.15 5 1 X2 1 5 1 X2 1
X"+ s+l+—— X"+ — s+ 1+——

16 )\y 16y yo 16 )\y 16y i

_ Eaxszms de = 2aX tan™' (4x)
472- x=-0.15 2 i T

16

x=0.15 2.5

= 22x1.0808a, = 0.8601 a, A/m
T

x=-0.15
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R o*P
/ K=50a, Am

g
C
g y
{ X
ds \'KdS
Figure 15.2 The vector R pointing from the surface element to the observation point. The magnetic
field resulting from the surface element is dH, = Iax—l:’;is
T

MATLAB solution:
We can calculate the magnetic field at a point P by calculating the magnetic field resulting from each
surface element and adding all these elementary magnetic fields together. This can be formulated in the

i=n j=m KxR. .AS
mathematical form H, = z Z%

. To plot the magnetic field on the X-z plane, we need to build
i=l j=I 4'77Ri,j3

an array of the plotting plane and calculate H of each plotting point. We use the function quiver to plot
our vector plot.

MATLAB code:

clc; %clear the command window

clear; %clear all variables

d=0.30; %the width of the sheet in the x direction

L=20; %length of sheet in the y direction

J=5; %value of surface current density

Js=J*[0 1 0]; %the vector of surface current density

Xmin=-0.15; %coordinate of lowest x value on sheet

Xmax=0.15; %coordinate of maximum x value on sheet

Ymin=-10; %coordinate of lowest y value on sheet

Ymax=10; %coordinate of maximum y value on sheet
NumberOfXDivisions=20; %number of cells in the x direction
NumberOfYDivisions=100; %number of cells in the y direction
dx=(Xmax-Xmin)/NumberOfXDivisions; %step in the x direction
dy=(Ymax-Ymin)/NumberOfYDivisions; %step in the y direction

ds=dx*dy; %area of one subsection of sheet

ZCellCenter=0; %all points on sheet has a coordinate z=0
NumberOfXPlottingPoints=10; %number of plotting points along the x axis
NumberOfZPlottingPoints=10; %number of plotting points along the z axis
PlotXmin=-0.5; %lowest x value on the plot plane

PlotXmax=0.5; %maximum x value on the plot plane
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PlotZmin=-0.5; %lowest z value on the plot plane
PlotZmax=0.5; %maximum z value on the plot plane
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1); %plotting step in the x direction
PlotStepZ=(PlotZmax-PlotZmin)/(NumberOfZPIottingPoints-1); %plotting step in the z direction
[XData,ZData]J=meshgrid(PlotXmin:PlotStepX:PlotXmax, PlotZmin:PlotStepZ:PlotZmax); %build arrays of plot plane
PlotY=0; %all points on observation plane have zero y coordinate
Bx=zeros(NumberOfXPlottingPoints,NumberOfZPlottingPoints); %x component of field
Bz=zeros(NumberOfXPlottingPoints, NumberOfZPIottingPoints); %z component of field
for m=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction
for n=1:NumberOfZPlottingPoints %repeat for all plot points in the y direction
PlotX=XData(m,n); %Xx coordinate of current plot point
PlotZ=ZData(m,n); %z coordinate of current plot point
if ((PlotZ==0)&(PlotX>=Xmin)&(PlotX<=Xmax)) % if the plotting point is on the current sheet
Bx(m,n)=0.5*J; % we use the model of infinite current sheet
Bz(m,n)=0;
continue;
end
Rp=[PlotX PlotY PlotZ]; %poistion vector of observation points
for i=1:NumberOfXDivisions %repeat for all divisions in the x direction
for j=1:NumberOfYDivisions %repeat for all cells in the y direction
XCellCenter=Xmin+(i-1)*dx+0.5*dx; %X center of current subsection
YCellCenter=Ymin+(j-1)*dy+0.5*dy; %Y center current subsection
Rc=[XCellCenter YCellCenter ZCellCenter]; %position vector of center of current subsection
R=Rp-Rc; %vector pointing from current subsection to the current observation point
norm_R=norm(R); %get the distance between the current surface element and the observation point
R_Hat=R/norm_R; %unit vector in the direction of R
dH=(ds/(4*pi*norm_R*norm_R))*cross(Js,R_Hat); %this is the contribution from current element
Bx(m,n)=Bx(m,n)+dH(1,1); %increment the x component at the current observation point
Bz(m,n)=Bz(m,n)+dH(1,3); %increment the z component at the current observation point
end %end of j loop
end %end of i loop
end %end of n loop

end % end of m loop
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quiver(XData, ZData, Bx, Bz);

xlabel('x(m)"); %label x axis

ylabel('z(m)");%label y axis

% The following routing caculates the magnetic field at point P

P=[0 0 0.25];%position of point P

Hp=[0 0 0];%the magnetic field at point P

for i=1:NumberOfXDivisions %repeat for all divisions in the x direction

for j=1:NumberOfYDivisions %repeat for all cells in the y direction
XCellCenter=Xmin+(i-1)*dx+0.5*dx; %X center of current subsection
YCellCenter=Ymin+(j-1)*dy+0.5*dy; %Y center current subsection
Rc=[XCellCenter YCellCenter ZCellCenter]; %position vector of center of current subsection
R=P-Rc; %vector pointing from current subsection to the current observation point
norm_R=norm(R); %get the distance between the current surface element and the observation point
R_Hat=R/norm_R; %unit vector in the direction of R
dH=(ds/(4*pi*norm_R*norm_R))*cross(Js,R_Hat); %this is the contribution from current element

]

plane.

Hp=Hp+dH;
end %end of j loop - .
end %end of i loop S AR S A R T
04f A N
Running result: L
>> Hp o2y R E e TR
e
o LSl SN E
=
E 02 NN e ;é ,ﬁ PO
0. 8582 0 0.0000 0 " I TR 1
L Lt
04l Y s T W omes e g — g P i
s
S T -
We can see that our MATLAB solution 0Bf T
has a good agreement with our analytical
solution. 083 06 o4 02 0 i o4

Figure 15.3 The MATLAB vector plot of the magnetic field
in the x-z plane caused by a current sheet flowing in the x-y

0.6
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Exercise: A filament on the z axis lies in the region 0<z<10.0 m. Calculate H at P(0,1.0,0). Write a

MATLAB program to verify your answer and plot the magnetic field in the X-y plane in the region
-5.0m <x<50mand -5.0 m<y<50m.

Al=20 ay A/m

X-y plane

Figure 15.4 The exercise of Set 15.
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Prepared by: Dr. M. H. Bakr and C. He

Example: A solenoid of radius 0.1 m whose axis is the z axis carries a current of 3 Amps. The solenoid is
assumed to extend along the z axis from z=-0.5m to z=0.5 m. Write a MATLAB program that plots
the magnetic field in the X-z plane.

P

Figure 16.1 The example of Set 16.
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Analytical Part:
We can assign a unique angle value to each point on the winding. For instance, if a point has a ¢ angle of

7/3, and it is on the third turn, then the parametric angle value we assign to this point is
¢'=n/3+27xx(B-1)=137/3. In general,¢'=¢+2(k—1)z, where 1<k <numberofturns and

0<¢<2x. Knowing the value of¢', we can find the rectangular coordinate of a point:

X=rcos¢= rCOS|:¢+2(k—1)7Z':|= rcosg'| (1)

y=rsing=rsin| ¢+2(k-1)z |=rsing'| (2)

Also, since the z coordinate is linearly increasing along the windings, we have
Z

Z(¢)_Z min —mln(¢ ¢mm) (3)

(¢ max_¢ lTlll’l
Now we want to divide the winding into n segments along the direction of the current | in order to allow
MATLAB program to calculate the magnetic field (see Figure 16.2). We then pick up n+1 points on the
winding. For the ith point, the angle is given by

¢'i :¢'min+ ¢'max;¢'min (l _1) )

By plugging this equation into (1), (2) and (3), we can find X, Y,, and z,. Also, we can find X _,,V;,,,and z_,
in the same way. Note the ith segment is a vector given by

AL; = (X%, —X%)a, + (Vi — Yi)a, (2, — 2))a,

and the vector R, (pointing from the center of the ith segment to the observation point) is given by (See
Figure 16.2)

— — Xia =% Yin =Y Zin—%
R,=P-C =(xy,2) ( T )
Finally we can calculate the magnetic field at point P using the superposition formula:
z IAL, xR,
4r|R,
The problem requires us to plot the magnetic field in the Xx-z plane. We should thus calculate the magnetic
field at a grid of points on the X-z plane, and store the values in to a two-dimensional matrix.
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R(X.Y,2)

Figure 16.2 AL, is the ith segment along the winding and R; is the vector pointing from the center
of ith segment to the observation point P.

MATLAB code:

clc; %clear the command window

clear; %clear all variables

NumberOfTurns=20; %Number of turns of the solenoid

Radius=0.1; %radius of solenoid

Zmin=-0.5; %coordinate of the lowest point on the solenoid

Zmax=0.5; %coordinate of the highest point on the solenoid

t_min=0; %lowest value of the curve parameter t

t_max=NumberOfTurns*2.0*pi; % for every turn we have an angle increment of 2*pi
NumberOfSegments=100; %we divide the solenoid into this number of segments
t_values=linspace(t_min,t_max, (NumberOfSegments+1))’; %these are the values of the parameter t
x_values=Radius*cos(t_values);

y_values=Radius*sin(t_values);
z_values=Zmin+((Zmax-Zmin)/(t_max-t_min))*(t_values-t_min);

I=3; %value of surface current density
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NumberOfXPlottingPoints=20; %number of plotting points along the x axis
NumberOfZPlottingPoints=20; %number of plotting points along the z axis
PlotXmin=-0.5; %lowest x value on the plot plane
PlotXmax=0.5; %maximum x value on the plot plane
PlotZmin=-1; %lowest z value on the plot plane
PlotZmax=1; %maximum z value on the plot plane
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1); %plotting step in the x direction
PlotStepZ=(PlotZmax-PlotZmin)/(NumberOfZPlottingPoints-1); %plotting step in the z direction
[XData,ZData]=meshgrid(PlotXmin:PlotStepX:PlotXmax, PlotZmin:PlotStepZ:PlotZmax); %build arrays of plot plane
PlotY=0; %all points on observation plane have zero y coordinate
Bx=zeros(NumberOfXPlottingPoints,NumberOfZPlottingPoints); %x component of field
Bz=zeros(NumberOfXPlottingPoints, NumberOfZPlottingPoints); %z component of field
for m=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction
for n=1:NumberOfZPlottingPoints %repeat for all plot points in the z direction
PlotX=XData(m,n); %x coordinate of current plot point
PlotZ=ZData(m,n); %z coordinate of current plot point
Rp=[PlotX PlotY PlotZ]; %poistion vector of observation points
for i=1:NumberOfSegments %repeat for all line segments of the solenoid
XStart=x_values(i,1); %x coordinate of the start of the current line segment
XEnd=x_values(i+1,1); %Xx coordinate of the end of the current line segment
YStart=y_values(i,1); %y coordinate of the start of the current line segment
YEnd=y_values(i+1,1); %y coordinate of the end of the current line segment
ZStart=z_values(i,1); %z coordinate of the start of the current line segment
ZEnd=z_values(i+1,1); %z coordinate of the end of the current line segment
dI=[(XEnd-XStart) (YEnd-YStart) (ZEnd-ZStart)]; %the vector of diffential length
Rc=0.5*[(XStart+XEnd) (YStart+YEnd) (ZStart+ZEnd)];%position vector of center of segment
R=Rp-Rc; %vector pointing from current subsection to the current observation point
norm_R=norm(R); %get the distance between the current surface element and the observation point
R_Hat=R/norm_R; %unit vector in the direction of R
dH=(I/(4*pi*norm_R*norm_R))*cross(dl,R_Hat); %this is the contribution from current element
Bx(m,n)=Bx(m,n)+dH(1,1); %increment the x component at the current observation point
Bz(m,n)=Bz(m,n)+dH(1,3); %increment the z component at the current observation point
end %end of i loop
end %end of n loop
end % end of m loop
quiver(XData, ZData, Bx, Bz);
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xlabel('x(m)"); %label x axis

ylabel('z(m)"); %label z axis

Running result:
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Figure 16.3 The magnetic field lines generated by a solenoid centered along the z axis.

Exercise: A toroid whose axis is the z axis carries a current of 5.0 A and has 200 turns. The inner radius is
1.5 cm while the outer radius is 2.5 cm. Write a MATLAB program that computes and plots the magnetic
field in the x-y plane in the region —4.0 cm < X<4.0 cmand —4.0 cm<y <4.0 cm.

Figure 16.4 The exercise of Set 16.
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MATLAB Examples and Exercises (Set 17)

Prepared by: Dr. M. H. Bakr and C. He

Example: A rectangular coil is composed of 1 turn of a filamentary conductor. Find the mutual
inductance in free space between this coil and an infinite straight filament on the z axis if the four corners
of the coil are located at: (1, 1, 0), (1, 3, 0), (1, 3, 1), and (1, 1, 1). Write a MATLAB program to verify

your anSwer.

Figure 17.1 The example of Set 17.
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Analytical solution:

Page: 90

As shown in Figure 17.2, if we assume that the filament current is in the +a, direction, the B field of the

filament penetrates the coil in the +a, direction and the direction normal to the loop plane is —a, . The B

field resulting from a infinite filamentary conductor taking a current | is given by

B =L o! a
27p

The flux through the coil is now

®= IB ds = j I [27:;; ] —a,dydz) I Jysﬂozlii;dz ,)-(-a,)

(4

where
a, =-a,sing+a, cosg

therefore
a¢-(—ax)=sin¢=l=+
P y +1
Now, the flux through the coil is
y=3
jy”’oly Al gy [ Y gy Fol n(y+1) =(1.6x107)1
=1 270 = 270 4r yl

The mutual inductance is then
-7
M = NICD _ 1><1.6>I<10 | _16x107 H

I y
@ -
1.01 PNL a, ‘ix
<7y —
\
X

Figure 17.2 p is the distance from the straight filament to the observation point, the current is in

the a, direction and by right hand rule the direction normal to the coil is —a, .
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MATLAB solution:

In the MATLAB program, we replace the infinite straight filament by a sufficiently long filament. Then
we evaluate the magnetic field resulting from this filament at each surface element inside the coil. The dot
product of a surface element and its magnetic field gives the flux through the surface element. By adding
the flux through each surface element we obtain the flux through the area inside the coil. The mutual
inductance is then obtained by dividing out the current I.

MATLAB code:

clc; %clear the command window
clear; %clear all variables
mu=4*pi*1e-7;
I=1.0;%current of the filament
end1=[0 0 -30];%end of the filament
end2=[0 0 30];%end of the filament
Number_of_Segments=250;%number of increasing steps along the filament
dL=(end2-end1)/Number_of_Segments;%vector increment along the filament
aN=[-1 0 0];% direction normal to the surface of the coil
NumberOfY Steps=20;%number of increasing steps of the coil area along the y direction
NumberOfZSteps=20;%number of increasing steps of the coil area along the z direction
ymin=1;%lowest y corodinate of the coll
ymax=3;%maxium y corodinate of the coil
zmin=0;%lowest z corodinate of the coll
zmax=1;%maxium z corodinate of the coil
dy=(ymax-ymin)/NumberOfY Steps;% area increment along the y direction
dz=(zmax-zmin)/NumberOfZSteps;% area increment along the z direction
flux=0;%flux through the coll
dS=dy*dz;%increament area
xp=1.0;%Xx coordinate is always 1.0 on the coll
for m=1:NumberOfZSteps %repeat for all points in the z direction
for n=1:NumberOfYSteps %repeat for all points in the y direction
yp=ymin+0.5*dy+(n-1)*dy; %y coordinate of current surface element
zp=zmin+0.5*dz+(m-1)*dz;%z coordinate of current surface element
Rp=[xp yp zp]; %the position of current surface element
B=[0 0 0];%the magnetic field at current surface element
for i=1:Number_of_Segments %repeat for all divisions in the z direction
C=end1+(i-1)*dL+0.5*dL; %X center of current subsection
R=Rp-C; %vector pointing from current subsection to the current observation point
norm_R=norm(R); %get the distance between the current surface element and the observation point

R_Hat=R/norm_R; %unit vector in the direction of R
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dH=(I/(4*pi*norm_R*norm_R))*cross(dL,R_Hat); %this is the contribution from current element
B=B+mu*dH;
end %end of i loop
dflux=dS*dot(B,aN);%flux through current surface element
flux=flux+dflux;%get contribution to the total flux
end %end of n loop
end % end of m loop

M=flux/l;% the mutual inductance

Running result:
|

M=

1. 6051e-007

s
We see that our MATLAB solution has a good agreement with our analytical solution.

Exercise: Two coils with radii &, and a, are separated by a distance of d as shown in Figure 17.3. The
dimensions are a, =0.01 m, a, =0.04 m,and d =0.1 m. Find the mutual inductance of the coils. Write a
MATLAB program to verify your answer.

Figure 17.3 The geometry of the exercise of Set 17.
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Prepared by: Dr. M. H. Bakr and C. He

Example: A solenoid of radius 0.05 m is centered along the z axis as shown in Figure 18.1. The solenoid
is assumed to extend along the z axis from z =—-0.25 m to z=0.25 m. Find the inductance analytically if
the solenoid has 100 turns and g, =1. Write a MATLAB program to evaluate the inductance again and

compare your answers.

0,0,0,00,0,0,0,0,0,5,0,0,0,0,010,0,0,00,0,0,0,0,0,000,000,

Figure 18.1 A cross section of the solenoid.

Analytical solution:

Assume the solenoid has a radius of R , takes a current of | and has n turns per unit length, as shown in
Figure 18.1. We consider a very short segment dl of this solenoid. Then this short segment has a total
number of ndl turns. Therefore, the magnetic field at a point P resulting from the short segment is

4 R’Indl

2 (R2 +1° )3/2
where | is the distance from the observation point to the short segment, as shown in figure 18.1. Therefore,
the magnetic field at point P resulting from the solenoid is

:jd Iy R*Indl

3/2

However, as shown in Flgure 18.1, we have | =Rcot . It follows that

dl =—Rcsc” pd S




ECE2FH3 - Electromagnetics | Page: 94
MATLAB Examples and Exercises (Set 18)

and
R’ +1° =R*(1+cot* B)=R*csc’
Therefore, we have

. os=p R*(~Resc” pdB) u , ¢h=s . U
B=<=—nl =-nl - d g =—nl -

M, R osc f 2 Iﬂ=ﬁ1 (—sin B)d B > (cos 3, —cos f3,)
For a sufficiently long solenoid the magnetic field inside the solenoid is approximately the same every
where. We use the magnetic field in the center of the solenoid to evaluate the flux linkage. The magnetic

field at the center of the solenoid is

B=§nl(cosﬂ2—cosﬂl)=§nl(

025  -025 1.9612 NI
J0.052 4025 0.05* +0.25° 2 h

and the flux linkage is
1.9612 uN’Iza’
h
Finally, we divide by the current to find the inductance
A 19612 uN’1rza’

L== =1.9357x10* H
I 2 h

A=N®,_ =NBS =

MATLAB solution:

The inductance we derived analytically is an approximate value because we are assuming the solenoid is
infinitely long and tightly wrapped. The magnetic field intensity is actually different for different points
inside the solenoid, and the flux linkage to each turn of coil varies. Using a MATLAB program, we can
calculate a more accurate A4

N
A=® + D, 4+ D+t Dy =D D,
i=1

where @, is the flux linking the ith turn which is given by

where AS | | is the element surface of the cross-sectional area, and B, is the magnetic field intensity at

n

P 4
AS, . In set 16 we learned how to calculate B | . We utilize the formula ®; = Z‘Z‘Bm’n -AS,, , where

n=l m=1
we use p steps in the p direction ( steps in the ¢ direction. We can further simplify the flux linking the
ith loop by:
p
®, =0 B, AS,.

n=1

MATLAB code:

clc; %clear the command window
clear; %clear all variables

mu=4*pi*1e-7;
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NumberOfTurns=100; %Number of turns of the solenoid
Radius=0.05; %radius of solenoid
Zmin=-0.25; %coordinate of the lowest point on the solenoid
Zmax=0.25; %coordinate of the highest point on the solenoid
t_min=0; %lowest value of the curve parameter t
t_max=NumberOfTurns*2.0*pi; % for every turn we have an angle increment of 2*pi
NumberOfSegments=1000; %we divide the solenoid into this number of segments
t_values=linspace(t_min,t_max, (NumberOfSegments+1))'; %these are the values of the parameter t
x_values=Radius*cos(t_values);%x coordinates of all selected point on the winding
y_values=Radius*sin(t_values); %y coordinates of all selected point on the winding
deltaZ=linspace(Zmin,Zmax,(NumberOfTurns))'; %z coodinates increases when turn increases
z_values=zeros(NumberOfSegments,1);
for k=1:NumberOfTurns
z_values((1+(k-1)*10):k*10)=deltaZ(k);
end
I=1; %value of surface current density
aN=[0 0 1];%direction that normal to each turn
NumberOfRhoSteps=20;%the area increasing steps in the rho direction
NumberOfPhiSteps=20;%the area increasing steps in the phi direction
drho=Radius/NumberOfRhoSteps;%area increament along the direction of rho
dphi=2*pi/NumberOfPhiSteps;%area increment along the direction of phi
flux=0;
for m=1:NumberOfTurns
for j=1: NumberOfRhoSteps
rho=(j-1)*drho+0.5*drho; %rho of current surface element
phi=0.5*dphi; %phi of current surface element
dS=rho*drho*dphi;%area of current element
xp=rho*cos(phi);%x coordinate of current surface element
yp=rho*sin(phi); %Yy coordinate of current surface element
zp=z_values(m,1);%z coordinate of current surface element
Rp=[xp yp zp];%position of current surface element
B=[0 0 OF;
for i=1:NumberOfSegments %repeat for all line segments of the solenoid
XStart=x_values(i,1); %x coordinate of the start of the current line segment
XEnd=x_values(i+1,1); %Xx coordinate of the end of the current line segment
YStart=y_values(i,1); %y coordinate of the start of the current line segment

YEnd=y_values(i+1,1); %y coordinate of the end of the current line segment
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ZStart=z_values(i,1); %z coordinate of the start of the current line segment
dI=[(XEnd-XStart) (YEnd-YStart) 0]; %the vector of diffential length
Rc=0.5*[(XStart+XEnd) (YStart+YEnd) (2*ZStart)];%position vector of center of segment
R=Rp-Rc; %vector pointing from current subsection to the current observation point
norm_R=norm(R); %get the distance between the current surface element and the observation point
R_Hat=R/norm_R; %unit vector in the direction of R
dH=(l/(4*pi*norm_R*norm_R))*cross(dl,R_Hat); %this is the contribution from current element
B=B+mu*dH;%get contribution to the magnetic field at current surface element
end %end of i loop
dflux=dS*(dot(B,aN));%the magnetic flux through current surface element
flux=flux+dflux;%get contribution to the total flux linkage
end
end
numda=flux*NumberOfPhiSteps;%the flux linkage

L=numdal/l;%inductance of solenoid

Running result:
»r L

Ela i
1.3414e-004

| =%

Comparing the analytical answer and the MATLAB answer we find a significant difference between them.
The actual inductance value should be closer to the MALAB answer. It makes sense that the analytical
answer is larger because we used the strongest magnetic field inside the solenoid (at the center) to
evaluate the flux linkages analytically. If we increase the number of turns of the solenoid and increase the
ratio of h/R, the two answers will have a better agreement.

Exercise: A toroid whose axis is the z axis has 200 turns. The inner radius is 2.0 cm while the outer
radius is 2.5 cm. Find the inductance analytically if the solenoid has 100 turns and g, =1. Write a

MATLAB program to verify your answer.






