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ECE2FH3 
Electromagnetics I 

 
Term II, January – April 2012 

 

MATLAB Examples and Exercises (Set 1) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
 
Example: Given the points M(0.1,-0.2,-0.1),  N(-0.2,0.1,0.3) and P(0.4,0,0.1), find: a) the vector NMR , b)  
the dot  product NMR i PMR , c) the projection of NMR on RPM and d) the angle between RNM and RPM. 
Write a MATLAB program to verify your answer. 
 

x y

z

i
(0.1, 0.2, 0.1)M − −

i(0.4,0,0.1)P

i ( 0.2,0.1,0.3)N −

 
Figure 1.1  The points used in the example of Set 1. 
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Analytical Solution: 
  

 
a)   
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b)    
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Definition  
Let u and v be two nonzero vectors in R n . The cosine of the  

angleθ  between these vectors is cos ,   0
| | | |
v v
u v

θ θ π= ≤ ≤
i
i

 

u

vθ

 
        Figure 1.2 The angle between two vectors. 
  

   

 
  This problem is a direct 
application to vector algebra.  It 
requires clear understanding of 
the basic definitions used in 
vector  analysis. 
  The vector NMR  can be 
obtained by subtracting the 
vector NOR  from vector MOR , 
where O is the origin.  
  

 
Definition  
Let  u=(u 1 ,…,u n )  
and  v=(v 1 ,…,v n )  
be two vectors in R n . The dot 
product of u and v is defined 
by 
u i v=u 1 v 1 + ⋅ ⋅ ⋅ +u n v n   
The dot product assigns a real  
number to each pair of vectors. 
 

 
Definition  
The projection of a vector v  
onto a nonzero vector u in R n   
is denoted proj u v and is defined
by  

       proj u v = v u u
u u
i
i

 

u

v

projuv
Figure 1.3 The projection of  
one vector onto another.          
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MATLAB SOLUTION: 
 
clc; %clear the command line 
clear; %remove all previous variables 
              
O=[0 0 0]%the origin              
M=[0.1 -0.2 -0.1];%Point M  
N=[-0.2 0.1 0.3];%Point N 
P=[0.4 0 0.1]%Point P 
  
R_MO=M-O;%vector R_MO 
R_NO=N-O;%vector R_NO 
R_PO=P-O;%vector R_PO 
                                            
R_NM=R_MO-R_NO;%vector R_NM 
R_PM=R_MO-R_PO;%vector R_PM 
  
R_PM_dot_R_NM=dot(R_PM,R_NM);%the dot 
product of R_PM and R_NM 
R_PM_dot_R_PM=dot(R_PM,R_PM);%the dot product of R_PM and R_PM 
  
Proj_R_NM_ON_R_PM=(R_PM_dot_R_NM/R_PM_dot_R_PM)*R_PM;%the projection of R_NM ON R_PM 
  
Mag_R_NM=norm(R_NM);%the magnitude of R_NM 
Mag_R_PM=norm(R_PM);%the magnitude of R_PM 
  
COS_theta=R_PM_dot_R_NM/(Mag_R_PM*Mag_R_NM);%this is the cosine value of the angle 
between R_PM and R_NM  
theta=acos(COS_theta);%the angle between R_PM and R_NM  
 

R_NM = 
 
    0.3000   -0.3000   -0.4000         
 
R_PM_dot_R_NM = 
 
    0.0500 
 
Proj_R_NM_ON_R_PM = 
 
   -0.0882   -0.0588   -0.0588 
 
theta = 
 
    1.3613 
 

>>      
          

The running result is shown in the 
left, note that θ is given in  
radians here.   
 

    
 

To declare and initialize vectors or points in a  
MATLAB program, we simply type N=[-0.2 0.1 
0.3] for example, and MATLAB program will 
read this as N=-0.2a1 +0.1a 2 +0.3a 3  , a 3-D 
vector. If we type N=[-0.2 0.1] MATLAB 
program will read this as N=-0.2a1 +0.1a 2 , a 2-D 
vector. 
Some of the functions are already available in the 
MATLAB library so we just need to call them. 
For those not included in the library, the variables 
are utilized in the formulas we derived in the 
analytical part.   
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Exercise: Given the vectors R1=ax+2ay+3az, R2=3ax+2ay+az. Find a) the dot  product 1R i 2R , b) the 
projection of 1R on 2R , c) the angle between 1R  and 2R . Write a MATLAB program to verify your 
answer.  
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ECE2FH3 
Electromagnetics I 

 
Term II, January – April 2012 

 

MATLAB Examples and Exercises (Set 2) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: The open surfaces ρ  = 2.0 m and ρ  = 4.0 m, z = 3.0 m  and z = 5.0 m, and φ  = 20 D  and φ  = 
60 D  identify a closed surface. Find a) the enclosed volume, b) the total area of the enclosed surface. Write 
a MATLAB program to verify your answers. 
 
            
                      
                                              
                    

z

y
x

φ

   
                               Figure 2.1 The enclosed volume for the example of Set 2.           
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Analytical Solution:            
 
The closed surface in this problem is shown in Figure 
2.1 and Figure 2.2.  To find the volume v of a closed 
surface we first find out dv, the volume element. In 
cylindrical coordinates, dv is given by  

   dv d d dzρ φ ρ= as shown in Figure 2.2. Once we get 
the expression of dv,  we integrate  dv over the entire 
volume. 
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D

 

 
When evaluating an integral, we have to convert  
degree to radian for all angles, otherwise this will  
result in a wrong value for the integral.  

 
 

  

  dv

 
                    

 
 
                                                                       
                                            dv                       

        

   dz

dρ φ
dρ

                  
 
            Figure 2.2. The unit volume. 
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The area of the closed surface is given by 
 S enclosed = 1S + 2S + 3S + 4S + 5S + 6S  
We need to find  d 1S  , d 2S , …, and d 6S  and to integrate 
them over their boundary.  It is obvious that 3S = 4S  
and 5S = 6S .  The surfaces 1S  and 2S  have similar shapes 
as we can see from the following expressions,  

 1 2
dS d dz

ρ
ρ φ

=
= =2 d dzφ   and 

                      d 2S =
4

d dz
ρ

ρ φ
=

=4 d dzφ  

The steps to evaluate the area of each surface are 
executed as follows: 

 

1

1 1
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1S
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         Figure 2.3 The closed surface. 
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Figure 2.4  The surfaces S3 and S5 and their 
incremental elements. 
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MATLAB SOLUTION:             
As shown in the figure to the right, the approximate value 
of the enclosed volume is 

v , , , ,
1 1 1 1 1 1

( ) ( ) ( )
p pm n m n

i j k i j k
k j i k j i

v zρ φ ρ
= = = = = =

Δ = Δ × Δ × Δ∑∑∑ ∑∑∑�  

We write a MATLAB program to evaluate this expression. 
To do this, our program evaluates all element volumes 

, ,i j kvΔ  , and increase the total volume by , ,i j kvΔ  each time. 
We cover all elements , ,i j kvΔ  through 3 loops with 
counters i in the inner loop, j in the middle loop and k in 
the outer loop. The approach used to evaluate the surfaces 
is similar to that of the volume.  The MATLAB code is 
shown in the next page.            

 
 
 

1k =

2k =

3k =

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

k n=
1i = 2i = ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅i n=

1j =
2j =

j n=

⋅⋅⋅⋅

 
 
    Figure 2.5  The discretized volume. 
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MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
  
V=0;%initialize volume of the closed surface to 0  
S1=0;%initialize the area of S1 to 0  
S2=0;%initialize the area of S1 to 0  
S3=0;%initialize the area of S1 to 0  
S4=0;%initialize the area of S1 to 0  
S5=0;%initialize the area of S1 to 0  
S6=0;%initialize the area of S1 to 0  
rho=2;%initialize rho to the its lower boundary   
z=3;%initialize z to the its lower boundary   
phi=pi/9;%initialize phi to the its lower boundary 
  
Number_of_rho_Steps=100; %initialize the rho discretization 
Number_of_phi_Steps=100;%initialize the phi discretization 
Number_of_z_Steps=100;%initialize the z discretization 
  
drho=(4-2)/Number_of_rho_Steps;%The rho increment 
dphi=(pi/3-pi/9)/Number_of_phi_Steps;%The phi increment 
dz=(5-3)/Number_of_z_Steps;%The z increment 
  
%%the following routine calculates the volume of the enclosed surface   
for k=1:Number_of_z_Steps 
    for j=1:Number_of_rho_Steps 
        for i=1:Number_of_phi_Steps 
            V=V+rho*dphi*drho*dz;%add contribution to the volume 
        end 
        rho=rho+drho;%p increases each time when z has been traveled from its lower boundary to its upper 
boundary 
    end 
    rho=2;%reset rho to its lower boundary  
end 
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%%the following routine calculates the area of S1 and S2 
rho1=2;%radius of S1 
rho2=4;%radius of s2 
for k=1:Number_of_z_Steps 
    for i=1:Number_of_phi_Steps 
       S1=S1+rho1*dphi*dz;%get contribution to the the area of S1 
       S2=S2+rho2*dphi*dz;%get contribution to the the area of S2 
    end 
end 
%%the following routing calculate the area of S3 and S4 
rho=2;%reset rho to it's lower boundaty 
for j=1:Number_of_rho_Steps 
    for i=1:Number_of_phi_Steps 
       S3=S3+rho*dphi*drho;%get contribution to the the area of S3 
    end 
    rho=rho+drho;%p increases each time when phi has been traveled from it's lower boundary to it's upper 
boundary 
end 
S4=S3;%the area of S4 is equal to the area of S3 
  
%%the following routing calculate the area of S5 and S6 
for k=1:Number_of_z_Steps 
    for j=1:Number_of_rho_Steps 
       S5=S5+dz*drho;%get contribution to the the area of S3 
    end 
end 
S6=S5;%the area of S6 is equal to the area of S6 
S=S1+S2+S3+S4+S5+S6;%the area of the enclosed surface 
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Running Result 
 
 
 

 
 
 
By comparing, we see that the result of our analytical solution is close to the result of our MATLAB 
solution.  
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Exercise: The surfaces r = 0 and r = 2, φ  = 45 D , φ  = 90 D , θ  = 45 D and θ  = 90 D  define a closed surface. 
Find the enclosed volume and the area of the closed surface S. Write a MATLAB program to verify your 
answer.                                                                                
                                                                           
 

       

θ

φ

x

y

z

 
                                              

              
 
 
 
 

       
               
                       

 

 

 

Figure 2.6 The surface of the exercise of Set 2. 
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MATLAB Examples and Exercises (Set 3) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: An infinite uniform linear charge Lρ = 2.0 nC/m lies along the x axis in free space, while point  
charges of 8.0 nC each are located at (0, 0, 1) and (0, 0, -1).  Find E at (2, 3, 4).  Write a MATLAB 
program to verify your answer. 
            
                                                                   
                                              
                                                 

 

 
 

x

z

y

•

•
i

2.0 nC/mLρ =

P (2,  3, 4)

2 8.0 nCQ =

1 8.0 nCQ =

Figure 3.1 The charges of the example of Set 3. 
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Analytical Solution:                                    
Based on the principle of superposition, the electric field at 
P ( 2, 3, 4) is E = 1E + 2E + LE  where 1E and 2E are the 
electric fields generated by the point charges 1 and 2, 
respectively, and LE  is the electric field generated by the 
line charge. The electrical field generated by a point charge 
is given by 

point
04
Q

πε
= 3E R

| R |
 

where R  is the vector pointing from the point charge to the 
observation point as shown in Figure 3.2 (a). 
 
For the point charge 1Q : 
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(c) 
Figure 3.2. The different field 
components 
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As we can see from Figure 3.2(b), for any point A on the line charge we can always find one and only one 
point A'  whose electric field at P has the same magnitude but the opposite sign of that of A in the 
direction which is parallel to the line charge. This is because the linear charge is infinitely long. Therefore 
we only need to find the electric field in the direction perpendicular to the line charge. As shown in 
Figure 3.2(c) each incremental length of line charge dL acts as a point charge and produces an 
incremental contribution to the total electric field intensity. The magnitude of  d LE is thus: 

2 2 2
0 0

2 2 2 2 3/ 22 2
0 0

2 2 3/ 2
0

4 | | 4 ( )
therefore the magnitude of is

sin
4 ( ) 4 ( )( )
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MATLAB solution :                             
To find the electric field generated by the infinite line charge, we can replace the infinite linear charge by 
a sufficiently long finite line charge. In this problem, our line charge has a length of one hundred times of 
the distance from the observation point to the line charge, and its center is located at C (2, 0, 0) as shown 
in Figure 3.3.  We divide the line charge into many equal segments, and evaluate the electric field 
generated by each segment in the way we evaluate the electric field generated by a single point charge. 
Finally, we evaluate the summation of the electric fields generated by all those segments.  The summation 
should be very close to the electric field generated by the infinite linear charge. This approach  can be 
summarized by the mathematical expression: 

3 3
1 1 10 0

  
4 | 4 |

n n n
L

i i i
i i ii i

LQ ρ
πε πε= = =

ΔΔ
= =∑ ∑ ∑LE E R R

| R | R
�  

where iE  is the electric field generated by the ith segment, iR  is the vector from the ith segment to the 
observation point, QΔ  is the charge of a single segment, LΔ  is the length of the segment and n is the total 
number of the segments.  
 

x

• P (2, 3, 4)C (2, 0, 0) •

1i =

2i =
i

i
i
i
i

1i n= −

i n=

100d                       ���	��

d

iR
length of line charge=

i

 
Figure 3.3 The discretization used in the MATLAB program. 
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MATLAB code :                                
clc; %clear the command line 
clear; %remove all previous variables 
Q1=8e-9;%charges on Q1 
Q2=8e-9;%charges on Q2 
pL=2e-9;%charge density of the line  
Epsilono=8.8419e-12;%Permitivity of free space 
  
P=[2 3 4];%coordinates of observation point 
A=[0 0 1];%coordinates of Q1 
B=[0 0 -1];%coordinates of Q2 
C=[2 0 0];%coordinates of the center of the line charge 
Number_of_L_Steps=100000;%the steps of L 
  
%%the following routine calculates the electric fields at the  
%%observation point generated by the point charges 
R1=P-A; %the vector pointing from Q1 to the observation point 
R2=P-B; %the vector pointing from Q2 to the observation point 
R1Mag=norm(R1);%the magnitude of R1 
R2Mag=norm(R2);%the magnitude of R1 
E1=Q1/(4*pi*Epsilono*R1Mag^3)*R1;%the electric field generated by Q1 
E2=Q2/(4*pi*Epsilono*R2Mag^3)*R2;%the electric field generated by Q2 
  
%%the following routine calculates the electric field at the  
%%observation point generated by the line charge  
d=norm(P-C);%the distance from the observation point to the center of the line 
length=100*d;%the length of the line 
dL_V=length/Number_of_L_Steps*[1 0 0];%vector of a segment 
dL=norm(dL_V);%length of a segment 
EL=[0 0 0];%initialize the electric field generated by EL 
C_segment=C-( Number_of_L_Steps/2*dL_V-dL_V/2);%the center of the first segment 
for i=1: Number_of_L_Steps 
    R=P-C_segment;%the vector seen from the center of the first segment to the 
observation point 
    RMag=norm(R);%the magnitude of the vector R 
    EL=EL+dL*pL/(4*pi*Epsilono*RMag^3)*R;%get contibution from each segment  
    C_segment=C_segment+dL_V;%the center of the i-th segment 
end 
  
E=E1+E2+EL;% the electric field at P 
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Running result 
 

 
Comparing the MATLAB answer with the analytical answer we see that there is very little difference 
between them. This little difference is caused by the finite length of the steps of L and the finite line 
charge that we used to replace the infinite one.  
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Exercise: A finite uniform linear charge Lρ = 4 nC/m  lies on the xy plane as shown in Figure 3.4, while 
point  charges of 8 nC each are located at (0, 1, 1) and (0, -1, 1).  Find E at (0, 0 ,0).  Write a MATLAB 
program to verify your answer. 
  
              

x

z

y

•
•

1 8 nCQ =

4nC/mLρ =

•
P

••
(0,7,0)(7,0,0)

 
Figure 3.4  The charges of the exercise of Set 3. 

     
 

 



 
 

    ECE2FH3  - Electromagnetics I                                                                                Page: 21 
                                                      MATLAB Examples and Exercises (Set 4) 
   

ECE2FH3 
Electromagnetics I 

 
Term II, January – April 2012 

 

MATLAB Examples and Exercises (Set 4) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: A surface charge of 5.0 2C/mμ  is located in the x-z plane in the region -2.0 m  ≤  x ≤ 2.0 m  
and   -3.0 m ≤  y ≤ 3.0 m. Find analytically the electric field at the point (0, 4.0, 0) m. Verify your answer 
using a MATLAB program that applies the principle of superposition.                                                            
            

x

z

y

• P(0, 0, 4)

2

5  C/m

S
ρ

μ=
2

x = −

2x =

3
y = −

3y =

 
Figure 4.1 The surface charge of the example of Set 4. 
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Analytical solution: 
As can be seen in Figure 4.2 , for any point A on the surface 
charge, we can find another point A'  whose  electric field at P 
has the same magnitude but the opposite sign of that of A in 
the direction parallel to the surface charge. Hence the electric 
field at P has only a z component . 
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    Figure 4.2 The field components. 
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     Figure 4.3 Field decomposition. 
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MATLAB Solution: 
To write a MATLAB code to solve this problem, we equally divide the surface into many cells each with a 
length yΔ  and a width xΔ .  Each cell has a charge of QΔ = s x yρ Δ Δ . When xΔ  and yΔ  are very small, the 
electric field generated by this cell is very close to that generated by a point charge with a charge QΔ  
located at the center of the cell. Hence the electric field generated by the surface charge at point P is given 
by  

, ,3
1 1 1 1 ,4 | |

m n m n
s

j i j i
j i j i j i

x yρ
πε= = = =

Δ Δ
Δ =∑∑ ∑∑E E R

R
�   

where ,j iR  is the vector pointing from the center of a cell to the observation point, as shown in Figure 4.5. 

The location of the center of a cell is given by 2 ( 1)
2
xx x iΔ

= − + + Δ −  , 3 ( 1)
2
yy y jΔ

= − + + Δ −  and  z = 0. 

The MATLAB code is given in the next page. 
 

x

z

y

•

,j iΔE

•

P

1j =
2j =

                              

i i i i i i i i i i i j m=                          

i i
i i

i i
i i

i
1i =

i n=

,j iR

 
                                     Figure 4.5 The utilized discretization in the MATLAB code. 
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MATLAB code: 
 
clc; %clear the command line 
clear; %remove all previous variables 
  
Epsilono=8.854e-12; %use permittivity of air 
D=5e-6; %the surface charge density  
P=[0 0 4]; %the position of the observation point 
E=zeros(1,3); % initialize E=(0 ,0, 0) 
  
Number_of_x_Steps=100;%initialize discretization in the x direction          
Number_of_y_Steps=100;%initialize discretization in %the z direction 
 
 
x_lower=-2; %the lower boundary of x 
x_upper=2; %the upper boundary of x 
y_lower=-3; %the lower boundary of y 
y_upper=-2; %the upper boundary of y 
dx=(x_upper- x_lower)/Number_of_x_Steps; %the x increment or the width of a grid       
dy=(y_upper- y_lower)/Number_of_y_Steps; %The y increment or the length of a grid 
ds=dx*dy; %the area of a single grid 
dQ=D*ds; % the charge on a single grid 
  
for j=1: Number_of_y_Steps 
    for i=1: Number_of_x_Steps 
        x= x_lower +dx/2+(i-1)*dx; %the x component of the center of a grid      
        y= y_lower +dy/2+(j-1)*dy; %the y component of the center of a grid 
        R=P-[x y 0];%  vector R is the vector seen from the center of the grid to the 
observation point 
        RMag=norm(R); % magnitude of vector R 
        E=E+(dQ/(4*Epsilono*pi* RMag ^3))*R; % get contribution to the E field 
    end  
end  
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Running result:  
 

 
 
Comparing the MATLAB answer and the analytical answer we see that there is a slight difference. This 
difference is a result of the finite discretization of the surface S.    
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Exercise: Given the surface charge density, sρ =2.0 2C/mμ , existing in the region ρ <1.0 m, z = 0, and   
zero elsewhere, find E at P ( ρ  = 0, z = 1.0) and write a MATLAB program to verify your answer. 
.                                                                                                                                                                           
            

x

z

y

• ( 0,  1)P zρ = =

1.0 ρ =

 
                                              Figure 4.6 The problem of the exercise of Set 4. 
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MATLAB Examples and Exercises (Set 5) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: A point charge 1.0 CQ μ=  is located at the origin. Write a MATLAB program to plot the
electric flux lines in the three-dimensional space.  
 

x y

• 1.0 CQ μ=

z

 
                                        Figure 5.1 Point charge 1.0 CQ μ=  located at the origin. 
 
Analytical Solution: 

The electric flux density resulting from a point charge is given by 34 | |
Q

π
=D R

R
, where R  is the vector 

pointing from the point charge to the observation point.  
 
MATLAB Solution: 
 
We first introduce two MATLAB functions that can help us to create a field vector plot. 
 
1 meshgrid  
Syntax: 
[X,Y] = meshgrid(x,y) 
[X,Y,Z] = meshgrid(x,y,z) 
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The rows of the output array X are copies of the vector x while columns of the output array Y are copies of 
the vector y. [X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).For instance if we want to 
create a two-dimensional mesh grid as shown in Figures 5.2 and 5.3, we simply type [X Y]= meshgrid(-
1:1:2,-1:1:3), then X and Y is initialized as  two-dimensional matrices  

                                             X = 

1 0 1 2
1 0 1 2
1 0 1 2
1 0 1 2
1 0 1 2

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

, Y = 

1 1 1 1
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

− − − −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

If we compare the matrices X and Y with the mesh grids we see that matrix X stores  the  x components 
of all the points in the mesh grids and Y stores the y components of those points. [X,Y,Z] = meshgrid(x, 
y,z)is the 3-dementional version of mesh grids.  [X,Y,Z] = meshgrid(0:1:4,0: 1:4,0:1:2) creates the  
mesh grids shown in Figure 5.4, and matrix X , Y and Z is given by 

             X(:,:,1) = 

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    X(:,:,2) = 

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    X(:,:,3) = 

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

             Y(:,:,1) = 

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   Y(:,:,2) = 

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   Y(:,:,3) = 

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

              Z(:,:,1) = 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

    Z(:,:,2) =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

        Z(:,:,3) = 

2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Similar to the two-dimensional version, the matrices X, Y and Z store the x, y, and z components of all the  
plotting points, respectively.   
 
2 quiver/quiver3  
Syntax: 
quiver(X,Y,x_data,y_data) 
quiver3(X,Y,Z,x_data,y_data,z_data) 
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A quiver plot displays vectors as arrows with components (x_data, y_data) at the points (X, Y). For example,
the first vector is defined by components x_data(1),y_data(1) and is displayed at the point X(1),Y(1).  The 
command quiver(X,Y,x_data,y_data) plots vectors as arrows at the coordinates specified in each 
corresponding pair of elements in x and y. The matrices X, Y, x_data, and y_data must all have the same 
size. The following MATLAB code plots the vector 0.5x y+a a  at each plotting point in the mesh grids as 
shown in Figure 5.3. 
  

PlotXmin=-1; 
PlotXmax=2; 
PlotYmin=-1; 
PlotYmax=3; 
NumberOfXPlottingPoints=4; 
NumberOfYPlottingPoints=5; 
PlotStepX=(PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1); 
PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1); 
  
[X,Y]=meshgrid(PlotXmin:PlotStepX:PlotXmax, 
PlotYmin:PlotStepY:PlotYmax);  
 
for j=1:NumberOfYPlottingPoints 
    for i=1:NumberOfXPlottingPoints 
        x_data(j,i)=1; 
        y_data(j,i)=0.5; 
    end 
end 
quiver(X,Y,x_data,y_data) 
 

         
quiver3(X,Y,Z,x_data,y_data,z_data) is used to plot vectors in three-dimensional space. The 
arguments X,Y,Z,x_data,y_data and z_data are three-dimensional matrices. 
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1− 1 2
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3

1− 1 2

0.5x y+a a

 
            Figure 5.2 mesh grid created by                                 Figure 5.3 field plot of the 
            [X Y]= meshgrid(-1:1:2,-1:1:3).             vector 0.5x y+a a . 
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Figure 5.4 The mesh grid created by [X,Y,Z] = meshgrid(0:1:4,0:1:4,0:1:2). 

 
 
MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
  
PlotXmin=-2;%lowest x value on the plot space 
PlotXmax=2;%%maximum x value on the plot space 
PlotYmin=-2;%lowest y value on the plot space 
PlotYmax=2;%maximum y value on the plot space 
PlotZmin=-2;%lowest z value on the plot space 
PlotZmax=2;%maximum z value on the plot space 
NumberOfXPlottingPoints=5;%number of plotting points along the x axis 
NumberOfYPlottingPoints=5;%number of plotting points along the y axis 
NumberOfZPlottingPoints=5;%number of plotting points along the z axis 
PlotStepX=(PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the x 
direction 
PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1);%plotting step in the y 
direction 
PlotStepZ=(PlotZmax-PlotZmin)/(NumberOfZPlottingPoints-1);%plotting step in the z 
direction 
[X,Y,Z]=meshgrid(PlotXmin:PlotStepX:PlotXmax, 
PlotYmin:PlotStepY:PlotYmax,PlotZmin:PlotStepZ:PlotZmax);%build arrays of plot space 
 
Fx=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints);%x 
component of flux density 
Fy=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints);%y 
component of flux density 
Fz=zeros(NumberOfZPlottingPoints,NumberOfYPlottingPoints,NumberOfXPlottingPoints);%z 
component of the flux density 
Q=1e-6;%point charge 
C=[0 0 0];%location of the point charge 
F=[0 0 0];%initialize the flux density 
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for k=1:NumberOfZPlottingPoints 
    for j=1:NumberOfYPlottingPoints 
        for i=1:NumberOfXPlottingPoints 
            Xplot=X(k,j,i);%x coordinate of current plot point 
            Yplot=Y(k,j,i);%y coordinate of current plot point 
            Zplot=Z(k,j,i);%z coordinate of current plot point 
            P=[Xplot Yplot Zplot];%position vector of observation points 
            R=P-C; %vector pointing from point charge to the current observation 
point 
            Rmag=norm(R);%magnitude of R 
            if (Rmag>0)% no flux line defined at the source  
                R_Hat=R/Rmag;%unit vector of R 
                F=Q*R_Hat/(4*pi*Rmag^2);%flux density of current observation point  
                Fx(k,j,i)=F(1,1);%get x component at the current observation point 
                Fy(k,j,i)=F(1,2);%get y component at the current observation point 
                Fz(k,j,i)=F(1,3);%%get z component at the current observation point 
            end    
        end 
    end 
end 
quiver3(X,Y,Z,Fx,Fy,Fz)      
 
Running result:  

 
Figure 5.5 Plot of the electric flux resulting from a point charge located at the origin. 
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Exercise: Two line charges with linear densities of 1.0 μ C/m and -1.0 μ C/m lie on the x-y plane parallel 
to the x-axis as shown in Figure 5.6. Write a MATLAB program to plot the electric flux lines in the 
region bounded by the dashed lines. Change the length of the linear charges to extend from − 16 to 16 in 
the x direction and plot the flux lines in the same region again. 
 
 

                   

x

y

5− 54− 4

1

1−

5

5−

1  C/mLρ μ=

1  C/mLρ μ= −

 
Figure 5.6 line charges with charge density of ρL = 1.0 μC/m located at y=1.0 and y=-1.0 on the x-y 
plane.                                   
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Example: A point charge of 1.0 C is located at (0, 0, 1). Find analytically the total electric flux going 
through the infinite xy plane as shown in Figure 6.1. Verify your answer using a MATLAB program. 
 
 
 
 

                      

x

z

y

• 1 CQ =

 
 

Figure 6.1 The point charge of Q = 1.0 C and the infinite x-y plane. 
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Analytical solution: 
The total flux going through a surface is given by  
                                                                 ψ S

S

d= ∫∫ D si  

where ds  is a vector whose direction is normal to the surface element ds  and has a magnitude of  ,ds  
and SD  is the electric flux density passing through ds. In this problem (See Figure 6.2) 

                                                                 24S R
Q
Rπ

=D a   

                                                          ( )z zd ds dxdy− = −s = a a  
therefore the flux is given by 

                                                 ( )2ψ
4S R z

S S

Qd dxdy
Rπ

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫∫ ∫∫D s = a ai i . 

This is the general method to evaluate the electric flux passing through a surface. However, for certain 
problems we can create a Gaussian surface to find out the flux passing through the surface and avoid 
evaluating any integral. The Gaussian surface we created for this problem is shown in Figure 6.3, where 

topS  and bottomS  are two parallel planes symmetric relative to the point charge Q. Based on Gauss’s law, 
the total flux passing through the enclosed surface is 

total top bottom side1 side2 side3 side4ψ ψ ψ ψ ψ ψ ψ charge enclosed  Q= + + + + + = =  
since topS  and bottomS  are symmetric relative to the point charge Q ,  
                                                                    topψ = bottomψ . 
Using the same reason                                                        
                                                          side1ψ = side2ψ = side3ψ = side4ψ   
and since 

                                                       side1 2 ψ (2 )
4 2

Q QdLd
L Lπ π

< × =  

                                                             0 as 
2
Qd L

Lπ
→ → ∞   

we have       
                                                            side1 ψ 0 as L→ → ∞  
                                                  
Hence as L → ∞  
                                                     totalψ  = top bottomψ ψ+ =2 bottomψ = Q  

                                                                 bottomψ 0.5 C
2
Q

= =  
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                   Figure 6.2  The electric flux through a surface element resulting from a point charge. 
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Figure 6.3 The electric field intensity at a point A is greater than any other point 'A  on the plane 

1sideS  since L < 'L .  It follows that the flux through 1sideS , side1ψ , is smaller than (Area of 1sideS )×  
( |electric field density at point A|). 
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MATLAB Solution: 
To write a MATLAB program, we replace the infinite plane with a finite one with a very large area.  We 
equally divide this plane into a number of surface elements each has an area of SΔ .  We then evaluate the 
flux ψΔ  passing through each cell and add all the ψΔ  together. This approach can be summarized by: 

( )
,, , , ,2

1 1 1 1 1 1 ,4
D S a a� i i

i j

m n m n m n

i j i j Ri j i j z
j i j i j i i j

Q S
Rπ= = = = = =

⎛ ⎞
Ψ ΔΨ = Δ = −Δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑∑ ∑∑   

where ,Ri j  is the vector pointing from the point charge to the center of the cell with indices i and j. Note that 
all ,i jSΔ  have the same direction z−a . 
 
MATLAB code 
clc; %clear the command line 
clear; %remove all previous variables 
  
Q=1;%the point charge 
C=[0 0 1];%location of the point charge; 
az=[0 0 1];% unit vector in the z direction 
  
x_lower=-100;%the lower boundary of x of the plane  
x_upper=100;% the upper boundary of x of the plane    
y_lower=-100;%the lower boundary of y of the plane  
y_upper=100;%the upper boundary of y of the plane   
Number_of_x_Steps=400;%step in the x direction 
Number_of_y_Steps=400;%step in the y direction 
dx=(x_upper-x_lower)/Number_of_x_Steps;%the x increment 
dy=(y_upper-y_lower)/Number_of_y_Steps;%the y increment 
  
flux=0;%initialize the flux to 0 
  
for j=1:Number_of_y_Steps 
    for i=1:Number_of_x_Steps 
        ds=dx*dy;%the area of current element 
        x=x_lower+0.5*dx+(i-1)*dx;%x component of the center of a grid      
        y=y_lower+0.5*dy+(j-1)*dy;%y component of the center of a grid 
        P=[x y 0];%the center of a grid 
        R=P-C;%vector R is the vector pointing from the point charge to the center of a 
grid 
        RMag=norm(R);%magnitude of R 
        R_Hat=R/RMag;%unit vector in the direction of R 
        R_surface=-az;%unit vector of direction of the surface element 
        flux=flux+Q*ds*dot(R_surface,R_Hat)/(4*pi*RMag^2);%get contribution to the flux
    end 
end 
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Running result:  
 

 
 
Comparing the MATLAB answer and the analytical answer we see that there is a good agreement 
between them. The small difference between the two answers is attributed to the finite discretizations of 
the surface S, and to utilizing a finite plane instead of the actual infinite plane. 
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Exercise: A linear charge Lρ  = 2.0 C/mμ  lies on the y-z plane as shown in Figure 6.4. Find the electric 
flux passing through the plane extending from 0 to 1.0 m in the x direction and from −∞  to ∞  in the y 
direction.  Write a MATLAB program to verify your answer. 
 
                             
                           
                        
                 
 

                  

x

z

y

(0, 1, 1)− •

• (0,  1, 1)

1x =

0x =

(0,  0, 1) •

 
  Figure 6.4 a linear charge extending from (0, 1, 1)−  to (0,  1, 1)  and a plane with infinite length 

and  finite width.        
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Example: A ring linear charge with a charge density 2.0ρ =L nC/m is located on the x-y plane as shown 
in Figure 7.1. Find the potential difference between point A (0, 0, 1.0) and point B (0, 0, 2.0). Write a 
MATLAB program to verify your answer. 
            

x

z

y

• (0,0,1.0) mA

• (0,0, 2.0) mB

1.0 mρ =

2.0 nC/mLρ =

 
                                              

Figure 7.1 A ring linear charge with charge density of 2.0Lρ =  nC/m on the x-y plane. 
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Analytical Solution: 
The potential difference between points A and B is given by 

A

AB B
V d= − ⋅∫ E L  

where zd d d dzρ φρ ρ φ+ +L = a a a  in cylindrical coordinate. 
Since straight line BA is along the -z direction, ρ  and φ  
are both constant. This means 0d ρ =  and 0dφ = , 
hence zd dzL = a .  

1.0 1.0

2.0 2.0

A z z

AB z zB z z
V d dz E dz

= =

= =
∴ = − ⋅ = − ⋅ = −∫ ∫ ∫E L E a . 

For points on the positive z-axis we have 

2
0

cos
4 | |

L
z

dldE ρ θ
πε

=
R

 

       =
( )2 2

04
L d
z

ρ ρ φ
πε ρ+ 2 2

z
z ρ+

 

       
( )3/ 22 2
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=
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 Figure 7.2 vector R pointing from the 
element length  dl  to the observation point 
θ  is the angle between zdE  and dE . 
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MATLAB solution :                             
To find the potential difference between A and B we can divide the integral path to many short segments 
and evaluate the potential difference along these segments.  The summation of those potential differences 
will be very close to the voltage difference between A and B. However, we have to find out the electric 
field at each segment first. This can be done by dividing the ring charge to many segments, evaluating the 
electric field generated by each segment and adding all the electric field contributions together. This 
approach can be summarized using the mathematical expression: 

( ) ( )

1

1

, ,2
1 1 1 1 0 ,

 

     

     
4 | |

E L

E L R L
R

m

AB j
j

m

j j
j

m n m n
L

j i j j i j
j i j i j i

V V

lρ
πε

=

=

= = = =

= Δ

= ⋅ Δ

⎛ ⎞Δ⎛ ⎞= Δ ⋅ Δ = ⋅ Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑

∑

∑ ∑ ∑ ∑
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Figure 7.3 The ring charge is divided along the φa direction and the integral path is divided along 
the z−a direction. 
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MATLAB code :                                
clc; %clear the command line 
clear; %remove all previous variables 
 
Epsilono=1e-9/(36*pi); %use permitivity of free space 
rho_L=2e-9;% the line charge density 
rho=1.0; %the ring has a radius of 1.0; 
A=[0 0 1];%the coordinate of point A 
B=[0 0 2];%the coordinate of point B 
Lv=A-B;%integral path  
Number_of_L_Steps=50; %initialize discretization in the L direction 
dLv=Lv/Number_of_L_Steps;%%vector of the diffential length 
Number_of_Phi_Steps=50; %initialize the Phi discretization 
dPhi=(2*pi)/Number_of_Phi_Steps; %The step in the phi direction 
 
V=0;%initialize the potential difference to zero  
for j=1:Number_of_L_Steps 
    E=[0 0 0];%initialize the elctric field to zero 
    P=B+0.5*dLv+(j-1)*dLv;%coordinates of observation point 
    for i=1:Number_of_Phi_Steps 
           Phi=0.5*dPhi+(i-1)*dPhi; %Phi of current volume element 
           dlength=rho*dPhi;%length of current segment of the ring  
           dQ=rho_L*dlength;%the charges on current segment     
           x=rho*cos(Phi); %x coordinate of current volume element 
           y=rho*sin(Phi); %y coordinate of current volume element 
           z=0; %z coordinate of current volume element 
           C=[x  y  z];  %coordinate  of volume element 
           R=P-C; %vector pointing from the current element to the observation point 
           RMag=norm(R); %get distance from the current volume element to the 
observation point 
           E=E+(dQ/(4*pi*Epsilono*RMag^3))*R; %get contribution to the elctric field 
     end 
     V=V+(-dot(dLv,E));%get contribution to the voltage 
 end 
 
Running result 
 
>> V 
 
V = 
 
   29.3931 
 
>> 
 
Comparing both answers, we see that our MATLAB solution and the analytical solution are consistent.  
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Exercise: A volume charge density of 2 31  C/mV rρ μ=  exists in the region bounded 
by1.0 m 1.5 m.r< <  Find the potential difference between the point A (3.0, 4.0, 12.0)  and the point  B 
(2.0, 2.0, 2.0), as shown in Figure 7.4. Write a MATLAB program to verify your answer.  
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(3.0,4.0,12.0)Ai

3
2

1  C/mV r
ρ μ=

 
Figure 7.4 A volume charge density of  2

1 3C/mV r
=ρ μ  in the region bounded by1.0 1.5 m  mr< < . 
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Example: An electric field 
45 10 V/mρρ

×
=E a exists in cylindrical coordinates. Find analytically the 

electric energy stored in the region bounded by1.0 m 2.0 mρ< < , 2.0 m 2.0 mz− < < and 0 2 ,φ π< <  as 
shown in Figure 8.1.Verify your answer using a MATLAB program.         
                         

x

z

y

1 1.0 mρ =2 2.0 mρ =

 
                                                                   
            Figure 8.1 The region bounded by . .1 0 m 2 0 m< <ρ , . .2 0 m 2 0 mz− < < and 0 2φ π< < . 
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Analytical solution: 
The energy stored in a region is given by 

2
0

1
2E

V

W E dvε= ∫∫∫  

where E  is the magnitude of the electric field at the volume element dv which is given by 
45 10| |  V/mE

ρ
×

= =E  

In cylindrical coordinate  we have dv d d dzρ ρ φ= , therefore 
2

0
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MATLAB Solution: 
To write a MATLAB program to evaluate the energy stored in the given region, we can divide the region 
into many small volume elements and evaluate the energy in each of these elements. Finally, the 
summation of these energies will be close to the total energy stored in the given region. The approach can 
be summarized using the mathematical expression: 
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MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
 
Epsilono=1e-9/(36*pi); %use permitivity of free space 
rho_upper=2.0;%upper bound of rho 
rho_lower=1.0;%lower bound of rho 
phi_upper=2*pi;%upper bound of phi 
phi_lower=0;%lower bound of phi 
z_upper=2;%upper bound of z 
z_lower=-2;%lower bound of z 
Number_of_rho_Steps=50; %initialize discretization in the rho direction 
drho=(rho_upper-rho_lower)/Number_of_rho_Steps; %The rho increment 
Number_of_z_Steps=50; %initialize the discretization in the z direction 
dz=(z_upper-z_lower)/Number_of_z_Steps; %The z increment 
Number_of_phi_Steps=50; %initialize the phi discretization 
dphi=(phi_upper-phi_lower)/Number_of_phi_Steps; %The step in the phi direction 
 
WE=0;%the total engery stored in the region 
for k=1:Number_of_phi_Steps 
    for j=1:Number_of_z_Steps 
        for i=1:Number_of_rho_Steps            
           rho=rho_lower+0.5*drho+(i-1)*drho; %radius of current volume element 
           z=z_lower+0.5*dz+(j-1)*dz; %z of current volume element 
           phi=phi_lower+0.5*dphi+(k-1)*dphi; %phi of current volume element     
           EMag=5e4/rho;%magnitude of electric field of current volume element  
           dV=rho*drho*dphi*dz;%volume of current element 
           dWE=0.5*Epsilono*EMag*EMag*dV;%energy stored in current element 
           WE=WE+dWE;%get contribution to the total energy 
       end %end of the i loop 
   end %end of the j loop 
end %end of the k loop 
 
Running  result: 
>> WE 
 
WE = 
 
    0.1925 
>> 
 
Comparing the two answers, we see that our MATLAB solution and analytical solution are consistent.  
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Exercise: Given the surface charge density 22.0 C/m=sρ μ  existing in the region 1.0 m,r = 0 2 ,φ π< <  
0 θ π< < and is zero elsewhere (See Figure 8.2) . Find analytically the energy stored in the region 
bounded by 2.0 m 3.0 m,r< < 0 2φ π< < and 0 .θ π< <  Write a MATLAB program to verify your 
answer. 
 

x y

z

1.0 mr =

22.0  C/mSρ μ=

 
              

Figure 8.2 The surface charge density . 22 0  C/msρ μ=  at  .1 0 mr = . 
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Example: Let 2 2400sin /( 4)  A/m .rrθ= +J a  Find the total current flowing through that portion of the 
spherical surface 0.8r = , bounded by 0.1 0.3 ,π θ π< <  and 0 2φ π< < .  Verify your answer using a 
MATLAB program. 
 
 

                                     

x y

z

                                            
Figure 9.1 Surface bounded by .0 8r = , . .0 1 0 3π θ π< <  and 0 2φ π< < . 
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Analytical solution: 
The current flowing through a surface is given by 

S

I d= ⋅∫∫ J S  

where 2 sin  rd r d dθ θ φS = a  in spherical coordinate.  It follows that we have: 
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MATLAB Solution: 
To write a MATLAB program to evaluate the current flowing through the given surface, we divide that 
surface into many small surfaces and evaluate the currents flowing through each surface element. The 
summation of these elemental currents will be close to the actual current flowing through the given 
surface. This approach can be summarized by the following expression:    

 

( )

, ,
1 1

, 2
, ,2

1 1

400sin
  sin  

4

J S
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m n

i j i j
j i

m n
i j
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r d d
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θ
θ θ φ

= =

= =

= ⋅ Δ

⎛ ⎞
= ⋅⎜ ⎟+⎝ ⎠
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MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
 R=0.8;%the radius of the surface 
Theta_lower=0.1*pi;%lower boundary of theta 
Theta_upper=0.3*pi;%upper boundary of theta 
Phi_lower=0;%lower boundary of phi 
Phi_upper=2*pi;%upper boundary of phi 
Number_of_Theta_Steps=20; %initialize the discretization in the Theta direction 
dTheta=(Theta_upper-Theta_lower)/Number_of_Theta_Steps; %The Theta increment 
Number_of_Phi_Steps=20;%initialize the discretization in the Phi direction 
dPhi=(Phi_upper-Phi_lower)/Number_of_Phi_Steps;%The Phi increment 
 I=0; %initialize the total current 
for j=1:Number_of_Phi_Steps 
    for i=1:Number_of_Theta_Steps 
            Theta=Theta_lower+0.5*dTheta+(i-1)*dTheta; %Theta of current surface element 
            Phi=Phi_lower+0.5*dPhi+(j-1)*dPhi; %Phi of current surface element 
            x=R*sin(Theta)*cos(Phi); %x coordinate of current surface element 
            y=R*sin(Theta)*sin(Phi); %y coordinate of current surface element 
            z=R*cos(Theta); %z coordinate of current surface element 
            a_r=[sin(Theta)*cos(Phi) sin(Theta)*sin(Phi) cos(Theta)];% the unit vector in the R direction  
            J=(400*sin(Theta)/(R*R+4))*a_r;%the current density of current surface element 
            dS=R*R*sin(Theta)*dTheta*dPhi*a_r;%the area of current surface element 
            I=I+dot(J,dS);%get contribution to the total current 
   end  
end  
Running  result: 

 
Comparing the answers we see that our MATLAB solution and analytical solution are consistent.  
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Exercise: A rectangular conducting plate lies in the xy plane, occupying the region 0 5.0 m,x< < 0 y< <  
5.0  m. An identical conducting plate is positioned parallel to the first one at 10.0 m.z =  The region 
between the plates is filled with a material having a conductivity /10( ) xx eσ −=  S/m. It is known that an 
electric field intensity 50  V/mz= −E a exists within the material. Find: (a) the potential difference  ABV  
between the two plates; (b) the total current flowing between the plates; (c) the resistance of the material.    
 
 

x y

z

A

B

 
Figure 9.2 The volume between the conducting plates is filled with a material having conductivity 

/( ) 10xx eσ −=  S/m.                                          
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Example: An infinite line charge with charge density 0Lρ ρ=  lies on the z axis. Two infinite conducting 
planes are located at y a=  and y a h= −  and both have zero potential. Find the voltage at any given point 
( , )x y . If 7

0 1.0 10ρ −= × C/m, 1.0a = m and 2.0h = m, plot the contours of the voltage.  
 
 

•

y

x

A

B

y a=

y a h= −

0Lρ ρ=

 
                                                                                                                                                                            
                               Figure 10.1  The infinite line charge and the two ground planes. 
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Analytical solution: 
The potential difference in an electric field resulting from a line  
charge is given by:   
for M Nρ ρ≥  , L a∵d dρ ρ=  

ln ln
2 2 2

E L∴
M

M

N

M NL L L
MN N

N M

V d d
ρ ρ

ρ

ρ
ρ ρ

ρρ ρ ρρ ρ
περ πε πε ρ

=

=

= − ⋅ = − = − =∫ ∫

therefore ln
2

NL
MN

M

V ρρ
πε ρ

= . 

If we define the voltage at 1Nρ ρ= =  to be zero, then the 

potential at Mρ ρ=  is ln
2

L
M MV ρ ρ

πε
= − . 

Since the conducting planes have zero potential, image charges 
are required in order to cancel out the voltage created by the 
original charge. In this problem, as shown in Figure 10.2 we need 
infinite number of images to maintain the zero voltage of the 
conducting planes. The next steps is to find the coordinates and 
polarities of all image charges. Let’s first consider a point 

 ( , )P PP x y and a straight line Ly y=  as shown in  Figure 10.3.  
The image of P  relative to the straight line can be obtained by  

' '

'

'  ( , 2 )
' 2

P P P P
P L P

P L L P P L P

x x x x
P x y y

y y y y y y y
= =⎧ ⎧

⇒ ⇒ −⎨ ⎨− = − = −⎩ ⎩
 

This expression will be used later. To find the coordinates and 
polarities of the images, we can divide all the images into two 
groups. If we only count the first image of plane B and all the sub-
images created by that first image, then the images that we counted 
are put into group 1 (shown in Figure 10.4). If we only count the 
first image of plane A and all the sub-images created by that first 
image, then the images that we counted are put into group 2 
(shown in Figure 10.5). In group 1, the y coordinate of the first 
image is 1 02 Ay y y= −  where Ay  is the y coordinate of plane A 
and 0y  is the y coordinate of the original charge. Then for the 
second image 2 12 By y y= − , for the third image 3 22 Ay y y= −  and 
so on. In group 2, the y coordinate of the first image is 

1 02 By y y= − , for the second image 2 12 Ay y y= − , for the third 
image 3 22 By y y= −  and so on. The following table summarizes 
the polarities and  y coordinates of all images.   
                          

 

•

y

x

A

B

0ρ

•

•

Ay y a= =

By y a h= = −

•

•

0ρ

0ρ−

0ρ−

0ρ

Figure 10.2 infinite number of 
images are required to maintain 
zero potential on the conducting 
plates 
 
 

•

y

x

• ' ''( , )P PP x y

( , )P PP x y

              
��
	
�


             
��
	
�


'P Ly y−

Ly y=

L Py y−

Figure 10.3 image of a point P 
relative to the straight line Ly y=  
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group 1                                                                           
level        y coordinate    polarity        
1             2 2                 
2             2                        
3             2 4                 
4             4                        
3             2 6                 
6           

a h
h
a h
h
a h

− −
+

− −
+

− −
  6                        h +

 

group 2 
level         y coordinate       polarity 
1             2                           
2             2                        
3             2 2                    
4             4                        
3             2 4                 

a
h

a h
h

a h

−
− +

+ −
− +

+    
6             6                        h

−
− +

 

 
From the table above we can find that 2n  (n ,n 0)imagey h Z= ∈ ≠   
or 2 2nimagey a h= + (n )Z∈ . Since the original  charge has a  y 
coordinate of  0 0y =  which can be rewritten as 0 2n   (n 0),y h= =  
the voltage at point ( , )x y is given by 

( ) ( )

( ) ( )

2 22 2

2 22 2

ln 2 ln 2 2
2 2

  ln 2 ln 2 2
2

n n

n n

n

n

V x y nh x y a nh

x y nh x y a nh

ρ ρ
πε πε

ρ
πε

=∞ =∞

=−∞ =−∞

=∞

=−∞

−
= + − + + − −

⎡ ⎤= − + − + + − −⎢ ⎥⎣ ⎦

∑ ∑

∑
 

 
MATLAB solution: 
To plot the contour of the voltage, we can use the expression we  
derived to evaluate voltages at all plotting points, then store the 
voltages in a two-dimensional matrix. 
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•

• 2 12 Ay y y= −
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Figure 10.4 images of group 1. 
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      Figure 10.5 images of group 2. 
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MATLAB code: 
 
clc; %clear the command window 
clear; %clear all variables 

 
a=1;%value of a 
h=2;%value of h 
rho_L=1.0e-7; 
Epsilono=8.854e-12;%permitivity of free space 
NumberOfXPlottingPoints=100;  %number of plotting points along the x axis 
NumberOfYPlottingPoints=100;  %number of plotting points along the y axis 
Negative_infinite=-40;%use a finite number to replace negative infinite 
Positive_infinite=40;%use a finite number to replace positive infinite 
V=zeros(NumberOfYPlottingPoints,NumberOfXPlottingPoints);% the matrix used to store the voltages at plotting 
points 
PlotXmin=a-h;  %lowest x value on the plot plane 
PlotXmax=a;   %maximum x value on the plot plane 
PlotYmin=PlotXmin;  %lowest z value on the plot plane 
PlotYmax=PlotXmax;   %maximum z value on the plot plane 
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the x direction 
PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1); %plotting step in the Y direction 
 
[xmesh,ymesh] = meshgrid(PlotXmin:PlotStepX:PlotXmax,PlotYmin:PlotStepY:PlotYmax);%creates a mesh grid 
for j=1:NumberOfYPlottingPoints %repeat for all plot points in the y direction 
    for i=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction 
        xplot=PlotXmin+(i-1)*PlotStepX;%x coordinate of current plotting point 
        yplot=PlotYmin+(j-1)*PlotStepY;%y coordinate of current plotting point 
        P=[xplot yplot]; %position vector of current plotting point 
        for n=Negative_infinite:Positive_infinite  
            x1=0;%x coordinate of the image in the first term 
            y1=2*n*h;%y coordinate of the image in the first term 
            C1=[x1,y1];%position of the image in the first term 
            x2=0;%x coordinate of the image in the second term 
            y2=2*a+2*n*h;%y coordinate of the image in the second term 
            C2=[x2 y2];%position of the image in the second term 
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            R1=P-C1;%vector point from current plotting point to the image in the first term  
            R2=P-C2;%vector point from current plotting point to the image in the second term  
            R1mag=norm(R1);%the distance from current plotting point to the image in the first term  
            R2mag=norm(R2);%the distance from current plotting point to the image in the second term  
            V(j,i)=V(j,i)-rho_L*log(R1mag)/(2*pi*Epsilono)+rho_L*log(R2mag)/(2*pi*Epsilono);%get the voltage   
contribution to current plotting point          
        end  
   end  
end 
surf(xmesh,ymesh,V);%obtain the surface figure  
xlabel('x(m)');% label x 
ylabel('y(m)');% label y 
zlabel('V(V)');% label z 
figure; 
[C,h] = contour(xmesh,ymesh,V);%obtain the contour figure 
set(h,'ShowText','on','TextStep',get(h,'LevelStep'));%label the contour 
xlabel('x(m)');% label x 
ylabel('y(m)');% label y 
 
Running result: 

 
 

Figure 10.6 3D surface of the voltage. 
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Figure 10.7  The voltage contours. 

 
Exercise: A point charge Q and four conducting lines with zero potential are shown in Figure 10.8. Derive
an expression  for the voltage at any point ( , )x y . If Q 1.0 Cμ= and 1.0 ma = , use the expression you 
derived to write a MATLAB program that plot the contour of the voltage.                                                      
 
 

•Q

y a=

y a= −

x a=x a= −

y

x

                                                               
                                Figure 10.8  The charge distribution of the exercise of Set 10.                                    
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Example: Two perfect dielectrics have relative permittivities 1 23 and 6r rε ε= = . The planar interface 
between them is the surface 2 1x y z+ + = . The origin lies in region 1. If 

1 24.0 36.0 42.0 x y z= + +E a a a 2V/m, find .E  Write a MATLAB program to determine the field E2 for 
arbitrary values of the permittivities εr1 and εr1.                                                                                                 
                      
Analytical solution: 
The electric field intensity is continuous in the tangential direction of the boundary and the electric flux  
density is continuous in the normal direction of the boundary.  

1E

2E

1ε

2ε
2NE

2TE1NE

1TE

          

1D

2D

1ε

2ε

2ND

2TD

1TD

1ND

 
Figure 11.1 The continuity of the electric field intensity and the electric flux density vectors, 

1 2T T=E E  and 1 2N ND = D .  
 

The unit vector that is normal to the surface is  

( )

 where 2 ,  therefore
| |

2 1= 2
| 2 | 6

N

x y z
N x y z

x y z

f f x y z
f

∇
= = + +

∇
+ +

= + +
+ +

a

a a a
a a a a

a a a

 

This normal will point in the direction of increasing f , which will be away from origin, or into region 2.  
Then we can find the electric field intensity in region 1. The normal component is given by 

( ) ( ) ( ) ( )1 1
1 124 36 42 2 2 24 24 48
6 6N N N x y z x y z x y z x y z

⎡ ⎤
= ⋅ = + + ⋅ + + × + + = + +⎢ ⎥⎣ ⎦

E E a a a a a a a a a a a a a a  
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Now we can calculate the tangential component  
( ) ( )1 1 1 24 36 42 24 24 48 12 6T N x y z x y z y z= − = + + − + + = −E E E a a a a a a a a  . 

Since the electric field intensity is continuous in the tangential direction of the boundary, we have 
2 1 12 6  T T y z= =E E a - a . 

In the normal direction, the electric flux density is continuous, hence 

( )1
1 2 1 0 1 2 0 2 2 1

1

3  24 24 48 12 12 24
6

r
N N r N r N N N x y z x y z

r

εε ε ε ε
ε

= ⇒ = ⇒ = = + + = + +D D E E E E a a a a a a  

Finally, by adding the normal component and the tangential component together, we find the electric field 
in region 2, 

( ) ( )2 2 2 12 6 12 12 24 12 24 18T N y z x y z x y z= + = − + + + = + +E E E a a a a a a a a  V/m. 
 
MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
aN=[1 1 2]/sqrt(6);  % unit vector normal to the planar interface   
% prompt for input values 
disp('Please enter E1, er1 and er2 ') 
E1=input('E1=');        % the electric field intensity in region 1 
er1=input('er1=');      % the relative permittivity in region 1 
er2=input('er2=');      % the relative permittivity in region 2 
% perform calculations 
E_N1=(dot(E1,aN))*aN;   % the normal component of electric field intensity in region 1 
E_T1=E1-E_N1;           % the tangential component of electric field intensity in region 1 
E_T2=E_T1;              % the tangential component of electric field intensity in region 2 
E_N2=E_N1*er1/er2;      % the normal component of electric field intensity in region 2 
E2=E_T2+E_N2;           % the electric field intensity in region 2 
% display results 
disp('The electric field intensity in region 2 is ') 
E2 
 
Running  result: 
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Exercise: In the region 0z < , the relative permittivity is 0 1rε = , and the electric field intensity is 
1.0 y= +E a 1.0 za  V/m. In the region 0 9 cmz< < , there are four layers of different dielectrics, as shown 

in Figure 11.2. Find the total energy stored in the region bounded by  
20 1 10  m,x −≤ ≤ × 20 1 10  m, y −≤ ≤ × and  0≤ 29 10z −≤ ×  m. Write a MATLAB program to verify your 

calculation. 
 

0z =
4

1 2 10  mh −= ×N   
   
N   

   
   4

2 3 10  mh −= ×

   
   

   
  

�
	

 4

3 4 10  mh −= ×

1 2rε =

2 3rε =

3 4rε =

0 1rε =
y z= +E a a

x y

z

 
                                                           
                                         Figure 11.2  The geometry of the exercise of Set 11. 
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Example: A parallel-plate is filled with a nonuniform dielectric characterized by 6 22 2 10 ,r xε = + ×  where
x is the distance from the lower plate in meters. If S = 0.02 m 2  and d = 1.0 mm, find the capacitance C. 
Write a MATLAB program that finds the energy stored in this capacitor if the charge on the positive plate 
is 94.0 10Q −= ×  C.  Use the formula  2 / 2EW Q C=  to evaluate the capacitance and compare your results. 

x

             − − − − − − − − − − − − − −

 +  +   +   +   +   +   +   +   +   +   +   +  +

0x =

x d=

6 22 2 10r xε −= + ×

 
                                                                                                                                                                            

Figure 12.1 The geometry of the example of Set 12. 
 
Analytical solution: 
We can use the Q-method to find the capacitance. This can be done by first assuming a total charge of Q 
on the positive plate and then finding the potential difference V between the two plates. Finally, we can 
evaluate the capacitance by using C=Q/V. A total charge of Q is on the positive plate, and since the plate 
can be seen as an infinite plate ( S d� ), we can simply assume a uniform charge density on the plates. 
The electric flux density is given by   

x
Q
S

−D = a  

and the electric field intensity is given  by 

0 0
x

r r

Q
Sε ε ε ε

−
DE = = a . 

By knowing the electric field intensity we can find the voltage difference between the two plates, 

( ) 6 20 0 0
0 0

1
2 2 10

x d x d x d

x xx x x
r

Q QV d dx dx
S S xε ε ε

= = =

= = =
= − ⋅ = − − ⋅ = =

+ ×∫ ∫ ∫E L a a
6 6

0 0

1 arctan
10 10

x d

x

Q x
Sε

=

− −
=

⎛ ⎞
× ⎜ ⎟

⎝ ⎠
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( )
0

arctan 1000
2000

Q d
Sε

=  

Now, we can find the capacitance 

( ) ( )

9

100
3

0

12000 10 0.022000 36 4.503 10  C
arctan 1000 arctan(1000 10 )arctan 1000

2000

SQ QC QV dd
S

ε π

ε

−

−
−

× × ×
= = = = = ×

×
   

MATLAB solution: 
We will write a MATLAB program to find the energy stored in the capacitance then use the formula  

2 / 2EW Q C=  to evaluate the capacitance. The energy stored in the capacitor is given by 
2 2

2
0vol vol vol

0 0

1 1 1
2 2 2E r

r r

D DW E dv dv dvε ε
ε ε ε ε

= = =∫ ∫ ∫  

Consider a very thin layer of this capacitor. Since the relative dielectric rε  varies only in the x direction, 
we can assume the dielectric is the same everywhere in the very thin layer. Also we note that the electric 
flux density is constant along the x direction. Therefore we can write a program that divides the capacitor 
into many thin layers and evaluate the energy stored in each layer.  We then add all the energy stored in 
these layers together to obtain the total energy stored in the capacitor. By knowing the energy stored in the 
capacitor, we can calculate the capacitance by using 2 / 2 EC Q W=  
 
MATLAB code: 
clc; %clear the command line 
clear; %remove all previous variables 
 % initialize variables 
eo=1e-9/(36*pi); % the permittivity in free space 
Q=4e-9;          % charges on the positive plate 
S=0.02;          % area of the capacitor 
d=1e-3;          % thickness of the capacitor 
Ds=Q/S;          % electric flux density 
Number_of_x_steps=100;  %number of steps in the x direction  
dx=d/Number_of_x_steps; %x increment 
% perform calculations 
W=0;  % initialize the total energy 
for k=1:Number_of_x_steps 
    x=0.5*dx+(k-1)*dx;  %current radius 
    er=2+2*x*x*1e6;     %current relative permittivity  
    dW=0.5*Ds*Ds*S*dx/(er*eo);  % energy stored in a thin layer  
    W=W+dW;                     % get contribution to the total energy 
end 
C=Q^2/(2*W)    
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Running  result: 

 
 
Comparing the answers we see that our MATLAB solution and analytical solution are consistent.  
 
Exercise: A very long coaxial capacitor has an inner radius of 31.0 10  minnerρ −= × and an outer radius of 

innerρ 35.0 10  m.−= ×  It is filled with a nonuniform dielectric characterized by 310rε ρ= . Find the 
capacitance of  a 0.01 m long capacitor of this kind.  Write a MATLAB program that finds the energy 
stored in this capacitor if the charge on the inner plate is 95.0 10Q −= ×  C . Use the formula  

2 / 2EW Q C=  to evaluate the capacitance again and compare your results. 
                                                                                                                                                                             

 

innerρ
outerρ

310r =ε ρ

 
 

Figure 12.2 The cross section of the coaxial capacitor of the exercise of Set 12. 
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Example: Consider the configuration of conductors and potentials shown in Figure 13.1. Derive an 
expression for the voltage at any point ( , )x y  inside the conductors. Write a MATLAB program that plots 
the contours of the voltage and the lines of the electric field.           
                    

  

0 V 0 V

0 V

y

x

1.0 V

O 1.0 m

1.0 m
GapGap

                                          
Figure 13.1 The configuration of the example of Set 13. 
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Analytical solution: 
The governing equation is the Laplace equation given by: 

2 2

2 2 0,        0 1.0,    0 1.0

(0, ) 0,       (1.0, ) 0;
( ,0) 0,       ( ,1.0) 1.0

V V x y
x y

V y V y
V x V x

∂ ∂
+ = < < < <

∂ ∂
= =
= =

    

2 2

2 2Let  be the solution of 0,  where  is a funtion of  and  is a function of .∂ ∂
= + =

∂ ∂
V VV XY X x Y y
x y

  It follows 

that we have 
2 2

2 2

2

2

2

1 2

3 4

'' '' 0

'' ''

'' 0
'' 0

cos sin
cosh sinh

V V X Y XY
x y

X Y
X Y

X X
Y Y
X c x c x
Y c y c y

λ

λ

λ
λ λ
λ λ

∂ ∂
+ = + =

∂ ∂

= − = −

+ =

− =
= +
= +

 

Boundary condition (0, ) 0V y =  indicates  (0, ) (0) 0V y X Y= = , 1 2 1(0) cos 0 sin 0 0 0X c c c⇒ = + = ⇒ =  

therefore 2 sinX c xλ=  (1) 

Boundary condition (1.0, ) 0V y =  indicates (1.0, ) (1.0) 0V y X Y= = , 2(1.0) sin 0X c λ⇒ = = nλ π⇒ =   (2) 
Boundary condition ( ,0) 0V x =  indicates ( ,0) (0) 0V x XY= = , 3(0) cos 0Y c λ⇒ = = 3 0c⇒ =  ,therefore 

4 sinhY c yλ=  (3) 
With equation (1), (2) and (3), we have 

sin( )sinh( )n n n nV X Y A n x n yπ π= = . 
The general solution for the Laplace equation is thus given by 

1

sinh( )sin( )n
n

V A n y n xπ π
∞

=

= ∑  

Now, the last boundary condition  ( ,1.0) 1.0V x =  indicates that  

1

1
1.0

0
0

( ,1.0) sinh( )sin( ) 1.0.

Multiplying both sides by sin(n x) and integrating

2cos( ) 2 2cos( ) 2 2 ( 1) 2 2 ( 1)sinh( ) 2 sin( )
sinh( )

n
n

x n n

n n
x

V x A n n x

n x nA n n x dx A
n n n n n

∞

=

=

=

= =

− − − × − − × −
⇒ = = = = ⇒ =

∑

∫

π π

π

π ππ π
π π π π π

 

Therefore, 

1

2 2 ( 1) sinh( )sin( )
sinh( )

n

n
V n y n x

n n
π π

π π

∞

=

− × −
= ∑                   
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MATLAB code:         
NumberOfXPlottingPoints=40;  %number of plotting points along the x axis 
NumberOfYPlottingPoints=40;  %number of plotting points along the y axis 
Positive_infinite=160;%use a finite number to replace positive infinite 
V=zeros(NumberOfYPlottingPoints,NumberOfXPlottingPoints);% the matrix used to store the voltages at plotting points
PlotXmin=0;  %lowest x value on the plot plane 
PlotXmax=1;   %maximum x value on the plot plane 
PlotYmin=0;  %lowest y value on the plot plane 
PlotYmax=1;   %maximum y value on the plot plane 
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the x direction 
PlotStepY=(PlotYmax-PlotYmin)/(NumberOfYPlottingPoints-1); %plotting step in the y direction 
[xmesh,ymesh] = meshgrid(PlotXmin:PlotStepX:PlotXmax,PlotYmin:PlotStepY:PlotYmax); 
for j=1:NumberOfYPlottingPoints %repeat for all plot points in the y direction 
    for i=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction 
        xplot=PlotXmin+(i-1)*PlotStepX;%x coordinate of current plotting point 
        yplot=PlotYmin+(j-1)*PlotStepY;%y coordinate of current plotting point 
        for n=1:Positive_infinite  
             V(j,i)=V(j,i)+(2-2*(-1)^n)*sinh(n*pi*yplot)*sin(n*pi*xplot)/(n*pi*sinh(n*pi));%get the voltage contribution   
        end  
   end  
end 
surf(xmesh,ymesh,V);%obtain the surface figure  
xlabel('x(m)');% label x 
ylabel('y(m)');% label y 
zlabel('V(V)');% label z 
figure; 
[C,h] = contour(xmesh,ymesh,V);%obtain the contour figure 
set(h,'ShowText','on','TextStep',get(h,'LevelStep'));%label the contour 
xlabel('x(m)');% label x 
ylabel('y(m)');% label y 
figure; 
contour(xmesh,ymesh,V); [px,py] = gradient(V); 
hold on,quiver(xmesh,ymesh,-px,-py,3),hold off,%obtain the electric field map by using E=-Gradient(V) 
xlabel('x(m)');% label x        
 ylabel('y(m)');% label  
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Running result: 

 
                           Figure 13.2 The surface of the voltage in the region ,0 1  and 0 1x y< < < < . 

 
                        Figure 13.3 Contours of the voltage in the region ,0 1  and 0 1x y< < < < . 

   
 



 
    ECE2FH3  - Electromagnetics I                                                                                Page: 69 
                                                      MATLAB Examples and Exercises (Set 13) 
   

 
                              Figure 13.4 The electric field lines in the region ,0 1  and 0 1x y< < < < . 
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Exercise: Consider the configuration of conductors and potentials shown in Figure 13.2. Derive an 
expression for the voltage at any point ( , )x y inside the conductors. Write a MATLAB program that plots 
the contours of the voltage and the lines of the electric field.  
 

0 V 1.0 V

0 V

y

x

1.0 V−

O 1.0 m

1.0 m
GapGap

Gap

 
Figure 13.5 The geometry of the exercise of Set 13. 
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Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: Consider the shown cross section of a square coaxial cable. The inner conductor has a voltage 
of 1.0 V while the outer conductor is grounded. The cable is assumed long enough and variations in 
potential and field in the normal direction can be ignored (2D problem). Write a MATLAB program that 
solves Laplace equation in the area between the two conductors. Plot the contours of the voltage and the 
lines of the electric field.  
 

0V =

1.0 VV =

0.9 mm

0.6 mm

 
                                                                                                                                                                            

Figure 14.1 The geometry of the example of Set 14. 

 

 



 
 
    ECE2FH3  - Electromagnetics I                                                                                Page: 72 
                                                      MATLAB Examples and Exercises (Set 14) 
   
     

Analytical solution: The governing 
equation is the Laplace equation: 

2 2

2 2

1 0

0 3

2
1 3 0

2 2
0

2
2 4 0

2 2
0

0

2

and similarly,

2

a

c

a c

V V
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V VV
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V VV
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V V
V V VV x x

x h h

V V VV
y h
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+ =

∂ ∂

−∂
=

∂

−∂
=

∂

∂ ∂
−

+ −∂ ∂ ∂
= =

∂

+ −∂
=

∂

 

Substituting in Laplace equation                                                                           
2 2

1 2 3 4 0
2 2 2

0 0

4 0V V V V VV V
x y h

+ + + −∂ ∂
+ =

∂ ∂
�

or 
1 2 3 4

0

0 1 2 3 4

4
4 0  (1)

V V V VV

V V V V V

+ + +
=

− + + + + =
 

For points on the inner square of the cable, the voltage is given by 

0 1.0V =  (2) 
Then we can obtain a system of linear equations whose unknowns are the voltages of the points inside the 
cable. Assume there are n divisions along the x direction and m divisions along the y direction, then we have 
total number of m n×  linear equations, and the system of linear equations is given by 

1,1 1,2 1,3 1, ( 2) 1, ( 1) 1,

2,1 2,2 2,3 2, ( 2) 2, ( 1) 2,

3,1 3,2 3,3 3, ( 2) 3, ( 1) 3,

( 2),1 ( 2),2 ( 2),3 ( 2), ( 2)

m n m n m n

m n m n m n

m n m n m n

m n m n m n m n m n
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h

Figure 14.2 A portion of a region containing a two-
dimensional potential field, divided into square of  
side h. The potential 0V is approximately equal to the 
average of the potentials at the four neighboring 
points. 
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This system of linear equations can be solved through a MATLAB program. The key point of writing a 
MATLAB program is to construct the matrix A and the vector b. Figure 14.3 explains the construction of 
the matrix A and the vector b. In Figure 14.3(a), the point i is near the upper left corner of the cable. The 
voltage of this point is the average of the four neighboring points,  

1 4 0out out i i n iV V V V V+ ++ + + − = , or   1 4 2i i n i outV V V V+ ++ − = . 
Now, in the matrix A, , 4i ia = −  because ,i ia  is the coefficient of iV . Also, , 1 1i ia + = , , 1i i na + =  because , 1i ia +  
and ,i i na +  are the coefficients of  1iV +  and i nV + , respectively. In the vector b, ib  is assigned a value of  
2 outV  which is the constant on the right hand of the equation. Other possible locations of a point inside the 
cable are shown in Figure 14.3 (b), (c), and (d). Our MATLAB create equations for all the points inside 
the cable and store the corresponding coefficients in A and b.  The voltages of all the points inside the 
cable can be evaluated.      
  
 

iV 1iV +

i nV +

outV V=

outV V=

             i nV +

1iV − 1iV +iV

outV V=

 
                (a)                                                                             (b) 

i innerV V=

                                                  i nV +

1iV − 1iV +iV

i nV V −=

 
(c)                                                                               (d) 
 

Figure 14.3(a) iV  is the voltage on the left corner of the cable; (b) iV  is the voltage on the top of the 
cable; (c) iV  is a nodal voltage inside the inner square of the cable; and (d) iV  is the voltage of a 
point inside the cable that is not next to the boundary. 
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MATLAB code: 
VOut=0;%voltage on outer conductor  
VIn=1.0;%voltage on inner conductor   
NumberOfXPoints=50; %number of points in the x direction 
NumberOfYPoints=NumberOfXPoints; %number of points in the y direction 
NumberOfUnKnowns=NumberOfXPoints*NumberOfYPoints; %this is the total number of unknowns 
A=zeros(NumberOfUnKnowns, NumberOfUnKnowns); %this is the matrix of coefficients 
b=zeros(NumberOfUnKnowns,1);%this is the right hand side vector 
jleft=(NumberOfXPoints+1)/3;%index of inner conductor left side 
jright=2*jleft;%index of inner conductor right side 
ibottom=(NumberOfYPoints+1)/3;%index of inner conductor Bottom side 
itop=2*itop;%index of inner conductor  Top side 
EquationCounter=1; %this is the counter of the equations 
for i=1:NumberOfXPoints  %repeat for all rows 
  for j=1:NumberOfYPoints %repeat for all columns 
      if((i>=ibottom&i<=itop)&(j>=jleft&j<=jright))%V=1 for all points inside the inner conductor  
          A(EquationCounter, EquationCounter)=1; 
          b(EquationCounter,1)=VIn; 
      else 
          A(EquationCounter, EquationCounter)=-4; 
          if(j==1)  this is the first column 
             b(EquationCounter, 1)=b(EquationCounter,1)-VOut; % left point is on  boundary 
          else%store the coefficient of the left point 
             A(EquationCounter,EquationCounter-1)=1.0;  
          end 
          if(j==NumberOfYPoints) % this is the last column 
             b(EquationCounter, 1)= b(EquationCounter,1)-VOut;%on right boundary 
          else %store coefficient of right boundary 
             A(EquationCounter, EquationCounter+1)=1.0; 
          end 
          if(i==1) % this is the first row 
             b(EquationCounter,1)=b(EquationCounter,1)-VOut; %top point is on boundary 
          else %store coefficient of top point 
             A(EquationCounter, EquationCounter-NumberOfXPoints)=1; 
          end 
          if(i==NumberOfXPoints) % this is the last row 
             b(EquationCounter,1)=b(EquationCounter,1)-VOut; %bottom point is on boundary 
          else%store coefficient of bottom point  
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               A(EquationCounter, EquationCounter+NumberOfXPoints)=1.0;  
          end 
      end 
       EquationCounter=EquationCounter+1; 
  end 
end 
V=A\b; %obtain the vector of voltages  
V_Square=reshape(V, NumberOfXPoints, NumberOfYPoints);%convert values into a rectangular matrix 
surf(V_Square); %obtain the surface figure 
figure; 
[C,h] = contour(V_Square);% obtain the contour figure 
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) 
colormap cool; 
figure; 
contour(V_Square); 
[px,py] = gradient(V_Square); 
hold on, quiver(-px,-py), hold off%obtain the electric field map by using E=-Gradient(V) 
 
Running result: 

 
                                            Figure 14.4 The surface of the voltage inside the cable. 
  



 
 
    ECE2FH3  - Electromagnetics I                                                                                Page: 76 
                                                      MATLAB Examples and Exercises (Set 14) 
   

  
Figure 14.5 Contours of the voltage inside the cable. 

 

 
Figure 14.6 Electric field lines inside the cable. 
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Exercise: Consider the configuration of conductors and potentials shown in Figure 14.7. Write a 
MATLAB program that solves Laplace equation in the area bounded by the conductors. Plot the contours 
of the voltage and the lines of the electric field.  

 
 

50 V 50 V

0 V

100 V

0 V

0 V

4 cm

4 cm

2 cm

2 cm

Gap Gap Gap

 
Figure 14.7 The configuration of the exercise of Set 14. 
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Example: A current sheet 5.0  A/my=K a flows in the region 0.15 m 0.15 mx− < < − . Calculate H at 

(0,0,0.25)P . Write a MATLAB program to verify your answer and plot the magnetic field in the x-y 
plane in the region 0.5 m 0.5 mx− ≤ ≤ and 0.5 m 0.5 mz− ≤ ≤ . 
 
 

z

y
x

5.0  A/myK = a

-  planex z

P

 
 

                                                                                                                                                                            
Figure 15.1 The example of Set 15. 
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Analytical solution: 
As shown in Figure 15.2, since Id dS=L K , the magnetic field resulting from a surface element 

( )
3 3 ,  where  is a vector pointing from the surface element to the observation point,

4 4
0.25     0.25 . 

The cross product of and is given by

π π
× ×

= =

− = − + = − − +

×

L R K RH R

R = a a a a a a
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OP OC x y x y
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2 2
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5 0 0 0 0 5
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,  and the magnetic field resulting from the current sheet is
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16
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We note that the z component is anti-symmetric in x about the origin (odd parity). Since the limits are 
symmetric, the integral of the z component over y is zero. We are left with 
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P
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R

dSK

C

 
Figure 15.2 The vector R pointing from the surface element to the observation point. The magnetic 

field resulting from the surface element is 34P
dSd

Rπ
×

=
K RH . 

MATLAB solution: 
We can calculate the magnetic field at a point P by calculating the magnetic field resulting from each 
surface element and adding all these elementary magnetic fields together.  This can be formulated in the 

mathematical form ,
3

1 1 ,4

j mi n
i j

P
i j i j

S
Rπ

==

= =

× Δ
= ∑∑

K R
H . To plot the magnetic field on the x-z plane, we need to build 

an array of the plotting plane and calculate H of each plotting point. We use the function quiver to plot 
our vector plot.  
 
MATLAB code: 
clc; %clear the command window 
clear; %clear all variables 
d=0.30; %the width of the sheet in the x direction 
L=20; %length of sheet in the y direction 
J=5; %value of surface current density 
Js=J*[0  1  0]; %the vector of surface current density 
Xmin=-0.15; %coordinate of lowest x value on sheet 
Xmax=0.15; %coordinate of maximum x value on sheet 
Ymin=-10; %coordinate of lowest y value on sheet 
Ymax=10; %coordinate of maximum y value on sheet 
NumberOfXDivisions=20; %number of cells in the x direction 
NumberOfYDivisions=100; %number of cells in the y direction 
dx=(Xmax-Xmin)/NumberOfXDivisions; %step in the x direction 
dy=(Ymax-Ymin)/NumberOfYDivisions; %step in the y direction 
ds=dx*dy;  %area of one subsection of sheet 
ZCellCenter=0; %all points on sheet has a coordinate z=0 
NumberOfXPlottingPoints=10;  %number of plotting points along the x axis 
NumberOfZPlottingPoints=10;  %number of plotting points along the z axis 
PlotXmin=-0.5;  %lowest x value on the plot plane 
PlotXmax=0.5;   %maximum x value on the plot plane 
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PlotZmin=-0.5;  %lowest z value on the plot plane 
PlotZmax=0.5;   %maximum z value on the plot plane 
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the x direction 
PlotStepZ=(PlotZmax-PlotZmin)/(NumberOfZPlottingPoints-1); %plotting step in the z direction 
[XData,ZData]=meshgrid(PlotXmin:PlotStepX:PlotXmax, PlotZmin:PlotStepZ:PlotZmax); %build arrays of plot plane 
PlotY=0; %all points on observation plane have zero y coordinate 
Bx=zeros(NumberOfXPlottingPoints,NumberOfZPlottingPoints); %x component of field 
Bz=zeros(NumberOfXPlottingPoints, NumberOfZPlottingPoints);%z component of field 
for m=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction 
    for n=1:NumberOfZPlottingPoints %repeat for all plot points in the y direction 
        PlotX=XData(m,n); %x coordinate of current plot point 
        PlotZ=ZData(m,n); %z coordinate of current plot point 
        if ((PlotZ==0)&(PlotX>=Xmin)&(PlotX<=Xmax)) % if the plotting point is on the current sheet 
            Bx(m,n)=0.5*J;                          % we use the model of infinite current sheet 
            Bz(m,n)=0; 
            continue; 
        end 
        Rp=[PlotX PlotY  PlotZ]; %poistion vector of observation points 
        for i=1:NumberOfXDivisions %repeat for all divisions in the x direction 
            for j=1:NumberOfYDivisions %repeat for all cells in the y direction 
               XCellCenter=Xmin+(i-1)*dx+0.5*dx;  %X center of current subsection 
               YCellCenter=Ymin+(j-1)*dy+0.5*dy;  %Y center current subsection 
               Rc=[XCellCenter  YCellCenter  ZCellCenter]; %position vector of center of current subsection 
               R=Rp-Rc; %vector pointing from current subsection to the current observation point 
               norm_R=norm(R); %get the distance between the current surface element and the observation point 
               R_Hat=R/norm_R; %unit vector in the direction of R 
               dH=(ds/(4*pi*norm_R*norm_R))*cross(Js,R_Hat); %this is the contribution from current element 
               Bx(m,n)=Bx(m,n)+dH(1,1); %increment the x component at the current observation point 
               Bz(m,n)=Bz(m,n)+dH(1,3); %increment the z component at the current observation point 
           end %end of j loop 
       end %end of i loop 
   end %end of n loop 
end % end of m loop 
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quiver(XData, ZData, Bx, Bz);  
xlabel('x(m)');%label x axis 
ylabel('z(m)');%label y axis 
%The following routing caculates the magnetic field at point P   
P=[0 0 0.25];%position of point P 
Hp=[0 0 0];%the magnetic field at point P 
for i=1:NumberOfXDivisions %repeat for all divisions in the x direction 
    for j=1:NumberOfYDivisions %repeat for all cells in the y direction 

XCellCenter=Xmin+(i-1)*dx+0.5*dx;  %X center of current subsection 
       YCellCenter=Ymin+(j-1)*dy+0.5*dy;  %Y center current subsection 
       Rc=[XCellCenter  YCellCenter  ZCellCenter]; %position vector of center of current subsection 
       R=P-Rc; %vector pointing from current subsection to the current observation point 

norm_R=norm(R); %get the distance between the current surface element and the observation point 
       R_Hat=R/norm_R; %unit vector in the direction of R 
       dH=(ds/(4*pi*norm_R*norm_R))*cross(Js,R_Hat); %this is the contribution from current element 
       Hp=Hp+dH; 
   end %end of j loop 
end %end of i loop 
 
Running result: 

 
We can see that our MATLAB solution  
has a good agreement with our analytical  
solution. 
 

 
                                                     Figure 15.3 The MATLAB vector plot of the magnetic field  
                                                     in the x-z plane caused by a current sheet flowing in the x-y  
                                                     plane. 

 



    
ECE2FH3  - Electromagnetics I                                                                                Page: 83 

                                                      MATLAB Examples and Exercises (Set 15) 
   

Exercise: A filament on the z axis lies in the region 0 10.0 m.z≤ ≤  Calculate H at (0,1.0,0).P Write a 
MATLAB program to verify your answer and plot the magnetic field in the x-y plane in the region 

5.0 m− 5.0 mx≤ ≤ and 5.0 m 5.0 my− ≤ ≤ . 
                    

z

y
x

-  planex y

2.0  A/my=I a

P

 
                           
                                                         Figure 15.4 The exercise of Set 15.      
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MATLAB Examples and Exercises (Set 16) 
 

Prepared by: Dr. M. H. Bakr and C. He 
 

     
Example: A solenoid of radius 0.1 m whose axis is the z axis carries a current of 3 Amps. The solenoid is 
assumed to extend along the z axis from 0.5 mz = −  to 0.5 m.z =  Write a MATLAB program that plots 
the magnetic field in the x-z plane. 
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y

x
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0.1r =

 
                                                                                                                                                                            

Figure 16.1 The example of Set 16. 
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Analytical Part: 
We can assign a unique angle value to each point on the winding. For instance, if a point has a φ  angle of 

/ 3π , and it is on the third turn, then the parametric angle value we assign to this point is 
' / 3 2 (3 1) 13 / 3φ π π π= + × − = . In general, ' 2( 1)kφ φ π= + − , where 1 number of turnsk≤ ≤  and 

0 2φ π≤ < .  Knowing the value of 'φ , we can find the rectangular coordinate of a point: 

( )cos cos 2 1 cos 'x r r k rφ φ π φ= = + − =⎡ ⎤⎣ ⎦  (1) 

( )sin sin 2 1 sin 'y r r k rφ φ π φ= = + − =⎡ ⎤⎣ ⎦   (2) 

Also, since the z coordinate is linearly increasing along the windings, we have 

max min
min min

max min

( ) ( ' ' )
( ' ' )

z zz z −′ = + −
−

φ φ φ
φ φ

 (3) 

Now we want to divide the winding into n segments along the direction of the current I in order to allow 
MATLAB program to calculate the magnetic field (see Figure 16.2). We then pick up n+1 points on the 
winding. For the ith point, the angle is given by 

max min
min

' '' ' ( 1)i i
n

φ φφ φ −
= + − . 

By plugging this equation into (1), (2) and (3), we can find ix , iy , and iz . Also, we can find 1ix + , 1iy + , and 1iz +

in the same way. Note the ith segment is a vector given by  
1 1 1( ( (i i i x i i y i i yx x y y z z+ + +Δ = − + − + −L )a )a )a   

and the vector iR  (pointing from the center of  the ith segment to the observation point) is given by (See 
Figure 16.2) 

( ) 1 1 1, , , ,
2 2 2

i i i i i i
i i

x x y y z zP C x y z + + +− − −⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

R  

Finally we can calculate the magnetic field at point P using the superposition formula:  

3
1 4 | |

n
i i

i i

I
π=

Δ ×
= ∑ L RH

R
. 

The problem requires us to plot the magnetic field in the x-z plane.  We should thus calculate the magnetic 
field at a grid of points on the x-z plane, and store the values in to a two-dimensional matrix. 
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Figure 16.2 iΔL is the ith segment along the winding and iR  is the vector pointing from the center 
of ith segment to the observation point P. 
                                . 
 
MATLAB code: 
clc; %clear the command window 
clear; %clear all variables 
 
NumberOfTurns=20; %Number of turns of the solenoid 
Radius=0.1; %radius of solenoid 
Zmin=-0.5;  %coordinate of the lowest point on the solenoid 
Zmax=0.5;  %coordinate of the highest point on the solenoid 
t_min=0; %lowest value of the curve parameter t 
t_max=NumberOfTurns*2.0*pi; % for every turn we have an angle increment of 2*pi 
NumberOfSegments=100; %we divide the solenoid into this number of segments 
t_values=linspace(t_min,t_max, (NumberOfSegments+1))'; %these are the values of the parameter t 
x_values=Radius*cos(t_values); 
y_values=Radius*sin(t_values); 
z_values=Zmin+((Zmax-Zmin)/(t_max-t_min))*(t_values-t_min); 
I=3; %value of surface current density 
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NumberOfXPlottingPoints=20;  %number of plotting points along the x axis 
NumberOfZPlottingPoints=20;  %number of plotting points along the z axis 
PlotXmin=-0.5;  %lowest x value on the plot plane 
PlotXmax=0.5;   %maximum x value on the plot plane 
PlotZmin=-1;  %lowest z value on the plot plane 
PlotZmax=1;   %maximum z value on the plot plane 
PlotStepX= (PlotXmax-PlotXmin)/(NumberOfXPlottingPoints-1);%plotting step in the x direction 
PlotStepZ=(PlotZmax-PlotZmin)/(NumberOfZPlottingPoints-1); %plotting step in the z direction 
[XData,ZData]=meshgrid(PlotXmin:PlotStepX:PlotXmax, PlotZmin:PlotStepZ:PlotZmax); %build arrays of plot plane 
PlotY=0; %all points on observation plane have zero y coordinate 
Bx=zeros(NumberOfXPlottingPoints,NumberOfZPlottingPoints); %x component of field 
Bz=zeros(NumberOfXPlottingPoints, NumberOfZPlottingPoints);%z component of field 
for m=1:NumberOfXPlottingPoints %repeat for all plot points in the x direction 
    for n=1:NumberOfZPlottingPoints %repeat for all plot points in the z direction 
        PlotX=XData(m,n); %x coordinate of current plot point 
        PlotZ=ZData(m,n); %z coordinate of current plot point 
        Rp=[PlotX PlotY  PlotZ]; %poistion vector of observation points 
        for i=1:NumberOfSegments %repeat for all line segments of the solenoid 
            XStart=x_values(i,1);  %x coordinate of the start of the current line segment 
            XEnd=x_values(i+1,1);  %x coordinate of the end of the current line segment 
            YStart=y_values(i,1);  %y coordinate of the start of the current line segment 
            YEnd=y_values(i+1,1);  %y coordinate of the end of the current line segment 
            ZStart=z_values(i,1);  %z coordinate of the start of the current line segment 
            ZEnd=z_values(i+1,1);  %z coordinate of the end of the current line segment 
            dl=[(XEnd-XStart)  (YEnd-YStart)  (ZEnd-ZStart)]; %the vector of diffential length 
            Rc=0.5*[(XStart+XEnd)  (YStart+YEnd)  (ZStart+ZEnd)];%position vector of center of segment 
            R=Rp-Rc; %vector pointing from current subsection to the current observation point 
            norm_R=norm(R); %get the distance between the current surface element and the observation point 
            R_Hat=R/norm_R; %unit vector in the direction of R 
            dH=(I/(4*pi*norm_R*norm_R))*cross(dl,R_Hat); %this is the contribution from current element 
            Bx(m,n)=Bx(m,n)+dH(1,1); %increment the x component at the current observation point 
            Bz(m,n)=Bz(m,n)+dH(1,3); %increment the z component at the current observation point 
        end %end of i loop 
   end %end of n loop 
end % end of m loop 
quiver(XData, ZData, Bx, Bz);  
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xlabel('x(m)');%label x axis 
ylabel('z(m)');%label z axis 
 
 
Running result: 

 
Figure 16.3 The magnetic field lines generated by a solenoid centered along the z axis. 

 
Exercise: A toroid whose axis is the z axis carries a current of 5.0 A and has 200 turns. The inner radius is
1.5 cm while the outer radius is 2.5 cm. Write a MATLAB program that computes and plots the magnetic  
field in the x-y plane in the region 4.0 cm 4.0 cmx− ≤ ≤ and 4.0 cm 4.0 cmy− ≤ ≤ . 
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Figure 16.4 The exercise of Set 16. 
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MATLAB Examples and Exercises (Set 17) 
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Example: A rectangular coil is composed of 1 turn of a filamentary conductor. Find the mutual 
inductance in free space between this coil and an infinite straight filament on the z axis if the four corners 
of the coil are located at: (1, 1, 0), (1, 3, 0), (1, 3, 1), and (1, 1, 1). Write a MATLAB program to verify 
your answer. 
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Figure 17.1 The example of Set 17. 
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Analytical solution: 
As shown in Figure 17.2, if we assume that the filament current is in the z+a  direction, the B field of the 
filament penetrates the coil in the φ+a  direction and the direction normal to the loop plane is x−a . The B 
field resulting from a infinite filamentary conductor taking a current I is given by  

0

2
I

φ
μ
πρ

=B a  

The flux through the coil is now 

( ) ( ) ( )
1 3 1 30 0
0 1 0 12 2

z y z y

x xz y z y
S

I Idydzd dydzφ φ
μ μ
πρ πρ

= = = =

= = = =

⎛ ⎞
Φ = ⋅ = ⋅ − = ⋅ −⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫ ∫B S a a a a  

where 
sin cosx yφ φ φ= − +a a a  

therefore 

( )
2

sin
1

a ax
y y

y
φ φ

ρ
⋅ − = = =

+
 

Now, the flux through the coil is 

( ) ( )
3

1 3 3 2 70 0 0
2 20 1 1

1

ln 1 1.6 10
2 2 4

y
z y y

z y y
y

Iy Iy Idydz dy y Iμ μ μ
πρ πρ π

=
= = = −

= = =
=

Φ = = = + = ×∫ ∫ ∫  

The mutual inductance is then  
7

71 1.6 10 1.6 10  HN IM
I I

−
−Φ × ×

= = = ×  

 

x

yI

φ ρ

y

x−a1.0 φ−a

 
Figure 17.2 ρ  is the distance from the straight filament to the observation point, the current is in 
the za direction and by right hand rule the direction normal to the coil is x−a . 
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MATLAB solution: 
In the MATLAB program, we replace the infinite straight filament by a sufficiently long filament. Then 
we evaluate the magnetic field resulting from this filament at each surface element inside the coil. The dot 
product of a surface element and its magnetic field gives the flux through the surface element. By adding 
the flux through each surface element we obtain the flux through the area inside the coil.  The mutual 
inductance is then obtained by dividing out the current I. 
 
MATLAB code: 
clc; %clear the command window 
clear; %clear all variables 
mu=4*pi*1e-7; 
I=1.0;%current of the filament 
end1=[0 0 -30];%end of the filament 
end2=[0 0 30];%end of the filament 
Number_of_Segments=250;%number of increasing steps along the filament 
dL=(end2-end1)/Number_of_Segments;%vector increment along the filament 
aN=[-1 0 0];% direction normal to the surface of the coil 
NumberOfYSteps=20;%number of increasing steps of the coil area along the y direction 
NumberOfZSteps=20;%number of increasing steps of the coil area along the z direction 
ymin=1;%lowest y  corodinate of the coil 
ymax=3;%maxium y  corodinate of the coil 
zmin=0;%lowest z  corodinate of the coil 
zmax=1;%maxium z  corodinate of the coil 
dy=(ymax-ymin)/NumberOfYSteps;% area increment along the y direction 
dz=(zmax-zmin)/NumberOfZSteps;% area increment along the z direction 
flux=0;%flux through the coil 
dS=dy*dz;%increament area 
xp=1.0;%x coordinate is always 1.0 on the coil 
for m=1:NumberOfZSteps %repeat for all points in the z direction 
    for n=1:NumberOfYSteps %repeat for all points in the y direction 
        yp=ymin+0.5*dy+(n-1)*dy;%y coordinate of current surface element 
        zp=zmin+0.5*dz+(m-1)*dz;%z coordinate of current surface element 
        Rp=[xp yp zp];%the position of current surface element  
        B=[0 0 0];%the magnetic field at current surface element 
        for i=1:Number_of_Segments %repeat for all divisions in the z direction 
               C=end1+(i-1)*dL+0.5*dL;  %X center of current subsection 
               R=Rp-C; %vector pointing from current subsection to the current observation point 
               norm_R=norm(R); %get the distance between the current surface element and the observation point 
               R_Hat=R/norm_R; %unit vector in the direction of R  
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              dH=(I/(4*pi*norm_R*norm_R))*cross(dL,R_Hat); %this is the contribution from current element 
               B=B+mu*dH; 
       end %end of i loop 
       dflux=dS*dot(B,aN);%flux through current surface element 
       flux=flux+dflux;%get contribution to the total flux 
   end %end of n loop 
end % end of m loop 
M=flux/I;% the mutual inductance 
 
Running result: 

 
We see that our MATLAB solution has a good agreement with our analytical solution. 
 
Exercise: Two coils with radii 1a  and 2a  are separated by a distance of d  as shown in Figure 17.3.  The 
dimensions are 1 0.01 m,a = 2 0.04 m,a = and 0.1 m.d =  Find the mutual inductance of the coils. Write a 
MATLAB program to verify your answer. 

1a

2a d

2I

1I

 
                                              Figure 17.3 The geometry of the exercise of Set 17.                
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Example: A solenoid of radius 0.05 m is centered along the z axis as shown in Figure 18.1. The solenoid 
is assumed to extend along the z axis from 0.25 mz = −  to 0.25 m.z =  Find the inductance analytically if 
the solenoid has 100 turns and 1rμ = . Write a MATLAB program to evaluate the inductance again and 
compare your answers.  
 

z
1β

2ββ R

P

l dl  
                                                                                                                                                                            

Figure 18.1 A cross section of the solenoid. 
 
Analytical solution: 
Assume the solenoid has a radius of R , takes a current of I  and has n turns per unit length, as shown in 
Figure 18.1. We consider a very short segment dl  of this solenoid. Then this short segment has a total 
number of ndl turns. Therefore, the magnetic field at a point P resulting from the short segment is  

( )
2

3/ 22 22
R IndldB

R l

μ
=

+
 

where l is the distance from the observation point to the short segment, as shown in figure 18.1. Therefore, 
the magnetic field at point P resulting from the solenoid is 

( )
2

3/ 22 22L L

R IndlB dB
R l

μ
= =

+
∫ ∫  

However, as shown in Figure 18.1, we have cotl R β= .  It follows that 
2cscdl R dβ β= −  
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and 
2 2 2 2 2 2(1 cot ) cscR l R Rβ β+ = + =  

Therefore, we have 
2 2

1 1

2 2

2 13 3

( csc ) ( sin ) (cos cos )
2 csc 2 2

R R dB nI nI d nI
R

β β β β

β β β β

μ β β μ μβ β β β
β

= =

= =

−
= = − = −∫ ∫  

For a sufficiently long solenoid the magnetic field inside the solenoid is approximately the same every 
where. We use the magnetic field in the center of the solenoid to evaluate the flux linkage. The magnetic 
field at the center of the solenoid is 

2 1 2 2 2 2

0.25 0.25 1.9612(cos cos ) ( )
2 2 20.05 0.25 0.05 0.25

NIB nI nI
h

μ μ μβ β −
= − = − =

+ +
  

and the flux linkage is 
2 2

tot
1.9612

2
N I aN NBS

h
μ πλ = Φ = =  

Finally, we divide by the current to find the inductance 
2 2

41.9612 1.9357 10  H
2

N I aL
I h
λ μ π −= = = ×  

 
MATLAB solution: 
The inductance we derived analytically is an approximate value because we are assuming the solenoid is  
infinitely long and tightly wrapped. The magnetic field intensity is actually different for different points 
inside the solenoid, and the flux linkage to each turn of coil varies. Using a MATLAB program, we can 
calculate a more accurate λ  

1 2
1

N

i N i
i

λ
=

= Φ + Φ + + Φ + + Φ = Φ∑" "  

where iΦ  is the flux linking the ith turn which is given by 

, ,
1 1

p q

i m n m n
n m= =

Φ = ⋅Δ∑∑B S , 

where ,m nΔS  is the element surface of the cross-sectional area,  and ,m nB  is the magnetic field intensity at  

,m nΔS . In set 16 we learned how to calculate ,m nB . We utilize the formula , ,
1 1

p q

i m n m n
n m= =

Φ = ⋅Δ∑∑B S where 

we use p steps in the ρ  direction q steps in theφ  direction. We can further simplify the flux linking  the 
ith loop by:   

1

p

i n n
n

q
=

Φ = ⋅Δ∑B S . 

 
MATLAB code: 
clc; %clear the command window 
clear; %clear all variables 
mu=4*pi*1e-7;  
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NumberOfTurns=100; %Number of turns of the solenoid 
Radius=0.05; %radius of solenoid 
Zmin=-0.25;  %coordinate of the lowest point on the solenoid 
Zmax=0.25;  %coordinate of the highest point on the solenoid 
t_min=0; %lowest value of the curve parameter t 
t_max=NumberOfTurns*2.0*pi; % for every turn we have an angle increment of 2*pi 
NumberOfSegments=1000; %we divide the solenoid into this number of segments 
t_values=linspace(t_min,t_max, (NumberOfSegments+1))'; %these are the values of the parameter t 
x_values=Radius*cos(t_values);%x coordinates of all selected point on the winding  
y_values=Radius*sin(t_values);%y coordinates of all selected point on the winding 
deltaZ=linspace(Zmin,Zmax,(NumberOfTurns))';%z coodinates increases when turn increases 
z_values=zeros(NumberOfSegments,1); 
for k=1:NumberOfTurns 
    z_values((1+(k-1)*10):k*10)=deltaZ(k); 
end 
I=1; %value of surface current density 
aN=[0 0 1];%direction that normal to each turn 
NumberOfRhoSteps=20;%the area increasing steps in the rho direction 
NumberOfPhiSteps=20;%the area increasing steps in the phi direction 
drho=Radius/NumberOfRhoSteps;%area increament along the direction of rho 
dphi=2*pi/NumberOfPhiSteps;%area increment along the direction of phi 
flux=0; 
for m=1:NumberOfTurns 
    for j=1: NumberOfRhoSteps 
        rho=(j-1)*drho+0.5*drho; %rho of current surface element    
        phi=0.5*dphi; %phi of current surface element 
        dS=rho*drho*dphi;%area of current element 
        xp=rho*cos(phi);%x coordinate of current surface element 
        yp=rho*sin(phi);%y coordinate of current surface element 
        zp=z_values(m,1);%z coordinate of current surface element           
        Rp=[xp yp zp];%position of current surface element 
        B=[0 0 0]; 
        for i=1:NumberOfSegments %repeat for all line segments of the solenoid 
            XStart=x_values(i,1);  %x coordinate of the start of the current line segment 
            XEnd=x_values(i+1,1);  %x coordinate of the end of the current line segment 

            YStart=y_values(i,1);  %y coordinate of the start of the current line segment 
            YEnd=y_values(i+1,1);  %y coordinate of the end of the current line segment  
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            ZStart=z_values(i,1);  %z coordinate of the start of the current line segment 
            dl=[(XEnd-XStart)  (YEnd-YStart)  0]; %the vector of diffential length 
            Rc=0.5*[(XStart+XEnd)  (YStart+YEnd)  (2*ZStart)];%position vector of center of segment 
            R=Rp-Rc; %vector pointing from current subsection to the current observation point 
            norm_R=norm(R); %get the distance between the current surface element and the observation point 
            R_Hat=R/norm_R; %unit vector in the direction of R 
            dH=(I/(4*pi*norm_R*norm_R))*cross(dl,R_Hat); %this is the contribution from current element 
            B=B+mu*dH;%get contribution to the magnetic field at current surface element   
        end %end of i loop 
        dflux=dS*(dot(B,aN));%the magnetic flux through current surface element 
         flux=flux+dflux;%get contribution to the total flux linkage 
    end 
end 
numda=flux*NumberOfPhiSteps;%the flux linkage 
L=numda/I;%inductance of solenoid 
 
Running result: 

 
Comparing the analytical answer and the MATLAB answer we find a significant difference between them.
The actual inductance value should be closer to the MALAB answer. It makes sense that the analytical 
answer is larger because we used the strongest magnetic field inside the solenoid (at the center) to 
evaluate the flux linkages analytically. If we increase the number of turns of the solenoid and increase the 
ratio of /h R , the two answers will have a better agreement.     
 
Exercise: A toroid whose axis is the z axis has 200 turns. The inner radius is 2.0 cm while the outer 
radius is 2.5 cm. Find the inductance analytically if the solenoid has 100 turns and 1rμ = . Write a 
MATLAB program to verify your answer.  
 

 

 




