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Electrostatic Fields-Coulomb‘s Law

Electrostatic: charges (the field source) are at rest, they cannot generate
magnetic field

Coloumb’s experiment using torsion balance 1785: :

Coloumb found that when two charges in close iR
vicinity, they excert a force on on the other. This
force was proportional to the amount of
individual charges and inversly proportional to

the square of the displacement between them.

Torsion fibre

Ud

Cylindricol glass cose

Fy

Torsion balance: the
device by which Coulomb
discovered Coulomb's law

0105 (r; — 1)

F., =
2 ""’“‘30\1'2‘1'1|3

Origin 2
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Electrostaic Field

If we have more than two point charges, we can use the principle of superposition to
determine the force on a particular charge. The principle states that if there are N charges
Q1 O, . . ., Oy located, respectively, at points with position vectors Iy, I, . . ., Iy, the
resultant force F on a charge Q located at point r 1s the vector sum of the forces exerted on
Q by each of the charges Q,, @,,. . ., Oy. Hence:

_ Q0(r — l'l) QQ0H(r — l‘2) . QQA(P —r,)
47(80|l’ r1|3 dme,|r — rz\ 41r80|r =y’
0 < Qr—ry
dme, (=1 |r — 1'1c|3
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Electric field intensity

The force between the two charges that happens from distance was assumed
to happen due to a field of force which is generated from the charge and

affects the other, this field was called the electric field and the electric field
intensity is defined as:

Electric field intensity is defined as the force per unit charge that a very small

stationary test charge experiences when it is placed in a region where an electric
field exists. That is,

F F Or —r')
E = lim — E=— E = QzaRz ’3
0—0 O Q 4me R dme,|r — r'|
—-r r —r), r—r, | ¥ r —r
_ O 1)3 + O )u% R O v)3 E — 3 Ol :)
drey|r — ry 4Ae,|r — 1y 4re,lr — ry| dre, =1 Ir — 1y

4
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Coloumb‘s law

EXAMPLE 4.1

S s U0 QEHE Tl |
357 i+ 31
BIRZEIT UNIVERSITY

Point charges 1 mC and —2 mC are located at (3,2, —1) and (—1, —1, 4), respectively.
Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field in-

tensity at that point.

Solution:
F = Q0O _ QOur — 1)
- 2 ag = 3
k=1,2 4re R k=1.2 47!'80fr - rkl
0 {10-3[(0, 3.) — (3,2, -1)]  2107°(0,3,1) — (=1, —1,4)]
dme, 10,3, 1) — 3,2, —1D)° 10,3,1) — (—1, —1,4))°
_107°-10-107° [ (—=3,1,2)  2(1,4,-3) J
107° O+ 1+4°% 1+ 16+ 9"
& 36w
L[ (=3.1,2) (=2, -8, 6)]
=9-10 { +
14V 14 2626

F = —6.507a, — 3.817a, + 7.506a, mN
At that point,

F
E=—
Q
1073
= (—6.507, —3.817, 7.506) - ————;
10- 10

E = —650.7a, — 381.7a, + 750.6a. kV/m

j
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Electric flux and electric field density D

The electric flux and electric flux density: Michael Farady Experiment 1837,
using two concentric spheres:

Faraday found that the total charge on the outer sphere was equal in
magnitude to the original charge placed on the inner sphere and that this was
true regardless of the dielectric material separating the two spheres. He con-
cluded that there was some sort of “‘displacement” from the inner sphere to
the outer which was independent of the medium, and we now refer to this flux
as displacement, displacement flux, or simply electric flux.

Metal Insulating or
conducting 4 dielectric
spheres .. 4 ~ material
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Electric flux and electric field density D

The electric flux and electric flux density: Michael Farady Experiment 1837,
using two concentric spheres:

Faraday’s experiments also showed, of course, that a larger positive charge
on the mner sphere induced a correspondingly larger negative charge on the
outer sphere, leading to a direct proportionality between the electric flux and
the charge on the inner sphere. The constant of proportionality is dependent on
the system of units involved, and we are fortunate in our use of SI units, because
the constant is unity. If electric flux is denoted by W (psi) and the total charge on
the inner sphere by Q, then for Faraday’s experiment

v=0

and the electric flux ¥ 1s measured in coulombs.

Electric flux density, measured in coulombs per square meter (sometimes
described as “‘lines per square meter,” for each line 1s due to one coulomb), is
given the letter D, which was originally chosen because of the alternate names of
displacement flux density or displacement density. Electric flux density is more
descriptive, however, and we shall use the term consistently. 1
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Electric flux and electric field density D
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Electric flux density: define a quantity that does not depend on medium, only
depend on the free charge (unbound charge). This is obtained by dividing the
flux over the area

D=

47rr-

*
o) ‘ll'

E =

0

dregr-

*
—a,

D = FHE

(free space only)

The equation of D is independent from permitivity, which shows
that D only depends on charge enclosed and not the dielectric.

Electric flux lines leaves positive charges and enters negative charges.
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and-integral form

Maxwell‘s equations:
Electrostatic Postulates in point form:

Charge density is the flow source of electric field

V-E=F
€y

Electric field is conservative

VxE=0.

(e t);L__L el
BlRZE|T UNIVERSITY
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Electrostatic ___i'n ral form nostulates

Maxwell‘s equations in integral form:

Gauss law (from the postulate and divergence theory):

\ 0
d)s E-ds== D = ¢)E W = \F Dgs - dS = charge enclosed = Q
J Js

Curl of E integral form(from the postulate and stoke‘s theory): 7{ E-dl=0,

Postulates of Electrostatics in Free Space

Differential Form © Integral Form
; 0—1
|

V:E=— E ds = =

6o €0

VxE=0 9SCE'(1€=0 10
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Methods of calculating electric field from easiest to most difficult

The main goal is calculating the electric field which is independent from
the magnetic field in electrostatics.

Methods of calculating the eectric field:
1. Gauss law when symmetry is there which is the easiest way. Always
think to solve the problem using Gauss law whenever possible.

2. Using the electrostatic potential to be defined later.
3. Using coloumbs law (most difficult way)

1
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Coloumb‘s law from Gauss law:
///—\\\\ E
// /<'
g)h'clb—g)(JRLR ARd.s—-——- / R\
60 ‘/ ’/ \
‘ \ g R ,'
.Eﬁd-1?4kz—q \ /
'RSS_ R(TC )-6_(; \\ //
. ~ _7

(a) Point charge at the origin,

Q is at the origin - _ q 7
E aRER ag -——47:€0R2 (\ /m).
o AR-R) T >
Q is not at the origin P 4neR —RP /m?'

(b} Point charge not at the origjn.
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Gauss law examples:

-~
-

Infinite line charge

- line charge p, C /m

_—Gaussian surface

pL€=Q=§D-dS=Dpj{>dS=Dp27rp€ }

P

D=—pLa

2mwp

fil

13
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Electric field calculations using Gauss‘ law
Gauss law examples:

Infinite surface charge

SJdS=Q=§>D'dS=DzH dS+J dS}
bottom

top
psA = D, (A + A) :
Infinite sheet of D
Ps charge Pg C/m?
D=—"a, 4
2 % \
D
E=—= LS a,
80 280

/ (Gaussian surface
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Electric field calculations using Gauss‘ law

Gaussian surface

Gauss law examples:

Spherical volume charge density

27 w r
Oenc = Jpvdv=p‘,Jdv=pvJ J J r? sin 6 dr df d¢
é=0 “¢=0 “r=0
4
= p, 3 Tr
\P=§D-ds=p,j(ds=0,J J r? sin 0 d do
o=0 "¢=0
= D, 47r’
H \P —_— v ) 471'7'3
ence, Qenc g1VES D, 4nr’ = 3 0,

r
D=—p,a, 0<r < a 15
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Electric field calculations using Gauss‘ law

Gaussian surface
Gauss law examples:

Spherical volume charge density

2 4 3
D, 4rnr ?—j%-'n'a 0,
a3
D =-—p,a, r = gq Ip!
3r 4
a
3p\‘ _____ r
,
r I
—p, A O0<r=sa | ap,
p-{3 N\
= 3 l
a o, |
= — |
2pt rFr=a 3
\ 3r ! .
0 a ~r
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example:

EXAMPLE 4.8

Given that D = zp cos’¢ a, C/m’, calculate the charge density at (1, 7/4, 3) and the total
charge enclosed by the cylinder of radius 1 m with —2 < z =< 2 m.

Solution:

ab.
pg.-=V'D= ~:00082¢
0z

At (1, 7/4,3), p, = 1 - cosX(x/4) =

: 0.5 C/m®. The total charge enclosed by the cylinder
can be found in two different ways.

Method 1: This method is based directly on the definition of the total volume charge.

r
Q= |pdv= Jpcosz¢pd¢dpdz

v v

r2 2T 1
= dz J cos® ¢ do J p%do = 4(m)(1/3)

Jz——l’ &=0 p=0
4

=-—C
3

I}
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example:

Method 2: Alternatively, we can use Gauss’s law.

0-v-fv-s-[[+[+[]p-a

5 4
=V + ¥+ Y,

where ¥, ¥,, and ¥, are the flux through the sides, the top surface, and the bottom surface
of the cylinder, respectively (see Figure 3.17). Since D does not have component along a,,
Y, =0,for¥Y,dS = pdp dpa_so

1 2 1 2%
Y, = I J zp cos’> ¢ p d dp =2 [ p’dp [ cos” ¢ do
=0 ‘p= 0

p=0 "9=0 =2 0
1 27
B 2(3)' K
and for ¥;,,dS = —pdd dp a_, so
1 2% 1 2x
EP,,=—J I zpcosz¢pd¢dp| =ZJ pzdpj cos® ¢ do
p=0 ‘=0 1=-2 0 0
o
3 N

Thus

o 2x_dr 18

Q=Y’§O+3 373
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Examble subernosition

EXAMPLE 4.6

Planes x = 2 and y = —3, respectively, carry charges 10 nC/m* and 15 nC/m”. If the line
x =0, z = 2 carries charge 10w nC/m, calculate E at (1, 1, —1) due to the three charge
distributions.

Solution:
Let

where E,, E,, and E; are, respectively, the contributions to E at point (1, 1, —1) due to the
infinite sheet 1, infinite sheet 2, and infinite line 3 as shown in Figure 4.10(a). Applying

eqs. (4.26) and (4.21) gives

10-107° ‘
E, = %(—ax) = = & = —1807a
2 36w
os, 15-107°
E, = iay = —Io_'g"ay = 2707 a, y
' 367
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Example superposition

E, = - PrL
2TEp

a,

where a, (not regular a, but with a similar meaning) is a unit vector along LP perpendicu-
lar to the line charge and p is the length LP to be determined from Figure 4.10(b).
Figure 4.10(b) results from Figure 4.10(a) if we consider plane y = 1 on which E; lies.
From Figure 4.10(b), the distance vector from L to P is

R = —3a, + a,
R ] 3
p = |R| = \/16, a, = = a, — a
S IR VAT V10
Hence,
107-107° 1
E, = D (g —
3 2 1_0_—q lO (a.x 38)
4 36w
= 18w(a, — 3a.)

Thus by adding E,;, E,, and E,, we obtain the total field as

E = —1627a, + 2707a, — 54wa, V/m

20
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Classification of vector fields

Such a field has neither source nor sink of flux. From the divergence theorem,

fA-dS=fV~Adv=0

S v

Hence, flux lines of A entering any closed surface must also leave 1t
In general the field of curl F (for any F) 1s purely solenoidal

because V- (V X F) = 0, Thus, a solenoidal field A can

always be expressed in terms of another vector F; that s,

if AV
then %A-dS=O and F=VXA
s

21
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Classification of vector fields

That is. a curl{-free vector is irrotational.” From Stokes’s theorem

j(VxA)-dS=§A-d1=o
< ¥

Thus in an irrotational field A, the circulation of A around a closed path is identically zero.
This implies that the line integral of A is independent of the chosen path. Therefore, an ir-

rotational field is also known as a conservative field.

In general, the field of gradient V (for any
scalar V) is purely irrotational since (see Practice Exercise 3.10)

VX(VV) =0

22
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Classification of vector fields

if VXA=0
then j€A~dl=O and A= —VV
I3

For this reason, A may be called a potential field and V the scalar potential of A.

23
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Electric potential:

The curl of any gradient was proven to be zero using stokes theorem.

Vx(VV)=0

As a result, it was stated that and curl-free (irrotational, conservative) vector field
can be expressed as a gradient of a scalar field. Because in electrostatics, the
second Maxwell postulate states that the curl of electric field is zero, the electric field
can be expressed as a gradient of a scalar field.

The main motivation behind this is that, finding the electric potential is easier as it is
a scalar field, then the electric field can be found by the derivation of the electric
potential, which is much easier than integration, as will be shown later.

24
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Electric potential:

e,

EEn T s
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It is defined as the work done to move an electric charge from on point in the electric

field to another
dW =

—F - dl

= —QF - dl

The negative sign indicates that the work is being done by an external agent. Thus the total
work done, or the potential energy required, in moving Q from A to B is

the potential difference between points A and B

Vap

B

A

Vap = Vg — Vi

23



e T

Electromagnetics | BIRZEIT UNIVERSITY
Electric potential:

Note that

1. In determining V,p, A is the initial point while B is the final point.

2. If V,p 1s negative, there is a loss in potential energy in moving Q from A to B;
this implies that the work is being done by the field. However, if V,5 is positive,
there is a gain in potential energy in the movement; an external agent performs
the work.

3. V4pis independent of the path taken (to be shown a little later).

4. V4 is measured in joules per coulomb, commonly referred to as volts (V).

Figure 4.18 Displacement of point charge Q in
an electrostatic field E.

Origin

26
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Electric potential due to a point charge:

The potential at any pomt is the pmennal dlfferem;e between 1hat pomt and a chosen-
pomt at wh:ch the potentxal I$ Zero.. S mim e e D s

EZ-Qza, VAB=_J

_ 0 [,L_L]
471'80 g Fa

In other words, by assuming zero potential at infinity, the potential at a distance r from the
point charge is the work done per unit charge by an external agent in transferring a test
charge from infinity to that point. Thus

s a, dra,
dre,r”

, Q0 For a charge not _ Y,
- — . V - V(r) — ,
Y J E-dl 47‘-80" at the Origin: 41{'80|l' - r |

o0

21
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Electric potential:

Electric potential due to a point charge (superposition):

V(r) — lQI + QZ 40+ Qn
dmeyr — 1| dwe,|r — s dg,lr ~ 1,
1 n
Vir) = —— > S (point charges)

dme, =1 Ir — 1y

A surface whose potential is the same all over is called an equipotential
surface. What does this tell us about the direction of electric field?

If the reference is not infinity, the easiest will be to apply indefinite integral
and add a constant. The constant is then evaluated from a given reference.

VZ-JE-dI-i-C

28
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Basics of Vector Calculus
Electric potential Example:

EXAMPLE 4. i infini
XAMPLE 4.10 Find the potential at (1, 0, 1) assuming zero potential at infinity.

Solution:
Let
Q, = —4uC, » = 5uC
V(r) = % . % + C,
dreylr — 1| dwe|r — 1y

If V() =0,C, = 0,
|l' - r]I = |(1s O, 1) - (2, _1’3)| = ‘(_1’ 1’ “2)I = \/g
=1 = (1,0, 1) — (0,4, =2)| = (1, —4,3)| = V26

Hence

10°° [—4+ 5 }
107°LvVe V26

X [
4x 36T

=9 X 10°(—1.633 + 0.9806)

= —5.872kV

V1,0, 1) =

Two point charges —4 uC and 5 pC are located at (2, — 1, 3) and (0, 4, —2), respectively.

29
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Basics of Vector Calculus
Electric potential Example, reference is not infinity:

A point charge 5 nC is located at (—3, 4, 0) while line y = 1, z = 1 carries uniform charge

EXAMPLE 4.11
2 nC/m.

(a) fV =0Vat0(0,0,0), find Vat A5, 0, 1).
(b) If V=100V at B(1, 2, 1), find Vat C(—2, 5, 3).
(¢) If V= —=5VatO, find Vg

Solution:
Let the potential at any point be

where V,, and V, are the contributions to V at that point due to the point charge and the line
charge, respectively. For the point charge,

Q

dre,r

vQ=—ond|=—J ~a,- dra,

Q
dwe,r :
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Basics of Vector Calculus
Electric potential Example, reference is not infinity:

For the infinite line charge,

PO,

Vp=—|E-dl=— a,"dpa
L J I27reop o "GP
=P hwe+c,

mE,

Hence,

Pr
V=- Inp + + C

27('80np 4me,r

where C = C, + C, = constant, p is the perpendicular distance from the line y = 1,
z = 1 to the field point, and r is the distance from the point charge to the field point.

(a) If V= 0at 00,0, 0), and V at A(5, 0, 1) is to be determined, we must first determine
the values of p and r at O and A. Finding r is easy; we use eq. (2.31). To find p for any point
(x, v, 2), we utilize the fact that p is the perpendicular distance from (x, y, ) to liney = 1,
z = 1, which is parallel to the x-axis. Hence p is the distance between (x, y, z) and (x, 1, 1)
because the distance vector between the two points is perpendicular to a,. Thus

p= Iy =~ LD = V-1 +@-17 31
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Electric potential Example, reference is not infinity:
Applying this for p and eq. (2.31) for r at points O and A, we obtain
0o = 1(0,0,0) — (0,1, )] = V2
ro=10,0,0) — (—=3,4,0)| =5
ps =1(5,0,1) = (5,1, )| =1
ra=1(50,1)—(=3,40) =9

Hence,
Pr Po Q 1 1}
— —_ —= 4 -
Vo= Va 27e, In pPs 4dme, {ro s
_-2:107° V2 5-10°° [1_1}
_2 00 1 o 1071579
T 36x " 36n
11
o—vA=—361n\f2+45(§——9-)

S A UK *‘% Lz
BIRZEIT UNIVERSITY

32
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Basics of Vector Calculus
Electric potential Example, reference is not infinity:

Vi=36In\V2 —~4=8477V

Notice that we hfwe avoided calculating the constant C by subtracting one potential from
another and that it does not matter which one is subtracted from which.

(b) If V=100 at B(1, 2, I)and Vat C(—2, 5, 3} is to be determined, we find

pp = 11,2, 1) — (L1, ) =1

g = (1.2, 1) ~ (=3,4,0)| = V21
oc=[(=2.5.3) — (-2, 1, 1)] = V20
re = 1(=2,5,3) = (=3,4,0)| = V11

VC_VBZ_&IHP_O.}_ 0 i__l_
278, Py dme, [ re  ry

Ve =100 = =36 1In

= —=50.175 Vv
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Electric potential Example, reference is not infinity:

Ve = 49825V

(¢) To find the potential difference between two

. ! points, we do not need a potential refer-
ence if a common reference is assumed.

Vec = Ve — Vi = 49.825 — 100
~50.175 V

I

34



Electric potential due to continuous distributions:

Electromagnetics |

VxE=0.

V-E=F

€o
Vir) = [ pu(r )d’l
dme, ) v — 1
[ r !
Vir) = ps(r )d:?
d7e, Jg r—r'|
[ p,(r))dV’

Vir) =

(r) dwe, | r —1r’'|

(line charge)

(surface charge)

(volume charge)

Do U0 ‘*“/ L
357 i+ 31
BIRZEIT UNIVERSITY

4 A
W(r) = 1 [e@ dt’;
4 A
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

Example 3-8 Obtain a formula for the electric field intensity on the axis of a
circular disk of radius b that carries a uniform surface charge density p,.

’

y

Fig. 3-15 A uniformly
charged disk (Example 3-8).
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

ds' =r dr' d¢’
and
R - \/-Z’T?T

The electric potential at the point P(0, 0, z) referring to the point at infinity is

Py 2x b r
V= —— "dd’
4n€0 fo J‘o (2% + 32 dr’ d¢

[(22 + b2 1/2 lz|]

Therefore, av

E=-~-VV= —a,a

— z(z% + b*)7/12], z>0

“127 z<0.
)~ 1] < 37
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

Example 3-9 Obtain a formula for the electric field intensity along the axis of a
uniform line charge of length L. The uniform line-¢harge density is p,.

1
0,0,
Solution: For an infinitely lopg line charge, the E field can be determined readily T e
by applying Gauss's law, 4s in the solution to Fxample 3-4. However, for a line
charge of finite length, as showq in Fig. 3-16, we cannot cqnstruct a Gaussian surface '
over which E - ds is constant. Qauss’s law is therefore not useful here. T
Instead, we use Eq. (3-58] by taking an element of charge d/' = dz’ at z'. The
distance R from the charge element to the point P(0, 0, z) along the axis of the line 1——1—
charge is -+ +9
g 1
| | i :
=(z-2), 1>= of
- L/2
Here it is extremely impaortant to distinguish the position gf the field point (unprimed L

coordinates) from the position pf the source point (primeq coordinates). We integrate
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

over the source region

P J‘le dz’
dneg J-Li2 z — 7

_ Pe z+ (L)2) L
e " [z - (L/z)]’ )

The E field at P is the negative gradient of V with respect to the unprimed field
coordinates, For this problem,

dv oL L
E —_— — = y el
M T 4ne,[2? — (L12)*] 223

The preceding two exampies iliustrate the procedure for determining E by first
finding ¥V when Gauss’s law cannot be conveniently applied. However, we emphasize
that, if symmetry conditions exist such that a Gaussian surface can be constructed over
which E * ds is constant, it is always easier to determine E directly. The potential V,
if desired, may be obtained from E by integration.
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

. . 10
EXAMPLE 4.12 Given the potential V = r—z sin 6 cos ¢,

(a) Find the electric flux density D at (2, #/2, 0).
(b) Calculate the work done in moving a 10-uC charge from point A(1, 30°, 120°) to

B(4, 90°, 60°).
Solution:
(a) D = &E
But
JaVv | oV | aVv
E=-VW=—|—a, +——a, + — a,
ar r 96" rsing o °

. 10 10 .
= —ysinfcospa, — — cosfcos pay + — singay
r r r

40
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Basics of Vector Calculus
Electric potential due to continuous distributions Example:

At (2, w72, 0),

20
D=¢E(r=2,0=xn/2,¢=0)= 80(§3, — Qag + Oad,)
= 2.5¢,a, C/m* = 22.1 a, pC/m*

(b) The work done can be found in two ways, using either E or V.

B
= Qf dl = OVup

A
= Q(Vg — Vy)

10
= 10 (E sin 90° cos 60° — ]]—O sin 30° cos l"O") 10°°

0 -5
=10 — - —7"1. -6
(5-3)

= 28.125 uJ as obtained before

1
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Electric Dipole

The electric dipole: It is important to understand a dipole in order to understand the
effect of materials on electric field and electric flux.

lee rie d 13‘_formed when two pomt chargeé of equal magmmde but o
arated by gsmall distasice. . . PF& i

42
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The electric dipole:

A (physical) electric dipele consists of two equal and opposite charges (£¢) separated by a
distance d. Find the approximate potential at points far from the dipole.

Solution: Let 2 . be the distance from —g and 2.+ the distance from +¢ (Fig. 3.26). Then

1 (i_i) +q
dreg \ 2+ 2-)°

and (from the law of cosines) d

V(r) =

d d?
/1,’3’__ +(d/’>)2;rdcos¢9_: (I :F—cose+4—)
r-

-9

We're interested in the régime r > d, so the third term is negligible, and the binomial expansion

yields
. —1/2
1 d = d
Lg_(lzp—cose) E—(li—cos(-)).
e 1 r r 2r
Thus
1 1 _d
—_——_ = —ocose,
2+ 2_ |
and hence 1 adcosd
co
V(r) = geony (3.90)

43
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Basics of Vector Calculus
The electric dipole:

Sincedcos § = d - a,, where d = da., if we define as the dipole moment,

p=20d :
P
. a ,
v=2 2 '
dre,r ;
+Q "
<5

-@
d cos @

Note that the dipole moment p is directed from —Q to + Q. If the dipole center is not at the
origin but at r’

p-(r—r’)

dreylr — r’|?
44
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Basics of Vector Calculus
The dipole electric field:

oV 1 oV
E=—VV=—-[ a, +— }

\/Tﬂux line

dr Tk \
_Qd c0936 %+ Qd sm30 a ";\ _y
2mwer dwe,r
W v <o
=2 ; (2 cos fa, + sin 6 a) /I~ Equipotential
de,r = /x \suqrfage
T

where p = |p| = Qd.

There also exist:

+ — + —
+ —
+ - +
. ~— - + - +
Monopole Dipole Quadrupole Octopole

(V~ 1/ (V~ 1/r% (V~1/rh (V~ 1 45
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Basics of Vector Calculus

The electric dipole example:

EXAMPLE 4.13

Two dipoles with dipole moments —5a.nC/m and 9a.nC/m are located at points
(0, 0, —2) and (0, 0, 3), respectively. Find the potential at the origin.

Solution:
where
P
P2
Hence,

Pr - Ty
& dregr:
1 {pl'rl +P2'r2]

4me, r3 r3

V =

r = (0,0,0)— (0,0, =2) = 2a, r =|r|=
Ty = (0, O, 0) — (O, 0, 3) = _‘332, ry = |r2| .

1 —10 27 _
V= —9 [ 3 *_3} 1077
L1002 s
T 367
= —=20.25V

46
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Basics of Vector Calculus

Energy density in electrostatic fields: It corresponds to how much energy is
needed to assemble the charge distribution together. Also, the energy stored
in the system.

The work done in assembling three charges

WE = Wl + Wz + W3
=0+ OQ,Vy + 03(V3 + Vi)

If the charges were positioned in reverse order,

WE o W3 -+ W2 4+ W]
0+ OV + Q1(Vi2 + Vi)

2We = Q1(Vin + Via) + OV + Viz) + 03(V3 + Vi)
=WV, + Q,Vo + O5V;

1 1 &
Wi = 3 Qi + @2V, + QsV3) Wi = 5 > Vi
i=1

41
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Basics of Vector Calculus
Example (point charges)

Three point charges —1 nC, 4 nC, and 3 nC are located at (0, 0, 0), (0,0, 1), and (1, O, 0),

EXAMFPLE 4,14 respectively. Find the energy in the system.

- % 3 0V = (le, + OV, + 03V5)
_ Q [ 0s n Q> [ O Qs
> | ame () | dme ()] " 2 |4mey(D) 47!'80(\/— 2)
L9 l 0, Q, }
2 [4mel(l) 4180(\f 2)
= e (Qle + 0,0 + sz;)

12

= 9(\—/_—2— - 7) nJ = 13.37 n)
48
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Basics of Vector Calculus
Energy density in continuous charge distributions

o fo's) l

( »)
. €0 Q") v L I q-
W = 4 2 . — L e — A
pLVd[ (hne charge) Yareq)? / (’_4’ (resin@dr db de) R"For/o > dr 0.

WE:

N | —

r

W = psV dS (surface charge)

0 | —

J

l
We = 5 f p,V dv (volume charge)

: |
Since p, = V-D WEZEJ(V'D)Vdv

!

Using the identity (V- A)V = V-VA - A-VV

1 1 W5=l (VD) - dS — ~ | - vvyav
WEz_f(V'VD)dV_“Q‘J(D'VV)dV 2£ 2j

2 b V
49
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Basics of Vector Calculus
Energy density in continuous charge distributions

Integrating the whole space gives only the second part of the integral,
which means the energy is stored in the field

1

|
-5 JV(D- VV)a'v—i[q(D‘E)dv

andsince E = —VVandD = ¢ E

We

1

1 ,
WE=£JD-Edv=EJsOE2dv

From this, we can define electrostatic energy density wg (in J/m’) as

D2
2g,

_dWg _ 1 1
=4 D E=ek

WE - J Wge dv 50

Wg
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Basics of Vector Calculus
Energy density in continuous charge distributions example:

EXAMPLE 4.15

A charge distribution with spherical symmetry has density

— pf)a
Oy 0,

O0=r=R
r >R

Determine V everywhere and the energy stored in region r < R.

Solution:
The D field has already been found in Section 4.6D using Gauss’s law.
3
(a) Forr = R, E = p°R2 a,.
3e,r

Once E is known, V is determined as

Since V(r = ©) = 0, C; = 0.

a1
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Basics of Vector Calculus
Energy density in continuous charge distributions example:
(b) Forr = R E = Pof a,.
3e,
Hence,
V= —JE-dl= —Lo err
3¢,
2
pPor
= — +
6¢, C2
2
From part (a) V(r = R) = p;f . Hence,
R’py _ R’ _ R,
3e, - 6¢, TGmGE 2g,
and
v =P 3R - 1)
6g, 52
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Basics of Vector Calculus
Energy density in continuous charge distributions example

Thus from parts (a) and (b)
3
gc’R , r=R
’
V — 8()
Po 3R* — %), r<R
bg,

j J
2 2 ]

W =
Forr < R,
Pl
E =
3e, A
Hence,
1 2
W=, ”°2J j r? - r? sin 0 de df dr
€o =0 “¢=0
S |R 5
2 R
os_, .1 ™o, R’ |
5 ) 458 53

- 18¢,
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Electric field in materials: (polarization and polarization charge, dielectrics)

Dipole moment of a single dipole

p = 0d | 2R

More than a dipole in differential ( 65" (( _® )) > —c.v—d—> .o
volume: W p= o;

N
Qid; + Qxdy ++ - -+ Oydy = E 0, d;
i=1

Y

y

Polarization density vector: a point function telling the direction and magnitude of
the polarization at that point

N
lim > Qud;

Av—0 =1

P=
Ay

o4
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Electric field in materials: (polarization and polarization charge, dielectrics)

P * aR dV' ' 1 aR P . a 1
dV = ———— Py R=p.V(—
4meR’ R R R (R) :

Applying the vector identity V' - fA = fV' - A + A - V',
. V, .
P ag v P P

P - )

R? R R
(] P 1 x
V= [V’ — ==V -PldV
1. 4we, R R pr=pv t pp = V- gE
[ P-a, -V -P p,=V-gE—p
V — n dSl d ! v o pv
Js dre R J 4re R Y =V-:-(E+P)
=V-:-D
. Bound surface and
Ors — ¥ &, D = gE + P
p.=—V-P volume charge 55
’ densities
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Electric field in materials: (polarization and polarization charge, dielectrics)

+
Pps =P-a Bound surface and |
n X # x
opy=—V-P volurpfe charge "R YY
densities (W s
- - p,==V-P
Bound charges are the charges due to w0 Yy
polarization. But, free charges are the 7 “*"\* v,
ones that are not due to polarization Jr
[ e
_ _ + +
Q= ¢P-dS = fppst N T
| iy
{ 3 \
—Qy = ppvdv:_fV‘PdV |T+++++T
Ju v T+ 4488 (o} =P ﬁ
‘ + I T + + + + T b
| | |
l T t o4 4|. 4t
ARRAA

Total charge = f Ops dS + J Py dv =0, — 0, =0

S v @

the total charge of the dielectric material remains zero. - - - -
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Electric field in materials: (polarization and polarization charge, dielectrics)

Linear isotropic and homogenius media:

D = 80E + P P = XeSOE D= 80(1 + Xe) E = SOE,E

where x,, known as the electric susceptibility of the material & =1+ X =

Linear: D depends linearly on E
Isotropic: D is in the direction of E

Homogenius: permittivity does not depend on space
(position of the point)

Permittivity is determined by the ability of a material to
polarize in response to the field, and reduce the total electric
field inside the material. It permittivity relates to a material's
ability to transmit (or "permit") an electric field. It is directly
related to electric susceptibility, which is a measure of how
easily a dielectric polarizes in response to an electric field.

External E
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Electric field in materials: (polarization and polarization charge, dielectrics)

Non-Linear, anisotropic and non-homogenius media:

Non-Linear: permitivity is not, it is constant a function of electric field.
anisotropic: permitivity is different in different directions

Non-homogenius: permittivity depends on space (position of the point)
and as a result the polarization is not uniform inside the dielectric

In a homogenious medium the polarization is uniform and the volume bound
charges vanishes. As a result, only surface charges exist and they cancel
each other. In a non homogenius medium both surface and volume bound
charges exist and the total bound charge is zero.
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Electric field in materials: (polarization and polarization charge, dielectrics)

In a linear homogenious isotropic medium, all the equations derived
still applies if the free space permitivity is replaced by the medium
permitivity.
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Polarization charges example:

EXAMPLE 5.5

A dielectric cube of side L and center at the origin has a radial polarization given by
P = ar, where a is a constant and r = xa, + ya, + za,. Find all bound charge densities

and show explicitly that the total bound charge vanishes.

Solution:
For each of the six faces of the cube, there is a surface charge p,,. For the face located at
x = L/2, for example,

Pps — P- a, = = al/2
x=L2 x=LI12
The total bound surface charge is
L2 L2
6aL
Qs=fppsd8=6f f p,,sdydz=%l?

X -2 -2
= 3ql
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Polarization charges example:

Ex.

The bound volume charge density is given by
ppy=—V:P=—(a+a+a)=—3a

and the total bound volume charge is
0, = Jp,,v dv = —3a I dv = —3al’

Hence the total charge is

0,=Q,+ 0, = 3al’® — 3al’ = 0

61
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Basics of Vector Calculus

The electric field intensity in polystyrene (g, = 2.55) filling the space between the plates
of a parallel-plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. Calcu-
late:

EXAMPLE 5.6

(a) D

(b) P

(¢) The surface charge density of free charge on the plates
(d) The surface density of polarization charge

(e) The potential difference between the plates

Solution:
1077 4 2
(a) D = g,g,F = —+(2.55) - 10" = 225.4 nC/m
367
1077 2
(b) P = x.8,E = (1.55) - —— - 10" = 137 nC/m
36T

() ps = D-a, = D, = 225.4 nC/m’
d) pps =P-a, =P, = 137nC/m’
() V=Ed=10"(15%107% =15V
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Electric Field in Conductors:

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will
through the material. (In liquid conductors such as salt water it is ions that do the moving.)
A perfect conductor would be a material containing an unlimited supply of completely free
charges. In real life there are no perfect conductors, but many substances come amazingly
close. From this definition the basic electrostatic properties of ideal conductors immediately
follow:

(i) E = 0 inside a conductor.

N
+++++ +

=

++—++ ++

=
=
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Basics of Vector Calculus
Conductors:

(ii) p = 0 inside a conductor. This follows from Gauss’s law: V- E = p/eg. If E = 0,
so also is p. There is still charge around, but exactly as much plus charge as minus, so the
net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only other place it can be.
(iv) A conductor is an equipotential. For if a and b are any two points within (or at the

surface of) a given conductor, V(b) — V(a) = — ]ah E - dl = 0. and hence V(a) = V(b).

(v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i),
charge will immediately flow around the surface urtil it kills off the tangential component

A

Conductor
E=0

64
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Boundary conditions:

So far, we have considered the existence of the electric field in a homogeneous medium. If
the field exists in a region consisting of two different media, the conditions that the field
must satisfy at the interface separating the media are called boundary conditions. These con-
ditions are helpful in determining the field on one side of the boundary if the field on the
other side is known. Obviously, the conditions will be dictated by the types of material the
media are made of. We shall consider the boundary conditions at an interface separating

* dielectric (g,,) and dielectric (g,,)

» conductor and dielectric

» conductor and free space

To determine the boundary conditions, we need to use Maxwell’s equations:
%D-dS=Qenc ng-dl=()
Also we need to decompose the electric field intensity E into two orthogonal components:

E=E +E,

where E, and E, are, respectively, the tangential and normal components of E to the inter-
face of interest. A similar decomposition can be done for the electric flux density D.
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Boundary conditions:

Material 1 Ey

For the tangential component: f/'F

%E(IL:O e == El
' ' Material 2

B Ah Ah
0= EvAw = By = By St~ Eydw + EznAzh B,

Ar

where E, = |[E,| and E, = |E,|. As Ah — 0,

Ell = Ez:]
— Material 1

I~

For the normal component: CFD dS = Qene

D, \
As Ah goes to zero the walls contribute nothing \ \D,_——

Material 2
Dln o DZn :pS—] -B

AQIpSAszDInAS_D2nAS /
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Basics of Vector Calculus
Boundary Conditions:

A. Dielectric-Dielectric Boundary Conditions

= Dx D tangential is discontinuous but E tangential is continuous

i - E normal is discontinuous but D normal is continuous
The charge at the interface is assumed to be zero

Law of refraction:

E| sin 0. - E], - E:, . Ep__ sin 02

g E cos, = D,, = D,, = &FE, cos b,

tanf, &,

61

|
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Basics of Vector Calculus
B. Conductor-Dielectric Boundary Conditions

The conductor is assumed to be perfect, meaning there
is no charges inside and the field is zero inside

D, = g E, = 0, D, = e, E, = ps

C. Conductor-Free Space Boundary Conditions

Dt = 8(‘:Evr = 0’ Dn = SoEn = Ps
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Basics of Vector Calculus

EXAMPLE5.9

Two extensive homogeneous isotropic dielectrics meet on plane z = 0. Forz = 0, &,, =
and for z = 0, g,, = 3. A uniform electric field E, = 5a, — 2a, + 3a, kV/m exists {
z = 0. Find

(a) Exforz =<0

(b) The angles E, and E, make with the interface

(c) The energy densities in J/m® in both dielectrics

(d) The energy within a cube of side 2 m centered at (3, 4, —5)

Solution:
Let the problem be as illustrated in Figure 5.15.

(a) Since a, is normal to the boundary plane, we obtain the normal components as

E1n=El-an=E]'az=3

E;, = 3a,
By, = (E; - a)a,
Also
E=E, +E,
Hence,

Elt = El - Eln = Sax - 23_,,
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Thus
E, = E,, = 5a, — 2a,
Similarly,
D,, = D, = &xE,, = ¢,E,,
or
E, = 21K, = $(Ga) = 4a,
Thus

E; = E; + E,,
= 5a, — 2a, + 4a,kV/m

(b) Let «; and o, be the angles E; and E, make with the interface while 6, and 6, are the
angles they make with the normal to the interface as shown in Figures 5.15; that is,

a; = 90 — 6,

o =90 — 6,
Since E}, = 3and E|, = V25 + 4 = V29
E, V29

E.. 3

tan§; = — = ——— = 1.795 — 6, = 60.9° - 10 :
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Basics of Vector Calculus

Hence,
oy = 29.1°
Alternatively,
E, -a,= |E]-1"-cos#
or
cos f, = 3 = 0.4867 — 0, = 60.9°
V38
Similarly,
Eywm=4 Ey=E,= V29
tan 6, = Z = \22_9_ = 1.346 — 6, = 53.4°
Hence,
o, = 36.6°

- n
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Basics of Vector Calculus

tan @ £, . .
Note that —— = —* is satisfied.
tan 02 €

(c) The energy densities are given by

_1 IE]2_1.4.10_9.(25+4+9)X106
ver T B T T 36n
= 672 pJ/m’
I , 1 107° 6
B2 =—-3-——(25+ 4 + 16) X 10
Wiz = 5 Eaflal” = 5 -3 (25 )
= 597 pJ/m’

(d) At the center (3, 4, —5) of the cube of side 2 m, z = —35 < 0; that is, the cube is in
region2with2 =x=4,3=y=35, -6 =z = —4. Hence

4 5 -4
Wi = [ wep dv = J [ f wey dz dy dz = wpa(2)(2)(2)
=2 =3 J= ¢

X=

— 597 X 8uJ = 4.776 mJ
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Example

EXAMPLE 5.10

Region y = 0 consists of a perfect conductor while region y = 0 is a dielectric medium
(&;, = 2) as in Figure 5.16. If there is a surface charge of 2 nC/m’ on the conductor, deter-
mine E and D at

(a) A, —2,2)
(b) B(—4,1,5)

Solution:

(a) Point A(3, —2, 2) is in the conductor since y = —2 < ( at A. Hence,
E=0=D

(b) Point B(—4, 1, 5) is in the dielectric medium since y = | > Q at B.

D, = ps = 2nC/m2

B
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Example
Hence,
D = 2a, nC/m”
and
E D =2 X 10_9X36—1r>< 10° a, = 367a,
EL,E, 2 - -

= 113.1a, V/m

[
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Conductors

= E_
| I
e
- ’Ee
Ef
— ——

(a)

(b)




7.~ 2 *‘) 754 V>
v‘:ﬁ v "/‘v -~
L/", : MA&}L

BIRZEIT UNIVERSITY

Electromagnetics |

Conductors

The electric field applied is yniform and its magnitude is given by

7
J = —
S . .
Figure 5.3 A conductor of uniform cross section
Substituting eqgs. (5.11) and (5.13) into eq. (5.14) gives under an applied B fild
I oV
- = gF — —
s ¢ €
Hence
| % €
i1 S N
or
__ o€
R Y

where p. = 1/0 is the resistivity of the material. 16
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Conductors
the resistance of a conductor of nonuniform cross section; that 1s,

eV _ JE-d
I  foE-dS

Power P (in watts) is defined as the rate of change of energy W (in joules) or force
times velocity. Hence,

[pvdvE~u= JE'pvudv

or

P= [E'Jdv

which is known as Joule’s law. The power density wp (in watts/m’) is given by

dP
=—=E-J=0E 1

we dv
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Conductors

For a conductor with uniform cross section, dv = dS dl: that is,
P = [Ele]dS= Vi
L S

or
P =1I°R

which is the more common form of Joule’s law in electric circuit theory.

18
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A wire of diameter 1 mm and conductivity 5 X 107 $/m has 10> free electrons/m’ when
an electric field of 10 mV/m is applied. Determine

(a) The charge density of free electrons

(b) The current density

(c) The current in the wire

(d) The drift velocity of the electrons. Take the electronic charge ase = —1.6 X 107 C.

Solution:

(In this particular problem, convection and conduction currents are the same.)
@) p, = ne = (10°)(—1.6 X 107"%) = —=1.6 X 10" C/m’

(b) J = oE = (5 X 10')(10 X 107°) = 500 kA/m’

¥\ 5
) I=J§=(5X 105)(%) = ~41' 10°°10° = 0393 A
J 5 x10
d) SinceJ = p,u = — = —————— = 3,125 X 107> m/s.
(@) Since J= ottt = 0= 16 % 107 ’

9



(«../*)/\/
.:) 3 Pl e

BIRZEIT UNIVERSITY

ectromagnetics

Example

EXAMPLE 5.4

Alead (6 = 5 X 10° S/m) bar of square cross section has a hole bored along its length of
4 m so that its cross section becomes that of Figure 5.5. Find the resistance between the

square ends.
Solution:
Since the cross section of the bar is uniform, we may apply eq. (5.16); that s,
{ I cm
R=— '
A}
2 2 _ 2 1 T 2
whereS=d - ar'=3-1{-| =9-—cm".
2 4
Hence,
4

R= ~ 97440
SX10°9 - ay x 107 P
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Boundary Value Problem

Poisson‘s and Laplace’‘s equations:

V:-D=V-gE =p,

E=-VV
2es . Py . \ )
VoV = e Poisson’s equation

A special case of this equation occurs when p, = 0 (i.e., for a charge-free region).

Laplace’s equation

V2V = 0

81
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Uniqueness Theorem
Uniqueness theorem:

Thxs is the uniqueness tbeorem' If a solution to Laplace s equatmn can be found
that satisfies the boundary conditions, then the solution is umque

Proof:  suppose there were nwo solutions to Laplace’s equation:
V2V =0 and V?V; =0,

both of which assume the specified value on the surface. I want to prove that
they must be equal. The trick is look at their difference:

Via=V, - Vs
This obeys Laplace’s equation,
Viy; = vy, — V2V, =0,
and it takes the value zero on all boundarics (since V| and V5 are equal there).
But Laplace’s equation allows no local maxima or minima—all extrema oc-

cur on the boundaries. So the maximum and minimum of V3 are both zero.
Therefore V3 must be zero everywhere, and hence

Vi = V2. ged 82
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Derivation
Proof more mathematical treatment:

Vv, =0, ViV, = 0
V=V, on the boundary
We consider their difference
Vo=V, =V,
which obeys
Vv, = VvV, - Vv, =0
V=20 on the boundary
according to eq. (6.9). From the divergence theorem.

J’V-Ad\r=§A-dS

v S

We let A = V,; VV, and use a vector identity
V-A=V-(V,VV) = V,VV, + VV,- VV,
But V?V, = 0 according to eq. (6.11), so
V-A=VV,-VV,

(6.9a)
(6.9b)

(6.10)

(6.11a)

(6.11b)

(6.12)

(6.13)
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Boundary-Value Problems
Proof more mathematical treatment:

Substituting eq. (6.13) into eq. (6.12) gives

f VVd * VVd(Iv . % Vd VVd . dS (614)
) S

Vv

From eqs. (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) vanishes.

Hence:

J IVV,[?dv =0

v

Since the integration is always positive.

VvV, =0 (6.15a)
or
Vi =V, — V| = constant everywhere in v (6.15b)

But eq. (6.15) must be consistent with eq. (6.9b). Hence, V, = 0 or V, = V, everywhere,
showing that V, and V, cannot be different solutions of the same problem. 84
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GENERAL PROCEDURE FOR SOLVING POISSON’S OR LAPLACE'S EQUATION
BVP solving approach:

The following general procedure may be taken in solving a given boundary-value problem
involving Poisson’s or Laplace’s equation:

I. Solve Laplace’s (if p, = 0) or Poisson’s (if p, # 0) equation using either (a) direct
integration when V is a function of one variable, or (b) separation of variables if V
is a function of more than one variable. The solution at this point is not unique but
expressed in terms of unknown integration constants to be determined.

2. Apply the boundary conditions to determine a unique solution for V. Imposing the
given boundary conditions makes the solution unique.

3. Having obtained V, find E using E = — VV and D from D = &E.

4. If desired, find the charge Q induced on a conductor using Q = [ psdS where
ps = D, and D, is the component of D normal to the conductor. If necessary, the
capacitance between two conductors can be found using C' = Q/V.
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Current-carrying components in high-voltage power equipment must be cooled to carry
EXAMPLE 6.1 . . g
away the heat caused by ohmic losses. A means of pumping is based on the force transmit-
ted to the cooling fluid by charges in an electric field. The electrohydrodynamic (EHD)
pumping is modeled in Figure 6.1. The region between the electrodes contains a uniform
charge p,,, which is generated at the left electrode and collected at the right electrode. Cal-
culate the pressure of the pump if p, = 25 mC/m” and V, = 22 kV.

Area S
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Solutioh:

Since p, # 0, we apply Poisson’s equation

vy = -2
&

The boundary conditions V(z = 0) = V, and V(z = d) = 0 show that V depends only on z
(there is no p or ¢ dependence). Hence

Integrating once gives

Integrating again yields

d’v =P
dz’ €




ectromagnetics

T
BlRZElT UNlVERSlTY

where A and B are integration constants to be determined by applying the boundary condi-

‘tions. When z = 0O, V = V_,

V, = —-0+0+ B—>B=1V,
Whenz = d,V = 0O,
0= P’ + Ad + V,
2s
or
P Vo
A = — ==
2e d

The electric field is given by

. __dV Pz
E = VV = 7 Bz (—8 A) a.
| Yo | Po 4
-G reG-9)]-
The net force is
a
F——‘Jvadv—poIdSJ E dz
z=0

F = p.,SV,a,

The force per unit area or pressure is

F
p = == p,V, =25 X 10? xX 22 X 10> = 550 N/m?

S
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The xerographic copying machine is an important application of electrostatics. The surface
of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from
the document to be copied is focused on the photoconductor, the charges on the lower

EXAMPLE 6.2

surface combine with those on the upper surface to neutralize each other. The image is de-
veloped by pouring a charged black powder over the surface of the photoconductor. The
electric field attracts the charged powder, which is later transferred to paper and melted to
form a permanent image. We want to determine the electric field below and above the
surface of the photoconductor.

£y
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Solution:

Since p, = 0 in this
case, we apply Laplace’s equation. Also the potential depends only on x. Thus

2
1%
V2v=‘ix2 =0

Integrating twice gives
V=Ax + B
Let the potentials above and below be V| and V,, respectively.

V1=A1X+B|, X = a

Vo = Asx + B>, x << a
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The boundary conditions at the grounded electrodes are

Vilx = d&) = 0O (6.2.2.a)
Vao(x = O0) = O (6.2.2b)
At the surface of the photoconductor,
Vilkx = a) = Vaolx = a) (6.2.3a)
D,,, — D5, = ps (6.2.3b)

We use the four conditions in egs. (6.2.2) and (6.2.3) to determine the four unknown con-
stants A, A-, B;, and B>. From egs. (6.2.1) and 6.2.2),

O=A4d+ B, B, = —A,d (6.2.4a)
O = O + Bz —> Bz = 0O (6.2.4b)
From eqs. (6.2.1) and (6.2.3a),
A]a —+ B1 - Aza (6.2.5)
To apply eq. (6.2.3b). recall that D = gsE = —=VV so that
dVv dv.
pos = Dy,, — D>, = &.F,,, — &5F,,, = —&, _l + &5 =
or
Ps = —&8,A;, + &85A5 (6.2.6)
Solving for A, and A5 in egs. (6.2.4) to (6.2.6)., we obtain
E, = —A;a, = psa;
8'[, 4 Z2d 2]
E, A £
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Poisson equation example in one dimension:

EXAMPLE 6.3

- S ——. . s

—iram b

s ey

[T T P —

Semiinfinite conducting planes ¢ = () and ¢ = /6 are separated by an infinitesimal insu-
lating gap as in Figure 6.3. If V(¢ = 0) = 0 and V(¢ = /6) = 100 V, calculate V and E

in the region between the planes.

Solution:
As V depends only on ¢, Laplace’s equation in cylindrical coordinates becomes

-2V
pZ d¢2

Since p = 0 is excluded due to the insulating gap, we can multiply by p” to obtain

which is integrated twice to give

V=A¢ + B

We apply the boundary conditions to determine constants A and B. When ¢ = 0, V = 0,

0=0+B—-B=0
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Poisson equation example in one dimension:

When ¢ = ¢,V = V,,

V,
Vo= Ady—A = -2
6

o

Hence:
V
V=—¢
o,
and
1 dV \% X
E=-VW=——g, = —°
pds ™ oo,
Substituting V, = 100 and ¢, = /6 gives
600 600 B
V= —'; 0] and E = *E a,
Check: V*V = 0, V(¢ = 0) = 0, V(¢ = =n/6) = 100.

do
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Capacitors and capacitance:

(+)
V=V, — V.= —f E-dl.
(—)

Doubling Q doubles the electric field of the conductor which inturn doubles
the potential. The relation between Q and V is linear. The proportionality
constant is C (the capacitance)

_ Q K gﬂ E -dS
C = v [E-d41 | Cismeasuredinfarads(F)

94
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Capacitors and capacitance:

Two approaches for calculating capacitance:

1. Assuming Q and determining V in terms of Q (involving Gauss’s law)
2. Assuming V and determining Q in terms of V (involving solving Laplace’s equation)

Approach

Choose a suitable coordinate system.

Let the two conducting plates carry charges +Q and — (.

Determine E using Coulomb’s or Gauss’s law and find Vfrom V = — JE - dl. The
negative sign may be ignored in this case because we are interested in the absolute

PN

value of V.
4. Finally, obtain C from C = Q/V.
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Capacitors and capacitance:

Capacitance of two parallel plates: +0 /
Assume uniformly distributed Q and —Q ((‘MLWWHWWw)) E.D
on the two plates 0
"o /\
Ps S

{b)
An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field at

the edge of the plates N
| rd

d

E=&(-a‘) V=—J E'dl=—-J [—-—Q—at] cixa‘=Q—

X 0 eS eS

— _S_S a, dielectric & plate area S

Q &S 1 0’
C - - = _ — = = - = —
V. d W=7V =50V=7¢
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Capacitors and capacitance:

Coaxial capacitance: dielectric ¢

Q=e§>E-dS=8Ep21rpL

0 |
E = -
2mepl S /—‘

Neglecting flux fringing at the cylinder ends,

1 a Q
V=—| E-dl = - ¥
J; Jz; [27rspL o J dp a,
Q b

C 2wel a

Thus the capacitance of a coaxial cylinder is given by

Q 2mel
C ===
V b

s 97
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Capacitors and capacitance:

Spherical capacitance:

Q
Q=ej(E'dS=eEr47rr2 E = 5 a,
_ dwer
The potential difference between the conductors is
’ - . . l . a
V= —J E-dl = —J [ Q 23,] .dra,
A . , Ldmer |
_Q [l _ _1,} |
4me la b
Thus the capacitance of the spherical capacitor is
B QO 47e
C == =
v 1_1
a b

"X\’-*‘y \ Y

BIRZEIT UNIVERSITY

By letting b — %, C = 4ea, which is the capacitance of a spherical capacitor whose

outer plate is infinitely large.
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Resistance:

Calculating the resistance of homogenious media:

 we found that the resistance of a uniform cross section conductor

R=— (Q).

* In this the general method for calculating resistance is explained.

e V_ JE-dl
I ¢ oE - dS

1. Choose a suitable coordinate system.
2. Assume V, as the potential difference between conductor terminals.
3

. Solve Laplace’s equation V*V to obtain V. Then determine E from E =
Ifrom I = [ oE - dS.
4. Finally, obtain R as V/I.

In essence, we assume V,, find /, and determine R = V,/I. 99

—VV and
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Resistance:

Calculating the resistance of homogenious media:

* Ex 6.3

A metal bar of conductivity o 1s bent to form a flat 90° sector of inner radius a, outer radius
b, and thickness ¢ as shown in Figure 6.17. Show that (a) the resistance of the bar between
the vertical curved surfaces atp = aand p = b 1is
b
a

2 1In

omi

and (b) the resistance between the two horizontal surfaces atz = QO and z = r1s

4t

om(b” — a°)

R' =

100
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Resistance:
Calculating the resistance of homogenious media:

* Ex 6.3

(a) Between the vertical curved ends located at p = a and p = b, the bar has a nonuni-
form cross section

Let a potential difference V,, be maintained between the curved surfaces at p = g and p = b so that

"R

4

101
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Resistance:

Calculating the resistance of homogenious media:
*Ex 6.3

Vip = a) = Oand V(p = b) = V,. We solve for Vin Laplace’s equation VV = OQin cylin-
drical coordinates. Since V = V(p),

P dp dp

As p = 0 1s excluded, upon multiplying by p and integrating once, this becomes

v_,
P
or
v _A
dp P

Integrating once again yields

V=Alnp + B
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Resistance:

Calculating the resistance of homogenious media:
* Ex 6.3 where A and B are constants of integration to be determined from the boundary conditions.

Vip=a)=0—2>0=Alna + B or B=-Alna

b V,
V(p=b)=VO—>V0=A1nb+B=Alnb—Alna=Aln; or A= b
‘ In—
o
Hence,
| V
V=Alnp—Alna=AIh2="2>n%
a b a
In —
a
dv A V,
E=—V!/=-zap=—;ap=— P
pln—
J = oE, dS = —pdpdza, . b
w2 i V v 21[]'(_
o (V.0 4
]:JJdS:J' J ; ded(b:E 2 =2 _
$=0 z=0pln,[z 21né I oTt
_ a a
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Resistance:
Calculating the resistance of homogenious media:
*Ex 6.3

(b) Let V, be the potential difference between the two horizontal surfaces so that
Viz=0)=0and V(z = ¢t) = V,. V = V(2), so Laplace’s equation V2V = 0 becomes

a’v
_5_ — 0
dz
Integrating twice gives
V=Az+ B

We apply the boundary conditions to determine A and B:

Vz=0)=0—->0=0+B or B=90
Viz=10)=V,—2V, = At or A=

104
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Resistance:

Calculating the reS|stance of homogenlous media:

*Ex 6.3 Vo
=22
dv V
E=-VV=-—a =-—"a,
dz t
V’
J=0E=—Ot°az, dS = —pdd dpa
b af2
1%
I=JJ dS=J [ °F 5 de dp
p=a =() l
_ Vo mp|"_ Veor (b’ - d)
r 22, 4t
R,_YE_ 4¢
I om(b® — a°)

C., g
)A_L el
BIRZEIT UNIVERSITY

109
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Capacitors and capacitance:

Calculating the resistance of a capacitor in homogenious media:

R | [E-di
I ¢oE-dS ;
po RC =2
Q e¢E-dS o
. C _— = ==
vV JE-dl
For a parallel-plate capacitor,
&S d
C - -, R —_—
d aS
For a cylindrical capacitor, j
b
1 —
2mel f a
— , R — }
b 27al
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Capacitors and capacitance:
Calculating the resistance of a capacitor in homogenious media:

For a spherical capacitor,

L)
. dre a b
C=—— ==
1 1 4o
a b
And finally for an isolated spherical conductor,
1
C = 4mea, R =
dmoa

107
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Magnetostatic

When a charge is moving beside a current carrying wire, a force is exerted on
it. The force is due to a field resulting from the current carrying wire called
magnetic field.

» Charges moving with constant velocity generate steady magnetic field
« Charges moving with varying velocity generate dynamic magnetic
field( depends on time)

* In this chapter, we learn how to calculate magnetic field density and intensity
using Biot Savart‘s law, and Ampere‘s law.

108
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Defining the magnetic field: A force is noticed on a moving charge with
velocity u near a current carrying conductor. This force is proportional to q,

the velocity component perpendicular to the magnetic field and to the
magnetic field(Tesla, weber/m2).

Lorentz force:

Current

F,=quxB (N), ~/]l

{ )

\ N~ -

- . .
Magnetic field

\
0\l
/T"

the total force in the presence of
both electric and magnetic field S

F=gE+uxB) . (N), 41/

Y

109
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Sources of magnetostatic fields are steady currents:

To take into account that the

magnetic fields depend not
only on current but also the i
length of the wire, current
element is defined:
/
KdS

JdV: current element in
general (©

Idl : thin wire J constant with Figure 7.4 Current distributions: (a) line current, (b) surface
darea current, (¢) volume current.

KdS : a thin plate, J does not

depend on thickness

10
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Biot-Savart‘s Law

Biot—Savart’s law states that the magnetic field intensity J# produced at a point P,
as shown in Figure 7.1, by the differential current element T dl is proportional to the
product / di and the sine of the angle o between the element and the line joining P to

the element and is inversely proportional to the square of the distance R between P
and the element.

That is,

dE o _Idl sSin o«

or

kI dl sin o

dH = =
R-

H (or /) is out H{or [)isin

where k is the constant of proportionality. In SI units, & = 1/4m, é é

IH = Idlsin @

— ——— 4R’
Tdl X ap Idl xR

| dH = R _ 14 :
‘ 47R* 4wR> | m

|
L . —n




. cﬁ%"ﬁighéﬁti
Electromagnetics | ey g

The magnetic field intensity H: as we did in the electrostatic, we defined a
material independent vector called D, the electric field density.We define H the

magnetic field intensity, a quantity which does not depend on medium.

H = —B.
Ho

Biot savart law in terms of H:

rllea@

H = - (line current)
) 4R~
(K dS X a

H = ‘ = R (surface current)
Jg 47R"

H:JJMX%

5 (volume current)
4R -

112
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Magnetostatic

Biot Savart‘s law example:
Idl X R

47R’
Butdl = dza,and R = pa, — za,, so

Ip dz
H = 2 232 Ao
dfp” + 7]

2
—p cosec” a du

dH =

Letting z = p cot o, dz =

1 [ p?cosec’ a da
U= "] eosecia ™
. P cosec’ a
I (22
= T J sin o do
Y

H=_—a,

W)@; el

BIRZEIT UNIVERSITY

{

L]

H (into the page)

P
|

H = —(cos oy — cos ap)a,
dmp

when the conductor is infinite in length. o; = 180%, e, = 0°

! a¢ :_a( X ap 13

27p
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Magnetostatic
Biot Savart‘s law example 2:

A circular loop located on x” + y* = 9, z = 0 carries a direct current of 10 A along a,. De-
termine H at (0, 0, 4) and (0, 0, —4).

Solution:

Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity 4H at point
P(0, 0, k) contributed by current element / d1 is given by Biot-Savart’s law:

_Id1 X R

dH
4nR?

where dl = pdp a,, R = (0,0, h) — (x,y,0) = —pa, + ha_, and

a, a, a,
dAdIXR=10 pdp 0| =phdpa,+ p°dpa,
-p 0 h

Hence,

1 2
dH = o (Phdba, + o7 do ) = dH,a, + dH.a.
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Magnetostatic
Biot Savart‘s law example 2:

By symmetry, the contributions along a, add up to zero because the radial components
produced by pairs of current element 180° apart cancel. This may also be shown mathe-
matically by writing a, in rectangular coordinate systems (i.e., 8, = cos ¢ a, + sin ¢ a,).
Integrating cos ¢ or sin ¢ over 0 = ¢ = 27 gives zero, thereby showing that H, = 0.

Thus

2% 2 2
Ip~ do a, Ip27a,
H= | dH.a. = 5 S, G
J z %z L 47r[p.. + h2]3/2 41r[p2 + ,12]3/2
or
_ lpzaZ
2[92 + h2]3/2

(a) Substituting/ = 10A, p = 3, h = 4 gives

10 (3)2 a,
H(0,0,4) = —— = (.36a, A/m
( ) 219 + 16> 115
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Biot Savart‘s law example 2:

(b) Notice from d1 X R above that if & is replaced by —#, the z-component of dH remains
the same while the p-component still adds up to zero due to the axial symmetry of the loop.
Hence

H(0, 0, —4) = H(0, 0,4) = 0.36a, A/m

' 116
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In other words, the circulation of H equals 7., .; that is,

ffH-an:lenc

By applying Stoke’s theorem to the left-hand side, We obtain
Lene = ff H - J1 = f(VXH)~dS

But

oo = JJ as

Comparing the surface integrals

VXH=] LU
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Applications of Ampere‘s LAw
Infinite Line Current T
: Amperian path -
I'= | Hpa,-pdpa, = J pddp = Hy+ 2rp o p |
P ¥
dl
H = 21]“0 a, x 1

118
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Applications of Ampere‘s LAw

B. Infinite Sheet of Current

—> Zmperianpmh
H - dl - ]cnc — Kvb —-;—]> a
— K =K,a 2"{)3
x/
H = H.a, z>0
—H,a, z<0

2 3 4 i dri,
fwan ([ [ [ Y-
1 2 3 4 <

= 0(—a) + (—H,)(—b) + 0(a) + H,(b) ot

= 2H b 19
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Anplicati f ‘s LA
1
Ho—"—‘EKy.
g
5 yaxs Z>0
H = < 1
—5Ka, <0

In general, for an infinite sheet of current density K A/m,

1
H=5KXa,,

where a, is a unit normal vector directed from the current sheet to the point of interest.

120
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Since the current is uniformly distributed over the cross section,

J=——a, dS = pdo dp a,
wa
{ I 2 Ipz
Icncz J'dS=—2 pd¢dp=‘—27rp = T
wa wa a
Hence eq. (7.24) becomes
j dl = Hy2mp = ]-j
e
or
Ip |
2
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Applications of Ampere‘s LAw

C. Infinitely Long Coaxial Transmission Line

perian path for each of the four possible regions: 0 s psaaspsbbspsb+1,
andp=h+1.
For region 0 < p < a, we apply Ampere’s law to path L, giving

For region 0 < p < a, we apply Ampere’s law to path L,, giving

% H-di=1, = JJ-dS
Ly

Since the current is uniformly distributed over the cross section,

!

1ra2

J = a_, dS = pded dp a.

I I 2
Ienc=JJ'dS=—ijd¢d0=—2rp“=7
w wa

“ 122
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Applications of Ampere‘s LAw

o1

o
V=3 —
B é]» 272-a2
FoOor resmion o — o — £, we use path 7 -, as the AAasmpeoerian path
f ¥¥ - ZW — T, — T
L=
2w — ¥
L= 5 a
Hé —_ —I_
Z s o

b, we use path L., as the Amperian path,

f H - d1
L

H2wmp = 1

IA
D
IA

For region a

or

Hy = 5 -
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Forregion & = p = & + 17, we use path 1.;, getting

ff;ﬂ-d1=H¢-2w¢=lm

where

I.. = I + IJ-cE

and J in this case is the current density {(current per unit area) of the outer conductor and is
along —a_. that is,

J = — 4 a
wf(H + H° — b7
Thus
: I
Tepne = § — > o do dé
(e + 7 — 71 S, J .,
2 g2
_ 1[ — g_—b_]
r- + 2br
Substituting this in eq. (7.27a). we have
V4 o> — B ]
o, — 1 — L2 2
s 2apo [ 72 + 2br

For region o = & + 7. we use path 7, getting
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Applications of Ampere‘s LAw

% H-dIl=71—1=20
La

or
Hy, =0

Putting eqs. (7.25) to (7.28) together gives

I

27:;23@ O=p=a
i

H = 5‘1};3@ a=p=2»s

ol ]

— il — 5| a,, b=p=>b-+r

27p t2 + 2bc] "¢ ?

0, p=b -+t

s
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MAGNETIC FLUX DENSITY—MAXWELL’'S EQUATION

The magnetic flux density B

where p, is a constant known as the permeability of free space. The constant is in
henrys/meter (H/m) and has the value of

o = 47 X 107" H/m

Magnetic fiux lines

7

126
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MAGNETIC FLUX DENSITY—MAXWELL’'S EQUATION

closed surface, ¥ = Q

(a) (b)

The magnetic flux through a surface S is given by closed susface, ¥ = 0
[ é" V@
| P=|B-dS » =
| s !

i
J

Figure 7.17 Flux leaving a closed surface due to: (a) isolated electric
charge ¥ = §.D - dS = Q, (b) magnetic charge, ¥ = $;B-dS = 0.

where the magnetic flux ¥ is in webers (Wb) and the magnetic flux density is in
webers/square meter (Wb/mz) or teslas.

In an electrostatic field, the flux passing through a closed surface is the same as the
charge enclosed; thatis, ¥ = ¢ D - dS = Q. Thus it is possible to have an isolated electric
charge as shown in Figure 7.17(a), which also reveals that electric flux lines are not neces-
sarily closed. Unlike electric flux lines, magnetic flux lines always close upon themselves
as in Figure 7.17(b). This is due to the fact that it is not possible to have isolated magnetic

poles (or magnetic charges). For example, if we desire to have an isolated magnetic pole
by dividing a magnetic bar successively into two, we end up with pieces each having north
and south poles as illustrated in Figure 7.18. We find it impossible to separate the north
pole from the south pole. 127
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MAGNETIC FLUX DENSITY—MAXWELL’'S EQUATION

An nsolatedmagneﬁc chérge does not exis;. .

Thus the total flux through a closed surface in a magnetic field must be zero; that is,

§B-JS=0

This equation is referred 1o as the law of conservation of magnetic flux or Gauss's law for
magnefostatic fields just as ¢ D - dS = Q 1s Gauss’s law for electrostatic fields. Although
the magnetostatic field is not conservative, magnetic flux is conserved.

By applying the divergence theorem to eq. (7.33), we obtain

§B~dS=J'V~de=O
Y W

or

128
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MAXWELL'S EQUATIONS FOR STATIC EM FIELDS

TABLE 7.2 Maxwell’s Equations for Static EM Fields

Differential (or Point) Form  Integral Form Remarks
VD =p, f D-aS = fp,.dv Gauss’s law
$ v
V:B=0 fB-dS=0 Nonexistence of magnetic
§ monopole
VXE=0 f E-dl=0 Conservativeness of
L electrostatic ficld
VXH=] %H dI=IJ~dS Ampere’s law
L s

129
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FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The
force can be (a) due to a moving charged particle in a B field, (b) on a current element in an
external B field, or (¢) between two current elements.

A. Force on a Charged Particle

According to our discussion in Chapter 4, the electric force F, on a stationary or moving
electric charge Q in an electric field is given by Coulomb’s experimental law and is related
to the electric field intensity E as

F.= QE

This shows that if Q is positive, F, and E have the same direction.

A magnetic field can exert force only on a moving charge. From experiments, it is
found that the magnetic force F,, experienced by a charge Q moving with a velocity uin a

magnetic field B is 130

F, = Qu X B (8.2)

—— This clearly shows that F,, is perpendicular to both u and B.
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FORCES DUE TO MAGNETIC FIELDS

TABLE 8.1 Force on a Charged Particle

State of Particle E Field B Field Combined E and B Fields
Stationary QE - QOE
Moving QE Cu X B OE +uxB

B. Force on a Current Element

To determine the force on a current element / dl of a current-carrying conductor due to the

magnetic field B, We have to follow :

131
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FORCES DUE TO MAGNETIC FIELDS

J = p.u (8.5)
From eq. (7.5). we recall the relationship between

current elements:

fdl = K dS — J dv

(8.6)
Combining egs. (8.5) and (8.6) vields
f1dl — padv — dO a
R dO 1
Aldt t Iv. I dl = — d1 = Jd. — = d
ernatively iz (@4 ir O u
Hence.
- I dl — dQO u (8. 7)

This shows that an elemental charge dQO moving with velocity u (thereby producing con-
vection current element O u) is eguivalent to a conduction current element 7 J1. Thus the

force on a current element 7 1 in a magnetic field B is found from eq. (8.2) by merely re-
placing Cu by 7 J1: that is,

IF — 7d1 < B (8.8)>

If the current 7 is through a closed path L or circuit. the force on the circuit is given bv

F = f‘; Idl < B | (8.9)
S i

or a volume current element J dv, we simply make use of eq. (8.6) so that eq. (8.8)
becomes

dF = K dS < B or dF = J dv X B (8.8a)
while eq. (8.9) becomes

F=IKdS><B or F=dev><B (8.9a)
s -
From eq. (8.8)
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Magnetostatics
Magnetic force: Lorentz force equation(total force) on moving charge:

— " du
~F. - P = =m—=Q(E + u X
F=F, +F, L} O + uLX B) m— = Q((E +uXB)

Applications:
ammeters, voltmeters, galvanometers, cyclotrons, motors, and magnetohydrodynamic generators.

Magnetic force does no work because it is normal to velocity. It can only
change the direction of velocity, not its magnitude (kinetic energy)

Magnetic force on a current element:

J=pu Idl = dQu

Idl=KdS = Jdv F =1 % B

Idl = puadv=d0u i
F = % Idl X B 133

L
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Magnetic force between two current elements:
d(dF]) = 1| (ll] X de

¥ dl, X ap
de - u( 2 4 . Rll
47TR§1

poly dly X (I, dl, X ag, )
47"R§_|

d(dF,) =

;,LOII
F] lZ%
L

47

% dly X (dl, X ag,)
Ly R%l

DN T sl
BIRZEIT UNIVERSITY
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Example

EXAMPLE 8.4

A rectangular loop carrying current /, is placed parallel to an infinitely long filamentary
wire carrying current /; as shown in Figure 8.4(a). Show that the force experienced by the

loop is given by

polihsb | 1 I
F=-2212)| a,N
2T pO po + a
ﬁ Figure 8.4 For Example 8.4:
- (a) rectangular loop inside the field
2 produced by an infinitely long wire.
' (b) forces acting on the loop and
wire.
ey 72 4 b 4 Flﬁ;@ — F,
R @
o rn - o l -
3
i —
Fw Fﬂ

fa) ' {v)
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Example

Solution:
Let the force on the loop be

F(=F|+F2+F3+F4=Iz§d12XBl

where F,, F,. F3, and F, are, respectively, the forces exerted on sides of the loop labeled 1,
2, 3, and 4 in Figure 8.4(b). Due to the infinitely long wire

. Moli
! 2w, @
Hence,
" ol
F.=Igjdl2><B.=lzf dza. x o7l 5,
z2=0 Z‘A'po
b
= —“"l# a, {attractive)
2mwp,

F, is attractive because it is directed toward the long wire; that is, F, is along —a_ due to the
fact that loop side 1 and the long wire carry currents along the same direction. Similarly,

roly

o
F; =1 dl, X = [ L X ——
3 2f > B; 2J dz a 2(°+a)a¢

z=b
= _ polilab a (repulsive)

27(po + a) °

Kol Ay

Pota
F, =1 d, pd
2 2 f P a, 270

P=pa

+
_ Bolil> mfe "2, (parallel)

2ar Po = > 136
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= — =In a. (parallel)

The total force F¢ on the loop is the sum of F,, F», F3, and F; that is,

_P'olnlzb[i_ ! ]_
Fe Po po+a(a")

which is an attractive force trying to draw the loop toward the wire. The force F,, on the
wire, by Newton’s third law, is —F; see Figure 8.4(b).

131
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Magnetic Torque in uniform field: e

3 /a4
T=rXF //—t/ / s

/' F
. Q / o
IT| = |F,| wsin « A( /

T = BI{w sin « /z :’ / ~

-4-w—-/——-—> 1
T = BIS sin « -
i /\ axis of rotation
|
'm = ]Sa,, |

I j
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A Magnetic Dipole
Magnetic dipole: it is a small loop of current :

P(r,6,¢)
A = pol % ﬂ |
4o ) r i
2 a
A = polma’sin 6 a ,
_ ) 0 |
4mr” |
a i > )
I 3 - :
~
A —_ p‘() m X al' dl \\}
2
d7r .

where m = Ira’a., the magnetic moment of the loop, and a. X a, = sin 0 a,. We deter-
mine the magnetic flux density B from B = V X A as

ot

B=-——=<(2cosfa, + sinb ay)

dar

139
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A Magnetic Dipole

TABLE 8.2 Comparison between Electric and Magnetic Monopoles and Dipoles

Electric Magnetic

Does not exist

Monopole (point charge) Monopole (point ch-rgc)

‘,' _ ‘O cos 8 : A pron ‘sinfaa/o
Arer? . . Anr2

E = o {2 cos @ a, + ’sin'b 2) f B = ~2 (2 cos @a, + sin 0;~ )
Aareer? r » a” . Anr3. i e

a,

0

Dipole (two point charge) Dipole (small current loop or bar -'niaznet) 1 40
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E
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-

T=mXB=Q,{XB

F = Q)"B
T=0,(B = ISB
Qnt = IS

LU}
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MAGNETIZATION IN MATERIALS
Magnetitization and magnetic field in materials

Orbiting electrons either around
nucleus or around them selves qP
produce internal magnetic dipoles
which in turn generate magnetic

nucleus I

@D

field. On macroscopic level and ~clectron @ clectron
without and external magnetic field !
applied to the material, this field
average is zero. - )
{in amp "'::""f":;"eter} xs_the magneﬁc ‘-dlpole momﬁnt per umt
Av—0 Ay 142

A medium for which M is not zero everywhere is said to be magnetized
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Magnetitization and magnetic field in materials

oM X X R
dA:M ’)aR v' :&.M_—:;.dv’
AwR* 4R B=0,M=0
5: ',.1__ Av
R’ R
Ho 1 '
A= | MXV —adv
47 R
| | M
MXV—-—==VXM-V X—
R R R
j V'Xde’=—<£ F X dS
‘;’ S!
{* '
,‘LO V XM ! I""Of ann ’
A= dv' + — das
ar )], R 7 Tax ], R

_ o [ dedv o jg K, ds’
ar ), R 4r ], R

EDn T s
BIRZEIT UNIVERSITY
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Magnetitization and magnetic field in materials

l :
u—'-VxB=J+Jm==J+Vx.VI
0 L]

B
V % <£—M)=J. H=—-M (A/m).
Ho Ko

For linear materials:

M = x,H

where x,, is a dimensionless quantity (ratio of M to H) called magnetic susceptibility

B = ,u‘O(l + Xm)H

K : .
= pot, H = uH =1+ fm = Lo relative permeability of the medium

4ARN
The quantity p = p.u, 1s called the permeability of the material
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CLASSIFICATION OF MAGNETIC MATERIALS

In general, we may use the magnetic susceptibility x,, or the relative permeability g, to
classify materials in terms of their magnetic property or behavior. A material is said to be

nonmagnetic if x, = 0 (or pr = 1); it is magnetic otherwise. Free space, air, and materials

e

with x,, = 0 (or g, = 1) are regarded as nonmagnetic.

Magnetic Materials
Linear ‘ Nonlinear
Diamagnetics Paramagnetics Ferromagnetics
Xw =0, e, = 1.0 Xee = 0, =1 Xow * 0, p, 2 |

Figure 8.13 Classification of magnetic materials.
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CLASSIFICATION OF MAGNETIC MATERIALS

EXAMPLE 8.7 Region 0 = z < 2 m is occupied by an infinite slab of permeable material (u, = 2.5). If
) B = 10ya, — 5xa, mWb/m?® within the slab, determine: (a) J, (b) J,, () M, (d) K, on

z=0.
Solution:
(a) By definition, _
B 1 aB, oB
J —— V X H — V x —— 5 ( _ Y _ x) a.,
Mot , 4a X 10 (2.5) ax oy ~
10°
= —— (=5 — 10)10 “a, = —4.775a_ kA/m?
D) Jo = x0d = (1, — 1DJ = 1.5(—4.775a,) - 10°
= —7.163a. kA/m°
B 1.5(10ya, — 5xa,) - 1077
c) M = x,,H = - - —
(e Xors X ot A > 10 7(2.5)
= 4.775ya, — 2.387xa, KA/m
(d) K, = M X a,. Since z = 0O is the lower side of the slab occupying 0 = z = 2,
a, = —a,. Hence,
K, (4.775ya, — 2.387xa,) X (—a.)

2.387xa, + 4.775ya, kA/m
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MAGNETIC BOUNDARY CONDITIONS

We make use of Gauss’s law for magnetic fields

fo.o5-0

and Ampere’s circuit law

(a) (b}

Figure 8.16 Boundary conditions between two magnetic media: (a) for B, (b) for H.

m
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MAGNETIC BOUNDARY CONDITIONS

By, AS — B,, AS = 0

Thus

Bln = By, or F‘IHIn = “2“2::

Ah Iy
K'Aw=HI:'AW+Hln'T+H2r:'_,,_:
Ah Ah
~Hyt Aw = Hyyt == = Hin ' =
As Ah =), eq. (8.42) leads to
H“ - HZI =K

‘where surtace current K on the boundary 1s assumed normal to the path.

18
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MAGNETIC BOUNDARY CONDITIONS

Blf B21

My K2

=K

In the general case, [—(ﬁ:___i) ><_ 8;2___[_(

S S SRR U——— |

If the boundary is free of current or the media are not conductors (for K is free cyrrent density), K = 0

T B, _ By
) #2

If the fields make an angle @ with the normal to the interface,

Bl Cosol = B|n = an = 8200882 And —glsin 0' — H“ - Hz’ == %sin 02
1 2

5 |E

Then I[ tan 6,
|

19
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MAGNETIC BOUNDARY CONDITIONS

EXAMPLE 8.8 2:;;2 that H, = —2a, + 6a, + 4a, A/m inregion y — x — 2 = 0 where p; = 5p,, cal-

(a) M] and B|
(b) H; and B, inregiony — x — 2 = () where p; = 2y,

150
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MAGNETIC BOUNDARY CONDITIONS

Solution:

Sincey —x—2=0isaplane, y —x=2or y = x + 2 is region 1 in Figure 8.17. A
point in this region may be used to confirm this. For example, the origin (0, 0) is in this

region since O — O — 2 << 0. If we let the surface of the plane be described by f{x, y) =
¥y — x — 2, aunit vector normal to the plane is given by

_ N _a, —a,
V7l V2

a,

(a) M, = x,.uH, = (., — 1DH, = (5§ — 1X—2,6,4)
= —8a, + 24a, + 16a. A/m
B, = ;,H, = ppu H, = 4% X 107 (5}(—2, 6. 4)

—12.57a, + 37.7a, + 25.13a. pWb/m~’

(—1,1,0) | (—1,1,0)
(b) H,, = (H, - a)a, — [(—2, 6. 4) - S ] >
— —4a, + 4a,
But
H, = H, + H,,
Hence,
H, — H, — H,, — (—2.6,4) — (—4, 4, 0) 51

2a, + 2a, + 4a.
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MAGNETIC BOUNDARY CONDITIONS

Using the boundary conditions, we have
H2,=H|,=28_,+28’.+4az
BZn = BIn —)F'ZHZN = P‘l“ln

or
H,, = _Hln = _(_4ax + 43)) = —10a, + loa‘
Thus
H,=H,, + H,, = —8a,+ 2a, + 4a. A/m
and

B, = woHy = popoHy = (4 X 10 7)(2)(—8, 12, 4)
= —20.11a, + 30.16a, + 10.05a, uWh/m’

152
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MAGNETIC BOUNDARY CONDITIONS

EXAMPLE 8.9 The xy-PIane serv?s as the interface between two different media. Medium 1 (z<<0)is
filled with a material whose p, = 6, and medium 2 (z = 0) 1s filled with a material whose
u, = 4. If the interface carries current (1/py) a, mA/m, and B, = 5a, + 8a. mWh/m?, find
H| and B|. | ) | ‘ ’

‘}[ Visedw
3%
"

s

;3:5.‘\.‘.’. s :’g{l.‘:.."‘...'..f,'.:; Fi ure 8.18 Fo 0,
ok :%?flw f-‘:-,".:‘,"‘ e r Example 8.9

SN 5.5
:-«l'q‘ - -,i?‘"
e

gy 2 3 HE 'i

5 *; d i R

r Lol ,:‘\ > LR P ‘J 5
ks e
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MAGNETIC BOUNDARY CONDITIONS

Solution:

In the previous example K = 0, 50 eq. (8.46) was appropriate. In this example, however,
‘K # 0, and we must resort to eq. (8.45) in addition to eq. (8.41). Consider the problem as
illustrated in Figure 8.18. Let B, = (B,, B,, B.) in mWb/m’.

B, =B, =8 —B =8 (8.8.1)
But
= B, _ 1 (5a, + 8a.) mA/
2 o du, X 2) m (8.8.2)
and
H, = —:—:—l' = _GII (B.a, + Ba, + B.a.) mA/m (8.8.3)

Having found the normal components, we can find the tangential components using

(H, — H>) X a,,, = K

or
H, X a,. = H, < a,. + K (8.8.4) 154 :

Substituting eqs. (8.8.2) and (8.8.3) into cq. (8.8.4) gives

1
—(Ba,  + Ba,6 + B.a.) <X a_. = (5a, + S8a_) X a. + _a a,
6“0 o h 4"'0 h Ho
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MAGNETIC BOUNDARY CONDITIONS

Equating components yields

(8.8.5)

It
+
o
H

,‘@

Ih
&l
I
hn

From egs. (8.8.1) and (8.8.5),
B, = 1.5a, + 8a. mWb/m*

H, —5— — (0.25a, + 1.33a.) mA/m
Hi o

and

1
H, = —(1.25a, + 2a_.) mA/m

o

Note that H,, is (1/p,) mA/m less than M5, due to the current sheet and also that
Bln = BZn-

155




. i
Electromagnetics | o

Magnetostatics

Inductors and inductance

A circuit (or closed conducting path) carrying current / produces a magnetic field B which
causes a flux ¥ = [ B - dS to pass through each turn of the circuit as shown in Figure 8.19.
If the circuit has N identical turns, we define the flux linkage \ as

AN=NVY (8.50)

Also, if the medium surrounding the circuit is linear, the flux linkage A is proportional to
the current / producing it; that is,

A=l
or A=LI (8.51)

where L is a constant of proportionality called the inductance of the circuit. The inductance
L is a property of the physical arrangement of the circuit. A circuit or part of a circuit that
has inductance is called an inductor. From eqs. (8.50) and (8.51), we may define induc-
tance L of an inductor as the ratio of the magnetic flux linkage A to the current / through the

inductor; that is,

=== (8.52)

L 196
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Magnetostatics
Inductors and inductance

The unit of inductance is the henry (H) which is the same as webers/ampere. Since the
henry is a fairly large unit, inductances are usually expressed in millihenrys (mH).

The inductance defined by eq. (8.52) is commonly referred to as self-inductance since
the linkages are produced by the inductor itself. Like capacitances, we may regard induc-
tance as a measure of how much magnetic energy is stored in an inductor. The magnetic
energy (in joules) stored in an inductor is expressed in circuit theory as:

|
W, = LI (8.53)
2
—— Figure 8.19 Magnetic field B produced by a circuit.
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Magnetostatics
Inductors and
inductance

or
| [ = 2w,,,[ "
L

Thus the self-inductance of a circuit may be defined or calculated from energy considera-
tions.

If instead of having a single circuit we have two circuits carrying current /; and /, as
shown in Figure 8.20, a magnetic interaction exists between the circuits. Four component
fluxes ¥y, P2, Vs, and ¥, are produced. The flux ¥, for example, is the flux passing
through circuit 1 due to current /; in circuit 2. If B, in the field due to /5 and S, is the area
of circuit 1, then

P, = f B, - dS (8.55)
S

We define the mutual inductance M, as the ratio of the flux linkage N\, = N, ¥, on circuit
1 to current 75, that is,

)\12 NI‘PI2

L b

M, = (8.56)

Similarly, the mutual inductance M,, is defined as the flux linkages of circuit 2 per unit
current /,; that is,
PNTRALY #1

My = 2L = 2721 8.57
21 2 / (8.57a)
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Magnetostatics
e It can be shown by using energy concepts that if the medium surrounding the circuits is
Inductors and linear (i.c., in the absence of ferromagnetic material),
inductance M, = M, (8.57b)

The mutual inductance M, or M;, is expressed in henrys and should not be confused with
the magnetization vector M expressed in amperes/meter.

h fp Figure 8.20 Magnetic interaction between
IWO Circuits.

circuit | cireuit 2
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Inductors and
inductance

We define the self-inductance of circuits 1 and 2, respectively, as

L] _ )\ll — Nllpl (858)
/) Iy
and
A’)ﬁ I’V‘)"’?
L,=—"F=—-—= 8.59
- 1> /5 { )

where ¥, = ¥,, + Y,and ¥, = ¥,, + V... The total energy in the magnetic field is the
sum of the energies due to L, L,, and M, (or M>,); that is,

W

n

, = W= Wo + W,

,
= S Ldi + 5 Lal3 = Ml (8.60)

The positive sign is taken if currents /; and /, flow such that the magnetic fields of the two
circuits strengthen each other. If the currents flow such that their magnetic fields oppose
each other, the negative sign is taken.

160
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Magnetostatics

Inductors and
inductance

As mentioned earlier, an inductor is a conductor arranged in a shape appropriate to
store magnetic energy. Typical examples of inductors are toroids, solenoids, coaxial trans-
mission lines, and parallel-wire transmission lines. The inductance of each of these induc-
tors can be determined by following a procedure similar to that taken in determining the
capacitance of a capacitor. For a given inductor, we find the self-inductance L by taking
these steps:

1. Choose a suitable coordinate system.
2. Let the inductor carry current /.
3. Determine B from Biot-Savart’s law (or from Ampere’s law if symmetry exists)
and calculate ¥ from ¥ = [ B - dS.
NY
I

A
4. Finally find L from L = 7=

The mutual inductance between two circuits may be calculated by taking a similar proce-
dure.

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance
produced by the flux internal to the conductor is called the internal inductance L;, while
that produced by the flux external to it is called external inductance L.,,. The total induc-
tance L is

L=L,+ L, (8.61)

| Loy C = pe 161
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Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution:

We recall from Example 7.4 that for an infinitely long solenoid, the magnetic flux inside

the solenoid per unit length is

B = uH = pln

where n = N/€ = number of turns per unit length. If §'is the cross-sectional area of the so-

lenoid, the total flux through the cross section is

¥ = BS = ulnS

Since this flux is only for a unit length of the solenoid, the linkage per unit length is

N = % = n¥ = un’lS

and thus the inductance per unit length is
g LN

¢
L' = un’S H/m

VL
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Inductors
and
inductance

Determine the self-inductance of a coaxial cable of inner radius @ and outer radius b.

Solution:
The self-inductance of the inductor can be found in (two different ways: by taking the four
steps given in Section 8.8 or by using egs. (8.54) and (8.66).

Method 1: Consider the cross section of the cable as shown in Figure 8.22. We recall
from eq. (7.29) that by applying Ampere’s circuit law, we obtained for region
1(0 = p<a).

wlp
B, = ~
B P S
and for region 2 (a = p = b),
ul
Bw = _—a
2T omp

® z-axis

ta) (b)

A
Figure 8.22 Cross section of the coaxial cable: (a) for region 1, '3
0 < p < a, (b) for region 2, a < p < b; for Example 8.11.
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We first find the in.tcmal inductance L;, by considering the flux linkages due to the inner
conductor. From Figure 8.22(a), the flux leaving a differential shell of thickness dp is

I
d\Pl = BI dpdz = up-,
2wa”

The flux linkage is ¥, multiplied by the ratio of the area within the path enclosing the flux
to the total area, that is,

pZ
d)\| d‘lvl l d'Pl 2

“~

wa

because 7 is uniformly distributed over the cross section for d.c. excitation. Thus, the total
flux linkages within the differential flux element are

plp dp dz 9_
27a’ :

d\y =

=

For length € of the cable,

N = r J’( plo’ dp dz — plf
I =0 =0 27a’ 8T
Al [L'()
Lin = — = —-— 1.1
! S (8 )

= H/m (8.11.2)
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We now determine the external inductance L., by considering the flux linkage
between the inner and the outer conductor as in Figure 8.22(b). For a differential shell ¢
thickness dp,

| 1
d¥, = B, dp dz = +— dp dz
27p

In this case. the total current / is enclosed within the path enclosing the flux. Hence,

b € -
)\2’—"])2:,[ J “ldpd":ldelné

= Jz=D 2mp 2 a
)\2 . pf b
Lew = I 2 lna

Thus

165
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Method 2: It is casier to use eqs. (8.54) and (8.66) to determine L, that is,

W 1 L’ L W
== or —_—
m 2 12
where
1 B’
= = - — — d
W, 5 IB H dv J » v
Hence

and

as obtained previously.
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TABLE 8.3 A Collection of Formulas for Inductance of Common Elements

1. Wire /
¢ =
8ar 3_3

3. Paralle! wires

€ d
Lsﬂ?—ln-
w a
€ d d=>a d

. Torus (of circular cross section) 2

. Sheet

€= a

L= uNip, — Vol — a’]

L= zé(m = +05)
90 B2 T ¥ 3
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Magnetic
circuit

5

(a)

for n magnetic circuil elements in series

Y=¥,=¥, =--

and

F=F,+F+-- - +F,
For n magnetic circuit elements in parallel,

P=YJ|+‘})3’?,I+...-?’(

and

if] -3’1

TABLE 8.4 Analogy between Electric and Magnetic

Circuits

Electric

Magnetic

Conductivity o
Field intensity E
Current/ = [ J - dS

!
Current density J = 5 = ok

Electromotive force (emf) V
Resistance R

Conductance G =

v ¢
Ohm'slaw R = — = —
m S iaw _1_

or V=Ef=1IR
Kirchoff’s laws:
21=0
2V —-2RI=0

Permeability u
Field intensity H
Magnetic flux ¥ = [ B - dS

, ¥
Flux density B = i pH
Magnetomotive force (mmf) F
Reluctance R

Permeance P =

|
R
, _F_
Ohmslawgt——‘}—)—us
or F =H{=YR =NI
Kirchhoff’s laws:
¥ =0

ZF-ZRY =0

168
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EXAMPLE 8.14 The toroidal core of Figure 8.26(a) has p, = 10 cm and a circular cross section with
a = | cm, If the core is made of steel (= 1000 g) and has a coil with 200 wms, calcu-
late the amount of current that will produce a flux of .5 mWh in the core.

(b)

Figure .26 (a) Toroidal core of Example 8.14; (b) its equivalent elec-
tric circuit analog.
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Solution:

This problem can be solved in two different ways: using the magnetic field approach
{direct), or using the clectric circuit analog (indirect).

Method 1:  Since p, is large compared with a. from Example 7.6,

NI o NI
B=—=
¢ 27p,
Hence,
f 2
Y= BS = poy;)\l xa
=P,
or
g 2e¥ 200 X 10705 X 107
pop Na' A X 107 (1000)20001 X 107
0 L ae9a
S

Method 2:  The toroidal core in Figure 8.26(a) is analogous to the electric circuit of
Figure 8.26(b). From the circuit and Table 8.4.

"
FuNI=PR=p L -y TP
ws Mo,

or

s
0¥ o794

[ =
gop, Na~

as obtained previously.

BIRZEIT UNIVERSITY
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EXAMPLE 8.15 In the magnetic circuit of Figure 8.27, calculate the current in the coil that will produce a
magnetic flux density of 1.5 Wh/m® in the air gap assuming that g = S0y, and that all
branches have the same cross-sectional area of 10 cm’.

Figurc 8.27 Magnetic circuit of Exam-
ple 8.15.
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Solution:

The magneuc circuit of Figure 8.27 is analogous to the electric circuit of Figure 8.2, In
Figure 827, 9t,. 3., Jt;. and 3R, are the reluctances in paths 143, 123, 35 and 16. and 56
(air gap). respectively. Thus

w 1072
R, = Ry = 13 - 30 10

o, S (dx < 10 )S0NI10 X 10 Y
3 = 107

20w

9> 107 0.9 = 107 :
Wy = - e =
47 > 10 "NSONI10 =< 10 20
1> 1077 5 =< 10°
a« = -7 4 -
4 > 107 1IN0 x 10 ) 20x
We combine 9%, and 97> as resistors in paralicl. Hence.

209

7.4 > 10°
Ry = A, + R + T, [|R: = om

dan

Figure 8.28 Electric circuit analog of the magnetic circuit in
Figure 8.27.
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Solution:

The magneuc circuit of Figure 8.27 is analogous to the electric circuit of Figure 8.2, In
Figure 827, 9t,. 3., Jt;. and 3R, are the reluctances in paths 143, 123, 35 and 16. and 56
(air gap). respectively. Thus

w 1072
R, = Ry = 13 - 30 10

o, S (dx < 10 )S0NI10 X 10 Y
3 = 107

20w

9> 107 0.9 = 107 :
Wy = - e =
47 > 10 "NSONI10 =< 10 20
1> 1077 5 =< 10°
a« = -7 4 -
4 > 107 1IN0 x 10 ) 20x
We combine 9%, and 97> as resistors in paralicl. Hence.

209

7.4 > 10°
Ry = A, + R + T, [|R: = om

dan

Figure 8.28 Electric circuit analog of the magnetic circuit in
Figure 8.27.
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5=NI='P,R;

The mmf s

But ¥, = ¥ = B,S. Hence

15%x 10 % 107" %74 % 10°

T _

B

Example
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Electrodynamics

Electrostatics and Magnetostatics vs Electrodynamics

VXE= —‘—E
Vx =0 V:-B=0 | "
V-D=p VxH=J VeH=Irg
V:D=p
| V:B=0
electrostatic magnetostatic electrodynamic

Using Helmholtz theory in electrostatics electric field can be computed
Using Helmholtz theory in magnetostatics magnetic field can be computed

In electrostatics and magneto staticsElectric field and magnetic field
can be computed independently from each other

In electrodynamics where a varying current density and charge
density with time exist, the magnetic and electric field are coupled
which leads to electromagnetic fields. 115
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Electrodynamics: The quantities that we aim to compute are E,D,H,B, each has

three components=> 12 equation are needed to solve for the variables.

‘ ‘B
The four Maxwell‘s equation are not all independent the | V*E=-%

divergence of both vector fields can be derived from the curl

of the vector fields. As a result the two curl equations
represent 6 equations each of them. The constitutive l
equations complete the 12 equations

VxH=J4+2
ot

vV-D
VB

p
0.

1
H=-B D =¢E
I

To reach to the final generalized from of Maxwell‘s equations
two generalizations to the curl equations must be applied:
1)Farady‘s law

2) Displacement Current Density

176
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Farady‘s law and electromagnetic induction: It is experimental law in which
an electric field is induced in a loop when a time varying magnetic field is

linking it.

JdB

ot

VXE=-—

oB
J(VXE)-dS:—J-t*-dS
§ s of

@Enw=—%LBw§

‘ aP
‘V,

|
{

L.

Point form Farady‘s law for
stationary circuit

Integral form of Farady's
law for stationary circuit

emf — _Z Y = (ﬁc E + df = emf induced in circuit with contour C’
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Motional and Transformer EMF:
1. Transformer EMF: static circuit in a time varying magnetic field

[ncreasing B(¢)

4} AT

A %
dl _‘\Mm &/- {
induced B

2. Motional EMF(flux-cutting emf): moving circuit in a static magnetic field

Vit = § E, dl = §> (u X B) - dl
L

178

We define the motional electric field E,, as
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Motional and Transformer EMF:
2. Motional EMF: moving circuit in a static magnetic field

} B (in)
® ® ® @

, Y.
It 4
I® ® t ® ® »
R§ F,, - / > U @
® ® ® ® {
/

Vemt = uB¢

179
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Motional and Transformer EMF:

3. Both: moving circuit in a time varying magnetic field

[ 9B
vemfzifE-d|=—J—_—-ds+ f (u X B) - dl
L S

: ot L

EXAMPLE 9.1

A conducting bar can slide freely over two conducting rails as shown in Figure 9.6. Calcu-
late the induced voltage in the bar

(a) If the bar is stationed at y = 8 cm and B = 4 cos 10°t a, mWb/m’
(b) If the bar slides at a velocity u = 20a, m/s and B = 4a, mWb/m?
(c) If the bar slides at a velocity u = 20a, m/s and B = 4 cos (10°% — y)a, mWb/m?

P

6 cm

G 180
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Solution:
(a) In this case, we have transformer emf given by

at

— 4(10%(0.08)(0.06) sin 10%
= 19.25in 10" V

dB 0.08 0.06
V= — [ - dS = J J 4(107*)(10°) sin 10% dx dy
y=0 “x=0

The polarity of the induced voltage (according to Lenz's law) is such that point P on the
bar 1s at lower potential than Q when B is increasing.

(b) This is the case of motional emf:

0
Vems = J(uXB)-dl = J (ua, X Ba,) - dxa,
r=f
= —uBt = —20(4.107)(0.06)
—4.8 mV

(c) Both transformer emf and motional emf are present in this case. This problem can be
solved in two ways.

181
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Motional and Transformer EMF:
Method 1: Using eq. (9.15)

Vemt = —JQ das + [(uXB)~dl (9.1.1)

= [ f 4.107°(10% sin(10% — y")dy' dx

X=

0
+ [ [20a, X 4.10 * cos(10% — y)a,) - dx a,

0.06
y

— 80(107*)(0.06) cos(10% — y)

0]
= 240 cos(10° — y) — 240 cos 10°% — 4.8(10%) cos(10° — y)
= 240 cos(10° — y) — 240 cos 10% (9.1.2)

= 240 cos(10% — y")

because the motional emf is negligible compared with the transformer emf, Using trigono-
metric identity

. A+B _ A-B
COSA — cos B = —2sin sin
2 2
6, Y\ . Y
Vs = 480 sin (10 t — 5) sin 5 \Y (9.1.3)

182
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Motional and Transformer EMF:
Method 2: Alternatively we can apply eq. (9.4), namely,

yo__a¥
emf a t
where
Y = J B-dS
¥ 0.06
= f J’ 4 cos(10% — y) dx dy
y=0 “x=0
y
= —4(0.06) sin(10° — y)
y=0
= —0.24 sin(10% — y) + 0.24 sin 10° mWb
But
& _ U=y =ut =20t
dt
Hence,

Y = —0.24sin(10% — 201) + 0.24 sin 10°% mWb

Voer = —‘% = 0.24(10° — 20) cos(10° — 20r) — 0.24(10°%) cos 10° mV

= 240 cos(10% — y) — 240 cos 10% v

(9.1.4)

(9.1.5)

183
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50 a, mWhim’. If
lies in the

tic field B

a uniform magne
lines at the frequency of 50 Hz and the loop

The loop shown in Figure 9.7
side DC of the loop cuts the flux

0, find

induced emf at ¢

!

yz-plane at
(a) The
(b) The

nduced current at ¢ = 3 ms

9.2

Figure 9.7 For Example 9.2; polarity is for

ing emf,
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(a)

motional, that is,

induced emf

1, the

invarian

Since the B field

dl

I(nXB)-

Vd-

coordinates

@
{ 1 ;
[ ] m o
& . 3 3
gs £ m HE
L I |
sls & s "3
1 "I g =
= 3 S -
m < 22F
ﬂp . - ] -
HEE :
.|aw W B P ER-X--1
T .m. m -
ﬂ < = - vh

As u and dl are
using eq. (2.9)
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and
(u > B)-dl = —pwB, cospd: = —0.04(100710.05) cos o o=
= —0.2% cos & dz
0
Vews = I —~ 02wcos ¢ dz = —~6wcosdmV
=0
To determine ¢, recall that

do
w=;—’¢-w+c,

where C, is an integration constant. At = 0. ¢ = w2 because the loop is in the yz-plane 7 fosg ":; S
at that ume, C, = w/2. Hence, e S R R o i P i e

D ut-i-%

Vet = —6x cos(wt + '3") = 6 sin(100ws) mV

Atr = I ms, Vs = 6w sin(0.1x) = 5825 mV
(b)) The current induced is

= Z?'=6018in (10077) mA

= 60w sin(.3x) mA = 0.1525 A
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Electrodynamics
DISPLACEMENT CURRENT

For stanc EM nelds, we recall that

VXH=]J

But the divergence of the curl of any vector field is identically zcro
Hence,

V-(Vx<H) 0= %¥-7
The continuity of current in eq. (5.43), however, requires thar

V-J=—ﬂ¢o
ar

(9.17)

Thus eqgs. (9.18) and (9.19) arc obviously incompatible for time-varying conditions. We
maust modify eq. (9.17) to agree with eq. (9.19). To do this. we add a term to eq. {9.17) so

that it becomes
V<H=J—+ Js

(9.20)

where J,is to be determined and defined. Again. the divergence of the curl of any vector is

zero. Hence:
VAV x<H)=0=V-J+ V-J,
In order for eq. (9.21) to agree with eq. (9.19),

Co.y=9%9p _ 98 o — v.9D
v-J. V-3 o V- =W
or
aD
e = ar

Substituting eq. (9.22b) into eq. {(9.20) rcsults in

VXH=J+Q
ar

oD
ar

(9.21)

(9.22a)

{9.22b)

(9.23)

181
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Electrodynamics
Based on the displacement current density. we doefine the displacerens currens as

I‘—J—J.-as— ‘:?-as ©.243

We must bear in miaind d—td.ls‘:l-cemcmcurrem s o It of ving <l ic field. A
wwpical example of such cm is l.he cur-ent through a capacitor when an alternating
voltage source is applicd to its p This example. shown in Figure 910, serves 1o illus-
trate the need for the displ ent cur Applying an unmodified form of Ampere’s
circuit law toaclosedpathsbowanxgure9.lO(a)glves

fn-dl= ¥ -dS = M. — I 9. 253
= S

EXAMPLE 9.4 A parallel-plate capacitor with plate arca of 5 cm” and plate separation of 3 mm has a
voltage S0 sin 10%t V applied to its plates. Calculate the displacement current assuming : : y
3 e = 26, o o :

which is the same as the conduction current, given by

_dQ _ dp, _ (D _  dE _esdv _ _av
k== Sa " " a"da Ca

;o= 2.307% 5> 107"
‘0 36 3 x 107
147.4 cos 10’rnA

<107 % S0 cos 10°r
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Electrodynamics
MAXWELL'S EQUATIONS IN FINAL FORMS

TABLE 9.1 Ceneralized Forms of Maxwells Equations

Differential Form Integral Form Remarks
VD =p {D'Q-Ip.dv Gauss™s law
5 v
V-B=20 4B-ds=l) Nonexistence of isolated
‘s magnetic charge*
iB a ) .
VXE= = iE-dl--' ]B'& Faraday’s Iaw
ar M ar J
d d
Vxll-=.l+dn f“-dl-—l(.l-*ip)-ds Ampere’s clrcun law
ar . n daz

189
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Electrodynamics
MAXWELL'S EQUATIONS IN FINAL FORMS

is associated with Maxwell's equations. Also the equation of continuity

'., v
V)= ——‘% (9.29)

is implicit in Maxwell's equations. The concepts of linearity. isotropy, and homogeneity of
a material mediuom still apply for time-varying fields: in a linear, homogeneous. and
isotropic medium charactenzed by o, &, and u. the constitutive relations

D=zsE=sgE P {(9.30a)
B = xH = p (H + M) (9.300)
J=0oE + pg.u {9.30¢)

hold for tme-varying fields. Consequently, the boundary conditions

E,, = E,, or (E, — E;) X 2,2 = 0 (9.31a)
H,, — H. = K or (H, — Hy) < a .= K (9.31b)
Dy, — Dy = ps or (D, —D;)-a,:=p, (9.31c)
B,, — By, = 0 or (B — B -a, = 0 (9.31d)

remain valid for time-varying fields. However, for a perfect conductor {o = =) in a time-
varying held,

E = 0, H = 0, J =0 (9.32)
and hence.
B, — 0, E -0 (9.33)

For a perfect diclectric (o = 0), eq. (9.31) holds except that K — O, Though egs. (9.28) 10 : :
(9.33) are not Maxwell's equations. they are associated with them, ? : ; : 190
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Electrodynamics
TIME-VARYING POTENTIALS

For static EM fields, we obtained the electric scalar potential as

o, dv
V= S 940
[ 4xeR . )
and the magnetic vector potential as
et v
= = 4
A | axr 9412

We would like to examine what happens to these potentials when the ficlds are time
varying. Recall that A was defined from the fact that ¥V - B = 0. which still holds for time-

varying fields. Hence the relation
Mo — o < 2}
:B=V><A[ (9.42)

holds for ime-varyving situations. Combining Faraday’s law in eq. (9.8) with eq. (9.42) gives

a
VX E = —2(VxA) (9.43a)
or
v x (s + %) —a (9.43b)

Since the curi of the gradient of a scalar field is identically zero (sec Practice Exercise
3.10). the solution to eq. (9.43b) is

E s 2N v (9.44)
ar
or
aA
E = Vv — ja—l— {9.45)

From cgs. (9.42) and (9.45). we can determine the vector fields B and E provided that the
potentials A and V are known. However, we still nced to find some expressions for A and
V similar to those in eqgs. (9.40) and (9.4 1) that arc suitable for time-varying ficlds.

From Table 9.1 or eq- (9.38) we know that ¥V - D = p, is valid for ume-varying condi-
tions. By taking the divergence of eq. (9.45) and making use of cgs. (9.37) and (9.38), we

obtain
v-E=2— vv- 2 (v-a 3 191
= ar
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TIME-VARYING POTENTIALS

or
V’V+i(V-A)= £ (9.46)
ar & .
Taking the curl of eq. (9.42) and incorporating eqs. {(9.23) and (9.45) results in
a
vV x VXA=uJ+sp.—(—VV—ﬁ
ar ar .
(av a’A ST
- — vf 28 ) —
wt — g o pe o
where D = gE and B = pH have been assumed. By applying the vector identity
Tx UVx A=WV-A)— VA (9.48)
to eq. (9.47).
2
VA — WV-A)= —puJ + u= V (%:—’) + use ‘;“2 (9.49)

A vector field is uniquely defined when its curl and divergence are specified. The curl of A
has been specified by eq. (9.42); for reasons that will be obvious shortly, we may choose
the divergence of A as

av
V-A = vy (9.50)

This choice relates A and V and it is called the Loreniz condition for potentials. We had this
in mind when we chose V - A = 0 for magnetostatic fields in eq. (7.59). By imposing the
Lorentz condition of eq. (9.50), eqs. (9.46) and (9.49), respectively, become

a‘v .
‘lpvzv— e = = —"—] (9.51)
L

ar &

. 19D
TIA v wJ (9.52) 3 | :
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TIME-VARYING POTENTIALS

the solutions, or the integral forms of egs. (6.4) and (7.60), it can be shown that the solu-
tions” to egs. (9.51) and (9.52) are

[p.] dv
V= _ .
aneR (9.53)
and
plJ) dv
= | &= 954
A I 4xR ( )

The term [p,] (or [J]) means that the time ¢ in p,(x, ¥, 2, ) Jor J(x, v, g, 1)] is replaced by the
retarded time 1" given by

=g~ & (9.55)
®
where R = |r — r’| is the distance between the source point r’ and the observation point r
and
- (9.56)
U=—r X
Ve

is the velocity of wave propagation. In free space, u = ¢ = 3 X 10° m/s is the speed of
light in a vacuum. Potentials V and A in egs. (9.53) and (9.54) are. respectively, called the
retarded electric scalar potential and the retarded magnetic vector potential. Given p, and
J. Vand A can be determined using egs. (9.53) and (9.54): from Vand A, E and B can be

determined using eqgs. (9.45) and (9.42), respectively. : R ; ; 193 ;
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Electrodynamics

Wave Propagation

In ge!mll,wavesare means Of,_u;anspaﬁng energy or information.

our major goal is to solve Maxwell’s equations and derive EM wave
motion in the following media:

I. Free space (0 = 0,8 = g, u = p,)

2. Lossless dielectrics (o0 = 0, & = g,&8,, p = P, Or 0 << we)
3. Lossy dielectrics (¢ # 0, & = g8, 4 = pptp)

4. Good conductors (o = %, & = g, . = R pg, OF 0 > @E)

A wave is a function of both space and time.

In one dimension, a scalar wave equation takes the form of
iE L, d&E

u =)
ar’ a7’
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Wave Propagation

Its solutions are of the form

or

E - = fiz — ut)
E™ =gz + w)
E=flz — ut) + gz + w)

If we particularly assume harmonic (or sinusoidal) time dependence €™, eq. (10.1)
becomes
d’E,

— 4+ 3E, =0 (10.3)
dz”

where 8 = w/u and E, is the phasor form of E. The solution to eq. (10.3) is similar o
Case 3 of Example 6.5 [see eq. (6.5.12)]. With the time factor inserted. the possible solu-
tions to eq. (10.3) are

EY = Ae/W=fD (10.4a)

E~ = Be/“t*h2 (10.4b)
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Wave Propagation

Its solutions are of the form

or

E~ = fiz — ut)
E™ =gz + w)
E=flz — ut) + gz + w)

If we particularly assume harmonic (or sinusoidal) time dependence €™, eq. (10.1)
becomes

2
d_lfs + BE, =0 (10.3)
dz”

where 8 = w/u and E, is the phasor form of E. The solution to eq. (10.3) is similar o
Case 3 of Example 6.5 [see eq. (6.5.12)]. With the time factor inserted. the possible solu-
tions to eq. (10.3) are

EY = Ae/W=fD (10.4a)
E~ = Be/t“t*ha (10.4b)
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Wave Propagation

the possible solugions to eq. (10.3) are

E* = Aef@r=D 040) - -~

E™ = Beflur+hd LNy o
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Wave propagation using Laplace theorem-

|'v3E, - ¥’E, =0 (10.17)

where

72 = Jup(o + jue) (10.18)

and 7 is called the propagation constant (in per meter) of the medium. By a similar proce-
dure, it can be shown that for the H field,

2 2
V’H, — v'H, = 0 (10.19)
Ly =+ B (10.20)
We obtain o and 3 from egs. {(10.18) and (10.20) by noting that
—Re 7 = 87 — & = wius (10.21)
and
¥ = 87 + e = wp Vo + we” (10.22)

From eqgs. (10.21) and (10.22), we obtain

o = w\/ﬁ 1 + —‘1—]2 — 1] (10.23)

wE

EEOVECE Y
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10.4 PLANE WAVES IN LOSSLESS DIELECTRICS

[n a lossless dielectric, o << we. It is a special case of that in Section 10.3 except that

o= (), £ = 8,8, K= Uk, (10.42)

Substituting these into eqs. (10.23) and (10.24) gives

a =0, 8= wVue (10.43a)
w | 2w
u=—= . A= — (10.43b)
8 Ve 8
Also
_ [P e
1= g L0 (10.44)

and thus E and H are in time phase with each other.
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~10.5 PLANE WAVES IN FREE SPACE

This is a special case of what we considered in Section 10.3. In this case,

g =10, £ = &, m= (10.45)

This may also be regarded as a special case of Section 10.4. Thus we simply replace & by
g, and p by w, in eq. (10.43) or we substitute eq. (10.45) directly into egs. (10.23) and
(10.24). Either way, we obtain

a=0 B=wVpe, = % (10.46a)

AN=— (10.46b)

g = = C,
V ot s

where ¢ = 3 X 10" m/s, the speed of light in a vacuum. The fact that EM wave travels in
free space at the speed of light is significant. It shows that light is the manifestation of an
EM wave. In other words, light is characteristically electromagnetic.
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10.6 PLANE WAVES IN GOOD CONDUCTORS

This is another special case of that considered in Section 10.3. A perfect, or good conduc-
tor, is one in which o => we so that o/we — %, that is,

0="%,  EZ &, p= Wl (10.50)

Hence, egs. (10.23) and (10.24) become

a=0= \fwya \ wfuo (10.51a)

A 2
u=~=,/——, A= — (10.51b)
54 Iz B
n = \/%&441’ (10.52)

E = E e “cos(wt — Bz)a, (10.53a)

Also,

and thus E leads H by 45°. If
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TRANSMISSION LINES_
- I'=]- 2
Zglo - -~ t
i ,L
+ +
V, Vo = Zia (4 Zo) —~Za 7 ||V
z=0 z=1
Ll
Zg 1,
"
Vg@ Vo || Zin

ih

Figure 1.6 (a) Input impedance due to a line terminated by a
load: (b) equivalent circuit for finding V,, and /, in terms of Z, at
- the input.
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A. Shorted Line (Z;, = 0)
For this case, eq. (11.34) becomes

Zy = Z;, = jZ,tan 3¢ (11.41a)

Also,
r,=-—1, 5= (11.41b)

We notice from eq. (11.41a) that Z, is a pure reactance, which could be capacitive or in-
ductive depending on the value of €. The variation of Z;, with € is shown in Figure 11.8(a).

B. Open-Circuited Line (Z; = =)
In this case, eq. (11.34) becomes

Zoo = lim Z,, = Zo__ _ —jZ,, cot 3€ (11.42a)

Ze- j tan 8¢
and
')=1, s=o= (11.42b)
The varnation of Z;, with € is shown in Figure 11.8(b). Notice from eqs. (11.41a) and
(11.42a) that
ZZo = Z2 (11.43)
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C. Matched Line (Z, = Z,)

This s the most desired case from the practical point of view. For this case, eq. (11.34)
reduces to

Zin =12, (11.44a)

(11.44b)
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TRANSMISSION LINES-

EXAMPLE 11.4

A 30-m-long lossless transmission line with Z, = 50 Q operating at 2 MHz is terminated
with a load Z, = 60 + j40 Q. If u = 0.6¢ on the line, find

(a) The reflection coefficient T
{b) The standing wave ratio s
(¢) The input impedance
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Solution:
This problem will be solved with and without using the Smith chart.

Method 1: (Without the Smith chart)
Z, — Z, 60+ j40 — 50 10 + j40

@ = . T 50+ ,40 + 50 110 + j40
= 0.3523/56°
-+ 0.
by s - ATITL 103523 o0

1 — |l 1 —03523
(c) Since u = w/B.or 8 = wlu,
wf 2% (2 X 10°(30) _ 2=

£ = -
B u 0.6 (3 X 109 3

= 120°

Note that 3€ is the electrical length of the line.

. Z, + jZ, tan Bf]
Zin = Zo [zo + jZ, tan B€
50 (60 + j40 + j50 tan 120°)
[S0 + j(60 + j4{)}_lan 120°]
50(6 + j4 — j5V3)
= = 24.01/3.22°
(5 + 4V3 — j6 V3)

= 2397 + j1.35Q | 206
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Method 2: (Using the Smith chart).

(a) Calculate the normalized load impedance

ZL 60+j40
T2,
=12+ 08

Locate z;, on the Smith chart of Figure 11.15 at point £ where the r = 1.2 circle and the
x = 0.8 circle meet. To get I at z,, extend OP to meet the » = 0 circle at Q and measure OF
and 0Q. Since OQ corresponds to |I'| = 1, then at P.

OP 3.2cm
r = = = ().351
IT 00 9lcm 02516
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TRANSMISSION LINES_

Method 2: (Using the Smith chart).

(a) Calculate the normalized load impedance

ZL 60+j40
T2,
=12+ 08

Locate z;, on the Smith chart of Figure 11.15 at point £ where the r = 1.2 circle and the
x = 0.8 circle meet. To get I at z,, extend OP to meet the » = 0 circle at Q and measure OF
and 0Q. Since OQ corresponds to |I'| = 1, then at P.

OP 3.2cm
r = = = ().351
IT 00 9lcm 02516
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Note that OP = 3.2cm and OQ = 9.1 cm were taken from the Smith chart used by the
author; the Smith chart in Figure 11.15 is reduced but the ratio of OP/OQ remains the

same.
Angle 0y is read directly on the chart as the angle between OS and OP; that is

fr = angle POS = 56°

I' = 0.3516 /56°

(b) To obtain the standing wave ratio s, draw a circle with radius OP and center at O.
This is the constant s or |I'| circle. Locate point S where the s-circle meets the I',-axis.
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[This is easily shown by setting ', = 0 in eq. (11.49a).] The value of r at this point is s;
that is

s=r(forr=1)
= 2.1

(c) To obtain Z,, first express € in terms of A or in degrees.

0.6 (3 x 10°
=% & 6)=90m
2 x 10

30 A T20°
= —

s,

90”73 3 — 240

£ =30m =

Since A corresponds to an angular movement of 720° on the chart, the length of the line
corresponds to an angular movement of 240°. That means we move toward the generator
(or away from the load, in the clockwise direction) 240° on the s-circle from point P to
point G. At G, we obtain

Zin = 0.47 + jO.035
Hence
Zin = ZoZin = S0(0.47 + jO.035) = 235 + j1.75Q

Although the results obtained using the Smith chart are only approximate, for engineering
purposes they are close enough to the exact ones obtained in Method 1.
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