Engineering Electromagnetics

Chapter 2

Coulomb’s Law and Electric Field Intensity
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Chapter Objectives

* Introduce Coulomb’s Experimental Law
* Understand Electric Field Intensity

* Explain Superposition of Fields

* Understand Volume Charge Density

* Relationship between Electric Field and Volume
Charge Distributions

Note: Sections 2.5-2.6 are omitted.
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Coulomb stated that

The force between two very small objects
separated 1n a vacuum or free space by a
distance, which 1s large compared to their
size, 1s proportional to the charge on each
and inversely proportional to the square of
the distance between them,
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Coulomb’s Experimental Law

O 0,
® R @

Force of repulsion, £ occurs when charges
have the same sign.
Charges attract when of opposite sign

F

1
— k Ql Q2 where k =
R? 47‘[6()

Q4 and Q, *charge, in coulombs (C).
R 1s the separation, in meters (m).

k is a proportionality constant.

F in Newton (N).



Free Space Permittivity

The new constant € 1s called the permittivity of free space and has magnitude,
measured in farads per meter (F/m).

The quantity €, is not dimensionless, Coulomb’s law shows that it has the
label C2/N - m2

2. | -9
€0 =8.854 x 107 “=——10"" F/m
36T

with which the Coulomb force becomes:

010

- 47T€()R2

The coulomb is an extremely large unit of charge, for the smallest known
quantity of charge is that of the electron (negative) or proton (positive), given in
SI units as 1.602 X 10~1°C; hence a negative charge of one coulomb represents

about 6 X 1018 electrons. (that is equivalent to ~3.74 x 1037 electrons’
charges combined) 2.5



Coulomb’s law shows that the force between two charges of one coulomb
each, separated by one meter, is 9 X 10° N, or about one million tons.

The electron has a rest mass of 9.109 X 10731 kg and has a radius of the
order of magnitude of 3.8 X 10~ 1°m,
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Coulomb Force with Charges Oft-
Origin

In order to write the vector form of F, we
need the additional fact that the force acts
along the line joining the two charges %)
and 1is repulsive if the charges are alike in
sign or attractive if they are of opposite

sign.

If Q1 and Q2 have like
signs, the vector force F2 on Q2 is in the
same direction as the vector R12. o

Origin
Rp Rip m-—n€

ap = = e
IRl R |rp —rq]
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Electric Field Intensity

Consider the force acting on a test charge, Q,, arising from charge Q;:

F 010, a,

o 2
47T€()R1t

where a, 1s the unit vector directed from Q, to Q,

The electric field intensity 1s defined as the force per unit test charge, or

K 04

N Qt B 47T€OR%I

E; a;; N/C

E1 i1s interpreted as the vector force, arising from charge Q,, that acts on a
unit positive test charge Q..
A more convenient unit for electric field 1s V/m, as will be shown.
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More generally

K is the electric field intensity evaluated at the test charge
location that arises from all other charges 1n the vicinity—
meaning the electric field arising from the test charge 1tself
1s not included in E.
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The electric field of a single point charge
located at the origin

0

= —————ap
4 eg R?

R 1s the magnitude of the vector R, which 1s the directed

line segment from the point at which the point charge Q
1s located to the point at which E is desired, and agis a
unit vector in the R direction
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Electric Field of a Charge not located
at the Origin

0 r—r Q(r —r')

If we consider a charge that is not at the E(r) =

.. . deglr — Y% |r — /| - dreolr — /|3
origin of our coordinate system, the
field no longer possesses spherical _ Qlx —xDa, + (v — yDa, + (z — 2)a]
symmetry, and we might as well use dreollx — x') + (y = ¥)* + (z = )P
rectangular E
coordinates.

P(x, y, z)
For a charge Q located at the source point

r' = x'a, 4+ y'a, + Z'a;
we find the field at a general field point P( o Q)
X,V.,Z2
r = xa,+ ya, + zZa; r

expressing Rasr —r’

Origin



Superposition of Fields From Two Point Charges

Because the coulomb forces are linear, the electric field intensity arising from
two point charges, @, at rq and Q, at r,, 1s the sum of the forces on @, (at point P)
caused by @, and @, acting alone, this is called superposition of fields.

oy 0>

E(r) = a a,
deg|r — ry)? | A eg|r — ro|?

For n charges:

E(l‘) _ Zn: Qm 9

deglr —ry 2 "

m=1

E(r)
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Example

Find E at P(1, 1, 1) caused by four identical 3-nC (nanocoulomb) charges
located at P1(1, 1, 0), P2(—1, 1, 0), P3(—1,—-1, 0), and P4(1,—1, 0)

A

To find E at P, use

n

r—ry
Qm
E(r) = Z a,, | PaL) P, (1.1,0)
dreglr — 1,2 P, (—1,—1,01_;_1_____*_;__/ _____ ’
" ’ ! }I*_/ r-r, -’
..--" - h-
r—r,
First, find the vectors: |- ’
Py(1,—1,0) P, (1,1,0)
r = a, + ay + a,
X
ry = a, + a, r—r| =1
r2:_a$+ay |r'_ r2| :\/g
Then: |
I3 =78z — &y r—r3| =3
r4:am_ay |r—r4|:\/§
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Example (continued)

Find E at P, using r-r
. Py(-1,1,0
n 0., P, {—1,—1_(}}3%".’3'?.1.!.'.7'. L li )
E(I‘) = Z 2am P - S ’
“— dmeg|r — 1y -
-
r-r
r—r - 7
where a,, = —— P(1,-1,00 P, (1,1,0)
r — 1),
A&

X

Now: Q/4mey =3 x 1077/(4r x 8.854 x 1071?) = 26.96V - m

T T 5 Ty

a, 1 2a, + a 1 2a, +2a, +a, | 2a, + a 1
so that: E=26.96[—Z Lt M e Tk yta }

= 6.82a, + 6.82a, + 32.8a, V/m
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Volume Charge Density

If we visualize a region of space filled with a tremendous number of charges separated
by minute distances, we see that we can replace this distribution of very small particles
with a smooth continuous distribution described by a volume charge density, denoted

as P, having the units of coulombs per cubic meter (C/m3)

Given a charge AQ within a volume Av, the volume charge density is defined as:

" AQ
= 11m —-
Pv Av—0 Avp

....so that the charge contained within a volume is

Q :/ Pudv
vol

Only one integral sign is customarily indicated, but the differential dv signifies
integration throughout a volume, and hence a triple integration. 2-15




Example

Find the charge contained within a 2-cm length of the electron beam shown below,
in which the charge density is — 5 % 10 %1002 O/m2

0.04 p27  £0.01
f f —5 x 107% lo’opdpdqbdz

0.02 | z=4 ¢m
| -
| - [,=" 5 0%z 1 Clm
0.04 0.0l : :
f f —107me " pdpdz o )
0.02 Jo / )
[ 2=2C|n
\ T\fy"r_]
=0.04 s

0.01 -5 Z
—107°n 105 s
N [ ( 10° e p"pdp)
0 —1U70 7=0.02

0.01
:[ 1075 (e 20000 _ o=40000)
0
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0

Example (continued)

0.01
— [ o 10_577:((?_2000'0 . e—4000p)dp
0

0 p—2000p  ,—4000p\ 001
— 10 _
" (—2000 —4000)O

= 1070 : — :
2000 4000

T 0.0785 nC "
= — = U, L
40 P «_

z=4cm

p,=-5¢"P uCim?

z=2¢cm
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Electric Field from Volume Charge Distributions

E(r) — Z Qm

am
—Ameglr — 1y

m = r — 1,

The incremental contribution to the electric field intensity at r produced by an
incremental charge AQ atr’ is
AQ r—r

AE(r) =
(1) 4reglr — 1'% |r — 1|

0y AV r—r

4reg|r — Y/|? |r — 1|
Next, sum all contributions throughout a volume and take the limit as Av
approaches zero, to obtain the integral:

E(r) — [ o,(rYdv r—r

o dmeglr — |2 r — v/
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Line Charge Electric Field

Consider a filamentlike distribution of volume charge density, such as a charged conductor of
very small radius. Assume a straight-line charge extending along the z axis in a cylindrical
coordinate system from —oo to oo of constant density p; C/m lies along the entire z axis.

We desire the electric field intensity E at any and every point resulting from a uniform line
charge density p;,

At point P, the electric field arising from
charge dQ on the z axis is:

_ prdZ(r =)

dE =
4 ep|r — /|3

where r = ya, = pa,

and r = 7a,

/ /
sothat r—r = pa, —za,

prdz' (pa, — 7'a;)

Therefore dE = 47T€0(,O2—|‘Z’2)3/2 . 2-19




Line Charge Field (continued)

_ prdZ'(pa, — 7'a;)

We have: dE = Ieo(p? 4 2232

dQ=p; d='

By symmetry, only a radial
component is present:

pLpdz’

dE,B =
P dmeg(p? + 72)3/?

E f > pLpdz’
O ) dmeg(p? + 222

, 00
_pL p( 1 Z )
o 2 2 /2

43-[60 P vV P + Z oo X
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Line Charge Field Results

g o _PL 1 4
" dwey \ p? /p2 ¥ 72
L
2y
L
E = 2 a

2wegp |
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Example: O

)

With the line displaced to (6,8), the field becomes:

PL
E = ap
2meny/(x — 6)2 + (y — 8)?
where
R (x —6)a, +(y — 8)a,
aR = =
Rl /(x —6)2 + (y — 8)?
Finally:
(6.0.0) /-
p_ P (x—0a+(y—8a, /

C 2mey (x —6)2 4+ (y — 8)2

(6,8, 2)

-Axi1s Line Charge
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Sample Questions



2.1. Three point charges are positioned in the r-y plane as follows:==5nC at y = 5 cm. -10 nC at y = =5 cm,
15 nC at r = =5 cm. Find the required -y coordinates of a 20-nC fourth charge that will produce a
zero electrice field at the origin.

With the charges thus configured, the electric field at the origin will be the superposition of the
individual charge fields:

1 15 B 10 | 3 ‘
o= o [0~ % ] = g (5) )

The field, Eag. associated with the 20-nC charge (evaluated at the origin) must exactly cancel
this field. so we write:

B —L (3 =20 (1
20_47-'4*0 5 [az —ay] = im0 \ V2 [ar —a,)]

From this, we identify the distance from the origin: R = 4/ 100/(3v/2) = 4.85. The = and

y coordinates of the 20-nC charge will both be equal in magnitude to 4.85/y/2 = 3.43. The
coodinates of the 20-nC charge are then (3.43, —3.43).
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2.2. Point charges of 1nC and -2nC are located at (0,0,0) and (1,1.1), respectively, in free space. Determine
the vector force acting on each charge.

First, the electric field intensity associated with the InC charge. evalutated at the -2nC charge
location is:

1 1 .
E2 = Trea() (\/_;) (ar +a, +a.) nC/m

in which the distance between charges is v3 m. The force on the -2nC charge is then

-2 -1
Fio= B, = — — )= —(a, .) N
12 = q2E12 lzﬁmﬂ[ﬂr+ﬂy+ﬂ.] l”.—l?ﬁ‘g{a +a,+a;) n

The force on the InC charge at the origin is just the opposite of this result. or

+1

= — (a, . N
10 47en (a;, +a,+a.) n

Fa,
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2.3. Point charges of 50nC each are located at A(1,0,0), B(—1,0,0), C(0,1,0), and D(0,—1,0) in free
space. Find the total force on the charge at A.

The force will be:

Fo (50 x 10~)* [ Rca i Rpa + Rpa ]
dmeq |IRcal*  |Rpal®  |Rpal®

where Req = a; —a,. Rpa = a, + a,. and Rp, = 2a,. The magnitudes are |Rca| = [Rpal = V2.

and Rpal = 2. Substituting these leads to

(50 x 10-9)2 [ 1 1 2
- + -
4dmeo 2v/2  2v/2 8

Ll

F= a, = 21.5a, uN

where distances are in meters.
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2.6. Two point charges of equal magnitude ¢ are positioned at = = +d/2.

a) find the electric field everywhere on the = axis: For a point charge at any location, we have

g(r —r’)

" dmeglr — '3

E

In the case of two charges, we would therefore have

Ep — qi(r—r}) q2(r —rh)
-l?ffu|r - l"1|3 -lfrfgll‘ - l'élr‘

In the present case, we assign ¢; = g2 = ¢. the observation point position vector as r = za.. and

' . ‘ ) = [~ y
r—ry =[:—(d/2)a.. r—rh=[z+(d/2)a..

then
r—r = [z - [;!f?}]3 and |r—ra* = [z + [n'j?.}]3
Substitute these results into (1) to obtain:

q 1 + 1
dmeg | [z = (d/2)]2 [z + (d/2)]?

Er(z)= ] a. V/m



b) find the electric field everywhere on the r axis: We proceed as in part a. except that now r = ra,.
Eq. (1) becomes

—_ ‘ . : 2
Er(r) q ra, [d,fz}a_ﬂ ra, + (d/ }h“él,,l:l (3)
dmeq | |rar — (d/2)a.|®  |ra; + (d/2)a. |
where L2
ra, — (d/2)a.| = |ra, + (d/2)a.| = [«2 + (d/2)]"
Therefore (3) becomes
2qra,
Er(r) =
dmeq [x2 + (d/2)2]*?
¢) repeat parts a and b if the charge at = = —d/2 is —q instead of +¢: The field along the = axis is

quickly found by changing the sign of the second term in (2):

1

) — q l -
Er(z) = Treq [[~ —(d/2)]2 [z +(d/2))?

] a. V/m

In like manner, the field along the r axis is found from (3) by again changing the sign of the
second term. The result is

—2qda,
dmeq [2 + (d/2)2]*?
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2.7. A 2 uC point charge is located at A(4,3.5) in free space. Find E,, Ey, and E. at P(8.12,2). Have

2x107% Ryp  2x107°
imeg  [Rapl3  dme

da, +Ya, — 3a.

Ep = (106)1-5

] = 65.9a, + 148.3a, — 49.4a,

Then, at point P, p = V8 + 122 = 14.4, ¢ = tan"'(12/8) = 56.3°, and = = z. Now,

E,=E, -a,=659(a, -a,) + 148.3(a, - a,) = 65.9 cos(56.3%) + 148.35in(56.3%) = 159.7
and

E,=E, -a,=659(a, -a,) + 148.3(a, - a5) = —65.9sin(56.3°) + 148.3 cos(56.3°) = 27.4

Finally, E. = =494 V/m
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2.10. A charge of -1 nC is located at the origin in free space. What charge must be located at (2,0,0) to
cause E, to be zero at (3.1.1)7

The field from two point charges is given generally by

q(r —r} qa(r — 1}
Er — n 1]1+ 12( 2,11 (1)
dmeglr —r]? dmegr —
where we let g3 = —1nC and ¢z is to be found. With ¢, at the origin, r} = 0. The position
vector for g2 is then r, = 2a,. The observation point at (3,1.1) gives r = 3a, +a, +a.. Eq. (1)
becomes
1 [-1(3a, +a,+a.) ¢(3-2)a,+a,+a.]
dmeg | (32+1+1)%/2 (1+1+1)3/2

Requiring the » component to be zero leads to

35!2
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2.13. A uniform volume charge density of 0.2 4C/m® is present throughout the spherical shell extending
from r =3 cm to r =5 em. If p, = 0 elsewhere:

a) find the total charge present throughout the shell: This will be

2w x .05 ,_3 A5 )
() = f / j 0.2 r?sin® dr df do = [4:7[{}.2),—] =8.21 x 1077 uC =82.1 pC
o Jo Jos3 3 103

b) find ry if half the total charge is located in the region 3em < r < ry: If the integral over r in
part a is taken to r;, we would obtain

371"
[4::(“.2}’.—] — 4.105 x 1075
3 03

Thus

[3 % 4.105 % 1075
f'| =

1/3
a\3 294 -
0.2 x 4w +(.03) ] = 4.24 cm
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