
Engineering Electromagnetics

Chapter 3:

Electric Flux Density, Gauss’ Law,

and Divergence



Objectives

• Electric Flux Density, 

• Gauss’ Law,

• Divergence

• First Maxwell’s Equation



+Q

Started with a pair of metal spheres of 

different sizes; the larger one consisted 

of two hemispheres that could be 

assembled around the smaller sphere

Faraday 

Experiment

Conductor in static electric field situations



+Q

Faraday Apparatus, Before Grounding

The inner charge, Q, induces an equal 

and opposite charge, -Q, on the 

inside surface of the outer sphere, by 

attracting free electrons in the outer 

material toward the positive charge.   

This means that before  the outer 

sphere is grounded, charge +Q 

resides on the outside surface of the 

outer conductor.  

Considering an inner sphere of radius a and an outer sphere of radius b, with 

charges of Q and −Q, respectively. The paths of electric flux 𝜳 extending 

from the inner sphere to the outer sphere are indicated by the symmetrically

distributed streamlines drawn radially from one sphere to the other.

Electric flux 𝜳Conductor in static 

electric field 

situations



Faraday Apparatus, After Grounding

q = 0

ground 

attached

Attaching the ground connects the outer surface to an unlimited supply of free 

electrons, which then neutralize the positive charge layer.  The net charge 

on the outer sphere is then the charge on the inner layer, or -Q.

electric flux 𝜳



Interpretation of the Faraday Experiment

q = 0

Faraday concluded that there 

occurred a charge 

“displacement” from the inner 

sphere to the outer sphere.

Displacement involves a flow or flux,  existing within the dielectric, 

and whose magnitude is equivalent to the amount of “displaced” 

charge.

Specifically:  



Electric Flux Density
q = 0

The density of flux at the inner sphere surface

is equivalent to the density of charge there 

(in Coul/m2)

• Electric flux density, measured in coulombs per square meter 

(sometimes described as “lines per square meter,” for each 

line is due to one coulomb), 

• Electric flux density is given the letter D, which was originally 

chosen because of the alternate names of displacement flux 

density or displacement density



Vector Field Description of Flux Density

q = 0

A vector field is established which 

points in the direction of the “flow”

or displacement.  In this case, the

direction is the outward radial direction 

in spherical coordinates.  At each surface,

we would have:

• The electric flux density D is a vector field.

• The direction of D at a point is the direction of the flux lines at that point, and 

• The magnitude of D is given by the number of flux lines crossing a surface normal 

to the lines divided by the surface area.



Radially-Dependent Electric Flux Density

q = 0

r

At a general radius r between

spheres, we would have:

Expressed in units of Coulombs/m2, and 

defined over the range (a ≤ r ≤ b)

D(r)



Point Charge Fields

If we now let the inner sphere radius reduce to a point, 

while maintaining the same charge, and let the outer sphere 

radius approach infinity, we have a point charge.  The 

electric flux density is unchanged, but is defined over all 

space:  

C/m2 (0 < r <∞ )

We compare this to the electric field intensity in free space:

V/m   (0 < r <∞ )

..and we see that:



Finding E and D from Charge 

Distributions

We learned in Chapter 2 that:

It now follows that:



Summary of Faraday’s experiments

• The electric flux passing through any imaginary 

spherical surface lying between the two conducting 

spheres is equal to the charge enclosed within that 

imaginary surface. 

• This enclosed charge is distributed on the surface of the 

inner sphere, or it might be concentrated as a point 

charge at the center of the imaginary sphere.

q = 0



Gauss’ Law

The electric flux 

passing through any 

closed surface is 

equal
to the total charge 

enclosed by that 

surface

• If the total charge is Q, then Q coulombs of electric flux will pass through 

the enclosing surface. 

• At every point on the surface the electric-flux-density vector D will have 

some value 𝑫𝑺, where the subscript S merely reminds us that D must be 

evaluated at the surface, and 

• 𝑫𝑺 will in general vary in magnitude and direction from one point on the 

surface to another.



Development of Gauss’ Law

We define the differential 

surface area (a vector) as

where n is the unit outward

normal vector to the surface, 

and where dS is the area of the

differential spot on the surface 

At any point P, consider an incremental element of surface Δ𝑆 and let 

𝑫𝑺 make an angle 𝜃 with Δ𝑆. The flux Δ𝜳 crossing Δ𝑆 is then the 

product of the normal component of 𝑫𝑺 and Δ𝑆

dS = dx dy, in rectangular 

dS = ρ dφ dρ, in cylindrical or 

dS = 𝒓𝟐 sin θ dθ dφ in spherical



Mathematical Statement of Gauss’ Law

Line charge:

Surface charge:

Volume charge:

In which the charge can exist in the form of point charges:

For a volume charge, we would have: 

or a continuous charge distribution: 

A mathematical statement meaning simply that the total electric flux through any 

closed surface is equal to the charge enclosed.



Using Gauss’ Law to Solve for D  

Evaluated at a Surface

Knowing Q, we need to solve for D, using Gauss’ Law:

The solution is easy if we can choose a surface, S, over which to integrate

(Gaussian surface) that satisfies the following two conditions:

The integral now 

simplifies:

So that:

where



Example:  Point Charge Field

Begin with the radial flux density:

and consider a spherical surface of radius a that surrounds the 

charge, on which:

On the surface, the differential area is:

and this, combined with the outward unit normal vector is:



Point Charge Application (continued)

Now, the integrand becomes:

and the integral is set up as:

=

=

0



Another Example: Line Charge Field

Consider a line charge of uniform charge density L on the z axis that extends over the range  z 

We need to choose an appropriate Gaussian surface, being mindful of these considerations:

We know from symmetry that the field will be radially-directed (normal

to the z axis) in cylindrical coordinates:

and that the field will vary with radius only:

So we choose a cylindrical surface of radius , and of length L.

The Gaussian surface for an infinite uniform line charge is a right circular cylinder 

of length L and radius ρ. D is constant in magnitude and everywhere perpendicular 

to the cylindrical surface; D is parallel to the end faces.

DD
𝑎𝜌𝑎𝜌



Line Charge Field (continued)

Giving:

So that finally:



Another Example:  Coaxial Transmission Line

We have two concentric cylinders, with the z axis 

down their centers.  Surface charge of density S

exists on the outer surface of the inner cylinder.

A  -directed field is expected, and this should 

vary only with  (like a line charge).  We 

therefore choose a cylindrical Gaussian surface 

of length L and of radius , where a <  < b.

The left hand side of Gauss’ Law is written:

(Focusing on the electric flux at the outer surface of inner cylinder)

…and the right hand side becomes: (focusing on the charge inside the inner cylinder)

S

D𝑎𝜌



Coaxial Transmission Line (continued)

We may now solve for the flux density:

and the electric field intensity becomes:



Coaxial Transmission Line: Exterior Field

If a Gaussian cylindrical surface is drawn outside (b), a 

total charge of zero is enclosed, leading to the conclusion that

or:

𝜌𝑆.𝑜𝑢𝑡

𝜌𝑆.𝑖𝑛
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Electric Flux Within a Differential Volume Element

(For non-symmetrical closed surfaces)

Taking the front surface, for example, we have:

In order to evaluate the integral over the closed surface, the integral must be broken up into six 

integrals, one over each face (which are very small surfaces so D can be constant on them)



Electric Flux Within a Differential Volume 

Element

We now have:

and in a similar manner:

Therefore:

minus sign because Dx0 is inward flux through the back surface.

Notice that 𝐷𝑥0 is the value of 𝐷𝑥 at P, and the distance of front face from P is
𝜟𝒙

𝟐



Charge Within a Differential Volume Element

Now, by a similar process, we find that:

and

All results are assembled to yield an approximation which becomes better as Δ𝑣 becomes

smaller:

v

=  Q (by Gauss’ Law)

where Q is the charge enclosed within the very small 

volume v



Example on Differential Volume Element

=  Q



The Del Operator 

=  div D=

The del operator is a vector differential operator, 

and is defined as:

Note that:



Divergence and Maxwell’s First 

Equation

Mathematically, this is:

Applying divergence function, we have:

div A  =

and when the vector field is the electric flux density:

= div D Maxwell’s 

first 

equation



Maxwell’s first equation 

(or the point form of Gauss’ Law)

This is the first of Maxwell’s four equations, and it states that

The electric flux per unit volume leaving a 

vanishingly small volume unit is exactly 

equal to the volume charge density there.

This equation is called the point form of Gauss’s law. Gauss’s law relates the flux leaving 

any closed surface to the charge enclosed, and Maxwell’s first equation makes an identical 

statement on a per-unit-volume basis for a vanishingly small volume, or at a point. 



Divergence Theorem
We now have Maxwell’s first equation (or the point form of Gauss’ Law) 

which states:

and Gauss’s Law in large-scale form reads:

leading to the Divergence Theorem:

Divergence merely tells us 

how much flux is leaving (or entering) a small volume
on a per-unit-volume basis; no direction is associated with it.



Divergence Theorem 

(Gauss Divergence Theorem)

Gives us fast and easier ways to:

• Find relationship between surface and volume 

integrations.

• Find the locations of the charges’ source or sink.

• Explain the rate of change of flux or field.

• Find out how much flux is leaving a source or 

entering a sink point. 



Divergence Expressions in the Three 

Coordinate Systems



Sample Questions














