Engineering Electromagnetics

Chapter 4

Energy and Potential



Point Charge in an External Field

To move charge O against the electric field, a force must be applied
that counteracts the force F on Q that arises from the field E:

(1.e the charge Q has to gain some sort of energy (Force or work to

be done) to move it against E)

Distance between the two Plates = LL

This is the
reference
side.
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Differential Work (Energy) Done on Moving a
Point Charge Against an External Field

In moving point charge O from initial position B over a differential
distance dL (to final position 4), the differential work expended is:

dw=F ] dL = -QE dL = -QE°dL [J] gives positive result if charge is

app forced against the electric field

@ © This +ve charge will

@ E S feel a force on it to

©) © move it towards the

©) o © other charges.

© A (final) B (initital) (©| | -ve force (in

C) © direction with

® O a——D) © respect to the E)

® Fﬂpp/ dL © towards the +ve

@ h Y g © charges, and +ve

O dl © force towards the -ve
dL=L Distance between the two Plates = LL dL=0

The path 1s along an electric field line (in the opposite direction),
and over the differential path length, the field can be assumed constant.



Forcing a Charge Against the Field in an
Arbitrary Direction

What matters now is the component of force in the direction

of motion.
A
|
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® ~_ Force magni/tude is Fyp,picos(a)
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Differential work in moving charge Q through distance d will be:

dw = F_,cos() dL =—-QE dL

app




Total Work Done (i.e. Total Energy expenditure)

All differential work contributions along the path are summed to give:

final
W=_0 E.-dL
Init
A (final)
|
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, dJL B (initial)

L« ! E
Fappl = 'Q E @

Note that the path must be specified before the integral can be evaluated.,
and the charge 1s assumed to be at rest at both its mitial and final positions.



Total Work Done over an Arbitrary Path

The integral expression for work i1s completely general: Any shape path may be
taken, with the component of force evaluated on each differential path segment.

1.Choose apath,

2.break it up into a large number of very small segments,

3.multiply the component of the field along each segment by the length of the segment, and
4.then add the results for all the segments.

Final position

final
W:—Q[ E-dL

nit

The integral expression involving the scalar product
of the field with a differential path vector is called
a line integral or a contour integral.

Initial position



Line Integral Evaluation

A
We wish to find: / E - dL

B

where E=F,a, + E,a, + E.a,

and dL =dra, +dya,+dza,

using these:

A A
/ E.-dL = / (Eyay + Eyja, + E.a;) - (dra, +dya, +dza,)
B

B
T A YA ZA

= Exdac—i—/ Eydy—i—f E. dz
B YB ZB




Example

final
v-of
nit

E.dL

An electric field is given as: E = ya, + xa, + 2a,

We wish to find the work done in moving a point charge of magnitude O = 2 over the

shorterarc of the circle given by

4yr=1 z=1
Giving that the initial pointis B(1, 0, 1) and the final pointis 4(0.8, 0.6 ,1).

A
B
A
_ f (va, + xa, +2a.) - (dx a, + dya, +dza.)
B

0.8 0.6 !
:—2] ydx—2/ xdy—4/ dz
1 0 1

This is the basic setup, in which the path has not yet been specified.




Example (continued)

0.8 0.6 1
We now have JJ/= —2[1 ydx—ZfO xdy—%

and we need to include the y dependence on x in the first integral, and the x dependence
on y in the second integral:

: : : .2 2 : :
Using the given equation for the circ*” + ¥~ =1 2 = I we rewrite the integrals:

0.8 0.6
W:—2/ \/l—xzdx—Z/ vV1—y2dy -0
1 0

| 0.8 | 0.6
:—[x 1—X2+Sin_ x]l _[ 1_y2+Sin_ y]O
= —(048+0.927—-0—-1.571) — (0.48 +0.644 — 0 — 0)
= —0.96]




Evaluating Work within a Line Charge Field

dL=dpa,+ pdoay + dz a- (cylindrical)

In this example, the differential element dL is chosen in cylindrical coordinates, and the
Circular path selected demands that dp and dz be zero, so dL. = p, dp ag.

Therefore, the work in moving charge Q in a circular path around a line charge is found:

Z

4 PL

E=F,a, = a
Infinite line where pEp 271'60/0 p
charge p;

final
PL
W =-0 a,-prdoagy
init 27T €01

o PL
_Qf d¢ap-a¢=0
0

dL=p, dpa, 2me

as expected!

(a)

Note that the path is always perpendicular to the electric field intensity, or the force on

the charge is always exerted at right angles to the direction in which we are moving it.



Radial Motion Near a Line Charge

Instead, we now move charge Q along a radial line near the
same line charge:

final b
PL pL dp
W=-0 ap-dpapz—Qf —
init  27T€QP a 27mey p

Qpr b

In —
2mey  a

so that finally: W = —




Differential Path Lengths in the Three
Coordinate Systems

dL =dxa, +dya, +dza, (rectangular)

dL =dpa, +pdoay +dza; (cylindrical)
dL =dra, +rdfag +rsinb dgpa,  (spherical)




Definition of Potential Difference

We now have the work done 1n moving

charge O from 1nitial to final positions. W =-Q

This is the potential energy gained

final
E - dL

init

by the charge as a result of this
position change.

The potential differenceis defined as

the work done (or potential energy gained) per unit charge,

expressed in units of Joules/Coulomb, or volts:

W ﬁnal
Potential Difference = a = — / E - dL. Volts
init
A
Finally: | Vap = Va4 — Vg = / E - dL

B




Reference point to measure Potential Difference

* Itis often convenient to speak of the potential, or absolute
potential, of a point, rather than the potential difference
between two points,

* This means only that we agree to measure every potential
difference with respect to a specified reference point that we
consider to have zero potential.

* The most universal zero reference point is “ground,” (i.e. the
potential of the surface region of the earth itself).

* Or “infinity” usually assumed for approximating a physical
situation in which the earth 1s relatively far removed from the
region in which we are interested (charges on airplane wings,
atom potential, ect.)

* A cylindrical surface of some definite radius may occasionally
be used as a zero reference.




Potential Difference in a Point Charge
Field

In this exercise, we evaluate the work done in moving a unit positive
charge from point B to point 4, within the field associated with point
charge O .

0

where KE = Erar T 2ar
47’[6()1"

and where 1n general:

dL = dra, +rdfag+rsinfdoay

g =k
/A A[rzfvgfir?ﬁ;;‘} E=F.a,

_—dL=dra.+rdfag+rsinbdp a,

B(ry, Uy, ¢p)



Potential Difference in a Point Charge Field

To complete the problem:

Q
We use E = Erar o 2ar
47’[6()1"
A o B along with:

g : dL = dra, + rdfag + rsinfdpa,
+
Q
to obtain:

A r
A 1 1
VAB:—/ E-dL:—/ der: % ( - )
B rp 471’6()1” 471’6() rA Ip

* An mspection of the form of the potential field of a point charge shows
that 1t 1s an inverse-distance field,

* whereas the electric field intensity was found to be an inverse-square-
law function.




The potential field of a system of charges:
conservative field

* Afield is conservative if its line integral between any two
points is independent of the path chosen.

 Mostfields in nature are conservative (as this also implies
conservation of energy; e.g., the Earth’s gravitational field).

* Another property of a conservative field is that its closed path
line integral is zero: (true for static fields ONLY)

%F-dL—O




The Potential Field of a Point Charge

We just found the difference in potential between two positions in a point charge field:

1 1
Vap=Va—Vp = e ( - )

dmeg \ra TR

We could perform the same calculation by specifying the starting point at infinity, and
the ending point at some general radius, 7:

VTOOMVT—VOOW—/TE.dLWi(l_i>,.,.,.. Q)

o dreg \r 00 dmegr

This result is a potential function or potential field, which specifies potential at any
position within the defined space, and with the potential at infinity (the reference value)
equal to zero.

In practice, we can “bias” this function any way we want (or need) to, by an
additive constant, C,: 0)

V = + 4

dmegr



Potential Difference in a Point Charge Field

v Y

dmegr

This expression defines the potential at any point distant r from a point charge Q
at the origin, the potential at infinite radius being taken as the zero reference.

Accordingly, the physical interpretation of the Potential is that:
Q/4m €,r Joules of work must be done in

carrying a unit charge from infinity to any
point r meters from the charge Q.
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Potential Field of a Point Charge Off-Origin

The setup here is the same as what we used in writing the electric field
of an off-origin point charge.

V(r) = Q1

- 47T€0|I'— l'1|

®r, v, 2)

Origin



Potential Field Arising From Two or More Point
Charges

Introduce a second point charge, and the two scalar potentials simply add:

V(r) — Q01 | 0>
dmepglr — 11| 4dmey|r — o]

For n charges, the process continues:

— 4mep|r — Iy




Potential Associated with Continuous Charge
Distributions

If each point charge is now represented as a small element of a continuous
volume charge distribution p,,Av, then

ri)Av ry)Av r,)Av
V(l‘) _ /Ov( 1) 1 n /Ov( 2) 2 NE /Ov( n) n
dreg|lr — 11|  4dmeg|r — 1rp| dmreg|r — 1y |

As we allow the number of elements to become infinite, we obtain the integral

expression:
r')dv’
V(r) = / Pu(1) |
vol 47 €o[r — 1|




Potential Functions Associated with Line, Surface,
and Volume Charge Distributions

) , * The potential is

. pr(r)dL inverse distance, and
Line Charge: Vir) = deglr — 1| the electric field
intensity, inverse
/ / square.

ps(r)dS  The potential is
47‘[60 | r— I"| scalar, but the
electric field is a

Surface Charge:  V(r) = [
\)

vector.

P () dy
Volume Charge: V(r) = [
vol 4m Ew

for electric field --- generally a more

Compare to our earlier expression o,)Ydv' / r—7r
E(r) = /
difficult integral to evaluate: \

ol deg(r — |2 |r —r|



Example

The problem is to find the potential anywhere on the z axis arising from a circular ring
of charge in the x-y plane, centered at the origin.

We use:

V(r):/ pr(xr')dL’

dreg|lr — 1|

=da

’
with dL" = add’ A , —
; N
\ S r#
r — ZaZ \\ ¢
~ dL'=adg¢'
l'/ — aap P

r—r'| =Jal + 22



Example (continued)

pL(r)dL’
dmeg|r — 1|

Sonow V(r) Z/

becomes:

27 /
d
v — f prade pLa
0

AmepNal + 22 2epa’ + 22

where dL' = ad¢’
r=za,

A
r' =aa,

r—r'| =va? + 22

Y

dL' = a dg



Change in Voltage over an Incremental Distance

The change 1n potential occurring over distance AL depends on the angle
between this vector and the electric field; 1.e., the projection of the field along the

path:

AV = —E- AL e

)/

AV

AV = —EALcosé@ ~

T

-

o N
)

from which: d_L — —F cos 6

dV

whose maximum value 1is: _d 7

max

1. The magnitude of the electric field intensity is given by the maximum value of the rate

of change of potential with distance.
2. This maximum value is obtained when the direction of E 1s opposite to the direction in

which the potential is increasing the most rapidly.




Relation Between Potential and Electric Field

The maximum rate of increase in potential should occur 1n a
direction exactly opposite the electric field:

unit vector normal to an equipotential
surface and in the direction of increasing
potential

ay
max

av
dL

Equip otential surfaces

+ 60 +10
+70
+30 E points i the direction
V'=+90 \ of maximumrate of decrease
V in potential -- in the direction
of the negative gradient of V.




Potential Gradient

We now have two methods of determining potential,
1. one directly from the electric field intensity by means of
a line integral, and
2. from the basic charge distribution itself by a volume
integral.
Neither method 1s very helpful in determining the fields in most
practical problems, since neither the electric field intensity nor the
charge distribution is very often known.

Therefore, Potential GradientVV could be used to approximately
determine the magnitude and direction of the potential fields,
1.e. to measure the maximum space rate of change of a scalar
quantity V and the direction in which this maximum occurs.




Electric Field in Terms of V'in Rectangular

Coordinates

The differential voltage change can be written as the sum of
changes of V' in the three coordinate directions:

We also know that: dV = —E-dL = —FE,.dx — E,dy

We therefore
identify:

dV an —I—avd —I—avd
= — X —_— —_—
0x Jy Y 0z ¢
— E.dz
So that:
E— BVa +8Va —I—BVa
— \ax ~ ay T 9z




Electric Field as the Negative Gradient of the
Potential Field

We now have the relation between E and

. Vv N vV N Vv
= —| —a, + —a —a
dx dy ° 9z

0 0 0
is i i i V=—a+—a,+—a
This is obtained by using the del operator, o 3y P onV

A more compact relation therefore emerges, which is applicable to static electric fields:

E=-—-VV E is equal to the negative gradient of V

The direction of the gradient is that of the maximum rate of increase in the scalar field,
or normal to all equipotential surfaces.



Gradient of V'in the Three Coordinate Systems

vV aV A% A% (rect lar)
— —a, a, a rectangular
% ay 2 8z ° e
vV aV 1 oV aV (cylindrical)
= —a, a, a cylindrica
ap L pap ? T 8z ¢ Y
vy — BV o 1 0V 1 aV (spherical)
= - — | , a spherica
or a0 T rsing op O F




Example

Given the potential field, V = 2x°y — 5z, and a point P(—4, 3, 6), we wish to find
several numerical values at point P: the potential V|, the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4,5,6) is
Vp = 2(—4)*(3) = 5(6) = 66 V
Next, we may use the gradient operation to obtain the electric field intensity,
= —VV = —4xya, — 2x’a, + 5a, V/m
The value of E at point P is
Ep = 48a, — 32a, + 5a; V/m

and

|Ep| = V482 + (—32)2 + 52 = 57.9 V/m
The direction of E at P is given by the unit vector

ag p = (48a, — 32ay + S5a;)/57.9
= 0.829a, — 0.553a, + 0.086a,



Example

If we assume these fields exist in free space, then
D = ¢E = —35.4xya, — 17.71x%a, + 44.3 a, pC/m°

Finally, we may use the divergence relationship to find the volume charge density that
is the source of the given potential field,

p, = V-D = —354y pC/m’
At P, p, = —106.2 pC/m’.



Exercises



4.1. The value of E at P(p = 2, ¢ = 40°, 2 = 3) is given as E = 100a, — 200a, + 300a. V/m.
Determine the incremental work required to move a 20 uC charge a distance of 6 ym:

a) in the direction of a,: The incremental work is given by dW = —qE - dL, where in this
case, dL — dpa, — 6 x 107%a,. Thus

dW = —(20 x 107% C)(100V/m)(6 x 107%m) = —12x 1079 J = —12nJ

b) in the direction of as: In this case dL = 2dga, — 6 x 10~®a,, and so

dW = —(20 x 107%)(—200)(6 x 107%) =24 x 107%] =24 nJ

¢) in the direction of a:: Here, dL. — dza: — 6 x 107 %a;, and so

dW = —(20 x 107%)(300)(6 x 10~%) = —3.6 x 1075J = —36 nJ

d) in the direction of E: Here, dL = 6 x 10~% ag, where

~ 100a, — 200a, + 300a,
1002 + 2002 + 3002]1/2

ag ~0.267a, — 0.535a, + 0.802a,

dL =dxa, +dya, +dza; (rectangular)
dL =dpa, +pdpay +dza; (cylindrical)
dL =dra, +rdfas +rsin6 dgpas  (spherical)




Thus
dW = —(20 x 10‘“)[1003,, — 200a, + 300a;| - [0.267a, — 0.535a,4 + 0.802a,](6 x 1079)

— —449nl
e) In the direction of G = 2a, — 3a, + 4a.: In this case, dL = 6 x 10~%ag, where

o 23:_33.""4&: - B
% = S s~ 03718, — 0557a, + 0743a,

So now

dW — —(20 x 10“’)[100&, — 200a, + 300a.| - [0.371a, — 0_5573, +0.743a_|(6 x 10_“)
= —(20 x 10‘5) [37.1(a, -ar) — 55.7(a, - ay) — T4.2(as - ar) + 111.4(as - ay)

+ 222.9] (6 x 10""‘)

where, at P, (a,-a,;) = (ag -a,) = cos(40°) = 0.766, (a, -a,) = sin(40°) = 0.643, and
(ag-a;) = —sin(40°) = —0.643. Substituting these results in

dW = —(20 x 107°)[28.4 — 35.8 + 47.7 + 85.3 + 222.9)(6 x 10~%) = —41.8n]

a,- Cos ¢ — sin 0
ay- sin ¢ cos ¢ 0
0 0




4.4. An electric field in free space is given by E = ra, + va, + za. V/m. Find the work done in
moving a 1uC charge through this field
a) from (1,1.1) to (0,0,0): The work will be

0
W:—q/E-dL = —lD‘“[f rdr + /‘]ydy + /uzdz].l = 1.5ul)
1 1 1 —_—

b) from (p =2, ¢ = 0) to (p = 2, ¢ = 90°): The path involves changing ¢ with p and 2
fixed, and therefore dL = pdpa,. We set up the integral for the work as

x/2
W= —10“‘-/; (ra; +yay, +2a;) - pdoag

where p = 2, a,-ag — —sing, ay-ay — cos¢d, and a; -ag — 0. Also, r = 2cos¢ and
y — 2sin¢@. Substitute all of these to get

x/2
W - —10-°/ [~(2)? cos psin + (2)7 cos dsin ] do — 0
a

Given that the field is conservative (and so work is path-independent ), can you see a much
easier way to obtain this result?

dL =dxa, +dya, +dza; (rectangular) a, a, a,
dL =dpa, +pdpay +dza; (cylindrical) ay- cos ¢ — sin 0

ay- sin ¢ cos ¢ 0
dL =dra, +rdfag+rsinf dpa,  (spherical) a- 0 0 0




¢) from (r=10, 8 = 8y) to (r = 10, 8 = 8, + 180°): In this case, we are moving only in the
ay direction. The work is set up as

+n
I‘Ir’:—l[}‘“fou (ra, + yay, + 2a.) - rdfiay
fg

Now, substitute the following relations: r — 10,  — rsinfcos@, y — rsinfsing, @ —
reosf, a,-ag; — cosfcosd, ay-ap — cosfsing, and a. - ag — —sinf. Obtain

fo+x
W= -10-“[ (10)? [sin# cosf cos® ¢ + sin # cosfsin’ ¢ — cosfsin 6] df — 0
o

where we use cos?¢ + sin? ¢ = 1.

a, ay a,
a- sin @ cos ¢ cosf cos ¢ —sing¢
ay- sin @ sin ¢ cos @ sin ¢ cos ¢

a;- cosf! —sin@ 0




4.6. An electric field in free space is given as E = r4, + 424, + 4ya.. Given V(1,1,1) = 10 V.
Determine V'(3,3,3). The potential difference is expressed as

333

V(3.3.3) - V(1,1,1) = -/ (zés + 424y + 4ya:) - (dras + dyay + dza.)

1,1,1

3
:-[f :rd-r+'/.s4:dy+f4yﬁ]
1 1 1

We choose the following path: 1) move along r from 1 to 3; 2) move along y from 1 to 3,
holding r at 3 and 2 at 1: 3) move along 2 from 1 to 3, holding r at 3 and y at 3. The integrals
become:

3
V(3,3$3)—‘.=’(L1,1):—[/ Idr+f4(l}dy+fa4(3]c£z] — 36
1 1 1

V(3.3.3) = 36+ V(1,1,1) = —36 + 10 = —26 V

A

VAB:VA—VB:—/ E. dL
B




4.14. Given the electric field E = (y + 1)a; + (x — 1)a, + 2a., find the potential difference between
the points
a) (2,-2.-1) and (0.0,0): We choose a path along which motion occurs in one coordinate
direction at a time. Starting at the origin, first move along r from 0 to 2, where y = 0;
then along y from 0 to —2, where z is 2; then along 2 from 0 to —1. The setup is

2 -7 -1
Va-Vu:—f(y+l}| dr—f (z-1)| dy - [ 2d:=2
0 w—>0 0 =2 0

b) (3.2.-1) and (-2.-3,4): Following similar reasoning,

2 -1
V,,-V,:—f{y+1)| d:r—f(:r—l)| dy — 9dx — 10
=2 v——3 -3 =3 4



4.23. It is known that the potential is given as V' = 80p% V. Assuming free space conditions, find:
a) E: We find this through

dVv -
E--VV = _d_pa” = —48p"*V/m

b) the volume charge density at p = 5m: Using D = ¢E, we find the charge density
through

_ _ 1\ d o -1.4| _ _ 3
pu|+5 = [V-DJs = (;) d—P(pr) ..s = —W.Begp™ | = —673pC/m

¢) the total charge lying within the closed surface p = .6, 0 < 2 < 1: The easiest way to do
this calculation is to evaluate D, at p = .6 (noting that it is constant), and then multiply

by the cylinder area: Using part a, we have D,,| = —48¢(.6)~* = —521 pC/m?. Thus
8
Q — —27(.6)(1)521 x 10-12C — —1.96nC.




