
Engineering Electromagnetics

Chapter 6:

Capacitance



Capacitance Defined
A simple capacitor consists of two oppositely charged conductors surrounded by a 

uniform dielectric.

An increase in Q by some factor results in an increase in E (and in D) 

by the same factor.

Consequently, the potential difference between conductors: 
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where

will also increase by the same factor -- so the ratio of 

Q to V0 is a constant. We define the capacitance of 

the structure as the ratio of the stored charge to the 

applied voltage, or

Units are Coul/V or Farads



Parallel Plate Capacitor

Plate area = S

Apply the boundary for D at the surface of a perfect conductor:

Lower plate:

Upper Plate:
Same result either way!

The electric field between plates is therefore:

The horizontal dimensions are assumed to be much greater than the plate separation, d.  

Therefore, electric field can be assumed to lie only in the z direction, and potential varies 

only with z. 

Application of the boundary

condition is needed on only 

one surface to obtain the total

field between plates.



Capacitance of a Parallel Plate Capacitor

Plate area = S

Now with The voltage between plate can be found through:

Then with we finally obtain 



Stored Energy in a Capacitor

Stored energy is found by integrating the energy density in the electric field over the 

capacitor volume.  We use:
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There are three ways of writing the energy:

or



Example:  Coaxial Transmission Line

E = 0 elsewhere, assuming a hollow inner 

conductor, and equal and opposite charges 

on the inner and outer conductors.

We previously found using Gauss’ Law:
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The potential difference between conductors is now:

…and the charge on the inner conductor per unit length is:

Finally:

assume a unit length in z



Another Example:  Spherical Capacitor

Consider two concentric spherical conductors, having radii a and b.

Equal and opposite charges, Q, are on the inner and outer conductors.
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Gauss’ Law tells us that electric field will exist only in the 

region between spheres, and will be given by:

The potential difference between inner and outer spheres is then:

and the capacitance is:

Note that as (isolated sphere)



Example: Isolated Sphere with a Dielectric Coating
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A conducting sphere of radius a carries charge Q.  

A dielectric layer of thickness r1 - a and of permittivity 1 surrounds the 

conductor.  Electric field in the two regions is found from Gauss’ Law to be:

The potential at the sphere surface is (with zero reference at infinity):

= V0

and the capacitance is:



Capacitor with a Two-Layer Dielectric

E2

E1
DN1

DN2

In this case, we use the fact that D normal to an interface between two dielectrics

will be continuous across the boundary, assuming no surface charge is present there:  

Thus and therefore:

The potential difference between bottom and top plates will be:

..which leads to:

The surface charge density on the

bottom plate:

The capacitance is then:



Poisson’s and Laplace’s Equations

These equations allow one to find the potential field in a region, 

in which values of potential or electric field are known at its 

boundaries.

Start with Maxwell’s first equation:

where

and

so that

or finally:
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Derivation (continued)

Recall the divergence as expressed in 

rectangular coordinates:

…and the gradient:

then:

It is known as the Laplacian operator.



Statement of Poisson’s and Laplace’s Equations

we already have:

which becomes:

This is Poisson’s equation, as stated in rectangular coordinates.

In the event that there is zero volume charge density, the right-hand-side becomes zero, and we obtain

Laplace’s equation:
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The Laplacian Operator in the Three Coordinate 

Systems

(Laplace’s equation)



Application on Laplace and Poisson 

equations:  Parallel Plate Capacitor

d

0

x

V = V0

V = 0

In this case, the plate separation, d, is assumed

much less than the smallest plate dimension. 

Therefore V can be assumed to vary only with x.

Laplace’s equation reduces to:

Integrating once, obtain:

Integrate a second time to get:

Boundary conditions:

1.  V = 0 at x = 0

2. V = V0  at x = d

where A and B are integration constants that are to be evaluated subject to the boundary conditions.



Interior Potential Field

We now have:

Apply boundary condition 1:

0 = A(0) + B 

Apply boundary condition 2:

V0 = Ad 

Finally:
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Boundary conditions:

1.  V = 0 at x = 0

2. V = V0  at x = d

Equipotential

Surfaces

�
This function is pictured by the 

equipotential surfaces shown in 

the capacitor, in which there is a 

constant voltage difference 

between adjacent surfaces



Finding the Electric Field, Charge, and Capacitance

Start with:

Then:

From which:
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Surface Area = S

n

At the lower plate surface: and n = ax

Then use: to find

The charge on

the lower plate

is now:

and the 

capacitance is 



Another Example:  Coaxial Transmission Line

V0

E

L

V = 0

Boundary conditions:

1. V = 0  at b

2. V = V0 at a

As V is assumed to vary with radius only, Laplace’s equation becomes:

(not valid at 0)

Our goal is to evaluate the potential function in the region (a < b)

Integrate once:

.. and a second time:



Coaxial Line: continued

V0

E

L

V = 0

Boundary conditions:

1. V = 0  at b

2. V = V0 at a

Now have:

Apply boundary condition 1:

Apply boundary condition 2:

Putting it all together:



Coaxial Line Capacitance

V0

E

L

V = 0

We have found the potential 

field between conductors:

Then:

The charge density on the inner conductor is:

The total charge on the inner conductor is:
…and the capacitance is finally:




