Engineering Electromagnetics

Chapter 6:

Capacitance



Capacitance Defined

A simple capacitor consists of two oppositely charged conductors surrounded by a
uniform dielectric.

An increase in O by some factor results in an increase in E (and in D)
by the same factor.
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Parallel Plate Capacitor

The horizontal dimensions are assumed to be much greater than the plate separation, d.
Therefore, electric field can be assumed to lie only in the z direction, and potential varies

only with z.
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Apply the boundary for D at the surface of a perfect conductor:

Lower plate: D - nfj{zzo =D-a,=p;, = D=psa;

~ Same result either way!

Upper Plate:D - Ilu| g = D-(-a,)=—p, = D=psa,
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< Application ofthe boundary
condition is needed on only
Ps one surface to obtain the total
E = ? Z field between plates.

The electric field between plates is therefore:




Capacitance of a Parallel Plate Capacitor

charge density
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Now with E = %az The voltage between plate can be found through:
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Thenwith Q = pgS we finally obtain| ¢ = VT d




Stored Energy in a Capacitor

Stored energy is found by integrating the energy density in the electric field over the
capacitor volume. We use:

1
WE—/ — D - Edv
’U0l2

or
d 2 2 12
: €S pgd
vol 0 ¢ € d 62
S SISV
C Vy?




Example: Coaxial Transmission Line

We previously found using Gauss’ Law:
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The potential difference between conductors is now: ‘ assume a unit lengthin z
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...and the charge on the inner conductor per unit length is:
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Another Example: Spherical Capacitor

Consider two concentric spherical conductors, having radii @ and b.
Equal and opposite charges, (, are on the inner and outer conductors.

Gauss’ Law tells us that electric field will exist only in the
region between spheres, and will be given by: -0
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The potential difference between inner and outer spheres is then:
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and the capacitance is:

Note thatas b — 00 (isolated sphere)

Q) dre
=N T Wa—am C — drea




Example: Isolated Sphere with a Dielectric Coating

A conducting sphere of radius a carries charge Q.
A dielectric layer of thickness 7| - a and of permittivity &, surrounds the
conductor. Electric field in the two regions is found from Gauss’ Law to be:
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The potential at the sphere surface is (with zero reference at infinity):
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Capacitor with a Two-Layer Dielectric

In this case, we use the fact that D normal to an interface between two dielectrics
will be continuous across the boundary, assuming no surface charge is present there:

ThusPn1 = Dn2  and therefore: €1E1 = €2E
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The potential difference between bottom and top plates will be:
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Poisson’s and Laplace’s Equations

These equations allow one to find the potential field in a region,
in which values of potential or electric field are known at its
boundaries.
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Derivation (continued)

Recall the divergence as expressed in V.-A— an + aA_V + aAZ

rectangular coordinates: 0x ay 0z
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...and the gradient: VV = —a, + —a, + —a,
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V - V is abbreviated V2 (and pronounced “del squared™). Ttis known as the Laplacian operator



Statement of Poisson’s and Laplace’s Equations
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This is Poisson’s equation, as stated in rectangular coordinates.

In the event that there is zero volume charge density, the right-hand-side becomes zero, and we obtain

Laplace’s equation:

V2V =0




The Laplacian Operator in the Three Coordinate
Systems
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Application on Laplace and Poisson
equations: Parallel Plate Capacitor

In this case, the plate separation, d, is assumed

much less than the smallest plate dimension. )
Therefore ¥ can be assumed to vary only with x. V=",
d .
Laplace’s equation reduces to:
d*Vv
_2 — O 0 1
dx V=0
dV
Integrating once, obtain: —— = A
dx Boundary conditions:
l. V=0atx =0
Integrate a secondtime toget: V = Ax + B 22 V=Vyatx=d

where 4 and B are integration constants that are to be evaluated subject to the boundary conditions.



Interior Potential Field

We nowhave: V = Ax + B X A
V= VO
Apply boundary condition 1: d—
Equipotential
0 :A(O) + B B=0 Surfaces
0 —
Apply boundary condition 2: V=20
Vo
d Boundary conditions:
I. V=0atx =0
is_ function is pictured by the 2.V=Vyatx=d
. V[))C equipotential surfaces shown in
Finally: V=—— the capacitor, in which there is a
d constant voltage difference
between adjacent surfaces



Finding the Electric Field, Charge, and Capacitance

X
Start with: |/ — Vog
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At the lower plate surface: DS =D =0 — —€ ?ax and n=a,
Vo

Thenuse: ) - n{s = Ps tofind Dy = —Gg = Ps
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Another Example: Coaxial Transmission Line

As V'is assumed to vary with radius only, Laplace’s equation becomes: «—_Conducting

? cylinders
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Our goal is to evaluate the potential function in the region (@ <p < b) p=a L —
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Integrate once: 0 dp — Boundary conditions:
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.. and a second time: V = Alnp—I—B oatp =a



Coaxial Line: continued

Nowhave: V = Alnp + B

Apply boundary condition 1:

0=Alnb)+B = B=-Aln(b)

Apply boundary condition 2:

Conducting
cylinders

Boundary conditions:

lI. V=0atp=>»
2. V=Vyatp =a

Vo = Aln(a) — Aln(b) = Aln(a/b) = A= (‘lf;a)
Putting it all together:
V() = ~ i (o) — (0] = Vo Hfﬂ




Coaxial Line Capacitance

We have found the potential 1% ( P) —V ln(b/ P)

field between conductors: ln(
Conducting
c}flmders

Then:

en dV Vb
E=-VV=—— ap —
dp p In(b / a
The charge density on the mner conductor is: o= f, L /
\/
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p=a a ln(b/a)

. _ ...and the capacitance is finally:
The total charge on the inner conductor is:
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6.2.

Let S = 100mm?, d = 3 mm, and ¢, = 12 for a parallel-plate capacitor.

a) Calculate the capacitance:

E,..E[_].A . 12\‘5[}(10{]‘ x 10_6)
d 3x10-3

C = — 0.4ep = 3.54 pf

b) After connecting a 6 V battery across the capacitor, calculate F, D, @, and the total
stored electrostatic energy: First,

E="Vo/d=6/(3x107%) =2000 V/m. then D = ereoE = 2.4 x 10%¢p = 0.21 pC/m?

The charge i this case 1s
Q=D n|,=DA=0.21x (100 x 107) =0.21 x 10~ puC =21 pC

Finally, W, = (1/2)QVp = 0.5(21)(6) = 63 pJ.

¢) With the source still connected, the dielectric is carefully withdrawn from between the
plates. With the dielectric gone, re-calculate E, D, (), and the energy stored in the
capacitor.

E=Vy/d=6/(3x107%) =2000 V/m, as before. D = egF = 2000¢y = 17.7 nC/m?

The charge is now Q = DA = 17.7 x (100 x 10) nC = 1.8 pC.
Finally, W, = (1/2)QVo = 0.5(1.8)(6) = 5.4 pJ.




