
Engineering Electromagnetics

Chapter 7:

The Steady Magnetic 

Field



Motivating the Magnetic Field Concept: 

Forces Between Currents

How can we describe a force field around wire 1 that can be used to determine the force on wire 2?

Magnetic forces arise whenever we have charges in motion.  Forces between current-carrying wires 

present familiar examples that we can use to determine what a magnetic force field should look like: 

Here are the easily-observed facts:



Magnetic Field
The geometry of the magnetic field is set up to correctly model forces between currents that 

allow for any relative orientation.  The magnetic field intensity, H, circulates around its source, I1,

in a direction most easily determined by the right-hand rule:  Right thumb in the direction of the 

current, fingers curl in the direction of H



Biot-Savart Law

The Biot-Savart Law specifies the 

magnetic field intensity,  H, arising 

from a “point source” current element 

of differential length dL.

Note in particular the inverse-square 

distance dependence, and the fact that 

the cross product will yield a field vector 

that points into the page.  This is a formal 

statement of the right-hand rule

Note the similarity to Coulomb’s Law, in which 

a point charge of magnitude dQ1 at Point 1 would 

generate electric field at Point 2 given by:

The units of H are [A/m]



Magnetic Field Arising From a Circulating Current

At point P, the magnetic field associated with 

the differential current element IdL is 

The contribution to the field at P from any portion of the current will be just the above integral evalated

over just that portion.

To determine the total field arising from the closed circuit path, 

we sum the contributions from the current elements that make up

the entire loop, or



Two- and Three-Dimensional Currents

On a surface that carries uniform surface current

density K [A/m], the current within width b is

..and so the differential current quantity that

appears in the Biot-Savart law becomes:

The magnetic field arising from a current 

sheet is thus found from the two-dimensional 

form of the Biot-Savart law:

In a similar way, a volume current will be made up

of three-dimensional current elements, and so the Biot-Savart

law for this case becomes:



Example of the Biot-Savart Law

In this example, we evaluate the magnetic field intensity on the y axis (equivalently in the xy plane) 

arising from a filament current of infinite length in on the z axis.

Using the drawing, we identify:

and so.. 

so that:



Example: continued

We now have:

Integrate this over the entire wire:

..after carrying out the cross product



Example: concluded

we have:

finally:

Current is into the page. 

Magnetic field streamlines 

are concentric circles, whose magnitudes

decrease as the inverse distance from the z axis

Evaluating the integral:



Field Arising from a Finite Current Segment
In this case, the field is to be found in the xy plane at Point 2.  

The Biot-Savart integral is taken over the wire length:

..after a few additional steps, we find:



Another Example: Magnetic Field from a 

Current Loop

Consider a circular current loop of radius a in the x-y plane, which 

carries steady current I.  We wish to find the magnetic field strength

anywhere on the z axis.

We will use the Biot-Savart Law:

where:



Example: Continued

Substituting the previous expressions, the Biot-Savart Law becomes:

carry out the cross products to find:

but we must include the angle dependence in the radial

unit vector:

with this substitution, the radial component will integrate to zero, meaning that all radial components will

cancel on the z axis.  



Example: Continued

Now, only the z component remains, and the integral 

evaluates easily:

Note the form of the numerator:  the product of

the current and the loop area.  We define this as 

the magnetic moment:



Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H about any closed path

is exactly equal to the direct current enclosed by that path.

In the figure at right, the integral of H about closed paths a and b gives

the total current I, while the integral over path c gives only that portion 

of the current that lies within c



Ampere’s Law Applied to a Long Wire



Choosing path a, and integrating H around the circle 

of radius  gives the enclosed current, I:

so that: as before.

Symmetry suggests that H will be circular, constant-valued

at constant radius, and centered on the current (z) axis.



Coaxial Transmission Line

In the coax line, we have two concentric 

solid conductors that carry equal and opposite

currents, I.

The line is assumed to be infinitely long, and the

circular symmetry suggests that H will be entirely

 - directed, and will vary only with radius .

Our objective is to find the magnetic field 

for all values of 



Field Between Conductors

The inner conductor can be thought of as made up of a

bundle of filament currents, each of which produces the

field of a long wire.  

The field between conductors is thus found to be the same

as that of filament conductor on the z axis that carries current,

I.  Specifically:

a < < b



Field Within the Inner Conductor

With current uniformly distributed inside the conductors, the H can be assumed circular everywhere.

Inside the inner conductor, and at radius we again have:

But now, the current enclosed is

so that or finally:



Field Outside Both Conducors

Outside the transmission line, where > c, 

no current is enclosed by the integration path,

and so 

0

As the current is uniformly distributed, and since we

have circular symmetry, the field would have to 

be constant over the circular integration path, and so it

must be true that:



Field Inside the Outer Conductor

Inside the outer conductor, the enclosed current consists

of that within the inner conductor plus that portion of the 

outer conductor current existing at radii less than 

Ampere’s Circuital Law becomes

..and so finally:



Curl of a Vector Field

In general, the curl of a vector field is another field that is normal to the original field.

The curl component in the direction N, normal to the plane of the integration loop is: 

The direction of N is taken using the right-hand convention:  With fingers of the right hand oriented

in the direction of the path integral, the thumb points in the direction of the normal (or curl).

= J



Curl in Rectangular Coordinates

Assembling the results of the rectangular loop integration exercise, we find the vector field

that comprises curl H:

An easy way to calculate this is to evaluate the following determinant:

which we see is equivalent to the cross product of the del operator with the field:



Curl in Other Coordinate Systems

…a little more complicated!

Look these up as needed….



Another Maxwell Equation

It has just been demonstrated that:

…..which is in fact one of Maxwell’s equations for static fields:

This is Ampere’s Circuital Law in point form.



….and Another Maxwell Equation

We already know that for a static electric field:

This means that:

Recall the condition for a conservative field:  that is, its closed path integral is zero everywhere.

Therefore, a field is conservative if it has  zero curl at all points over which the field is defined.

(applies to a static electric field)



Obtaining Ampere’s Circuital Law in Integral Form, 

using Stokes’ Theorem

Begin with the point form of Ampere’s Law for static fields:

Integrate both sides over surface S:

..in which the far right hand side is found from the left hand side

using Stokes’ Theorem.  The closed path integral is taken around the 

perimeter of S.  Again, note that we use the right-hand convention in 

choosing the direction of the path integral.

The center expression is just the net current through surface S, 

so we are left with the integral form of Ampere’s Law:



Magnetic Flux and Flux Density

We are already familiar with the concept of electric flux:

Coulombs

in which the electric flux density in free space is:

In a similar way, we can define the magnetic flux in units of Webers (Wb):

Webers

in which the magnetic flux density (or magnetic induction) in free space is:

and where the free space permittivity is 

and where the free space permeability is

This is a defined quantity, having to do with the definition of the ampere (we will explore this later).



A Key Property of B

If the flux is evaluated through a closed surface, we have in the case of electric flux, Gauss’ Law:

If the same were to be done with magnetic flux density, we would find:

The implication is that (for our purposes) there are no magnetic charges 

-- specifically, no point sources of magnetic field exist.  

i.e.  magnetic field lines always close on themselves.



Another Maxwell Equation

We may rewrite the closed surface integral of B using the divergence theorem, in which the 

right hand integral is taken over the volume surrounded by the closed surface:

Because the result is zero, it follows that

This result is known as Gauss’ Law for the magnetic field in point form.



Maxwell’s Equations for Static Fields

We have now completed the derivation of Maxwell’s equations for no time variation. In point form, these are:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the Magnetic Field

where, in free space:

Significant changes in the above four

equations will occur when the fields are 

allowed to vary with time, as we’ll see later.



Maxwell’s Equations in Large Scale Form

The divergence theorem and Stokes’ theorem can be applied to the previous four point form equations 

to yield the integral form of Maxwell’s equations for static fields:

Gauss’ Law for the electric field

Conservative property of the static electric field

Ampere’s Circuital Law

Gauss’ Law for the magnetic field



Example:  Magnetic Flux Within a Coaxial Line

d
B

Consider a length d of coax, as shown here.  The magnetic field strength between conductors is:

and so:

The magnetic flux is now the integral of B over the 

flat surface between radii a and b, and of length d along z: 

The result is:

The coax line thus “stores” this amount of magnetic flux in the region between conductors.  

This will have importance when we discuss inductance in a later lecture.



Exercises 








