
Engineering Electromagnetics

Chapter 8:

Magnetic Forces, Torque, and 

Inductance



Force on a Moving Charge

The forces exerted on a point charge by electric and magnetic fields are: 
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in the direction of E into the screen
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or moving
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Lorentz Force Law

Generally, with both electric and magnetic fields present, we have both forces:
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The total force on the moving charge is then the sum of the two, or

This is the Lorentz Force Law (sometimes called the “fifth Maxwell equation”)

The electric field will, in this

case, accelerate the charge in 

the direction of E, making it

cross the B field lines in the 

perpendicular sense;  this gives a

magnetic force component that 

is out of the screen



Hall Effect

When a B field is applied in a direction perpendicular to a current, 

positive and negative carriers will be displaced slightly, as shown,

as a result of the magnetic forces on the moving charges.

This produces a measurable voltage, known as the Hall Voltage. 



Force on a Differential Current Element

BdL J

Consider a small segment (length dL)

of current in the form of a volume 

current density J, suspended in a magnetic

field, B.  The current element has volume dv.

We know that current density is volume charge density moving at velocity v:

..and we can write the differential force

on a differential charge, dQ: where

Therefore: ..so that finally:

dv



Other Expressions for Differential Force

For volume current, surface current, or filament current, we have the 

appropriate expressions for differential current:

The corresponding expressions for differential force within magnetic field B are:

volume current density (three dimensions)

surface current density (two dimensions)

filament current of length dL (one dimension)



Evaluating the Total Force

In three or two dimensions, 

the net force is found by 

integrating over the volume 

or surface that the current occupies

For a filament current, the total force will be the integral of the differential 

force, generally taken over the closed path that comprises the current:

For a straight filment of length L, having uniform current, and within a uniform field, this becomes: 

which in turn reduces to 



Example: Force on a Square Current Loop

The magnetic field arising from the straight wire,

evaluated in the plane of the loop, is:

The B field is then:

The total force on the loop is then found by evaluating:

over all four loop segments



Example:  Continued

The integral becomes:
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Force Between Differential Current Elements

aR12

dH2

We use the Biot-Savart Law to find the differential 

magnetic field at Point 2 that arises from the 

differential current element at Point 1:

The flux density associated with this field 

will generate a force on an additional current 

element at Point 2



Force Between Differential Current Elements

aR12

A second differential current element is now placed

at Point 2.  It will experience a force given by:

Then with:

where:

we finally obtain:



Example (8.2)

aR12

Given:

Then

Substitute these into:

Obtain:



Force Between Current Filaments of Finite

(or Infinite) Lengths

The force is found by integrating the differential filament result:

in which the integral is taken over the lengths of both filaments.  To be complete,

both integrals would be taken over the closed loops that the currents must form, thus

the general expression:

These integrals can 

be modified to incorporate

specific limits, in order to 

find the force from a 

specified segment of a 

wire that acts on a specific 

segment of another wire



Example:  Force Between Parallel Wires 

(the easy way)
Consider the two wires shown here, carrying equal and opposite currents, I, 

and spaced by distance d12 along the y axis.  The wires are oriented in the z direction

and both are infinitely long.

The force is to be found on a length      of wire 2, 

of equal extent above and below the y axis. 
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z

wire 1 wire 2

We can solve this one fairly quickly by observing
that the B field from wire 1 at the location of wire 2
will be:

x B12

and



Example (continued)
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x B12

andWe have:

Then the force 

acting on the differential

element shown is:

The total force on the length is therefore:

….which is a repulsive force



Torque:  Basic Definition

Given a force F at point P, the torque

about the origin is a vector that is perpendicular

to the plane containing F and position vector

R.  The torque vector is the cross product:



Torque:  General Equation

Now, consider two equal and opposite

forces, applied at points P1 and P2 as shown.

As the net force is zero, there is no translation of the object.

The net torque on the system will be:

But since F2 = -F1 :

This means that the torque is independent of the choice of origin, provide the total 

force acting is zero.  This applies to any number of forces.  And the origin can be 

located anywhere that is convenient.



Torque on a Differential Current Loop

The filament loop shown here lies in the xy plane with 

its center at the origin.  Magnetic flux density B

exists everywhere, and in a general direction.  As the 

loop is of differential size, the magnitude of B is 

assumed uniform over the loop area, and has value B0.  

Current I circulates around the loop.

The differential force acting on side 1 is:



Torque on a Differential Current Loop

We have the differential force acting on side 1:

R1

For side 1, the lever arm extends from 

the origin to the midpoint of the side, and

is given by:

The differential torque acting on side 1 is then:



Torque on a Differential Current Loop

R3

The total differential torque acting on sides 1 and 3 is then:

We next consider the opposite side (3), and

using similar reasoning, find the differential 

torque acting on side 3: 

(!)

Then, using the same reasoning, the total differential

torque acting on sides 2 and 4 is:



Torque on a Differential Current Loop
Now, with:

and

The total torque on all four sides is:

The terms in parenthesis can be written as a cross product:

Finally resulting in:

where the differential loop area vector is defined using the right hand convention:

dS points out of the screen in this example Fingers in direction of current, thumb in direction of S



Differential Magnetic Moment

Having found the torque on a differential current loop:

Define the differential magnetic dipole moment (magnetic strength) as the product of the current and 

the differential area vector:

from which:



Torque on a Large-Scale Current Loop

If we remove the restriction on differential size, and assume uniform magnetic flux density

over the entire loop area, the differential result

becomes:

These results are independent of the shape of the loop -- the area and orientation

are all that matter.



Example



Inductance Definition

I
N turns

B

Si

d

where

Having the flux linkage (i.e. Total Flux):

The inductance of the device is defined as the flux linkage per unit current, or

where the last equality applies if all 

turns are identical

The units of inductance are Weber-turns per Ampere, where 

1 Wb-t/A is defined as one Henry [H].



Solenoid Inductance

I
N turns

B

Si

d

For a long solenoid, having turn density n, and core permeability    ,  

the magnetic flux density has magnitude:

Then, assuming equal flux densities through N identical turns, 

the flux linkage is 

…and the inductance is:

It is interesting to compare this result to the capacitance 

of a parallel-plate capacitor, having plate area S, plate 

spacing, d, and dielectric permittivity,   : 



Example:  Inductance of a Coaxial Line

d
B

Consider a length d of coax, as shown here.  The magnetic field strength between conductors is:

and so:

The magnetic flux is now the integral of B over the 

flat surface between radii a and b, and of length d along z. 

As we have only one turn (N = 1), the result is also the flux linkage: 

Now, with d = 1, the inductance per unit length is:



Two Inductors

N2

S2 I2

B22

d2

N1

S1 I1

B11

d1

Suppose we have two solenoids, having different specifications as indicated:

The self linkage and self inductance of each coil are determined in the manner

that we used before, assuming identical fluxes through each turn.

Coil 2

Coil 1

and

and



Interaction Between Inductors

N2

S2 I2

B22

d2

N1

S1 I1

B11

d1

B12

B21

Actually, the magnetic fields generated by each coil will link the other,

as shown here.  This flux overlap is the basis of mutual inductance.

Throughout this discussion, the field in red is that generated by Coil 1, 

while the blue field is generated by Coil 2

With both currents on, all the fields indicated here will be present.

The fields and other quantities are kept track of by the subscripts, 

the meaning of which is:

Bi j

arising 

from coil i

evaluated 

within coil j

i, j = 1, 2

Note that the diagrams shown here are oversimplified, because there will

be significant spreading of the crossover fields, B12 and B21 .



Mutual Inductance, M12

N2

S2 I2 = 0

d2

N1

S1 I1

B11

d1

B12 In this case, current in Coil 2 is turned off, leaving only the flux density

generated by Coil 1, B12 , existing within Coil 2.

Coil 1

Coil 2
The mutual linkage between Coils 1 and 2 is found through:

… and the mutual inductance between Coils 1 and 2 is defined as:

Again, we oversimplify here, in that the non-uniformity of B12 may likely

require a turn-by-turn evaluation of the flux in Coil 2, in order to obtain the 

mutual linkage (in the worst case).



Mutual Inductance, M21

N2

S2 I2 

d2

N1

S1 I1 = 0

B21

d1

B22 In this case, current in Coil 1 is turned off, leaving only the flux density

generated by Coil 2, B21 , existing within Coil 1.

The mutual linkage between Coils 2 and 1 is found through:

Coil 1

Coil 2

… and the mutual inductance between Coils 2 and 1 is defined as:

As before, the likely non-uniformity of B21 may likely require a turn-by-turn 

evaluation of the flux in Coil 1, in order to obtain the mutual linkage.



Example: Concentric Solenoids

N1

S1

d

S2

N2

In this configuration, two concentric solenoids have different numbers

of turns, N1 and N2 (even though in the drawing the turn count would 

appear to be the same).  Both coils have the same length, d.   The area

of each identical turn in the two coils is S1 for the outer coil, and S2 for 

the interior coil.  The core permeability is       



Mutual Inductance, M12

With the outer coil current I1 turned on,  the interior flux

exists throughout the outer coil volume, and consequently

throughout the volume of the inner coil as well. 

Flux density B12 resides inside coil 2 (and in coil 1 as well)

I1

B12

N1

S1

d

S2

N2

B11

Assuming a long coil,

the flux density is:

The mutual linkage between coils 1 and 2 is then:

.. and the mutual inductance is:



Mutual Inductance, M21

N1

S1

d

S2

N2

B21

With the inner coil current I2 turned on,  the interior flux

exists throughout the inner coil volume, which overlaps with

the outer coil volume

Flux density B21 resides inside coil 2 (and in coil 1 as well), but 

the flux in the coil 1 volume is confined within the volume of coil 2.

The coil 2 flux density

(that resides in both coils) is:

The mutual flux linkage between coils 2 and 1 is then:

…and the mutual inductance is:



A Property of the Mutual Inductances

They’re equal!

The foregoing example illustrates an important property of 

the mutual inductances between any pair of inductors:



Exercises






