
Engineering Electromagnetics

Chapter 9:

Time-Varying Fields 

and Maxwell’s Equations



The question addressed is:  If a current can generate a magnetic

field, then can a magnetic field generate a current?

An experiment similar to that conducted to answer

that question is shown here.  Two sets of windings 

are placed on a shared iron core.  In the lower set, 

a current is generated by closing the switch as shown.

In the upper set, any induced current is registered by

the ammeter.

Faraday’s Experiment



Closing the switch results in current that initially

increases with time in the lower windings.  Magnetic

flux density B is generated, which now links the upper

windings;  these are found to carry current, Iind .  

This current exists as long as B increases with time.

Note the direction of the induced current and the 

position of the ammeter.

More specifically, the induced current is proportional

to the time rate of change of the magnetic flux

(the surface integral of B over S ).

Effect of Increasing B



Steady State

Once steady state is reached, in which B is at a constant

value, the induced current is found to be zero.



Opening the switch results in current that initially

decreases with time in the lower windings.  

Magnetic flux density B collapses, and the upper

windings carry current, Iind in the opposite direction from

before.  This current exists as long as the magnetic flux

decreases with time.

Once B is reduced completely to zero,

the induced current is zero as well.

Effect of Decreasing B



Electromotive Force (emf)

Next, a unit normal vector to the surface, n, is shown.  The 

relative directions of n, and the contour C are defined by the 

right-hand convention:  Right hand thumb in direction of n; 

fingers then curve in the direction of C.

The electromotive force, or emf, is defined as the closed path

integral of E about C:



Faraday’s Law of Induction

Faraday’s Law states that the induced emf around a closed path 

is equal to the time rate of change of the magnetic flux through 

the area surrounded by the path:

where the flux is:

Note the use of the normal unit vector here, which determines the sign of the flux,

and ultimately the emf.



Faraday’s Law in Detail

Using the definitions of emf and the magnetic flux in this situation: 

becomes:

When we strictly apply this rule to the illustration at the left, 

do we conclude that B is increasing or decreasing with time?

Question:



Alternative Expression for Faraday’s Law

(Another Maxwell Equation)

First move the time derivative 

into the interior of the right-hand

integral:

Second, use Stokes’ theorem to

write the line integral of E as the 

surface integral of its curl:

Third, simplify by noting that both 

integrals are taken over the same surface:

Finally, obtain the point form of 

Faraday’s Law:



Example

Start with a uniform (but time-varying) field:

Then

As this calculation will work for any radius, we can replace the fixed

radius with a variable radius and write:



Another Way…

This time use: where

Therefore:

Surviving z-directed

curl component with 

radial variation only

Multiply through by     and integrate both sides: 

Obtain, as before:

An observation:  The given B field does not satisfy all of Maxwell’s equations!

More about this later…



Induced emf from a Moving Closed Path

In the case shown here, the flux within a closed path

is increasing with time as a result of the sliding bar, moving

at constant velocity v. 

The conducting path is assumed perfectly-conducting, so that

the induced emf appears entirely across the voltmeter.  

The magnetic flux enclosed by the conducting path is

Therefore:

where the y dimension varies with time.



Motional EMF

The sliding bar contains free charges (electrons) that experience 

Lorentz forces as they move through the B field:

Recall:

and so..

This result is the motional field intensity:

..and so now the motional emf is the closed path integral of Em over the same path as before.

Note that the motional field intensity exists

only in the part of the circuit that is in motion.



Reprise of the Original Problem

We now have the motional emf:

..which in the current problem becomes:

or the same result as before!

as always, this path

integral is taken according

to the right hand convention, 

leading to the ordering of limits shown here



Two Contributions to emf

For a moving conducting path in an otherwise uniform field, the emf is composed entirely of motional emf:

When the B field is time-varying as well, then both effects need to be taken into account.  The total emf is:

Transformer emf Motional emf

Together, the two effects are really just…



An Apparent Contradiction

We now have two curl equations: 

and 

Faraday’s Law Ampere’s Circuital Law

Taking the divergence of the second equation gives us a result that is identically zero:

But a previous exercise gave us

this result: the equation of continuity:
So what went wrong?



The Missing Term -- Displacement Current Density

Suppose we add a term to the right-hand side of Ampere’s Law,

whose identity we need to determine: 

Now take the divergence:
Added term to

be identified

From the equation of continuity This must be true:

So now:

..from which:
Now, Ampere’s 

Law is modified:

This term is the displacement current density



Symmetry in the Curl Equations

Our new result states that the total current

is composed of conduction current and 

displacement current:

where the displacement current density is:

Conduction current density is: as before.

In the absence of conduction

current, and when fields are 

time-varying, we have:

Note the symmetry when 

comparing to Faraday’s Law:



Displacement Current in Ampere’s Law 

Displacement current is found from displacement current density by taking the appropriate surface integral:

Such an integral of Ampere’s Circuital Law curl equation gives:

Applying Stokes’ Theorem to the left side gives the more familiar form of Ampere’s Law, now with 

displacement current added:



Demonstration of Displacement Current

In this situation, a time-varying 

magnetic field links a wire loop 

that is connected to a parallel-

plate capacitor.

We assume for the moment that

conduction current I exists in the 

wire.  Ampere’s Law is applied to

the circular path shown, whose radius

is very small compared to the local 

wire length.   The wire therefore appears

very long and straight.  We obtain:

as usual
The integration surface is the flat plane whose perimeter is 

the circlular path, k.  We assign the z direction (locally) to be 

along the current where it passes through the plane.

S H

k
I

The magnetic field is presumed time-varying, and thus it

generates emf, which in turn provides the current.



Demonstration of Displacement Current

While current is flowing, the 

electric field in the capacitor is 

changing with time, in step

with the plate charge level, 

deposited by the current. 

S H

D

d
V0(t)

area = A

The capacitor voltage is V0(t).

Taking the capacitor axis as z,

assuming free space permittivity,

and with cap dimensions as indictated,

the time-varying electric flux density 

within it is: 



Demonstration of Displacement Current

Now suppose the surface S,

surrounded by the original 

contour, k, is stretched so that it 

intercepts the electric 

field between capacitor plates:

H

Stretched surface now intercepts electric field lines, 

and no conduction current

D
Ampere’s Law is again applied,

but this time we need to use the 

displacement current in the capacitor:

The result must be independent of the surface 

that is chosen, which leads to the conclusion that 

the conduction and displacement currents must be equal:

a familiar 

result!



Maxwell’s Equations in Point Form

Ampere’s Circuital Law

Faraday’s Law of Induction

Gauss’ Law for the electric field

Gauss’s Law for the magnetic field



https://youtu.be/W1cTpqM9DaU

https://youtu.be/W1cTpqM9DaU










Maxwell’s Equations in Point Form

Ampere’s Circuital Law

Faraday’s Law of Induction

Gauss’ Law for the electric field

Gauss’s Law for the magnetic field



Ampere’s Circuital Law in Integral Form

Take the surface integral of the point form equation:

Apply Stokes’s Theorem to the left hand side:

I Id

where

mmf

Remember to use the right hand

convention on relating path direction 

to the normal vector.



Faraday’s Law of Induction in Integral Form

Take the surface integral of the point form equation:

Apply Stokes’s Theorem to the left hand side:

emf

Remember to use the right hand

convention on relating path direction 

to the normal vector.



Gauss’s Law for the Electric Field in Integral Form

Begin with: and integrate both sides over a volume, v:

Apply the divergence theorem to the left hand side:



Gauss’s Law for the Magnetic Field in Integral Form

Begin with: and integrate both sides over a volume, v:

Apply the divergence theorem to the left hand side:



Scalar and Vector Potentials, Revisited

In a previous unit, we defined the scalar electric potential, and vector magnetic potential, under 

conditions in which there is no time variation:

Scalar electric potential (satisfies Poisson’s equation):

Vector magnetic potential:

Knowing V, we find E through:

Knowing A, we find B through:



Inconsistancies with Time-Varying Fields 

Take the curl of both sides of 

This is identically zero! This is not

So instead, postulate a correction to the original equation, where the field N is to be found:

Now take the curl:



Inconsistancies with Time-Varying Fields 

We now have:

where

Therefore:

or:

So the modified expression for 

E under time-varying conditions is:



Further Confirmation:  Satisfying the Other 

Maxwell Equations

We must now verify that satisfies the other Maxwell Equations

To do this, begin by substituting the equation into the other Maxwell curl equation:

Using:

Obtain:



Satisfying Ampere’s Law (continued)

Now have:

Use the vector identity:

to obtain:



Satisfying Gauss’ Law 

Next:

must satisfy where

Make the substitution to find:

or finally:



Collecting Results

From Ampere’s Law, we now have:

.. and from Gauss’ Law:



Assigning the Divergence: Lorentz Gauge

A vector field is fully characterized if we have specified its divergence, its curl, its value at a specific point,

which could lie at infinity.  The vector potential, A, already has its curl specified (B), so we are now free to

specify the divergence in such a way as to make the equations sensible (and solvable) for real situations. 

In view of these considerations, we specify the divergence of A as follows:

Such assignments are known as gauge conditions.   The one just identified is known as the Lorentz Gauge.



Simplifying the Equations

With the Lorentz Gauge,

the two equations are simplified in the following ways:

becomes:

and the previous:

now becomes:

These are both wave equations, 

yielding propagating functions

as their solutions.  This topic will

be discussed at length in subsequent

chapters.



The Propagation Effect:  Delayed Response

The ulimate effect of time-varying fields is that their effects (with regard to potentials, forces, or their very

existence) will be felt after a time delay.   This delay is proportional to the distance between the source of the 

field, and the point of observation, and represents the time required for a “disturbance” to propagate between

those two points.  So the previous integral expressions that we had for scalar and vector potential are modifed 

to accommodate this delay in a fairly simple manner:

Static Potentials Retarded Potentials 

is the “propagation velocity” (not to be confused with volume).

The argument
indicates that at farther distances, R, the delay time t 

at which the potential will be felt is longer.

V and A are now propagating functions.



Exercises










