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Physical Constants

Quantity

Value

Electron charge
Electron mass

Permittivity of free space
Permeability of free space

Velocity of light

e = (1.602177 33 + 0.00000046) x 10-1° C
m = (9.109 389 7 + 0.000 0054) x 103! kg
€0 = 8.854187817 x 10~12 F/m

wo = 4710~7 Him

¢ = 2.997 92458 x 108 m/s

Dielectric Constant (¢/) and Loss Tangent (¢”/¢’)

Material €, e/€e
Air 1.0005

Alcohol, ethyl 25 0.1
Aluminum oxide 8.8 0.000 6
Amber 2.7 0.002
Bakelite 4.74 0.022
Barium titanate 1200 0.013
Carbon dioxide 1.001

Ferrite (NiZn) 12.4 0.000 25
Germanium 16

Glass 4-7 0.002
Ice 4.2 0.05
Mica 5 0.000 6
Neoprene 6.6 0.011
Nylon 35 0.02
Paper 5 0.008
Plexiglas 3.45 0.03
Polyethylene 2.26 0.000 2
Polypropylene 225 0.000 3
Polystyrene 2.56 0.000 05
Porcelain (dry process) 6 0.014
Pyranol 4.4 0.000 5
Pyrex glass 4 0.000 6
Quartz (fused) 3.8 0.000 75
Rubber 2.5-3 0.002
Silica or SiO; (fused) 3.8 0.000 75
Silicon 11.8

Show &3 0.5
Sodium chloride 5.9 0.000 1
Soil (dry) 2.8 0.05
Steatite 5.8 0.003
Styrofoam 1.03 0.0001
Teflon 221! 0.000 3
Titanium dioxide 100 0.0015
Water (distilled) 80 0.04
Water (sea) 4

Water (dehydrated) 1 0

Wood (dry) 1.5-4 0.01




Conductivity (€)

Material €, S/m Material €,S/m
Silver 6.17 x 107 Nichrome 0.1 x 107
Copper 5.80 x 107 Graphite 7 x 10*
Gold 4.10 x 107 Silicon 2300
Aluminum 3.82 x 107 Ferrite (typical) 100
Tungsten 1.82 x 107 Water (sea) 5
Zinc 1.67 x 107 Limestone 102
Brass 1.5 x 107 Clay 5x 1073
Nickel 1.45 x 107 Water (fresh) 1073
Iron 1.03 x 107 Water (distilled) 104
Phosphor bronze 1 x 107 Soil (sandy) 10-°
Solder 0.7 x 107 Granite 10~
Carbon steel 0.6 x 107 Marble )T
German silver 0.3 x 107 Bakelite 10-°
Manganin 0.227 x 107 Porcelain (dry process) 1010
Constantan 0.226 x 107 Diamond - 1072
Germanium 0.22 x 107 Polystyrene 1016
Stainless steel 0.11 x 10 Quartz 1057
Relative Permeability (z¢-)

Material Hr Material Ly
Bismuth 0.999 998 6 Powdered iron 100
Paraffin 0.999 999 42 Machine steel 300
Wood 0.999 999 5 Ferrite (typical) 1000
Silver 0.999 999 81 Permalloy 45 2500
Aluminum 1.000-000 65 Transformer-iron 3000
Beryllium 1.000 000 79 Silicon-iron 3500
Nickel chloride 1.000.04 Iron (pure) 4000
Manganese sulfate 1.000 1 Mumetal 20 000
Nickel 50 Sendust 30 000
Cast iron 60 Supermalloy 100 000

Cobalt 60
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PREFACE

It has been 52 years since the first edition of this book was published, then under the
sole authorship of William H. Hayt, Jr. As| wasfive yearsold at that time, thiswould
have meant littleto me. But everything changed 15 yearslater when | used the second
edition in a basic electromagnetics course as a college junior. | remember my sense
of foreboding at the start of the course, being aware of friends' horror stories. On first
opening the book, however, | was pleasantly surprised by the friendly writing style
and by the measured approach to the subject, which — at least for me — made it a
very readable book, out of which | wasableto learnwith little help from my professor.
| referred to it often whilein graduate school, taught from the fourth and fifth editions
as afaculty member, and then became coauthor for the sixth and seventh editions on
the retirement (and subsequent untimely death) of Bill Hayt. The memories of my
time as a beginner are clear, and | have tried to maintain the accessible style that |
found so welcome then.

Over the 50-year span, the subject matter has not changed, but emphases have. In
theuniversities, thetrend continuestoward reducing el ectrical engineering corecourse
allocations to electromagnetics. | have made efforts to streamline the presentation in
this new edition to enabl e the student to get to Maxwell’s equations sooner, and | have
added more advanced material. Many of the earlier chapters are now slightly shorter
than their counterpartsin the seventh edition. This has been done by economizing on
thewording, shortening many sections, or by removing some entirely. In some cases,
deleted topics have been converted to stand-alone articles and moved to the website,
from which they can be downloaded. Major changes include the following: (1) The
material ondielectrics, formerly in Chapter 6, has been moved to the end of Chapter 5.
(2) The chapter on Poisson’s and L aplace’s equations has been eliminated, retaining
only the one-dimensional treatment, which has been moved to the end of Chapter 6.
Thetwo-dimensional Laplace equation discussion and that of numerical methodshave
been moved to the website for the book. (3) The treatment on rectangular waveguides
(Chapter 13) has been expanded, presenting the methodology of two-dimensional
boundary value problems in that context. (4) The coverage of radiation and antennas
has been greatly expanded and now forms the entire Chapter 14.

Some 130 new problems have been added throughout. For some of these, | chose
particularly good “classic” problems from the earliest editions. | have also adopted
a new system in which the approximate level of difficulty is indicated beside each
problem on athree-level scale. Thelowest level isconsidered afairly straightforward
problem, requiring little work assuming the material is understood; alevel 2 problem
is conceptually more difficult, and/or may require more work to solve; alevel 3 prob-
lem is considered either difficult conceptualy, or may require extra effort (including
possibly the help of a computer) to solve.



Preface

As in the previous edition, the transmission lines chapter (10) is stand-alone,
and can be read or covered in any part of a course, including the beginning. In
it, transmission lines are treated entirely within the context of circuit theory; wave
phenomena are introduced and used exclusively in the form of voltages and cur-
rents. Inductance and capacitance concepts are treated as known parameters, and
so there is no reliance on any other chapter. Field concepts and parameter com-
putation in transmission lines appear in the early part of the waveguides chapter
(13), where they play additional roles of helping to introduce waveguiding con-
cepts. The chapters on electromagnetic waves, 11 and 12, retain their independence
of transmission line theory in that one can progress from Chapter 9 directly to
Chapter 11. By doing this, wave phenomena are introduced from first principles
but within the context of the uniform plane wave. Chapter 11 refersto Chapter 10 in
placeswherethelatter may give additional perspective, along with alittle more detail.
Nevertheless, all necessary material to learn plane waves without previously studying
transmission line wavesisfound in Chapter 11, should the student or instructor wish
to proceed in that order.

The new chapter on antennas covers radiation concepts, building on the retarded
potential discussion in Chapter 9. The discussion focuses on the dipole antenna,
individually and in simple arrays. Thelast section covers elementary transmit-receive
systems, again using the dipole as a vehicle.

The book is designed optimally for atwo-semester course. Asis evident, statics
concepts are emphasized and occur first in the presentation, but again Chapter 10
(transmission lines) can be read first. In a single course that emphasizes dynamics,
the transmission lines chapter can be covered initially as mentioned or at any point in
the course. One way to cover the statics material more rapidly is by deemphasizing
materials properties (assuming these are covered in other courses) and some of the
advanced topics. Thisinvolves omitting Chapter 1 (assigned to be read as areview),
and omitting Sections 2.5, 2.6, 4.7, 4.8, 5.5-5.7, 6.3, 6.4, 6.7, 7.6, 7.7, 8.5, 8.6, 8.8,
8.9, and 9.5.

A supplement to this edition is web-based material consisting of the afore-
mentioned articles on special topics in addition to animated demonstrations and
interactive programs developed by Natalya Nikolova of McMaster University and
Vikram Jandhyala of the University of Washington. Their excellent contributions
are geared to the text, and icons appear in the margins whenever an exercise that
pertains to the narrative exists. In addition, quizzes are provided to aid in further
study.

The theme of the text is the same as it has been since the first edition of 1958.
An inductive approach is used that is consistent with the historical development. In
it, the experimental laws are presented as individual concepts that are later unified
in Maxwell’s equations. After the first chapter on vector analysis, additional math-
ematical tools are introduced in the text on an as-needed basis. Throughout every
edition, as well as this one, the primary goal has been to enable students to learn
independently. Numerous examples, drill problems (usually having multiple parts),
end-of-chapter problems, and material on the web site, are provided to facilitate this.

Xi
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Preface

Answers to the drill problems are given below each problem. Answers to odd-
numbered end-of-chapter problems are found in Appendix F. A solutions manual
and a set of PowerPoint slides, containing pertinent figures and equations, are avail-
ableto instructors. These, along with all other material mentioned previously, can be
accessed on the website:

www.mhhe.com/haytbuck

I would like to acknowledge the valuable input of several people who helped
to make this a better edition. Special thanks go to Glenn S. Smith (Georgia Tech),
who reviewed the antennas chapter and provided many valuable comments and sug-
gestions. Detailed suggestions and errata were provided by Clive Woods (L ouisiana
State University), NatalyaNikolova, and Don Davis (Georgia Tech). Accuracy checks
on the new problems were carried out by Todd Kaiser (Montana State University)
and Steve Weis (Texas Christian University). Other reviewers provided detailed com-
ments and suggestions at the start of the project; many of the suggestions affected the
outcome. They include:

Sheel Aditya— Nanyang Technological University, Singapore

Yaqub M. Amani — SUNY Maritime College

Rusnani Ariffin — Universiti Teknologi MARA

Ezekiel Bahar — University of Nebraska Lincoln

Stephen Blank — New York Institute of Technology

Thierry Blu— The Chinese University of Hong Kong

Jeff Chamberlain —Illinois College

Yinchao Chen — University of South Carolina

Vladimir Chigrinov — Hong Kong University of Science and Technology

Robert Coleman — University of North Carolina Charlotte

Wilbur N. Dale

Ibrahim Elshafiey — King Saud University

Wayne Grassel — Point Park University

Essam E. Hassan — King Fahd University of Petroleum and Minerals

David R. Jackson — University of Houston

Karim Y. Kabalan — American University of Beirut

Shahwan Victor Khoury, Professor Emeritus — Notre Dame University,
Louaize-Zouk Maosbeh, Lebanon

Choon S. Lee — Southern Methodist University

Mojdeh J. Mardani — University of North Dakota

Mohamed Mostafa Morsy — Southern I1linois University Carbondale

Sima Noghanian — University of North Dakota

W.D. Rawle — Calvin College

Gonul Sayan —Middle East Technical University

Fred H. Terry — Professor Emeritus, Christian Brothers University

Denise Thorsen — University of Alaska Fairbanks

Chi-Ling Wang — Feng-Chia University


www.mhhe.com/haytbuck

Preface

| also acknowledge the feedback and many comments from students, too numerousto
name, including several who have contacted me from afar. | continue to be open and
grateful for this feedback and can be reached at john.buck@ece.gatech.edu. Many
suggestions were made that | considered constructive and actionable. | regret that
not all could be incorporated because of time restrictions. Creating this book was a
team effort, involving several outstanding people at McGraw-Hill. These include my
publisher, Raghu Srinivasan, and sponsoring editor, Peter Massar, whose vision and
encouragement were invaluable, Robin Reed, who deftly coordinated the production
phase with excellent ideas and enthusiasm, and Darlene Schueller, who was my
guide and conscience from the beginning, providing valuableinsights, and jarring me
into action when necessary. Typesetting was supervised by Vipra Fauzdar at Glyph
International, who employed the best copy editor | ever had, Laura Bowman. Diana
Fouts (Georgia Tech) applied her vast artistic skill to designing the cover, as she has
done for the previous two editions. Finally, | am, as usual in these projects, grateful
to a patient and supportive family, and particularly to my daughter, Amanda, who
assisted in preparing the manuscript.

John A. Buck
Marietta, Georgia
December, 2010

On the cover: Radiated intensity patterns for a dipole antenna, showing the cases
for which the wavelength is equal to the overall antenna length (red), two-thirds the
antenna length (green), and one-half the antenna length (blue).
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Professors can benefit from McGraw-Hill’s Complete Online Solutions Manual Or-
ganization System (COSMOS). COSMOS enablesinstructors to generate a limitless
supply of problem material for assignment, aswell astransfer and integrate their own
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CHAPTER

Vector Analysis

than by engineers. Most junior and senior engineering students have not had

the time (or the inclination) to take a course in vector analysis, although it is
likely that vector concepts and operations were introduced in the cal culus sequence.
These are covered in this chapter, and the time devoted to them now should depend
on past exposure.

The viewpoint hereisthat of the engineer or physicist and not that of the mathe-
matician. Proofs are indicated rather than rigorously expounded, and physical inter-
pretation is stressed. It is easier for engineers to take a more rigorous course in the
mathematics department after they have been presented with afew physical pictures
and applications.

Vector analysisisamathematical shorthand. It has some new symbols and some
new rules, and it demands concentration and practice. The drill problems, first found
at the end of Section 1.4, should be considered part of the text and should al be
worked. They should not prove to be difficult if the material in the accompanying
section of the text has been thoroughly understood. It takes a little longer to “read”
the chapter this way, but the investment in time will produce a surprising interest. |

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single
(positive or negative) real number. Thex, y, and z we usein basic algebraare scalars,
and the quantities they represent are scalars. If we speak of abody falling a distance
L inatimet, or the temperature 7" at any point in abowl of soup whose coordinates
arex,y,and z, then L, ¢, T, x, y, and z are all scalars. Other scalar quantities are
mass, density, pressure (but not force), volume, volume resistivity, and voltage.

A vector quantity has both a magnitude! and a direction in space. We are con-
cerned with two- and three-dimensional spaces only, but vectors may be defined in

v ector analysisisamathematical subject that isbetter taught by mathematicians

1 We adopt the convention that magnitude infers absolute valug; the magnitude of any quantity is,
therefore, always positive.
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n-dimensional space in more advanced applications. Force, velocity, acceleration,
and a straight line from the positive to the negative terminal of a storage battery
are examples of vectors. Each quantity is characterized by both a magnitude and a
direction.

Our work will mainly concern scalar and vector field . A field (scalar or vector)
may be defined mathematically as some function that connects an arbitrary origin
to a general point in space. We usually associate some physical effect with a field,
such asthe force on a compass needle in the earth’s magnetic field, or the movement
of smoke particles in the field defined by the vector velocity of air in some region
of space. Note that the field concept invariably is related to a region. Some quantity
is defined at every point in a region. Both scalar field and vector field exist. The
temperature throughout the bowl of soup and the density at any point in the earth
are examples of scalar fields. The gravitational and magnetic fields of the earth, the
voltage gradient in a cable, and the temperature gradient in a soldering-iron tip are
examples of vector fields. The value of afield variesin general with both position and
time.

In thisbook, asin most others using vector notation, vectorswill be indicated by
boldfacetype, for example, A. Scalarsare printed initalic type, for example, 4. When
writing longhand, it is customary to draw aline or an arrow over avector quantity to
show its vector character. (CAUTION: Thisisthefirst pitfall. Sloppy notation, such as
the omission of the line or arrow symbol for a vector, is the mgor cause of errorsin
vector analysis.)

1.2 VECTOR ALGEBRA

With the definition of vectors and vector fields now established, we may proceed to
definetherules of vector arithmetic, vector algebra, and (later) vector calculus. Some
of the rules will be similar to those of scalar algebra, some will differ dlightly, and
some will be entirely new.

To begin, the addition of vectorsfollowsthe parallelogram law. Figure 1.1 shows
the sum of two vectors, A and B. Itiseasily seenthat A + B = B + A, or that vector
addition obeys the commutative law. Vector addition also obeys the associative law,

A+(B+C)=(A+B)+C

Note that when a vector is drawn as an arrow of finite length, its location is
defined to be at the tail end of the arrow.

Coplanar vectors are vectors lying in a common plane, such as those shown
in Figure 1.1. Both lie in the plane of the paper and may be added by expressing
each vector in terms of “horizontal” and “vertical” components and then adding the
corresponding components.

Vectors in three dimensions may likewise be added by expressing the vectors
in terms of three components and adding the corresponding components. Examples
of this process of addition will be given after vector components are discussed in
Section 1.4.
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B

A ® A
A %

B

Figure 1.1 Two vectors may be added graphically either by drawing
both vectors from a common origin and completing the parallelogram or
by beginning the second vector from the head of the first and completing
the triangle; either method is easily extended to three or more vectors.

The rule for the subtraction of vectors follows easily from that for addition, for
wemay awaysexpress A — B as A + (—B); thesign, or direction, of the second vector
isreversed, and this vector is then added to the first by the rule for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes, but
its direction does not when the scalar is positive, although it reverses direction when
multiplied by a negative scalar. Multiplication of a vector by a scalar aso obeys the
associative and distributive laws of algebra, leading to

(r+s)A+B)=r(A+B)+s(A+B)=rA+rB+s5A+sB

Division of a vector by a scalar is merely multiplication by the reciprocal of that
scalar. The multiplication of avector by avector isdiscussed in Sections 1.6 and 1.7.
Two vectors are said to be equal if their differenceis zero,or A =Bif A— B =0.

Inour useof vector fieldswe shall alwaysadd and subtract vectorsthat are defined
at the same point. For example, the total magnetic field about a small horseshoe mag-
net will be shown to be the sum of the fields produced by the earth and the permanent
magnet; the total field at any point is the sum of the individual fields at that point.

If we are not considering a vector fiel , we may add or subtract vectors that are
not defined at the same point. For example, the sum of the gravitational force acting
onal50 b, (pound-force) man at the North Pole and that acting on a1751b, person
at the South Pole may be obtained by shifting each force vector to the South Pole
before addition. Theresult isaforce of 25 1b, directed toward the center of the earth
at the South Pole; if wewanted to be difficult, we could just aswell describethe force
as251b, directed away from the center of the earth (or “upward”) at the North Pole.2

1.3 THE RECTANGULAR
COORDINATE SYSTEM
To describe avector accurately, some specific lengths, directions, angles, projections,

or components must be given. There are three simple methods of doing this, and
about eight or ten other methods that are useful in very special cases. We are going

2 Students have argued that the force might be described at the equator as being in a“northerly”
direction. They are right, but enough is enough.
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to use only the three simple methods, and the simplest of these is the rectangular, or
rectangular cartesian, coordinate system.

In the rectangular coordinate system we set up three coordinate axes mutually
at right angles to each other and call them the x, y, and z axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smaller
angle) of the x axisinto the y axis would cause a right-handed screw to progressin
the direction of the z axis. If the right hand is used, then the thumb, forefinger, and
middle finger may be identified, respectively, as the x, y, and z axes. Figure 1.2
shows aright-handed rectangular coordinate system.

A point islocated by giving its x, y, and z coordinates. These are, respectively,
the distances from the origin to the intersection of perpendicular lines dropped from
the point to the x, y, and z axes. An alternative method of interpreting coordinate

x =0 plane
=0 plane
. _Origin
o
z=0 plane
(@)
Volume = dx dy dz
ZP(1,2,3) o -
o~——P(1,2,
1 Pt >
| dy dz d dx dz
\ %
7 \
0e.-21) / i “
g |
|
\
|
(b (©)

Figure 1.2 (a) A right-handed rectangular coordinate system. If the curved fingers of the
right hand indicate the direction through which the x axis is turned into coincidence with the
y axis, the thumb shows the direction of the z axis. (b) The location of points P(1, 2, 3) and
Q(2, —2, 1). (c) The differential volume element in rectangular coordinates; dx, dy, and dz
are, in general, independent differentials.
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values, which must be used in al other coordinate systems, isto consider the point as
being at the common intersection of three surfaces. Thesearethe planesx = constant,
y = constant, and z = constant, where the constants are the coordinate val ues of the
point.

Figure 1.2 shows points P and Q whose coordinatesare (1, 2, 3) and (2, —2, 1),
respectively. Point P is therefore located at the common point of intersection of the
planesx = 1, y = 2, and z = 3, whereas point Q islocated at the intersection of the
planesx =2,y = —2,andz = 1.

As we encounter other coordinate systems in Sections 1.8 and 1.9, we expect
points to be located at the common intersection of three surfaces, not necessarily
planes, but still mutually perpendicular at the point of intersection.

If wevisualizethree planesintersecting at the general point P, whose coordinates
arex, y, and z, we may increase each coordinate value by a differential amount and
obtain three slightly displaced planes intersecting at point P’, whose coordinates are
x+dx,y+dy,andz + dz. The six planes define arectangular parallel epiped whose
volumeisdv = dxdydz; the surfaces have differential areasdS of dxdy, dydz, and
dzdx. Finaly, thedistance d L from P to P’ isthe diagonal of the parallelepiped and
hasalength of \/(dx)? + (dv)? + (dz)2. Thevolumeelement isshownin Figure 1.2¢;
point P’ isindicated, but point P islocated at the only invisible corner.

All thisisfamiliar from trigonometry or solid geometry and as yet involves only
scalar quantities. We will describe vectorsin terms of a coordinate system in the next
section.

1.4 VECTOR COMPONENTS
AND UNIT VECTORS

Todescribeavector intherectangular coordinate system, let usfirst consider avector r
extending outward from the origin. A logical way to identify this vector isby giving
thethree component vectors, lying along the three coordinate axes, whose vector sum
must be the given vector. If the component vectors of the vector r are x, y, and z,
thenr = x 4+ y + z. The component vectors are shown in Figure 1.3a. Instead of one
vector, we now have three, but thisis a step forward because the three vectors are of
avery simple nature; each is always directed along one of the coordinate axes.

The component vectors have magnitudes that depend on the given vector (such
asr), but they each have aknown and constant direction. This suggests the use of unit
vectors having unit magnitude by definition; these are parallel to the coordinate axes
and they point in the direction of increasing coordinate values. We reserve the symbol
a for aunit vector and identify its direction by an appropriate subscript. Thus a,, a,
and a. are the unit vectors in the rectangular coordinate system.® They are directed
along the x, y, and z axes, respectively, as shown in Figure 1.3b.

If the component vector y happens to be two units in magnitude and directed
toward increasing values of y, we should then writey = 2a,. A vector rp pointing

3 The symbolsi, j, and k are also commonly used for the unit vectors in rectangular coordinates.
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/ y

r=xty-t+z

(@) ()

0(2,-2,1)

(©)

Figure 1.3 (a) The component vectors X, y, and z of vector r. (b) The unit
vectors of the rectangular coordinate system have unit magnitude and are
directed toward increasing values of their respective variables. (c) The vector Rpq
is equal to the vector difference rq — rp.

from the origin to point P(1, 2, 3) iswrittenrp, = a, + 2a, 4 3a.. The vector from
P to O may be obtained by applying the rule of vector addition. This rule shows
that the vector from the origin to P plus the vector from P to Q is equa to the
vector from the origin to Q. The desired vector from P(1,2,3) to Q(2, -2, 1) is
therefore

Rpp=rp—rp=02—-1a, +(-2—-2)a, + (1 —3)a,
=a, —4a, — 2a,

Thevectorsrp, rg, and Rp are shownin Figure 1.3c.

The last vector does not extend outward from the origin, as did the vector r we
initially considered. However, we have aready learned that vectors having the same
magnitude and pointing in the same direction are equal, so we see that to help our
visualization processes we are at liberty to slide any vector over to the origin before
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determining its component vectors. Parallelism must, of course, be maintained during
the sliding process.

If we are discussing a force vector F, or indeed any vector other than a
displacement-type vector such as r, the problem arises of providing suitable letters
for the three component vectors. It would not do to call them x, y, and z, for these
are displacements, or directed distances, and are measured in meters (abbreviated m)
or some other unit of length. The problem is most often avoided by using component
scalars, simply called components, F, F,, and F.. The components are the signed
magnitudes of the component vectors. We may then write F = F.a, + F,a, + F.a..
The component vectors are Fya,, F,a,, and F.a..

Any vector B then may bedescribed by B = B, a, + B,a, + B.a.. Themagnitude
of B written |B| or simply B, isgiven by

|B| = /B2 + B2+ B? D

Each of the three coordinate systems we discuss will have its three fundamental
and mutually perpendicular unit vectors that are used to resolve any vector into its
component vectors. Unit vectors are not limited to this application. It is helpful to
write aunit vector having a specified direction. Thisis easily done, for a unit vector
in a given direction is merely a vector in that direction divided by its magnitude. A
unit vector in ther directionisr//x? 4+ y? + z2, and aunit vector in the direction of
the vector B is

B B

/B2 + B2 + B? 1B @

ag —

Specify the unit vector extending from the origin toward the point G(2, —2, —1).
Solution. \We first construct the vector extending from the origin to point G,
G=2a, —2a, —a
We continue by finding the magnitude of G,
Gl = V(22 +(-22+(-1)2 =3
and finally expressing the desired unit vector as the quotient,
— G —
|Gl
A specia symbol isdesirablefor aunit vector so that its character isimmediately

apparent. Symbolsthat have been used areup, ag, 1g, or evenb. Wewill consistently
use the lowercase a with an appropriate subscript.

ag 2a, — 2a, — a. = 0.667a, — 0.667a, — 0.333a.
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[NoTE: Throughout the text, drill problems appear following sections in which
anew principleisintroduced in order to allow studentsto test their understanding of
the basic fact itself. The problems are useful in gaining familiarity with new terms
and ideas and should all be worked. More general problems appear at the ends of the
chapters. The answers to the drill problems are given in the same order as the parts
of the problem.]

D1.1. Given points M(—1,2,1), N(3,—3,0), and P(—2, —3, —4), find:
(@) Ryn; (6) Ryn + Ryp; (¢) Irul; (d) amp; (e) 12rp — 3ry].

Ans. 4a, — 5a, — a;; 3ay — 10a, — 6a;; 2.45; —0.14a, — 0.7a, — 0.7a;; 15.56

1.5 THE VECTOR FIELD

We have defined a vector field as a vector function of a position vector. In general,
the magnitude and direction of the function will change as we move throughout the
region, and the value of the vector function must be determined using the coordinate
values of the point in question. Because we have considered only the rectangular
coordinate system, we expect the vector to be afunction of the variables x, y, and z.

If we again represent the position vector as r, then a vector field G can be
expressed in functional notation as G(r); ascalar field 7 iswritten as 7'(r).

If we inspect the velocity of the water in the ocean in some region near the
surface where tides and currents are important, we might decide to represent it by
a velocity vector that isin any direction, even up or down. If the z axisis taken as
upward, the x axis in a northerly direction, the y axis to the west, and the origin at
the surface, we have a right-handed coordinate system and may write the velocity
Vector asv = vea, + v,a, + v.a;, or v(r) = v.(r)a, + v,(r)a, 4 v.(r)a.; each of
the components v,., v, and v, may be a function of the three variables x, y, and z.
If we are in some portion of the Gulf Stream where the water is moving only to the
north, then v, and v, are zero. Further simplifying assumptions might be made if
the velocity falls off with depth and changes very slowly as we move north, south,
east, or west. A suitable expression could be v = 2¢7/1%a_ . We have a velocity of
2 m/s (meters per second) at the surface and a velocity of 0.368 x 2, or 0.736 m/s, at
adepth of 100 m (z = —100). The velocity continues to decrease with depth, while
maintaining a constant direction.

D1.2. A vector field S is expressed in rectangular coordinates as S = {125/
[(x =1+ (= 2?+ (= + 1> — Da, + (v — Ja, +(z + Da.}. («) Evaluate
S at P(2, 4, 3). (b) Determine a unit vector that gives the direction of S at P.
(c) Specify the surface f(x, y, z) onwhich [S| = 1.

Ans. 5.95a, + 11.90a, + 23.8a,; 0.218a, + 0.436a, + 0.873a;;
Ve -12+(r-22+(+1)2=125
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1.6 THE DOT PRODUCT

We now consider the first of two types of vector multiplication. The second type will
be discussed in the following section.

Given two vectors A and B, the dot product, or scalar product, is defined as the
product of the magnitude of A, the magnitude of B, and the cosine of the smaller
angle between them,

A-B=|A||B|cosf,z ©)

The dot appears between the two vectors and should be made heavy for emphasis.
The dot, or scalar, product is a scalar, as one of the names implies, and it obeys the

commutative law,
A-B=B-A 4

for the sign of the angle does not affect the cosine term. The expression A - B isread
“A dot B

Perhaps the most common application of the dot product isin mechanics, where
a constant force F applied over a straight displacement L. does an amount of work
F L cos6, which is more easily written F - L. We might anticipate one of the results
of Chapter 4 by pointing out that if the force varies along the path, integration is
necessary to find the total work, and the result becomes

Work:/F-dL

Another example might be taken from magnetic fields. The total flux & crossing
a surface of area S is given by BS if the magnetic flux density B is perpendicular
to the surface and uniform over it. We define a vector surface S as having area
for its magnitude and having a direction normal to the surface (avoiding for the
moment the problem of which of the two possible normalsto take). The flux crossing
the surface is then B - S. This expression is valid for any direction of the uniform
magnetic flux density. If the flux density is not constant over the surface, thetotal flux
is® = [B-dS. Integrals of this general form appear in Chapter 3 when we study
electric flux density.

Finding the angle between two vectors in three-dimensional space is often a
job we would prefer to avoid, and for that reason the definition of the dot product is
usually not usedinitsbasicform. A more helpful result isobtained by considering two
vectors whose rectangular components are given, suchasA = A,a, + 4,a, + 4.a.
and B = B,a, + B,a, + B.a.. The dot product also obeys the distributive law, and,
therefore, A - B yields the sum of nine scalar terms, each involving the dot product
of two unit vectors. Because the angle between two different unit vectors of the
rectangular coordinate system is 90°, we then have

a,-a,=a,-a, =2a,-a, =a,-2 =2a,-a, =a,-a,=0
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0 'Ba GBa
B-a (B-a)a
(@) )

Figure 1.4 (a) The scalar component of B in the direction of the unit vector a is
B - a. (b) The vector component of B in the direction of the unit vector a is (B - a)a.

The remaining three terms involve the dot product of a unit vector with itself, which
isunity, giving finally

A-B=A.B.+4,B, + 4B ®)
which is an expression involving no angles.
A vector dotted with itself yields the magnitude squared, or
A-A=A2=|AP | (6)

and any unit vector dotted with itself is unity,
Ay-ay = 1

One of the most important applications of the dot product is that of finding the
component of a vector in a given direction. Referring to Figure 1.4a, we can obtain
the component (scalar) of B in the direction specified by the unit vector a as

B-a = |B||a| cosfz, = |B| c0SO3,

The sign of the component is positive if 0 < 6, < 90° and negative whenever
90° < O, < 180°.

To obtain the component vector of B in the direction of a, we multiply the
component (scalar) by a, asillustrated by Figure 1.4b. For example, the component
of B in the direction of a, isB-a, = B,, and the component vector is B.a,, or
(B-a,)a,. Hence, the problem of finding the component of a vector in any direction
becomes the problem of finding a unit vector in that direction, and that we can do.

The geometrical term projection is aso used with the dot product. Thus, B-a is
the projection of B in the a direction.

In order to illustrate these definitions and operations, consider the vector field G =
va, —2.5xa, 4+ 3a. and thepoint O(4, 5, 2). Wewishtofind: G at O, the scalar com-
ponent of G at Q inthedirectionof ay = %(Zax + a, — 2a_.); thevector component
of G a Q inthedirection of ay; and finally, the angle 6, between G(rp) and ay.
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Solution. Substituting the coordinates of point Q into the expression for G, we have
G(rp) = 5a, — 10a, + 3a,
Next we find the scalar component. Using the dot product, we have
G-ay = (5a, — 10a, + 3a.) - 3(2a, +a, — 2a.) = (10— 10— 6) = -2

The vector component is obtained by multiplying the scalar component by the unit
vector in the direction of ay,

(G-ay)ay = —(2)}(2a, +a, — 2a,) = —1.333a, — 0.667a, + 1.333a,

The angle between G(rp) and ay isfound from

G-.ay = |G| cosbg,
—2 = +/25+ 100 + 9cosbg,

and

06, = COS T —— = 99.9°
V134

D1.3. Thethreeverticesof atrianglearelocatedat A(6, —1, 2), B(—2, 3, —4),
and C(—3, 1, 5). Find: (@) R43; (b) R4c; (c) theangle bz 4¢ at vertex 4; (d) the
(vector) projection of R 43 on R 4¢.

Ans. —8a, +4a, — 6a;; —9a, + 2a, + 3a,; 53.6°; —5.94a, + 1.319a, + 1.979,

11

1.7 THE CROSS PRODUCT

Given two vectors A and B, we now define the cross product, or vector product, of A
and B, written with a cross between the two vectorsas A x B and read “A crossB.”
The cross product A x B isavector; the magnitude of A x B isequal to the product
of the magnitudes of A, B, and the sine of the smaller angle between A and B; the
direction of A x B isperpendicular to the plane containing A and B and isalong one of
thetwo possible perpendicularswhich isin the direction of advance of aright-handed
screw as A isturned into B. Thisdirection isillustrated in Figure 1.5. Remember that
either vector may be moved about at will, maintaining its direction constant, until
the two vectors have a*“common origin.” This determines the plane containing both.
However, in most of our applications we will be concerned with vectors defined at
the same point.
As an equation we can write

A x B =ay|A||B|sinf,; (7)

where an additional statement, such as that given above, is required to explain the
direction of the unit vector ay. The subscript stands for “normal ”
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lAXB

Figure 1.5 The direction of A x B isin the
direction of advance of a right-handed screw
as A is turned into B.

Reversing the order of the vectors A and B resultsin aunit vector in the opposite
direction, and we seethat the cross product isnot commutative, for Bx A = —(A x B).
If the definition of the cross product is applied to the unit vectors a, and a,, wefind
a, x a, = a;, for each vector has unit magnitude, the two vectors are perpendicular,
and the rotation of a, into a, indicates the positive z direction by the definition of a
right-handed coordinate system. In asimilar way, a, x a, = a, anda, x a, = a,.
Note the al phabetic symmetry. Aslong as the three vectors a,, a,,, and a. are written
inorder (and assuming that a, followsa,, likethree elephantsin acircle holding tails,
so that we could also writea,, a, a, or a., a,, a,), then the cross and equal sign may
be placed in either of the two vacant spaces. As a matter of fact, it is now simpler to
define a right-handed rectangular coordinate system by saying that a, x a, = a..

A simple example of the use of the cross product may be taken from geometry
or trigonometry. To find the area of a parallelogram, the product of the lengths of
two adjacent sidesis multiplied by the sine of the angle between them. Using vector
notation for the two sides, we then may express the (scalar) area as the magnitude of
A x B, or |A x B|.

The cross product may be used to replace the right-hand rule familiar to all
electrical engineers. Consider the force on a straight conductor of length L, where
the direction assigned to L corresponds to the direction of the steady current 7, and
auniform magnetic field of flux density B is present. Using vector notation, we may
write the result neatly as F = /L x B. This relationship will be obtained later in
Chapter 9.

The evaluation of across product by means of its definition turns out to be more
work than the evaluation of the dot product from its definition, for not only must
we find the angle between the vectors, but we must also find an expression for the
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unit vector a, . Thiswork may be avoided by using rectangular components for the
two vectors A and B and expanding the cross product as a sum of nine simpler cross
products, each involving two unit vectors,

AxB=A,B.a, xa,+A.B,a, xa,+ A,B.a, xa
+A,B.a, xa,+A4,Bya, xa,+ A4,B.a, x a;
+A.Bya. xa, +A.B,a. xa,+ A.B.a. xa,

We have already found that a, x a, = a.,a, x a, =a,,anda. x a, =a,. The
three remaining terms are zero, for the cross product of any vector with itself is zero,
since the included angle is zero. These results may be combined to give

A xB=(A4,B. — A.B))a, + (4.B, — A, B.)a, + (4. B, — 4, B;)a. (8)

or written as a determinant in amore easily remembered form,

a, a, a
AxB=|4, A4, A 9)
B, B, B.

Thus, if A = 2a, — 3a, 4 a, and B = —4a, — 2a, + 5a., we have

a, a, a;
AxB=|2 -3 1
—4 -2 5

= [(=3)(9 — (1(=2)]a; — [(A(5) — (D(-D]a, + [(A(=2) — (=3)(—4)]a:
= —13a, — 14a, — 16a;

D1.4. Thethreeverticesof atrianglearelocatedat 4(6, —1, 2), B(—2, 3, —4),
and C(—3,1,5). Find: («) R4z x Ry¢; (b) the area of the triangle; (¢) a unit
vector perpendicular to the plane in which the triangle is located.

Ans. 24a, + 78a, + 20a;; 42.0; 0.286a, + 0.928a, + 0.238a,

1.8 OTHER COORDINATE SYSTEMS:
CIRCULAR CYLINDRICAL COORDINATES

The rectangular coordinate system is generally the one in which students prefer to
work every problem. This often means a lot more work, because many problems
possess a type of symmetry that pleads for a more logical treatment. It is easier to
do now, once and for al, the work required to become familiar with cylindrical and
spherical coordinates, instead of applying an equal or greater effort to every problem
involving cylindrical or spherical symmetry later. With thisin mind, we will take a
careful and unhurried look at cylindrical and spherical coordinates.

13
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The circular cylindrical coordinate system is the three-dimensional version of
the polar coordinates of analytic geometry. In polar coordinates, a point is located
in aplane by giving both its distance p from the origin and the angle ¢ between the
line from the point to the origin and an arbitrary radial line, taken as ¢ = 0.4 In
circular cylindrical coordinates, we also specify the distance z of the point from an
arbitrary z = O reference planethat is perpendicular to theline p = 0. For simplicity,
we usually refer to circular cylindrical coordinates simply as cylindrical coordinates.
Thiswill not cause any confusion in reading this book, but it is only fair to point out
that there are such systems as elliptic cylindrical coordinates, hyperbolic cylindrical
coordinates, parabolic cylindrical coordinates, and others.

We no longer set up three axes as with rectangular coordinates, but we must
instead consider any point as the intersection of three mutually perpendicular sur-
faces. These surfaces are acircular cylinder (o = constant), a plane (¢ = constant),
and another plane (z = constant). This corresponds to the location of a point in a
rectangular coordinate system by the intersection of three planes (x = constant, y =
constant, and z = constant). The three surfaces of circular cylindrical coordinatesare
shown in Figure 1.6a. Note that three such surfaces may be passed through any point,
unlessit lies on the z axis, in which case one plane suffices.

Three unit vectors must also be defined, but we may no longer direct them along
the“ coordinate axes,” for such axes exist only in rectangular coordinates. I nstead, we
take abroader view of the unit vectorsin rectangular coordinates and realize that they
are directed toward increasing coordinate values and are perpendicular to the surface
on which that coordinate value is constant (i.e., the unit vector a, is normal to the
plane x = constant and points toward larger values of x). In acorresponding way we
may now define three unit vectorsin cylindrical coordinates, a,, a,, and a..

The unit vector a, at a point P(p1, ¢1. z1) is directed radially outward, normal
to the cylindrical surface p = p;. It liesin the planes ¢ = ¢; and z = z1. The unit
vector ag isnormal to the plane ¢ = ¢4, pointsin the direction of increasing ¢, liesin
the plane z = z3, and istangent to the cylindrical surface p = p1. The unit vector a,
is the same as the unit vector a, of the rectangular coordinate system. Figure 1.6
shows the three vectorsin cylindrical coordinates.

In rectangular coordinates, the unit vectors are not functions of the coordinates.
Two of the unit vectorsin cylindrical coordinates, a, and ay, however, do vary with
the coordinate ¢, as their directions change. In integration or differentiation with
respect to ¢, then, a, and a, must not be treated as constants.

Theunit vectorsare again mutually perpendicular, for eachisnormal to one of the
three mutually perpendicular surfaces, and we may define a right-handed cylindrical

4 The two variables of polar coordinates are commonly called  and 6. With three coordinates,
however, it is more common to use p for the radius variable of cylindrical coordinates and r for the
(different) radius variable of spherical coordinates. Also, the angle variable of cylindrical coordinatesis
customarily called ¢ because everyone uses ¢ for adifferent angle in spherical coordinates. The angle
¢ iscommon to both cylindrical and spherical coordinates. See?
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z = a constant
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Figure 1.6 (a) The three mutually perpendicular surfaces of the circular cylindrical

coordinate system. (b) The three unit vectors of the circular cylindrical coordinate

system.

(c) The differential volume unit in the circular cylindrical coordinate system; dp, pd¢, and

dz are all elements of length.

coordinate system as one in which a, x a; =a., or (for those who have flexible
fingers) asonein which thethumb, forefinger, and middle finger point in the direction
of increasing p, ¢, and z, respectively.

A differential volume element in cylindrical coordinates may be obtained by
increasing p, ¢, andz by thedifferential incrementsdp, d¢, anddz. Thetwo cylinders
of radius p and p + dp, the two radial planes at angles ¢ and ¢ + d¢, and the two
“horizontal” planes at “elevations’” z and z + dz now enclose a small volume, as
shown in Figure 1.6¢, having the shape of atruncated wedge. Asthe volume element
becomes very small, its shape approaches that of arectangular parallelepiped having
sides of length dp, pd¢, and dz. Note that dp and dz are dimensionally lengths, but
d¢ isnot; pd¢ isthelength. The surfaceshave areasof p dp d¢, dp dz,and p d¢p dz,
and the volume becomes p dp d¢ dz.

15
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p sin ¢

Figure 1.7 The relationship between
the rectangular variables x, y, z and the
cylindrical coordinate variables p, ¢, z.
There is no change in the variable z
between the two systems.

The variables of the rectangular and cylindrical coordinate systems are easily
related to each other. Referring to Figure 1.7, we see that

X = pCOS¢
y=psing (10)
z=1z

From the other viewpoint, we may express the cylindrical variablesin terms of x, y,
and z:

p=vx2+y? (p=0)
¢ = tan*li (11)

z =1z

We consider the variable p to be positive or zero, thus using only the positive sign
for the radical in (11). The proper value of the angle ¢ is determined by inspecting
thesignsof x and y. Thus, if x = —3 and y = 4, we find that the point liesin the
second quadrant so that p = 5and ¢ = 126.9°. For x = 3and y = —4, we have
¢ = —53.1° or 306.9°, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are easily
transformed into the other system.

A vector function in one coordinate system, however, requires two stepsin order
to transform it to another coordinate system, because a different set of component
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vectorsis generally required. That is, we may be given arectangular vector
A=A4;a,+A4,a,+ A4.a;

where each component is given as afunction of x, y, and z, and we need a vector in
cylindrical coordinates

A= Aya,+ Agay + 4.2,

where each component is given as afunction of p, ¢, and z.

To find any desired component of a vector, we recall from the discussion of the
dot product that a component in a desired direction may be obtained by taking the
dot product of the vector and a unit vector in the desired direction. Hence,

ApZA'ap and A¢=A-a¢

Expanding these dot products, we have

A, =(Aca, + 4,a, + 4.a.)-a, = A,a,-a,+ 4,a,-a, (12
Ay = (Acac + Aya, + A.a;)-a5 = Acac-a, + 4,a, -2y (13)

and
A= (Axax + Ayay + Azaz) ca; = A.a;-a, = 4 (14)

sincea. -a, and a, - a, are zero.

In order to complete the transformation of the components, it is necessary to
know the dot products a, - a,, a, -a,, a, - a4, and a, - a,. Applying the definition
of the dot product, we see that since we are concerned with unit vectors, the result
is merely the cosine of the angle between the two unit vectors in question. Refer-
ring to Figure 1.7 and thinking mightily, we identify the angle between a, and a,
as ¢, and thus a, -a, = cos¢, but the angle between a, and a, is 90° — ¢, and
a,-a, = cos(90° — ¢) = sin¢g. The remaining dot products of the unit vectors
are found in a similar manner, and the results are tabulated as functions of ¢ in
Table 1.1.

Transforming vectors from rectangular to cylindrical coordinates or vice versa
istherefore accomplished by using (10) or (11) to change variables, and by using the
dot products of the unit vectors given in Table 1.1 to change components. The two
steps may be taken in either order.

Table 1.1 Dot products of unit vectors in cylindrical
and rectangular coordinate systems

a, agp az
a- cos¢ —sing 0
a,. sing CoS¢ 0
a- 0 0 1

17



18

ENGINEERING ELECTROMAGNETICS

Transform the vector B = ya, — xa, + za_ into cylindrical coordinates.
Solution. The new components are

B, =B-a, =y(a,-a,) —x(a,-a,)

= yC0S¢p —xSiNg = pSing OS¢ — p CoSp Sing = 0
By =B-a, = y(a,-ay) —x(a, -ay)

= —ysing —xcosp = —pSIPp — pCOSLp = —p

Thus,

B = —pa, +za.

D1.5. (a) Give the rectangular coordinates of the point C(p = 4.4,¢ =
—115°,z = 2). (b) Give the cylindrical coordinates of the point D(x =
—3.1,y =26,z = —3). (c) Specify the distance from C to D.

Ans. C(x = —1.860, y = —3.99, z = 2); D(p = 4.05, ¢ = 140.0°, z = —3); 8.36

D1.6. Transformto cylindrical coordinates: («) F = 10a, — 8a,, +6a, at point
P(10, —8,6); (b) G = (2x +y)a, — (v —4x)a, at point O(p, ¢, z). (c) Givethe
rectangular components of the vector H = 20a, — 10a, + 3a, at P(x = 5,
y=2z=-1).

Ans. 12.81a, +6a,; (2p cos’ ¢ — p SN ¢ +5p Sing cos¢)a, + (4p COS ¢ — p SIN?
— 3psing cosg)ay; H, = 22.3, H, = —1.857, H. =3

1.9 THE SPHERICAL COORDINATE SYSTEM

We have no two-dimensional coordinate system to help us understand the three-
dimensional spherical coordinate system, as we have for the circular cylindrical
coordinate system. In certain respects we can draw on our knowledge of the | atitude-
and-longitude system of locating a place on the surface of the earth, but usually we
consider only points on the surface and not those below or above ground.

Let us start by building a spherical coordinate system on the three rectangular
axes (Figure 1.84). Wefirst define the distance from the origin to any point asr». The
surface r = constant is a sphere.

The second coordinate is an angle 6 between the z axis and the line drawn
from the origin to the point in question. The surface 6 = constant is a cone, and
the two surfaces, cone and sphere, are everywhere perpendicular aong their inter-
section, which isacircle of radius r sin6. The coordinate 6 corresponds to latitude,
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6 = a constant
(cone)
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Figure 1.8 (a) The three spherical coordinates. (b) The three mutually perpendicular

surfaces of the spherical coordinate system. (c) The three unit vectors of spherical

coordinates: a, x ag = a,. (d) The differential volume element in the spherical coordinate
system.

except that latitude is measured from the equator and 6 is measured from the “North
Pole”

Thethird coordinate ¢ is aso an angle and is exactly the same as the angle ¢ of
cylindrical coordinates. It is the angle between the x axis and the projection in the
z = 0 plane of the line drawn from the origin to the point. It correspondsto the angle
of longitude, but the angle ¢ increases to the “east.” The surface ¢ = constant is a
plane passing through the & = 0 line (or the z axis).

We again consider any point as the intersection of three mutually perpendicular
surfaces—a sphere, a cone, and a plane—each oriented in the manner just described.
The three surfaces are shown in Figure 1.8b.

Three unit vectors may again be defined at any point. Each unit vector is per-
pendicular to one of the three mutually perpendicular surfaces and oriented in that

19
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direction in which the coordinate increases. The unit vector a, is directed radially
outward, normal to the sphere » = constant, and lies in the cone 6 = constant and
the plane ¢ = constant. The unit vector a, is normal to the conical surface, liesin
the plane, and is tangent to the sphere. It is directed along aline of “longitude” and
points*south.” Thethird unit vector a4 isthe sameasin cylindrical coordinates, being
normal to the plane and tangent to both the cone and the sphere. It is directed to the

Thethreeunit vectorsareshowninFigure 1.8¢. They are, of course, mutually per-
pendicular, and aright-handed coordinate systemisdefined by causing a, x a; = ay.
Our system isright-handed, as an inspection of Figure 1.8¢ will show, on application
of the definition of the cross product. The right-hand rule identifies the thumb, fore-
finger, and middle finger with the direction of increasing r, 6, and ¢, respectively.
(Note that the identification in cylindrical coordinates was with p, ¢, and z, and in
rectangular coordinateswith x, y, and z.) A differential volume element may be con-
structed in spherical coordinates by increasing », 6, and ¢ by dr, d6, and d¢, as
shown in Figure 1.84. The distance between the two spherical surfaces of radius r
and r + dr isdr; the distance between the two cones having generating angles of 6
and 6 + df isrd6; and the distance between the two radia planes at angles ¢ and
¢ + d¢ isfound to ber sinfd¢, after afew moments of trigonometric thought. The
surfaces have areas of r dr dO, r sSin dr d¢, and r2sind do d¢, and the volume is
r28in0 dr dé de.

The transformation of scalars from the rectangular to the spherical coordinate
system is easily made by using Figure 1.8q to relate the two sets of variables:

X = rSind cos¢
y=rsnfsng (15)
z = r Cos6

The transformation in the reverse direction is achieved with the help of

r=+/x2+y2 422 (r>0)

f—cost— " (0° <0 <1800 (16)
2ty 4 22

¢ =tantZ
X

Theradius variable r is nonnegative, and 6 isrestricted to the range from 0° to 180°,
inclusive. The angles are placed in the proper quadrants by inspecting the signs of
x,y,andz.

The transformation of vectors requires us to determine the products of the unit
vectors in rectangular and spherical coordinates. We work out these products from
Figure 1.8¢ and a pinch of trigonometry. Because the dot product of any spheri-
cal unit vector with any rectangular unit vector is the component of the spherical
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Table 1.2 Dot products of unit vectors in spherical
and rectangular coordinate systems

a, ayg ap
a,- sinf cos¢ CosfH CoS¢p —sing
a,- sinfsing cosé sing coSs¢
a,- cosé —sing 0

vector in the direction of the rectangular vector, the dot products with a, are found
to be

a;-a, = CosH
a.-ay = —Sing
a.-a, =0
The dot productsinvolving a, and a,, require first the projection of the spherical
unit vector on the xy plane and then the projection onto the desired axis. For example,
a, - a, isobtained by projecting a, onto the xy plane, giving sind, and then projecting

sin@ on the x axis, which yields sind cos¢. The other dot products are found in a
like manner, and all are shown in Table 1.2.

We illustrate this procedure by transforming the vector field G =(xz/y)a, into
spherical components and variables.

Solution. \We find the three spherical components by dotting G with the appropriate
unit vectors, and we change variables during the procedure:

G, =G-a. = Eax-ar = Esin@cosqb
Y Y

cos? ¢

sing

Xz Xz
Gy = G-ayg = —a, -ayg = — COSH COS¢
y y

= r Sind cosH

cos? ¢

sng

= rcos’f

Gp=G-2y = —a, -2y = —(—sing)
y y
= —7r C0SH COS¢

Collecting these results, we have
G = r cosf cos¢ (sinf cot¢ a, + cosé cotp ag — ay)

Appendix A describes the general curvilinear coordinate system of which the
rectangular, circular cylindrical, and spherical coordinate systems are special cases.
The first section of this appendix could well be scanned now.
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D1.7. Given the two points, C(—3,2, 1) and D(r =5, § =20°, ¢ = — 70°),
find: (a) the spherical coordinates of C; (b) the rectangular coordinates of D;
(c) the distance from C to D.

Ans. C(r = 3.74,0 = 745°, ¢ = 146.3°); D(x = 0.585,y = —1.607,z = 4.70);
6.29

D1.8. Transform the following vectors to spherical coordinates at the points
given: (a) 10a, at P(x = =3,y = 2,z = 4); (b) 10a, a O(p = 5, ¢ = 30°,
z=4);(c) 10a, at M(r = 4,60 = 110°, ¢ = 120°).

Ans. —5.57a, — 6.18ay — 5.55a4; 3.90a, + 3.12a9 + 8.66a,; —3.42a, — 9.40a
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CHAPTER 1 PROBLEMS
1.1} GiventhevectorsM = —10a, + 4a, — 8a. and N = 8a, + 7a, — 2a., find:

(@) aunit vector in the direction of —M + 2N; (b) the magnitude of 5a, +
N — 3M; (c) IM||2N|(M + N).

1.2 Vector A extends from the originto (1, 2, 3), and vector B extends from the

originto (2, 3, —2). Find («) the unit vector in the direction of (A — B);
(b) the unit vector in the direction of the line extending from the origin to the
midpoint of the line joining the ends of A and B.

131 The vector from the originto point 4 isgiven as (6, —2, —4), and the unit

vector directed from the origin toward point B is(2, —2, 1)/3. If points 4
and B are ten units apart, find the coordinates of point B.
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141 A circle, centered at the origin with aradius of 2 units, liesinthe xy plane.
Determine the unit vector in rectangular componentsthat liesin the xy plane,
istangent to the circle at (—+/3,1, 0), and isin the general direction of
increasing values of y.

1.51 A vector field is specified as G = 24xya, + 12(x2 + 2)a, + 18z%a.. Given
two points, P(1, 2, —1) and Q(—2, 1, 3), find («) G at P; (b) aunit vector in
the direction of G at Q; (¢) aunit vector directed from Q toward P; (d) the
equation of the surface on which |G| = 60.

1.6 Find the acute angle between the two vectors A = 2a, + a, + 3a, and
B = a, — 3a, + 2a. by using the definition of («) the dot product; (b) the
cross product.

1.7 Giventhe vector field E = 4zy? cos2xa, + 2zy Sin2xa, + y?sin2xa, for
theregion |x|, |y|, and |z| lessthan 2, find («) the surfaces on which
E, = 0; (b) theregioninwhich E, = E.; (c) theregionin whichE = 0.

1.8] Demonstrate the ambiguity that results when the cross product is used to
find the angle between two vectors by finding the angle between
A =3a, —2a, 4+ 4a. and B = 2a, 4+ a, — 2a.. Doesthis ambiguity exist
when the dot product is used?

190 AfiddisgivenasG = [25/(x2 + y?)](xa, + ya,). Find («) a unit vector
inthe direction of G at P(3, 4, —2); (b) the angle between G and a, at P;
(c) the value of the following double integral ontheplane y = 7.

4 p2
/ f G- a,dzdx
0 Jo

1.104 By expressing diagonal s as vectors and using the definition of the dot
product, find the smaller angle between any two diagonals of a cube, where
each diagonal connects diametrically opposite corners and passes through the
center of the cube.

1.11§ Giventhe points A(0.1, —0.2, —0.1), N(—0.2, 0.1, 0.3), and P(0.4, 0, 0.1),
find (a) the vector R,y ; (b) the dot product Ry, - Ry, p; (¢) the scalar
projection of R,y on Ry, p; (d) the angle between R,y and R/ p.

1.12{ Writean expression in rectangular components for the vector that extends
from (x1, y1, z1) 10 (x2, y2, z2) and determine the magnitude of this vector.

1.131 Find () the vector component of F = 10a, — 6a, + 5a, that is parallel to
G = 0.1a, 4 0.2a,, + 0.3a_; () the vector component of F that is
perpendicular to G; (c) the vector component of G that is perpendicular
toF.

1.14} Giventhat A + B+ C = 0, where the three vectors represent line segments
and extend from a common origin, must the three vectors be coplanar? If
A+ B+ C+ D = 0, arethe four vectors coplanar?

23
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1.15 | Three vectors extendi ng from the origin are givenasry = (7, 3, —2),
r, = (—2,7,—3), andrz = (0, 2, 3). Find (a) a unit vector perpendicular to
both r; and r,; (b) aunit vector perpendicular to the vectorsr; — r, and
r; — r3; (¢) the area of the triangle defined by r; and r,; (d) the area of the
triangle defined by the heads of ry, r2, and r.

116l 1f A represents a vector one unit long directed due east, B represents a vector
three units long directed due north, and A + B = 2C — D and
2A — B = C + 2D, determine the length and direction of C.

1.171 Point A(—4, 2, 5) and the two vectors, R 4, = (20, 18 — 10) and
R,y = (—10, 8, 15), define atriangle. Find («) a unit vector perpendicular to
thetriangle; (b) aunit vector in the plane of the triangle and perpendicular to
R 4n; (¢) aunit vector in the plane of the triangle that bisects the interior
angleat 4.

1.18 L A certain vector field isgivenasG = (y + 1)a, + xa,. (¢) Determine G at
the point (3, —2, 4); (b) obtain a unit vector defining the direction of G at
(3.-2,4).

1.191 (a) Expressthefield D = (x2 + y?)~Y(xa, + ya,) in cylindrical components
and cylindrical variables. (b) Evaluate D at the point where p = 2, ¢ = 0.27,
and z = 5, expressing the result in cylindrical and rectangular components.

1.20 L If the three sides of atriangle are represented by vectors A, B, and C, all
directed counterclockwise, show that |C|?> = (A + B) - (A + B) and expand
the product to obtain the law of cosines.

12110 Expressin cylindrical components: (a) the vector from C(3, 2, —7) to
D(—1, —4, 2); (b) aunit vector at D directed toward C; (c¢) aunit vector at D
directed toward the origin.

1228 A sphere of radius a, centered at the origin, rotates about the z axis at angular
velocity 2 rad/s. The rotation direction is clockwise when oneislooking in
the positive z direction. (a) Using spherical components, write an expression
for the velocity field, v, that gives the tangential velocity at any point within
the sphere; (b) convert to rectangular components.

1231 Thesurfacesp =3, p =5, ¢ = 100°, ¢ = 130°,z = 3, and z = 4.5 definea
closed surface. Find («) the enclosed volume; (b) the total area of the
enclosing surface; (¢) the total length of the twelve edges of the surfaces,

(d) thelength of the longest straight line that lies entirely within the volume.

1.24 1 Two unit vectors, a; and a,, liein the xy plane and pass through the origin.
They make angles ¢, and ¢, respectively, with the x axis (a) Express each
vector in rectangular components; () take the dot product and verify the
trigonometric identity, cos(¢p1 — ¢2) = COS¢h1 COSh + Singy Singy; (c) take
the cross product and verify the trigonometric identity
SiN(¢2 — ¢1) = SiNg2 COSPh1 — COSP2 SiN .
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125 Given point P(r = 0.8,0 = 30°, ¢ = 45°) and E = 1/r2 [cos¢ a, +
(sing/sind) a,), find («) E a P; (b) |E| a P; (c) aunit vector in the
direction of E at P.

1261 Express the uniform vector field F = 5a, in (a) cylindrical components;
(b) spherical components.

127 The surfacesr = 2 and 4, 0 = 30° and 50°, and ¢ = 20° and 60° identify a
closed surface. Find (a) the enclosed volume; (b) the total area of the
enclosing surface; (c) the total length of the twelve edges of the surface;

(d) the length of the longest straight line that lies entirely within the surface.

1.28 | State whether or not A = B and, if not, what conditions areimposed on A
andBwhen(¢)A-a, =B-a,; (b)) A xa, =Bxa,,(c)A-a, =B-a, and
Axa, =Bxa.;(d)A-C=B-Cand A x C=B x CwhereC isany
vector except C = 0.

1291 Express the unit vector a, in spherical components at the point: (a) » = 2,
0 =1lrad, ¢ =0.8rad; () x =3,y =2,z=—-1;(c) p = 25,¢ = 0.7 rad,
z=15.

1.30 § Consider a problem anal ogous to the varying wind vel ocities encountered by
transcontinental aircraft. We assume a constant altitude, a plane earth, aflight
along the x axisfrom 0 to 10 units, no vertical velocity component, and no
change in wind velocity with time. Assume a, to be directed to the east and
a, to the north. The wind velocity at the operating altitude is assumed to be:

(0.01x2 — 0.08x + 0.66)a, — (0.05x — 0.4)a,
1+0.5)2

Determine the location and magnitude of (a) the maximum tailwind
encountered; (b) repeat for headwind; (c) repeat for crosswind; (¢) Would
more favorable tailwinds be available at some other latitude? If so, where?

v(x,y) =

25
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CHAPTER

Coulomb’s Law and
Electric Field Intensity

aving formulated the language of vector analysisin thefirst chapter, we next

establish and describe a few basic principles of electricity. In this chapter,

we introduce Coulomb’s electrostatic force law and then formulate this in
a general way using field theory. The tools that will be developed can be used to
solve any problem in which forces between static charges are to be evaluated or to
determine the electric field that is associated with any charge distribution. Initially,
wewill restrict the study to fields in vacuum or free space; thiswould apply to media
such as air and other gases. Other materials are introduced in Chapters 5 and 6 and
time-varying fields are introduced in Chapter 9.

2.1 THE EXPERIMENTAL LAW OF COULOMB

Records from at least 600 B.C. show evidence of the knowledge of static electricity.
The Greeks were responsible for the term electricity, derived from their word for
amber, and they spent many leisure hours rubbing a small piece of amber on their
sleeves and observing how it would then attract pieces of fluff and stuff. However,
their main interest lay in philosophy and logic, not in experimental science, and it
was many centuries before the attracting effect was considered to be anything other
than magic or a“life force.”

Dr. Gilbert, physician to Her Mgjesty the Queen of England, was the first to do
any true experimental work with this effect, and in 1600 he stated that glass, sulfur,
amber, and other materials, which he named, would “not only draw to themselves
straws and chaff, but all metals, wood, leaves, stone, earths, even water and oil .

Shortly thereafter, an officer in the French Army Engineers, Colonel Charles
Coulomb, performed an elaborate series of experiments using a delicate torsion bal-
ance, invented by himself, to determine quantitatively the force exerted between two
objects, each having a static charge of electricity. His published result bears a great
similarity to Newton’s gravitational law (discovered about a hundred years earlier).
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Coulomb stated that the force between two very small objects separated in avacuum
or free space by a distance, which is large compared to their size, is proportional to
the charge on each and inversely proportional to the sguare of the distance between
them, or
010>

R2
where Q1 and O, arethe positive or negative quantities of charge, R isthe separation,
and k isaproportionality constant. If the International System of Units! (Sl) is used,
QO ismeasured in coulombs (C), R isin meters (m), and the force should be newtons
(N). Thiswill be achieved if the constant of proportionality & iswritten as

1
"~ 4ne

The new constant ¢ is called the permittivity of free space and has magnitude, mea-
sured in farads per meter (F/m),

F=k

1
€0=28.854x102=_—10"°Fm (1)
367

The quantity ¢g is not dimensionless, for Coulomb’s law shows that it has the
label C2/N - m?. We will later define the farad and show that it has the dimensions
C2/N - m; we have anticipated this definition by using the unit F/m in equation (1).

Coulomb’s law is now

010>

- 47T60R2

)

Thecoulombisan extremely large unit of charge, for the smallest known quantity
of chargeisthat of the electron (negative) or proton (positive), given in Sl units as
1.602 x 10~'° C; hence a negative charge of one coulomb represents about 6 x 10'8
electrons.? Coulomb’s law shows that the force between two charges of one coulomb
each, separated by one meter, is 9 x 10° N, or about one million tons. The electron
has a rest mass of 9.109 x 10~3kg and has a radius of the order of magnitude of
3.8 x 107> m. This does not mean that the electron is spherical in shape, but merely
describes the size of the region in which a slowly moving electron has the greatest
probability of being found. All other known charged particles, including the proton,
have larger masses and larger radii, and occupy a probabilistic volume larger than
does the electron.

In order to write the vector form of (2), we need the additional fact (furnished
also by Colonel Coulomb) that the force acts along the line joining the two charges

1 The International System of Units (an mks system) is described in Appendix B. Abbreviations for the
units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the
prefixes designating powers of tenin Sl appear in Table B.3.

2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of
Appendix C.

27



28

ENGINEERING ELECTROMAGNETICS

R,=1, 1, /

R, 0,
ap
0,®
r

Origin

Figure 2.1 If Q1 and Q2 have like
signs, the vector force F, on Q2 is in the
same direction as the vector Rys.

andisrepulsiveif the chargesarealikein sign or attractiveif they are of oppositesign.
Let the vector r; locate Q1, whereas r;, locates Q,. Then the vector Ri; = ry — g
representsthe directed line segment from Q; to QO», asshowninFigure2.1. Thevector
F, istheforceon O, and isshown for the case where Q; and O, have the same sign.
The vector form of Coulomb’slaw is

010>
, =

= 2
4regRY,

where a;» = aunit vector in the direction of Ry, or

a12 (3)

Ry R rnn—n

4

a2 = = =
[R12] R |rp—ry]

We illustrate the use of the vector form of Coulomb’s law by locating a charge of
01 =3x 10 Cat M(1,2,3) andachageof 0, = —10* Cat N(2,0,5) ina
vacuum. We desire the force exerted on O, by Q3.

Solution. \We use (3) and (4) to obtain the vector force. The vector Ry, is
Rpop=r;—ri=(2-1a,+(0—-2a, +(5—3)a, =a, —2a, + 2a,
leading to [Ry,| = 3, and the unit vector, aj, = %(a, — 2a, + 2a.). Thus,
_ 3x10%(-107%) <ax —2a, + 2az)
47(1/36m)1079 x 32 3

-2 2
— 30 (—a" A & az) N
3
The magnitude of the force is 30 N, and the direction is specified by the unit
vector, which has been left in parentheses to display the magnitude of the force. The
force on O, may aso be considered as three component forces,

-
N

F, = —10a, + 20a, — 20a,
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The force expressed by Coulomb’s law is a mutual force, for each of the two
charges experiences a force of the same magnitude, although of opposite direction.
We might equally well have written

Fi— _F,— 0102 10>

= =— a 5
dreoRZ, 2 dreoR%, ®)

Coulomb’s law islinear, for if we multiply Q1 by afactor n, theforceon Q; is
also multiplied by the same factor ». It is also true that the force on a charge in the
presence of several other chargesisthe sum of the forces on that charge due to each
of the other charges acting aone.

D2.1. A charge O, = —20uCislocated at A(—6, 4, 7), and acharge O3 =
50uCisat B(5,8, —2) in free space. If distances are given in meters, find:
(a) Ryp; (b) R4p. Determine the vector force exerted on Q4 by Q3 if €9 =
(c) 107%/(36m) F/m; (d) 8.854 x 10~*2 F/m.

Ans. 1la, + 4a, — 9a, m; 14.76 m; 30.76a, + 11.184a, — 25.16a, mN; 30.72a,
+ 11.169a, — 25.13a; mN
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2.2 ELECTRIC FIELD INTENSITY

If we now consider one charge fixed in position, say Q1, and move a second charge
slowly around, we note that there exists everywhere a force on this second charge;
in other words, this second charge is displaying the existence of aforce fiel thatis
associated with charge, Q;. Call this second charge atest charge Q,. Theforce on it
is given by Coulomb’s law,
_ Ql Q t

T ax eoRi
Writing thisforce asaforce per unit charge givestheelectric fiel intensity, E1 arising
from Q1:

ay

F
L ©)
01 4meoRy,
E; isinterpreted asthe vector force, arising from charge Q1, that actson aunit positive
test charge. More generally, we write the defining expression:

E;

Y
inwhich E, avector function, istheelectric field intensity evaluated at the test charge
location that arises from all other charges in the vicinity—meaning the electric field
arising from the test charge itself isnot included in E.

The units of E would be in force per unit charge (newtons per coulomb). Again
anticipating a new dimensional quantity, the volt (V), having the label of joules per

E ()

@

Interactives
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coulomb (J/C), or newton-meters per coulomb (N - m/C), we measure electric field
intensity in the practical units of volts per meter (V/m).

Now, we dispense with most of the subscripts in (6), reserving the right to use
them again any time there is a possibility of misunderstanding. The electric field of a
single point charge becomes:

0

= 73}?
A eqR?

We remember that R isthe magnitude of the vector R, the directed line segment
from the point at which the point charge Q islocated to the point at which E isdesired,
and a isaunit vector in the R direction.3

We arbitrarily locate Q; at the center of aspherical coordinate system. The unit
vector az then becomes the radial unit vector a,, and R isr. Hence

01
T Agegr?”’ ©
The field has a single radial component, and its inverse-square-law relationship is
quite obvious.

If we consider a charge that is not at the origin of our coordinate system, the
field no longer possesses spherical symmetry, and we might as well use rectangular
coordinates. For a charge QO located at the source point 1’ = x’a, + y’a, +z'a,, as
illustrated in Figure 2.2, wefind thefield at ageneral field pointr = xa,+ ya, +za,
by expressing R asr — r/, and then

0  r—x _ 0(-r)

dreglr — Y2 |r— 1|  4mwelr — 1|3

_ 0l = x)a+ (= )ay + (¢ = al
" dre(v — X2+ (= P+ - )

®

E(r) =

(10)

Earlier, we defined a vector field as a vector function of a position vector, and thisis
emphasized by letting E be symbolized in functional notation by E(r).

Because the coulomb forces are linear, the electric field intensity arising from
two point charges, 0; at r; and Q» at ry, isthe sum of the forces on Q, caused by
0; and Q;, acting alone, or

01 0>

a + ap
4ﬂ€o|l’—l‘1|2 47T60|I‘—l‘2|2

E(r) =

where a; and a, are unit vectorsin thedirection of (r — r1) and (r — ry), respectively.
Thevectorsr, ry, rp, r — ry, r — rp, a;, and a, are shown in Figure 2.3.

3 We firmly intend to avoid confusing » and a, with R and az. Thefirst two refer specifically to the
spherical coordinate system, whereas R and ai do not refer to any coordinate system—the choiceis
still available to us.
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E

P(x,y,z)

.y, z) "

]
Origin

Figure 2.2 The vector r’ locates the point
charge Q, the vector r identifies the general point
in space P(x, y, z), and the vector R from Q to
Px,y,2)isthenR=r—r.

E(r)

Figure 2.3 The vector addition of the total electric field
intensity at P due to Q¢ and Q- is made possible by the
linearity of Coulomb’s law.
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If we add more charges at other positions, the field dueto n point chargesis

e (1)

Ay
= Az eolr — 1|2

Inordertoillustratethe application of (11), wefind E at P(1, 1, 1) caused by four iden-
tical 3-nC (nanocoulomb) chargeslocated at P1(1, 1, 0), P(—1, 1, 0), P3(—1, —1, 0),
and P4(1, —1, 0), as shown in Figure 2.4.

Solution. We find that r = a, +a, +a,,r; = a, +a,, andthusr —r; = a..
The magnitudes are: |r — ry| = 1, |r — ra| = +/5, [r — r3| = 3, and |r — r4| = +/5.
Because Q/4rep = 3 x 107°/(4n x 8.854 x 107%°) = 26.96V - m, we may now
use (11) to obtain

1P (B 3 F B (B

E=26.96[El 2a,+a. 1 2a+2,+a 1l 2a+a 1}

or
E = 6.82a, 4 6.82a, + 32.8a. V/m
D2.2. A charge of —0.3uC is located at A4(25, —30, 15) (in cm), and a

second charge of 0.5uC is at B(—10, 8, 12) cm. Find E at: (a) the origin;
(b) P(15, 20, 50) cm.

Ans. 92.3a, — 77.6a, — 94.2a, kV/m; 11.9a, — 0.519, + 12.4a, kV/m

r—r,

3

PyC1,-1,0) gy POLD

Py(1,-1,0) Pi(1,1,0)

Figure 2.4 A symmetrical distribution of four identical 3-nC point
charges produces a field at P, E = 6.82a, + 6.82a, + 32.8a, V/m.
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1+(=D" (b)z 0.1)" +1

D2.3. Evaluatethe sums: () Z i N T

Ans. 2.52; 0.176
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2.3 FIELD ARISING FROM A CONTINUOUS
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges
separated by minute distances, we see that we can replace this distribution of very
small particles with a smooth continuous distribution described by avolume charge
density, just as we describe water as having a density of 1 g/cm® (gram per cubic
centimeter) even though it consists of atomic- and molecular-sized particles. We can
do thisonly if we are uninterested in the small irregularities (or ripples) in the field
as we move from electron to electron or if we care little that the mass of the water
actually increases in small but finite steps as each new molecule is added.

Thisisreally no limitation at all, because the end results for electrical engineers
are almost always in terms of a current in a receiving antenna, a voltage in an elec-
tronic circuit, or a charge on a capacitor, or in general in terms of some large-scale
macroscopic phenomenon. It isvery seldom that we must know a current electron by
electron.t

We denote volume charge density by p,, having the units of coulombs per cubic
meter (C/m?3).

The small amount of charge A Q inasmall volume Av is

AQ = p,Av (12)

and we may define p,, mathematically by using alimiting process on (12),

, = lim AQ

Av—0 Av

(13)

Thetota charge within some finite volume is obtained by integrating throughout that
volume,

0= f oy (14)

Only oneintegral sign is customarily indicated, but the differential dv signifiesinte-
gration throughout a volume, and hence atriple integration.

4 A study of the noise generated by electronsin semiconductors and resistors, however, requires just
such an examination of the charge through statistical analysis.

i)
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Asanexampleof theeval uation of avolumeintegral, wefind thetotal chargecontained
in a 2-cm length of the electron beam shown in Figure 2.5.

Solution. From theillustration, we see that the charge density is
oy = —5 x 107871z cjpy?

The volume differential in cylindrical coordinatesis given in Section 1.8; therefore,

0.04 p271 0.01
0= /O . /0 /o —5x 107517 5 dp dp dz

We integrate first with respect to ¢ becauseit is so easy,
0.04 ,0.01 5
0= / / —10"%7e % p dp dz
0.02 JO

and then with respect to z, because this will simplify the last integration with respect
to p,
z=0.04

0.01 _5 .
—10 T 0°
QZ/ (761 ”Zpdp)
0 —10° 2=0.02

0.01
— [ _10757_[(672000/) _ 674000,0)6110
0

° z=4cm
-~ p,=—5¢710P7 yC/m?
o\ z=2cm
p=1cm

Figure 2.5 The total charge contained
within the right circular cylinder may be
obtained by evaluatingQ = [, pudv.
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Finally,
2000p  ,—4000p \ 001
=10 (S -
0 g (-2000 —4ooo>0
1 1 -
=100 (— - —_ )= _——_ =0.0785pC
0 i (2000 4000) 40 P

where pC indicates picocoulombs.

The incremental contribution to the electric field intensity at r produced by an
incremental charge AQ at r’ is
AQ r-r ovAV r—r

AE(r) = =
(r) dreglr — |2 |r — x| Amweolr—r2|r—r/|

If we sum the contributions of all the volume charge in a given region and let the
volume element Av approach zero as the number of these elements becomesinfinite,
the summation becomes an integral,

E(r) = / plr)dv r—r (15)

o 4meglr — 1|2 |r — /|

Thisisagain atriple integral, and (except in Drill Problem 2.4) we shall do our best
to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (15) might
stand a little review. The vector r from the origin locates the field point where E is
being determined, whereas the vector r’ extends from the origin to the source point
where p, (r')dv’ is located. The scalar distance between the source point and the
field point is [r — r’|, and the fraction (r — r')/|r — r’| isaunit vector directed from
source point to field point. The variables of integration arex’, y’, and z’ in rectangul ar
coordinates.

D2.4. Caculatethetotal chargewithineach of theindicated volumes: (a) 0.1 <
Ixl, [y], 1z <020py = 5 5=:(0)0<p<010<¢p <7,2<z<4p =
x°y°z

p%z25in 0.6¢; (c) universe: p, = e=2 /r2.

Ans. 0; 1.018 mC; 6.28 C
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2.4 FIELD OF A LINE CHARGE

Up to this point we have considered two types of charge distribution, the point charge
and chargedi stributed throughout avolumewith adensity p, C/m?3. If wenow consider
a filamentlike distribution of volume charge density, such as a charged conductor of
very small radius, we find it convenient to treat the charge as aline charge of density
PL C/m.

We assume a straight-line charge extending along the z axis in a cylindrical
coordinate system from —oo to oo, as shown in Figure 2.6. We desire the electric
fieldintensity E at any and every point resulting from auniform linechargedensity p; .
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(0,0, 2

Figure 2.6 The contribution dE = dEa,+
dE,a, to the electric field intensity produced by an
element of charge dQ = p; dZ’ located a distance
Z from the origin. The linear charge density is
uniform and extends along the entire z axis.

Symmetry should always be considered first in order to determine two specific
factors: (1) with which coordinates the field does not vary, and (2) which compo-
nents of the field are not present. The answers to these questions then tell us which
components are present and with which coordinates they do vary.

Referring to Figure 2.6, we realize that as we move around the line charge,
varying ¢ while keeping p and z constant, the line charge appears the same from
every angle. In other words, azimuthal symmetry is present, and no field component
may vary with ¢.

Again, if wemaintain o and ¢ constant while moving up and down theline charge
by changing z, the line charge still recedes into infinite distance in both directions
and the problem is unchanged. Thisisaxial symmetry and leadsto fields that are not
functions of z.

If wemaintain ¢ and z constant and vary p, the problem changes, and Coulomb’s
law leads us to expect the field to become weaker as p increases. Hence, by aprocess
of elimination we are led to the fact that the field varies only with p.

Now, which components are present? Each incremental length of line charge
acts as a point charge and produces an incremental contribution to the electric field
intensity which is directed away from the bit of charge (assuming a positive line
charge). No element of charge produces a ¢ component of electric intensity; E, is
zero. However, each element does produce an £, and an E. component, but the
contribution to £, by elements of charge that are equal distances above and below
the point at which we are determining the field will cancel.
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We therefore have found that we have only an £, component and it varies only
with p. Now to find this component.

We choose a point P(0, y, 0) on the y axis a which to determine the field.
Thisis a perfectly general point in view of the lack of variation of the field with ¢
and z. Applying (10) to find the incremental field at P due to theincremental charge
dQ = prdz', we have

dz'(r —r
dE = prdz'( )
dreglr — 1|3
where
r=ya, =pa,
¥ =7a.
and
r—r =pa,—za,
Therefore,

_ prdz'(pa, —z'a;)
= 4]1’60(,02 + Z/2)3/2
Because only the E, component is present, we may simplify:

dE

B prpdz’
p 47T€o(p2 +z’2)3/2

E — / © prpdz
" [ dmeo(p? + 212)%2

Integrating by integral tables or change of variable, z’ = p cot6, we have

P 1 z

L

E. = ol ———
r 5, €0 (02 p2 Z/Z)

dE

and

and
_ PL
P 2megp
or finadly,
PL
E = 16
2meop A (16)

We note that the field falls off inversely with the distance to the charged line, as
compared with the point charge, where the field decreased with the square of the
distance. Moving ten times as far from a point charge leads to afield only 1 percent
the previous strength, but moving ten times as far from a line charge only reduces
the field to 10 percent of its former value. An analogy can be drawn with a source of

(i)
Mustrations
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(6,8, 2)
x‘ P(x’ y’ Z)

0,8,0)

PL

(6,0,0)
6.8,0) \
R’ *,,0)

Figure 2.7 A point P(x, y, 2) is identified near an infinite
uniform line charge located at x = 6, y = 8.

illumination, for the light intensity from a point source of light also falls off inversely
as the square of the distance to the source. The field of an infinitely long fluorescent
tube thus decaysinversely asthefirst power of the radial distance to the tube, and we
should expect the light intensity about a finite-length tube to obey this law near the
tube. As our point recedes farther and farther from a finite-length tube, however, it
eventually lookslikeapoint source, and thefield obeystheinverse-squarerel ationship.

Before leaving this introductory look at the field of the infinite line charge, we
should recognize the fact that not all line charges are located along the z axis. As an
example, let us consider an infinite line charge parallel to thez axisat x = 6, y = 8,
shown in Figure 2.7. We wish to find E at the general field point P(x, y, z).

We replace p in (16) by the radial distance between the line charge and point,
P,R=,/(x —6)2+ (v — 8)2,and let a, beag. Thus,

E = pL a
= R
2eoy/(x — 6)2 + (y — 8)2

where
R (x —6)a, + (v — 8)a,
aR = — =
[R| \/(x —6)2+ (y — 8)?
Therefore,

o -8a (-8,
- 2meg (x —6)2+(y —8)2

We again note that the field is not a function of z.
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In Section 2.6, we describe how fields may be sketched, and we use the field of
the line charge as one example.

D2.5. Infinite uniform line charges of 5 nC/m lie along the (positive and
negative) x and y axesin free space. Find E at: (a) P4(0, 0, 4); (b) P3(0, 3, 4).

Ans. 45a; V/m; 10.8a, + 36.9a; V/m

2.5 FIELD OF A SHEET OF CHARGE

Another basic charge configuration is the infinite sheet of charge having a uniform
density of pg C/m?. Such a charge distribution may often be used to approximate
that found on the conductors of a strip transmission line or a parallel-plate capacitor.
As we shall see in Chapter 5, static charge resides on conductor surfaces and not
in their interiors; for this reason, ps is commonly known as surface charge density.
The charge-distribution family now is complete—point, line, surface, and volume, or
0, pr, ps, and p,.

Let us place a sheet of charge in the yz plane and again consider symmetry
(Figure 2.8). We seefirst that the field cannot vary with y or with z, and then we see
that the y and z componentsarising from differential elementsof chargesymmetrically
located with respect to the point at which we evaluate the field will cancel. Hence
only E, is present, and this component is a function of x alone. We are again faced
with achoice of many methods by which to eval uate this component, and thistime we
use only one method and leave the others as exercises for a quiet Sunday afternoon.

Let us use the field of the infinite line charge (16) by dividing the infinite sheet
into differential-width strips. One such strip is shown in Figure 2.8. The line charge

*P@, 0,0)

Figure 2.8 An infinite sheet of charge in the yz
plane, a general point P on the x axis, and the
differential-width line charge used as the element in
determining the field at P by dE = psdy’ar/(2meoR).
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density, or charge per unit length, is p;, = psdy’, and the distance from this line
charge to our general point P on the x axisis R = /x2 + y’2. The contribution to
E. at P from this differential-width strip isthen

psdy’ ps  xdy'

dE, = cosh = = =
2meg x2 + )2

B 2megy/x2 + 32

Adding the effects of all the strips,

o0 d / 7100
R -
2meg J_oo X2+ y 21 €g X | o 20
If the point P were chosen on the negative x axis, then
Ps
E,=——=
* 260

for the field is aways directed away from the positive charge. This difficulty in sign
is usually overcome by specifying a unit vector a,, which is normal to the sheet and
directed outward, or away from it. Then

E=ay (17)

2¢ 0

This is a startling answer, for the field is constant in magnitude and direction.
It isjust as strong a million miles away from the sheet as it is right off the surface.
Returning to our light analogy, we see that a uniform source of light on the ceiling of
avery largeroom leadsto just as much illumination on asquare foot on the floor asit
doeson asquarefoot afew inchesbelow the ceiling. If you desire greater illumination
on this subject, it will do you no good to hold the book closer to such alight source.

If a second infinite sheet of charge, having a negative charge density —pg, is
located in the plane x = a, we may find the total field by adding the contribution of
each sheet. Intheregion x > a,

E.=2%a, E =-a E-E.+E -0
2¢q 2¢
and for x < O,
E+=_&ax E—=&ax E=E++E_=0
2¢9 2¢
andwhen0 < x < a,
Ps Ps
E.=12a, E_ = 2a,
* 2¢o 2¢
and
E=E, +E_= 2, (18)
€0

Thisisanimportant practical answer, for itisthefield between the parallel plates
of an air capacitor, provided thelinear dimensions of the plates are very much greater
than their separation and provided also that we are considering a point well removed
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from the edges. The field outside the capacitor, while not zero, as we found for the
preceding ideal case, isusually negligible.

D2.6. Three infinite uniform sheets of charge are located in free space as
follows: 3nC/m? at z = —4, 6 nC/m? at z = 1, and —8 nC/m? at z = 4.
Find E at the point: («) P4(2, 5, —5); (b) Pg(4, 2, —3); (¢) Pc(—1, —5, 2); (d)
Pp(—2,4,5).

Ans. —56.5a;; 283a,; 961a.; 56.5a; all V/m

2.6 STREAMLINES AND SKETCHES
OF FIELDS

We now have vector equations for the electric field intensity resulting from several
different charge configurations, and we have had little difficulty in interpreting the
magnitude and direction of thefield from the equations. Unfortunately, thissimplicity
cannot last much longer, for we have solved most of the simple cases and our new
charge distributions must lead to more complicated expressions for the fields and
more difficulty in visualizing the fields through the equations. However, it istrue that
one picture would be worth about athousand words, if we just knew what picture to
draw.

Consider the field about the line charge,

PL a

2meqp

Figure 2.9a shows a cross-sectional view of the line charge and presents what might
be our first effort at picturing the field—short line segments drawn here and there
having lengths proportional to the magnitude of E and pointing in the direction of E.
Thefigurefailsto show the symmetry with respect to ¢, sowetry againin Figure 2.95
with asymmetrical location of the line segments. The real trouble now appears—the
longest lines must be drawn in the most crowded region, and this also plagues us
if we use line segments of equal length but of a thickness that is proportional to E
(Figure 2.9¢). Other schemesinclude drawing shorter linesto represent stronger fields
(inherently misleading) and using intensity of color or different colors to represent
stronger fields.

For the present, let us be content to show only the direction of E by drawing
continuous lines, which are everywhere tangent to E, from the charge. Figure 2.94
showsthiscompromise. A symmetrical distribution of lines (one every 45°) indicates
azimuthal symmetry, and arrowheads should be used to show direction.

Theselinesare usualy called streamlines, although other terms such asflux lines
and direction lines are al'so used. A small positive test charge placed at any point in
thisfield and free to move would accelerate in the direction of the streamline passing
through that point. If the field represented the velocity of a liquid or a gas (which,
incidentally, would have to have asource at p = 0), small suspended particlesin the
liquid or gas would trace out the streamlines.

E =

(i)
Mustations]
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A
A T V4
— T/ RN
\

“«- - «— 0 —> —> >

/&\ x/l\\

(a) ®)

*

(© (d)

Figure 2.9 (a) One very poor sketch, (b) and (c) two fair sketches, and
(d) the usual form of a streamline sketch. In the last form, the arrows show
the direction of the field at every point along the line, and the spacing of the
lines is inversely proportional to the strength of the field.

We will find out later that a bonus accompanies this streamline sketch, for the
magnitude of the field can be shown to be inversely proportional to the spacing of
the streamlines for some important special cases. The closer they are together, the
stronger is the field. At that time we will aso find an easier, more accurate method
of making that type of streamline sketch.

If we attempted to sketch the field of the point charge, the variation of the field
into and away from the page would cause essentially insurmountable difficulties; for
this reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field, let us arbitrarily set £, = 0. The
streamlines are thus confined to planes for which z is constant, and the sketch is the
samefor any such plane. Several streamlinesare showninFigure2.10, and the E,, and
E, components areindicated at ageneral point. It is apparent from the geometry that

E, dy
= & 19
E, dx (19)

A knowledge of thefunctional formof E, and £, (and the ability to solvetheresultant
differential equation) will enable usto obtain the equations of the streamlines.
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/
-

Figure 2.10 The equation of a streamline is
obtained by solving the differential equation
Ey/Ex =dy/dx.

As an illustration of this method, consider the field of the uniform line charge
with p; = 2meo,

E=-—a,

In rectangular coordinates,
X Yy
= a, + a
x2 + yZ x2 + y2 y
Thus we form the differential equation
dy E, 'y dy dx
dx E, «x y X

Therefore,
Iny =Inx 4+ C; or Iny =Inx +InC
from which the equations of the streamlines are obtained,
y=Cx

If we want to find the equation of one particular streamline, say one passing
through P(—2, 7, 10), we merely substitute the coordinates of that point into our
equation and evaluate C. Here, 7 = C(—2),and C = —3.5,s0 y = —3.5x.

Each streamline is associated with a specific value of C, and the radia lines
shown in Figure 2.94 are obtained when C = 0,1, —1,and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or
spherical coordinates. A spherical coordinate examplewill beexaminedin Section4.7.
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D2.7. Find the equation of that streamline that passes through the point

—8x 42
2

P(L, 4, —2)inthefildE = (¢) —a, + —a,; (b) 2¢> [y(5x + 1)a, +xa,].
y y

Ans. x? +2y? = 33; y? = 15.7 + 0.4x — 0.08In(5x + 1)
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CHAPTER 2 PROBLEMS
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Three point charges are positioned in the x-y planeasfollows. 5nCat y =5
cm, —10nCat y = —5cm, and 15 nC at x = —5 cm. Find the required x-y
coordinates of a 20-nC fourth charge that will produce a zero electric field at
the origin.

Point charges of 1 nC and —2 nC are located at (0, 0, 0) and (1, 1, 1),
respectively, in free space. Determine the vector force acting on each charge.

Point charges of 50 nC each are located at 4(1, 0, 0), B(—1, 0, 0), C(0, 1, 0),
and D(0, —1, 0) in free space. Find the total force on the chargeat 4.

Eight identical point charges of O C each are located at the corners of a cube
of sidelength a, with one charge at the origin, and with the three nearest
charges at (a, 0, 0), (0, a, 0), and (O, 0, ). Find an expression for the total
vector force on the charge at P(a, a, a), assuming free space.

Let apoint charge Q1 = 25 nC belocated at P1(4, —2, 7) and acharge
Q. =60nCheat P,(—3,4,—2).(a) If e = €0, fiNdE a P3(1, 2, 3). (b) At
what point on the y axisis E, = 0?

Two point charges of equal magnitude ¢ are positioned at z = +£d /2. (a)
Find the electric field everywhere on the z axis; (b) find the electric field
everywhere on the x axis; (c) repeat parts (a) and (b) if the charge at
z=—d/2is—q instead of +4.

A 2-1.C point charge is located at A(4, 3, 5) in free space. Find £, £, and
E. a P(8, 12, 2).
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2.81 A crude device for measuri ng charge consists of two small insulating spheres
of radius a, one of which isfixed in position. The other is movable along the
x axisand is subject to arestraining force kx, where k is a spring constant.
The uncharged spheres are centered at x = 0 and x = d, the latter fixed. If
the spheres are given equal and opposite charges of Q/C, obtain the
expression by which Q may be found as afunction of x. Determine the
maximum charge that can be measured in terms of g, k, and d, and state
the separation of the spheres then. What happens if alarger charge is applied?

291 A100-nC point charge islocated at 4(—1, 1, 3) in free space. (a) Find the
locus of al points P(x, y, z) at which E, = 500 V/m. (b) Find y if
P(—2, y1, 3) lieson that locus.

2100 A charge of —1 nCislocated at the origin in free space. What charge must be
located at (2, 0, 0) to cause E, tobe zero at (3, 1, 1)?

2110 A charge Qg located at the origin in free space produces afield for which
E. =1kV/matpoint P(—2,1, —1). («) Find Qo. FINd E at M(1, 6, 5) in
(b) rectangular coordinates; (c¢) cylindrical coordinates; (d) spherical
coordinates.

2.12 | Electrons are in random motion in afixed region in space. During any 1 s
interval, the probability of finding an electron in a subregion of volume
10~ m? is 0.27. What volume charge density, appropriate for such time
durations, should be assigned to that subregion?

2.13 | A uniform volume charge density of 0.2 C/m?® is present throughout the
spherical shell extending fromr» = 3cmtor = 5cm. If p, = O elsewhere,
find («) the total charge present throughout the shell, and (b) 1 if half the
total chargeislocated intheregion3cm < r < ry.

2.14 | The electron beam in a certain cathode ray tube possesses cylindrical
symmetry, and the charge density is represented by p, = —0.1/(p? + 1078)
pC/m3for0 < p < 3x10™*m,and p, = Ofor p > 3 x 10~* m. (a) Find
the total charge per meter along the length of the beam; () if the electron
velocity is5 x 107 m/s, and with one ampere defined as 1C/s, find the beam
current.

2158 A spherical volume having a 2-«m radius contains a uniform volume charge
density of 10* C/m®. (a) What total charge is enclosed in the spherical
volume? () Now assume that alarge region contains one of these little
spheres at every corner of acubical grid 3 mm on aside and that thereis no
charge between the spheres. What is the average volume charge density
throughout this large region?

2.16 1 Withina region of free space, charge density isgiven as p, = @C/m{
where pp and a are constants. Find the total charge lying within (a) the
sphere, r < a; (b) thecone, r < a,0 < 6 < 0.1x; (¢) theregion, r < a,
0<6<01r,0< ¢ <027.
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2.17 1 A uniform line charge of 16 nC/m islocated along the line defined by y =
—2,z=5.l1fe = ¢p: (@) indE at P (1, 2, 3). (»b) find E at that point in the
z = 0 plane where the direction of E isgiven by (1/3)a, — (2/3)a..

2.181 (8 Find E in the plane z = O that is produced by a uniform line charge, o,
extending along the z axisover therange —L < z < L inacylindrical
coordinate system. (b) If the finite line charge is approximated by an infinite
line charge (L — o0), by what percentageis £, in error if p = 0.5L7?(c)
Repeat (b) with p = 0.1L.

2.19 1 A uniform line charge of 2 uC/mislocated on the z axis. Find E in
rectangular coordinatesat P(1, 2, 3) if the charge exists from (a) —oo <
z<oo;(b)—4<z<4

2.201 A line charge of uniform charge density po C/m and of length ¢ is oriented
adongthez axisat —¢/2 < z < £/2. (a) Find the electric field strength, E, in
magnitude and direction at any position along the x axis. (b) With the given
line charge in position, find the force acting on an identical line charge that is
oriented dlong the x axisat £/2 < x < 3¢/2.

2.21 1 Two identical uniform line charges, with p; = 75 nC/m, are located in free
spaceat x = 0, y = +0.4 m. What force per unit length does each line
charge exert on the other?

2.22 § Twoidentical uniform sheet charges with p, = 100 nC/m? are located in free
space at z = £2.0 cm. What force per unit area does each sheet exert on the
other?

2.23 | Given the surface charge density, p, = 2 ©C/m?, existing in the region p <
0.2m,z =0, findE at (a) P4(p =0,z = 0.5); (b) Pg(p =0,z = —0.5).
Show that (c) the field along the z axis reduces to that of an infinite sheet
charge at small values of z; (d) the z axis field reduces to that of a point
charge at large values of z.

2.241 () Find the electric field on the z axis produced by an annular ring of
uniform surface charge density p; in free space. The ring occupies the region
z=0,a < p <b,0=<¢ <27 incylindrical coordinates. (b) From your part
(a) result, obtain the field of an infinite uniform sheet charge by taking
appropriate limits.

2.250 FindE at the originif the following charge distributions are present in free
space: point charge, 12 nC, at P(2, 0, 6); uniform line charge density, 3 nC/m,
atx = —2, y = 3; uniform surface charge density, 0.2 nC/m? at x = 2.

2261 A radially dependent surface charge is distributed on an infinite flat sheet in
the x-y plane and is characterized in cylindrical coordinates by surface
density p, = po/p, where pg isaconstant. Determine the electric field
strength, E, everywhere on the z axis.
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2.271 Giventhe eectric field E = (4x — 2y)a, — (2x + 4y)a,, find (a) the equation
of the streamline that passes through the point P(2, 3, —4); (b) aunit vector
specifying the direction of E at O(3, —2, 5).

2.28 | An dlectric di pole (discussed in detail in Section 4.7) consists of two point
charges of equal and opposite magnitude + O spaced by distance d. With the
charges along the z axis at positionsz = +d /2 (with the positive charge at
the positive z location), the electric field in spherical coordinatesis given
by E(r, 6) = [Qd /(4w eor®)][2cosha, + sinfay], wherer >> d. Using
rectangular coordinates, determine expressions for the vector force on a point
charge of magnitude ¢ (a) at (0, 0, z); () at (O, y, 0).

2290 IfE = 20e~>(cosbxa, — sinbxa,), find (a) [E| a P (7 /6, 0.1, 2); (b) aunit
vector in the direction of E at P; (c) the equation of the direction line passing
through P.

2.30 | For fields that do not vary with z in cylindrical coordinates, the equations of
the streamlines are obtained by solving the differential equation £,/ Ey =
dp/(pd@). Find the equation of the line passing through the point (2, 30°, 0)
for thefield E = p cos2¢a, — p Sin2¢a,.

a7
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Electric Flux Density,
Gauss’s Law, and
Divergence

ing familiar with the concept of the streamlines that show the direction of

the force on atest charge at every point, it is difficult to avoid giving these
lines a physical significance and thinking of them asflu lines. No physical particle
is projected radially outward from the point charge, and there are no steel tentacles
reaching out to attract or repel an unwary test charge, but as soon as the streamlines
are drawn on paper there seems to be a picture showing “something” is present.

Itisvery helpful toinvent an electric flu that streamsaway symmetrically froma
point charge and is coincident with the streamlines and to visualize this flux wherever
an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux
density to again solve several of the problems presented in Chapter 2. The work here
turns out to be much easier, and this is due to the extremely symmetrical problems
that we are solving. |

A fter drawing afew of the fields described in the previous chapter and becom-

3.1 ELECTRIC FLUX DENSITY

About 1837, the director of the Royal Society in London, Michael Faraday, became
very interested in static electric fields and the effect of variousinsulating materialson
these fields. This problem had been bothering him during the past ten years when he
was experimenting in his now-famous work on induced electromotive force, which
wewill discussin Chapter 10. With that subject compl eted, he had apair of concentric
metallic spheresconstructed, the outer one consisting of two hemispheresthat could be
firmly clamped together. He also prepared shells of insulating material (or dielectric
material, or simply dielectric) that would occupy the entire volume between the
concentric spheres. We will immediately use his findings about dielectric materials,
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for we are restricting our attention to fieldsin free space until Chapter 6. At that time
we will see that the materials he used will be classified asideal dielectrics.
His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

3. Theouter sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge
on each hemisphere was measured.

Faraday found that thetotal charge on the outer sphere was equal in magnitude to
the original charge placed on the inner sphere and that this was true regardless of the
dielectric material separating the two spheres. He concluded that there was some sort
of “displacement” from the inner sphere to the outer which was independent of the
medium, and we now refer to this flux as displacement, displacement flux or simply
electric flu .

Faraday’s experiments al so showed, of course, that alarger positive chargeonthe
inner sphere induced a correspondingly larger negative charge on the outer sphere,
leading to adirect proportionality between the electric flux and the charge on theinner
sphere. The constant of proportionality is dependent on the system of unitsinvolved,
and we are fortunate in our use of Sl units, because the constant is unity. If electric
flux is denoted by W (psi) and the total charge on the inner sphere by Q, then for
Faraday’s experiment

V=0

and the electric flux ¥ is measured in coulombs.

We can obtain more quantitative information by considering an inner sphere of
radius ¢ and an outer sphere of radius b, with charges of O and —Q, respectively
(Figure 3.1). The paths of electric flux W extending from the inner sphere to the outer
sphereareindicated by the symmetrically distributed streamlinesdrawn radially from
one sphere to the other.

At thesurfaceof theinner sphere, W coulombsof electric flux areproduced by the
charge Q(= V) Csdistributed uniformly over a surface having an area of 4 a? .
The density of the flux at this surface is W/4ra? or Q/4mwa?C/m?, and thisis an
important new quantity.

Electric flu density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given
theletter D, which was originally chosen because of the alternate names of displace-
ment flu density or displacement density. Electric flux density is more descriptive,
however, and we will use the term consistently.

Theelectric flux density D isavector field and isamember of the “flux density”
classof vector fields, asopposed to the“ forcefields’ class, whichincludesthe electric
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Metal Insulating or
conducting dielectric
spheres material

Figure 3.1 The electric flux in the region between a
pair of charged concentric spheres. The direction and
magnitude of D are not functions of the dielectric
between the spheres.

field intensity E. The direction of D at a point isthe direction of the flux lines at that
point, and the magnitudeisgiven by the number of flux lines crossing asurface normal
to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density isin the radial direction
and has a value of

D = £ar (inner sphere)
rey  Ama?
D = iar (outer sphere)
vy Amb?
and at aradial distancer, wherea <r < b,
— ia
42"

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at a
point » meters from the point charge is still given by

0

T 42

a, €

for Q linesof flux are symmetrically directed outward from the point and passthrough
an imaginary spherical surface of area 4mr2.

Thisresult should be compared with Section 2.2, Eq. (9), theradial electric field
intensity of a point charge in free space,

0

= ——=2
47'[60]”2 "
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In free space, therefore,

D = ¢E | (free spaceonly) 2

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of
apoint charge. For ageneral volume charge distribution in free space,

Ldv
E:/|47€60R23R (free space only) (©)]
Vol

where this relationship was developed from the field of a single point charge. In a
similar manner, (1) leadsto
vd
D= [ A o)
Vi

ol 47TR2

and (2) istherefore true for any free-space charge configuration; we will consider (2)
as defining D in free space.

Asapreparationfor the study of dielectricslater, it might bewell to point out now
that, for a point charge embedded in an infinite ideal dielectric medium, Faraday’s
resultsshow that (1) isstill applicable, and thussois(4). Equation (3) isnot applicable,
however, and so the relationship between D and E will be slightly more complicated
than (2).

Because D is directly proportional to E in free space, it does not seem that it
should redlly be necessary to introduce a new symbol. We do so for a few reasons.
First, D is associated with the flux concept, which is an important new idea. Second,
the D fieldswe obtain will be alittle simpler than the corresponding E fields, because
€0 does not appear.

D3.1. Given a60-uC point charge located at the origin, find the total electric
flux passi ng through: (a) that portion of the sphere » = 26 cm bounded by

0<f<—-and0< ¢ < %; (b) the closed surface defined by p = 26 cm and
z = £26 cm; (¢) the planez = 26 cm.

Ans. 7.5uC; 60uC; 30uC

D3.2. Calculate D in rectangular coordinates at point P(2, —3, 6) produced
by: (a) a point charge 0,4 = 55 mC at Q(—2, 3, —6); (b) a uniform line
charge pr 3 = 20 mC/m on the x axis; (¢) a uniform surface charge density

psc = 120uC/m? onthe planez = —5m.

Ans. 6.38a, — 9.57a, + 19.14a, uC/m?; —212a, + 424a, uC/m?; 60a, uC/m?
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3.2 GAUSS’S LAW

Theresults of Faraday’s experimentswith the concentric spheres could be summed up
asan experimental law by stating that the electric flux passing through any imaginary
spherical surface lying between the two conducting spheres is equal to the charge
enclosed within that imaginary surface. This enclosed charge is distributed on the
surface of theinner sphere, or it might be concentrated as a point charge at the center
of theimaginary sphere. However, because one coulomb of electric flux is produced
by one coulomb of charge, theinner conductor might just aswell have beenacubeor a
brassdoor key and thetotal induced charge on the outer spherewould still bethe same.
Certainly the flux density would change from its previous symmetrical distribution
to some unknown configuration, but +Q coulombs on any inner conductor would
produce an induced charge of —Q coulombs on the surrounding sphere. Going one
step further, we could now replace the two outer hemispheres by an empty (but
completely closed) soup can. O coulombs on the brass door key would produce
W = O linesof electric flux and would induce — Q coulombs on the tin can.*

These generalizations of Faraday’s experiment lead to the following statement,
which isknown as Gauss’s law:

The electric flu passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has
ever produced, was actually not in stating the law as we have, but in providing a
mathematical form for this statement, which we will now obtain.

Let us imagine a distribution of charge, shown as a cloud of point charges in
Figure 3.2, surrounded by a closed surface of any shape. The closed surface may be
the surface of somereal material, but more generally it isany closed surface we wish
tovisualize. If thetotal chargeis Q, then O coulombsof electric flux will passthrough
the enclosing surface. At every point on the surface the electric-flux-density vector
D will have some value Dg, where the subscript S merely reminds us that D must be
evaluated at the surface, and D will in general vary in magnitude and direction from
one point on the surface to another.

We must now consider the nature of an incremental element of the surface. An
incremental element of area AS is very nearly a portion of a plane surface, and
the complete description of this surface element requires not only a statement of its
magnitude AS but also of its orientation in space. In other words, the incremental
surface element isavector quantity. The only unique direction that may be associated
with AS is the direction of the normal to that plane which is tangent to the surface
at the point in question. There are, of course, two such normals, and the ambiguity
is removed by specifying the outward normal whenever the surface is closed and
“outward” has a specific meaning.

L1 1f it were aperfect insulator, the soup could even beleft in the can without any differencein the resuilts.



CHAPTER 3 Electric Flux Density, Gauss’s Law, and Divergence

D S normal

Figure 3.2 The electric flux density Dgs at P arising
from charge Q. The total flux passing through AS'is
Ds- AS.

At any point P, consider an incremental element of surface AS and let D5 make
an angle® with AS, asshown in Figure 3.2. Theflux crossing A S isthen the product
of the normal component of Dg and AS,

AW = flux crossing AS = Dy nomAS = DsCOSOAS = Ds - AS

where we are able to apply the definition of the dot product developed in Chapter 1.
The total flux passing through the closed surface is obtained by adding the dif-
ferential contributions crossing each surface element AS,

closed

surface

Theresultant integral is a closed surface integral, and since the surface element
dS aways involves the differentials of two coordinates, such as dx dy, pd¢ dp,
or r2sin® dé d¢, the integral is a double integral. Usually only one integral sign is
used for brevity, and we will aways place an S below the integral sign to indicate
a surface integral, although this is not actually necessary, as the differential dS is
automatically the signal for asurfaceintegral. One last convention isto place asmall
circleontheintegral signitself to indicate that the integration isto be performed over
aclosed surface. Such a surface is often called a gaussian surface. \We then have the
mathematical formulation of Gauss's law,

v = ygDS-dS = chargeenclosed = O (5)
s

The charge enclosed might be several point charges, in which case
0 = X0n

or aline charge,

QZ/mﬂ

i)
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or asurface charge,
0= / psdS (not necessarily aclosed surface)
S
or avolume charge distribution,

0= / Py dv
vol

Thelast form isusually used, and we should agree now that it represents any or
al of the other forms. With this understanding, Gauss's law may be written in terms
of the charge distribution as

%Dde:/ oy dv (6)
S vol

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

To illustrate the application of Gauss's law, let us check the results of Faraday’s
experiment by placing apoint charge Q at the origin of aspherical coordinate system
(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. \We have, as before,

0

= —ar
Ayry?
At the surface of the sphere,

0

= al‘
4 a?

Ds

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,

dS =r?sn6dode = a®sind do de
or
dS = a?sinf do d¢ a,

Theintegrand is

Dg-dS = iazsine dodoa, -a, = 9 sinb do de
45t a2 4

leading to the closed surface integral

¢=21 O=m
/ / = SN0 do de
$=0 =¢ 4
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Figure 3.3 Applying Gauss’s law to
the field of a point charge Q on a
spherical closed surface of radius a. The
electric flux density D is everywhere
normal to the spherical surface and has
a constant magnitude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried
over the entire surface of the sphere once.? Integrating gives

2 2
0 7 Q
—( —cosb),d¢ = —d¢ =
,/0 471( C0s6)odb 0 27 9=0
and we obtain a result showing that O coulombs of electric flux are crossing the

surface, as we should since the enclosed charge is O coulombs.

D3.3. Given the electric flux density, D = 0.3-2a, nC/m? in free space:
(a) find E at point P(r = 2,0 = 25°, ¢ = 90°); (b) find the total charge
within the spherer = 3; (¢) find the total electric flux leaving the spherer = 4.

Ans. 135.5a,V/m; 305 nC; 965 nC

D3.4. Calculatethetotal electricflux leavingthe cubical surfaceformed by the
sixplanesx, y, z = +5if thechargedistributionis: (a) two point charges, 0.1 uC
a (1, -2, 3) and % uC at (-1, 2, —2); (b) a uniform line charge of = uC/m at
x = —2,y = 3; (c) auniform surface charge of 0.1 uC/m? ontheplaney = 3x.

Ans. 0.243uC; 31.41C; 10.54uC

(i)
[Animations|

55

2 Note that if 6 and ¢ both cover the range from 0 to 27, the spherical surfaceis covered twice.
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss's law,

Q=5€Ds-ds

to determine Dy if the charge distribution is known. Thisis an example of an integral
equation in which the unknown quantity to be determined appearsinside the integral.

The solution is easy if we are able to choose a closed surface which satisfiestwo
conditions:

1. Dy iseverywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. Onthat portion of the closed surface for which Dg - dS isnot zero, Dg =
constant.

This allows us to replace the dot product with the product of the scalars Dg and
dS and then to bring Ds outside the integral sign. The remaining integral is then
/. < dS over that portion of the closed surface which D crosses normally, and thisis
simply the area of this section of that surface. Only a knowledge of the symmetry of
the problem enables us to choose such a closed surface.

Let us again consider a point charge Q at the origin of a spherical coordinate
system and decide on a suitable closed surface which will meet the two requirements
previoudy listed. The surface in question is obviously a spherical surface, centered
at the origin and of any radiusr. Dy is everywhere normal to the surface; Dy hasthe
same value at al points on the surface.

Then we have, in order,

Q:%Dde:% DgdS
S sph

p=2m O=m
=Dsy§ dS:DS/ / r?sinf do d¢
sph =0 6=0

= 47'[}"2DS

and hence

0

T 42

Because r may have any value and because Dy is directed radially outward,

Dg

0 0

= a E = a
Ap2”" Aegr?™”
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which agrees with the results of Chapter 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and that
leaves the inverse-square-law relationship as the only check obtained from Gauss's
law. The example does, however, serve to illustrate a method which we may apply
to other problems, including several to which Coulomb’s law is almost incapable of
supplying an answer.

Arethere any other surfaces which would have satisfied our two conditions? The
student should determine that such simple surfaces as acube or acylinder do not meet
the requirements.

As a second example, let us reconsider the uniform line charge distribution p;
lying along the z axis and extending from —oo to +o00. We must first know the
symmetry of the field, and we may consider this knowledge complete when the
answers to these two questions are known:

1.  With which coodinates doesthefield vary (or of what variablesis D afunction)?
2. Which components of D are present?

In using Gauss's law, it is not a question of using symmetry to simplify the
solution, for the application of Gauss's law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss’s law 10 obtain a solution. The
preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only
theradial component of D is present, or

D=D,a,
and this component is afunction of p only.

D, = f(p)

The choice of a closed surface is now simple, for a cylindrical surface is the only
surface to which D, is everywhere normal, and it may be closed by plane surfaces
normal to thez axis. A closed right circular cylinder of radius p extendingfromz = 0
toz = L isshown in Figure 3.4.

We apply Gauss's law,

0= DS-dS=DS/ dS+O/ dS+0 ds
cyl sides top bottom

L por
= DS/ / pdopdz = Ds2npL
z=0J¢=0

and obtain

__9
T 2nplL

In terms of the charge density p, , the total charge enclosed is

O=pL

Dg=D
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Line charge ¢ —_—

PL

>/

Figure 3.4 The gaussian
surface for an infinite uniform line
charge is a right circular cylinder of
length L and radius p. D is
constant in magnitude and
everywhere perpendicular to the
cylindrical surface; D is parallel to
the end faces.

giving
_PL
P 2mp
or
E,= PL
2meQp

Comparing with Section 2.4, Eg. (16), shows that the correct result has been
obtained and with much lesswork. Once the appropriate surface has been chosen, the
integration usually amounts only to writing down the area of the surface at which D
isnormal.

The problem of acoaxial cableisamost identical with that of theline charge and
is an example that is extremely difficult to solve from the standpoint of Coulomb’s
law. Suppose that we have two coaxia cylindrical conductors, the inner of radius a
and the outer of radius b, each infinitein extent (Figure 3.5). We will assume acharge
distribution of pg on the outer surface of the inner conductor.

Symmetry considerations show us that only the D, component is present and
that it can be afunction only of p. A right circular cylinder of length L and radius p,
wherea < p < b, isnecessarily chosen asthe gaussian surface, and we quickly have

Q = Dg2nplL
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Conducting
/7 cylinders

/
p=a

Figure 3.5 The two coaxial
cylindrical conductors forming a
coaxial cable provide an electric
flux density within the cylinders,
given by D, = aps/p.

Thetotal charge on alength L of theinner conductor is

L p2r
0= / / psadpdz = 2mwalLps
z=0 J¢=0
from which we have
Dg = D=—a, (a<p<b)
P

This result might be expressed in terms of charge per unit length because the inner
conductor has 2w aps coulombs on a meter length, and hence, letting p;, = 2w aps,

p="rt

= a
2np "

and the solution has aform identical with that of the infinite line charge.

Because every line of electric flux starting from the charge on the inner cylinder
must terminate on a negative charge on the inner surface of the outer cylinder, the
total charge on that surface must be

Qouter oyl = _ZﬂaLPS,inner cyl
and the surface charge on the outer cylinder isfound as
27 b Lps, outer oyl = —2maLps,inner oyl

or
a

L5, outer cyl = b L5, inner cyl

What would happen if we should use a cylinder of radius p, p > b, for the
gaussian surface? The total charge enclosed would then be zero, for there are equal
and opposite charges on each conducting cylinder. Hence

0= Ds2rpL (p > b)
Ds=0 (o >b)

(i)
Mustrations
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An identical result would be obtained for p < a. Thus the coaxial cable or
capacitor hasno external field (we have proved that the outer conductor isa*“ shield”),
and there is no field within the center conductor.

Our resultisalso useful for afinit length of coaxial cable, open at both ends, pro-
vided thelength L ismany times greater than the radius b so that the nonsymmetrical
conditions at the two ends do not appreciably affect the solution. Such a device is
also termed acoaxial capacitor. Both the coaxial cable and the coaxial capacitor will
appear frequently in the work that follows.

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an
outer radius of 4 mm. The space between conductorsis assumed to befilled with air.
Thetotal charge on theinner conductor is 30 nC. We wish to know the charge density
on each conductor, and the E and D fields.

Solution. \We begin by finding the surface charge density on the inner cylinder,

Oinner cyl 30 x 10°° ?
| _ _ = 9.55 uC/m
Ps.inner cyl 2ral 27(10-3)(0.5) g

The negative charge density on the inner surface of the outer cylinder is

Oouter oyl —30x 10°° 2
_ _ = —2.39 uC/m
LS. outer cyl 27bL 21 (4 X 1073)(05) o

The internal fields may therefore be calculated easily:

aps _ 107%9.55x 10°%) _ 955 _
P p p

CIm?

D, =

and

o D,  955x10° 1079
7 e 8854x10712p p

V/m

Both of these expressions apply to theregionwherel < p < 4mm. For p < 1 mm
or p > 4mm, E and D are zero.

D3.5. A point charge of 0.25 uC is located at » = 0, and uniform surface
charge densities are located asfollows: 2 mC/m? at » = 1 cm, and —0.6 mC/m?
atr = 1.8cm. CaculateD at: (a) r = 0.5cm; (b) r = 1.5¢cm; (¢) r = 2.5cm.
(d) What uniform surface charge density should be established at » = 3 cm to
causeD =0atr = 3.5cm?

Ans. 796a, 1C/m?; 977a, uC/m?; 40.8a, nC/m?; —28.3uC/m?
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3.4 APPLICATION OF GAUSS’S LAW:
DIFFERENTIAL VOLUME ELEMENT

We are now going to apply the methods of Gauss's law to a dightly different type
of problem—one that does not possess any symmeltry at all. At first glance, it might
seemthat our caseishopel ess, for without symmetry, asimple gaussian surface cannot
be chosen such that the normal component of D is constant or zero everywhere on
the surface. Without such a surface, the integral cannot be evaluated. There is only
one way to circumvent these difficulties and that is to choose such a very small
closed surface that D is a/most constant over the surface, and the small change in
D may be adequately represented by using the first two terms of the Taylor's-series
expansion for D. The result will become more nearly correct as the volume enclosed
by the gaussian surface decreases, and we intend eventually to alow this volume to
approach zero.

This example also differs from the preceding onesin that we will not obtain the
valueof D asour answer but will instead receive some extremely valuableinformation
about the way D variesin the region of our small surface. This leads directly to one
of Maxwell’s four equations, which are basic to all electromagnetic theory.

Let us consider any point P, shown in Figure 3.6, located by a rectangular
coordinate system. The value of D at the point P may be expressed in rectangular
components, Do = Dyoa, + Dypa, + D-oa.. We choose as our closed surface the
small rectangular box, centered at P, having sides of lengths Ax, Ay, and Az, and
apply Gauss's law,

iD-dS:Q

In order to evaluate the integral over the closed surface, the integral must be
broken up into six integrals, one over each face,

goeas=[ 4 wf wf +f +f
S front back left right top bottom

Consider thefirst of these in detail. Because the surface element isvery small, D
is essentially constant (over this portion of the entire closed surface) and

/ = Dtront - ASfront
front

= Dront - Ay Aza,
= Dx,frontAy Az

where we have only to approximate the value of D, at thisfront face. The front face
isat adistance of Ax/2 from P, and hence

} Ax .
Dy front = Dxo + - x rate of change of D, with x

=D +Ax aD,
-0 2 ox
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P(x,y,z)
D= D(l - D\(] a, + D\() a\'+ D:() a,

Figure 3.6 A differential-sized gaussian surface about
the point P is used to investigate the space rate of
change of D in the neighborhood of P.

where D, isthe value of D, a P, and where a partial derivative must be used to
express the rate of change of D, with x, as D, in genera also varies with y and z.
This expression could have been obtained more formally by using the constant term
and the term involving the first derivative in the Taylor’s-series expansion for D, in

the neighborhood of P.
) Ax 0D,
f = (DXO + — ) Ay Az
front 2 0x

We now have
Consider now the integral over the back surface,

/t;a:k

= Dpack * (—Ay Az ay)

Dpack + AShack

= —D, pakAy Az
and
D D Ax 0D,
x,back — LZx0 2 ox
giving

. Ax aD,
= |—Dyo+ — Ay Az
back 2 ox

If we combine these two integrals, we have

. dD,
+ = Ax Ay Az
front back dx
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By exactly the same process we find that

. oD,
+ = —Ax Ay Az
fight  Jiet 0y

top bottom

and these results may be collected to yield

. (0D, 0D, 0D;
D.dS = + —+ Ax Ay Az
S ox ay 0z

and

oD,
0

z

Ax Ay Az

or

. (0D, oD aD,
fl)-dS:Q: + — + Av )
s dax ay az

The expression is an approximation which becomes better as Av becomes
smaller, and in the following section we shall let the volume Av approach zero.
For the moment, we have applied Gauss's law to the closed surface surrounding the
volume element Av and have as aresult the approximation (7) stating that

D, n aD,, + aD,
ax ay dz

Charge enclosed in volume Av = ( ) x volume Av (8)

Find an approximate value for the total charge enclosed in an incremental volume of
10~ m® located at the origin, if D = e * siny a, — e~ cosy a, + 2za, C/m?.

Solution. \We first evaluate the three partial derivativesin (8):

0D,
ax

oD,
dy

oD,
a0z

= —e'diny

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2Av. If
Av is 1072 m3, then we have enclosed about 2 nC.
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D3.6. Infreespace, letD = 8xyz%a, +4x2z%a, +16x2yz3a, pC/m?. (a) Find
the total electric flux passing through the rectangular surface z = 2, 0 <
x < 2,1 <y < 3 inthea, direction. (b) Find E at P(2, —1, 3). (¢) Find
an approximate value for the total charge contained in an incremental sphere
located at P(2, —1, 3) and having avolume of 10~ mq.

Ans. 1365 pC; —146.4a, + 146.4a, — 195.2a.V/m; —2.38 x 10721 C

i)

Interactives

3.5 DIVERGENCE AND MAXWELL’S
FIRST EQUATION

We will now obtain an exact relationship from (7), by allowing the volume element
Av to shrink to zero. We write this equation as

aD, 0D aD, . D-dS .
( +—y+—)= lim L = lim g:pv 9
ox ay 0z Aav—>0  Av Av—0 Av
in which the charge density, p,, isidentified in the second equality.

The methods of the previous section could have been used on any vector A to

find §; A - dS for asmall closed surface, leading to

04, 04 04, . A-dS
( + >+ )zllm Js (10)
ox ay 0z Av—0  Av
where A could represent velocity, temperature gradient, force, or any other vector
field.

This operation appeared so many timesin physical investigationsin the last cen-
tury that it received adescriptive name, divergence. The divergence of A isdefined as

. , _ fA-dS
Divergenceof A = divA = lim =—

11
Av—0 Av ( )

and is usually abbreviated div A. The physical interpretation of the divergence of a
vector is obtained by describing carefully the operations implied by the right-hand
side of (11), where we shall consider A to be amember of the flux-density family of
vectorsin order to aid the physical interpretation.

The divergence of the vector flu density A is the outflo of flu from a small closed surface
per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often
useful in obtaining qualitative information about the divergence of a vector field
without resorting to a mathematical investigation. For instance, let us consider the
divergence of the velocity of water in abathtub after the drain has been opened. The
net outflow of water through any closed surface lying entirely within the water must
be zero, for water is essentially incompressible, and the water entering and leaving
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different regions of the closed surface must be equal. Hence the divergence of this
velocity is zero.

If, however, we consider the velocity of the air in atire that has just been punc-
tured by a nail, we realize that the air is expanding as the pressure drops, and that
consequently there is anet outflow from any closed surface lying within thetire. The
divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector
guantity at that point. Similarly, a negative divergence indicates a sink. Because the
divergenceof thewater velocity aboveiszero, no sourceor sink exists.® Theexpanding
air, however, produces a positive divergence of the velocity, and each interior point
may be considered a source.

Writing (9) with our new term, we have

. oD, oD, D,
divD = -+ — + (rectangular) (12)
ax ay 0z

This expression is again of a form that does not involve the charge density. It is the
result of applying the definition of divergence (11) to a differential volume element
in rectangular coordinates.

If adifferential volume unit p dp d¢ dz in cylindrical coordinates, or 2 sind dr
d6 d ¢ inspherical coordinates, had been chosen, expressionsfor divergenceinvolving
the components of the vector in the particular coordinate system and involving partial
derivatives with respect to the variables of that system would have been obtained.
These expressions are obtained in Appendix A and are given here for convenience:

_ 19 10D, aD. o
D=-_"(pD,)+ =222 | 1
div e (o ,,)+p 2% + = (cylindrical) (13)
19 3 aD
WD = < 9 02p ° (sno D = heri 14
avD =5 5, 0D+ g 55 SN0 Do)+ —op =5 (Spherical) | (14)

These relationships are also shown inside the back cover for easy reference.

It should be noted that the divergence is an operation which is performed on a
vector, but that the result isascalar. We should recall that, in asomewhat similar way,
the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first
time to impart a vector quality to the operation by scattering unit vectors around in

3 Having chosen a differential element of volume within the water, the gradual decrease in water level
with time will eventually cause the volume element to lie above the surface of the water. At the instant
the surface of the water intersects the volume element, the divergence is positive and the small volume
isasource. This complication is avoided above by specifying an integral point.
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the partial derivatives. Divergence merely tells us how much flux is leaving a small
volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at
the end of Section 3.4.

Find div D at theoriginif D = e ™ sinya, —e " cosya, + 2za..
Solution. \We use (10) to obtain

oD, aD, 0D,

+——+ =
ax ay 0z
=—efsny+4+esny+2=2

divD =

The valueisthe constant 2, regardless of location.
If the units of D are C/m?, then the units of div D are C/m®. Thisis a volume charge
density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the
point specified: (a) D = (2xyz — y?)a, + (x’z — 2xy)a, + x*ya.C/m? at
P4(2,3,-1); (b)) D = 2pz°sin’ g a, + pz2Sin2p a, + 2p°z Sin? ¢ a,C/m? a
Pp(p =2,¢ =110°, z = —1); (¢) D = 2r SIN6 COS ¢ a, + r COSH COS¢p ag —
rsinga, C/m? a Pe(r = 1.5,6 = 30°, ¢ = 50°).

Ans. —10.00; 9.06; 1.29

Finally, we can combine Egs. (9) and (12) and form the relation between electric

flux density and charge density:
=

Thisis the first of Maxwell’s four equations as they apply to electrostatics and
steady magnetic fields, and it states that the electric flux per unit volume leaving a
vanishingly small volume unit is exactly equal to the volume charge density there.
Thiseguationisaptly called thepoint form of Gauss’s law. Gauss' slaw relatestheflux
leaving any closed surface to the charge enclosed, and Maxwell’ sfirst equation makes
an identical statement on a per-unit-volume basis for a vanishingly small volume, or
at a point. Because the divergence may be expressed as the sum of three partial
derivatives, Maxwell’s first equation is also described as the differential-equation
form of Gauss's law, and conversely, Gauss's law is recognized as the integral form
of Maxwell’sfirst equation.

Asaspecificillustration, let us consider the divergence of D in the region about
apoint charge Q located at the origin. We have thefield

0

= —Aa,
4p2™
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and use (14), the expression for divergence in spherical coordinates:

d . aD,
- —(Dggne)-i- - —d)
Fsing 30 Fsng 96

Because Dy and D, are zero, we have

o 1d [, 0\ .
dlvD_r2 o (r 4m2) =0 (ifr £0)
Thus, p, = 0 everywhere except at the origin, where it isinfinite.

The divergence operation is not limited to electric flux density; it can be applied
to any vector field. We will apply it to several other electromagnetic fields in the
coming chapters.

. 190
dvD == —(2D,)+
r2 or

D3.8. Determine an expression for the volume charge density associated with

. 4xy 2x2 2x2y .

each D field: (a) D = —a, + —a, — —~a;; (b)) D = zsinga, +
Z

Z Z
zC0S¢pay + psSinga,; (c) D =sindsing a, + cosd sing ay + CoS¢ a,.

4
Ans. —)3}(x2 + 22); 0; 0.
zZ

3.6 THE VECTOR OPERATOR V
AND THE DIVERGENCE THEOREM

If we remind ourselves again that divergence is an operation on a vector yielding a

scalar result, just asthe dot product of two vectors givesascalar result, it seems possi-

ble that we can find something that may be dotted formally with D to yield the scalar
aD, . oD,  dD,

ax ay 0z

Obvioudly, this cannot be accomplished by using a dot product; the process must be

adot operation.
With thisin mind, we define the del operator V as avector operator,

0 ) 0
V=—a +—a —a, 16
ox + ay + daz (16)

Similar scalar operators appear in several methods of solving differential equations

where we often let D replace d /dx, D? replace d?/dx?, and so forth.* We agree on

defining V that it shall be treated in every way as an ordinary vector with the one

important exception that partial derivatives result instead of products of scalars.
Consider V - D, signifying

d d d
V-D= aax + 5% + Eaz (D.a; + Dya, + D.a;)

4 This scalar operator D, which will not appear again, isnot to be confused with the electric flux density.

67



68

ENGINEERING ELECTROMAGNETICS

We first consider the dot products of the unit vectors, discarding the six zero terms,
and obtain the result that we recognize as the divergence of D:

oD, aD, aD.
V-D=-—"+4+ —2 4+ = =div(D)
dx ay daz

Theuseof V - D ismuch more prevalent than that of div D, although both usages
havetheir advantages. Writing V - D allowsusto obtain simply and quickly the correct
partia derivatives, but only in rectangular coordinates, as we will see. On the other
hand, div D is an excellent reminder of the physical interpretation of divergence.
We shall use the operator notation V - D from now on to indicate the divergence
operation.

The vector operator V is used not only with divergence, but also with several
other very important operations that appear later. One of theseis Vu, where u is any
scalar field, and leads to

v ad ad a ou du du

u = (aax -+ 53), -+ &az> u = aax -+ 53}7 -+ a—zaz
The V operator does not have a specific form in other coordinate systems. If we

are considering D in cylindrical coordinates, then V - D still indicates the divergence

of D, or

13Dy D,

p 0¢ a9z

where this expression has been taken from Section 3.5. We have no form for V itself

to help us obtain this sum of partial derivatives. This meansthat Vu, asyet unnamed

but easily written in rectangular coordinates, cannot be expressed by us at this time

in cylindrical coordinates. Such an expression will be obtained when Vu is defined

in Chapter 4.

Wecloseour discussion of divergenceby presenting atheoremthat will be needed
several timesin later chapters, the divergence theorem. This theorem applies to any
vector field for which the appropriate partial derivatives exist, although it is easiest
for usto develop it for the electric flux density. We have actually obtained it already
and now have little more to do than point it out and nameiit, for starting from Gauss's

law, we have
fD-dS:Q:/ ,om’v:f V-.Ddv
N vol vol

Thefirst and last expressions constitute the divergence theorem,

fD-dS:/ V-Ddv (17)
S vol

which may be stated as follows:

V.D 18(D)+
D==2(
pap "

The integral of the normal component of any vector fiel over a closed surface is equal to
the integral of the divergence of this vector fiel throughout the volume enclosed by the
closed surface.
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/ _ Closed surface §

~ / —
PR h
Volume v

Figure 3.7 The divergence theorem states that the total
flux crossing the closed surface is equal to the integral of
the divergence of the flux density throughout the enclosed
volume. The volume is shown here in cross section.

Again, we emphasize that the divergence theorem is true for any vector field,
although we have obtained it specifically for the electric flux density D, and we will
have occasion later to apply it to severa different fields. Its benefits derive from the
fact that it relates atriple integration throughout some volume to a double integration
over the surface of that volume. For example, it is much easier to look for leaks in
abottle full of some agitated liquid by inspecting the surface than by calculating the
velocity at every internal point.

The divergence theorem becomes obvious physically if we consider avolume v,
shown in cross section in Figure 3.7, which is surrounded by a closed surface S.
Division of the volume into a number of small compartments of differential size and
consideration of one cell show that the flux diverging from such a cell enters, or
converges on, the adjacent cells unlessthe cell contains a portion of the outer surface.
In summary, the divergence of the flux density throughout a volume leads, then, to
the same result as determining the net flux crossing the enclosing surface.

Evaluate both sides of the divergence theorem for the field D = 2xya, + xzay C/m?
and the rectangular parellelepiped formed by the planesx = 0and 1, y = O and 2,
andz = 0and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the sur-
facesat z = Oand z = 3, s0 D-dS = O there. For the remaining four surfaces
we have

féDwiS = /:/:(D)x:o- (—dydza,)+ /03 /OZ(D)x=1- (dydzay)

. /O ’ /0 D)oo+ (dx dzay) + /O 3 /0 (D)2 (dx d=a,)
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3 p2 3 p2
= —f / (Dx)x:ody dz + / / (Dx)ledy dz
0 0 0 0
3 pl 3 rl
_f / (Dy)y=0dx dz + / / (Dy)yzgdx dz
0 0 0 0

However, (Dy),—o = 0, and (Dy),—0 = (D,),—2, which leaves only

3 2 3 2
%D-dS:/ /(Dx)ledydz=/ / 2ydydz
s o Jo o Jo
3

:/ 4dz =12
0

a a
V-D=_—(2)+ —(x?) =2y
dax ay

Since

the volume integral becomes

3 p2 p1 3 2
/V-de:///2ydxdydz=//2ydydz
vol o Jo Jo o Jo

3

:/ 4dz =12

0

and the check is accomplished. Remembering Gauss's law, we see that we have also
determined that atotal charge of 12 C lies within this parallel epiped.

D3.9. GiventhefieldD = 6p sin 3¢ a, + 1.5 cos 3¢ a, C/m?, evaluate both
sides of the divergence theorem for the region bounded by p = 2, ¢ = 0O,
¢=m,z=0,andz =5.

Ans. 225; 225
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CHAPTER 3 PROBLEMS

311

321

331

3.41

3.5

3.61

3.71

38l

Suppose that the Faraday concentric sphere experiment is performed in free
space using acentral charge at the origin, Q1, and with hemispheres of radius
a. A second charge Q> (thistime a point charge) islocated at distance R
from Q1, where R >> a. (a) What isthe force on the point charge before the
hemispheres are assembled around Q17 (b) What is the force on the point
charge after the hemispheres are assembled but before they are discharged?
(c) What is the force on the point charge after the hemispheres are assembled
and after they are discharged? (d) Qualitatively, describe what happensas O,
is moved toward the sphere assembly to the extent that the condition R >> «
isno longer valid.

An electric field in free space isE = (5z2/¢) 4. V/m. Find the total charge
contained within a cube, centered at the origin, of 4-m side length, in which
all sides are paralel to coordinate axes (and therefore each side intersects an
axisat +2).

The cylindrical surface p = 8 cm contains the surface charge density, ps =
5¢~2021 nC/m?. (a) What is the total amount of charge present? (b) How
much electric flux leavesthe surface p =8cm, 1cm < z < 5¢cm,

30° < ¢ < 90°?

An electric field in free space isE = (5z3/¢) 4. V/m. Find the total charge
contained within a sphere of 3-m radius, centered at the origin.

Let D = 4xya, + 2(x? + z%)a, + 4yza, nC/m? and evaluate surface integrals
to find the total charge enclosed in the rectangular parallelepiped 0 < x < 2,
O0<y<30<z<b5m

In free space, a volume charge of constant density p, = po exists within the
region —oco < x < 00, —00 <y < 00, and —d/2 <z < d/2. FindD and E
everywhere.

Volume charge density is located in free space as p, = 2¢ 1% nC/m? for

0 <7 < 1mm,and p, = 0 €elsewhere. (a) Find the total charge enclosed by
the spherical surfacer = 1 mm. (b) By using Gauss's law, calculate the value
of D, onthesurfacer = 1 mm.

Use Gauss's law in integral form to show that an inverse distance field in
spherical coordinates, D = A4a, /r, where 4 isaconstant, requires every
spherical shell of 1 m thickness to contain 474 coulombs of charge. Does
thisindicate a continuous charge distribution? If so, find the charge density
variation with .

@
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390 A uniform volume charge density of 80uC/m? is present throughout the
region8mm < » < 10 mm. Let p, = O0for 0 < » < 8 mm. («) Find the total
charge inside the spherical surface = 10 mm. (b) Find D, at » = 10 mm.
(¢) If thereisno charge for » > 10 mm, find D, at » = 20 mm.

3.100 Aninfi nitely long cylindrical dielectric of radius b contains charge within its
volume of density p, = ap?, where a isaconstant. Find the electric field
strength, E, both inside and outside the cylinder.

311 In cylindrical coordinates, let p, = 0for p < 1 mm, p, = 2sin(2000
7p) NC/m3 for 1 mm < p < 1.5mm, and p, = Ofor p > 1.5 mm. Find D
everywhere.

3.12 | The sun radiates atotal power of about 3.86 x 102 watts (W). If we imagine
the sun’s surface to be marked off in latitude and longitude and assume
uniform radiation, («) what power is radiated by the region lying between
latitude 50° N and 60° N and longitude 12° W and 27° W? () What is the
power density on aspherical surface 93,000,000 miles from the sun in W/m?2?

3130 Spherical surfacesat » = 2, 4, and 6 m carry uniform surface charge
densities of 20 nC/m?, —4 nC/m?, and pso, respectively. (a) Find D at r = 1,
3,and 5m. (b) Determine pso suchthat D = O0atr = 7 m.

3.14 1 A certain light-emitting diode (LED) is centered at the origin with its surface
in the xy plane. At far distances, the LED appears as a point, but the glowing
surface geometry produces a far-field radiation pattern that follows araised
cosine law: that is, the optical power (flux) density in watts/m? is given in
spherical coordinates by

cos? 0 5

Pd = PoWa, WattS/m
where 6 is the angle measured with respect to the direction that is normal to
the LED surface (in this case, the z axis), and  istheradial distance from the
origin at which the power is detected. (a) Interms of Py, find the total power
in watts emitted in the upper half-space by the LED; (b) Find the cone angle,
01, within which half the total power isradiated, that is, within the range
0 < 0 < 601; (c) An optical detector, having a 1-mm? cross-sectiona area, is
positioned at » = 1 mand at & = 45°, such that it facesthe LED. If one
milliwatt is measured by the detector, what (to a very good estimate) is the
value of Py?

3.151 Volume charge density islocated as follows: p, = 0for p < 1 mmand for
p > 2mm, p, = 4puC/m*for 1 < p < 2mm. (a) Calculate the total charge
intheregion0 < p < p1,0 <z < L,wherel < p; < 2mm. (b) Use
Gauss's law to determine D, a p = p;. (c) Evaluate D, a p = 0.8 mm,
1.6 mm, and 2.4 mm.

3.16 0 Andlectric flux density isgiven by D = Dg a,, where Dy is a given constant.
(a) What charge density generates thisfield? (») For the specified field, what
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total chargeis contained within a cylinder of radius a and height 5, where the
cylinder axisisthe z axis?

3.170 A cubeisdefined by 1 < x, 3,z < 1.2 If D = 2x%a, + 3x%2a, C/m?
(@) Apply Gauss's law to find the total flux leaving the closed surface of the
cube. (b) Evaluate V - D at the center of the cube. (¢) Estimate the total
charge enclosed within the cube by using Eq. (8).

3.18 1 State whether the divergence of the following vector fieldsis positive,
negative, or zero: («) the thermal energy flow in J/(m? — s) at any pointina
freezing ice cube; (b) the current density in A/m? in abus bar carrying direct
current; (c) the mass flow rate in kg/(m? — s) below the surface of water in a
basin, in which the water is circulating clockwise as viewed from above.

3.198 A spherical surface of radius 3 mm iscentered at P(4, 1, 5) in free space. Let
D = xa, C/m?. Usethe results of Section 3.4 to estimate the net electric flux
leaving the spherical surface.

3.20 1 A radial electric field distribution in free spaceisgiven in spherical

coordinates as:
E; = %ar (r <a)
2 3_ .3
E2=(a3€0—:2)'ooar (@ <r<b)
2a% — b3)p
E; = (3607’/2)0% (r =)

where po, a, and b are constants. (¢) Determine the volume charge density in
the entireregion (0 < r < 0o) by the appropriateuseof V- D = p,. (b) In
terms of given parameters, find the total charge, O, within a sphere of radius
r wherer > b.

3.211 caculate V - D a the point specified if (a) D = (1/z%)[10xyz a, +
5x2z a, + (22 — 5x?y) a,] a P(~2,3,5); (b)) D = 5z2a, + 10pz a, a
P(3,—45°,5); (c) D =2rsinésing a, +r cosd Sing ay + r CoS¢ a, a
P(3, 45°, —45°).

3.221 (@) A flux density field is given as F; = 5a,. Evaluate the outward flux of F
through the hemispherical surface,r = a,0 <0 < 7/2,0 < ¢ < 27.
(b) What simple observation would have saved alot of work in part a?
(c) Now supposethe field is given by F, = 5za,. Using the appropriate
surface integrals, evaluate the net outward flux of F» through the closed
surface consisting of the hemisphere of part @ and its circular basein the xy
plane. (d) Repeat part ¢ by using the divergence theorem and an appropriate
volumeintegral .

3.2310 (@) A point charge Q liesat the origin. Show that div D is zero everywhere
except at the origin. (b) Replace the point charge with a uniform volume
charge density p,o for 0 < r < a. Relate p,o to Q and a so that the total
chargeisthe same. Find div D everywhere.
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3241 1n aregion in free space, electric flux density isfound to be
p_ [ Pole+2d)a c/m?* (-2d <z<0)
~ | —polz —2d)a. C/m?2  (0<z<2d)

Everywhereelse, D = 0. (¢) Using V - D = p,, find the volume charge
density as afunction of position everywhere. (b) Determine the electric flux
that passes through the surface definedby z = 0, —a <x <a, —b <y <b.
(c) Determine the total charge contained within theregion —a < x < a,
—b <y <b, —d <z <d.(d) Determine the total charge contained within
theregion —a <x <a, b <y <b, 0<z < 2d.

3.25 1 Within the spherical shell, 3 < » < 4 m, the electric flux density is given as
D = 5( — 3)® a, C/m?. (a) What is the volume charge density at » = 4?
(b) What isthe electric flux density at » = 4? (¢) How much electric flux
leaves the spherer = 47 (d) How much charge is contained within the sphere
r=4?

3261 If wehavea perfect gas of mass density p,, kg/m?, and we assign a
velocity U m/sto each differential element, then the mass flow rateis
omU kg/(m? — s). Physical reasoning then leads to the continuity equation,
V (0, U) = —0p,,/0t. (a) Explain in words the physical interpretation of
this equation. (b) Show that §, p,, U -dS = —dM/dt, where M isthe total
mass of the gas within the constant closed surface S, and explain the physical
significance of the equation.

3.271 Let D = 5.00r2a, mC/m? for » < 0.08 mand D = 0.205 a, /2 uC/m? for
r > 0.08 m. (a) Find p, for» = 0.06 m. (b) Find p, for » = 0.1 m. (¢) What
surface charge density could be located at » = 0.08 m to cause D = O for
r > 0.08 m?

3281 Repeat Problem 3.8, but use V - D = p, and take an appropriate volume
integral.

3291 Inthe region of free space that includesthevolume2 < x, y,z < 3,D =
Z%(yz a, +xza, —2xya,) C/m?. (a) Evaluate the volume integral side of
the divergence theorem for the volume defined here. (b) Evaluate the surface
integral side for the corresponding closed surface.

3301 (a) Use Maxwell’sfirst equation, V - D = p,, to describe the variation of the
electric field intensity with x in aregion in which no charge density exists
and in which a nonhomogeneous dielectric has a permittivity that increases
exponentially with x. The field has an x component only; (b) repesat part (a),
but with aradially directed electric field (spherical coordinates), in which
again p, = 0, but in which the permittivity decreases exponentially with r.

3.31 ! Given theflux density D = 18 cos(20) ag C/m?, use two different methods to
find the total charge withintheregion1 <r» <2m, 1 < 6 < 2rad,
1l<¢ <2rad
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finding the electric field about several simpledistributionsof charge, and alsowith

Gauss's law and its application in determining the field about some symmetrical
charge arrangements. The use of Gauss's law was invariably easier for these highly
symmetrical distributions because the problem of integration always disappeared
when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as
that of two unlike point charges separated by asmall distance, wewould have found it
impossibleto choose asuitable gaussian surfaceand obtain an answer. Coulomb’slaw,
however, ismore powerful and enables usto solve problemsfor which Gauss'slaw is
not applicable. Theapplication of Coulomb’slaw islaborious, detail ed, and often quite
complex, the reason for this being precisely the fact that the electric field intensity,
a vector field, must be found directly from the charge distribution. Three different
integrations are needed in general, one for each component, and the resolution of the
vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with asingleintegration and then determine the electric field from this scalar
by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential fiel .
We shall find that it has a very real physical interpretation and is more familiar to
most of usthanisthe electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding
electric fields—asingle scalar integration, although not always as simple aswe might
wish, followed by a pleasant differentiation.

I n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point
at which we wish to find the value of this vector field. If we attempt to move the test
charge against the electric field, we have to exert a force equal and opposite to that
exerted by the field, and this requires us to expend energy or do work. If we wish to
move the charge in the direction of the field, our energy expenditure turns out to be
negative; we do not do the work, the field does.

Suppose we wish to move a charge Q adistance dLL in an electric field E. The
force on Q arising from the electric field is

8

where the subscript reminds us that this force arises from the field. The component
of thisforce in the direction dL. which we must overcomeis

FEL =F-aL = QE-aL

where a; = aunit vector in the direction of dL.
The force that we must apply is equal and opposite to the force associated with
thefield,

Fappl = —QE -ar

and the expenditure of energy is the product of the force and distance. That is, the
differential work done by an external sourcemoving charge Q isd W = —QE-a;dL,

or dW = —QE-dL 2

where we have replaced a; dL by the simpler expression dL.

This differential amount of work required may be zero under several conditions
determined easily from Eq. (2). Therearethetrivia conditionsfor which E, O, or dLL
is zero, and a much more important case in which E and dL. are perpendicular. Here
the charge is moved alwaysin adirection at right angles to the electric field. We can
draw on a good analogy between the electric field and the gravitationa field, where,
again, energy must be expended to move against the field. Sliding amass around with
constant velocity on africtionless surfaceisan effortless processif the massis moved
aong aconstant el evation contour; positive or negative work must be donein moving
it to ahigher or lower elevation, respectively.

Returning to the chargein the electric field, the work reguired to move the charge
afinite distance must be determined by integrating,

final
W=-0 E-dL ©)

init
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where the path must be specified before the integral can be evaluated. The charge is
assumed to be at rest at both itsinitial and final positions.

This definite integral is basic to field theory, and we shall devote the following
section to its interpretation and evaluation.

D4.1. GiventhedlectricfildE = —(8xyzax + 4x2 za, —4x 2ya.) VIm, find

the differential amount of work dorié in movi ng a 6-nC charge a d|stance of

2um startmgat P(2,-2,3) and proceeding in the directiona; = (a) — 7ax +
3a, + 2a.; (b) Sa, — 3a, — 2a.; (c) 3a, + %a,.

Ans. —149.3fJ; 149.31 0

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one
position to another, Eq. (3), isan example of alineintegral, which in vector-analysis
notation always takes the form of the integral along some prescribed path of the dot
product of avector field and adifferential vector path length 4L. Without using vector
analysis we should have to write
final
W=-0 E; dL
init

where E; = component of E along dL.

A lineintegra is like many other integrals which appear in advanced analysis,
including the surface integral appearing in Gauss's law, in that it is essentially de-
scriptive. We like to look at it much more than we like to work it out. It tells us to
choose a path, break it up into alarge number of very small segments, multiply the
component of the field along each segment by the length of the segment, and then
add the results for al the segments. Thisis a summation, of course, and the integral
is obtained exactly only when the number of segments becomesinfinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from
an initial position B to afinal position® 4 and a uniform electric fiel is selected
for simplicity. The path is divided into six segments, ALy, ALy, ..., ALg, and the
components of E along each segment are denoted by £;1, E;», ..., Erg. Thework
involved in moving acharge Q from B to 4 isthen approximately

W=—0(E1AL1+ E[2ALy + -+ -+ EreALg)
or, using vector notation,

W=—Q(E1-AL; +Ez- ALy + -+ - + Eg- ALg)

1 Thefinal position is given the designation 4 to correspond with the convention for potential
difference, as discussed in the following section.

77



78

ENGINEERING ELECTROMAGNETICS

Final position

Initial position

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line
integral of E between points B and A is independent of the path selected, even in a
nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

Ei=E;=---=Eg
W =—QE-(AL1 + ALy + --- + ALg)

What is this sum of vector segments in the preceding parentheses? Vectors add
by the parallelogram law, and the sum is just the vector directed from theinitial point
B tothefina point 4, L. Therefore

W=—QE-Lg, (uniformE) 4)

Remembering the summation interpretation of thelineintegral, thisresult for the
uniform field can be obtained rapidly now from the integral expression

W=—Q/BAE-dL (5)

as applied to auniform field

A

W =—QE. / dL
B
where the last integral becomes L 4 and

W =—QE-Lgy (uniform E)
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For this special case of auniform electric field intensity, we should note that the
work involved in moving the charge depends only on Q, E, and Lz 4, avector drawn
fromtheinitial tothefinal point of the path chosen. It doesnot depend on the particular
path we have selected along which to carry the charge. We may proceed from B to 4
on astraight line or viathe Old Chisholm Trail; the answer is the same. We show in
Section4.5that anidentical statement may bemadefor any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in Eq. (5).

79

We are given the nonuniform field
E =ya, +xa, + 2a;

and we are asked to determine the work expended in carrying 2C from B(1, 0, 1) to
A(0.8, 0.6, 1) along the shorter arc of the circle

x24+y2=1 z=1

Solution. Weuse W = —Q [ ; E - dL, whereE isnot necessarily constant. Working
in rectangular coordinates, the differential path JL is dxa, + dya, + dza., and the
integral becomes

A
W:—Q/ E-dL
B

4
= —2/ (va, +xa, +2a,)-(dxa, +dya, +dza;)
B

0.8 0.6 1
:—2/ ydx—Z/ xdy—4/ dz
1 0 1

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular
path (and selecting the sign of the radical which is correct for the quadrant involved),
we have

08 06
W:—Z/ \/1—x2dx—2/ V1-3y2dy -0
1 0
= —[x\/l—x2 + SiI’I_l)c](l).8 — [y\/l—y2 + Sin_ly]z6

— —(0.48+ 0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)
= —0.96J
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Again find the work required to carry 2C from B to 4 inthe samefield, but thistime
use the straight-line path from B to A4.

Solution. \We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define
theline:

Ya— VB

y—yp="——"—(x—xp)
X4 — Xp
Zy—Zz
z—zp="2—"C(y—yp)
Ya—y
x—xgzxA xB(z—zB)
Z4 —ZB
From the first equation we have
y=-3x-1)
and from the second we obtain
z=1
Thus,
0.8 0.6 1
W:—Z/ ydx—Z/ xdy—4/ dz
1 0 1
0.8 06
y
=6 —1dx -2 1-=)d
Ce-na-2[ (1)@
=-0.96J

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work doneis
independent of the path taken in any electrostatic field.

It should be noted that the equations of thestraight lineshow that dy = —3dx and
dx = —% dy. These substitutions may be made in the first two integrals, along with
achangein limits, and the answer may be obtained by evaluating the new integrals.
This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-
ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in
Section 1.8, and spherical in Section 1.9):

dL =dxa, +dya, +dza; (rectangular) (6)
dL =dpa,+ pdpay +dza, (cylindrical) @)
dL =dra, +rdbay+rsind dpay, (spherical) 8

The interrelationships among the several variablesin each expression are determined
from the specific equations for the path.
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Infinite line
charge p; AL

P1

S
S e

dL=dpa,
dL=p,dpa,

(a) )

Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried
in the field of an infinite line charge. No work is expected in the former case.

Asafinal exampleillustrating the evaluation of the line integral, we investigate
severa paths that we might take near an infinite line charge. The field has been
obtained several times and is entirely in the radial direction,

PL a
2meqp

First we find the work done in carrying the positive charge QO about a circular
path of radius p, centered at the line charge, as illustrated in Figure 4.2a. Without
lifting apencil, we see that the work must be nil, for the path is always perpendicular
to the electric field intensity, or the force on the charge is always exerted at right
angles to the direction in which we are moving it. For practice, however, we will set
up the integral and obtain the answer.

The differential element 4L ischosen in cylindrical coordinates, and the circular
path selected demands that dp and dz be zero, so dL. = p1 d¢ ay. The work isthen

final

E=F,a, =

PL
int  2T€0pL

W=-0 a,-p1dday

2” PL
:—Q/ dpa,-a; =0
0

2meg

We will now carry the charge from p = a to p = b aong a radia path
(Figure 4.2b). Here dL = dp a,, and

final b
oL pL dp
W=-0 a,-dpa :—Q/ —
it 2T€Qp ! P . 2meyg p
or
b
W=_Q’0L In—
2meg  a

Because b is larger than a, In(b/a) is positive, and the work done is negative,
indicating that the external source that is moving the charge receives energy.
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Oneof thepitfallsin evaluating lineintegral sisatendency to usetoo many minus
signswhen achargeismoved in the direction of adecreasing coordinatevalue. Thisis
taken care of completely by thelimitsontheintegral, and no misguided attempt should
be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).
We still have dL = dp a,, and show the different direction by recognizing p = b as
theinitial point and p = a asthefinal point,

W:_Q/” pr_dp _ Opr Iné
» 2TEQ P 2reg  a

Thisisthe negative of the previous answer and is obviously correct.

D4.2. Caculate the work done in moving a 4-C charge from B(Z, 0, 0) to
A(0, 2, 0) along the path y = 2 — 2x, z = 0 in the field E = (a) 5a,V/m;
(b) 5xa,V/m; (c) 5xa, + 5ya,V/m.

Ans. 20J;10J; —30J

D4.3. We will see later that atime-varying E field need not be conservative.
(If itisnot conservative, the work expressed by Eq. (3) may be afunction of the
pathused.) Let E = ya,V/m at acertain instant of time, and cal cul ate the work
required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line
segmentsjoining: (a) (1, 3,5)to (2,3,5)to(2,0,5)to (2,0, 3); (b) (1,3,5) to
(1,3,3)t0 (1,0, 3) to (2,0, 3).

Ans. —93J0

()
Mustations

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge Q from one point to another in an electric
field E, “ Potential difference and work.”

final
W == E.-dL

init

In much the same way as we defined the electric field intensity asthe forceon a
unit test charge, we now define potential difference V asthework done (by an external
source) in moving aunit positive charge from one point to another in an electric field,

final
Potential difference = V' = —/ E.dL 9

init
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We have to agree on the direction of movement, and we do this by stating that
V45 Signifiesthe potential difference between points 4 and B and isthework donein
moving the unit charge from B (last named) to A4 (first named). Thus, in determining
V45, B istheinitia point and 4 is the final point. The reason for this somewhat
peculiar definition will become clearer shortly, when it is seen that theinitial point B
isoften taken at infinity, whereas the final point A represents the fixed position of the
charge; point A4 isthusinherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points 4 and B is

A
VABZ_/ E-dLV (10)
B

and V4 ispositive if work isdonein carrying the positive charge from B to 4.
From the line-charge example of Section 4.2 we found that the work done in
taking acharge Q from p = b to p = a was

Thus, the potential difference between pointsat p =a and p = b is

Vap= L 2 PL g ? (11)
O 2meg a
We can try out this definition by finding the potential difference between points
A and B at radial distancesr 4 andrz fromapoint charge Q. Choosing an originat Q,

E=F,a = 471?0r2ar
and
dL = dr a,
we have

A 74 1 1
VABZ—f E-dL:—/ derz © (———) (12
B vy Amegr Ameg\ry 1

If r3 > ry, the potential difference V5 is positive, indicating that energy is
expended by the externa source in bringing the positive charge from rp to r4. This
agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,
rather than the potential difference between two points, but this means only that we
agreeto measure every potential difference with respect to a specified reference point
that we consider to have zero potential. Common agreement must be reached on
the zero reference before a statement of the potential has any significance. A person
having one hand on the deflection plates of a cathode-ray tube that are “at a potential
of 50 V" and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentialsin that
circuit are customarily measured with respect to the metallic shield about the tube.
The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-
tential measurements is “ground,” by which we mean the potential of the surface
region of the earth itself. Theoretically, we usually represent thissurface by aninfinite
plane at zero potential, although some large-scale problems, such as those involving
propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” isinfinity. This usually appears in theo-
retical problems approximating aphysical situation inwhich the earthisrelatively far
removed from the region in which we are interested, such as the static field near the
wing tip of an airplane that has acquired a charge in flying through a thunderhead, or
the field inside an atom. Working with the gravitational potential field on earth, the
zero referenceis normally taken at sealevel; for an interplanetary mission, however,
the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero
reference when cylindrical symmetry is present and infinity provesinconvenient. Ina
coaxial cable the outer conductor is selected as the zero reference for potential. And,
of course, there are numerous special problems, such asthose for which atwo-sheeted
hyperboloid or an oblate spheroid must be selected as the zero-potential reference,
but these need not concern usimmediately.

If the potentia at point 4 is V', andthat at B is Vs, then

Vap=Va4— Vg (13)

where we necessarily agree that 7, and V3 shall have the same zero reference point.

D4.4. Anélectricfieldisexpressedinrectangular coordinatesby E = 6x2a, +
6ya, +4a.V/m. Find: (a) Vi if points M and N are specified by M (2, 6, —1)
and N(—3,-3,2); (b) V' if V =0a 04, -2,-35); (c) Vyif V=24
P(1, 2, -4).

Ans. —139.0V; —120.0V; 19.0V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between
two points located at » = r4 and » = rp in the field of a point charge O placed
at the origin. How might we conveniently define a zero reference for potential? The
simplest possibility isto let ¥ = 0 at infinity. If we let the point at » = r recedeto
infinity, the potential at » , becomes

0

A =
47'[6()7”,4




CHAPTER 4 Energy and Potential

or, asthere is no reason to identify this point with the 4 subscript,

yo 2

= 14
47 o ( )

This expression defines the potential at any point distant » from apoint charge O
at theorigin, thepotential at infiniteradiusbeing taken asthe zeroreference. Returning
to aphysical interpretation, we may say that Q/4megr joules of work must be done
in carrying a unit charge from infinity to any point » meters from the charge Q.

A convenient method to express the potential without selecting a specific zero
reference entails identifying r, as» once again and letting O /4m ¢grp be a constant.
Then

0

- 47T601’

(15

and C; may be selected so that 7 = 0 at any desired value of ». We could also select
the zero reference indirectly by electingto let 1V be Vp at r = ro.

It should be noted that the potential difference between two pointsis not afunc-
tion of Cj.

Equations (14) and (15) represent the potential field of a point charge. The po-
tential isascalar field and does not involve any unit vectors.

We now define an equipotential surface asasurface composed of all those points
having the same value of potential. All field lines would be perpendicular to such a
surface at the points where they intersect it. Therefore, no work isinvolved in moving
a unit charge around on an equipotential surface. The equipotential surfaces in the
potential field of apoint charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it
is an inverse-distance field, whereas the electric field intensity was found to be an
inverse-square-law function. A similar result occurs for the gravitational force field
of a point mass (inverse-square law) and the gravitational potential field (inverse
distance). The gravitational force exerted by the earth on an object one million miles
from it is four times that exerted on the same object two million miles away. The
kinetic energy given to a freely falling object starting from the end of the universe
with zero velocity, however, is only twice as much at one million milesasitisat two
million miles.

D4.5. A 15-nC point chargeisat theoriginin free space. Calculate V1 if point
Pyislocated at Pi(—2,3, —1) and (a) V = 0at (6,5, 4); (b) V = 0 at infinity;
(c)V=5Va(20,4).

Ans. 20.67V; 36.0V; 10.89V

i)
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive
charge from the zero reference to the point, and we have suspected that thiswork, and
hence the potential, is independent of the path taken. If it were not, potential would
not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field
of the single point charge for which we showed, in Section 4.4, the independence
with regard to the path, noting that the field is linear with respect to charge so that
superpositionisapplicable. It will then follow that the potential of asystem of charges
has a value at any point which is independent of the path taken in carrying the test
charge to that point.

Thus the potential field of a single point charge, which we shall identify as O;
and locate at r1, involves only the distance |r — ry| from Q; to the point at r where
we are establishing the value of the potential. For azero reference at infinity, we have

01

V)= ————
(l') 47'[60|I‘ — l'1|

The potential arising from two charges, Q1 at r; and Q> a ry, isafunction only of
Ir — r1| and |r — ry|, the distances from Q; and Q- to thefield point, respectively.

01 0>

V =
) A eglr — 1| + A €glr — 1o|

Continuing to add charges, we find that the potentia arising from » point chargesis

=Yy _On (16)

= Ameolr — 1y

If each point charge is now represented as a small element of a continuous volume
charge distribution p, Av, then

py(ri)Avy pu(r2)Avy Pu(rn)Av,
V(r) = ey VAT
Ameglr —ri|  dmep|r —ro| A eglr — 1|

As we allow the number of elements to become infinite, we obtain the integral
expression

V(r):/ M a7

o 4megr — 1|

We have come quite adistance from the potential field of the single point charge,
and it might be helpful to examine Eq. (17) and refresh oursel ves as to the meaning of
each term. The potential 7 (r) is determined with respect to azero reference potential
at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge
density p, (r') and differential volume element dv’ combine to represent adifferential
amount of charge p, (r') dv’ located at r’. The distance |r — 1’| is that distance from
the source point to the field point. The integral isamultiple (volume) integral.

If the charge distribution takes the form of aline charge or a surface charge, the
integration is along the line or over the surface:

[ p)dL

0= | e e e
[ _ps(e)ds

0= [ e e

Themost general expressionfor potential i sobtained by combining Egs. (16)—(19).

Theseintegral expressionsfor potential in terms of the charge distribution should
be compared with similar expressions for the electric field intensity, such as Eq. (15)
in Section 2.3:

E(r) :/ o(@)dv r—r

o 4réolr — 1’2 |r — |

The potential again is inverse distance, and the electric field intensity, inverse-
square law. The latter, of course, is also avector field.

Toillustrate the use of one of these potential integrals, wewill find  on thez axisfor
auniform line charge p, inthe form of aring, p = a, inthez = 0 plane, as shown
in Figure 4.3.

Solution. \Working with Eq. (18), wehavedL’ = ad¢’,r = za., ¥’ = aa,, |[r—r'| =

Ja? +z2, and

Arega? + 22 2ega? + 22

2 /
d
V:/ prado pra
0
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For a zero reference at infinity, then:

1. Thepotential arising from a single point charge is the work donein carrying a
unit positive charge from infinity to the point at which we desire the potential,
and the work isindependent of the path chosen between those two points.

2. Thepotential field in the presence of anumber of point chargesis the sum of
the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity to
the point in question along any path we choose.
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¢(0,0,z2)

[r—1v| =VaZ+22

Figure 4.3 The potential field of a ring of uniform line
charge density is easily obtained from V = [ p, (r')dL’/
(Ameolr —1)).

In other words, the expression for potential (zero reference at infinity),

A
VA:—/ E.-dL

or potential difference,
A
n3=n—w=—/1ya
B

is not dependent on the path chosen for the line integral, regardless of the source of
theE field.

This result is often stated concisely by recognizing that no work is done in
carrying the unit charge around any closed path, or

fEdL:O (20)

A small circleis placed on the integral sign to indicate the closed nature of the
path. This symbol aso appeared in the formulation of Gauss's law, where a closed
surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday
demonstrated it wasincomplete when time-varying magnetic fiel dswere present. One
of Maxwell’s greatest contributions to electromagnetic theory was in showing that a
time-varying electric field produces amagnetic field, and therefore we should expect
to find later that Eq. (20) is not correct when either E or the magnetic field varies
with time.

Restricting our attention to the static case where E does not change with time,
consider the dc circuit shown in Figure 4.4. Two points, 4 and B, are marked, and
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mf@sz}

L4
B
Figure 4.4 A simple dc-circuit problem that must be

solved by applying ¢ E - dL = 0 in the form of Kirchhoff's
voltage law.

(20) states that no work isinvolved in carrying a unit charge from 4 through R, and
R3to B and back to 4 through R, or that the sum of the potential differences around
any closed path is zero.

Equation (20) istherefore just a more general form of Kirchhoff’s circuital law
for voltages, more general in that we can apply it to any region where an electric
field exists and we are not restricted to a conventional circuit composed of wires,
resistances, and batteries. Equation (20) must be amended before we can apply it to
time-varying fields.

Any field that satisfies an equation of the form of Eqg. (20), (i.e., where the closed
lineintegral of thefield iszero) issaidto beaconservative fiel . Thenamearisesfrom
the fact that no work is done (or that energy is conserved) around a closed path. The
gravitational field is also conservative, for any energy expended in moving (raising)
an object against the field is recovered exactly when the object is returned (lowered)
toitsoriginal position. A nonconservative gravitational field could solve our energy
problems forever.

Given anonconservative field, it is of course possible that the line integral may
be zero for certain closed paths. For example, consider theforcefield, F = sinmp ay.
Around acircular path of radius p = p1, we havedL = p d¢ a,, and

27 21
%F'dL: / Sinnpla(z,'pld(bad,:/ p1SiNTPLdP
0 0

= 27 p1SINTP1

Theintegral iszeroif p1 = 1, 2, 3, ..., etc,, butitisnot zerofor other valuesof p1,
or for most other closed paths, and the given field is not conservative. A conservative
field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential
at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the
linep =25m,z = 0; (b) point charge of 18 nC at (1, 2, —1); (¢) 12 nC/m on
theliney =25,z=0,-1.0 < x < 1.0.

Ans. 529V; 43.2V; 66.3V
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4.6 POTENTIAL GRADIENT

Wenow havetwo methods of determining potential, onedirectly fromtheelectricfield
intensity by means of aline integral, and another from the basic charge distribution
itself by avolume integral. Neither method is very helpful in determining the fields
in most practical problems, however, for aswe will seelater, neither the electric field
intensity nor the charge distribution is very often known. Preliminary information is
much more apt to consist of a description of two equipotential surfaces, such as the
statement that we have two parallel conductors of circular cross section at potentials
of 100 and —100 V. Perhaps we wish to find the capacitance between the conductors,
or the charge and current distribution on the conductors from which losses may be
calculated.

These quantities may be easily obtained from the potentia field, and our im-
mediate goal will be a simple method of finding the electric field intensity from the
potential.

We already have the general line-integral relationship between these quantities,

V:—/E-dL (21)

but thisis much easier to use in the reverse direction: given E, find V.
However, Eq. (21) may be applied to a very short element of length AL along
which E is essentially constant, leading to an incremental potential difference AV,

AV = —E-AL (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and
V' both change as we move from point to point. Equation (22) tells us to choose an
incremental vector element of length AL = AL a; and multiply its magnitude by

N

Figure 4.5 A vector incremental element of
length AL is shown making an angle of 6 with an
E field, indicated by its streamlines. The sources
of the field are not shown.
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the component of E in the direction of a; (one interpretation of the dot product) to
obtain the small potential difference between the final and initia points of AL.
If we designate the angle between AL and E as 6, then

AV = —EAL cosé

We now passto the limit and consider the derivatived V' /d L. To do this, we need
to show that ' may be interpreted as a function V(x, y, z). So far, V' is merely the
result of thelineintegral (21). If we assume aspecified starting point or zero reference
and then let our end point be (x, y, z), we know that the result of the integration isa
unique function of the end point (x, y, z) because E isaconservativefield. Therefore
V isasingle-valued function ¥ (x, y, z). We may then pass to the limit and obtain

dv
L= E cos6

In which direction should AL be placed to obtain a maximum value of AV'?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of AL. The magnitude AL is aso constant, and our
variable is a;, the unit vector showing the direction of AL. It is obvious that the
maximum positive increment of potential, A Vma, Will occur when cosé is —1, or
AL pointsin the direction opposite to E. For this condition,

av|
dL | ek

This little exercise shows us two characteristics of the relationship between E
and V' at any point:

1. The magnitude of the electric field intensity is given by the maximum value of
the rate of change of potential with distance.

2. Thismaximum valueis obtained when the direction of the distance increment is
oppositeto E or, in other words, the direction of E is opposite to the direction in
which the potential is increasing the most rapidly.

We now illustrate these rel ationshipsin terms of potential. Figure 4.6 isintended
to show the information we have been given about some potential field. It doesthisby
showing the equipotential surfaces (shown as lines in the two-dimensional sketch).
Wedesireinformation about theelectricfieldintensity at point P. Startingat P, welay
off asmall incremental distance AL in various directions, hunting for that direction
inwhich the potential is changing (increasing) the most rapidly. From the sketch, this
direction appearsto beleft and slightly upward. From our second characteristic above,
the electric field intensity is therefore oppositely directed, or to the right and slightly
downward at P. Its magnitude is given by dividing the small increase in potential by
the small element of length.

It seems likely that the direction in which the potentia is increasing the most
rapidly isperpendicular to the equipotentials (in thedirection of increasing potential),
and this is correct, for if AL is directed along an equipotential, AV = 0 by our
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+40 +30

+50
+20

+ 60

+70
+80
V=+90 >
Pe

Figure 4.6 A potential field is shown by its equipotential
surfaces. At any point the E field is normal to the
equipotential surface passing through that point and is
directed toward the more negative surfaces.

+10

definition of an equipotential surface. But then
AV =—E-AL=0

and asneither E nor AL iszero, E must be perpendicular to this AL or perpendicul ar
to the equipotentials.

Because the potential field information is more likely to be determined first, let
us describe the direction of AL, which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field intensity.
We do this by letting a) be a unit vector normal to the equipotential surface and
directed toward the higher potentials. The electric field intensity is then expressed in
terms of the potential,

LA (23)
dL | o
which shows that the magnitude of E is given by the maximum space rate of change
of V' and the direction of E is normal to the equipotential surface (in the direction of
decreasing potential).
Because d V' /d L |max Occurs when AL isin the direction of ay, we may remind
ourselves of thisfact by letting

E =

dVv _drv
dL |y AN
and
v
E= —ﬁa]\] (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of
finding the electric field intensity from the potential. Both are descriptive of ageneral
procedure, and wedo not intend to usethem directly to obtain quantitativeinformation.
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This procedure leading from V7 to E is not unique to this pair of quantities, however,
but has appeared as the rel ationship between a scalar and a vector field in hydraulics,
thermodynamics, and magnetics, and indeed in almost every field to which vector
analysis has been applied.

The operation on V' by which —E is obtained is known as the gradient, and the
gradient of ascalar field T is defined as

: dT
Gradientof 7' = grad 7' = WaN (25)

where ay is a unit vector normal to the equipotential surfaces, and that normal is
chosen, which pointsin the direction of increasing values of T.
Using this new term, we now may write the relationship between J and E as

@

Because we have shown that V" is aunique function of x, y, and z, we may take
itstotal differential

v av v
i+ T ay+ a
ax Tt

dV =
But we also have
dV =—-E-dL=—E,dx — E,dy — E.dz

Because both expressions are true for any dx, dy, and dz, then

oV
E.=——
ox
oV
E,=——
ay
oV
E,=———
0z

These results may be combined vectorialy to yield

(27)

E av o av o av
=—|—a,+—a,+ —a,
dax ay 7 oz

and comparing Egs. (26) and (27) provides uswith an expression which may be used
to evaluate the gradient in rectangular coordinates,

v v oV
radV = —a, + — —a, 28
g 8xa+ayay+aza (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors
that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the
gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of
changeof ascalar quantity and the direction in which this maximum occurs, the vector
nature of the gradient should be self-evident.
The vector operator
a

\% + 0 + 0
= —a —a —a,
ax " ay T oz

may be used formally as an operator on ascalar, 7, VT, producing
oT aT oT

VT = —a, + —a, + —a,
ax 0 dy Y oz

VT = gradT

Thisallows us to use avery compact expressionto relate E and V',

E=—v/ | (29)

The gradient may be expressed in terms of partial derivativesin other coordinate
systems through the application of its definition Eq. (25). These expressions are
derivedin Appendix A and repeated herefor conveniencewhen dealing with problems
having cylindrical or spherical symmetry. They also appear inside the back cover.

from which we see that

aV aV aV
VV = —a,+ —a,+ —a, (rectangular) (30)
dx ay a0z
av 10V av
VV = — - — —a, lindrical 31
aV 10V 1 o9V
VV =—a,+- — —_— herical 32
r T 3™ rang ag e (SPherica) (32)

Notethat the denominator of each term hastheform of one of the componentsof dL in
that coordinate system, except that partial differentials replace ordinary differentials;
for example, » Sin6 d¢ becomesr sinf d¢.

We now illustrate the gradient concept with an example.

Given the potential field, V' = 2x?y — 5z, and a point P(—4, 3, 6), we wish to find
several numerical values at point P: the potential V', the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,.

Solution. The potentia at P(—4, 5, 6) is
Vp = 2(—4)%(3) — 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,
E = —VV = —4xya, — 2x%a, + 5a, V/m
Thevalueof E at point P is
Ep = 48a, — 32a, + 5a. V/m

and

|Ep| = /482 + (—32)2+ 52 = 57.9V/m
Thedirection of E at P isgiven by the unit vector
ag p = (48a, — 32a, + 5a.)/57.9
= 0.829a, — 0.553a, + 0.086a.
If we assume these fields exist in free space, then
D = ¢E = —35.4xya, — 17.71x%a, + 44.3a, pC/m®

Finally, we may usethe divergence rel ationship to find the volume charge density that
is the source of the given potential field,

py = VD = —354y pC/m®
At P, p, = —106.2 pC/mq.

D4.7. A portion of atwo-dimensional (£, = 0) potentia field is shown in
Figure4.7. Thegrid linesare 1 mm apart in the actual field. Determine approx-
imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. —1075a, V/m; —600a, — 700a, V/m; —500a, — 650a, V/m

D4.8. Giventhepotential fieldincylindrical coordinates, V' = > 0 1,0 cosoV,
Z

and point P at p = 3m, ¢ = 60°,z = 2m, find values a P for (a) V; (b) E;

(c) E;(d) dV/dN; (e) an; (f) pv in free space.

Ans. 30.0V; —10.00a, + 17.3a,4 + 24.0a.V/m; 31.2V/m; 31.2V/m; 0.32a,, — 0.55a,,
— 0.77a,; —234 pC/m3
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4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they
form the basis for the behavior of dielectric materialsin electric fields, as discussed
in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of
Chapter 5. Moreover, this development will serve to illustrate the importance of the
potential concept presented in this chapter.

An electric dipole, or simply adipole, is the name given to two point charges of
equal magnitude and opposite sign, separated by a distance that is small compared to
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110y

108y

106 V

102V

Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.
Thedipoleisshown in Figure 4.84. The distant point P isdescribed by the spherical
coordinatesr, 6, and ¢ = 90°, in view of the azimuthal symmetry. The positive and
negative point charges have separation d and rectangular coordinates (0, 0, d) and
(0,0, —1d), respectively.

So much for the geometry. What would we do next? Should we find the total
electric field intensity by adding the known fields of each point charge? Would it be
easier to find the total potential field first? In either case, having found one, we will
find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in
spherical coordinates (symmetry shows £ is zero), and then the only way to find V7
from E isby use of thelineintegral. Thislast step includes establishing asuitable zero
reference for potential, since the line integral gives us only the potential difference
between the two points at the ends of the integral path.

On the other hand, the determination of ¥ first is a much simpler problem.
This is because we find the potential as a function of position by simply adding the
scalar potentials from the two charges. The position-dependent vector magnitude and
direction of E are subsequently evaluated with relative ease by taking the negative
gradient of V.

Choosing this simpler method, we let the distances from Q and —Q to P be R;
and R, respectively, and write the total potential as

0 (1 1\ 0O R —-R
_47'[60 R]_ R2 _47t60 R1R2
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(a)

R, To distant
point P

(b

Figure 4.8 (a) The geometry of the problem of an
electric dipole. The dipole moment p = Qd is in the a,
direction. (b) For a distant point P, Ry is essentially
parallel to R», and we find that R, — Ry = dcos#.

Note that the plane z = 0, midway between the two point charges, is the locus of
points for which Ry = R», and is therefore at zero potential, as are all points at

For adistant point, R; = R, and the R; R, product in the denominator may be
replaced by 2. The approximation may not be made in the numerator, however,
without obtaining the trivial answer that the potential field approaches zero as we go
very far away from the dipole. Coming back alittle closer to the dipole, we see from
Figure 4.8b that R, — R1 may be approximated very easily if R, and R, are assumed
to be paralld,

R> — R1=d cosf
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The final result isthen

d cos6
V- 0

=— 33
47'[60}’2 ( )

Again, we note that the planez = 0 (6§ = 90°) is at zero potential.
Using the gradient relationship in spherical coordinates,

E=-V/V = 8Va —i—laVa—i- 1 8Va
- T\ T T 90 T rsing 9 ¢

we obtain

(34)

EZ_(_Qdcos@ Qdsing )

a, — Ay
2meqr3 Amreqr3

or

0d

E =
Areqr3

(2cosf a, +sinb ay) (35)

These are the desired distant fields of the dipole, obtained with a very small
amount of work. Any student who has several hours to spend may try to work the
problem in the reverse direction—the authors consider the process too long and de-
tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that
0d/(4meg) = 1, and then cos® = V2. The colored lines in Figure 4.9 indicate
equipotentials for which ' = 0, 40.2, 40.4, +0.6, +-0.8, and +1, as indicated.
The dipole axis is vertical, with the positive charge on the top. The streamlines for
the electric field are obtained by applying the methods of Section 2.6 in spherical
coordinates,

Ey, rdb siné

E,  dr = 2cosf

or
d
T 2cot6 do
r
from which we obtain
r=Cpsn?0
The black streamlines shown in Figure4.9 arefor C; = 1, 1.5, 2, and 2.5.

The potential field of the dipole, Eq. (33), may be simplified by making use of
the dipole moment. We first identify the vector length directed from —Q to +Q asd
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Figure 4.9 The electrostatic field of a point dipole with its moment in the a,
direction. Six equipotential surfaces are labeled with relative values of V.

and then define the dipole moment as Qd and assign it the symbol p. Thus
(%)
Theunitsof p areC - m.

Because d - a, = d cosé, we then have

p-a,
- 47'[60}"2 (37)

Thisresult may be generalized as

1 _—
r—r (38)

- 4t eglr — r/|2p. r —r'|
where r locates the field point P, and r’ determines the dipole center. Equation (38)
is independent of any coordinate system.
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The dipole moment p will appear again when we discuss dielectric materials.
Since it is equal to the product of the charge and the separation, neither the dipole
moment nor the potential will change as Q increases and d decreases, provided the
product remains constant. The limiting case of apoint dipole is achieved when we let
d approach zero and Q approach infinity such that the product p isfinite.

Turning our attention to the resultant fields, it is interesting to note that the
potential field is now proportiona to the inverse square of the distance, and the
electric field intensity is proportional to the inverse cube of the distance from
the dipole. Each field falls off faster than the corresponding field for the point charge,
but this is no more than we should expect because the opposite charges appear to
be closer together at greater distances and to act more like a single point charge
of zero Coulombs.

Symmetrical arrangements of larger numbers of point charges produce fields
proportional totheinverseof higher and higher powersof . Thesechargedistributions
arecalledmultipoles, andthey areused ininfinite seriesto approximate moreunwiel dy
charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment
p=3a,—2a,+a,nC.- m.(a) Find 7V a P4(2,3,4). (b) Find V" at r = 2.5,
6 = 30° ¢ = 40°.

Ans. 0.23V; 197V

D4.10. A dipole of moment p = 6a, nC - mis located at the origin in free
space. (a) Find V at P(r = 4,60 = 20°, ¢ = 0°). (b) FiINdE at P.

Ans. 3.17V; 1.58a, 4+ 0.29a9 V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or en-
ergy expended, in moving a point charge around in an electric field, and now we
must tie up the loose ends of that discussion by tracing the energy flow one step
further.

Bringing a positive charge from infinity into the field of another positive charge
requires work, the work being done by the external source moving the charge. Let
us imagine that the external source carries the charge up to a point near the fixed
charge and then holdsit there. Energy must be conserved, and the energy expended in
bringing this charge into position now represents potential energy, for if the external
sourcereleased its hold on the charge, it would accel erate away from the fixed charge,
acquiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in asystem of charges, we must find
the work done by an external sourcein positioning the charges.
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Wemay start by visualizing anempty universe. Bringing acharge Q; frominfinity
to any position requires no work, for there is no field present.? The positioning of
0, at apoint in the field of Q1 requires an amount of work given by the product of
the charge O, and the potential at that point due to Q1. We represent this potential
as 1, 1, where the first subscript indicates the location and the second subscript the
source. That is, V51 isthe potential at the location of O, dueto Q1. Then

Work to position O, = Q2V21

Similarly, we may express the work required to position each additional charge
inthefield of all those already present:

Work to position Q3 = Q3V31+ 03Va2
Work to position Q4 = Q4Va1+ QaVaz+ QaVas
and so forth. The total work is obtained by adding each contribution:
Total positioning work = potential energy of field
=Wg = 02Va1+ Q03Va1+ 03Va2+ QaVa1

+O04Vao+ OaVaz+--- (39)
Noting the form of arepresentative term in the preceding equation,
O3V31= 03 Q1 Qs

4megRy3 = 4megR3
where R13 and R3; each represent the scalar distance between O, and Oz, we seethat
it might equally well have been written as Q171 3. If each term of the total energy
expression is replaced by its equal, we have

Weg = 01Vi2+ O1Viz+ Q2Vaz+ O1Via+ Q2Voa+ Q3Vaa+---  (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify the
result alittle:

2Wg = 01(Vi2+ Vig+ Via+ )
+ Qo(Vor+ Vaz+ Vos+---)
+ Q3(Va1+ Vao+ Vaa+---)
—I— e

Each sum of potentialsin parenthesesis the combined potential dueto all the charges
except for the charge at the point where this combined potential is being found. In
other words,

Vie+Viz+Viat--=hn

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the
point charge in the first place! How much energy is required to bring two half-charges into coincidence
to make a unit charge?
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1 is the potential at the location of Q; due to the presence of Q», O3, ... . We
therefore have

m=N
Wg=32(01V1+ Q2Vo+ Q3Va+---) =13 Z OnVn (41)
m=1

In order to obtain an expression for the energy stored in aregion of continuous
charge distribution, each chargeisreplaced by p,dv, and the summation becomes an
integral,

Wg = %/VOI oV dv (42)

Equations (41) and (42) allow us to find the total potential energy present in a
system of point charges or distributed volume charge density. Similar expressions
may be easily written in terms of line or surface charge density. Usually we prefer
to use EQ. (42) and let it represent all the various types of charge which may have to
be considered. This may always be done by considering point charges, line charge
density, or surface charge density to be continuous distributions of volume charge
density over very small regions. We will illustrate such a procedure with an example
shortly.

Before we undertake any interpretation of this result, we should consider afew
lines of more difficult vector analysis and obtain an expression equivalent to Eq. (42)
but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first
equation, replace p, by itsequal V - D and make use of avector identity which istrue
for any scalar function J and any vector function D,

V.-(VD)=V(V-D)+D-(VV) (43)

This may be proved readily by expansion in rectangular coordinates. We then have,
successively,

WEZ%/ ,odev=%/ (V-D)Vdv
vol vol

= %/ [V-(VD)—=D-(VV)]dv
vol

Using the divergence theorem from Chapter 3, thefirst volumeintegral of thelast
equation ischanged into aclosed surfaceintegral, where the closed surface surrounds
the volume considered. This volume, first appearing in Eq. (42), must contain every
charge, and there can then be no charges outside of the volume. We may therefore
consider the volume as infinit in extent if we wish. We have

Wg = %%(VD)-dS— %/ D-(VV)dv
S vol

The surfaceintegral isequal to zero, for over this closed surface surrounding the
universe we see that V' is approaching zero at least as rapidly as 1/r (the charges
look like point charges from there), and D is approaching zero at least as rapidly as
1/r2. The integrand therefore approaches zero at |least as rapidly as 1/, while the
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differential area of the surface, looking more and more like a portion of a sphere,
is increasing only as »2. Consequently, in the limit as» — oo, the integrand and
the integral both approach zero. Substituting E = —V ¥ in the remaining volume
integral, we have our answer,

WE=%/ D.Edvz%f coE?dv (44)
vol vol

We may now use this last expression to calculate the energy stored in the elec-
trostatic field of a section of a coaxia cable or capacitor of length L. We found in
Section 3.3 that

a
D, = Ps
P
Hence,
a
E = ﬁap
€0p

where py is the surface charge density on the inner conductor, whose radius is a.

Thus,
21 La?02 b
Wg =32 // /eo 2pdpd¢dz—w|n—
€0 a

This same result may be obtained from Eq. (42). We choose the outer conductor
as our zero-potential reference, and the potential of the inner cylinder isthen

b
Va:—/Edp— /“ps apsln—
b b €op a

The surface charge density ps at p = a can beinterpreted asavol ume charge density
oy = ps/t, extending from p = a — %t top=a+ %t, where ¢t <« a. Theintegrand
in Eq. (42) is therefore zero everywhere between the cylinders (where the volume
charge density is zero), as well as at the outer cylinder (where the potential is zero).
Theintegration istherefore performed only within the thin cylindrical shell at p = «,

a+t/2
Wgz%/ o VdV =3 // / & &In pd,odd)dz
vol a—t/2

from which

252In(b
w, = CpsinG/a)
€0

once again.

This expression takes on a more familiar form if we recognize the total charge
on theinner conductor as O = 2ralpg. Combining thiswith the potential difference
between the cylinders, V,, we see that

We =30V,

which should be familiar as the energy stored in a capacitor.
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The question of where the energy is stored in an electric field has not yet been
answered. Potential energy can never be pinned down precisely in terms of physical
location. Someoneliftsapencil, and the pencil acquirespotential energy. Istheenergy
stored in the molecules of the pencil, in the gravitational field between the pencil and
the earth, or in some obscure place? Is the energy in a capacitor stored in the charges
themselves, in the field, or where? No one can offer any proof for his or her own
private opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makesit easy to believethat the energy of an electric
field or a charge distribution is stored in the field itself, for if we take Eq. (44), an
exact and rigorously correct expression,

W%:%/ILEW
vol
and write it on adifferential basis,

dWg = 3D-Edv

or
dWg
dv

we obtain aquantity %D - E, which hasthe dimensions of an energy density, or joules
per cubic meter. We know that if weintegrate thisenergy density over the entirefield-
containing volume, the result is truly the total energy present, but we have no more
justification for saying that the energy stored in each differential volume element dv
is %D - E dv than we have for looking at Eq. (42) and saying that the stored energy is
% oy Vdv. The interpretation afforded by Eq. (45), however, is a convenient one, and
we will useit until proved wrong.

=1iD-E (45)

D4.11. Find the energy stored in free space for the region 2 mm < 505 3
mm, 0 < 6 < 90°,0 < ¢ < 90°, given the potentia field V' =: (a) — V;
r

300 coso
(b) —2 V.

Ans. 46.4 13, 36.7J

REFERENCES

1. Attwood, S. S. Electric and Magnetic Fields. 3d ed. New York: John Wiley & Sons,
1949. There are alarge number of well-drawn field maps of various charge distributions,
including the dipole field. Vector analysisis not used.

2. Skilling, H. H. (See Suggested References for Chapter 3.) Gradient is described on
pp. 19-21.

3. Thomas, G. B., J., and R. L. Finney. (See Suggested References for Chapter 1.) The
directional derivative and the gradient are presented on pp. 823-30.



CHAPTER 4 Energy and Potential 105

CHAPTER 4 PROBLEMS @
. | Quizzes |
4.1{ Thevalueof Eat P(p = 2,¢ = 40°, z = 3) isgiven as E = 100a,,

421

431

4.4/

451

4.6

4.71

4.8

4910

— 200a, + 300a, V/m. Determine the incremental work required to move a
20 nC charge adistance of 6 um: (a) in the direction of a,; (b) in the
direction of ag4; (c) in the direction of a.; (<) in the direction of E; (e) in the
direction of G = 2a, — 3a, + 4a..

A positive point charge of magnitude ¢ lies at the origin. Derive an
expression for the incremental work done in moving a second point charge ¢»
through a distance dx from the starting position (x, y, z), in the direction

of —a,.

If E = 120a,V/m, find the incremental amount of work done in moving
a50-1C charge adistance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)
0(2, 1, 4) toward P(1, 2, 3).

An electric field in free space isgiven by E = xa, + ya, +za. V/m. Find
the work done in moving a 1-C charge through thisfield (a) from (1, 1, 1)
to (0, 0, 0); (b) from (p = 2, ¢ = 0) to (p = 2, ¢ = 90°); (¢) from (» = 10,
0 = 6p) to (r = 10, 60 = 6y + 180°).

Compute the value of ff G-dL for G = 2ya, with 4(1, -1, 2) and

P(2, 1, 2) using the path (a) straight-line segments A4(1, —1, 2) to B(1, 1, 2)
to P(2, 1, 2); (b) straight-line segments 4(1, —1, 2) to C(2, —1, 2) to
P(2,1,2).

Anelectricfield in free spaceisgiven asE = x 4, + 4z 4, + 4y 4.. Given
V(1,1,1) =10V, determine V' (3, 3, 3).

Let G = 3xy2a, + 2za, Given aninitial point P(2, 1, 1) and afinal point
0(4,3,1), find [ G- dL using the path (a) straight line: y = x — 1,
z =1;(b) parabola: 6y = x>+ 2,z = 1.

GivenE = —xa, + ya,, (a) find the work involved in moving a unit positive
charge on acircular arc, the circle centered at the origin, from x = a to

x =y = a//2; (b) verify that the work done in moving the charge around
thefull circlefrom x = a is zero.

A uniform surface charge density of 20 nC/m? is present on the spherical
surfacer = 0.6 cm in free space. («) Find the absolute potential at

Pl =1cm,0 = 25°, ¢ = 50°). (b) Find V45, given points A(r = 2 cm,
0 =30° ¢ =60°) and B(r = 3cm, 6 = 45°, ¢ = 90°).

4100 A sphere of radius a carries a surface charge density of p,0 C/m?. (a) Find

the absolute potentia at the sphere surface. (b) A grounded conducting shell
of radius b where b > a isnow positioned around the charged sphere. What
isthe potential at the inner sphere surface in this case?

4.11§ Let auniform surface charge density of 5 nC/m? be present at thez = 0

plane, auniform line charge density of 8 nC/m belocated at x = 0, z = 4,
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and a point charge of 2 4C be present at P(2, 0, 0). If ¥ = 0at M(0, 0, 5),
find V at N(1, 2, 3).

4.12 1 In spherical coordinates, E = 2r/(r2 + a?)?a, V/m. Find the potential at any
point, using the reference (@) V = O at infinity; (b)) V = 0atr = 0;
(c)V =100V atr = a.

4.13 | Threeidentical point charges of 4 pC each are located at the corners of an
equilateral triangle 0.5 mm on a sidein free space. How much work must be
done to move one charge to a point equidistant from the other two and on the
line joining them?

4.141 Given the dectricfield E = (v + Da, + (x — 1)a, + 2a. find the potential
difference between the points («) (2, —2, —1) and (0, 0, 0); (») (3, 2, —1) and
(-2, -3,4).

4.15 | Two uniform line charges, 8 nC/m each, arelocatedat x = 1,z = 2, and a
x = =1,y = 2infreespace. If the potential at the originis 100V, find V" at
P(4,1,3).

4.161 A spherically symmetric charge distribution in free space (with 0 < » < o0)
isknown to have a potential function V' (r) = Voa?/r?, where V and a are
constants. (a) Find the electric field intensity. (b) Find the volume charge
density. (¢) Find the charge contained inside radius a. (¢) Find the total
energy stored in the charge (or equivalently, in its electric field).

4.17 1 Uniform surface charge densities of 6 and 2 nC/m? are present at p = 2 and
6 cm, respectively, in free space. Assume V' = 0 at p = 4 cm, and calculate
Vat(a)p=5cm;(h)p=7cm.

4.18 1 Find the potential at the origin produced by aline charge p; = kx/(x? + a?)
extending along the x axisfrom x = a to +o0, wherea > 0. Assume a zero
reference at infinity.

4.19 1 Theannular surface 1 cm < o < 3cm, z = 0, carriesthe nonuniform surface
charge density p, = 5p nC/m?. Find 7 at P(0, 0, 2 cm) if ¥ = 0 at infinity.

4.20§ 1n acertain medium, the electric potential is given by

V(x)= Ll (1—e™)
aep
where pg and a are constants. («) Find the electric field intensity, E. (») Find
the potential difference between the pointsx = d and x = 0. (¢) If the
medium permittivity is given by e(x) = €ge®*, find the electric flux density,
D, and the volume charge density, p,, in the region. (d) Find the stored
energy intheregion(0 <x <d),0<y<1),(0<z<1).

4211 Let ¥ = 2xy%2® + 3In(x2 + 22 + 3z2) V in free space. Evaluate each of the
following quantitiesat P(3, 2, —1) (a) V; (b) |V; (c) E; (d) |E|; () ay;
(/)D.
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4221 A line charge of infinite length lies along the z axis and carries auniform
linear charge density of o, C/m. A perfectly conducting cylindrical shell,
whose axisisthe z axis, surrounds the line charge. The cylinder (of radius b),
isat ground potential. Under these conditions, the potential function inside
the cylinder (p < b) isgiven by

V(o) = k = 50— Inp)
JT€Q
where k isaconstant. («) Find & in terms of given or known parameters.
(b) Find the electric field strength, E, for p < b. (¢) Find the electric field

strength, E, for p > b. (d) Find the stored energy in the electric field per unit
length in the z direction within the volume defined by p > a, wherea < b.

4.23 | 1t isknown that the potential is given as 7 = 80p%6 V. Assuming free space
conditions, find. («) E; (b) the volume charge density at p = 0.5 m; (¢) the
total charge lying within the closed surface p = 0.6,0 < z < 1.

4.241 A certain spherically symmetric charge configuration in free space produces
an electric field given in spherical coordinates by

E() = { (por?)/(1000) a, V/m  (r < 10)
(100p0)/(eor?) a, V/m  (r = 10)

where pg isaconstant. () Find the charge density as a function of position.
(b) Find the absolute potential as afunction of position in the two regions,

r < 10andr > 10. (¢) Check your result of part b by using the gradient.

(d) Find the stored energy in the charge by an integral of the form of Eq. (43).
(e) Find the stored energy in the field by an integral of the form of Eqg. (45).

4.2510 Within thecylinder p = 2,0 < z < 1, the potentia isgiven by V' = 100 +
50p + 150p singV. () Find V, E, D, and p, a P(1, 60°, 0.5) in free space.
(b) How much charge lies within the cylinder?

4.26 | Let us assume that we have avery thin, square, imperfectly conducting plate
2mon aside, located in the plane z = 0 with one corner at the origin such
that it lies entirely within the first quadrant. The potential at any point in
theplateisgivenas V' = —e™* siny. (a) An electron enters the plate at
x =0, y = w/3with zero initia velocity; in what direction isitsinitial
movement? (b) Because of collisions with the particlesin the plate, the
electron achieves arelatively low velocity and little acceleration (the work
that the field does on it is converted largely into heat). The electron therefore
moves approximately along a streamline. Where does it leave the plate and in
what direction isit moving at the time?

4.278 Two point charges, 1 nC at (0, 0,0.1) and —1 nC at (0, 0, —0.1), arein free
space. (a) Calculate V at P(0.3, 0, 0.4). (b) Calculate [E| a P. (c) Now treat
the two charges as adipole at the origin and find 7 at P.

4.28 | Usethe eectric field intensity of the dipole [Section 4.7, Eq. (35)] to find the
differencein potential between points at 6, and 6,, each point having the
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same r and ¢ coordinates. Under what conditions does the answer agree with
Eq. (33), for the potential at 6,?

4291 A dipole having amoment p = 3a, — 5a, + 10a. nC - mislocated at
0(1, 2, —4) infreespace. Find V at P(2, 3, 4).

4300 A di pole for which p = 10e¢pa, C - mislocated at the origin. What isthe
equation of the surface on which E, = 0 but E # 0?

4311 A potential field in free spaceis expressed as 1 = 20/(xyz) V. (a) Find the
total energy stored withinthecube 1 < x, y, z < 2. (b) What value would be
obtained by assuming a uniform energy density equal to the value at the
center of the cube?

4321 (a) Using Eq. (35), find the energy stored in the dipole field in the region
r > a.(b) Why can we not let a approach zero asalimit?

4330 A copper sphere of radius 4 cm carries a uniformly distributed total charge
of 5 uCinfree space. (a) Use Gauss's law to find D external to the sphere.
(b) Calculate the total energy stored in the electrostatic field. (¢) Use Wy =
0?/(2C) to calculate the capacitance of the isolated sphere.

4341 A sphere of radius a contains volume charge of uniform density po C/mq.
Find the total stored energy by applying («) Eq. (42); (b) Eq. (44).

4.350 Four0.8nC point charges are located in free space at the corners of a square
4 cmon aside. (a) Find the total potential energy stored. (b) A fifth 0.8 nC
chargeisinstalled at the center of the square. Again find the total stored
energy.

4.36 ! surface charge of uniform density p, lies on a spherical shell of radius b,
centered at the origin in free space. (a) Find the absolute potential
everywhere, with zero reference at infinity. (b) Find the stored energy in the
sphere by considering the charge density and the potential ina
two-dimensional version of Eq. (42). (¢) Find the stored energy in the electric
field and show that the results of parts (b) and (c) are identical.
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Conductors and
Dielectrics

with which an engineer must work. In the first part of the chapter, we consider

conducting material sby describing the parametersthat relate current to an applied
electricfield. Thisleadsto ageneral definition of Ohm’slaw. Wethen devel op methods
of evaluating resistances of conductorsin afew simple geometric forms. Conditions
that must be met at a conducting boundary are obtained next, and this knowledge
leads to a discussion of the method of images. The properties of semiconductors are
described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.
Such materialsdiffer from conductorsin that ideally, thereisno free chargethat can be
transported within them to produce conduction current. Instead, all chargeis confined
to molecular or lattice sitesby coulomb forces. An applied electric field has the effect
of displacing the charges slightly, leading to the formation of ensembles of electric
dipoles. The extent to which this occurs is measured by the relative permittivity, or
dielectric constant. Polarization of the medium may modify the electric field, whose
magnitude and direction may differ from the values it would have in a different
medium or in free space. Boundary conditions for the fields at interfaces between
dielectrics are devel oped to evaluate these differences.

It should be noted that most materialswill possess both dielectric and conductive
properties; that is, amaterial considered a dielectric may be slightly conductive, and
a materia that is mostly conductive may be dlightly polarizable. These departures
from the ideal cases lead to some interesting behavior, particularly as to the effects
on electromagnetic wave propagation, aswe will see later. B

I n this chapter, we apply the methods we have learned to some of the materials

109
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5.1 CURRENT AND CURRENT DENSITY

Electric chargesin motion constitute a current. The unit of current isthe ampere (A),
defined as arate of movement of charge passing a given reference point (or crossing
agiven reference plane) of one coulomb per second. Current is symbolized by 7, and
therefore

dQ
I = 7 @
Current is thus defined as the motion of positive charges, even though conduction in
metal s takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather
than within a large region, and we find the concept of current density, measured in
amperesper squaremeter (A/m?), moreuseful. Current density isavector! represented
by J.

The increment of current A7 crossing an incremental surface AS normal to the
current density is

Al = JyAS

and in the case where the current density is not perpendicular to the surface,
Al =J-AS

Total current is obtained by integrating,

I=/SJ-dS o)

Current density may berelated to the vel ocity of volume chargedensity at apoint.
Consider the element of charge AQ = p,Av = p, AS AL, asshowninFigure5.1a.
To simplify the explanation, assume that the charge element is oriented with its edges
parallel to the coordinate axes and that it has only an x component of velocity. In
thetimeinterval Az, the element of charge has moved a distance Ax, asindicated in
Figure5.15h. We have thereforemoved acharge A QO = p, AS Ax through areference
planeperpendicular tothedirection of motioninatimeincrement Az, and theresulting
current is

AQ Ax
Al =—— =p, AS—
At At
Aswe take the limit with respect to time, we have

Al = p, ASv,

1 Current isnot avector, for it is easy to visualize a problem in which atotal current 7 in a conductor of
nonuniform cross section (such as a sphere) may have adifferent direction at each point of agiven
cross section. Current in an exceedingly fine wire, or afilamentar current, isoccasionally defined asa
vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to
the current.
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AQ=p,Av

\ NG

/ < / o

AS AL
(@) (b)

Figure 5.1 Anincrement of charge, AQ = p,AS AL, which moves a distance Ax in
atime At, produces a component of current density in the limit of Jy = p, vx.

where v, represents the x component of the velocity v.? In terms of current density,
we find

Jx = pu vy
and in general

J=pv ©)

This last result shows clearly that charge in motion constitutes a current. We
call thistype of current a convection current, and J or p,v isthe convection current
density. Note that the convection current density isrelated linearly to charge density
aswell asto velocity. The mass rate of flow of cars (cars per square foot per second)
in the Holland Tunnel could be increased either by raising the density of cars per
cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10p2za, — 4p cos® ¢ a, MA/m?:
(a) find the current density at P(p = 3, ¢ = 30°, z = 2); (b) determine the
total current flowing outward through the circular band p = 3,0 < ¢ < 27,
2<z<28.

Ans. 180a, — 925 mA/m?; 326 A

5.2 CONTINUITY OF CURRENT

Theintroduction of the concept of current islogically followed by adiscussion of the
conservation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as
avector v, acomponent v, or amagnitude |v|, whereas volume appears only in differential form as dv
or Av.
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amounts of positive and negative charge may be simultaneously created, obtained by
separation, or lost by recombination.

The continuity equation followsfrom this principle when we consider any region
bounded by a closed surface. The current through the closed surface is

szJodS
s

and this outward flo of positive charge must be balanced by a decrease of positive
charge (or perhaps an increase of negative charge) within the closed surface. If the
chargeinsidetheclosed surfaceisdenoted by Q;, thentherate of decreaseis—d Q; /dt
and the principle of conservation of charge requires

_ _ do;
l_jéJ-ds_ - 4)

It might bewell to answer here an often-asked question. “Isn’t thereasign error?
| thought 7 = dQ/dt.” The presence or absence of a negative sign depends on what
current and charge we consider. In circuit theory we usually associate the current flow
into one terminal of a capacitor with the time rate of increase of charge on that plate.
The current of (4), however, is an outward-flowin current.

Equation (4) is the integral form of the continuity equation; the differential, or
point, formisobtained by using the divergence theorem to change the surfaceintegral

into avolume integral:
fJ-dS:f (V-3)dv
N vol

We next represent the enclosed charge Q; by thevolumeintegral of the chargedensity,

d
(V-Jddv = ——/ oy dv
/vol dt vol

If weagreeto keep the surface constant, the derivative becomesapartial derivative
and may appear within the integral,

9Py
/(V-J)dv:/—pdv
vol vol ot

from which we have our point form of the continuity equation,

9Py

V-=-7

©)

Remembering the physical interpretation of divergence, this equation indicates
that the current, or charge per second, diverging from asmall volume per unit volume
isequal to the time rate of decrease of charge per unit volume at every point.

Asanumerical exampleillustrating some of the concepts from the last two sec-
tions, let us consider a current density that is directed radially outward and decreases
exponentially with time,

1
J= ¢ 'a, AIm?
r
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Selecting an instant of time ¢ = 1 s, we may calculate the total outward current at
r=5m:
I =J.8=(ge)(4r5%) = 23.1A
At the same instant, but for a slightly larger radius, » = 6 m, we have
I=J.8=(ge ') (4n6%) = 27.7A

Thus, thetotal currentislarger at » = 6 thanitisatr = 5.
To see why this happens, we need to look at the volume charge density and the
velocity. We use the continuity equation first:

apy 1 1 0 1 1
P v g=v . (Zeta ) = 2 L (e ) = e
ot r r2 Jr r r2

We next seek the volume charge density by integrating with respect to ¢. Because p,
isgiven by apartial derivative with respect to time, the “ constant” of integration may
be afunction of 7:

1 1
Oy = —/—Ze_t dt + K(r) = Ze ' + K(r)
r r
If we assumethat p, — O0ast — oo, then K(r) = 0, and

1
py = —e ' C/m®
r

We may now use J = p,v to find the velocity,

Thevelocity isgreater at » = 6thanitisat » = 5, and we see that some (unspecified)
force is accelerating the charge density in an outward direction.

In summary, we have acurrent density that isinversely proportional tor, acharge
density that is inversely proportional to 2, and a velocity and total current that are
proportional to r. All quantitiesvary ase™".

D5.2. Current density is given in cylindrical coordinates as J = —106z%%a,
A/m?intheregion 0 < p < 20um; for p > 20um, J = 0. () Find the total
current crossing the surface z = 0.1 m in the a, direction. (b) If the charge
velocity is2 x 106 m/sat z = 0.1 m, find p, there. (c) If the volume charge
density at z = 0.15 m is —2000 C/mq, find the charge velocity there.

Ans. —39.7 uA; —15.8mC/m3; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic
nucleus in terms of the total energy of the electron with respect to a zero reference
level for an electron at an infinite distance from the nucleus. The total energy isthe
sum of the kinetic and potential energies, and because energy must be given to an
electron to pull it away from the nucleus, the energy of every electron in the atom is
anegative quantity. Even though this picture has some limitations, it is convenient to
associate these energy values with orbits surrounding the nucleus, the more negative
energies corresponding to orbits of smaller radius. According to the quantum theory,
only certain discrete energy levels, or energy states, are permissiblein agiven atom,
and an electron must therefore absorb or emit discrete amounts of energy, or quanta,
in passing from one level to another. A normal atom at absolute zero temperature has
an electron occupying every one of the lower energy shells, starting outward from the
nucleus and continuing until the supply of electronsis exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely
together, many more electrons are present, and many more permissible energy levels
are available because of the interaction forces between adjacent atoms. We find that
theallowed energies of electronsare grouped into broad ranges, or “bands,” each band
consisting of very numerous, closely spaced, discretelevels. At atemperature of abso-
lute zero, the normal solid also has every level occupied, starting with the lowest and
proceeding in order until all the electrons are located. The electrons with the highest
(least negative) energy levels, thevalenceelectrons, arelocated inthevalence band. |
there are permissible higher-energy levelsin the valence band, or if the valence band
merges smoothly into aconduction band, then additional kinetic energy may be given
to the valence electrons by an external field, resulting in an electron flow. The solid is
called ametallic conductor. Thefilled valence band and the unfilled conduction band
for aconductor at absol utezero temperatureare suggested by the sketchin Figure5.2a.

If, however, the electron with the greatest energy occupies the top level in the
valence band and agap exists between the val ence band and the conduction band, then

Empty
conduction
band Erply
conduction
Empty band
conduction Energy gap -
Energy ol Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor

(@) ) (©

Figure 5.2 The energy-band structure in three different types of materials
at O K. (@) The conductor exhibits no energy gap between the valence and
conduction bands. (b) The insulator shows a large energy gap. (c) The
semiconductor has only a small energy gap.
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the electron cannot accept additional energy in small amounts, and the material isan
insulator. Thisband structureisindicated in Figure 5.2h. Notethat if arelatively large
amount of energy can be transferred to the electron, it may be sufficiently excited to
jump the gap into the next band where conduction can occur easily. Here the insul ator
breaks down.

Anintermediate condition occurswhen only asmall “forbidden region” separates
the two bands, asillustrated by Figure 5.2¢. Small amounts of energy in the form of
heat, light, or an electric field may raise the energy of the electrons at the top of the
filled band and provide the basisfor conduction. These materials areinsulatorswhich
display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,
or free, electrons, move under the influence of an electric field. With afield E, an
electron having a charge O = —e will experience aforce

F = —cE

In free space, the electron would accelerate and continuously increase its velocity
(and energy); in the crystalline material, the progress of the electron is impeded
by continual collisions with the thermally excited crystalline lattice structure, and a
constant average velocity issoon attained. Thisvelocity v, istermed the drift velocity,
and it islinearly related to the electric field intensity by the mobility of the electron
in the given material. We designate mobility by the symbol n (mu), so that

Vg = —/,LeE (6)

where p. is the mobility of an electron and is positive by definition. Note that the
electron velocity is in a direction opposite to the direction of E. Equation (6) also
shows that mobility is measured in the units of square meters per volt-second; typical
values® are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is
sufficient to produce a noticeable temperature rise and can cause the wire to melt if
the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into EQ. (3) of Section 5.1, we obtain

J=—p.u.E (7

where p, isthefree-electron charge density, anegative value. Thetotal charge density
oy is zero because equal positive and negative charges are present in the neutral
material. The negative value of p, and the minus sign lead to a current density J that
isin the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also
specified by the conductivity o (sigma),

J=0E (8)

3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.

(i)
Mustrations



ENGINEERING ELECTROMAGNETICS

where o is measured is siemens® per meter (S/m). One siemens (1 S) is the basic
unit of conductancein the Sl system and is defined as one ampere per volt. Formerly,
the unit of conductance was called the mho and was symbolized by an inverted 2.
Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that
we call the ohm (1 2 is one volt per ampere) honors Georg Simon Ohm, a German
physicist who first described the current-voltage relationship implied by Eq. (8). We
call this equation the point form of Ohm’s law; we will ook at the more common
form of Ohm'’slaw shortly.

First, however, it isinformative to note the conductivity of several metallic con-
ductors; typical values (in siemensper meter) are 3.82 x 107 for aluminum, 5.80 x 107
for copper, and 6.17 x 107 for silver. Data for other conductors may be found in
Appendix C. On seeing data such asthese, it isonly natural to assume that we are be-
ing presented with constant values; thisis essentialy true. Metallic conductors obey
Ohm'’slaw quitefaithfully, and it is alinear relationship; the conductivity is constant
over wide ranges of current density and electric field intensity. Ohm’s law and the
metallic conductors are a so described as isotropic, or having the same propertiesin
every direction. A material which is not isotropic is caled anisotropic, and we shall
mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which
is the reciprocal of the conductivity, varies amost linearly with temperature in the
region of room temperature, and for aluminum, copper, and silver it increases about
0.4 percent for a 1-K rise in temperature.®> For several metals the resistivity drops
abruptly to zero at a temperature of a few kelvin; this property is termed super-
conductivity. Copper and silver are not superconductors, although aluminum is (for
temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressedinterms
of the charge density and the electron mohility,

®

Fromthedefinition of mobility (6), itisnow satisfyingto notethat ahigher temperature
infersagreater crystallinelatticevibration, moreimpeded el ectron progressfor agiven
electric field strength, lower drift velocity, lower mobility, lower conductivity from
Eq. (9), and higher resistivity as stated.

Theapplication of Ohm’slaw in point form to amacroscopic (visibleto the naked
eye) region leads to amore familiar form. Initially, assumethat J and E are uniform,
asthey arein the cylindrical region shown in Figure 5.3. Because they are uniform,

I:fJ-dS:JS (10)
S

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who
were famous engineer-inventors in the nineteenth century. Karl became a British subject and was
knighted, becoming Sir William Siemens.

5 Copious temperature data for conducting materials are available in the Standard Handbook for
Electrical Engineers, listed among the References at the end of this chapter.
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Conductivity o

—
Area=S

Figure 5.3 Uniform current density J and electric field
intensity £ in a cylindrical region of length L and cross-
sectional area S. Here V = IR, where R =L /o S.

and
Vab=_/ E-dL:—E-/ dL = —E - L,
b b
=E-Ly (11)
or
V =EL
Thus
I V
J=—=—=0FE =0—
S L
or
L
V =—1I
oS

The ratio of the potential difference between the two ends of the cylinder to
the current entering the more positive end, however, is recognized from elementary
circuit theory as the resistance of the cylinder, and therefore

V =IR (12
where
L
R=— 13
oS (13)

Equation (12) is, of course, known as Ohm'’s law, and EQ. (13) enables usto compute
the resistance R, measured in ohms (abbreviated as 2), of conducting objects which
possessuniformfields. If thefields are not uniform, the resistance may still be defined
as the ratio of ¥ to I, where V' is the potential difference between two specified
equipotential surfaces in the material and 7 is the total current crossing the more
positive surface into the material. From the general integral relationshipsin Egs. (10)
and (11), and from Ohm'’slaw (8), we may writethisgeneral expression for resistance
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when the fields are nonuniform,

Vab _ _fba E . dL

R = =
I fSaE-dS

(14

The line integral is taken between two equipotential surfaces in the conductor, and
the surface integral is evaluated over the more positive of these two equipotentials.
We cannot solve these nonuniform problems at this time, but we should be able to
solve several of them after reading Chapter 6.

As an example of the determination of the resistance of a cylinder, we find the resis-
tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. Thediameter of thewireis0.0508 x 0.0254 = 1.291 x 10~ m, the areaof
thecrosssectionis(1.291 x 10~3/2)? = 1.308 x 10~° m?, and the length is 1609 m.
Using a conductivity of 5.80 x 10”7 S/m, the resistance of the wire s, therefore,

o 1609
~ (5.80 x 107)(1.308 x 10-6)

=21.2¢Q

This wire can safely carry about 10 A dc, corresponding to a current density of
10/(1.308 x 10~%) = 7.65x 10° A/m?, or 7.65 A/mm?. With thiscurrent, the potential
difference between the two ends of the wire is 212 V, the electric field intensity is
0.312V/m, thedrift velocity is0.000 422 m/s, or alittle more than onefurlong aweek,
and the free-electron charge density is —1.81 x 10° C/mq, or about one electron
within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for
which ¢ = 6.17 x 10" SYm and ., = 0.0056 m?/V - siif (a) the drift velocity
is1.5um/s; (b) the electric field intensity is 1 mV/m; (c¢) the sample isacube
2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the
sampleisacube 2.5 mm on aside carrying atotal current of 0.5 A.

Ans. 16.5kA/m?; 61.7 kKA/m?; 9.9 MA/m?; 80.0 KA/m?
D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.
Assumethat it carriesatotal dc current of 50 A. («) Find the total resistance of

the conductor. (b) What current density existsin it? (¢) What is the dc voltage
between the conductor ends? (d) How much power is dissipated in the wire?

Ans. 0.035 Q; 2.74 x 10° A/m?; 1.73V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let
timevary for afew microseconds to see what happens when the charge distribution is
suddenly unbal anced within aconducting material . Suppose, for the sake of argument,
that there suddenly appear a number of electrons in the interior of a conductor. The
electric fields set up by these electrons are not counteracted by any positive charges,
and the electrons therefore begin to accelerate away from each other. This continues
until the electrons reach the surface of the conductor or until a number of electrons
equal to the number injected have reached the surface.

Here, the outward progress of the electronsis stopped, for the material surround-
ing the conductor is an insulator not possessing a convenient conduction band. No
charge may remain within the conductor. If it did, the resulting electric field would
force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface
charge density resides on the exterior surface. Thisis one of the two characteristics
of agood conductor.

Theother characteristic, stated for static conditionsin which no current may flow,
follows directly from Ohm's law: the electric field intensity within the conductor is
zero. Physically, we seethat if an electric field were present, the conduction electrons
would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any
point within a conducting material. Charge may, however, appear on the surface as a
surface charge density, and our next investigation concerns the fields external to the
conductor.

Wewishtorelatetheseexternal fieldsto the charge onthe surface of the conductor.
The problem is a simple one, and we may first talk our way to the solution with a
little mathematics.

If the external electric field intensity is decomposed into two components, one
tangential and one normal to the conductor surface, the tangential component is seen
to be zero. If it were not zero, atangential force would be applied to the elements of
the surface charge, resulting in their motion and nonstatic conditions. Because static
conditions are assumed, the tangential electric field intensity and electric flux density
are zero.

Gauss'slaw answers our questions concerning the normal component. The elec-
tric flux leaving a small increment of surface must be equal to the charge residing on
that incremental surface. The flux cannot penetrate into the conductor, for the total
field there is zero. It must then leave the surface normally. Quantitatively, we may
say that the electric flux density in coulombs per square meter leaving the surface
normally is equal to the surface charge density in coulombs per square meter, or
Dy = ps.

If we use some of our previously derived resultsin making amore careful analysis
(andincidentally introducing ageneral method which wemust usel ater), we should set
up a boundary between a conductor and free space (Figure 5.4) showing tangential
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Conductor

Figure 5.4 An appropriate closed path and gaussian surface are used to
determine boundary conditions at a boundary between a conductor and free
space; £y = 0and Dy = ps.

and normal components of D and E on the free-space side of the boundary. Both
fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21),
7{ E-dL=0

around the small closed path abeda. The integral must be broken up into four parts

b c d a
[=[+]+]-°
a b c d

Remembering that E = O within the conductor, we let the length from a to b or ¢ to
d be Aw and from b to ¢ or d to a be Ak, and obtain

EtAW — EN,atb%Ah + EN,am%Ah =0

As we alow A# to approach zero, keeping Aw small but finite, it makes no
difference whether or not the normal fields are equal at « and b, for A/ causes these
products to become negligibly small. Hence, E; Aw = 0 and, therefore, E, = 0.

The condition on the normal field isfound most readily by considering Dy rather
than E 5 and choosing asmall cylinder asthe gaussian surface. Let the height be A/
and the area of the top and bottom faces be AS. Again, we let A/ approach zero.
Using Gauss's law,

fsn-dszg

we integrate over the three distinct surfaces

Jo* fm* L0
top bottom sides

and find that the last two are zero (for different reasons). Then

DyAS = O = psAS
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or
Dy = ps
Thesearethedesired boundary conditions for theconductor-to-free-space bound-

ary in electrostatics,
as

‘ Dy = €EN = ps ‘ (16)

The electric flux leaves the conductor in a direction normal to the surface, and the
value of the electric flux density is numerically equal to the surface charge density.
Equations (15) and (16) can be more formally expressed using the vector fields

Exn|S:O 27)

D~ll|s = Ps (18)

where n isthe unit normal vector at the surface that points away from the conductor,
as shown in Figure 5.4, and where both operations are evaluated at the conductor
surface, 5. Taking the cross product or the dot product of either field quantity with n
gives the tangential or the normal component of the field, respectively.

An immediate and important consegquence of a zero tangential electric field in-
tensity isthe fact that a conductor surface is an equipotential surface. The evaluation
of the potential difference between any two points on the surface by the line integral
leads to a zero result, because the path may be chosen on the surface itself where
E.dL=0.

To summarize the principleswhich apply to conductorsin electrostatic fields, we
may state that

1. Thestatic electric field intensity inside a conductor is zero.

2. Thestatic electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surfaceis an equipotentia surface.

Using these three principles, there are anumber of quantities that may be calcu-
lated at a conductor boundary, given a knowledge of the potential field.

Given the potential,
V = 100(x? — y?)

andapoint P(2, —1, 3) that is stipul ated to lie on aconductor-to-free-space boundary,
find V, E, D, and ps a P, and aso the equation of the conductor surface.

Solution. The potentia at point P is
Vp = 100[2% — (—1)?] = 300V

121
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1 z =73 plane
1 3
0
x2_y2 =3
V=300V
_q P2,-1,3)
Ve
/
/
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Figure 5.5 Given point P2, —1, 3) and the
potential field, V = 100(x? — y?), we find the
equipotential surface through P is x2 — y? = 3,
and the streamline through P is xy = —2.

Because the conductor is an equipotential surface, the potential at the entire sur-
face must be 300 V. Moreover, if the conductor is a solid object, then the potential
everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300V is

300 = 100(x? — »?)
or
x2—y?=3
Thisistherefore the equation of the conductor surface; it happens to be a hyperbolic
cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor
lies above and to the right of the equipotential surface at point P, whereas free space

isdown and to the left.
Next, we find E by the gradient operation,

E = —100V(x? — y%) = —200xa, + 200ya,
At point P,
E, = —400a, — 200a, V/m
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Because D = ¢E, we have
Dp = 8.854 x 10 ?Ep = —3.54a, — 1.771a, nC/m?

The field is directed downward and to the left at P; it is normal to the equipotential
surface. Therefore,

Dy = |Dp| = 3.96 n"C/m?
Thus, the surface charge density at P is
ps.p = Dy = 3.96 nC/m?

Note that if we had taken the region to the left of the equipotential surface as the
conductor, the E field would terminate on the surface charge and we would let
ps = —3.96 nC/m?.

Finally, let us determine the equation of the streamline passing through P.
Solution. \We see that

E, 2000  y dy
E. —200x  x dx
Thus,
d d
@ _o
y X
and
Iny +Inx =C;
Therefore,
xy =C>

The line (or surface) through P is obtained when C, = (2)(—1) = —2. Thus, the
streamline is the trace of another hyperbolic cylinder,

xy=-2
Thisisaso shown on Figure 5.5.
D5.5. Given the potentia field in free space, ¥ = 100sinh5x sin5y V/, and

apoint P(0.1,0.2,0.3), find a P: (a) V; (b) E; (c) |E|; (d) |ps] if it isknown
that P lies on a conductor surface.

Ans. 43.8V; —474a, — 140.8a, V/m; 495 V/m; 4.38 nC/m?
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is
the infinite plane at zero potential that exists midway between the two charges. Such
a plane may be represented by a vanishingly thin conducting plane that is infinite
in extent. The conductor is an equipotential surface at a potential V' = 0, and the
electric field intensity is therefore normal to the surface. Thus, if we replace the
dipole configuration shown in Figure 5.6a with the single charge and conducting
plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.
Below the conducting plane, all fields are zero, as we have not provided any charges
in that region. Of course, we might also substitute a single negative charge below a
conducting plane for the dipole arrangement and obtain equivalence for the fieldsin
the lower half of each region.

If we approach this equival ence from the opposite point of view, we begin with a
single charge above a perfectly conducting plane and then see that we may maintain
the same fields above the plane by removing the plane and locating a negative charge
at a symmetrical location below the plane. This charge is called the image of the
original charge, and it is the negative of that value.

If we can do this once, linearity allows usto do it again and again, and thus any
charge configuration above an infinite ground plane may be replaced by an arrange-
ment composed of the given charge configuration, itsimage, and no conducting plane.
Thisis suggested by the two illustrations of Figure 5.7. In many cases, the potential
field of the new system is much easier to find since it does not contain the conducting
plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at
P(2, 5, 0) on the conducting planez = 0 if there isaline charge of 30 nC/m located
ax =0,z = 3, as shown in Figure 5.84. We remove the plane and install an
image line charge of —30 nC/m at x = 0, z = —3, asillustrated in Figure 5.8b.
Thefield at P may now be obtained by superposition of the known fields of the line

t0e t0e

tQe Qe

Equipotential surface, V'=0 Conducting plane, V=0

— Q o
(@) ®)

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge
and a conducting plane without affecting the fields above the V' = O surface.
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—4 ° -4 [}
+1¢ +1°®
Conducting plane, V=0 Equipotential surface, V=10
>~
—le
+4e

(a) (b

Figure 5.7 (a) A given charge configuration above an infinite conducting plane may
be replaced by (b) the given charge configuration plus the image configuration, without
the conducting plane.

charges. The radial vector from the positive line chargeto P isR, = 2a, — 3a,,
whileR_ = 2a, + 3a.. Thus, theindividual fields are

oL 30 x 1079 2a, — 3a,
4+ = 73R+ =
2meoR 2reo/13 V13

and
30 x 109 2a, + 3a,

T 2nepv/13 /13

Adding these results, we have

—180 x 10 °a,
E= X" & 549a. Vim
2e0(13) A

Thisthenisthefield at (or just above) P in both the configurations of Figure 5.8, and
it is certainly satisfying to note that the field is normal to the conducting plane, asit
must be. Thus, D = ¢gE = —2.20a, nC/m?, and because thisis directed roward the
conducting plane, ps is negative and has avalue of —2.20 nC/m? at P.

30 nC/m 30 nC/m

Conducting plane

®
P(2,5,0)

(@) (b

Figure 5.8 (a) A line charge above a conducting plane. (b) The conductor is
removed, and the image of the line charge is added.

125
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D5.6. A perfectly conducting plane is located in free space at x = 4, and
auniform infinite line charge of 40 nC/m liesaong thelinex = 6, y = 3. Let
V' = 0 at the conducting plane. At P(7, —1, 5) find: (a) V; (b) E.

Ans. 317V, —453a, — 99.2a, V/m

5.6 SEMICONDUCTORS

If we now turn our attention to an intrinsic semiconductor material, such as pure
germanium or silicon, two types of current carriers are present, electrons and holes.
The electrons are those from the top of the filled valence band that have received
sufficient energy (usually thermal) to cross the relatively small forbidden band into
the conduction band. The forbidden-band energy gap in typical semiconductorsis of
the order of one electronvolt. The vacancies | eft by these electrons represent unfilled
energy states in the valence band which may also move from atom to atom in the
crystal. The vacancy is called a hole, and many semiconductor properties may be
described by treating the hole asiif it had a positive charge of ¢, a mobility, w;,, and
an effective mass comparabl e to that of the electron. Both carriersmovein an electric
field, and they move in opposite directions; hence each contributes a component of
the total current which is in the same direction as that provided by the other. The
conductivity is therefore a function of both hole and electron concentrations and
mohilities,

0 = —Pelbe + Phlbh (19)

For pure, or intrinsic, silicon, the electron and hole mobilitiesare 0.12 and 0.025,
respectively, whereas for germanium, the mobilities are, respectively, 0.36 and 0.17.
These values are given in sguare meters per volt-second and range from 10 to 100
times as large as those for aluminum, copper, silver, and other metallic conductors.®
These mobilities are given for atemperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At 300 K
the electron and hole volume charge densities are both 0.0024 C/m3in magnitude in
intrinsic silicon and 3.0 C/m? inintrinsic germanium. These val ues|ead to conductiv-
itiesof 0.000 35 S/minsilicon and 1.6 SYm in germanium. As temperature increases,
the mobilities decrease, but the charge densitiesincrease very rapidly. Asaresult, the
conductivity of silicon increases by a factor of 10 as the temperature increases from
300 to about 330 K and decreases by afactor of 10 asthe temperature drops from 300
to about 275 K. Note that the conductivity of the intrinsic semiconductor increases
with temperature, whereas that of a metallic conductor decreases with temperature;
this is one of the characteristic differences between the metallic conductors and the
intrinsic semiconductors.

6 Mobility values for semiconductors are given in References 2, 3, and 5 listed at the end of this chapter.
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Intrinsic semiconductors also satisfy the point form of Ohm's law; that is, the
conductivity is reasonably constant with current density and with the direction of the
current density.

Thenumber of charge carriersand the conductivity may both beincreased dramat-
ically by adding very small amounts of impurities. Donor materials provide additional
electrons and form n-type semiconductors, whereas acceptors furnish extraholesand
form p-type materials. The processis known as doping, and adonor concentration in
silicon aslow as one part in 107 causes an increase in conductivity by afactor of 10°.

Therangeof value of the conductivity isextreme aswego fromthebest insulating
material sto semiconductors and the finest conductors. In siemens per meter, o ranges
from 107 for fused quartz, 10~ for poor plastic insulators, and roughly unity for
semiconductors to aimost 108 for metallic conductors at room temperature. These
values cover the remarkably large range of some 25 orders of magnitude.

D5.7. Using the values given in this section for the electron and hole mo-
bilities in silicon at 300 K, and assuming hole and electron charge densities
are 0.0029 C/m* and —0.0029 C/m?, respectively, find: () the component of
the conductivity due to holes; (b) the component of the conductivity due to
electrons; (¢) the conductivity.

Ans. 725 uS/m; 348 uS/m; 421 uS/m

5.7 THE NATURE OF DIELECTRIC
MATERIALS

A dielectric in an electric field can be viewed as a free-space arrangement of mi-
croscopic electric dipoles, each of which is composed of a positive and a negative
chargewhose centersdo not quite coincide. These are not free charges, and they cannot
contribute to the conduction process. Rather, they are bound in place by atomic and
molecular forces and can only shift positions slightly in response to external fields.
They are called bound charges, in contrast to the free charges that determine conduc-
tivity. The bound charges can be treated as any other sources of the electrostatic field.
Therefore, we would not need to introduce the dielectric constant as a new parameter
or to deal with permittivities different from the permittivity of free space; however,
the alternative would beto consider every charge within a piece of dielectric material.
Thisistoo great a priceto pay for using al our previous equations in an unmodified
form, and we shall therefore spend some time theorizing about dielectricsin aquali-
tative way; introducing polarization P, permittivity €, and relative permittivity ¢,; and
developing some quantitative rel ationships involving these new parameters.

The characteristic that all dielectric materials have in common, whether they are
solid, liquid, or gas, and whether or not they are crystalline in nature, is their ability
to store electric energy. This storage takes place by means of a shift in the relative
positions of the internal, bound positive and negative charges against the normal
molecular and atomic forces.

(i)

Interactives
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This displacement against a restraining force is analogous to lifting a weight
or stretching a spring and represents potential energy. The source of the energy is
the external field, the motion of the shifting charges resulting perhaps in a transient
current through a battery that is producing the field.

The actual mechanism of the charge displacement differsin the variousdielectric
materials. Some molecules, termed polar molecules, have a permanent displacement
existing between the centers of “gravity” of the positive and negative charges, and
each pair of charges acts as a dipole. Normally the dipoles are oriented in a random
way throughout the interior of the material, and the action of the external field isto
align these molecules, to some extent, in the same direction. A sufficiently strong
field may even produce an additional displacement between the positive and negative
charges.

A nonpolar molecule does not have this dipole arrangement until after afield is
applied. The negative and positive charges shift in opposite directions against their
mutual attraction and produce a dipole that is aligned with the electric field.

Either type of dipole may be described by its dipole moment p, as developed in
Section 4.7, Eqg. (36),

p=0d (20)

where Q isthe positive one of the two bound charges composing the dipole, and d is
the vector from the negative to the positive charge. We note again that the units of p
are coulomb-meters.
If there are n dipoles per unit volume and we deal with avolume Av, then there
aren Av dipoles, and the total dipole moment is obtained by the vector sum,
nAv

Ptotd = Zpi
i=1

If the dipoles are aligned in the same general direction, pitg May have a significant
value. However, arandom orientation may cause piota t0 be essentially zero.
We now define the polarization P as the dipole moment per unit volume,
nAv

= Jim = Zpl (21)

with units of coulombs per square meter. WeW| [l treat P asatypical continuousfield,
even though it is obvious that it is essentially undefined at points within an atom
or molecule. Instead, we should think of its value at any point as an average value
taken over a sample volume Av—Ilarge enough to contain many molecules (n Av in
number), but yet sufficiently small to be considered incremental in concept.

Our immediate goal is to show that the bound-volume charge density acts like
the free-volume charge density in producing an external field; we will obtain aresult
similar to Gauss's law.

To be specific, assume that we have a dielectric containing nonpolar molecules.
No molecule has adipole moment, and P = 0 throughout the material. Somewherein
the interior of the dielectric we select an incremental surface element AS, as shown
in Figure 5.9, and apply an electric field E. The electric field produces a moment
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Figure 5.9 (a) Anincremental surface element ASis shown in the interior of a
dielectric in which an electric field E is present. (b) The nonpolar molecules form dipole
moments p and a polarization P. There is a net transfer of bound charge across AS.

p = Od in each molecule, such that p and d make an angle 6 with AS, asindicated
in Figure 5.95.

The bound charges will now move across AS. Each of the charges associated
with the creation of a dipole must have moved a distance %d cosé in the direction
perpendicular to AS. Thus, any positive chargesinitially lying below the surface AS
and within the distance %d cosé of the surface must have crossed AS going upward.
Also, any negative charges initially lying above the surface and within that distance
(%d cosh) from AS must have crossed AS going downward. Therefore, becausethere
aren molecules'm?, thenet total chargethat crossesthe elemental surfaceinan upward
directionisequal to n Qd cosd AS, or

AQy=n0d-AS

where the subscript on O, reminds us that we are dealing with a bound charge and
not afree charge. In terms of the polarization, we have

AQ,=P-AS

If we interpret AS as an element of a closed surface inside the dielectric material,
then the direction of AS isoutward, and the net increase in the bound charge within
the closed surface is obtained through the integral

Qh:—ng-dS (22)

129



130

ENGINEERING ELECTROMAGNETICS

This last relationship has some resemblance to Gauss's law, and we may now gener-
alize our definition of electric flux density so that it applies to media other than free
space. We first write Gauss's law in terms of ¢gE and Q7, the total enclosed charge,
bound plus free:

Or = feoE-dS (23
S
where

Or=0,+0

and Q isthetota free charge enclosed by the surface S. Note that the free charge
appears without a subscript because it is the most important type of charge and will
appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free charge
enclosed,

Q=Qr—Qb=y€(EOE+P)-ds (24)

D is now defined in more general terms than was done in Chapter 3,

=

There is thus an added term to D that appears when polarizable material is present.
Thus,

Q:ng-dS (26)

where Q isthe free charge enclosed.
Utilizing the several volume charge densities, we have

O =/Pde

Q= pudV

Or = /,OTdV

With the help of the divergence theorem, we may therefore transform Egs. (22), (23),
and (26) into the equivalent divergence relationships,

V-P=—py
V. eE = pr

@

Wewill emphasize only Eq. (26) and (27), thetwo expressionsinvolving the free
charge, in the work that follows.
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In order to make any real use of these new concepts, it is necessary to know the
relationship between the electric field intensity E and the polarization P that results.
This relationship will, of course, be a function of the type of material, and we will
essentially limit our discussion to those isotropic materials for which E and P are
linearly related. In an isotropic material, the vectors E and P are always parallel,
regardless of the orientation of the field. Although most engineering dielectrics are
linear for moderate-to-large field strengths and are al so isotropic, single crystals may
be anisotropic. The periodic nature of crystalline materials causes dipole moments to
be formed most easily along the crystal axes, and not necessarily in the direction of
the applied field.

In ferroelectric materials, the relationship between P and E not only is nonlin-
ear, but also shows hysteresis effects; that is, the polarization produced by a given
electric field intensity depends on the past history of the sample. Important examples
of this type of dielectric are barium titanate, often used in ceramic capacitors, and
Rochelle salt.

The linear relationship between P and E is

@

where x,. (chi) is a dimensionless quantity called the electric susceptibility of the
material.
Using thisrelationship in Eq. (25), we have

D = ¢E + x.€0E = (x. + 1)eoE
The expression within the parentheses is now defined as
€& =xe+1 (29)
Thisisanother dimensionless quantity, and it isknown asthe relative permittivity, or
dielectric constant of the material. Thus,

D = ¢p¢, E = ¢E (30)

@

and ¢ is the permittivity. The dielectric constants are given for some representative
materialsin Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple suscep-
tibility or permittivity parameter. Instead, we find that each component of D may be
afunction of every component of E, and D = ¢E becomes a matrix equation where
D and E are each 3 x 1 column matrices and ¢ isa3 x 3 square matrix. Expanding
the matrix equation gives

where

D, = e E; + exyEy + € E;
D, =¢€,E+e,E, +¢€,.E.
D. =€, E, + ezyEy +eE;
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Note that the elements of the matrix depend on the selection of the coordinate axesin
the anisotropic material. Certain choices of axis directions lead to simpler matrices.”

D and E (and P) are no longer paralel, and although D = ¢oE + P remains
a valid eguation for anisotropic materials, we may continue to use D = ¢E only
by interpreting it as a matrix equation. We will concentrate our attention on linear
isotropic materials and reserve the general case for amore advanced text.

In summary, then, we now have arelationship between D and E that depends on
the dielectric material present,

D =¢E (30

@

Thiselectric flux density isstill related to the free charge by either the point or integral

form of Gauss's law:
@

fD-dS:Q (26)
S

where

Use of the relative permittivity, as indicated by Eqg. (31), makes consideration
of the polarization, dipole moments, and bound charge unnecessary. However, when
anisotropic or nonlinear materials must be considered, the relative permittivity, in the
simple scalar form that we have discussed, is no longer applicable.

We locate a slab of Teflon in the region 0 < x < «, and assume free space where
x < 0and x > a. Outside the Teflon there is auniform field Eqy = Ega, V/m. We
seek valuesfor D, E, and P everywhere.
Solution. The dielectric constant of the Teflon is 2.1, and thus the el ectric suscepti-
bility is1.1.

Outside the dab, we have immediately Doyt = €oEoa,. Also, as there is no
dielectric material there, Py = 0. Now, any of the last four or five equations will
enable usto relate the several fields inside the material to each other. Thus

Din = 2.1¢Ein (0<x<a)
Pin = 1.1eoEiy O<x<a)

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer
reference listed at the end of this chapter.
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As soon as we establish avalue for any of these three fields within the dielectric, the
other two can be found immediately. The difficulty liesin crossing over the boundary
from the known fields external to the dielectric to the unknown ones within it. To do
thiswe need a boundary condition, and thisis the subject of the next section. We will
compl ete this example then.

In the remainder of thistext we will describe polarizable materialsin terms of D
and ¢ rather than P and x.. We will limit our discussion to isotropic materials.

D5.8. A dabof dielectric material has arelative diel ectric constant of 3.8 and
contains a uniform electric flux density of 8 nC/m?. If the material is lossless,
find: (@) E; (b) P; (c) the average number of dipoles per cubic meter if the
average dipole moment is 10~2°C - m.

Ans. 238 V/m; 5.89 nC/m?; 5.89 x 100 m—3
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5.8 BOUNDARY CONDITIONS FOR PERFECT
DIELECTRIC MATERIALS

How do we attack aproblem inwhichthere aretwo different dielectrics, or adielectric
and aconductor? Thisisanother example of aboundary condition, such asthe condi-
tion at the surface of aconductor whereby thetangential fields are zero and the normal
electric flux density is equa to the surface charge density on the conductor. Now we
take thefirst step in solving atwo-dielectric problem, or a dielectric-conductor prob-
lem, by determining the behavior of the fields at the dielectric interface.

Let usfirst consider the interface between two dielectrics having permittivities
€1 and ¢, and occupying regions 1 and 2, as shown in Figure 5.10. We first examine

DNI

Region 1
€1

[

\DNZ

Region 2

==
/Etan 2 &

Figure 5.10 The boundary between perfect dielectrics of permittivities €4
and e2. The continuity of Dy is shown by the gaussian surface on the right,
and the continuity of E, is shown by the line integral about the closed path
at the left.

i)
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the tangential components by using

fE-dL:O

around the small closed path on the left, obtaining
Etanl Aw — Etan2 Aw =0

The small contribution to the line integral by the normal component of E along
the sections of length A/ becomes negligible as Ak decreases and the closed path
crowds the surface. Immediately, then,

)

Evidently, Kirchhoff’s voltage law is still applicable to this case. Certainly we have
shown that the potential difference between any two points on the boundary that are
separated by a distance Aw isthe same immediately above or below the boundary.

If the tangential electric field intensity is continuous across the boundary, then
tangential D is discontinuous, for

D, 1 D 2
o = Etanl = Etanz = o
€1 €2
or
D
tan 1 _ S (33)
Dian2 €2

The boundary conditions on the normal components are found by applying
Gauss's law to the small “pillbox” shown at the right in Figure 5.10. The sides are
again very short, and the flux leaving the top and bottom surfaces is the difference

DN]_AS — DNzAS = AQ = ,OSAS

from which

Dy1— Dn2 = ps (34)

What isthis surface charge density? It cannot be a bound surface charge density,
because we aretaking the polarization of the diel ectric into effect by using adielectric
constant different from unity; that is, instead of considering bound charges in free
space, we are using an increased permittivity. Also, it is extremely unlikely that any

free chargeison theinterface, for no free chargeis available in the perfect dielectrics

we are considering. This charge must then have been placed there deliberately, thus
unbalancing the total charge in and on this dielectric body. Except for this special
case, then, we may assume pg is zero on the interface and

)
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or the normal component of D is continuous. It follows that
€1EN1 = 62EN2 (36)

and normal E is discontinuous.

Equations (32) and (34) can be written in terms of field vectorsin any direction,
along with the unit normal to the surface as shown in Figure 5.10. Formally stated,
the boundary conditions for the electric flux density and the electric field strength at
the surface of a perfect dielectric are

(D1 — D7) -n=p, (37)
which isthe general statement of Eq. (32), and
(E1—E2)xn=0 (38)

generaly states Eq. (34). This construction was used previously in Egs. (17) and (18)
for a conducting surface, in which the normal or tangential components of the fields
are obtained through the dot product or cross product with the normal, respectively.

These conditions may be used to show the change in the vectors D and
E at the surface. Let D; (and E;) make an angle 6; with a normal to the surface
(Figure 5.11). Because the normal components of D are continuous,

Dy1 = D1C0S61 = DyC0SOp = Dyo (39)

Theratio of the tangential componentsis given by (33) as

Dian1 D]_S.nel €1
Dz DzsSné, e

or

€2D18SiN6; = €1D>SN0H, (40)

tan 2

Figure 5.11 The refraction of D at a

dielectric interface. For the case shown,

€1 > €; Ey and E;, are directed along D+
and Do, with D1 > Do and E4 < Eo.
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and the division of this equation by (39) gives

tan6, €1

tan 6, - €

(41)

In Figure 5.11 we have assumed that €; > ¢;, and therefore 6, > 0,.

The direction of E on each side of the boundary isidentical with the direction of
D, because D = ¢E.

The magnitude of D in region 2 may be found from Eq. (39) and (40),

2
Do = l);[\/COS2 601+ (2) sin® 61 (42
€1
and the magnitude of E; is
e\ 2
E, = FEq Sin291 + (—l> C05291 (43)
€2

An inspection of these equations showsthat D islarger inthe region of larger permit-
tivity (unless 6; = 6, = 0° where the magnitude is unchanged) and that £ islarger
in the region of smaller permittivity (unless 6, = 6, = 90°, where its magnitude is
unchanged).

Complete Example 5.4 by finding the fields within the Teflon (¢, = 2.1), given the
uniform external field Eqx = Epa, in free space.

Solution. \We recall that we had a slab of Teflon extending fromx = Otox = a,
as shown in Figure 5.12, with free space on both sides of it and an external field
Eout = Eoa,. Wedso have Doyt = €gEpa, and Poy = 0.

Inside, the continuity of Dy at the boundary alows usto find that Djp, = Doyt =
€oEoa,. ThisgivesusEi, = Din/e = €gEoa, /(€,.€0) = 0.476Epa,. To get the polar-
ization field in the dielectric, we use D = ¢E + P and obtain

Pin = Din — EOEin = éoanx — 0.476€0anx = 0.524€0anx

Summarizing then gives

Din = €oEoay (O<x<a)
Ein = 0.476Fpa, (0O<x <a)
P, = 0.524¢qEpa, (0 <x =< a)

A practical problem most often does not provide us with a direct knowledge of
thefield on either side of the boundary. The boundary conditions must be used to help
us determine the fields on both sides of the boundary from the other information that
isgiven.
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— T
Teflon
& =21
o= 1Ll
E=E;, @——> o—> E£=0476E, o—> E=L,
D=¢yE) @——> o———> D=¢kE, o———> D=¢)kE,
P=0e® &——> P=0.524¢4E, o P=0
J\m
x=0 xX=a

Figure 5.12 A knowledge of the electric field external to the dielectric
enables us to find the remaining external fields first and then to use the
continuity of normal D to begin finding the internal fields.

D5.9. Let Region 1 (z < 0) be composed of a uniform dielectric material
for which €, = 3.2, while Region 2 (z > 0) is characterized by ¢, = 2. Let
D; = —30a, + 50a, + 70a, nC/m? and find: (a) Dy1; (b) Dy1; (¢) Di1; (d) Da;
(€) 01; (f) P1.

Ans. 70 nC/m?; —30a, + 50a, nC/m?; 58.3 nC/m?; 91.1 nC/m?; 39.8°; —20.6a, +
34.4a, + 48.1a. nC/m?

D5.10. Continue Problem D5.9 by finding: (a) Dy2; (b) D;2; (¢) D2; (d) P»;
(e) .

Ans. 70a; nC/m?; —18.75a + 31.25a, nC/m?; —18.75a, + 31.25a,, + 70a. nC/m?;
—9.38a, + 15.63a,, + 35a. nC/m?; 27.5°
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CHAPTER 5 PROBLEMS

5110

521

5310

5410

551

5610

571

581

Given the current density J = —10%[sin(2x)e~?'a, + cos(2x)e~?"a,] KA/M?
(a) Find the total current crossing the plane y = 1inthea, directionin the
region0 < x < 1,0 < z < 2. (b) Find the total current leaving the region
O0<x,y<12<z<3byintegrating J - dS over the surface of the cube.
(¢) Repeat part (b), but use the divergence theorem.

GivenJ = —10*(ya, + xa,) A/m?, find the current crossing the y = 0
planein the —a, direction betweenz = 0and 1, andx = O and 2.

Let J = 400sin6/(r? + 4) a, A/m?. (a) Find the total current flowing
through that portion of the spherical surface» = 0.8, bounded by

0.17r <0 < 0.37,0 < ¢ < 27. (b) Find the average value of J over the
defined area.

If volume charge density is given as p, = (coswt)/r? C/m? in spherical
coordinates, find J. It is reasonable to assumethat J isnot afunction of 6 or ¢.

LetJ = 25/pa, — 20/(p? + 0.01) a, A/m?. (a) Find the total current
crossing the plane z = 0.2 inthe a, direction for p < 0.4. (b) Calculate
dp,/0t. (¢) Find the outward current crossing the closed surface defined by
p=001p=04,z=0andz = 0.2 (d) Show that the divergence
theorem is satisified for J and the surface specified in part (c).

In spherical coordinates, acurrent density J = —k/(r Sin@) ag A/m? existsin
a conducting medium, where & is a constant. Determine the total current in
the a, direction that crosses acircular disk of radius R, centered on the z axis
and located at (a) z = 0; (b) z = h.

Assuming that there is no transformation of mass to energy or vice versa, it is
possible to write a continuity equation for mass. (a) If we use the continuity
equation for charge as our model, what quantities correspond to J and p,?

(b) Given acube 1 cm on aside, experimenta data show that the rates at
which massis leaving each of the six faces are 10.25, —9.85, 1.75, —2.00,
—4.05, and 4.45 mg/s. If we assume that the cube is an incremental volume
element, determine an approximate value for the time rate of change of
density at its center.

A truncated cone has a height of 16 cm. The circular faces on the top and
bottom have radii of 2 mm and 0.1 mm, respectively. If the material from
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which this solid cone is constructed has a conductivity of 2 x 10° S/m, use
some good approximations to determine the resistance between the two
circular faces.

591 (@) Using data tabulated in Appendix C, calculate the required diameter for a
2-m-long nichrome wire that will dissipate an average power of 450 W when
120V rmsat 60 Hz is applied to it. () Calculate the rms current density in
thewire.

5100 A large brass washer has a 2-cm inside diameter, a 5-cm outside diameter,
and is 0.5 cm thick. Its conductivity iso = 1.5 x 10" S/m. The washer is cut
in half along a diameter, and a voltage is applied between the two rectangular
faces of one part. The resultant electric field in the interior of the half-washer
isE = (0.5/p) ag V/min cylindrical coordinates, where the z axisis the axis
of the washer. (¢) What potential difference exists between the two
rectangular faces? (b) What total current is flowing? (c) What isthe
resi stance between the two faces?

5111 Two perfectly conducting cylindrical surfaces of length ¢ are located at
p =3and p = 5cm. Thetota current passing radially outward through the
medium between the cylindersis 3 A dc. («) Find the voltage and resistance
between the cylinders, and E in the region between the cylinders, if a
conducting material having o = 0.05 S/mispresent for 3 < p < 5cm.
() Show that integrating the power dissipated per unit volume over the
volume gives the total dissipated power.

5.12 | Twoidentical conducting plates, each having area 4, are located at z = 0 and
z = d. The region between platesisfilled with amaterial having z-dependent
conductivity, o (z) = ope?/¢, where o is a constant. Voltage ¥, is applied to
theplateat z = d; theplateat z = O isat zero potential. Find, in terms of the
given parameters, (a) the resistance of the material; (b) the total current
flowing between plates; (¢) the electric field intensity E within the material.

5.131 A hollow cylindrical tube with arectangular cross section has external
dimensions of 0.5in. by 1 in. and awall thickness of 0.05 in. Assume that the
material isbrass, for whicho = 1.5 x 10" S/m. A current of 200 A dcis
flowing down the tube. («) What voltage drop is present acrossa 1 m length
of the tube? (b) Find the voltage drop if the interior of the tube isfilled with
aconducting material for which o = 1.5 x 10° Sm.

5141 A rectangular conducting plate liesin the xy plane, occupying the region
0<x <a,0<y<b.Anidentical conducting plate is positioned directly
above and parallel to thefirst, at z = d. The region between platesisfilled
with material having conductivity o (x) = oge™/¢, where oy is a constant.
Voltage Vy isapplied to the plate at z = d; the plate at z = O is at zero
potential. Find, in terms of the given parameters, (a) the electric field
intensity E within the material; (b) the total current flowing between plates,
(c) the resistance of the material.
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5150 Let V = 10(p + 1)z? cos¢ V in free space. (a) Let the equipotential surface
V = 20V define a conductor surface. Find the equation of the conductor
surface. (b) Find p and E at that point on the conductor surface where ¢ =
0.27 andz = 1.5. (¢) Find | ps| @ that point.

5.16 4 A coaxial transmission line has inner and outer conductor radii @ and b.
Between conductors (@ < p < b) lies a conductive medium whose
conductivity iso (p) = oo/ p, Where og is aconstant. Theinner conductor is
charged to potential 75, and the outer conductor is grounded. (a) Assuming
dc radial current 7 per unit length in z, determine the radial current density
field J in A/m?. (b) Determine the electric field intensity E in terms of 7 and
other parameters, given or known. (¢) By taking an appropriate line integral
of E asfound in part (b), find an expression that relates V, to /. (d) Find an
expression for the conductance of the line per unit length, G.

5.171 Giventhe potential field V' = 100xz/(x? + 4) V in free space: (a) Find D at
the surfacez = 0. (b) Show that the z = 0 surface is an equipotential surface.
(c) Assume that the z = 0 surface is a conductor and find the total charge on
that portion of the conductor definedby 0 < x <2, -3 <y < 0.

5.181 Two paralel circular plates of radiusa arelocatedat z = Oandz = d. The
top plate (z = d) israised to potentia 7p; the bottom plate is grounded.
Between the platesis a conducting material having radial-dependent
conductivity, o (p) = ogp, Where oy isaconstant. (a) Find the p-independent
electric field strength, E, between plates. (») Find the current density, J
between plates. (¢) Find the total current, 7, in the structure. (d) Find the
resistance between plates.

5191 Let ¥ = 20x2yz — 1022 V in free space. (a) Determine the equations of the
equipotential surfaces on which ¥ = 0 and 60 V. (b) Assume these are
conducting surfaces and find the surface charge density at that point on the
V =60V surfacewherex =2andz = 1. Itisknownthat0 < JV <60V is
the field-containing region. (c¢) Give the unit vector at this point that is
normal to the conducting surface and directed toward the V' = 0 surface.

5201 Two point charges of —100r 1 C are located at (2, —1, 0) and (2, 1, 0). The
surface x = Oisaconducting plane. (a) Determine the surface charge
density at the origin. (b) Determine pg at P (0, 4, 0).

5.21 1 Let the surface y = 0 be aperfect conductor in free space. Two uniform
infinite line charges of 30 nC/m each arelocated at x = 0, y = 1, and
x=0,y=2(a) Let V =0attheplaney = 0,andfind V' a P(1, 2, 0).
(b) FINdE at P.

5221 Thelinesegmentx =0, —1 < y < 1,z = 1, carriesalinear charge density

pr = 7|yl uC/m. Let z = 0 be a conducting plane and determine the surface
charge density at: (a) (0, 0, 0); (b) (0, 1, 0).
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5231 A dipolewith p = 0.1a, ©C- mislocated at A4(1, O, O) in free space, and the
x = 0 planeis perfectly conducting. («) Find ¥ at P(2, 0, 1). (b) Find the
equation of the 200 V equipotential surface in rectangular coordinates.

524 Atacertain temperature, the electron and hole mobilitiesin intrinsic
germanium are given as 0.43 and 0.21 m?/V - s, respectively. If the electron
and hole concentrations are both 2.3 x 10 m~3, find the conductivity at this
temperature.

5.25 | Electron and hole concentrations increase with temperature. For pure
silicon, suitable expressions are p;, = —p, = 6200715700/ C/m?,
The functional dependence of the mobilities on temperature is given by
wp =2.3x10°T~27 m?/V -sand p, = 2.1 x 10°T~25 m?/V - s, where the
temperature, 7', isin degrees Kelvin. Find o at: () 0°C; (b) 40°C; (c¢) 80°C.

5.26 | A semiconductor sample has arectangular cross section 1.5 by 2.0 mm, and a
length of 11.0 mm. The material has electron and hole densities of 1.8 x 10'8
and 3.0 x 10% m~3, respectively. If 1, = 0.082 m?/V - sand u;, = 0.0021
m?/ V - s, find the resistance offered between the end faces of the sample.

5.27 1 Atomic hydrogen contains 5.5 x 10?5 atoms/m?3at a certain temperature and
pressure. When an electric field of 4 kV/m is applied, each dipole formed by
the electron and positive nucleus has an effective length of 7.1 x 1071° m.
(a) Find P. (b) Find ¢,

5.28 | Find the dielectric constant of amaterial in which the electric flux density is
four times the polarization.

5.29 1 A coaxial conductor hasradii a = 0.8 mmand » = 3mm and apolystyrene
dielectric for which e, = 2.56. If P = (2/p)a, n"C/m? in the dielectric, find
(a) D and E asfunctions of p; (b) V,, and x.. (c) If there are 4 x 10%°
molecules per cubic meter in the dielectric, find p(p).

5.30 1 Consider acomposite material made up of two species, having number
densities N; and N, molecules/m®, respectively. The two materials are
uniformly mixed, yielding atotal number density of N = N; + N». The
presence of an electric field E induces molecular dipole moments p; and p2
within the individual species, whether mixed or not. Show that the dielectric
constant of the composite material isgivenby €, = fe,1 4+ (1 — f)e,2, where
f isthe number fraction of species 1 dipolesin the composite, and where e, 1
and ¢, are the dielectric constants that the unmixed species would have if
each had number density N.

5311 Thesurfacex = 0 separates two perfect dielectrics. For x > 0O, lete¢, =
€1 = 3, while¢,» = 5wherex < 0. If E; = 80a, — 60a, — 30a, V/m, find
(@) En1; (b) Era; (c) Eq; (d) the angle 6, between E; and anormal to the
surface; (e) Dy2; (f) Dra2; (g) D2; (1) Py; (i) the angle 6, between E; and a
normal to the surface.
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5321 Two equal but opposite-sign point charges of 3 «C are held x meters apart by
aspring that provides arepulsive force given by F;, = 12(0.5 — x) N.
Without any force of attraction, the spring would be fully extended to 0.5 m.
(a) Determine the charge separation. (b) What is the dipole moment?

5331 Two perfect dielectrics have relative permittivitiese,; = 2and ¢, = 8. The
planar interface between them isthe surface x — y + 2z = 5. The origin lies
inregion 1. If E; = 100a, 4 200a, — 50a, V/m, find E,.

5341 Region 1 (x > Q) isadieectric with ¢,; = 2, whileregion 2(x < 0) has
€2 =5.LetE; = 20a, — 10a, + 50a, V/m. () Find D». () Find the energy
density in both regions.

5350 Letthe cylindrical surfaces p = 4 cm and p = 9 cm enclose two wedges of
perfect dielectrics, €,1 = 2for0 < ¢ < w/2ande¢,, = 5forn/2 < ¢ < 27.
If E1 = (2000/p)a, V/m, find (a) E,; (b) the total electrostatic energy stored
inalm length of each region.



CHAPTER

Capacitance

It can be deliberately designed for a specific purpose, or it may exist as

an unavoidable by-product of the device structure that one must live with.
Understanding capacitance and its impact on device or system operationiscritical in
every aspect of electrical engineering.

A capacitor is a device that stores energy; energy thus stored can either be as-
sociated with accumulated charge or it can be related to the stored electric field,
as was discussed in Section 4.8. In fact, one can think of a capacitor as a device
that stores electric fIu , in asimilar way that an inductor — an analogous device —
stores magnetic flux (or ultimately magnetic field energy). We will explore this in
Chapter 8. A primary goal in this chapter is to present the methods for calculating
capacitance for a number of cases, including transmission line geometries, and to be
able to make judgments on how capacitance will be altered by changes in materials
or their configuration. m

c apacitance measures the capability of energy storage in electrical devices.

6.1 CAPACITANCE DEFINED

Consider two conductors embedded in a homogeneous dielectric (Figure 6.1). Con-
ductor M, carries atotal positive charge O, and M; carries an equal negative charge.
There are no other charges present, and the total charge of the system is zero.

We now know that the chargeis carried on the surface as a surface charge density
and also that the electric field is normal to the conductor surface. Each conductor
is, moreover, an equipotential surface. Because M, carries the positive charge, the
electric flux is directed from M, to My, and M, is at the more positive potential. In
other words, work must be done to carry a positive charge from M; to M.

L et usdesignate the potential difference between A, and M; as V. We may now
define the capacitance of this two-conductor system as the ratio of the magnitude
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+ =
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+ M,
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e o +
o dielectric s
T+ o+

Figure 6.1 Two oppositely charged
conductors M4 and M» surrounded by a uniform
dielectric. The ratio of the magnitude of the
charge on either conductor to the magnitude of
the potential difference between them is the
capacitance C.

of the total charge on either conductor to the magnitude of the potential difference
between conductors,

_L
T=— @)

In general terms, we determine Q by asurface integral over the positive conductors,
and we find 7 by carrying a unit positive charge from the negative to the positive
surface,

B $s€E-dS

— [TE-dL @)
The capacitance is independent of the potential and total charge, for their ratio
is constant. If the charge density isincreased by afactor of N, Gauss's law indicates
that the electric flux density or electric field intensity also increases by N, as doesthe
potential difference. The capacitance isafunction only of the physical dimensions of
the system of conductors and of the permittivity of the homogeneous dielectric.
Capacitance is measured in farads (F), where afarad is defined as one coulomb
per volt. Common values of capacitance are apt to be very small fractions of afarad,
and consequently more practical units are the microfarad («F), the nanofarad (nF),
and the picofarad (pF).
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6.2 PARALLEL-PLATE CAPACITOR

We can apply the definition of capacitanceto asimpletwo-conductor systeminwhich
the conductors are identical, infinite parallel planes with separation d (Figure 6.2).
Choosing the lower conducting plane at z = 0 and the upper one at z = d, auniform
sheet of surface charge 5 on each conductor leads to the uniform field [Section
2.5, Eq. (18)]

E = &az

€

where the permittivity of the homogeneous dielectricise, and

D = psa,

Note that this result could be obtained by applying the boundary condition at a
conducting surface (Eq. (18), Chapter 5) at either one of the plate surfaces. Referring
to the surfaces and their unit normal vectorsin Fig. 6.2, wheren, = a, andn, = —a_,
we find on the lower plane:

D _,=D-a=p = D=pa.
On the upper plane, we get the same result
D-n,|_,=D-(-a)=—p, = D=p,a.

This is a key advantage of the conductor boundary condition, in that we need to
apply it only to asingle boundary to obtain the total field there (arising from al other
SOurces).

The potential difference between lower and upper planesis

Iower
VOZ_/ .dL = /—d_—d
upper

Since the total charge on either plane is infinite, the capacitance is infinite. A more
practical answer is obtained by considering planes, each of area S, whose linear
dimensions are much greater than their separation d. The electric field and charge

Conductor surface —Ps z=d
nu
Uniform surface k
charge density
n,
Conductor surface +Ps z=0

Figure 6.2 The problem of the parallel-plate
capacitor. The capacitance per square meter of
surface area is €/d.
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distribution are then ailmost uniform at all points not adjacent to the edges, and this
latter region contributes only a small percentage of the total capacitance, allowing us
to write the familiar result
0 = psS
P

Vo=2d
€

c==== )

Morerigorously, we might consider Eq. (3) as the capacitance of aportion of the
infinite-plane arrangement having a surface area S. Methods of calculating the effect
of the unknown and nonuniform distribution near the edges must wait until we are
able to solve more complicated potential problems.

Calculatethe capacitance of aparallel-plate capacitor havingamicadielectric, e, = 6,
aplate areaof 10 in.?, and a separation of 0.01 in.

Solution. \We may find that

S = 10 x 0.0254? = 6.45 x 1073 m?
d = 0.01 x 0.0254 = 254 x 10™*m

and therefore

6 x 8.854 x 10712 x 6.45 x 103
C= 554 % 104 = 1.349nF

A large plate area is obtained in capacitors of small physical dimensions by
stacking smaller platesin 50- or 100-decker sandwiches, or by rolling up foil plates
separated by aflexible dielectric.

Table C.1 in Appendix C also indicates that materials are available having di-
electric constants greater than 1000.

Finally, the total energy stored in the capacitor is

S pd 2 2 12
S ped
We=1| eE?dv=1 / Ldzds = 1550 = 1265
g 2/vo|6 Y 2 Jo oezz e 2d e
or
1 1 %
WE_QCV?):QQVo:Q? 4)

which are all familiar expressions. Equation (4) also indicates that the energy stored
in a capacitor with a fixed potential difference across it increases as the dielectric
constant of the medium increases.
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D6.1. Find the relative permittivity of the dielectric material present in a
parallel-plate capacitor if: (a) S = 0.12m?, d = 80um, Vp = 12V, and the
capacitor contains 1 J of energy; (b) the stored energy density is 100 J/m?3,
Vo =200V, andd = 45um; (c) E = 200 kV/m and ps = 20 uC/m?.

Ans. 1.05; 1.14; 11.3
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6.3 SEVERAL CAPACITANCE EXAMPLES

As afirst brief example, we choose a coaxia cable or coaxial capacitor of inner
radius a, outer radius b, and length L. No great derivational struggle is required,
because the potential difference is given as Eq. (11) in Section 4.3, and we find the
capacitance very simply by dividing this by the total charge p; L in the length L.
Thus,

. 2mel
~In(b/a)

©®)

Next we consider a spherical capacitor formed of two concentric spherical con-
ducting shells of radius ¢ and b, 5 > a. The expression for the electric field was
obtained previously by Gauss's law,

0

" Zner?
wheretheregion between the spheresisadielectric with permittivity €. Theexpression
for potential differencewasfound fromthisby thelineintegral [Section 4.3, Eq. (12)].

Thus,
Oo/1 1
Vip = —|( — — —
b 4716<a b

Here O representsthe total charge on the inner sphere, and the capacitance becomes

0 4rre
C = — =1 (6)

a

1
b

If weallow the outer sphereto becomeinfinitely large, we obtain the capacitance

of an isolated spherical conductor,
o

For a diameter of 1 cm, or a sphere about the size of amarble,
C = 0.556 pF

in free space.
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C= L
d + dy Area, S
&5 &8
Conducting E 4 d
plates
£ dy

Figure 6.3 A parallel-plate capacitor containing two

dielectrics with the dielectric interface parallel to the conducting

plates.

Coating this sphere with a different dielectric layer, for which € = ¢;, extending

fromr =ator =ry,

D, =

Ayry2
E, = e’ (a<r<r)
_ 0
" 4regr? (s <7)
and the potential differenceis
“ Qdr /’1 Qdr
Vi = Voo = — —
* »y Ameqr? o dmegr?
1/1 1 1
8622
47 €1\ d ri €01
Therefore,
i 4

C =

1 (1 1) 1
— == =)+ —
€1 \a ry €01

®

In order to look at the problem of multiple dielectrics a little more thoroughly,
let us consider a parallel-plate capacitor of area S and spacing d, with the usual
assumption that ¢ is small compared to the linear dimensions of the plates. The
capacitance is €15/d, using a dielectric of permittivity ;. Now replace a part of
this dielectric by another of permittivity €5, placing the boundary between the two

dielectrics parallel to the plates (Figure 6.3).

Some of us may immediately suspect that this combination is effectively two

capacitorsin series, yielding atotal capacitance of

1
1 1

1 G

C =



CHAPTER 6 Capacitance

where C1 = €15/d1 and C, = €,5/d». Thisisthe correct result, but we can obtain it
using less intuition and a more basic approach.
Because the capacitance definition, C = Q/ V, involves a charge and a voltage,
we may assume either and then find the other in terms of it. The capacitance is not a
function of either, but only of the dielectrics and the geometry. Suppose we assume
a potentia difference ¥y between the plates. The electric field intensities in the two
regions, E, and E1, are both uniform, and Vo = E1di + E.d». At the dielectric
interface, £ is normal, and our boundary condition, Eq. (35) Chapter 5, tells us that
Dy1 = Dyp,0re1 E1 = € E5. Thisassumes(correctly) that thereisno surface charge
at the interface. Eliminating £ in our 7 relation, we have
Vo
d1 + da(e1/€2)
and the surface charge density on the lower plate therefore has the magnitude
Vo
ps1= D1 =e€1E1 = A
J— + J—
€1 €2

Eq

Because D1 = D,, the magnitude of the surface charge isthe same on each plate.
The capacitance is then
0 psS 1 B 1
o Vo 4 e 11
€1S * €2S Cl * C2
As an dternate (and slightly simpler) solution, we might assume a charge O on
one plate, leading to a charge density Q/S and avalue of D thatisalso Q/S. Thisis
truein both regions, as Dy1 = Dy, and D isnormal. Then E; = D/e; = Q/(€15),
E>; = D/ex; = Q/(€25), and the potential differences across the regions are 7, =
Eid1 = le/(61S), and V, = Eody = de/(EZS). The capacitanceis
1
VTt 4 &
61S €2S

How would the method of solution or the answer change if there were a third
conducting plane along the interface? We would now expect to find surface charge on
each side of this conductor, and the magnitudes of these charges should be equal. In
other words, wethink of the electric lines not as passing directly from one outer plate
to the other, but as terminating on one side of thisinterior plane and then continuing
on the other side. The capacitance is unchanged, provided, of course, that the added
conductor is of negligible thickness. The addition of a thick conducting plate will
increase the capacitance if the separation of the outer platesis kept constant, and this
is an example of a more general theorem which states that the replacement of any
portion of thedielectric by aconducting body will causeanincreasein the capacitance.

If the dielectric boundary were placed normal to the two conducting plates and
the dielectrics occupied areas of S; and S», then an assumed potential difference Vg
would produce field strengths £; = E, = Vp/d. These are tangential fields at the
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interface, and they must be equal. Then we may find in succession D1, Do, ps1, 052,
and Q, obtaining a capacitance

S S
C:ﬂldﬁzcﬁcz (10)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics
are used in such a way that the interface is not everywhere normal or paralel to
the fields. Certainly we know the boundary conditions at each conductor and at the
dielectricinterface; however, wedo not know thefieldsto which to apply the boundary
conditions. Such a problem must be put aside until our knowledge of field theory has
increased and we are willing and able to use more advanced mathematical techniques.

D6.2. Determinethe capacitance of: («) a 1-ft length of 35B/U coaxial cable,
which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric
(e, = 2.26from Table C.1), and an outer conductor that hasan inner diameter of
0.680in.; () aconducting sphere of radius 2.5 mm, covered with apolyethylene
layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; (¢) two
rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, between
which arethree sheetsof dielectric, each 1 cm by 4 cm, and 0.1 mm thick, having
dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5pF; 1.41 pF; 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE

We next consider the problem of the two-wire line. The configuration consists of two
parallel conducting cylinders, each of circular cross section, and wewill find complete
information about the electric field intensity, the potential field, the surface-charge-
density distribution, and the capacitance. This arrangement is an important type of
transmission line, asisthe coaxial cable.

Webegin by investigatingthepotential field of twoinfinitelinecharges. Figure 6.4
shows a positive line charge in the xz plane at x = ¢ and a negative line charge at
x = —a. The potential of asingle line charge with zero reference at aradiusof Rg is

R
V = Pr In—2
2m¢ R

We now write the expression for the combined potential field in terms of the radial
distances from the positive and negative lines, R; and R,, respectively,

R R R1oR
v =LL (In2R _nS2) = LL,Tiet
2me RzoRl
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—Pr z Pr

Figure 6.4 Two parallel infinite line charges carrying opposite
charge. The positive line is at x = a, y = 0, and the negative line
isat x = —a, y = 0. A general point P(x, y, 0) in the xy plane is
radially distant Ry and R, from the positive and negative lines,
respectively. The equipotential surfaces are circular cylinders.

We choose R1p = Ry, thus placing the zero reference at equal distances from each
line. Thissurfaceisthe x = 0 plane. Expressing R; and R, intermsof x and y,

24 42 2., .2
y— Plin (x+a)y+y :,o_Lln(x+a) +y (11)
2me \ (x —a)2+ %2 dme (x —a)?+ y?

In order to recognize the equipotential surfaces and adequately understand the
problem we are going to solve, some algebrai c manipul ations are necessary. Choosing
an equipotential surface V' = 13, we define K; as a dimensionless parameter that is
afunction of the potential 77,

Ki= eMmen/pr (12
so that
(x +a)®>+y?
Ki=—55——
(x —a)?+y?
After multiplying and collecting like powers, we obtain
Ki+1
x2_2axKii_l+y2+a2=0

We next work through a couple of lines of algebra and complete the square,
( K1+1)2 ) <2a«/_K1)2
X —a +y° =
Ki—-1 Ki—-1

Thisshowsthat the V' = 13 equipotential surfaceisindependent of z (or isacylinder)
and intersectsthe xy planein acircle of radius b,

_ 2a«/K1
K -1

b
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whichiscentered at x = 4, y = 0, where

Ki+1
a

K;—1

Now let us attack aphysical problem by considering a zero-potential conducting

plane located at x = 0, and a conducting cylinder of radius » and potential V5 with
its axis located adistance 2 from the plane. We solve the last two equations for a and
K1 interms of thedimensions b and #,

h =

a=+h%—b? (13)
and
h + ~/h? — b?
VKL= % (14)
But the potential of the cylinder is g, so EQ. (12) leadsto
VK = eZeholn
Therefore,
4re Vo
= 15
L=k (15)

Thus, given &, b, and 7y, we may determine a, p;, and the parameter K;. The
capacitance between the cylinder and plane is now available. For alength L in the z
direction, we have

_pLL B 4mel _ 2mel

C _ e AR
Vo InK4 Inv K1

or
C— 2l . 27el
o In[(h + VhZ = b2)/b]  cosh~i(h/b)
The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius
at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero

potential. Thus, b = 5, h = 13, Vo = 100, and we rapidly find the location of the
equivalent line charge from Eq. (13),

a=vh—p =12 -2 =12m
the value of the potential parameter K, from Eq. (14),
\/K— h+h2—0b%2 13+12
1 = =

b 5
the strength of the equivalent line charge from Eq. (15),

4meVy  Am x 8.854 x 1072 x 100

(16)

=5 K1=25

pL = ks = o5 = 3.46nC/m
and the capacitance between cylinder and plane from Eqg. (16),
2 2 . 10712
€ T x 8.854 x 10 — 34,6 pF/m

C = =
cosh™ (i /b) cosh~(13/5)
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~ ~
/ N
N
Equivalent \
line charge
\
I
_ Center, x =13, |
y=0,V= lOO/
Center,x =18,y =
N radius = 13.42 /

N7 7 — Ve
~_ J 50//

~— —_

Figure 6.5 A numerical example of the
capacitance, linear charge density, position of an
equivalent line charge, and characteristics of the
mid-equipotential surface for a cylindrical
conductor of 5 m radius at a potential of 100 V,
parallel to and 13 m from a conducting plane at
zero potential.

We may also identify the cylinder representing the 50 V equipotential surface by
finding new valuesfor K1, 4, and b. Wefirst use Eq. (12) to obtain

—12 -9
Kl — e47reV1/pL _ e4rr><8.854><10 x50/3.46x 10 —5.00

Then the new radiusis

2a /K1 2x 125

Ki—1  5-1

and the corresponding value of # becomes
heafitl 37 gy

K;—1 5-1
This cylinder is shown in color in Figure 6.5.
The electric field intensity can be found by taking the gradient of the potential
field, as given by Eq. (11),

2
E—_v (x +a)? + y?
47te (x —a)’+y?
Thus,
2(x + a)a, + 2yay 2(x —a)a, + 2ya,
E= -
47T6 (x + a)? + y?2 (x —a)? +y?
and

R N

D_GE___L[(x+a)ax+yay (x—a)ax+yay}
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If weevaluate D, at x = h — b, y = 0, we may obtain ps max

__p . OL h—b+a h—b—a
PS.max = xx=h=by=0 = 5 (h—b+a)2 (h—b—a)?

For our example,
346x10°[ 13—-5+12 13-5-12
psmac = o [(13— 51122 (13-5- 127
Similarly, ps.min = Dx x=h+b,y—0, @d
346x10°[13+5+12 134+5-12
PS8, min = o [ 302 - 62

} = 0.165 nC/m?

] = 0.073 nC/m?

Thus,

LS. max = 2~25/05,min
If we apply Eq. (16) to the case of a conductor for which b « &, then

In[(h + v/h2 — b2)/b] =In[(h + h)/b] =In(2h/b)

and
2mel
~ In(2h/b)
The capacitance between two circular conductors separated by a distance 24
is one-half the capacitance given by Eqgs. (16) or (17). This last answer is of inter-
est because it gives us an expression for the capacitance of a section of two-wire
transmission line, one of the types of transmission lines studied later in Chapter 13.

(b < h) (17)

D6.3. A conducting cylinder with aradiusof 1 cmand at apotential of 20V is
parallel to aconducting planewhichisat zero potential. The planeis5 cm distant
from the cylinder axis. If the conductors are embedded in a perfect dielectric
for which €, = 4.5, find: (a) the capacitance per unit length between cylinder
and plane; (b) ps.max ON the cylinder.

Ans. 109.2 pF/m; 42.6 nC/m?

6.5 USING FIELD SKETCHES TO ESTIMATE
CAPACITANCE IN TWO-DIMENSIONAL
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-
scribed using asingle coordinate system, other analysistechniquesareusually applied.
Such methodstypically involve anumerical determination of field or potential values
over agrid within the region of interest. In this section, another approach is described
that involves making sketches of field lines and equipotential surfaces in a manner
that followsafew simplerules. Thisapproach, although lacking the accuracy of more
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elegant methods, allowsfairly quick estimates of capacitance while providing auseful
visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-
racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance
determination) may be obtained by a beginner who does no more than follow the
few rules and hints of the art. The method to be described is applicable only to fields
in which no variation exists in the direction normal to the plane of the sketch. The
procedure is based on several facts that we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. Theélectricfield intensity and electric flux density are both perpendicular to the
equipotential surfaces.

3. E and D aretherefore perpendicular to the conductor boundaries and possess
zero tangentia values.

4. Thelines of electric flux, or streamlines, begin and terminate on charge and
hence, in a charge-free, homogeneous dielectric, begin and terminate only on
the conductor boundaries.

We consider the implications of these statements by drawing the streamlines on
asketch that already shows the equipotential surfaces. In Figure 6.6«, two conductor
boundaries are shown, and equipotentials are drawn with a constant potential differ-
ence between lines. We should remember that these lines are only the cross sections
of the equipotential surfaces, which are cylinders (although not circular). No variation
in the direction normal to the surface of the paper is permitted. We arbitrarily choose
to begin astreamline, or flux line, at 4 on the surface of the more positive conductor.
It leaves the surface normally and must cross at right angles the undrawn but very
real equipotential surfaces between the conductor and the first surface shown. The
lineis continued to the other conductor, obeying the single rule that the intersection
with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending
at B’. We need to understand the meaning of this pair of streamlines. The streamline,

Equipotentials

B
X A
Conductor @M AL, \4 71
bounda Y /_\ B’
vy \Conductor R 7l
boundary ALy

(@) (b)

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. The
increment of potential between each of the two adjacent equipotentials is the same.
(b) One flux line has been drawn from A to A’, and a second from B to B'.
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by definition, iseverywhere tangent to the electric field intensity or to the electric flux
density. Because the streamline is tangent to the electric flux density, the flux density
is tangent to the streamline, and no electric flux may cross any streamline. In other
words, if there is a charge of 5. C on the surface between 4 and B (and extending
1 minto the paper), then 51 C of flux begins in this region, and all must terminate
between 4’ and B’. Such a pair of linesis sometimes called a flux tube, because it
physically seemsto carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visua in-
terpretations we may make from the sketch will be greatly simplified if we draw this
line starting from some point C chosen so that the same amount of flux is carried in
the tube BC asiscontained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining A to B may be
found approximately by assuming avaluefor the flux in the tube AB, say AW, which
alowsusto expressthe electric flux density by AW /A L,, wherethe depth of the tube
into the paper is1 mand A L, isthelength of thelinejoining 4 to B. The magnitude
of E isthen

1AV
e AL,

We may aso find the magnitude of the electric field intensity by dividing the
potential difference between points 4 and A4;, lying on two adjacent equipotential
surfaces, by the distance from 4 to 4;. If this distance is designated AL y and an
increment of potential between equipotentials of AV isassumed, then

AV
ALy

This value applies most accurately to the point at the middle of the line segment
from A to 4, while the previous value was most accurate at the midpoint of theline
segment from 4 to B. If, however, the equipotentials are close together (A ) small)
and the two streamlines are close together (AW small), the two values found for the
electric field intensity must be approximately equal,

1 AV AV
e AL, ALy

Throughout our sketch we have assumed a homogeneous medium (e constant), a
constant increment of potential between equipotentials (A 7 constant), and a constant
amount of flux per tube (AW constant). To satisfy all these conditions, Eg. (18) shows
that

(18)

AL, 1AV
= constant = - —
ALN e AV

(19)

A similar argument might be made at any point in our sketch, and we aretherefore
led to the conclusion that a constant ratio must be maintained between the distance
between streamlines as measured along an equipotential, and the distance between
equipotentials as measured along astreamline. It isthisratio that must have the same
value at every point, not the individual lengths. Each length must decrease in regions
of greater field strength, because AV is constant.
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Figure 6.7 The remaining of the
streamlines have been added to

Fig. 6.6b by beginning each new line
normally to the conductor and
maintaining curvilinear squares
throughout the sketch.

The simplest ratio we can use is unity, and the streamline from B to B’ shownin
Figure 6.6h was started at a point for which AL, = AL y. Because the ratio of these
distancesiskept at unity, the streamlinesand equi potential sdividethefiel d-containing
region into curvilinear squares, aterm implying aplanar geometric figure that differs
from a true square in having slightly curved and slightly unequal sides but which
approaches a square as its dimensions decrease. Those incremental surface elements
in our three coordinate systems which are planar may aso be drawn as curvilinear
sguares.

We may now sketch in the remainder of the streamlines by keeping each small
box as square as possible. One streamline is begun, an equipotential line is roughed
in, another streamlineisadded, forming acurvilinear square, and the map isgradually
extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes
the rules. Proficiency in any art requires practice. A good problem for beginnersis
the coaxial cable or coaxial capacitor, since al the equipotentialsare circleswhilethe
flux lines are straight lines. The next sketch attempted should be two parallel circular
conductors, where the equipotentialsare again circles but with different centers. Each
of these is given as a problem at the end of the chapter.

Figure 6.8 showsacompleted map for acabl e containing asgquareinner conductor
surrounded by a circular conductor. The capacitance is found from C = Q/V, by
replacing Q by NpAQ = Ny AW, where Ny is the number of flux tubes joining
the two conductors, and letting Vo = Ny AV, where Ny isthe number of potential
increments between conductors,

_ NoAQ
T ONyAV

and then using Eg. (19),

No AL N,
— e

— = (20)
Ny ALy Ny
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Conductor
boundary
Repeats
Conductor 5 | |
boundary
Repeats

Figure 6.8 An example of a curvilinear-square
field map. The side of the square is two-thirds the
radius of the circle. Ny =4 and Ng = 8 x 3.25

x 26, and therefore C = ¢gNg/Ny = 57.6 pF/m.

since AL,/ALy = 1. The determination of the capacitance from aflux plot merely
consists of counting squares in two directions, between conductors and around either
conductor. From Figure 6.8 we obtain

8 x 3.25
C= 607X4 = 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples
of the construction of field maps by curvilinear squares. They offer the following
suggestions:!

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Dividethe known potential difference between electrodes into an equal number
of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentialsin the region where the field is known best,
for example, in some region where it approaches a uniform field. Extend the
equipotentials according to your best guess throughout the plot. Note that they
should tend to hug acute angles of the conducting boundary and be spread out
in the vicinity of obtuse angles of the boundary.

1 By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51-52. See References at the end
of this chapter. Curvilinear maps are discussed on pp. 50-52.
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Draw in the orthogonal set of field lines. As these are started, they should form
curvilinear squares, but, asthey are extended, the condition of orthogonality
should be kept paramount, even though thiswill result in some rectangles with
ratios other than unity.

L ook at the regions with poor side ratios and try to see what was wrong with the
first guess of equipotentials. Correct them and repeat the procedure until
reasonable curvilinear squares exist throughout the plot.

In regions of low field intensity, there will be large figures, often of five or six
sides. To judge the correctness of the plot in this region, these large units should
be subdivided. The subdivisions should be started back away from the region
needing subdivision, and each time a flux tube is divided in half, the potential
divisionsin this region must be divided by the same factor.

D6.4. Figure 6.9 showsthe crosssection of two circular cylindersat potentials
of 0 and 60 V. The axes are parallel and the region between the cylindersisair-
filled. Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-
square map on the figure and use it to establish suitable values for: (a) the
capacitance per meter length; (b) E at the left side of the 60 V conductor if its
trueradiusis 2 mm; (c) ps at that point.

Ans. 69 pF/m; 60 kV/m; 550 nC/m?

Figure 6.9 See Problem D6.4.
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6.6 POISSON’S AND LAPLACE’S EQUATIONS

In preceding sections, we have found capacitance by first assuming a known charge
distribution on the conductors and then finding the potential difference in terms of
the assumed charge. An alternate approach would be to start with known potentials
on each conductor, and then work backward to find the charge in terms of the known
potential difference. The capacitance in either caseisfound by theratio O/ V.

The first objective in the latter approach is thus to find the potential function
between conductors, given values of potential on the boundaries, along with possible
volume charge densities in the region of interest. The mathematical tools that enable
thisto happen are Poisson’s and L aplace’s equations, to be explored in the remainder
of this chapter. Problemsinvolving one to three dimensions can be solved either ana-
Iytically or numerically. Laplace’s and Poisson’s equations, when compared to other
methods, are probably the most widely useful because many problemsin engineering
practice involve devices in which applied potential differences are known, and in
which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of
Gauss's law,

V-D=p, (21)
the definition of D,
D =¢E (22)
and the gradient relationship,
E=-VV (23)

by substitution we have
V:-D=V-(eE)=—-V-(eVV)=p,
or

V.VV=-= (24)
€
for a homogeneous region in which ¢ is constant.
Equation (24) is Poisson’s equation, but the “double V" operation must be inter-
preted and expanded, at least in rectangular coordinates, before the equation can be
useful. In rectangular coordinates,

04 " 04, n 04,
ax ay 0z

v v v
VV == _ax + _av + _az
y z

V.A=
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q [V K4 9 [V

VVWV=—|—|+——)+——
ax \ d0x ay \ dy dz \ 0z
L N T

_yr v v 25
8x2+ 0y? + 0z2 (29

and therefore

Usually theoperation V - V isabbreviated V2 (and pronounced “ del squared”), agood
reminder of the second-order partial derivatives appearing in Eq. (5), and we have

vzy = 2V N 9%V N V. py
- 2 922 €

> (26)

in rectangular coordinates.
If p, = 0, indicating zero volume charge density, but allowing point charges,
line charge, and surface charge density to exist at singular |ocations as sources of the

field, then
V2y =0 (27)

which is Laplace’s equation. The V2 operation is called the Laplacian of V.
In rectangular coordinates Laplace’s equation is

w2y = 2V N A 4

—+—=0 rectangular 28
ax2 = 9y? + 0z2 ( gular) (28)

andtheformof V2V incylindrical and spherical coordinatesmay be obtained by using
the expressions for the divergence and gradient already obtained in those coordinate
systems. For reference, the Laplacian in cylindrical coordinatesis

19/ av 1 /a2y %
VeV == —|p— = (== — lindrical 29
p8p<p8p>+p2(3¢2)+322 (Yncea) @)

and in spherical coordinatesis

19 v 1 9 v 1 827
V2V = = —(r2P— — —( sing— - herical
r2 a;»(r 8r>+r25|n9 ae( 89>+r25in26 A2 (sp )

(30)

These equations may be expanded by taking the indicated partial derivatives, butitis
usually morehel pful to havethemintheformsjust given; furthermore, itismuch easier
to expand them later if necessary thanit isto put the broken piecesback together again.

Laplace's equation is al-embracing, for, applying as it does wherever volume
charge density is zero, it states that every conceivable configuration of electrodes
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or conductors produces a field for which V27 = 0. All these fields are different,
with different potential values and different spatial rates of change, yet for each
of them V2V = 0. Because every fidld (if p, = 0) satisfies Laplace’s equation,
how can we expect to reverse the procedure and use Laplace's equation to find one
specific field in which we happen to have an interest? Obviously, moreinformationis
required, and we shall find that we must solve Laplace’s equation subject to certain
boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-
aly contains two or more. The potentials on these boundaries are assigned values,
perhaps 1, V1, ..., or perhaps numerical values. These definite equipotential sur-
faces will provide the boundary conditions for the type of problem to be solved. In
other types of problems, the boundary conditions take the form of specified values of
E (aternatively, a surface charge density, ps) on an enclosing surface, or a mixture
of known valuesof 7 and E.

Before using Laplace's equation or Poisson’s equation in several examples, we
must statethat if our answer satisfies L aplace’ sequation and al so sati sfiestheboundary
conditions, then it isthe only possible answer. Thisis a statement of the Uniqueness
Theorem, the proof of which is presented in Appendix D.

D6.5. Caculate numerical values for ¥ and p, at point P in free space if:

4
(@)V = %Zl a P(1,2,3); (b)) V = 5p?cos2¢p, a P(p = 3,¢ = T
X

3
2
2=2;(@) V=222 & p(- = 05,0 = 45, ¢ = 60°).
r

Ans. 12V, —106.2 pC/m3; =225V, 0; 4V, 0

6.7 EXAMPLES OF THE SOLUTION
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest
method isthat of direct integration. We will use this technique to work several exam-
ples involving one-dimensional potential variation in various coordinate systemsin
this section.

The method of direct integration is applicable only to problems that are “one-
dimensional,” or in which the potential field is a function of only one of the three
coordinates. Since we are working with only three coordinate systems, it might seem,
then, that there are nine problems to be solved, but a little reflection will show that
afield that varies only with x is fundamentally the same as a field that varies only
with y. Rotating the physical problem aquarter turn is no change. Actually, there are
only five problems to be solved, one in rectangular coordinates, two in cylindrical,
and two in spherical. We will solve them all.

First, let us assume that V' is afunction only of x and worry later about which
physical problem we are solving when we have a need for boundary conditions.
L aplace's equation reduces to
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and the partial derivative may be replaced by an ordinary derivative, since J isnot a
function of y or z,

d*v
=0
dx?
We integrate twice, obtaining
dv
=4
dx
and
V=A4Ax+ B (31)

where 4 and B areconstantsof integration. Equation (31) containstwo such constants,
as we would expect for a second-order differential equation. These constants can be
determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V' isa
constant if x is a constant or, in other words, the equipotential surfaces are parallel
planes normal to the x axis. Thefield isthusthat of a parallel-plate capacitor, and as
soon as we specify the potential on any two planes, we may evaluate our constants of
integration.

Start with the potential function, Eq. (31), and find the capacitance of aparallel-plate
capacitor of plate area S, plate separation d, and potential difference 7, between
plates.

Solution. Teke V' =0atx =0and V' = I at x = d. Then from Eq. (31),

V.
4= B=0
d
and
Vox
V= — 32
p (32

We still need thetotal charge on either plate before the capacitance can be found.
We should remember that when we first solved this capacitor problem, the sheet of
charge provided our starting point. We did not have to work very hard to find the
charge, for al the fields were expressed in terms of it. The work then was spent in
finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been
made:

Given V,useE = —VV tofind E.

UseD = ¢E tofind D.

Evaluate D at either capacitor plate, D = Dg = Dyay.

Recognize that ps = Dy.

Find O by asurface integration over the capacitor plate, O = [ psdS.

nhw =
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Here we have
X
V="
14
E = ——Oax
d
|4
D= —e—oax
d
14
Ds=D|_,=—¢a,
ay — ay
Dy = eVO =
N — d = pPs
EV() V()S
= dS = —e—
0=] = 4
and the capacitanceis
0] €S
C=—=— 33
7o d 33

We will use this procedure several timesin the examplesto follow.

Because no new problems are solved by choosing fields which vary only with y or
with z in rectangular coordinates, we pass on to cylindrical coordinates for our next
example. Variations with respect to z are again nothing new, and we next assume
variation with respect to p only. Laplace’s equation becomes

190 < 3V>
——(p—)=0
pop\ dp
Noting the p in the denominator, we exclude p = 0 from our solution and then

multiply by p and integrate,

dv
p—— =4
dp

where atotal derivative replaces the partial derivative because V' varies only with p.
Next, rearrange, and integrate again,

V=Alnp+B (34)

The equipotential surfaces are given by p = constant and are cylinders, and the
problem is that of the coaxial capacitor or coaxial transmission line. We choose a
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potential difference of 1, by letting V = Vopatp =a,V =0at p = b, b > a, and
obtain

_, In(/p)
~ "%In(b/a) (35)

from which

4 1
~ p Inb/a)
€ Vo
aln(b/a)
€ V027mL
aln(b/a)

a

Dy(p=a) =

Q:

2mel

~ In(b/a) (30

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 6.4

Now assumethat V" isafunction only of ¢ in cylindrical coordinates. We might ook
at the physical problem first for achange and see that equipotential surfaces are given
by ¢ = constant. These are radia planes. Boundary conditions might be V' = 0 at
¢ =0and V = Iy at ¢ = «, leading to the physical problem detailed in Figure 6.10.

Insulating
gap 14

Figure 6.10 Two infinite radial planes with an
interior angle «. An infinitesimal insulating gap exists
at p = 0. The potential field may be found by applying
Laplace’s equation in cylindrical coordinates.
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Laplace’s equation is now

1 9%V
=0
p? d¢?
We exclude p = 0 and have
d?v
de?
The solution is
V=Ap+ B
The boundary conditions determine 4 and B, and
v = 37)
o

Taking the gradient of Eq. (37) produces the electric field intensity,

Vo ay
ap

E= (39)

and it is interesting to note that £ is a function of p and not of ¢. This does not
contradict our origina assumptions, which were restrictions only on the potential
field. Note, however, that the vector field E isin the ¢ direction.

A problem involving the capacitance of these two radial planesisincluded at the
end of the chapter.

We now turn to spherical coordinates, dispose immediately of variations with respect
to ¢ only as having just been solved, and treat first V' = V' (r).
The details are left for a problem later, but the final potential field is given by

1 1
Y — yo L b
11 (39)
a b

where the boundary conditions are evidently V' =0atr=band V=Vy a r = a,
b > a. The problem is that of concentric spheres. The capacitance was found previ-
oudly in Section 6.3 (by a somewhat different method) and is

47e

(40)
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EXAMPLE 6.6

In spherical coordinateswe now restrict the potential functionto 1 = (), obtaining

1 d (. dV
(sm@—):O

r2sind do do
Weexcluder = 0and 9 = 0 or 7 and have
. dV
sng— = A4
do
The second integral is then
Ado
sing

whichisnot asobvious asthe previous ones. Fromintegral tables (or agood memory)
we have

V=Aln(tan%)+B (41)

The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case
whereV =0atd =n/2and V = Va6 = o, ¢ < /2. We obtain

0
In(tan 5)
V=" (42)

Gap
/

V=0

Figure 6.11 Forthe cone 6 = « at V/y and the
plane 6 = /2 at V = 0, the potential field is given by
V = Vy[in(tan 6/2)]/[In(tan «/2)].
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In order to find the capacitance between a conducting cone with its vertex sepa-
rated from a conducting plane by an infinitesimal insulating gap and its axis normal
to the plane, wefirst find the field strength:

The surface charge density on the cone is then

—GVO
ps =
. o
7 Sina In(tan E)

producing atotal charge Q,

0- -y / /Z”rsmocdd)dr
smozln( )

—27'[60 Vo / d
r

ECHE

Thisleadsto an infinite value of charge and capacitance, and it becomes necessary to
consider acone of finite size. Our answer will now be only an approximation because
the theoretical equipotential surfaceisé = «, aconical surface extending fromr» = 0
tor = oo, whereas our physical conica surface extends only from » = 0 to, say,
r = r1. The approximate capacitanceis

2
c €T, (43)

In cota
2

If wedesire amore accurate answer, we may make an estimate of the capacitance
of the base of the cone to the zero-potential plane and add this amount to our answer.
Fringing, or nonuniform, fields in this region have been neglected and introduce an
additional source of error.

D6.6. Find |E| a P(3, 1, 2) in rectangular coordinates for the field of: (a)
two coaxia conducting cylinders, ¥ = 50V at p = 2m,and V = 20V
at p = 3 m; (b) two radial conducting planes, ¥ = 50 V at ¢ = 10°, and
V=20V a¢=230.

Ans. 23.4V/m; 27.2V/m
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6.8 EXAMPLE OF THE SOLUTION
OF POISSON’S EQUATION: THE P-N
JUNCTION CAPACITANCE

To select areasonably simpleproblemthat might illustratethe application of Poisson’s
equation, we must assume that the volume charge density is specified. This is not
usually the case, however; infact, it is often the quantity about which we are seeking
further information. The type of problem which we might encounter later would
begin with a knowledge only of the boundary values of the potential, the electric
field intensity, and the current density. From these we would have to apply Poisson’s
equation, the continuity equation, and some relationship expressing the forces on
the charged particles, such as the Lorentz force equation or the diffusion equation,
and solve the whole system of equations simultaneously. Such an ordeal is beyond
the scope of this text, and we will therefore assume a reasonably large amount of
information.

Asan example, let us select apn junction between two hal ves of a semiconductor
bar extending in the x direction. We will assume that the region for x < Oisdoped p
type and that theregion for x > 0isn type. The degree of doping isidentical on each
side of the junction. To review some of the facts about the semiconductor junction,
we note that initially there are excess holes to the left of the junction and excess
electrons to the right. Each diffuses across the junction until an electric field is built
up in such adirection that the diffusion current drops to zero. Thus, to prevent more
holes from moving to the right, the electric field in the neighborhood of the junction
must be directed to theleft; E, isnegative there. Thisfield must be produced by anet
positive charge to the right of the junction and a net negative charge to the left. Note
that the layer of positive charge consists of two parts—the holes which have crossed
the junction and the positive donor ions from which the electrons have departed.
The negative layer of charge is constituted in the opposite manner by electrons and
negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the
negative field which it producesis shown in Figure 6.125. After looking at these two
figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different
expressions. One of the simpler expressionsis

a a

which has a maximum charge density p, n.x = pvo that occurs at x = 0.881a. The
maximum charge density p, ¢ is related to the acceptor and donor concentrations N,
and N, by noting that all the donor and acceptor ions in this region (the depletion
layer) have been stripped of an electron or a hole, and thus

Pvo = eN, = eNy
We now solve Poisson’s equation,

i)
€

V2V = —
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Py

Pvo

xla
(a)
ek,
2,0:;0“
-5 4 -3 -2 -1 1 2 3 4 5 y
xla
—0.5
1
(%)
LVO xla
va()a2

(©

Figure 6.12 (a) The charge density, (b) the electric field intensity, and
(c) the potential are plotted for a pn junction as functions of distance from
the center of the junction. The p-type material is on the left, and the n-type
is on the right.
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subject to the charge distribution assumed above,

acv 2

a _ _POseht tanht

dx? € a a
in this one-dimensional problem in which variationswith y and z are not present. We
integrate once,

dv  2p,
_—= IO Oa%chf + Cl
dx € a
and obtain the electric field intensity,
2py
E, =— P 0aszech)ﬁ - C
€ a

To evaluate the constant of integration C1, we note that no net charge density and no
fields can exist far from the junction. Thus, asx — 400, E, must approach zero.
Therefore C; = 0, and

2py
E. = —M%chf (45)
€ a
Integrating again,

4p,0a 2

V = tan71 ex/“ + CZ

Let us arbitrarily select our zero reference of potential at the center of the junction,
x =0,

4p,0a°
0= —+C
2 + C2
and finally,
4 2
y _ Apvoa” (tan-lex/a _ z) (46)
€ 4

Figure 6.12 shows the charge distribution (), electric field intensity (b), and the
potentia (c), as given by Eqgs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5z from the
junction. Thetotal potential difference /'y acrossthejunctionisobtained from Eq. (46),

27 pyoa?
VO = Vx—>oo - Vx—)—oo = Py

(47)
€

Thisexpression suggests the possibility of determining the total charge on one side of
the junction and then using Eq. (47) to find ajunction capacitance. Thetotal positive
chargeis

o X X
0=3=S / 2p,08ech— tanh — dx = 2p,0a S
0 a a

where S istheareaof thejunction crosssection. If wemakeuse of Eq. (47) toeliminate
the distance parameter a, the charge becomes

0=s 2pv0€ Vo (49)
T
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Becausethetotal chargeisafunction of the potential difference, we haveto be careful

in defining a capacitance. Thinking in “circuit” terms for a moment,
do dVy
[ = — = C—

dt dt

and thus

o
c="=
dVo

By differentiating Eq. (48), we therefore have the capacitance

[ pvoe €S
C = S=— 49
21V 2na (49)

The first form of Eq. (49) shows that the capacitance varies inversely as the square
root of the voltage. That is, a higher voltage causes a greater separation of the charge
layers and a smaller capacitance. The second form is interesting in that it indicates
that we may think of thejunction asaparallel-plate capacitor with a“plate”’ separation
of 2rra. Inview of the dimensions of the region in which the charge is concentrated,
thisisalogical result.

Poisson’s equation enters into any problem involving volume charge density.
Besides semiconductor diode and transi stor models, we find that vacuum tubes, mag-
netohydrodynamic energy conversion, and ion propulsion requireits usein construct-
ing satisfactory theories.

D6.7. In the neighborhood of a certain semiconductor junction, the volume
charge density is given by p, = 750 sech 1087zx tanh 10%mx C/m?. The di-
electric constant of the semiconductor material is 10 and the junction areais
2 x 107" m?. Find: (a) Vo; (b) C; (c) E at the junction.

Ans. 2.70V; 8.85 pF; 2.70 MV/m
D6.8. Given the volume charge density p, = —2 x 107¢p/x C/m? in free

space, let V' =0atx =0andlet V =2V atx = 2.5mm. Atx = 1 mm, find:
(a) V; (b) Ex.

Ans. 0.302V; —555V/m
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CHAPTER 6 PROBLEMS @
| Quizzes |

6.11 Consider acoaxial capacitor having inner radius a, outer radius b, unit
length, and filled with a material with dielectric constant, ¢,. Compare thisto
aparallel-plate capacitor having plate width w, plate separation d, filled with
the same dielectric, and having unit length. Express the ratio 5/a in terms of
theratio d /w, such that the two structures will store the same energy for a
given applied voltage.

621 Lets=100mm2 d = 3 mm, and €, = 12 for aparallel-plate capacitor.
(a) Cdlculate the capacitance. (b) After connecting a 6-V battery across the
capacitor, calculate £, D, Q, and the total stored electrostatic energy.

(¢) With the source still connected, the dielectric is carefully withdrawn
from between the plates. With the dielectric gone, recalculate £, D, Q, and
the energy stored in the capacitor. (d) If the charge and energy found in
part (c) are less than the values found in part (b) (which you should have
discovered), what became of the missing charge and energy?

631 Capacitors tend to be more expensive as their capacitance and
maximum voltage Vmax increase. The voltage Vmax is limited by the field
strength at which the dielectric breaks down, Ep. Which of these dielectrics
will give the largest CVmax product for equal plate areas? (a) Air: ¢, = 1,
Epp = 3MV/m. (b) Barium titanate: ¢, = 1200, Egp = 3MV/m. (¢) Silicon
dioxide: €, = 3.78, Ezp = 16 MV/m. (d) Polyethylene: ¢, = 2.26, Ezp =
4.7 MV/m.

640 Anairfilled parallel-plate capacitor with plate separation d and plate
area A4 is connected to a battery that applies a voltage 1 between
plates. With the battery left connected, the plates are moved apart to a
distance of 104. Determine by what factor each of the following
quantities changes: (a) Vo; (b) C; (¢) E; (d) D; (e) Q; (f) ps; (g) WE.

651 A parallel-plate capacitor is filled with a nonuniform dielectric characterized
by €. = 24 2 x 10%?, where x isthe distance from one plate in meters.
If $=0.02m? andd = 1 mm, find C.

6.61 Repeat Problem 6.4, assuming the battery is disconnected before the plate
separation is increased.

6.71 Lete,q =25for0<y <1mm, ¢, =4forl <y < 3mm,ande,; for
3 < y < 5mm (region 3). Conducting surfaces are present at y = 0 and
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y = 5 mm. Calculate the capacitance per square meter of surface area
if (@) region 3isair; (b) €,3 = €.1; (¢) €,3 = €.2; (d) region 3issilver.

681 A parallel-plate capacitor is made using two circular plates of radius a, with
the bottom plate on the xy plane, centered at the origin. The top plateis
located at z = d, with its center on the z axis. Potential Vj is on the top plate;
the bottom plate is grounded. Dielectric having radially dependent
permittivity fills the region between plates. The permittivity is given by
€(p) = eo(1 + p?/a®). Find (a) E; (b) D; (c) O; (d) C.

6.9 Two coaxial conducti ng cylinders of radius 2 cm and 4 cm have alength
of 1 m. The region between the cylinders contains alayer of dielectric from
p = cto p = d with ¢, = 4. Find the capacitance if (a) c = 2cm, d = 3cm;
(b) d = 4 cm, and the volume of the dielectric isthe same asin part (a).

6.10 1 A coaxial cable has conductor dimensions of ¢ = 1.0 mm and b = 2.7 mm.
The inner conductor is supported by dielectric spacers (¢, = 5) in the
form of washers with a hole radius of 1 mm and an outer radius of 2.7 mm,
and with athickness of 3.0 mm. The spacers are located every 2 cm down
the cable. (@) By what factor do the spacers increase the capacitance per
unit length? (b) If 100 V is maintained across the cable, find E at al points.

6.11 1 Two conducti ng spherical shellshaveradiia = 3cmand b = 6 cm. The
interior is aperfect dielectric for which e, = 8. (a) Find C. (b) A portion of
the dielectric isnow removed so that e, = 1.0,0 < ¢ < 7/2,and ¢, = 8,
/2 < ¢ < 2r. Againfind C.

6.121 (a) Determine the capacitance of an isolated conducting sphere of radiusa in
free space (consider an outer conductor existing at » — o0). (b) The sphereis
to be covered with adielectric layer of thicknessd and dielectric contant ¢,.. If
¢, = 3,find d interms of a such that the capacitance is twice that of part (a).

6.13 | With reference to Figure 6.5, let b = 6 m, & = 15 m, and the conductor
potential be 250 V. Take € = ¢. Find valuesfor K1, o, a, and C.

6.14 1 Two#16 copper conductors (1.29 mm diameter) are parallel with a separation
d between axes. Determine d so that the capacitance between wiresin air
is 30 pF/m.

6.15 4 A 2-cm-diameter conductor issuspended in air with itsaxis 5 cm from a
conducting plane. Let the potential of the cylinder be 100 V and that of the
plane be 0 V. («) Find the surface charge density on the cylinder at a point
nearest the plane. (b) Plane at a point nearest the cylinder; (¢) find
the capacitance per unit length.

6.16 1 Consider an arrangement of two isolated conducting
surfaces of any shape that form a capacitor. Use the definitions of capacitance
(EQq. (2) inthis chapter) and resistance (Eg. (14) in Chapter 5) to show
that when the region between the conductorsis filled with either conductive
material (conductivity o) or a perfect dielectric (permittivity ¢), the resulting
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resistance and capacitance of the structures are related through the simple
formula RC = € /0. What basic properties must be true about both the
dielectric and the conducting medium for this condition to hold for certain?

6.17 | Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner
radius and 8 cm outer radius. These dimensions are suitable for the drawing.
(@) Useyour sketch to calculate the capacitance per meter length, assuming
¢, = 1. (b) Calculate an exact value for the capacitance per unit length.

6.18§ Congtruct a curvilinear-square map of the potential field about two
parallel circular cylinders, each of 2.5 cm radius, separated by a center-
to-center distance of 13 cm. These dimensions are suitable for the actual
sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assumee, = 1.

6.19 1 Construct a curvilinear-square map of the potential field between two
parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius.
The two axes are displaced by 2.5 cm. These dimensions are suitable for
the drawing. As a check on the accuracy, compute the capacitance per meter
from the sketch and from the exact expression:

C— 27e
~ cosh 1 [(a? + b2 — D?)/(2ab)]
where ¢ and b are the conductor radii and D is the axis separation.

6.20 | A solid conducting cylinder of 4 cm radius is centered within arectangular
conducting cylinder with a12 cm by 20 cm cross section. (¢) Make afull-size
sketch of one quadrant of this configuration and construct a curvilinear-square
map for itsinterior. (b) Assume e = ¢g and estimate C per meter length.

6.21 | Theinner conductor of the transmission line shown in Figure 6.13 hasa
sguare cross section 2a x 2a, whereas the outer square is4a x 5a. The axes
are displaced as shown. (a) Construct a good-sized drawing of this
transmission line, say with ¢ = 2.5 cm, and then prepare a curvilinear-square
plot of the electrostatic field between the conductors. (b) Use the map to
calculate the capacitance per meter length if € = 1.6¢q. (¢) How would your
result to part (b) changeif « = 0.6 cm?

6.22 § Two conducti ng plates, each 3 x 6 cm, and three slabs of dielectric, each
1 x 3 x 6 cm, and having dielectric constants of 1, 2, and 3, are assembled
into a capacitor with d = 3 cm. Determine the two values of capacitance
obtained by the two possible methods of assembling the capacitor.

6.23 1 A two-wire transmission line consists of two parallel perfectly conducting
cylinders, each having aradius of 0.2 mm, separated by a center-to-center
distance of 2 mm. The medium surrounding thewireshase¢, = 3and o =
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate
the magnitude of the charge per meter length on each wire. (b) Using
the result of Problem 6.16, find the battery current.
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*

Figure 6.13 See Problem 6.21.

6.241 A potential field in free space is given in spherical coordinates as

V() = { [0o/(B€0)] [3a® —7?] (r < a)
(a3po)/(3eor) (r = a)
where pg and a are constants. (a) Use Poisson’s equation to
find the volume charge density everywhere. (b) Find the total charge present.

6.250 Let V = 2xy223 and € = €. Givenpoint P(1, 2, —1),find. (a) V a P; (b) E at
P; (¢) p, & P; (d) the equation of the equipotential surface passing
through P; (e) the equation of the streamline passing through P. (/) Does V'
satisfy Laplace's equation?

6.26 | Giventhe spherically symmetric potential field in free space, V' = Voe /¢,
find. (a) p, & r = a; (b) the electric field at » = a; (¢) the total charge.
6271 Let V(x,y) =4e* + f(x) — 3y? inaregion of free space where p, = 0.
It isknown that both £, and V' are zero at the origin. Find f(x) and V' (x, y).
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6.28 | Show thatina homogeneous medium of conductivity o, the potential field

V satisfies Laplace’s equation if any volume charge density present does
not vary with time.

6.29 | Giventhe potential field V' = (4p* + Bp~*) sin4g: (a) Show that V2V = 0.
(b) Select 4 and B sothat ¥ = 100V and |[E| =500 V/mat P(p = 1,
¢ =225,z =2).

6.301 A parallel-plate capacitor has plates located at z = O and z = d. Theregion
between platesisfilled with amaterial that contains volume charge of uniform
density pg C/m® and has permittivity ¢. Both plates are held at ground
potentia. (a) Determine the potential field between plates. (b) Determine the
electric field intensity E between plates. (¢) Repeat parts (a) and (b) for the
case of theplateat z = d raised to potentia Vy, withthez = 0 plate grounded.

6310 Let 1V = (cos2¢)/p in free space. («) Find the volume charge density at
point 4(0.5, 60°, 1). (b) Find the surface charge density on a conductor
surface passing through the point B(2, 30°, 1).

6.32 1 A uniform volume charge has constant density p, = po C/m® and fills the
region» < a, in which permittivity € isassumed. A conducting spherical
shell islocated at » = @ and is held at ground potential. Find () the
potential everywhere; () the electric field intensity, E, everywhere.

6.33 | The functions (p, ¢, z) and Va(p, ¢, z) both satisfy Laplace's equation
intheregiona < p < b,0<¢ < 2n,—L <z < L;eachiszeroon
thesurfacesp =bfor—L <z < L; z=—Lfora < p < b;andz = L for
a < p < b;andeachis100V onthesurfacep =afor—L <z < L. (a) In
the region specified, is Laplace’s equation satisfied by the functions 7, + V5,
V1 — Vo, V1 + 3, and V1 V27? (b) On the boundary surfaces specified, are the
potential values given in this problem obtained from the functions 7, + 7>,
V1 — Vo, V1 + 3,and 11 V2? (¢) Arethefunctions Vy + Vo, V1 — Va,

V1 + 3, and V1 V> identical with 71?

6.34 1 Consider the parallel-plate capacitor of Problem 6.30, but this time the
charged dielectric exists only betweenz = 0and z = b, where b < d.
Free spacefillstheregion b < z < d. Both plates are at ground
potential. By solving Laplace’s and Poisson’s equations, find («) V' (z)
for 0 < z < d; (b) theelectric field intensity for 0 < z < d.
No surface charge exists at z = b, so both ' and D are continuous there.

6.35 The conducti ng planes 2x 4+ 3y = 12 and 2x + 3y = 18 are at potentials
of 100V and 0, respectively. Let € = ¢g and find (a) V" a P(5, 2, 6); (b) E
a P.

6.36 J The derivation of Laplace’s and Poisson’s equations assumed constant
permittivity, but there are cases of spatially varying permittivity in which the
equations will still apply. Consider the vector identity, V- (v G) = G- V¢ +
¥V -G, where ¢ and G are scalar and vector functions, respectively.

177



178 ENGINEERING ELECTROMAGNETICS

p=12cm

p=1mm

10 cm

Region 2

q):O_\gS» V;ZOV AN -

o= 0.179, y =200 A\ ™~ Region 1
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Gap

Figure 6.14 See Problem 6.39.

Determine a generd rule on the allowed directions in which e may vary
with respect to the local electric field.

6.37 1 Coaxial conducti ng cylindersarelocated at p = 0.5cmand p = 1.2 cm.
The region between the cylinders isfilled with a homogeneous perfect
dielectric. If theinner cylinder isat 100 V and the outer at 0 V, find
(a) the location of the 20 V equipotential surface; (b) £, max; (c) € if the
charge per meter length on the inner cylinder is 20 nC/m.

6.381 Repeat Problem 6.37, but with the dielectric only partialy filling
the volume, within 0 < ¢ < mr, and with free space in the remaining volume.

6.39 1 Thetwo conducting planesillustrated in Figure 6.14 are
defined by 0.001 < p < 0.120m,0 <z < 0.1 m, ¢ = 0.179 and 0.188 rad.
The medium surrounding the planesis air. For Region 1, 0.179 < ¢ < 0.188;
neglect fringing and find (a) V' (¢); (b) E(p); (c) D(p); () ps on the upper
surface of the lower plane; (¢) O on the upper surface of the lower plane.
(f) Repeat parts (a) through (c) for Region 2 by letting the location of
the upper plane be ¢ = .188 — 277, and then find p, and Q on the lower
surface of the lower plane. (g) Find the total charge on the lower plane and
the capacitance between the planes.

6.401 A parallel-plate capacitor is made using two circular plates
of radius «, with the bottom plate on the xy plane, centered at the origin.
Thetop plateislocated at z = d, with its center on the z axis. Potential 7
ison the top plate; the bottom plate is grounded. Dielectric having radially
dependent permittivity fills the region between plates. The permittivity
isgiven by e(p) = eo(1+ p?/a?). Find (a)V (z); (b) E; (c) Q; (d) C.
Thisisareprise of Problem 6.8, but it starts with Laplace’s equation.

6.41 1 Concentric conducti ng spheres are located at » = 5 mm and » = 20 mm.
The region between the spheresisfilled with a perfect dielectric. If
the inner sphereisat 100 V and the outer sphereisat 0V («) Find the
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location of the 20 V equipotential surface. (b) Find E, max. (¢) Find €, if
the surface charge density on the inner sphereis 1.0 . C/m?.

6.421 The hemisphere0 < < a,0 < 6 < 7/2, iscomposed of homogeneous
conducting material of conductivity o. The flat side of the hemisphere
rests on a perfectly conducting plane. Now, the material within the
conical region0 < 6 < «, 0 < r < a isdrilled out and replaced with
material that is perfectly conducting. An air gap is maintained between the
r = Otip of thisnew material and the plane. What resistance
is measured between the two perfect conductors? Neglect fringing fields.

6.43 | Two coaxial conducti ng cones have their vertices at the origin and the z axis
astheir axis. Cone 4 hasthe point 4(1, 0, 2) onits surface, while cone B
has the point B(0, 3, 2) onitssurface. Let V, = 100V and V3 = 20 V. Find
(@)  for each cone; (b) V at P(1,1, 1).

6.441 A potential field in free spaceisgivenas ' = 100Intan(6/2) + 50 V.
(a) Find the maximum value of |E,| on the surface 6 = 40°
for0.1 <r <0.8m,60° < ¢ < 90°. (b) Describe the surface V' = 80 V.

6.45 | In free space, let p, = 200¢q/724. (a) Use Poisson’s equation to
find V() if it is assumed that #?E, — Owhenr — 0, andalsothat V7 — 0
asr — oo. (b) Now find 7 (r) by using Gauss's law and aline integral.

6.461 By appropriate solution of Laplace’s and Poisson’s equations, determine
the absolute potential at the center of a sphere of radius «, containing
uniform volume charge of density po. Assume permittivity o everywhere.
Hint: What must be true about the potential and the electric
fieldatr =0andatr = a?
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The Steady Magnetic Field

accepted the experimental law of forces existing between two point charges

and defined electricfield intensity astheforce per unit charge on atest charge
in the presence of a second charge, we have discussed numerous fields. These fields
possess no real physical basis, for physical measurements must always be in terms
of the forces on the charges in the detection equipment. Those charges that are the
source cause measurable forces to be exerted on other charges, which we may think
of asdetector charges. The fact that we attribute afield to the source charges and then
determine the effect of thisfield on the detector charges amounts merely to adivision
of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic
field itself and show how it arises from a current distribution. The effect of thisfield
on other currents, or the second half of the physical problem, will be discussed in
Chapter 8. Aswe did with the electric field, we confine our initial discussion to free-
space conditions, and the effect of material media will also be saved for discussion
in Chapter 8.

The relation of the steady magnetic field to its source is more complicated than
is the relation of the electrostatic field to its source. We will find it necessary to
accept several laws temporarily on faith alone. The proof of the laws does exist and
is available on the Web site for the disbelievers or the more advanced student. |

A t this point, the concept of a field should be a familiar one. Since we first

7.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric field
changing linearly with time, or adirect current. We will largely ignore the permanent
magnet and savethetime-varying electricfield for alater discussion. Our present study
will concern the magnetic field produced by a differential dc element in free space.
Wemay think of thisdifferential current element asavanishingly small section of
acurrent-carryingfilamentary conductor, whereafilamentary conductor isthelimiting
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Free space

R\Z

(Point 1) op
dLMint 2)

aR12

I dLy X ap,
i7 e

Figure 7.1 The law of Biot-Savart
expresses the magnetic field intensity dH»
produced by a differential current element
/1dL+. The direction of dH> is into the
page.

case of acylindrical conductor of circular cross section asthe radius approaches zero.
We assume acurrent / flowing in adifferential vector length of the filament dL. The
law of Biot-Savart® then states that at any point P the magnitude of the magnetic
field intensity produced by the differential element is proportional to the product of
the current, the magnitude of the differential length, and the sine of the angle lying
between the filament and a line connecting the filament to the point P at which
the field is desired; also, the magnitude of the magnetic field intensity is inversely
proportional to the square of the distance from the differential element to the point P.
The direction of the magnetic field intensity is normal to the plane containing the
differential filament and the line drawn from the filament to the point P. Of the two
possible normals, that oneto be chosen isthe onewhichisin the direction of progress
of aright-handed screw turned from 4L through the smaller angleto thelinefrom the
filament to P. Using rationalized mks units, the constant of proportionality is1/4x.

The Biot-Savart law, just described in some 150 words, may bewritten concisely
using vector notation as

dH:IdeaR:IdLXR 1)

47 R? 47 R3
The units of the magnetic fiel intensity H are evidently amperes per meter (A/m).
The geometry isillustrated in Figure 7.1. Subscripts may be used to indicate the point
to which each of the quantitiesin (1) refers. If we locate the current element at point 1

and describe the point P at which the field isto be determined as point 2, then

IldL]_ X ap12

dH, =
2 471R%2

)

1 Biot and Savart were colleagues of Ampére, and all three were professors of physics at the Collége de
France at one time or another. The Biot-Savart law was proposed in 1820.
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Thelaw of Biot-Savart issometimescalled Ampére’s law for the current element,
but we will retain the former name because of possible confusion with Ampere's
circuital law, to be discussed | ater.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that
law iswritten for a differential element of charge,

dQ1ar12
471€0sz

Both show an inverse-square-law dependence on distance, and both show a linear
relationship between source and field. The chief difference appears in the direction
of thefield.

Itisimpossibleto check experimentally thelaw of Biot-Savart asexpressed by (1)
or (2) because the differential current element cannot be isolated. We have restricted
our attention to direct currents only, so the charge density is not a function of time.
The continuity equation in Section 5.2, Eq. (5),

dE; =

apy
v.y=_%
ot
therefore shows that
V-J=0

or upon applying the divergence theorem,

%J-dS:O

Thetotal current crossing any closed surfaceiszero, and thiscondition may be satisfied
only by assuming a current flow around a closed path. It is this current flowing in a
closed circuit that must be our experimental source, not the differential element.

It follows that only the integral form of the Biot-Savart law can be verified
experimentally,

[dLX?lR
= ¢ ——= 3
f -y ©)

Equation (1) or (2), of course, leads directly to the integral form (3), but other
differential expressions also yield the same integral formulation. Any term may be
added to (1) whoseintegral around aclosed pathiszero. That is, any conservativefield
could be added to (1). The gradient of any scalar field always yields a conservative
field, and we could therefore add aterm VG to (1), where G isagenera scalar field,
without changing (3) in the slightest. This qualification on (1) or (2) is mentioned
to show that if we later ask some foolish questions, not subject to any experimental
check, concerning the force exerted by one differential current element on another,
we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources, such
as current density J and surface current density K. Surface current flowsin asheet of
vanishingly small thickness, and the current density J, measured in amperes per square
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Figure 7.2 The total current / within a
transverse width b, in which there is a uniform
surface current density K, is Kb.

meter, istherefore infinite. Surface current density, however, is measured in amperes
per meter width and designated by K. If the surface current density is uniform, the
total current 7 inany width b is

I =Kb

whereweassumethat thewidth 5 ismeasured perpendicul arly tothedirectioninwhich
the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform
surface current density, integration is necessary:

I = / KdN 4

where dN is a differential element of the path across which the current is flowing.
Thusthedifferential current element /7 JL, where dL isin thedirection of the current,
may be expressed in terms of surface current density K or current density J,

IdL=KdS=Jdv (5)

and aternate forms of the Biot-Savart |aw obtained,

K x apdS
H= | ———— 6
. 4nR? ©)

and

d
H=/ J x apdv @
vol 47tR2
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(Point 1) ] Free space

P u/) (P()il’lt 2)

l

Figure 7.3 Aninfinitely long straight filament
carrying a direct current /. The field at point 2 is
H=(//2rp)ay.

Weillustrate the application of the Biot-Savart law by considering an infinitely
long straight filament. We apply (2) first and then integrate. This, of course, is the
same as using the integral form (3) in the first place.?

Referring to Figure 7.3, we should recognize the symmetry of this field. No
variation with z or with ¢ can exist. Point 2, at which we will determine the field,
is therefore chosen in the z = 0 plane. The field point r is therefore r = pa,. The
source point r’ isgiven by r' = z'a,, and therefore

Rp=r—r =pa,—za,
so that
_ pa, —Z'a,
AR12 = 772 pr
Wetake dL = dz’'a, and (2) becomes
Idz'a, x (pa, —z'a;)
dH, =
2 Ar(p? + 2/2)32
Because the current is directed toward increasing values of z/, the limitsare —oo and
oo ontheintegral, and we have
/"o I dz'a, x (pa, — z'a;)
H; =
oo A (p2+22)32

:L & de/a¢
4 J_ (,02 +Z/2)3/2

2 The closed path for the current may be considered to include areturn filament parallel to the first
filament and infinitely far removed. An outer coaxial conductor of infinite radiusis another theoretical
possibility. Practically, the problem is an impossible one, but we should realize that our answer will be
quite accurate near avery long, straight wire having a distant return path for the current.
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Figure 7.4 The streamlines of the
magnetic field intensity about an
infinitely long straight filament
carrying a direct current /. The
direction of / is into the page.

At this point the unit vector a, under theintegral sign should be investigated, for itis
not always a constant, as are the unit vectors of the rectangular coordinate system. A
vector is constant when its magnitude and direction are both constant. The unit vector
certainly has constant magnitude, but its direction may change. Here ay changeswith
the coordinate ¢ but not with o or z. Fortunately, the integration here is with respect
toz’, and a, isaconstant and may be removed from under the integral sign,

Ipay [ dz'
szp‘f’/ z

A o (p2+2/2)32
o0
. 1,0a¢ Z/
- 2 /2 2
47T 0 0 +z o
and
I
Hy,=—a 8
2= 5% ®)

The magnitude of thefield isnot afunction of ¢ or z, and it variesinversely with
the distance from the filament. The direction of the magnetic-field-intensity vector is
circumferential. The streamlines are therefore circles about the filament, and the field
may be mapped in cross section asin Figure 7.4.

The separation of the streamlinesis proportional to the radius, or inversely pro-
portional to the magnitude of H. To be specific, the streamlines have been drawn with
curvilinear squares in mind. As yet, we have no name for the family of lines® that
are perpendicular to these circular streamlines, but the spacing of the streamlines has

3 If you can't wait, see Section 7.6.

()
ustations
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been adjusted so that the addition of this second set of lines will produce an array of
curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite
line charge shows that the streamlines of the magnetic field correspond exactly to
the equipotentials of the electric field, and the unnamed (and undrawn) perpendicular
family of lines in the magnetic field corresponds to the streamlines of the electric
field. This correspondence is not an accident, but there are several other concepts
which must be mastered before the analogy between electric and magnetic fields can
be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of
Coulomb’slaw tofind E. Each requiresthedetermination of amoderately complicated
integrand containing vector quantities, followed by an integration. When we were
concerned with Coulomb’s law we solved anumber of examples, including the fields
of the point charge, line charge, and sheet of charge. The law of Biot-Savart can be
used to solve analogous problems in magnetic fields, and some of these problems
appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in
Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most
easily expressed in terms of the angles o1 and «», as identified in the figure. The
resultis

1
H= m(gnaz_g‘nal)a(ﬁ (9)

If one or both ends are below point 2, then o3 is or both o3 and o, are negetive.

a
(]
Point 2

Figure 7.5 The magnetic field intensity
caused by a finite-length current filament
on the z axis is (/ /4 p)(Sin o — Sinay)ay.



CHAPTER 7 The Steady Magnetic Field 187

Equation (9) may be used to find the magnetic field intensity caused by current
filaments arranged as a sequence of straight-line segments.

Asanumerical exampleillustrating the use of (9), we determine H at P»(0.4, 0.3, 0)
inthefield of an 8. A filamentary current isdirected inward from infinity to the origin
on the positive x axis, and then outward to infinity along the y axis. Thisarrangement
isshown in Figure 7.6.

Solution. \We first consider the semi-infinite current on the x axis, identifying the
two angles, a1, = —90° and ap, = tan~1(0.4/0.3) = 53.1°. Theradial distance p is
measured from the x axis, and we have p, = 0.3. Thus, this contribution to Hy is

2 12
Ha, 53.1° 4 Da, — — > (18)a, = -2
) = g (o 703 SNS3 L + Day = 5o (1.8)a, = “~ay

The unit vector a, must also be referred to the x axis. We see that it becomes —a..
Therefore,

12
Hz(x) S —;az A/m

For the current on the y axis, we have oy, = — tan=1(0.3/0.4) = —36.9°, &, = 907,
and p,, = 0.4. It follows that

8 8
H 1 36.9° )= ——a. Al
20) = o (04)( +sin )(—a,) T[a m

8A

8A/ ay,

0!2y
( P5(0.4, 0.3, 0)

Figure 7.6 The individual fields of two semi-infinite
current segments are found by (9) and added to obtain
H, at P.
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Adding these results, we have
20
H, = Hy,) + Hy,) = ——a. = —6.37a; A/m

b
D7.1. Given the following values for P;, P>, and 1AL, caculate AHy:
(a) P1(0,0, 2), Px(4,2,0), 2ra, uA-m; (b) P1(0, 2, 0), P(4, 2, 3), 2ra, puA-m;
(c) P1(1,2,3), P(—3, -1, 2), 2n(—a, +a, + 2a;)uA-m.
Ans. —85la, + 17.01a, nA/m; 16a, nA/m; 18.9a, — 33.9a, + 26.4a, nA/m
D7.2. A currentfilament carrying 15 A inthea, direction liesalong the entire
z axis. Find Hinrectangular coordinatesat: (a) P4(+/ 20, 0, 4); (b) P3(2, —4, 4).

Ans. 0.534a, A/m; 0.477a, + 0.239a,, A/m

7.2 AMPERE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we
found that the same problems could be solved much more easily by using Gauss's
law whenever ahigh degree of symmetry was present. Again, an anal ogous procedure
exists in magnetic fields. Here, the law that helps us solve problems more easily is
known as Ampere’s circuital® law, sometimes called Ampere's work law. This law
may be derived from the Biot-Savart law (see Section 7.7).

Ampere'scircuital law states that the line integral of H about any closed path is
exactly equal to the direct current enclosed by that path,

H-dL=1 (10)
f

We define positive current as flowing in the direction of advance of a right-handed
screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current /,
theline integral of H about the closed paths lettered ¢ and b resultsin an answer of
I; the integral about the closed path ¢ which passes through the conductor gives an
answer less than 7 and is exactly that portion of the total current that is enclosed by
the path ¢. Although paths a and 4 give the same answer, theintegrands are, of course,
different. Theline integral directs usto multiply the component of H in the direction
of the path by asmall increment of path length at one point of the path, move along
the path to the next incremental length, and repeat the process, continuing until the
path is completely traversed. Because H will generally vary from point to point, and
because paths a and b are not aike, the contributions to the integral made by, say,

4 The preferred pronunciation puts the accent on “circ-."
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7

Figure 7.7 A conductor has a total current /. The line
integral of H about the closed paths a and b is equal to

/, and the integral around path c is less than /, since the
entire current is not enclosed by the path.

each micrometer of path length are quite different. Only the fina answers are the
same.

We should also consider exactly what is meant by the expression “current en-
closed by the path.” Suppose we solder a circuit together after passing the conductor
once through arubber band, which we use to represent the closed path. Some strange
and formidabl e paths can be constructed by twisting and knotting the rubber band, but
if neither the rubber band nor the conducting circuit is broken, the current enclosed
by the path isthat carried by the conductor. Now replace the rubber band by acircular
ring of spring steel across which is stretched a rubber sheet. The steel loop forms
the closed path, and the current-carrying conductor must pierce the rubber sheet if
the current is to be enclosed by the path. Again, we may twist the steel 1oop, and
we may also deform the rubber sheet by pushing our fist into it or folding it in any
way we wish. A single current-carrying conductor still pierces the sheet once, and
this is the true measure of the current enclosed by the path. If we should thread the
conductor once through the sheet from front to back and once from back to front, the
total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the
perimeter of aninfinite number of surfaces (not closed surfaces). Any current-carrying
conductor enclosed by the path must pass through every one of these surfaces once.
Certainly some of the surfacesmay be chosen in such away that the conductor pierces
them twice in one direction and once in the other direction, but the algebraic total
current is still the same.

Wewill find that the nature of the closed path isusually extremely simple and can
be drawn on a plane. The simplest surfaceis, then, that portion of the plane enclosed
by the path. We need merely find the total current passing through this region of the
plane.

The application of Gauss's law involves finding the total charge enclosed by a
closed surface; the application of Ampére's circuital law involves finding the total
current enclosed by a closed path.
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Let us again find the magnetic field intensity produced by an infinitely long
filament carrying a current /. The filament lies on the z axis in free space (as in
Figure 7.3), and the current flows in the direction given by a,. Symmetry inspection
comes first, showing that there is no variation with z or ¢. Next we determine which
components of H are present by using the Biot-Savart law. Without specifically using
the cross product, we may say that the direction of dH is perpendicular to the plane
conaining L and R and thereforeisin the direction of a,. Hence the only component
of His Hy, and it isafunction only of p.

We therefore choose a path, to any section of which H is either perpendicular
or tangential, and along which H is constant. The first requirement (perpendicularity
or tangency) allows us to replace the dot product of Ampere's circuital law with the
product of the scalar magnitudes, except along that portion of the path where H is
normal to the path and the dot product is zero; the second requirement (constancy)
then permits us to remove the magnetic field intensity from the integral sign. The
integration required isusually trivial and consists of finding the length of that portion
of the path to which H is parall€l.

In our example, the path must be acircle of radius p, and Ampére'scircuital law
becomes

2 21
%H-dL: H¢,od¢>=H¢,0/ dp = Hy2mp =1
0 0

or

as before.

As a second example of the application of Ampere's circuital law, consider an
infinitely long coaxial transmission line carrying auniformly distributed total current
1 in the center conductor and —/ in the outer conductor. The line is shown in Fig-
ure 7.8a. Symmetry showsthat A isnot afunction of ¢ or z. In order to determine the
components present, we may use the results of the previous example by considering
the solid conductors as being composed of alarge number of filaments. No filament
has az component of H. Furthermore, the /,, component at ¢ = 0°, produced by one
filament located at p = p1, ¢ = ¢1, iscanceled by the H, component produced by a
symmetrically located filament at p = p1, ¢ = —¢p1. Thissymmetry isillustrated by
Figure 7.8b. Again we find only an H,, component which varies with p.

A circular path of radius p, where p islarger than the radius of theinner conduc-
tor but less than the inner radius of the outer conductor, then leads immediately to

1
Hy=— (a<p<b)
2rp
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/ P =pP1 P=pP1
D= e vy =P
Hg only
I/
e -~

(a) (®)

Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly
distributed current / in the inner conductor and —/ in the outer conductor. The
magnetic field at any point is most easily determined by applying Ampere’s
circuital law about a circular path. (b) Current filaments at p = p1, ¢ = ¢4,
produces H, components which cancel. For the total field, H = Hgay.

If we choose p smaller than the radius of the inner conductor, the current
enclosed is

2

o)
Ieng = 1 —
encl a2

and
2
0
2npHy = [ —
Py 22

or
Ip
Hy= 5 P =9

If theradius p islarger than the outer radius of the outer conductor, no current is
enclosed and

Hy =0 (p>¢)

Finally, if the path lies within the outer conductor, we have

2—b2
2an¢:I—I<’0 )

2 _p2

I 02 _ 102
The magnetic-field-strength variation with radius is shown in Figure 7.9 for
a coaxial cable in which » = 3a, ¢ = 4a. It should be noted that the magnetic
field intensity H is continuous at all the conductor boundaries. In other words, a
dlight increase in the radius of the closed path does not result in the enclosure of a

tremendously different current. The value of Hy shows no sudden jumps.

i)
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2ma
3a
1
ima 4a
0 0 2a 3a=b da=c

Figure 7.9 The magnetic field intensity as a function of
radius in an infinitely long coaxial transmission line with
the dimensions shown.

The external field is zero. This, we see, results from equal positive and negative
currents enclosed by the path. Each produces an external field of magnitude 7 /27 p,
but complete cancellation occurs. This is another example of “shielding”; such a
coaxial cable carrying large currents would, in principle, not produce any noticeable
effect in an adjacent circuit.

As afinal example, let us consider a sheet of current flowing in the positive y
direction and located inthez = 0 plane. We may think of the return current asequally
divided between two distant sheets on either side of the sheet we are considering. A
sheet of uniform surface current density K = K, a, isshownin Figure 7.10. H cannot
vary with x or y. If the sheet is subdivided into a number of filaments, it is evident
that no filament can produce an H, component. Moreover, the Biot-Savart law shows
that the contributions to H, produced by a symmetrically located pair of filaments
cancel. Thus, H, iszero also; only an H, component is present. We therefore choose
the path 1-1'-2'-2-1 composed of straight-line segments that are either parallel or

PX

Figure 7.10 A uniform sheet of surface current

K= Kyay in the z = 0 plane. H may be found by applying
Ampere’s circuital law about the paths 1-1'-2’-2-1 and
3-3/-2-2-3.
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perpendicular to H,. Ampere'scircuital law gives

HaL + HxZ(_L) = KyL

or
Hg — Hy, =K,
If the path 3-3'-2'-2-3 is now chosen, the same current is enclosed, and
H3z—H,=K,
and therefore

Hx3 = Hxl

It follows that H, is the same for all positive z. Similarly, H, is the same for all
negative z. Because of the symmetry, then, the magnetic field intensity on one side
of the current sheet is the negative of that on the other. Above the sheet,

H.=3K, (z>0)
while below it
H, = —%Ky (z<0

Letting ay be a unit vector normal (outward) to the current sheet, the result may be
written in aform correct for al z as

H=1Kxay (12)

If a second sheet of current flowing in the opposite direction, K = —K,a,, is
placed at z = £, (11) shows that the field in the region between the current sheetsis

H=Kxay (0<z</h)| (12)

and is zero elsewhere,

H=0 (<0z>h)] (13)

The most difficult part of the application of Ampere's circuital law is the deter-
mination of the components of the field that are present. The surest method is the
logical application of the Biot-Savart law and a knowledge of the magnetic fields of
simple form.

Problem 7.13 at the end of this chapter outlines the steps involved in applying
Ampere'scircuital law to an infinitely long solenoid of radius a and uniform current
density K,a,, asshown in Figure 7.11a. For reference, the result is

H=K,a, (p<a) (14a)
H=0 (o > a) (14b)
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H=K,a,p<a
H=0,p>a

(well inside coil)

(@) (b)

Figure 7.11 (a) Anideal solenoid of infinite length with a circular
current sheet K = Kza,. (b) An N-turn solenoid of finite length d.

If the solenoid has afinite length ¢ and consists of N closely wound turns of a
filament that carriesacurrent 7 (Figure 7.11b), then thefield at points well within the
solenoid is given closely by

NI
H = —"a. (well within the solencid) (15)

The approximation isuseful it if isnot applied closer than two radii to the open ends,
nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field
intensity for the ideal case, Figure 7.124, is

PO —

H=k,2"%a, (nsdetoroid) (164)

H=0 (outside) (16b)

For the N-turn toroid of Figure 7.125, we have the good approximations,
NI - .
H= —a, (insidetoroid) (17a)
2p

H=0 (outside) (17h)

aslong as we consider points removed from the toroidal surface by several timesthe
separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you
can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available
in Section 2 of the Standard Handbook for Electrical Engineers (see References for
Chapter 5).
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N turns

K=K,a atp=py,—a,z=0

Mk s e H:%aq, (well inside toroid)
=K, ™0 a, (inside toroi
P
H=0 (outside)
(@) (@]

Figure 7.12 (a) An ideal toroid carrying a surface current K in the
direction shown. (b) An N-turn toroid carrying a filamentary current /.

D7.3. Expressthevalueof H inrectangular componentsat P(0, 0.2, 0) inthe
field of: (a) a current filament, 2.5 A in the a, directionat x = 0.1, y = 0.3;
(b) acoax, centered on the z axis, witha = 0.3,b = 0.5,¢ = 0.6, ] = 25A
in the a, direction in the center conductor; (c¢) three current sheets, 2.7a, A/m
ay=01 —14a, A/mat y = 0.15, and —1.3a, A/mat y = 0.25.

Ans. 1.989, — 1.989a, A/m; —0.884a, A/m; 1.300a; A/m

7.3 CURL

We compl eted our study of Gauss'slaw by applying it to adifferential volumeelement
and were led to the concept of divergence. We now apply Ampere's circuital law to
the perimeter of a differential surface element and discuss the third and last of the
special derivatives of vector analysis, the curl. Our objective is to obtain the point
form of Ampére'scircuital law.

Againwe chooserectangul ar coordinates, and anincremental closed path of sides
Ax and Ay isselected (Figure 7.13). We assume that some current, asyet unspecified,
produces a reference value for H at the center of this small rectangle,

HO = Hanx + Hyan + Hanz

Theclosed lineintegral of H about this path isthen approximately the sum of the four
valuesof H - AL on each side. We choosethedirection of traverse as 1-2-3-4-1, which
corresponds to a current in the a, direction, and the first contribution istherefore

(H-AL)1_2 = H, 1 2Ay

The value of H, on this section of the path may be given in terms of the reference
value H,o at the center of the rectangle, the rate of change of H, with x, and the
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H:HOZHYO ax+]~]yan+[—IZO a,

Figure 7.13 Anincremental closed path in
rectangular coordinates is selected for the
application of Ampere’s circuital law to determine
the spatial rate of change of H.

distance Ax /2 from the center to the midpoint of side 1-2:

. 0H, (1
Hy,1—2 = Hy()+ W EAX
Thus
. 19H,
(H-AL)1» = ( Ho+ - —Ax |Ay
2 0x

Along the next section of the path we have

. . 10H,
(H-AL)>_3 = H, 2 3(—Ax) = —( Hyo+ 20y Ay |Ax

Continuing for the remaining two segments and adding the results,
0H, 0H,
%H-dLi —2 — 2 )AxAy
ax ay

By Ampére's circuital law, this result must be equal to the current enclosed by the
path, or the current crossing any surface bounded by the path. If we assume ageneral
current density J, the enclosed current isthen A7 = J.AxAy, and

. (0H, 0H .
H-dL = | — — AxAy = J.AxAy
dx ay

or

- z

fH-dL . 0H, 0H,

AxAy — dx ay

Aswe cause the closed path to shrink, the preceding expression becomes more nearly
exact, and in the limit we have the equality

fH-dL 3H, 0H,

m -
Ax,Ay—0 AXx Ay ox E)y
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After beginning with Ampére’s circuital law equating the closed line integral of
H to the current enclosed, we have now arrived at arelationship involving the closed
line integral of H per unit area enclosed and the current per unit area enclosed, or
current density. We performed asimilar analysisin passing from the integral form of
Gauss'slaw, involving flux through a closed surface and charge enclosed, to the point
form, relating flux through a closed surface per unit volume enclosed and charge per
unit volume enclosed, or volume charge density. In each case a limit is necessary to
produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-
maining two coordinate axes, anal ogous processes lead to expressions for the x and
y components of the current density,

. H-dL 0H. 0H,
i JHedL 00, (19
Ay.Az—0 AyAz ay 0z

and

$H-dL _ 9H, 9H.

li =
Az, Ax—0 AzAx 0z ox

= (20)

Comparing (18)—(20), we see that acomponent of the current density isgiven by
the limit of the quotient of the closed lineintegral of H about a small path in a plane
normal to that component and of the area enclosed as the path shrinks to zero. This
limit has its counterpart in other fields of science and long ago received the name of
curl. The curl of any vector is a vector, and any component of the curl is given by
the limit of the quotient of the closed line integral of the vector about a small path in
aplane normal to that component desired and the area enclosed, as the path shrinks
to zero. It should be noted that this definition of curl does not refer specificaly to a
particular coordinate system. The mathematical form of the definition is

(curl H)y = lim GHOIT (21)

Sv—0  ASy

where A Sy isthe planar area enclosed by the closed line integral. The N subscript
indicates that the component of the curl is that component which is normal to the
surface enclosed by the closed path. It may represent any component in any coordinate
system.

In rectangular coordinates, the definition (21) shows that the x, y, and z compo-
nents of the curl H are given by (18)—20), and therefore

0H, 0H oH, 0H, 0H, 0H,
culH=(——-—L)a,+(— — a,+|—2—-—)a.| (22
ay 0z 0z ox ax ay
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Thisresult may be written in the form of a determinant,

a, a, a

curlH = 0 o0 (23)
Clox  dy oz
H, H, H.

and may also be written in terms of the vector operator,

culH=V xH (24)

Equation (22) istheresult of applying thedefinition (21) totherectangular coordi-
nate system. We obtained the z component of this expression by evaluating Ampéere's
circuital law about an incremental path of sides Ax and Ay, and we could have ob-
tained the other two componentsjust aseasily by choosing theappropriate paths. Equa-
tion (23) isaneat method of storing the rectangular coordinate expression for curl; the
formis symmetrical and easily remembered. Equation (24) is even more concise and
leads to (22) upon applying the definitions of the cross product and vector operator.

Theexpressionsfor curl H in cylindrical and spherical coordinates are derivedin
Appendix A by applying the definition (21). Although they may bewritten in determi-
nant form, as explained there, the determinants do not have one row of unit vectorson
top and onerow of components on the bottom, and they are not easily memorized. For
this reason, the curl expansions in cylindrical and spherical coordinates that follow
here and appear inside the back cover are usually referred to whenever necessary.

10H. 0Hy oH, 0H,
VxH= — Ja, + | — — a,

pla(;b( H)Bz 19H, o (29
s 12 P
— — —— )a, lindrical
(p ap P 8¢> & )
e 1 (a(Hqgsne)_%)arJr}(.l 8H,_8(rH¢)>a9

rsing 30 A r\sind 9¢ ar 26)

Bl G BT )
r\ or a6 )2 P

Although we have described curl as a line integral per unit area, this does not
provideeveryonewith asatisfactory physical pictureof thenatureof thecurl operation,
for the closed line integral itself requires physical interpretation. This integral was
first met in the electrostatic field, where we saw that § E - /L. = 0. Inasmuch as the
integral was zero, we did not belabor the physical picture. More recently we have
discussed the closed line integral of H, § H-dL = I. Either of these closed line
integralsis also known by the name of circulation, aterm borrowed from the field of
fluid dynamics.
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——————————— H
_* .
Velocity

* Current
into page

S mlu

®)

Figure 7.14 (a) The curl meter shows a component of the curl of the water velocity
into the page. (b) The curl of the magnetic field intensity about an infinitely long filament
is shown.

The circulation of H, or § H-dL, is obtained by multiplying the component
of H parallel to the specified closed path at each point aong it by the differential
path length and summing the results as the differential lengths approach zero and as
their number becomes infinite. We do not require avanishingly small path. Ampere's
circuital law tellsusthat if H does possess circul ation about agiven path, then current
passes through this path. In el ectrostatics we see that the circulation of E iszero about
every path, adirect consequence of thefact that zero work isrequired to carry acharge
around a closed path.

We may describe curl as circulation per unit area. The closed path isvanishingly
small, and curl is defined at a point. The curl of E must be zero, for the circulation
is zero. The curl of H is not zero, however; the circulation of H per unit areais the
current density by Ampere’s circuita law [or (18), (19), and (20)].

Skilling® suggests the use of a very small paddlie whee! as a “curl meter.” Our
vector quantity, then, must be thought of as capable of applying aforce to each blade
of the paddle wheel, the force being proportional to the component of thefield normal
to the surface of that blade. To test afield for curl, we dip our paddle wheel into the
field, with the axis of the paddle wheel lined up with the direction of the component of
curl desired, and note the action of the field on the paddle. No rotation means no curl;
larger angular velocities mean greater values of the curl; areversal in the direction of
spin meansareversal inthesign of thecurl. To find the direction of the vector curl and
not merely to establish the presence of any particular component, we should place
our paddle wheel in the field and hunt around for the orientation which produces the
greatest torque. The direction of the curl is then along the axis of the paddie wheel,
as given by the right-hand rule.

As an example, consider the flow of water in ariver. Figure 7.14a shows the
longitudinal section of awideriver taken at the middle of theriver. The water velocity
is zero at the bottom and increases linearly as the surface is approached. A paddie
wheel placed in the position shown, with its axis perpendicul ar to the paper, will turn
in aclockwise direction, showing the presence of acomponent of curl in the direction

5 See the References at the end of the chapter.
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of aninward normal to the surface of the page. If the velocity of water does not change
as we go up- or downstream and also shows no variation as we go across the river
(or even if it decreases in the same fashion toward either bank), then this component
is the only component present at the center of the stream, and the curl of the water
velocity has adirection into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an infinitely
long filamentary conductor are shown. The curl meter placed in this field of curved
lines shows that a larger number of blades have a clockwise force exerted on them
but that this force is in general smaller than the counterclockwise force exerted on
the smaller number of blades closer to thewire. It seems possible that if the curvature
of the streamlinesis correct and also if the variation of the field strength isjust right,
the net torque on the paddle wheel may be zero. Actually, the paddie wheel does not
rotate in this case, for since H = (/2 p)ag, we may substitute into (25) obtaining

0H, 10(pH,
curl H= ——"’ap + - (0Hy)
dz p ap

a, =

Asan example of the evaluation of curl H from the definition and of the eval uation of
another line integral, suppose that H = 0.2z%a, for z > 0, and H = 0 elsewhere, as
shown in Figure 7.15. Calculate ¢ H - dLL about a square path with side d, centered
a (0,0, z;) inthe y = O planewherez; > d/2.

N\

S

Figure 7.15 A square path of side d with its center on the
zZ axis at z = zy is used to evaluate 55 H - dL and find curl H.
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Solution. \We evaluate the line integral of H along the four segments, beginning at
the top:

%}LdL=02@1+§@2d+0—02@1—g@2d+o
= 0.4z1d?
In the limit as the area approaches zero, we find

_ §H-dL = 0.4zd?
(VXH)yngII_r)T?) B =0|l|_r>r(1) 7 = 0.4z

The other components are zero, S0 V x H = 0.4z1a,.
To evaluate the curl without trying to illustrate the definition or the eval uation of
alineintegral, we simply take the partial derivative indicated by (23):

a, a, a

9 a9 9 5

ax 9y 97| 5(022 )a, = 0.4za,
0222 0 0

Vx H=

which checks with the preceding result when z = z;.

201

Returning now to complete our origina examination of the application of
Ampere'scircuital law to a differential-sized path, we may combine (18)—20), (22),
and (24),

0H.  0H, o0H,  0H,
culH=V xH = - — Ja, + - a,
ay 0z a0z ax

0H,  OH,
+ == - a.=J (27)
dx ay

and write the point form of Ampere’s circuital law,

VxH=1J (28)

Thisisthe second of Maxwell’sfour equations asthey apply to non-time-varying
conditions. We may also write the third of these equations at thistime; it is the point

formof f E-dL =0, or
=

The fourth equation appearsin Section 7.5.
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D7.4. («) Evaluate the closed line integral of H about the rectangular path
P1(2, 3, 4) to Py(4, 3,4) to P3(4, 3, 1) to P4(2,3,1) to P;, given H = 3za, —
2x3a. A/m. (b) Determine the quotient of the closed line integral and the area
enclosed by the path as an approximation to (V x H),.. (c) Determine (V x H),
at the center of the area.

Ans. 354 A; 59 A/m?; 57 A/m?

D7.5. Cdculate the value of the vector current density: («) in rectangular
coordinates at P4(2,3,4) if H = x%za, — y2xa,; (b) in cylindrical coordi-

natesat Pp(1.5,90°, 0.5) if H = —(cos0.2¢)a,; (c) in spherical coordinates at
o)

. 1
PC(Z, 300, 200) if H= mag.

Ans. —16a, + 9a, + 16a. A/m?; 0.055a. A/m?; ay A/m?

7.4 STOKES’ THEOREM

Although Section 7.3 was devoted primarily to a discussion of the curl operation,
the contribution to the subject of magnetic fields should not be overlooked. From
Ampére’s circuital law we derived one of Maxwell’s equations, V x H = J. This
latter equation should be considered the point form of Ampere's circuital law and
applieson a“ per-unit-area” basis. In this section we shall again devote amajor share
of the material to the mathematical theorem known as Stokes' theorem, but in the
process we will show that we may obtain Ampere's circuital law fromV x H = J.
In other words, we are then prepared to obtain the integral form from the point form
or to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental
surfaces of area A S. If we apply the definition of the curl to one of these incremental
surfaces, then

$H-dLas
AS
where the N subscript again indicates the right-hand normal to the surface. The
subscript on dL s indicates that the closed path is the perimeter of an incremental
area AS. Thisresult may also be written

fH-dLygs
AS

= (VxH)y

= (VxH)-ay
or

?gH-dLAS = (VxH)-ayAS =(V xH)-AS
where ay isaunit vector in the direction of the right-hand normal to A S.

Now let us determinethiscirculation for every A.S comprising S and sumthere-
sults. Asweevaluatetheclosed lineintegral for each A S, some cancellationwill occur
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ay

AS
AS

AS

Figure 7.16 The sum of the closed line integrals
about the perimeter of every AS'is the same as the
closed line integral about the perimeter of S because
of cancellation on every interior path.

because every interior wall is covered once in each direction. The only boundaries
on which cancellation cannot occur form the outside boundary, the path enclosing S.
Therefore we have

H-dL= [ (V xH)-dS (30)
pu-a=|

where dL is taken only on the perimeter of S.
Equation (30) isan identity, holding for any vector field, and isknown as Stokes’
theorem.

A numerica examplemay helptoillustratethe geometry involvedin Stokes' theorem.
Consider the portion of asphereshownin Figure 7.17. The surfaceis specified by » =
4,0<60 <0.17,0 < ¢ < 0.37, and the closed path forming its perimeter is com-
posed of threecircular arcs. Weare giventhefield H = 6r sin¢a, + 18- sinf cos¢a,
and are asked to evaluate each side of Stokes' theorem.

Solution. Thefirst path segment isdescribed in spherical coordinatesby » = 4,0 <
0 < 0.1x,¢ = 0; thesecond oneby r = 4,6 = 0.1, 0 < ¢ < 0.37; and the third
byr =4,0 <6 < 0.1, ¢ = 0.37. The differential path element dL is the vector
sum of thethree differential lengths of the spherical coordinate system first discussed
in Section 1.9,

dL=dra, +rdfag+rsinfdepay
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Figure 7.17 A portion of a spherical cap is
used as a surface and a closed path to illustrate
Stokes’ theorem.

The first term is zero on al three segments of the path since » = 4 and dr = O,
the second is zero on segment 2 as 6 is constant, and the third term is zero on both
segments 1 and 3. Thus,

%H-dL = /ngdé’ +/H¢rsin9d¢+/H9rd6
1 2 3
Because H, = 0, we have only the second integral to evaluate,

0.37
%H-dL = / [18(4) sin 0.1 cos¢l4sin0.1zd¢
0

= 288sin?0.17 sin0.37 = 22.2 A
We next attack the surface integral. First, we use (26) to find

1 ) 1/ 1 .
\% = = _
x H and (36r Sind cosH cos¢)a, + . (sine 6r cos¢ — 36r Siné cos¢>)a9
Because dS = r2sinf dd d¢ a,, theintegra is
0.37 p0.17
/(V xH)-dS = / / (36cost cosp)16sin6 db de
S 0 0

0.37 0.17
:/ 576 (L sin?6) ‘0 cos¢ do
0

= 288sin°0.17r sin0.37 = 222 A
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Thus, the results check Stokes' theorem, and we note in passing that a current of
22.2 A isflowing upward through this section of a spherical cap.
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Next, let us see how easy it isto obtain Ampeére'scircuital law fromV x H = J.
We merely have to dot each side by dS, integrate each side over the same (open)
surface S, and apply Stokes' theorem:

L(VxH)-dS:/SJ-dsszH.dL

The integral of the current density over the surface S is the total current 7 passing
through the surface, and therefore

This short derivation shows clearly that the current 7, described as being “en-
closed by the closed path,” is also the current passing through any of the infinite
number of surfaces that have the closed path as a perimeter.

Stokes' theorem relates a surface integral to a closed line integral. It should
be recalled that the divergence theorem relates a volume integral to a closed surface
integral. Both theoremsfind their greatest usein general vector proofs. Asan example,
let usfind another expressionfor V - V x A, where A represents any vector field. The
result must be a scalar (why?), and we may let this scalar be T, or

V.- VxA=T

Multiplying by dv and integrating throughout any volume v,

/(V-VxA)du:/ Tdv
vol vol

we first apply the divergence theorem to the | eft side, obtaining

fé(VxA)wZS:/VOITdU

The left side is the surface integral of the curl of A over the closed surface
surrounding the volume v. Stokes' theorem relates the surface integral of the curl of
A over the open surface enclosed by a given closed path. If we think of the path as
the opening of alaundry bag and the open surface as the surface of the bag itself, we
see that as we gradually approach a closed surface by pulling on the drawstrings, the
closed path becomessmaller and smaller and finally disappearsasthe surface becomes
closed. Hence, the application of Stokes' theorem to aclosed surface produces azero
result, and we have

/ Tdv=0
vol
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Because thisistrue for any volume, it istrue for the differential volume dv,
Tdv=0
and therefore
T=0

V.VxA=0 (31)

Equation (31) is a useful identity of vector calculus.® Of course, it may also be
proven easily by direct expansion in rectangular coordinates.
Let us apply the identity to the non-time-varying magnetic field for which

or

VxH=J
This shows quickly that
vV-J=0

which is the same result we obtained earlier in the chapter by using the continuity
equation.

Beforeintroducing several new magnetic field quantitiesin thefollowing section,
we may review our accomplishments at this point. We initially accepted the Biot-
Savart law as an experimental result,

_flﬂxw
- 4 R?

and tentatively accepted Ampere's circuital law, subject to later proof,

From Ampere's circuital law the definition of curl led to the point form of this same
law,

VxH=1J

We now see that Stokes' theorem enables us to obtain the integral form of Ampere's
circuital law from the point form.

D7.6. Evaluate both sides of Stokes' theorem for the field H = 6xya, —
3y2a, A/m and the rectangular path around theregion, 2 < x <5, -1 <y <
1,z = 0. Let the positive direction of dS be a,.

Ans. —126 A; —126 A

6 This and other vector identities are tabulated in Appendix A.3.
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7.5 MAGNETIC FLUX AND MAGNETIC
FLUX DENSITY

In free space, let us define the magnetic flu density B as

(free space only) (32

where B is measured in webers per square meter (Wh/m?) or in anewer unit adopted
in the International System of Units, tesla (T). An older unit that is often used for
magnetic flux density isthe gauss (G), where 1 T or 1IWb/m? isthe same as 10, 000 G.
Theconstant 11 isnot dimensionlessand hasthedefine valuefor freespace, inhenrys
per meter (H/m), of

o = 4m x 107" H/m (33)

The name given to g isthe permeability of free space.

We should note that since H is measured in amperes per meter, the weber is
dimensionally equal to the product of henrys and amperes. Considering the henry as
a new unit, the weber is merely a convenient abbreviation for the product of henrys
and amperes. When time-varying fields are introduced, it will be shown that a weber
is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-
plies, is a member of the flux-density family of vector fields. One of the possible
anal ogies between electric and magnetic fields’ comparesthe laws of Biot-Savart and
Coulomb, thus establishing an analogy between H and E. The relations B = oH
and D = ¢yE then lead to an analogy between B and D. If B ismeasured in teslas or
webers per square meter, then magnetic flux should be measured in webers. Let us
represent magnetic flux by ® and define ® asthe flux passing through any designated
area,

<I>:/SB-dSWb (34)

Our analogy should now remind us of the electric flux W, measured in coulombs,
and of Gauss'slaw, which states that the total flux passing through any closed surface
isegual to the charge enclosed,

q/:jﬁsl)-dszg

The charge Q is the source of the lines of electric flux and these lines begin and
terminate on positive and negative charges, respectively.

7 An dternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the
example of theinfinitely long straight filament carrying adirect current /, the H field
formed concentric circles about the filament. Because B = 11oH, the B field is of the
same form. The magnetic flux lines are closed and do not terminate on a “ magnetic
charge.” For thisreason Gauss's law for the magnetic field is

%B-dS:O (35)
S

and application of the divergence theorem shows us that
V:-B=0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static
electric fields and steady magnetic fields. Collecting these equations, we then have
for static electric fields and steady magnetic fields

V-D = p,
VxE= 0
VxH=J (37)
V:-B=0

To these equations we may add the two expressions relating D to E and B to H
in free space,

D= EoE (38)

D= coF |
B = uoH (39)

We have also found it helpful to define an electrostatic potential,
E=-VV (40)

andwewill discussapotential for the steady magneticfieldinthefollowing section. In
addition, we extended our coverage of electric fields to include conducting materials
and dielectrics, and we introduced the polarization P. A similar treatment will be
applied to magnetic fields in the next chapter.

Returning to (37), it may be noted that these four equati ons specify the divergence
and curl of an electric and a magnetic field. The corresponding set of four integral
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equations that apply to static electric fields and steady magnetic fieldsis

%D-dS:Q:/ pydv

S vol

%E-dL:O

%H-dL:I:/J-dS
S

%B-dS:O

S

Our study of electric and magnetic fields would have been much simpler if we
could have begun with either set of equations, (37) or (41). With a good knowledge
of vector analysis, such as we should now have, either set may be readily obtained
from the other by applying the divergence theorem or Stokes' theorem. The various
experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find
the flux between the conductors of the coaxial line of Figure 7.8«. The magnetic field
intensity was found to be

(41)

1
Hy=— (a<p<b)
P

and therefore

The magnetic flux contained between the conductors in a length d is the flux
crossing any radial plane extending from p = a to p = b and from, say, z = O to

z=d d pb

I
@:/B-dS:// B0 ay-dpdza,
S 0 Ja 27'[,0
or
d b
o =Hn2 (42)

2 a

This expression will be used later to obtain the inductance of the coaxia trans-
mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous
nonmagnetic material. If the radius a = 1 mm, the conductor axis lies on the
z axis, andthetotal currentinthea; directionis20A, find: (a) Hy at p = 0.5mm;
(b) By @t p = 0.8mm; (c) the total magnetic flux per unit length inside the
conductor; (d) thetotal flux for p < 0.5mm; (e) the total magnetic flux outside
the conductor.

Ans. 1592 A/m; 3.2 mT; 2 uWhb/m; 0.5 uWb; co
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7.6 THE SCALAR AND VECTOR
MAGNETIC POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the
scalar electrostatic potential V. Although this potential possessesavery real physical
significance for us, it is mathematically no more than a stepping-stone which allows
usto solve a problem by several smaller steps. Given a charge configuration, we may
first find the potential and then from it the electric field intensity.

We should question whether or not such assistanceisavailablein magneticfields.
Can we define a potential function which may be found from the current distribution
and from which the magnetic fields may be easily determined? Can a scalar magnetic
potential be defined, similar to the scalar electrostatic potential? We will show in
the next few pages that the answer to the first question is yes, but the second must
be answered “sometimes.” Let us attack the second question first by assuming the
existence of a scalar magnetic potential, which we designate V,,, whose negative
gradient gives the magnetic field intensity

H=-VV,

Thesel ection of thenegativegradient providesacl oser anal ogy totheel ectric potential
and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field,
and therefore

VxH=J=Vx(-VV,)

However, the curl of the gradient of any scalar is identically zero, a vector identity
the proof of which is left for aleisure moment. Therefore, we see that if H isto be
defined as the gradient of a scalar magnetic potential, then current density must be
zero throughout the region in which the scalar magnetic potential is so defined. We
then have

H=-VV, (J=0) (43)

Because many magnetic problems involve geometries in which the current-carrying
conductorsoccupy arelatively small fraction of thetotal region of interest, itisevident
that a scalar magnetic potential can be useful. The scalar magnetic potentia is also
applicable in the case of permanent magnets. The dimensions of ¥, are obviously
amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

V‘B:MOV‘HZO
and hence

moV - (_VVm) =0



CHAPTER 7 The Steady Magnetic Field

or

V¥, =0 (=0 (44)

We will see later that ¥, continues to satisfy Laplace’s equation in homogeneous
magnetic materials; it is not defined in any region in which current density is present.

Although we shall consider the scalar magnetic potential to amuch greater extent
in Chapter 8, when we introduce magnetic materials and discuss the magnetic circuit,
onedifferencebetween ' and V,, should be pointed out now: ¥, isnot asingle-valued
function of position. Theelectric potential 7 issingle-valued; onceazeroreferenceis
assigned, thereisonly onevalue of 7 associated with each point in space. Suchisnot
the case with V,,,. Consider the cross section of the coaxial line shown in Figure 7.18.
Intheregiona < p < b, J = 0, and we may establish a scalar magnetic potential.
Thevalueof His

H 1
T 2np s

where I isthetotal current flowing inthe a, direction in theinner conductor. We find
V., by integrating the appropriate component of the gradient. Applying (43),

L _gy| 1
2mp ¢ p 0¢
or
Wu 1
9 2n

P(p, 7/4,0)

Figure 7.18 The scalar magnetic potential V,,, is a
multivalued function of ¢ in the regiona < p < b. The
electrostatic potential is always single valued.
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Thus,

Vi = 1¢>
m — 27_[

where the constant of integration has been set equal to zero. What value of potential
do we associate with point P, where ¢ = 7 /4? If welet V,, be zeroat ¢ = 0 and
proceed counterclockwise around the circle, the magnetic potential goes negetive
linearly. When we have made one circuit, the potential is — 7, but that was the point
at which we said the potential was zero a moment ago. At P, then, ¢ = = /4, 9 /4,
177 /4, ..., or =T /4, =157 /4, —237 /4, ..., Or

1

Vip =
nP o

(2n—3r (n=0,+1+2..)
or
Vap=1(n—3) (n=0+£1+2..)

The reason for this multivaluedness may be shown by a comparison with the
electrostatic case. There, we know that

VxE=0

fE-dL:O

Vip = — / E-dL
b
isindependent of the path. In the magnetostatic case, however,
VxH=0 (whereverJ=0)

evenif J iszero along the path of integration. Every time we make another complete
lap around the current, the result of the integration increases by 7. If no current /
is enclosed by the path, then a single-valued potential function may be defined. In
general, however,

and therefore the line integral

but

Voo =1— / H-dL (specified path) (45)
b

where a specific path or type of path must be selected. We should remember that the
electrostatic potential V' is a conservative field; the magnetic scalar potential 7, is
not a conservative field. In our coaxial problem, let us erect abarrier® at ¢ = 7; we

8 This corresponds to the more precise mathematical term “branch cut.”
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agree not to select a path that crossesthis plane. Therefore, we cannot encircle 7, and
asingle-valued potential is possible. The result is seen to be

1
Vn=—7—¢ (—m <¢ <m)
2m

v 1 i
mP—_§ <¢—Z>

The scalar magnetic potential is evidently the quantity whose equipotential sur-
faces will form curvilinear squares with the streamlines of H in Figure 7.4. Thisis
one more facet of the analogy between electric and magnetic fields about which we
will have more to say in the next chapter.

L et ustemporarily leavethe scalar magnetic potential now and investigateavector
magnetic potential. This vector field is one which is extremely useful in studying
radiation from antennas (as we will find in Chapter 14) as well as radiation leakage
from transmission lines, waveguides, and microwave ovens. The vector magnetic
potential may be used in regions where the current density is zero or nonzero, and we
shall also be able to extend it to the time-varying case later.

Our choice of avector magnetic potential isindicated by noting that

and

V:-B=0

Next, avector identity that we proved in Section 7.4 shows that the divergence of the
curl of any vector field is zero. Therefore, we select

(40

where A signifies avector magnetic potential, and we automatically satisfy the con-
dition that the magnetic flux density shall have zero divergence. The H field is

1
H= "VxA
Mo

and

VxH:J:iVxVxA
Mo
Thecurl of the curl of avector fieldisnot zero and isgiven by afairly complicated
expression,? which we need not know now in general form. In specific casesfor which
the form of A is known, the curl operation may be applied twice to determine the
current density.

9V x VxA=V(V-A)— V2A. Inrectangular coordinates, it may be shown that V2A = V2A a, +
VZAyay + V2A.a.. In other coordinate systems, V2A may be found by evaluating the second-order
partial derivativesin V2A = V(V-A) — V x V x A.
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Equation (46) serves as a useful definition of the vector magnetic potential A.
Because the curl operation implies differentiation with respect to a length, the units
of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any
previous results. It still remains to show that this particular definition can help usto
determine magnetic fields more easily. We certainly cannot identify A with any easily
measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart |aw, the definition of B,
andthedefinitionof A, A may bedetermined fromthedifferential current elementsby

M()] dL
A= ?g 4R 47)

The significance of the termsin (47) is the same as in the Biot-Savart law; a direct
current / flows along afilamentary conductor of which any differential length dL is
distant R from the point at which A isto be found. Because we have defined A only
through specification of its curl, it is possible to add the gradient of any scalar field
to (47) without changing B or H, for the curl of the gradient is identically zero. In
steady magnetic fields, it is customary to set this possible added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is
compared with the similar expression for the electrostatic potential,

dL
y — / PL
4megR
Each expression is the integral along aline source, in one case line charge and in the
other case line current; each integrand is inversely proportional to the distance from
the source to the point of interest; and each involves a characteristic of the medium

(here free space), the permeability or the permittivity.
Equation (47) may be written in differential form,

1
da — ol dLb
47 R

if we again agree not to attribute any physical significance to any magnetic fields we
obtain from (48) until the entire closed path in which the current flow is considered.
With this reservation, let us go right ahead and consider the vector magnetic
potential field about adifferential filament. We locate the filament at the originin free
space, as shown in Figure 7.19, and alow it to extend in the positive z direction so
that dL. = dz a,. We use cylindrical coordinatesto find dA at the point (p, ¢, z):

(48)

JA — nol dz a,
4,/ p? + 22
or
/Lo] dz

dA,; =

B 4n\/,m

ddy =0 dd,=0 (49)
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Free space

\ p P(p, $,2)

IdL=1dz a,

Figure 7.19 The differential current
element | dza, at the origin establishes the
differential vector magnetic potential field,

/
an= HL9Z b 62,

4/ p? + 22

We note that the direction of dA isthe same as that of / dL.. Each small section
of a current-carrying conductor produces a contribution to the total vector magnetic
potential which is in the same direction as the current flow in the conductor. The
magnitude of the vector magnetic potential varies inversely with the distance to the
current element, being strongest in the neighborhood of the current and gradually
falling off to zero at distant points. Skilling®® describes the vector magnetic potential
field as “like the current distribution but fuzzy around the edges, or like a picture of
the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in
cylindrical coordinates, leading to

1 1/ 0dd.
dH=—VxdA=—|— a,
Mo Mo ap

or
ldz 0
dH= ————
A (p% 4 z2)%? A

which is easily shown to be the same as the value given by the Biot-Savart |aw.

Expressionsfor the vector magnetic potential A can also be obtained for acurrent
source which is distributed. For a current sheet K, the differential current element
becomes

IdL =KdS
In the case of current flow throughout a volume with a density J, we have
IdL =Jdv

10 See the References at the end of the chapter.

i)
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In each of these two expressions the vector character is given to the current. For the
filamentary element it is customary, although not necessary, to use 7/ dL instead of
1dL. Since the magnitude of the filamentary element is constant, we have chosen
the form which allows us to remove one quantity from the integral. The alternative
expressions for A are then

/,LoKdS
A= 50
[S AR (%0)
and
A= / Kol dv (51)
vol 4R

Equations (47), (50), and (51) express the vector magnetic potential as an inte-
gration over al of its sources. From a comparison of the form of these integrals with
those which yield the electrostatic potential, it is evident that once again the zero ref-
erence for A isat infinity, for no finite current element can produce any contribution
as R — oo. We should remember that we very seldom used the similar expressions
for V; too often our theoretical problemsincluded charge distributions that extended
to infinity, and the result would be an infinite potential everywhere. Actually, we cal-
culated very few potential fields until the differential form of the potential equation
was obtained, V2V = —p, /e, or better yet, V2F = 0. We were then at liberty to
select our own zero reference.

The analogous expressions for A will be derived in the next section, and an
example of the calculation of avector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4a, A/m, is present at the surface p = 1.2 in
free space. (@) Find H for p > 1.2. Find V,, a P(p = 1.5, ¢ = 0.6, z = 1) if:
(b) V,, =0at ¢ = 0andthereisabarrierat ¢ = ; (c) V,, = 0at ¢ = 0and
thereisabarrierat¢ = n/2;(d) V,, = Oat¢ = = andthereisabarrierat¢ = 0;
(e) V,, =5V a ¢ = 7 andthereisabarrier at ¢ = 0.87.

2.88
Ans. —ay; —543V; 12.7V,; 3.62V, —9.48V
o)

D7.9. Thevalue of A within a solid nonmagnetic conductor of radius a car-
rying a total current / in the a, direction may be found easily. Using the
known value of H or B for p < a, then (46) may be solved for A. Select
A = (nolIn5)/27 a p = a (to correspond with an example in the next sec-
tion) and find A at p =: (a) 0; (b) 0.254; (c¢) 0.75a; (d) a.

Ans. 0.422]a, uWb/m; 0.4167a, uWb/m; 0.3667/a, uWb/m; 0.3227a, uWhb/m
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7.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We will now supply the promised proofs of the several relationships between the
magnetic field quantities. All these relationships may be obtained from the definitions

of H,
e f
of B (in free space),
B = uoH (32
and of A,
B=VxA (46)

Let usfirst assume that we may express A by the last equation of Section 7.6,

A= / Hol dv (51)
vol 47TR

and then demonstrate the correctness of (51) by showing that (3) follows. First, we

should add subscripts to indicate the point at which the current element is located

(1, ¥1, z1) and the point a which A is given (x2, y, z2). The differential volume

element dv isthen written dv; and in rectangular coordinates would be dx1 dy1 dz;.

The variables of integration are x4, y1, and z;. Using these subscripts, then,

Jid
Ay = / podadvy (52)
vol 4R
From (32) and (46) we have
B VxA
H=— == (53)
Mo Mo

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This
step involves taking the curl of Ay, aquantity expressed in terms of the variables x5,
2, and z,, and the curl thereforeinvolves partial derivativeswith respect to x», y», and
z,. We do this, placing a subscript on the del operator to remind us of the variables
involved in the partial differentiation process,
H2 _ VQXAQ _ iVZX / quldvl
Ho Ho vol 47R12

The order of partial differentiation and integration isimmaterial, and po/4r is

constant, allowing usto write
H2 = i Vz X J]_dl)]_

47 Jvol Rypp

The curl operation within the integrand represents partial differentiation with
respect to x,, y», and z,. Thedifferential volume element dv; isascalar and afunction
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only of x1, y1, and z;. Consequently, it may be factored out of the curl operation as
any other constant, leaving

1 J
H2 = — <V2 X —l>d\)1 (54)
47 Jyol Rz

The curl of the product of ascalar and avector is given by an identity which may
be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

VX (SV)=(VS) xV+S(VxV) (55)
Thisidentity is used to expand the integrand of (54),
1 1 1

H, = — Vo— | x J1 4+ — (Vo x Jq) |dv 56

27 4 [( 2R12> ! R12( ? l)} ' 0)

Thesecond term of thisintegrand iszero because V, x J1 indicates partial deriva-
tives of afunction of x1, y1, and z;, taken with respect to the variables x», y», and z,;
the first set of variablesis not a function of the second set, and all partial derivatives
are zero.

Thefirst term of the integrand may be determined by expressing R;2 in terms of
the coordinate values,

Riz = v/ (x2 — x1)2 + (2 — y1)2 + (22 — 21)2
and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

Zi __ R ap
Re R} R
Substituting this result into (56), we have
1 ap X Jqp
_E vol sz

Jixa
H, =/ 1 X émdvl
vol 47TR12

whichisthe equivalent of (3) intermsof current density. Replacing J; dv1 by I; dLq,
we may rewrite the volume inte