
Lab Safety Instructions and Rules 

Department of Electrical and Computer Engineering 
 

General Behavior  
 Never work in the laboratory alone, always have another qualified person in the area.  

 Do not use any equipment unless you are approved by your instructor or staff. Ask 

questions if you are unsure of how to operate something. 

 Perform only those experiments authorized by the instructor. Never do anything in the 

laboratory that is not called for in the laboratory procedures or by your instructor. Carefully 

follow all instructions, both written and oral. Unauthorized experiments are prohibited. 

 Do not eat, drink, or smoke, in the laboratory 

 Do not yell, scream, or make any sudden loud noises that could startle others 

who are concentrating on their work. 

 When you are done with your experiment or project, all components must be 

dismantled and returned to proper locations.  

 Dress properly during all laboratory activities. Long hair, dangling jewelry, 

and loose or baggy clothing are a hazard in the laboratory. Long hair must be 

tied back and dangling jewelry and loose or baggy clothing must be secured. 

 Keep aisles clear and maintain unobstructed access to all exits, fire extinguishers, and 

electrical panels. 

 

First Aid & fire 

 

 First aid equipment is available in the lab, ask your instructor about the nearest 

kit.  

 Fire extinguisher are available in the lab, ask your instructor about the nearest 

one to your lab. 

 In case of an accident: 
o Turn off all electricity. 

o Do not touch other persons in case of electrical shorts. 

o Report to the person in charge and await proper instructions. 

o First aid must be conducted by a qualified person. At the same time, 

call the university clinic for help. 

o Use the fire extinguisher to extinguish any fire. 

 

Electricity 

 Do not touch any exposed electric wiring. 

 Do not handle electrical equipment while wearing damp clothing (particularly 

wet shoes) or while skin surfaces are damp. 



 Never bend or kink the power cord on an instrument, as this can crack the insulation, 

thereby introducing the danger of electrical shocks or burns. 

 Know where the stop button, main switch or other device for stopping the apparatus is 

located 

 

 

Machines and moving parts 
 In order to avoid the possibility of injuries, it is important that the students be aware of 

their surroundings and pay attention to all instructions. 

 Deal with caution with rotating machines, fans pumps compressors, motors etc. don’t touch 

any of the rotating parts; shafts, or blades. 

 Read and understand operation instructions before turning on the machines, do not turn 

machine till you’re instructed by the instructor or the technician. 

 

Hot surfaces and burns 
 Do not touch hot surfaces; hot plates boilers, heating elements, machines, etc. 

 
 



1 

 

 
 
 
 
 
 
 
 
 
 

 

Electrical Engineering 

Department 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prepared By: 

 

ENEE DEPARTMENT 
 
 
 
 
 
 



2 

 

Table of Contents 
 
 
 

  

Experiment 1 Negative Feedback, Modular Design and Sub-circuit using Orcad 3 

  
  

Experiment 2 Power Electronic Converters in Orcad 13 

  
  

Experiment 3 PCB design and implementation 21 

Experiment 4 Introduction to MicroC Program 32 

Experiment 5 Linear Systems Simulation in MatLab 40 

  
  

Experiment 6 Modeling a DC motor in Simulink 47 

  
  

Experiment 7 Amplitude Modulation and Demodulation in LabVIEW 57 

   
   

Experiment 8 Introduction to Data Acquisition Systems in LabVIEW 63 

  
  

Experiment 9 PWM Control Project 70 

  
  

Experiment 10 Filter Design Using MATLAB 72 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

 

Experiment 1 

Negative feedback, Modular design and sub-circuits using Orcad 

 

Introduction 

Negative Feedback 

In most of electronic circuits design, negative feedback is used to improve the system 

performance and stability. In this experiment we’ll simulate an open loop amplifier, then, add a 

negative feedback network, find the new characteristics, and compare the two amplifiers in terms 

of input impedance, output impedance, gain, and bandwidth. 

 

Modular Design and Sub-Circuits in Orcad 

Orcad simulation tool offers the ability to employ hierarchal design “Modular Design” i.e. 

any circuit design can be fragmented into smaller simpler circuits “Modules” each of which can 

be represented by a block with input and output pins. These blocks then used to build a more 

complicated system. Also, one can use Orcad to build his own library components .   

 

In this experiment, we’ll begin by implementing two blocks that are then used to implement 

a multi-stage amplifier. Then, the amplifier circuit will be converted into a sub-circuit “symbol” 

and added to Orcad library. 

 

Objectives 

 To learn the concept of modular design using Orcad. 

 To make a sub-circuit “symbol” and add it to the Orcad Library. 

 To compare the characteristics of an open-loop and a closed-loop amplifier. 

 

Pre-Lab 

Figure 1 and figure 2 show an open loop multistage amplifier and a closed loop multistage 

amplifier, respectively.



4 

 

You have to: 

1. Simulate both circuits in Fig.1 and Fig.2 using Orcad. 

2. Determine Avmid “Gain”, Zin, Zout and Bandwidth of both circuits. 

3. Repeat the simulation with the load values: 10kΩ to 100Ω. 
4. Compare the two amplifiers’ results with both load values. 

 

 

Hint : you can either use the part “Port” to represent the VCC and VEE as shown in 

the following figures, or, you can easily connect the VCC and VEE sources directly. 

Figure 1: Open Loop Multistage  Amplifier 

 

 



5 

 

Procedure 

Modular Design: 

I. As mentioned earlier, we are dividing the amplifier into smaller 

modules, in our case, two modules as shown in Fig.3 and 4. Draw 

the circuits shown Fig.3 and 4 on separate schematics and save 

them as “lowfirst.sch” and “lowsecond.sch”, respectively. 

 

Hint:  

Right-click on .dsn in Project Manager -> new schematic.. 

Right-click on new Schematic Folder in project Manager -> Rename TO " lowfirst.sch " 

Right-click on root Schematic Folder in Project manager -> New Page  

  

Repeat the same steps for “lowsecond.sch”, 

         Figure 3: lowfirst schematic 

Figure 4: lowsecond schematic 



6 

 

II. Open-Loop Amplifier 
 

The circuit shown in Fig. 5 represents a BJT amplifier.  

1. Draw the circuit in a new schematic page and save it as “top.sch”. 

Hint:  the block in the middle can be added by clicking place Hierarchical Block and 

setting the parameters as in the following   dialog box: 

 

 

You have to type the implementation name, because the schematic does not exist yet. Click 

[OK] and draw a rectangle on the schematic page. You will see the reference name U2 and the 

implementation name TOP for the hierarchical block. 

 

To add pins select the rectangle and use the command "place H pin"  and locate the pin on 

the rectangle  after naming them. 

 

Hint: 

Right-click on .dsn in Project Manager -> new schematic. 

Right-click on new Schematic Folder in project Manager -> Rename TO TOPA 

Right-click on Schematic Folder in Project manager -> Make Root 

Right-click on Root Schematic Folder in Project manager -> New Page 



7 

 

 
Figure 5: top schematic 

 

2.   Double clicking the block. A pop-up window will appear, asking you to type the name 

of the circuit to be added inside this block, name it “middle”. 

 

3.   Now, draw the “firstlow” block  inside the middle schematic : the block in the left can 

be added by clicking place Hierarchical Block. Set the Place Hierarchical Block  dialog 

box as follow  " make sure that you named the implementation name the same name that you 

make for the first schematic  



8 

 

4.   Now, draw The first low block  inside the middle schematic : the block in the right can 

be added by clicking place Hierarchical Block Set the Place Hierarchical Block  dialog 

box before  " make sure that you named the implementation name the same name that you 

make for the second schematic" 

 

Figure 6 : MIDDLE SCHEMATIC  

 

 

Now, go back to the “top” schematic which represents the amplifier. Use AC sweep analysis 

to obtain the characteristics of the open loop amplifier shown earlier in figure 5. 

 

 

 

 

 

 

 

 

 



9 

 

Making a sub-circuit using PSpice 

 

We need to make our own amplifier and add it to the OrCAD  library so that it can be accessed 

and used in any design. 

1. Draw the circuit shown in figure 7 below, which is the multistage amplifier we want to 

convert into a symbol “sub-circuit”. 
 

 

          Figure 7: MULTISTAGE AMPLIFER 

 

 

2. To convert the circuit into a sub-circuit, first , select the schematic you want to turn into a sub-

circuit. NOT THE PAGE! THE SCHEMATIC! 

 

 

 



10 

 

3. Then, while the schematic is highlighted, click Tools → Generate part 

 

 

 

4. Make “Part Name” to YOUR NAME . Under “Netlist/source file”, make sure that the design you are 

working on is the one selected. Make sure “Create new part” is selected. The “Destination part library” is 

where you want to save your part CHOOSE THIS PATH : 

"C:\Cadence\SPB_16.5\tools\capture\library\pspice" ”. Source Schematic name is the name of the 

schematic your are turning into a sub-circuit. Once everything is to your liking, hit okay. You should get a 

screen that looks like the following: 

 



11 

 

 

5. Under “Position”, you can click each cell for a drop-down menu with left, right, top, and bottom. This 

is the position of the pin. Everything else is pretty self explanatory. You can add in pins if you want. You 

can change the name of pins. Make pins default to visible or invisible. Point is, the next thing you do is 

hit SAVE once you're pins are where you want them. 

 

6. Now, you can easily open a new schematic and add your symbol from the library like any other 

part. 

 

7. To edit the shape, name, pins’ names of your new symbol, DOUBLE click on  the part name which 

appeared on the output as shown, and then  you can change positions , and whatever you want. 

 

 



12 

 

8. Use your new component to simulate an amplifier with a negative feedback as shown in the figure 

below. And find its characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

Experiment 2 

Power Electronic Converters in Orcad 

Introduction 

Orcad1 is a software package that can be used to simulate and design electrical circuits, 

analog and digital. The Orcad library contains most of the widely used electrical components, 

starting with analog components like resistors and capacitors up to IC’s of different sizes and 

functions. Also, Orcad can be used to design Printed Circuit Boards “PCB’s” as will be 

demonstrated in Experiment 4 of this lab. 

Power Electronic Converters2 

Power electronic converters are mostly used in the design of DC power supplies “switch 

mode power supplies” to convert a DC voltage level to another level that is higher or lower, this 

type of converters employs high speed power electronic switches like MOSFET’s and IGBT’s that 

can be operated at high frequencies where the output voltage can be controlled by controlling the 

duty cycle of these switches. 

In this experiment you’ll be simulating a variety of DC to DC converters in addition to an 

Inverter “DC to AC” and you’ll be studying the effect of varying different parameters like the 

switching duty cycle, the output filter size and the load. 

Step down Converters “Buck Converters” 

In a step down converter the output voltage can be varied between 0V and Vin by controlling 

the duty cycle of the switch, the output voltage can be expressed in terms of the duty cycle ( ρ ) 

and the input voltage as follows, 

𝑉𝑜𝑢𝑡 =  𝜌𝑉𝑖𝑛      ,     0 < 𝜌 < 1 

 

Step Up Converters “Boost Converters” 

A step up converter is used to boost the input voltage and deliver a higher DC output voltage; 

its output can be expressed as follows, 

                                                           
1 You’ll need a full version of Orcad to continue with this experiment and to be able to do the prelab part - the student 

version isn’t enough- you need Orcad 10.3 or higher. 
2 You’re asked to review the theoretical part by referring to your Power Electronics class notes. 



14 

 

𝑉𝑜𝑢𝑡 = − 
𝑉𝑖𝑛

1 − 𝜌
     ,     0 < 𝜌 < 1 

As noticed, its operation isn’t stable at high values of the duty cycle since the output voltage 

can change rapidly for the slightest change in the duty cycle. 

 

Step Up/Down Converters “Buck-Boost Converters” 

A buck-boost converter combines the operation of both the buck and boost converters i.e. 

the same device can be used to either step up the voltage or step it down. The output voltage of 

this type of converters is given by the following equation, 

𝑉𝑜𝑢𝑡 = − 
𝜌𝑉𝑖𝑛

1 − 𝜌
     ,     0 < 𝜌 < 1 

A closer look at the equation shows that the converter acts as a step down converter for ρ <

0.5 and a step up converter for  ρ > 0.5. 

 

Full Bridge Converters 

A full bridge or H-bridge has many applications; it can be used as a DC-DC Converter or a 

DC to AC converter where its output depends on both, the switching duty cycle and the switching 

strategy. In this experiment the H-bridge will operate as in Inverter i.e. DC to AC converter with 

a sinusoidal pulse width modulation “SPWM”, the output voltage of such an inverter is given by 

the formula, 

𝑉𝑜𝑢𝑡 = 𝑀𝑉𝐷𝐶sin (2𝜋𝑓𝑡) 

M: is the modulation index and defined as the ratio between the carrier signal amplitude and the reference signal 

amplitude  

f: is the frequency of the carrier signal 

VDC: is the input DC voltage  

Objectives 

 To become familiar with Orcad. 

 To verify the operation of different power electronic converters, and see the effect of changing the 

load, the filter size and duty cycle. 

 



15 

 

 

Prelab 

The aim of this prelab is to get you started with Orcad. The following example is a simple RLC circuit 

that you have to simulate and handout before class. 

 

Starting Orcad and creating a new project 

a. In your start menu go to Programs>> Orcad >> Capture 

b. When the program starts go to File >> New >> Project 

c. A pop-up window will appear, choose Analog or Mixed A/D and fill the name of your 

project, for example “Exp#2_Prelab”, then choose the directory where you want your 

project to be saved, for example C:\University_files\Simulation_Lab\Prelabs, then press 

OK. 

d. A new pop-up window will appear, choose Create a blank project then OK. 

 

Drawing the circuit 

e. Now your project is created and you’re ready to draw your circuit which is shown in the 

figure below. Go to Place >> Part, a pop-up window will appear to you, containing all the 

part you need. In the libraries section select all libraries by selecting one of them then 

pressing “Ctrl+A”, if it’s empty i.e. no libraries are in the libraries section, go to Add 

Library and add all the libraries you find, you won’t need all of them, but sooner or later 

you’re going to need some of them. 

 

 

Figure 1 

f. Now, you can find any part by typing its name or shortcut in the Part section above, for 

example, type “r” to add a resistor and choose r/analog , “c” to add a capacitor and choose 

c/analog, “l” to add an inductor and choose l/analog, you’ll also need a “vpulse”, type 

vpulse then choose vpulse/source. 



16 

 

g. Now that you have placed all your parts, connect them by a wire, go to Place >> Wire. 

h. Finally, you need to add a ground before you can simulate your circuit, go to Place >> 

Ground and choose 0/source. 

 

 

Simulation 

i. In order to simulate the circuit, you have to create a simulation profile first with the 

simulation parameters you need. In this experiment we are doing a transient analysis. Go 

to Pspice >> New Simulation Profile, then fill the name of your profile and press create. A 

pop-up window called simulation settings will appear, click the analysis tab, choose the 

analysis type “time domain-transient”, fill the run time with 2ms, and the maximum step 

size with 0.01ms. Go to the probe window tab and check the Display Probe Window box 

and choose After simulation has completed then press OK. 

j. Now place a voltage marker on the capacitor to show its voltage by going to Pspice >> 

Markers >> Voltage level. Now that your circuit and simulation profile are ready, go to 

Pspice and press Run. A new window will appear showing the voltage across the capacitor. 

Copy the simulation results to your prelab report. 

 

Exercise 

Now that you’ve learned to use Orcad, calculate the critically damping value of the resistor 

i.e. the value of the resistor which gives a critically damped output on the capacitor and show the 

calculation in your prelab report. Then, use your result to do a parametric analysis using 3 values 

for the resistor “1 Ohm, your result, 15 Ohms”. 

 

Figure 2 



17 

 

You need to rename your resistor to “{val}”, then add the “PARAM/DesingCache” part, 

double click on the PARAMETERS part, click Add column and fill “val” in the name section, and 

1 in the value section. 

Go to Pspice >> Edit simulation profile, then, check the parametric sweep box and choose 

global parameter and fill the Parameter Name with “val”, then, choose value list and fill in your 

values separated by a comma, then press OK and run the simulation. 

The simulation output must contain three different graphs with different colors; copy the 

results to your prelab report.  

Procedure 

Step-down Converter 

1. Draw the circuit shown in the figure below. 

 

Figure 3 

 

2. Create a simulation profile with a 5ms run time. 

3. Show the output voltage and its average. 

4. Show the IGBT current, the IGBT gate current and Vce on different graphs3. You need to 

magnify your plot for few cycles. 

                                                           
3 To add different plots, run your simulation, then, in the simulation output window go to Plot >> Add plot to window, 

click at the new blank window then go back to your schematic and place a marker on whatever you want to display. 

You can also use the alternative display button beside the help button to expand your graph. 



18 

 

5. Repeat step 3 for different duty cycles (20% and 70%). use the FFT analysis to show the 

frequency spectrum of the output voltage for the 70% case only.  “note the effect of 

changing the duty cycle on the output average value” 

6. Add an LC low pass filter as shown in the figure below and repeat the simulation for 20%, 

50% and 70% duty cycles. Show the output voltage and IGBT current for each duty cycle. 

use the FFT analysis to show the frequency spectrum of the output voltage for the 70% 

case only “note the effect of adding a filter” 

Figure 4 

7. Change the filter capacitance to 22µF instead of 220µF and repeat the simulation for a 70% 

duty cycle. Show the output voltage. “note the effect of changing the filter size” 

8. Return the filter to its original size then change the resistive load value to 20Ω instead of 

1Ω. Show the output voltage for a duty cycle of 70%. “note the effect of changing the load 

value” 

 

Buck-Boost Converter 

1. Draw the circuit shown in the figure below. 

Figure 5 



19 

 

2. Create a simulation profile with 100ms run time. 

3. Show the output voltage and its average, also, show the inductor current and IGBT current 

for a duty cycle of 20%, 50% and 70%. You need to magnify your plot for the IGBT and 

inductor currents to show few cycles. “note the effect of changing the duty cycle” 

4. Show the ripple in the output voltage for a 70% duty cycle. Use the FFT analysis to show 

the frequency spectrum of the output voltage. 

5. Change the output capacitance value to 1µF instead of 20µF and show the new ripple on 

the output voltage for a 70% duty cycle. Use the FFT analysis to show the frequency 

spectrum of the output voltage. “note the effect of changing the output capacitance value” 

 

Full Bridge Converter  

1. Draw the circuit shown in the figure below4. 

 

Figure 6 

2. Create a simulation profile with 5ms run time. 

3. Show the output voltage over the load resistor and show the output voltage before the filter 

on the same graph. Record the amplitude and frequency of the output voltage  

                                                           
4 You can either use the PORTBOTH-L/CAPSYM port to connect the reference and carrier as shown in the figure, 

or, you can simply use a wire. To add the port, go to Place >> Hierarchical Port and choose PORTBOTH-L/CAPSYM, 

place as many as you need, then, you can simply name the port by double clicking the part and filling the name.  



20 

 

4. Show the voltages across and currents through Z1 and Z4 on different plots. Magnify the 

graph to show few cycles only. 

5. Show the gate signals for Z1 and Z4 on different plots. Magnify the graph to show few 

cycles only. 

6. Change the frequency of the sinusoidal signal to 200Hz instead of 1 kHz, show the output 

voltage and record its frequency and amplitude. You should change the simulation run time 

to suit the new frequency. “note the effect of changing the carrier frequency” 

7. Set the carrier frequency back to 1 kHz, and redo the simulation for a modulation index of 

0.2 then 0.8. Show the output voltage and record its amplitude for each case. “note the 

effect of changing the modulation index” 

8. Use the FFT analysis to show the frequency spectrum of the output voltage for a 1 kHz 

carrier signal and a 0.8 modulation index. 

9. Replace the sinusoidal source with a 0V DC source and show the output voltage, record its 

frequency, amplitude and average. Use the FFT analysis to show the frequency spectrum 

of the output voltage. “note the effect of changing the switching strategy” 

10. Repeat the previous part for a 4V DC source. 

 

 The EVALUE is a block that can be used to apply mathematical expressions on signals, for 

instance, it can be used to find the sum, the difference, the square root… of its input signals.  

When added, the basic expression is V(%IN-, %IN+) , keeping it as it is, the output between 

OUT+ and OUT- will be the difference between the input signals, for example, if the voltage 

difference between IN+ and IN- is 5V , the output voltage between OUT+ and OUT- will be 5V 

and so on.  

The expression can be edited by adding scalars, parameters and mathematical expressions. 

For example, the expression 5v*(V(%IN+,%IN-)) would result in an output voltage that is five 

times the difference between the input voltages. 

In our experiment, we’re using the EVALUE block to simulate a comparator using the 

LIMIT function which can be explained as follows 

LIMIT(X, V1, V2) = V1 for X < V1 

                                   V2 for X > V2 

                               X otherwise 

 

A comparator output assumes one of two values, either high or low, so, to simulate a 

comparator, we multiplied the input by a large scale “1000” such that the input is –in most cases- 

higher or lower than the limits of the limit function resulting in one of two outputs V1 or V2 which 

are necessary to turn on or off our IGBT’s. 



21 

 

Experiment 3 
 
 

PCB Design & Implementation 

 

Introduction 

 
A Printed Circuit Board (PCB) is used to serve two main purposes in the construction of 

electrical system cards; it is a place to mount the components and it provides the means of electrical 
connection between the components.  

A PCB consists of two basic parts: a substrate (the board) and printed wires (the copper 
traces). The substrate provides a structure that physically holds the circuit components and printed 
wires in place and provides electrical insulation between conductive parts. A common type of 
substrate is FR4, which is a fiberglass– epoxy laminate. Substrates are also made from Teflon, 
ceramics, and special polymers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 A double-sided copper clad substrate 
 

Once the layout is designed, it can be implemented on the board by several technologies. The 
main processes in the board fabrication are: 

 

 Removing the unwanted copper cladding such that the designed layout (tracks, pads, etc.) 
is implemented by the copper. 

 Drilling the board to place the components. 
 Solder the desired connections. 

 
The copper cladding can be removed in two main ways: 

 

 Mechanical milling: To mill the board, a computer numerical control (CNC) machine 

is programmed with the digital map of the board and grinds away the unwanted 

copper. 


 Wet acid etching: it is more common when manufacturing large quantities of boards 
because many boards can be made simultaneously. 

 
Selectively removing the copper with etching processes requires etching the unwanted 

copper while protecting the wanted copper from the etchant. This protection is provided by a



22 

 

polymer coating (called photoresist) that is deposited onto the surface of the copper cladding as 
shown in Figure2. The photoresist is patterned into the shape of the desired printed circuit through 
a process called photolithography. The patterned resist protects selected areas of the copper from 
the etchant and exposes the copper to be etched. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 A copper clad board coated with photoresist 
 

There are two steps to photolithography, patterning the photoresist - exposing the resist to 
light (typically ultraviolet (UV) light) and developing it (selective removal in a chemical bath). A 
mask is used to expose the desired part of the photoresist. A mask is a specialized black and white 
photographic film or glass photoplate on which a picture of the traces and pads is printed with a 
laser printer. The mask is placed on top of the photoresist as shown in Figure 3(b), and the assembly 
is exposed to the UV light. The dark areas block UV light and the white (transparent) areas allow 
the UV light to hit the photoresist, which imprints the circuit image into the photoresist. A separate 
mask is used for each layer of a circuit board. After the photoresist has been exposed with the mask 
and UV, it is washed in a chemical called the developer. The resist breaks down during exposure 
and is removed by the developer. Common developer is sodium hydroxide (NaOH). Once the resist 
has been exposed and developed, a circuit image made of the photoresist is left on the copper as 
shown in Figure 4(a). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13 (a) Photomask. (b) Photomask on photoresist-coated board. 

 
Next, the board is etched in an acid solution such as ferric chloride (FeCl3) or sodium 

persulfate (Na2S2O8). The etching solution does not significantly affect the photoresist but attacks 
the bare copper and removes it from the substrate, leaving behind the resist-coated copper as shown 
in Figure 4(b). Finally the photoresist is cleaned from the copper with a resist stripper, leaving 
behind the copper traces. Figure 4(c) shows the final patterned copper. 
 
 
 



23 

 

In this experiment, you will construct a Proteus Ares layout for a simple circuit, and to use the 
constructed layout to make a PCB in the lab using the acid etching method. 
 
 
 
 
 
 
 
 
 

 

Figure 14 (a) Developed photoresist on copper. (b) Unwanted copper removed after etching. (c) 
Copper pad and trace after etching and resist stripping. 

 

 

Objectives: 
 

 To introduce the student to the PCB technology. 
 To learn using Proteus software. 
 To be familiar with the Gerber files. 
 To implement the designed board using the acid etching method. 

 

 

Procedure: 
 
The main steps for making a PCB layout using Protues are as follows: 

 

 Start the Isis software. 
 Draw the circuit. 
 Generate a netlist and move it to Ares. 
 Place the parts. 
 Route the board. 
 Generate the files needed for the PCB manufacturing process. 

 

Start Isis 

Go to Start Menu >> Programs >> Proteus 7 Professional >> Isis 7 Professional  
An overview of the software is shown in figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15 
 

 

Draw the circuit 
 

Draw the circuit shown in figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 

 

 
To add any of the components shown, Press the Component Mode as shown in figure 7, 

then press the P for Pick from Libraries, and add the following set of parts: 

 
 2 Terminal Blocks 
 4 Diodes 
 2 Capacitors 
 7805 Regulator 



25 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 
 

Make sure that any component you add has a PCB footprint as shown in the PCB View 
section below in figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



26 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 

 

Generate a netlist and move it to Ares 

 

Save your schematic in a folder of your name on the desktop then go to Tools >> Netlist to  
Ares. 
 

The Ares software will start as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Ares Software overview 
 
 
 
 
 
 
 
 
 



27 

 

Place the Parts 

 
To place the parts press the component mode as shown in figure 11 and place the parts as 

shown in figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12 

 
 
 
 
 
 
 

 



28 

 

Route the layout 

 
Before routing the PCB, the routing layers must be determined, in our example, we’ll be 

making a single layer PCB. To do so go to Tools >> Design Rule Manager >> Net Classes.  
Adjust the layers as shown in figure 13. Check the Net Class for any other layers and adjust 

them the same way done with the SIGNAL layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13 

 
 

Go the Track Mode as shown in figure 14, then, press the E to edit the width of the tracks  

“the lines that connect the components” and increase the width to 75th
5
. 

 
To route the board go to Tools >> Auto Router >> Begin Routing. The routed board 

should look like the one in figure 16. 
 
 
 
 
 
 
 
 

 
5
 1th is 0.001 of an Inch. 



29 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16 
 
 
 
 
 
 
 
 

 
Figure 17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18 

 
 

Editing Pins 

 
To change the size of any of the pins, Right click on the desired pin >> Edit Pin then, change 

the Style to a greater size. 

 
To change the size of all the pins with the same style, go to the pad mode as shown in figure 

17 then select the specified style, then, press E to and edit the diameter of the pin as needed. 

 
 



30 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 19 

 

Gerber files 

 
Gerber files are the main output of most PCB layout software since the Gerber format is a 

standard format that contains a map of the tracks “the copper lines that connect all the 
components”, the pins “the drilling holes” and other specifications of the board. 

 
Since Gerber files are a standard, you can simply use the Isis software to generate a Gerber 

file and hand it to the manufacturer to proceed with the PCB manufacturing process. 

 
Before generating a Gerber file, the design needs to be checked, to do so, go to Output >> 

Pre-Production Check and check if there were any errors associated with the designed PCB 
layout. If no errors were found, go to Output >> Gerber/Excellon Output a screen as the one in 
figure 18 should appear, select the bottom copper only, then, press OK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



31 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20 

 

 
Other Output formats exist, like direct printing, PDF format and images. To output an image, 

go to Output >> Export Graphics >> Export Bitmap. The window in figure 19 should appear, 
select the bottom copper as shown in the figure below then press OK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21 
 
 
 
 



32 

 

 
Experiment #4 

Introduction to MicroC Program 

Introduction 
  
PIC Microcontrollers 
 

Microchip PIC microcontrollers are a family of chips of different sizes, shapes and abilities, 
each PIC mainly consists of a processor, memory and I/O ports, where some PIC’s may contain 
analog to digital conversion modules, serial communication modules, pulse width modulation 
modules and other features.  

PIC microcontrollers are somehow easy to program and use compared to other controllers.  
The fact that they’ve a built in memory and I/O ports makes it easier for the user to use since there 
is no need to interface any memory or I/O ports externally like the case of the Intel 8086 chips. 
Like other controllers, the PIC has its own instruction set and can be programmed using an 
assembly language of its own or using higher level languages like the C language where special 
compilers are needed.  

When choosing a PIC for your project you should take into account the number of ports 
needed, the memory size and what modules are needed (analog to digital converter, PWM 
module…). In our experiment we’ll be using two different controllers for two different 
applications. 

MicroC program6
  

MicroC Pro is a computer software that is used to develop applications that run on 
Microchip PIC microcontrollers, the software runs on windows operating systems. The MicroC 
Pro with its graphical interface can be considered as an editor that enables the user to write his 
code using C language, then, compiles it using the proper compiling tools and generates a 
hexadecimal file containing the machine language that can be downloaded and run on the 
microcontroller.  

PIC Simulator IDE7
 

 
PIC Simulator IDE is another computer based software that simulates a variety of the 

Microchip PIC microcontrollers, using this software, one can test his code and verify its operation 
before downloading it on a real PIC. The simulator has many features and tools that can be added 
to the simulation like LCD modules, Oscilloscope channels and others. 

 
Also you can use Protues “ISIS 7 Professional” to simulate your code and see the output in 

real circuits.  
 
 
 

Objectives 

-To become familiar with MicroC Pro and be able to develop PIC based programs. 
 
 
 

 
6 You’ll need to install MicroC Pro for this experiment. 

  
7 You’ll need to install PIC Simulator IDE v5.22 or higher to proceed with this experiment. 

 

 



33 

 

Procedure: 
 

A.  Interfacing a PIC microcontroller with an LCD 

 

In this part we’re creating a code that controls a 16X2 LCD using a 16F84A PIC. 
 

Creating a project: 
 

1. Start the MicroC Pro.  

2. New project 


 set name ”your name” of the project.   
3. Set its directory for example: “C:\Users\esmat\Desktop”.   
4. Set your device from the menu which is the 16F84A in our case.   
5. Set the clock frequency to be 4MHz  

6. Press next


next


next


finish.  
 

7. Type the code shown below: 

 

// Lcd pinout settings 

 

sbit LCD_RS at RB4_bit; 

sbit LCD_EN at RB5_bit; 

sbit LCD_D7 at RB3_bit; 

sbit LCD_D6 at RB2_bit; 

sbit LCD_D5 at RB1_bit; 

sbit LCD_D4 at RB0_bit; 

// Pin direction 

 
sbit LCD_RS_Direction at TRISB4_bit; 

sbit LCD_EN_Direction at TRISB5_bit; 

sbit LCD_D7_Direction at TRISB3_bit; 

sbit LCD_D6_Direction at TRISB2_bit; 

sbit LCD_D5_Direction at TRISB1_bit; 

sbit LCD_D4_Direction at TRISB0_bit; 

 
 
 
 



34 

 

 
void main() 

 
{ 

 
TRISA = 0x00; // set all pins of port A as output 

 
TRISB = 0x00; // set all pins of port B as output 

 

while(1) 

 

{ lcd_init(); // initialize the lcd 

lcd_out(1,1,"ENEE413 EXP#3"); // print this message 

Lcd_Cmd(_LCD_CURSOR_OFF); 

 
} 

} 

 

 
 

 
 

8.Save your work and Build it: go to Build menu choose build, so the hex file will be 
created in the same fold 

Figure (4.1) 
 

 



35 

 

9. Go to Protues ISIS 7 Professional program and draw the circuit shown in 
figure (4.2): 

 

Figure (4.2) 

 

10. Double click on the PIC. 
 

11. In the program file field, click browse and choose your Hex file.  
 

12. Change the clock frequency to 4MHz.  
13. Go to play simulation as shown in Fig.(4.3) below and see the output: 

 

 
 

Figure (4.3)



36 

 

 

Class Exercise : 
 
Change the previous code to display your first name and ID number simultaneously with each on 
separate lines i.e. your name on the upper line and the ID number on the lower line. 
 
 

 

B. Using the A/D module 

 
In this part we’ll be using the 16F877A PIC microcontroller which has a built in analog to digital 
converter, the PIC will be reading the analog input, convert it into digital and outputs the digital 
value in binary representation on port B. 
 
1. Create new MicroC project, and write the below code in it and build it:  
 

unsigned int a; 

void main() { 

TRISA = 0xFF; // PORTA is input 

TRISC  = 0; // PORTC is output 

TRISB  = 0; // PORTB is output 

do {  
a = ADC_Read(0); // Get 10-bit results of AD conversion 
PORTB = a; // Send lower 8 bits to PORTB  
PORTC = a >> 8; // Send 2 most significant bits to RC1, RC0 } 

while(1);  
} 
 
 
 
 
2. Go to protues ISIS 7 Professional and draw the circuit shown in Fig.(4.4): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



37 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (4.4) 

  
3.Load your Hex file to the PIC and change its clock 
frequency. 4.Run the simulation and see the results. 
 
Programming a PIC microcontroller using a serial port programmer 

 
In the previous experiment you were taught how to develop a program for a PIC, but, how to 
download this program on a real PIC? 

 
First of all, you’ll need a programmer, mostly, a conventional JDM serial port programmer as the 
one shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This type of programmers is common, easy to use, non-expensive and can be homemade! The 
only problem with this programmer is that it needs a PC or a Laptop with a serial port fitted on it, 



38 

 

most PC’s still have serial ports, but most laptops don’t, so, if you’re using this programmer, you’ll 
probably need a PC to do the job. 

 
Another type of PIC programmers are the USB programmers, they’re also easy to use but the high 
price of such programmers makes them less common. 

 
Once you have the programmer you’ll need a computer software that suits your programmer, 
normally, USB programmers have their software on a CD that is packed with the programmer, as 
for the common serial programmers, they usually don’t! Fortunately, a variety of programming 
software’s can be downloaded for free. We recommend the use of “ICprog” which is a free 
programming software that can be easily downloaded from the web. 
 

Programming Steps 

 

1. Fit your PIC on the programmer; note the indicators on where the first pin must be. Most 
programmers have an arrow that indicates the right position for each PIC size.   

2. Connect the programmer to the PC.  
 

3. Start the programming software which is the ICprog in our case. When started for the first 
time, the following window will appear.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Make sure you choose “Windows API” as an interface and “JDM Programmer” as a programmer 
and choose Com 1 as a port –serial ports are normally Com 1- then press OK.   

5. Now you must choose your PIC, go to Settings >> Device >> Microchip PIC and find your PIC.  
 

6. Then, you need to load your program, go to File >> Open File and add your “.hex” file that you 
created using the MPLAB.  

 
7. Finally, you’ll need to set the settings of your microcontroller; the settings are shown in the 

configuration part to the right.  
 

8. Choose the oscillator type to be RC if you’re using an RC oscillator, choose LP if operating on low 

frequencies up to 200KHz, choose XT if you’re using a 4MHz crystal oscillator and choose HS if 

you’re using a crystal oscillator that is higher than 4MHz e.g. a 20MHz oscillator.  



39 

 

Normally, you’ll be using a 4MHz crystal oscillator. 

 
9.  As for the fuses, only set the BODEN fuse, other fuses must be off. 

 
These are the most common settings, different settings might be needed depending on your project. 
Do not tamper with Checksum or the ID value, these words are filled automatically and can differ 
depending on your code! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
10. When you’re finished with the configurations, go to Command >> Erase All, this should 

guarantee that the PIC memory is empty and ready for the new code. Once it’s done, a 

pop window indicating the successful erasing process will appear.  
 

11. Go to Command >> Blank check, this check will test whether your PIC is good to use or corrupt, 

once the check is done a pop up window saying “device is blank ” will appear, this means your 

PIC is OK.  
 

12. To download the program, go to Command >> Program All and wait till it finishes the 
programming.  

 
13. To verify that the process went well, go to Command >> Verify and wait for the successful 

verification window to appear.  

 
By this, your device should be ready to use, unplug the programmer and remove your device 
to use it in your project. 

 
 
 
 
 



40 

 

Experiment 5 

Linear Systems Simulation in MatLab 
 

Objective:  
The student should become acquainted with time and frequency domain analysis of linear systems using 
 
MatLab. 
 

Prelab: 
The purpose of the prelab is to introduce the student to some useful aspects of MatLab. In MatLab window, 
 
type the following commands for: 
 

1.  Matrix operations 
 
>>% matrix operations 
>>% to enter a matrix 
>>A= [5 3; 5 5] ; 
>>B= [-3 -7; 10 0] ; 
>>A  
>>B 

>>% matrix addition  
>>A+B % terminating with ';' will suppress the result 
>>% matrix multiplication  
>>A*B  
>>% matrix 
determinant >>det(A)  
>>%inverse of a matrix 
>>inv(A)  
>>C=inv(A) 

>>A*C 

>>A/B  
>> % eigenvalues of matrix 
>>eig(A)  
>>% transpose of a matrix 
>>A'  
>>% rank of a 
matrix >>rank(A)  
>>% create an identity 
matrix >>I=eye(3)  

2. Complex arithmetic 

>>y=5j  
>>z=10+4j 

>>x=z/y  
>> % obtain the magnitude and the phase of 
x >>m=abs(x)  
>>ph=angle(x) 

>>% to convert to degree 
 



41 

 

>>deg=ph*180/pi 

 

3. Vector operation 
 
>>% create a 1x3 row 
vector >>v1=[x y z]  
>>% create a 3x1 column vector 
>>v2=[x;y;z ]  
>>% multiply tow vectors 
>>vectorprod=v1*v2 
>>v2t=v2'  
>>v3=v1.*v2t 
>>v4=sqrt(v3) 

 

4. Generating test point sets 

>>t1=linspace(0,1,10)  
>>t2=0:1:5 
>>t3=logspace(-1,1,100) 
>>val=cos(t3) 
>>plot(t3,val); 
>>semilogx(t3,val)  
>> % plotting cos(pi*t/2+cos(pi*t/3); 
>>t=-15:0.01:15;  
>>y= cos(pi*t/2+cos(pi*t/3); 
>>plot(t,y) 
>>grid 

>>xlabel('t(sec)'); 

>>ylabel('y(t)');  
>>title('plot of y(t) = cos(pi*t/2) + 
cos(pi*t/3)'); >>% plotting compound signal  
>>t=-2:0.01:3; 
>>y=t.*((t>=0) – (t>=2)); 
>>plot(t,y) 

 

5. Working with polynomials 
 
>>%coefficients of descending polynomial powers of s, such as 1s^3+0s^2+2s+5, are inserted into a defining 
coefficient array.  
>>p1=[1 0 2 5] 
>>r=roots(p1) 
>>p2=[5 2 1] 
>>p3=conv(p1,p2) 
>>roots(p3)  
>>%the laplace transform of a function will be a ratio of two polynomials in s 
i.e. >>% F(s)=25s/10s^2+8s+4  
>>n=[25 0]; 
 
 



42 

 

 
>>d=[10 8 4]; 
>>roots(d) 
 

6. Time and frequency response 
 
>>num=[1 0 ]; 

>>den=[1 1 4]; 

>>impulse (num,den) 

>>printsys(num,den,'s') 

>>t=0:0.2:10; 

>>impulse(num,den,t) 

>>step(num,den,t)  
>>y1=impulse(num,den,t); 
y2=step(num,den,t); >>plot(t,y1,t,y2),grid  
>>title('impulse resp=blue,step resp=green') 
>>%step response of a third order system 
>>%g(s)=12.5/(s+0.5)(s^2+s+25) 
>>num=[12.5]  
>>den=conv( [1 0.5],[1 1 25]); 
>>step(num,den)  
>>% plotting amplitude and phase response 
 
>>% plotting using standard plotting and complex 
number >>%capabilities for generating Bode plots  
>>n=[20 -80]; 
>>d=[1 4 16];  
>>w=logspace(-1,2,101) 

>>Gain=freqs(n,d,w); 

>>mag=abs(Gain) 

>>db=20*log10(mag) 

>>ph=angle(Gain)*180/pi 

>>semilogx(w,db),grid 

>>semilogx(w,ph),grid 

>>% plotting using built-in Bode plot function. 
 
>>num=[4]; >>den=[0.25 
0.2 1]; >>w=logspace(-
1,2,200);  
>>[mag,phase,w]=bode(num,den,w);  
>>semilogx(w,20*log10(mag)),grid; 
>>xlabel('freguency(rad/s)'),ylabel('Gain db')  
>>% obtaining the transfer function in terms of wn and zeta using the ord2 command 
>>t=[0:0.1:15];  
>>wn=1; 

>>zeta=0.2; 

>>[num,den]=ord2(wn,zeta); 

>>[y,x,t]=step(num,den,t); 

>>zeta=0.4;  
>>[num1,den1]=ord2(wn,zeta); 

 



43 

 

>>[y1,x,t]=step(num1,den1,t); 

>>zeta=0.6; 

>>[num2,den2]=ord2(wn,zeta); 

>>[y2,x,t]=step(num2,den2,t); 

>>plot(t,y,t,y1,t,y2); 

>>grid 

 

7. Closed–loop control systems 
 
>>numc=[0.5 0.1]; 
>>denc=[5 0]; 
>>nump=[15]; 
>>denp=[30 1];  
>>[numo1,deno1]=series(numc,denc,nump,denp);  
>>[numc1,denc1]=cloop(numo1,deno1); 

>>printsys(numc1,denc1,'s'); 

>>step(numc1,denc1); 

>>grid 

8. Analyze the circuits: 
 

Each student must analyze the circuits in figures (1, 2, 3, 4, 5) and each student must give us the solution at 
the start of the lab. 

 

Procedures: 
 

1.For the circuit shown in Figure (1), determine the Resistance matrix and the voltage vector. 
 

2.Write a MatLab program for solving the mesh currents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1) 
 

 

3. For the transfer function: 
 
 



44 

 

 
 
 
 
 
 
Write a MatLab program to plot the frequency response using: 
 

a) Standard plotting and complex number capabilities,  
 

b) Standard plotting and complex number capabilities for generating Bode plots.  
 

 

4. Using the following commands (series, parallel, feedback). (K = 10);  
 

a) Write a MatLab program to build up the control system shown in Figure (2).  
 

b) Plot the step response of the system.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (2) 
 

 

5. Write a MatLab program to plot the function: 
 

y(t)=t^2[u(t+1)-u(t)]+(t-1)[u(t)-u(t-1)]+(-1)[u(t-1)-u(t-2)] 
 
for the period  -3sec < t< 5sec 
 

 

6. For the circuit shown in Figure (3)  
 

a) Derive the transfer function.  
 

b) Use MatLab to find the poles and the zeros of H(S), and plot the magnitude and the phase 

response.  

 
 
 
 
 
 
 
 
 
 

 



45 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (3) 
 
7. For the circuit shown in Figure (4)  
 

a) Derive the differential equation that describes the solution vc(t).  
 

b) Using MatLab find the roots of the characteristic equation.  
 

c) Find vc(t) for t>0.  
 

d) Using MatLab plot vc(t) and il(t) for t>0.  
 

e) Using MatLab verify the solution.  
 

TCLOSE = 0 
R1  

L1  

    

1 2  1 2 
 

U1  
4  

5h  

   
  

V1  
100v  
                                                                                                                                                                                                                              C1  

21.83mf 
 

 
 
 
 
 
 
 
 
 

Figure (4) 
 

 

8. For the circuit shown in Figure (5 ).  
 

a) Derive the transfer function H(S) = VC(S)/VI(S)   

b) Find the corner frequency ωn for the H(S).  
 

c) Compute the damping coefficient.  
 

d) Using MatLab plot a Bode magnitude diagram.  
 

e) From the Bode plot compute the amplitude in db at   

ω=ωn/2, ωn, and ωmax  

 

 

3

9 



46 

 

 
 R1 L1 

 

 1 2 
 

  10mh 
 

V1 0.2 C1 
 

1Vac  40mf 
 

   

0Vdc   
 

 
 
 
 
 

Figure (5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



47 

 

Experiment # 6 

Modeling a DC motor in Simulink 
 
 
Introduction: 
 
Simulink is a high performance language for technical computing. It integrates computation, 

visualization, and programming in an easy-to-use environment where problems and solutions are 

expressed in a familiar mathematical notation. 
 
Typical uses include math and computation algorithm development Data acquisition Modeling, 

simulation, and prototyping data analysis, exploration, and visualization data Scientific and 

engineering graphics Application development, including graphical user interface building. 
 
Simulink is an interactive system whose basic data element is an array that does not require 

dimensioning. This allows solving many technical computing problems, especially those with 

matrix and vector formulations, in a fraction of a time it would take to write a program in a scalar 

noninteractive language such as C or Fortran. 
 
Simulink in university environment is the standard instructional tool for introductory and advanced 

courses in mathematics, engineering, and science. In industry, Simulink is the tool of choice for 

high-productivity research, development, and analysis. 

 

Objectives: 
 

 To become familiar with Simulink program basic icons and options. 


 To build a model of a DC motor in Simulink and test the effect of various parameters on 

motor performance. 

 
 

Theory: 
 
A DC motor can be modeled by the following circuit (Figure(1)), which includes the parameters 
 
representing the DC motor. 
 
 
 
 
 
 
 
 
 

 

Figure (1): DC motor Equivalent Circuit 

 



48 

 

These parameters are: 
 
 

 moment of inertia of the rotor (J) 


 damping ratio of the mechanical system (b) 


 electromotive force constant (K=Ke=Kt) 


 electric resistance (R) 


 electric inductance (L) 


 input (V): Source Voltage 


 output (theta): position of shaft 
 
 
 
The motor torque, T, is related to the armature current, i, by a constant factor Kt. The induced 

voltage, e is related to the rotational velocity by a constant Ke as follows: 

 
 
 
 
 
 
 

The system will be modeled by summing the torques acting on the rotor inertia and integrating 

the acceleration to give the velocity. Also, Kirchhoff's laws will be applied to the armature circuit. 

 

First, the integrals of the rotational acceleration and of the rate of change of armature current are 
 
modeled as: 
 
 
 
 
 
 

 

Next, both Newton's law and Kirchhoff's law are modeled. These laws applied to the motor 
 
system give the following equations: 
 
 
 
 
 
 
 
 
 



49 

 

 
The angular acceleration is equal to 1/J multiplied by the sum of two terms (one pos., one neg.). 

Similarly, the derivative of current is equal to 1/L multiplied by the sum of three terms (one pos., 

two neg.). 

 

 

Procedure: 

 Open Simulink by clicking on this icon:  









 The page below will be opened, then open a new model window using the icon  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 From the Simulink library click on the continuous block   insert an 

Integrator block by dragging its icon to the new window and draw lines to and from its 

input and output terminals by holding down the mouse button and move the curser away. 

Notice that one or both sides of the blocks have angle brackets. The > symbol points to a 

block, it is an input port. 


 Label the input line "d2/dt2(theta)" and the output line "d/dt(theta)" as shown below. To 

add such a label, double click in the empty space just above the line. 

 



50 

 

 
 Insert another Integrator block above the previous one and draw lines to and from its input 

and output terminals. 


 Label the input line "d/dt(i)" and the output line "i". 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Insert two Gain blocks, (from the math operations) one attached to each of the integrators. 


 Edit the gain block corresponding to angular acceleration by double-clicking it and 

changing its value to "1/J". 


 Change the label of this Gain block to "inertia" by clicking on the word "Gain" underneath 

the block. 

 Similarly, edit the other Gain's value to "1/L" and it's label to Inductance. 


 Insert two Sum blocks (from the math operations), one attached by a line to each of the 

Gain blocks. 


 Edit the signs of the Sum block corresponding to rotation to "+-" since one term is positive 

and one is negative. This can be done with a double click on this block then change the list 

of signs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44 



51 

 

 
 Edit the signs of the other Sum block to "-+-" to represent the signs of the terms in 

Kirchhoff's equation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, add in the torques, which are represented in Newton's equation. First, add in the 
 
damping torque. 
 
 

 Insert a gain block below the inertia block, select it by single-clicking on it, and select Flip 

from the Format menu to flip it left-to-right. 


 Set the gain value to "b" and rename this block to "damping". 


 Tap a line off the rotational integrator's output and connect it to the input of the damping 

gain block. Do this by single click on the integrator then hold Ctrl while clicking the gain 

block a single click too. 


 Draw a line from the damping gain output to the negative input of the rotational Sum block. 

 

Next, add in the torque from the armature. 
 
 

 Insert a gain block attached to the positive input of the rotational Sum block with a line. 


 Edit its value to "K" to represent the motor constant and Label it "Kt". 


 Continue drawing the line leading from the current integrator and connect it to the Kt gain 

block. 

 
 
 
 
 
 



52 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now, add in the voltage terms which are represented in Kirchhoff's equation. First, add in the 
 
voltage drop across the coil resistance. 
 
 

 Insert a gain block above the inductance block, and flip it left-to-right. 


 Set the gain value to "R" and rename this block to "Resistance". 


 Tap a line off the current integrator's output and connect it to the input of the resistance 

gain block. 


 Draw a line from the resistance gain output to the upper negative input of the current 

equation Sum block. 

 

Next, add in the induced voltage from the motor. 
 

 Insert a gain block attached to the other negative input of the current Sum block with a line. 


 Edit its value to "K" to represent the motor constant and Label it "Ke". 


 Tap a line off the rotational integrator output and connect it to the Ke gain block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



53 

 

The third voltage term in the Kirchhoff equation is the control input, V. Apply a step input. 
 
 

 Insert a Step block (from the Sources block library) and connect it with a line to the positive 

input of the current Sum block. 


 To view the output speed, insert a Scope (from the Sinks block library) connected to the 

output of the rotational integrator. 


 To provide a appropriate unit step input at t=0, double-click the Step block and set the Step 

Time to "0". 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Open-loop response: 
 
To simulate this system, first, an appropriate simulation time must be set. Select Parameters from 

the Simulation menu and enter "4" in the Stop Time field. 4 seconds are long enough to view the 

open-loop response. The physical parameters must now be set. Run the following commands at 

the MatLab prompt: 
 

J=0.2*10
-3

 

kg.m
2
; b=0.001; 

 
K=0.2; 
 
R=0.5Ω; 
 
L=10mH; 
 
V=150V; 
 
 
 
 



54 

 

 
 Run the simulation (Ctrl-t or Start on the Simulation menu). When the simulation is 

finished, double-click on the scope and hit its autoscale button. You should see the motor 

speed simulation with time. 


 The last part to add to the simulation is the working load torque (TwL). Apply a constant 

input. 


 Insert a constant block (from the sources block library) and connect it with a line to the 

negative input of the current Sum block as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Then save the model then run it and open the scope to see the output. 


 After building the DC motor model study the effect of various parameters on 

Torque-speed curves. 




 Step (1): Effect of load torque T : 
 
Change the value of T to be: 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 Nm each time run the model and find 

the speed using the scope. From the values you have got, Plot the torque-load curve under changing 

T. Find the current for each value of T. 

 
 

 Step (2): Effect armature resistance 
 
For R = 2, 4, 6, and 8Ω repeat Step (1) for each value of resistance then tabulate your results. 

Then plot the output characteristics on same figure. 

 



55 

 

 

TwL R (Ω) ω 
 

 0.5  
 

    

0.2 
2  

 

   

4…………….8  
 

  
 

    

 0.5  
 

0.4 
  

 

2  
 

  
 

   
 

 4……………8  
 

   
 

0.6…… …….. ….. 
 

   
 

 

 Step (3): Effect of input voltage V: 
 
Keeping R=0.5Ω, change the value of V to be: 50, 100, 150, 180, and 220V. Each time run the 

model for T= 0.2, 0.4, 0.8, 1.0, and 1.2. And find speed using the scope. Tabulate your results, plot 

the torque-load curve under changing V. 

 
 

 Step (4):Effect of moment of inertia of the rotor (J) : 
 
-In this part keep the damping ratio (b)=0.001, and change the load torque TwL in steps, to achieve 

that insert signal builder (From the sources library) and replace it with the constant which 

represented the TwL before. 
 
-Double click on the signal builder; the window below will appear use curser to change the values 

of the curves till you get the one below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-After you finish Change the value of (J) to be: 0.05*10
-3

, 1.0*10
-3

, 5.0*10
-3

, 10*10
-3

 kg.m
2
, 

each time run the model and find the speed using the scope. 
 



56 

 

Extracting a Model in MatLab: 
 
 

A linear model of the system (in state space or transfer function form) can be extracted from a 

Simulink model into MatLab. This is done through the use of In and Out connection blocks and the 

MatLab function linmod. First, replace the Step Block and Scope Block with an In Connection Block 

and an Out Connection Block, respectively (these blocks can be found in the Connections block 

library). This defines the input and output of the system for the extraction process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Save your file as "motormod.mdl" (select Save As from the File menu). MatLab will extract the 

linear model from the saved model file, not from the open model window. At the MatLab prompt, 

enter the following commands: 

 
[A,B,C,D]=linmod('motormodel') 

 
[num,den]=ss2tf(A,B,C,D) 

 
You should see the output, providing both  state-space and transfer function models of the 
 
system. Print the output, and comment! 
 
 
 
 
 
 
 
 
 
 
 
 
 



57 

 

Experiment # 7 

Amplitude Modulation and Demodulation in LabVIEW 

 

Introduction:  
LabVIEW programs are called virtual instruments, or VIs, because their appearance and operation 

imitate physical instruments, such as oscilloscopes and multimeters. LabVIEW contains a 

comprehensive set of tools for acquiring, analyzing, displaying, and storing data, as well as tools 

to help you troubleshoot code you write. In LabVIEW, you build a user interface, or front panel, 

with controls and indicators. Controls are knobs, push buttons, dials, and other input mechanisms. 

Indicators are graphs, LEDs, and other output displays. After you build the user interface, you add 

code using VIs and structures to control the front panel objects. The block diagram contains this 

code. 

 
 
Theory: 
 
Modulation is a process by which some parameter of a carrier signal is varied in accordance with 

a message signal. The message signal is called a modulating signal. When the amplitude of the 

carrier is varied in accordance with the message signal we have amplitude modulation. Thus, an 

AM signal can be: 

 

s t   A 1  k 
a 

m t  cos 2 f t  
 

  c  
 

 

Where A is a constant, ka is modulation index. The carrier signal is generally a high frequency 

sinusoidal signal used to “carry” the information on the envelope of the message. The result is a 

double-side band signal, centered on the carrier frequency, with twice the bandwidth of the original 

signal. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (1-a): Time domain of an AM signal. 

 



58 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (1-b): Frequency domain of an AM signal 
 

Procedure 
 
AM Modulation:  

The following steps describe how to assemble a VI that implements amplitude modulation 

equations shown above. When this VI is completed, you will be able to set the amplitude 

and frequency of both the carrier and data signals as well as see the time and frequency 

domain representation of the signals. Inspect Figure (2-a) and Figure (2-b) which represent 

the front panel and block diagram of amplitude modulator VI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (2-a): AM Modulation VI Front Panel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2-b): AM Modulation VI Block Diagram 
 



59 

 

 
The block diagram consists of a while loop which contains various controls and graphs to display 

and control the AM signal component information. 

 

In the following steps, we will build the AM modulation VI: 
 

1. On the block diagram, choose from the Functions palette>Express>Exec Control>while 

loop. Expand the while loop block to proper size. Note that a stop button will appear on 

the front panel which stops the execution of the whole VI when pressed. (To obtain the 

Functions palette, right click on any blank space in the block diagram window). All 

controls and indicators that appears on the block diagram window should be placed in the 

while loop.  
 

2. On the front panel, let us build the VI block diagram shown in Figure (2-a) above. First, 

place three “Waveform Graph” VI and rename them as required (Control 

palette>Modern>Graph>Waveform Graph).  
 

3. Then, place four “Horizontal Pointer Slide” VI rename and resize them as required (Control 

palette>Modern>Numeric> Horizontals Pointer Slide). Right click on each  
 

Pointer Slide, choose properties. Then a window will appear, in the Appearance tab write 

label required and check the option “show the digital display(s)). And in scale tab set the 

min. and max. fields as required for each Pointer Slide. 
 

4. Up to this point, the front panel should looks like Figure (2-a).  
 

5. On block diagram, drag and drop all the blocks into the will loop you will get an initial 

view as shown in Figure (3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) 
 
 
 

 



60 

 

 
6. Place “Simulate Sig” VI from Functions>Express>Input. A window box will open to 

configure the function. Select the signal type sin (or set phase to 90 for the cos). Set the 

samples per seconds to 2000 Hz. Once you have finished the window box should looks like 

the Figure (4) shown below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4): Window Box of the Simulate Sig VI 
 

 

7. Select “OK”. Copy and paste the Simulate Signal VI block to make another block. For the 

first simulate signal VI, wire the Carrier Amplitude into amplitude input and Carrier 

Frequency into frequency input. For the second Simulate Signal VI, wire the output of the 

modulation Frequency slider control into the frequency input. Wire a constant value of 1 

into the amplitude input by right clicking on the connector and selecting  
 

“Create>Constant”.  
 
8. Place a “Multiply” VI on the block diagram. Wire the sine wave output of the second  
 

Simulate Signal VI into the multiply function. Wire the output of the Modulation Index 

slider control into the other input of the multiply function. Also, wire the output of the first 

Simulate Signal VI into the Carrier Signal graph as shown in Figure (2-b) above.  
 
9. Place an “Add” VI on the block diagram and wire the output of the multiply function from 

the previous step into the function. Also wire a constant value of 1 into the Add function.  

 
 



61 

 

 
10. Place a second “Multiply” VI on the block diagram. Wire the output of the Add function 

into the first input of multiply function. Wire the output of the first Simulate Signal VI 

(carrier Signal) into the second input of the Multiply function.  
 

11. Place a “Spectral” VI from Functions>Express>Signal Analysis on the block diagram. A 

window box will open to configure the function. Select the spectral measurement to be 

magnitude (peak) and Linear. Set the Window to be “for example, Hanning” (do not enable 

averaging). Once you have finished the window box should looks like the figure shown 

below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12. Select “OK”. Wire the output of the multiply function from the previous step into the 

signals input connector. Also wire the output of the multiply function to the AM Modulated 

Signal (Time) graph. Finally wire the output of the Spectral Measurements VI to the AM 

Modulated Signal (Frequency) graph.  
 

13. Up to this point, your block diagram should be complete and looks like Figure (2-b).  
 

Press the run icon to execute your VI. Vary the values for the carrier and modulation 

amplitude and frequency to see the effect it has on the signal. 
 
AM Demodulation:  
You should use the basic technique of demodulation AM signal: you need a rectification device 

(diode), low pass filter and a DC removal. Fortunately, LabVIEW contains all the required 

 
 



62 

 

 
blocks to perform these operations. They are: Absolute Value VI, Filter VI (express palette) and 

AC-DC estimator VI. Implement the demodulation of AM signal on the same VI you previously 

built as shown in Figure (5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5): AM Modulation Demodulation Block Diagram 
 
 
 
 
 

 

Exercise: Calculator 
 
Build a Labview VI file that functions as a calculator. The front panel should contain: two controls 

for two numbers, an indicator to display the result of operation (add, subtract, multiply, divide) 

and a slide control to specify the operation to be performed. Note: you need a case structure to 

implement the four cases of operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



63 

 

Experiment # 8 

Introduction to Data Acquisition Systems in LabVIEW 

 

Prerequisite 
 
C programming language, LabVIEW basics, building projects under visual C++ compiler, basics 

of Digital-to-Analog and Analog-to-Digital conversions. 

 
 
 

Introduction 
 
In this lab, you will learn about the basics of data acquisition. Initially you explore how the DAQ 

card in your computer is configured using MAX software. Then, you will write different data 

acquisition programs with help from the DAQ Assistant and features found in LabVIEW 8.0. 

These programs will also help to illustrate the difference between software and hardware timing. 

Finally, you will write data acquisition programs using ANSI C language. 

 

Objectives 

 Become familiar with the data acquisition hardware in your computer. 


 Learn how LabVIEW acquires data from the DAQ hardware. 


 Differentiate between finite acquisition; continuous acquisition; and on demand 
acquisition. 


 Use ANSI C language to configure and run DAQ. 

 
 
 

Equipments 
 

 PC running Windows. 


 LabVIEW 8.0 software & NI-DAQmx driver software. 


 Visual C++ compiler (.NET 2003). 


 NI USB-6009 DAQ card. 


 Function generator. 


 DC power supply. 


 Digital Oscilloscope. 


 Digital Multimeter. 
 
 
 
 



64 

 

Background  
Measurement & Automation Explorer  
Measurement & Automation Explorer, or MAX, is a software interface that gives you access to all 

National Instruments devices connected to your system.. MAX is used primarily to configure and 

test National Instruments hardware. The functionality of MAX is divided into four categories: 
 

 Data Neighborhood 


 Devices and Interfaces 


 Scales 


 Software 




1) Data Neighborhood  
 

Data Neighborhood contains all of the DAQmx tasks that are currently configured. DAQmx 

tasks are the objects that communicate with the DAQ hardware in LabVIEW. They can be 

configured in LabVIEW as well as MAX. Data Neighborhood also provides tools for testing 

and reconfiguring these tasks, as well as a utility for creating a new task. 
 

DAQmx Tasks 
 

LabVIEW 8.0 and NI-DAQmx center around the formation of tasks. A task can be created 

in either LabVIEW or MAX and contains the relevant information to a data acquisition such 

as channel, scale, and timing. By using a task the same type of data can be collected in many 

different programs without configuring the acquisition every time. In addition, a Task 

Control allows the user to use many different tasks in the same LabVIEW VI enabling them 

to quickly acquire different sets of data using the same program. 
 
Creating a new DAQmx Task 
 

When creating a new DAQmx task, the user is given the options of analog input, analog 

output, counter input, counter output, and digital I/O. After choosing the measurement 

category, the user is prompted to select the specific type of measurement from a list. The 

user then selects the measurement device and physical channel. After that the user gives the 

task a name to remember. Task names are consistent between MAX and LabVIEW and their 

descriptive names are easier to remember than arbitrary numbers. 

 
 

 



65 

 

 
When the task is given a name the creation of that task is complete. The task configuration 

window then appears so that the user can specify the parameters of the task. Options such as 

scale, timing and input range are all displayed and can be edited. The task configuration 

window will be dealt with more extensively later in this experiment. 
 
2)  Devices and Interfaces 
 

Devices and Interfaces display the currently installed and detected National Instruments 

hardware. Devices and Interfaces also include utilities for both user testing and device self 

tests. The three utilities that are specific to DAQ devices are Properties, Self Test, and Test 

Panels. 
 

Self Test 
 

The Self Test utility in MAX will inform the user if the computer is able to communicate 

with the device. This is the lowest level of testing and trouble shooting. 
 

Test Panels 
 

The Test Panel is a utility for testing the analog input, analog output, digital I/O, and counter 

functionality of the DAQ device. The Test Panel is useful for troubleshooting because it 

allows you to test the functionality of the device directly from NI-DAQ. If the device does 

not work in the Test Panel, it will not work in LabVIEW. 
 
3)  Scales 
 

Scales shows you all the currently configured custom scales and provides utilities for testing 

and reconfiguring those custom scales. Scales also provides access to the DAQ Custom 

Scales Wizard, which allows you to create new custom scales. 
 
4)  Software 
 

Software shows all the currently installed National Instruments software. The icon for each 

software package is also a shortcut that you can use to launch the software. The Software 

category also includes a Software Update Wizard. The purpose of the Software Update 

Wizard is to check if the National Instruments software is the latest version. If the software 

is not the latest version, the Software Update Agent opens the Web page on ni.com to 

download the latest version of the software. 

 
 
 
 
 
 

 



66 

 

Procedure 

Testing DAQ 
 
1. Plug your DAQ card into the USB port. The PC will automatically detect your hardware, and 

displays a window to ask you what to do. Just close this window.  
 
2. Open MAX software, and use the browser to go to My System»Devices and Interfaces»NI-  
 

DAQmx Devices»NI USB 6009:”Dev1”  
 
3. Right-click on NI USB 6009:”Dev1” and choose Self-Test. A message will be displayed to  
 

inform you if the computer is able to communicate with the device. 
 
4. Again, right-click on NI USB 6009:”Dev1” and choose Test Panels. A window is opened for 

testing the analog input, analog output, digital I/O, and counters of the DAQ.  
 
5. Adjust the power supply to give 2V at its output, and connect it to AI0+ and AI0- pins on the 

DAQ (Analog Input Channel 0: Differential mode).  
 
6. On the Test Panels, choose Analog Input tap, and set the following configuration:  
 

 

Channel Name : Dev1/ai0 Max Input Limit: 5 

Acquisition Mode : On Demand Min Input Limit : 0 

Input Configuration: Differential   
 

 

7. Click Start, and see if the displayed value equals the input voltage.  
 
8. Connect the Digital Multimeter to read the output of Analog Output channel 1(AO1)  
 
9. On the Test Panels, choose Analog Output tap. Select ao1 channel, and set the DC voltage to 

give 3 volts, the click Update Channel. Is the displayed voltage on the DVM the same as you 

set in the Test Panels.  
 

Voltmeter VI 
 
1. Open LabVIEW and create new VI.  
 
2. Build the following front panel, and block diagram.  
 
 
 
 
 
 
 
 
 
 
 
 



67 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Create a new task by clicking on the combo box (task/channels in) and select Browse. Then 

click Create New»MAX Task and choose Analog Input»Voltage then click Next.  
 
4. Select ai0 channel and click Next. Name the task “input” and click Finish.  
 
5. Configure the task as shown in the following figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6. Connect the output of the DC power supply to channel AI0 and to DVM, then run the voltmeter 

VI. Vary the DC voltage in the range 0 – 5V and compare the reading from the DVM and your 

voltmeter VI.  
 



68 

 

 
 

Exercise: 
 
Modify the voltmeter VI by adding two LEDs such that the first LED becomes green if the input 

voltage exceeds 2V, and the second LED becomes red if the input voltage exceeds 3V. 
 

Reading Continuous Signals 
 
1.  Create the following VI, and name it oscilloscope.vi . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. When you insert the DAQ Assist, a Wizard will be opened. Select Analog Input»Voltage, and 

then choose channel ai0.  
 
3. Change the Signal Input Range to 0 – 5V, and the Terminal Configuration to Differential, and 

the Acquisition Mode to N Samples. Also set the Samples To Read to 1000, and the Rate to 

1KHz.  
 
4. Connect the function generator output to analog input channel 0 (Differential) of the DAQ, and 

adjust its output to give sinusoidal signal of 2Vpk-pk and 20Hz.  
 
5. Run your VI and compare between the displayed signal and the input signal. Change the signal 

type and frequency and see the changes in the displayed signal.  
 
6. Change the DAQ Assist settings to the Continuous Acquisition Mode. You will be asked to put 

the DAQ Assist in a loop, click yes. Run your VI and examine the output by changing the signal 

type and frequency of the input signal.  

 

 

Exercise: 
 
Modify oscilloscope.vi to display the power spectrum of the input signal. You can use the 
 
Spectral Measurements block found under Express»Signal Analysis. 
 

 



69 

 

Generating Voltage Output Using LabVIEW 
 
1. Create new VI, and name it PSU.vi  
 
2. Build the following front panel, and block diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. Create a new Task and choose Analog Output»Voltage, then select ao1. Name the task output 

and set the Generation Mode to be “1 Sample (On Demand)”.  
 
4. Connect the output channel 1 to the Digital Multimeter and run your VI, then test the DAQ 

output.  
 
Exercise: 
 
Modify PSU.vi to generate a sinusoidal signal of Amplitude 2V and frequency of 20Hz. Do not 

forget not to generate voltage out of the range 0 – 5V. Do not use DAQ Assist in this VI, you must 

use the DAQmx Write block with the same task generated in the previous part. 
 
Hint: you can use the Expression Node found under Mathematics»Numeric in the Function Pallete. 

Also do not forget to use delay in the loop to control sampling rate. 

 
 
 
 
 
 
 
 
 

 



70 

 

Experiment # 9 

PWM Control Project  
Objective: 
 
In this experiment the student should implement an electronic circuit that employs PWM to 
 
control a DC motor. 
 

 

Procedure: 
 

1) Download all the data sheets related to the component that will be used in the circuit 

shown below in Figure (1).  
 

2) Analyze and simulate the circuit  
 

3) Familiarize yourself with pin connections of each component.  
 

4) Build the circuits shown below on a breadboard.  
 

5) Follow any instructions given to you by your instructor  
 

6) Check the function of your circuit,  
 

7) Show your instructor that the circuit is functioning properly.  
 
Note that:  a) a voltage regulator should be included in your design. 
 

b) The gate resistor of the MOSFET is 33 Ohm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (1) 
 
 



71 

 

 
Repeat a similar procedure for the circuit shown in Figure (2), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



72 

 

Experiment # 10 

Filter Design Using MATLAB 

 

Objective 

 
This experiment is intended to provide an introduction to filter design using MATLAB. You will 
use the SPTool to view a signal, find its spectrum and design a digital filter that will be applied to 
any desired signal. 

 

Learning Outcomes 
 
After completing this session the student should be able to: 
 Create signals consisting of sampled sinusoids of different amplitudes and frequencies 



 Add White Noise to the signal(s) 




 Be able to visualize the signal(s) using SPTool 


 Generate and interpret the frequency spectrum of a signal(s) 




 Design  Digital Filters 




 Apply the filters to signals 




 Find the filters parameters. 


 

Procedure 

 

Data creation: 

 

1) Create a MATLAB script that generates a discrete-time signal (x) which is the sum of three 
sine signals of frequencies 100, 250 and 400Hz and with RMS amplitudes of 1, 2 and 3 
respectively. Use the following parameters in your code:   
fs = 1000 samples/sec 
n = [0 1 2 3 … 1023]   
Your code must be in terms of (fs) and (n).   

2) Create a signal (y) which is the signal (x) with AWGN noise and signal-to-noise ratio of 
20 dB. Use the MATLAB function awgn().   

3) Plot the signal (y) showing the axis labels. Attach the plot to your report.  

 

Using SPTool  
It is possible to analyze the signal using command lines, but we will use one of the many MATLAB 
tools, in this case SPTool. 
 

Type sptool at the matlab prompt, a window should appear. 

This tool will enable you to 
 Visualize signals (signals column) 



 Design Digital Filters (filters column) 


 Look at the signals in the frequency domain. (Spectra column) 


 

Importing signals 

 



73 

 

 
Click on file (top left-hand side of SPTool window) Choose import. A window should appear. 
Select the signal (y) and the sampling frequency fs. When you are finished, click on OK. Click 
view under the signals column to view your signal. show the output. 

 

 

Use of the Spectrum Viewer 
It is worth checking the spectrum of the signal to see if the three components are present.  
Make sure sig1 is highlighted. Choose the Create- option from the spectra column of the main 
menu. 

 

There are many options, but the default is sufficient for this lab 

Click on Apply, (bottom left hand corner). Your spectrum should be displayed. Note 
 The position of the three peaks, 



 The amplitude of the three peaks 


 

What is the position and amplitude of the three peaks? 
 
 
 
 

 1
st

 peak 2
nd

 peak 3
rd

 peak 
    

Amplitude 0.41(-7.76dB) 0.85(-1.39dB) 1.26(2dB) 
    

Frequency 100 250 400 
    

 

 

Filter Creation.  
In order to separate the three signals it is necessary to create three filters: a low-pass, a high-pass 
and a band-pass filter. There are a number of methods for filter design. In this lab we will 
concentrate on the elliptic design method as that will produce filters with a small number of 
coefficients. 
 Click on new under the column of filters to create a new filter and close the window. 



 Change the filter name to lowpass (click edit -> name ->filt1) 




 Click on Edit in the SPTool window and change sampling frequency of lowpass to fs. 




 Click on edit design and the filter designer window will appear. 


 
There are a number of options. Choose Elliptic and Low-pass from the menu and type in the 
large white window 


 Fpas: 150 


 Fstop: 200 


 Apass: 1 


 Astop: 60  
Click apply under the filters column to apply the filter to sig1 and create sig2. do the results 
agree with theory?  
Show how to find the filter parameters (use the MATLAB help) 

 

Now design 2 more filters a band-pass and high-pass to recover the two other signals. 
 


	Lab+Safety+Instructions+and+Rules-sayyad
	Lab manual

