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Transmission Line Modeling 

Transmission Lines can be Modeled according to their length as: 

• Short Line Model (l ≤ 80km) 

• Medium Line Model (80km < l < 250km) 

• Long Line Model (l ≥ 250km) 

Where L is the length of the Transmission-Line 

Transmission lines can be modeled by two main systems: 

• Lumped parameter system • Distributed parameter system 

We use lumped parameters which give good accuracy for short transmission lines and for 

medium length ones. 

If an overhead line is classified as short one, then the shunt capacitance is so small that it can 

be omitted entirely with little loos of accuracy. Also, we need to consider only the series resistance 

(R) and the series inductance (L) for the total length of the line. 

Exploring the three line models: 

[1] Short Line Model 

 
Figure 1: Short Transmission Line Model 

   ( )Z R j L l= + ( )R jX l→ +  

Where R and L are the per-phase resistance and inductance per unit length, respectively, and l 

is the transmission line length.  

Important notes about short line model: 

• Line length (l) < 80km. 

• Generally, MV/LV Line. 

• Capacitance can be neglected. 
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Line Electrical Analysis: 

The phase voltage at the sending end is: 

 
S R R

S R

V V ZI

I I

= +

=
 (1) 

Vs

Is IR

ABCD VR

Transmission 

Parameters

 
Figure 2: Two-port representation of a Transmission Line 
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 (2) 

Since we are dealing with a linear, passive and bilateral two-port network; the determinant of 

the transmission matrix is unity: 

  1AD BC− =  (3) 

Also, equation (2) can be rewritten in terms of VR and IR as follows: 

  
SR

R S

VV D B

I C A I

−     
=     

−    
 (4) 

Now According to equation (1), for the short transmission line model, the transmission parameters 

are: 

1 .A p u=   B Z=    
1 0 C −=    1 .D p u=  

Voltage regulation of the line may be defined as the percentage change in the voltage at the 

receiving end of the line (expressed as percentage of full load voltage) in going from no-load to 

full load. 

  
( ) ( )

( )

| | | |
100%

| |

R NL R FL

R FL

V V
VR

V

−
=   (5) 

- Voltage regulation is a measure of line voltage drop.  

At no-load 𝐼𝑅 = 0 → 𝑉𝑅(𝑁𝐿) =
𝑉𝑆

𝐴
  ∴  𝐴 = 1 for short line   
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[2] Medium Line Model 

Important notes about short line model: 

• 80km < Line length (l) < 250km. 

• As the length of the transmission line increases, the line charging current becomes 

appreciable and the shunt capacitance must be considered. 

• For medium length transmission lines, half of the shunt capacitance may be considered to 

be lumped at each end of the line. This is referred to as the nominal π model. 

Model equivalent circuit: 

 
Figure 3: Medium Transmission Line π Model 

Where: 

Z = total series impedance of the transmission line. 

( )Z R j L l= +  

Y = total shunt admittance of the transmission line. 

( )Y G j C l= +  

Under normal condition, the shunt conductance per unit length which is represents the 

leakage current over the insulators and due to corona, is negligible and G is assumed to be zero, 

C is the line to neutral capacitance per km and l is the transmission line length. 

Line Electrical Analysis: 

To analyze this circuit (Model) we start by expressing the currents passing through the shunt 

capacitance and the series impedance in terms of the sending and receiving ends voltages and 

currents: 

1- The current passing through the shunt capacitance at the sending end (IC1): 

  1
2

C S

Y
I V=  (6) 
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2- The current passing through the shunt capacitance at the receiving end (IC2): 

  2
2

C R

Y
I V=  (7) 

3- The current passing through the series impedance (IL): 

  
2

L R R

Y
I I V= +  (8) 

The next step is to get the equations of the voltage (VS) and the current (IS) in terms of the 

voltage (VR) and the current (IR): 

1- KVL around the entire loop: 

  
S R LV V ZI= +  (9) 

Now substitute equation (8) in equation (9) yields to 

( )
2

S R R R

Y
V V Z I V= + +  

Rearrange this equation gives: 

  (1 )
2

S R R

YZ
V V ZI= + +  (10) 

2- KCL at the ending node: 

  
2

S L S

Y
I I V= +  (11) 

Now substitute equation (8) and equation (10) in equation (11) yields to 

( ) [(1 ) ]
2 2 2

S R R R R

Y YZ Y
I I V V ZI= + + + +  

Rearrange this equation gives: 

  (1 ) (1 )
4 2

S R R

YZ YZ
I Y V I= + + +  (12) 

Now we can express equation (10) and equation (12) in the matrix form: 

S R

S R

V VA B

I C D I

    
=    
   

  →  

(1 )
2

(1 ) (1 )
4 2

S R

S R

YZ
Z

V V

I YZ YZ I
Y

 
+    

=     
    + + 
 

 

𝐴 = 𝐷 = 1 +
𝑌𝑍

2
 𝑝. 𝑢 𝐶 = 𝑌 (1 +

𝑌𝑍

4
) 𝑆 

𝐵 = 𝑍Ω 

Since the π model is a symmetrical two-port network (A = D). 
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ABCD Matrix 

Vs

Is IR

VR

Z

 

1

0 1

Z 
 
 

 Short Line 

Vs

Is IR

VRY

 

1 0

1Y

 
 
 

 
Compensate for reactive 

power 

Vs

Is IR

VR

Z2Z1

Y

 

T-Circuit 

1 1 2 1 2

2

(1 )

(1 )

YZ Z Z YZ Z

Y YZ

+ + + 
 

+ 
 

1AD BC− =  

 

Vs

Is IR

VR

Z

Y1 Y2

 

π-Circuit 

2

1 2 1 2 1

(1 )

(1 )

Y Z Z

Y Y YY Z Y Z

+ 
 

+ + + 
 

1AD BC− =  

 

Cascaded Network 

Vs

Is IR

A1B1C1D1 VR

Compensation 

Model

A2B2C2D2

Transmission 

Line Model

 
Cascaded Network 

1 1 2 2 1 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2 1 2

A B A B A A B C A B B D

C D C D C A D C C B D D

+ +    
=    

+ +    
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[3] Long Line Model 

For the short and medium length Transmission lines applications, accurate models were 

obtained by assuming the line parameters to be lumped. For transmission lines’ length of 250km 

and longer, and for a more accurate solution the exact effect of the distributed parameters must be 

considered. 

Figure below shows a full model of a long Transmission line: 

YVs

Is IR

VR

Z Z Z Z Z

YYYYY

 

Figure 4: Long Transmission Line Model 

Now taking a part of this transmission line for Electrical analysis: 

Vs

Is IR

VR

Y x

Y x
V(x+ x)

I(x+ x) I(x)

V(x)

Z

 x x

l

X=0

 
Figure 5: Long Transmission Line with distributed parameters 

The Known parameters in this network are: 

( )Z R j L= +  

( )Y G j C= +  

The aim of this analysis is to find V(x) and I(x) in terms of the known parameters. 

1- KVL around the entire loop: 

  ( ) ( ) ( ) ( )V x x Z x I x V x+ =  +  (13) 

Rearrange equation (13) gives: 

  
( ) ( )

( )
V x x V x

ZI x
x

+  −
=


 (14) 

Now taking the limit as ∆x → 0 gives 

0 0

( ) ( )
lim lim ( )
x x

V x x V x
ZI x

x →  →

+  −
=


 

  
( )

( )
dV x

ZI x
dx

=  (15) 
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2- KCL at the first junction: 

  ( ) ( ) ( ) ( )I x x I x Y x V x x+ = +  +  (16) 

Rearrange equation (16) gives: 

  
( ) ( )

( ) ( )
I x x I x

Y V x x
x

+  −
= + 


 (17) 

Now taking the limit as ∆x → 0 gives 

0 0

( ) ( )
lim lim( ) ( )
x x

I x x I x
Y V x x

x →  →

+  −
= + 


 

  
( )

( ) ( )
dI x

Y V x
dx

=  (18) 

Finding V(x): 

Differentiate equation (15) gives: 

  
2

2

( ) ( )d V x dI x
Z

dx dx
=  (19) 

Substitute equation (18) in equation (19) yields to: 

  
2

2

( )
( ) ( )

d V x
ZY V x

dx
=  (20) 

Assume that: 

  2ZY =  (21) 

Then rearranging equation (20) gives: 

  
2

2

2

( )
( ) 0

d V x
V x

dx
− =  (22) 

Now, solving this differential equation give the following solution: 

  1 2( ) x xV x A e A e −= +  (23) 

Noting that the propagation constant (γ) can be expressed as: 

  ( )( )ZY j R j L G j C    = = + = + +  (24) 

Finding I(x): 

Rearranging equation (15) gives: 

  
1 ( )

( )
dV x

I x
Z dx

=  (25) 
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Differentiate equation (23) gives: 

  
1 2

( )
( )x xdV x
A e A e

dx

  −= −  (26) 

Substitute equation (26) in equation (25) yields to: 

  
1 2( ) ( )x xI x A e A e

Z

  −= −  (27) 

Substituting the value of the propagation constant in equation (27) gives: 

  1 2( ) ( )x xY
I x A e A e

Z

 −= −  (28) 

Assume that ZC (the characteristic impedance) can be expressed as: 

  C

Z
Z

Y
=  (29) 

Then equation (28) can be rewritten as: 

  
1 2

1
( ) ( )x x

C

I x A e A e
Z

 −= −  (30) 

Now we have two equations with two unknowns of A1 and A2, to find them we will use the 

boundary condition at x = 0: 

From figure (5): 

  (0) RV V=                                      (0) RI I=  (31) 

Substituting x = 0 in equation (23) gives: 

  1 2RV A A= +  (32) 

Substituting x = 0 in equation (30) gives: 

  1 2

2
R

A A
I

−
=  (33) 

Now solving equation (32) and (33) gives: 

  
1

2

2

2

R C R

R C R

V Z I
A

V Z I
A

+
=

−
=

 (34) 
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Now, substitute the values of A1 and A2 in equation (23) and (30) 

  

( )
2 2

( )
2 2

x xR C R R C R

R R
R R

x xC C

V Z I V Z I
V x e e

V V
I I

Z Z
I x e e

 

 

−

−

+ −
= +

+ −

= −

 (35) 

Rearrange equation (35) 

  
( )

2 2

1
( )

2 2

x x x x

R C R

x x x x

R R

C

e e e e
V x V Z I

e e e e
I x V I

Z

   

   

− −

− −

+ −
= +

− +
= +

 (36) 

Note: 

  sinh( )
2

x xe e
x

 


−−

=                            cosh( )
2

x xe e
x

 


−+

=  (37) 

So, equation (36) can be written as: 

  

( ) cosh( ) sinh( )

1
( ) sinh( ) cosh( )

R C R

R R

C

V x x V Z x I

I x x V x I
Z

 

 

= +

= +
 (38) 

Since we are particularly interested in the relation between the sending end and the receiving 

end, we will find V(x) and I(x) at x = l 

Let 

x l=  

Then V(x) and I(x) are: 

( ) SV l V=                                    ( ) SI l I=  

Substitute their values in equation set (38) gives the relations: 

  

cosh( ) sinh( )

1
sinh( ) cosh( )

S R C R

S R R

C

V l V Z l I

I l V l I
Z

 

 

= +

= +
 (39) 

Now we can express them in the ABCD Matrix form as: 

  

cosh( ) sinh( )

1
sinh( ) cosh( )

C

S R

S R

C

l Z l
V V

l lI I
Z

 

 

 
    

=    
    

 

 (40) 

Note that as before A = D, and 1AD BC− =  
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𝒁′ 

The Equivalent π Model for long transmission lines 

 VRVs

Is IR

 

Figure 6: The Equivalent π Model for long transmission lines 

Using the ABCD Matrix for the π circuit model we can find the Equivalent matrix for this model 

  

' '
(1 ) '

2

' '
'(1 ' ) (1 )

2

Y Z
Z

Y Z
Y Y Z

 
+ 

 
 + + 
 

 (41) 

Where 

  

'

'

sinh( ) sinh( )
sinh( ) ( )

1 tanh( / 2) tanh( / 2)
tanh( ) ( )

2 / 2 / 2

C

C

l l
Z Z l R j L l Z

l l

l l l
Y G j C l Y

Z l l

 
 

 

  


 

= = + =

= = + =

 (42) 

These values can be obtained by equalizing the Transmission matrix from equation (40) and 

equation (41) 

Note, we can find the cosh and the sinh for a complex number using: 

 
cosh( ) cosh( )cosh( ) sinh( )sinh( )

sinh( ) sinh( )cosh( ) cosh( )sinh( )

l l l j l l

l l l j l l

    

    

= +

= +
 

Loss-Less Line 

It is the ideal Line where it does not show any losses in the transmission process. Also, the 

signal attenuation will be zero since there is no losses. 

To achieve such a Line the resistance must be zero:  

 0R =                      0G =  

So, the series impedance and the shunt admittance are expressed as: 

 Z j L=  Ω/m                    Y j C=  S/m 

We are going to analyze lossless line from four points of view: 

1- ABCD Parameters 

2- Z’, Y’ Model 

3- Wave length (λ) 

4- Surge impedance loading (SIL) 

𝒀′

𝟐
 

𝒀′

𝟐
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The first step is to find the characteristic impedance (ZC) “noting that in the lossless line it is 

called the surge impedance” and the propagation constant (γ). 

The surge impedance: 

  S

Z L
Z

Y C
= =  (43) 

From equation (42) we can see that the surge impedance is purely resistive 

The propagation constant: 

  ZY j LC j  = = =  (44) 

From equation (43) we can see that the propagation constant is purely imaginary that means 

that it contains only the imaginary part (phase constant part) and the real one (attenuation constant 

part) is gone. 

Analyzing the Lossless Line: 

In order to analyze the Lossless transmission line, the ADCB matrix and the model for the π-

circuit of the long transmission line will be used since it is the general case of all three models:  

1) ABCD Parameters for Lossless Line 

Depending on matrix in equation (40) we got: 

( ) ( )  cosh cosh )( ) ( ) cos(
2

j x xj

A x D x x j x
e e

x
 

  
−+

= == = =  

 ( ) ( ) o  s ) .c (A x D x x p u= =   (45) 

 Note that the cosine hyperbolic function (cosh) is replaced by a normal cosine (cos) which 

simplify the analysis.  

 ( ) sinh( ) sinh( ) sin( ) sin( )
2

j x xj

C C C C

e e L
B x Z x Z j x jZ jZ x j x

j C

 

   
−−

= = = = =  

   ( ) sin( )
L

B x j x
C

=   (46) 

The sine hyperbolic function (sinh) is replaced by a sine value. 

sinh( ) sin( )
( )

/C

x j x
C x

Z L C

 
= =  

 
i

 
s n( )

( )
/

j x
C x

L C


=   (47) 
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2) π-Model for Lossless Line 

Depending on equation (42) we got: 

' sinh( ) sin( )S SZ Z l jZ l = =  

 ' sin( )SX Z l=  (48.1) 

 ' 'Z jX=  (48.2) 

' tanh( / 2) tanh( / 2) tan( / 2)

/ 2 / 2 / 2

l j l l
Y Y Y Y

l j l l

  

  
= = =  

 
tan( / 2)

' '
/ 2

l
Y j Cl j C l

l


 


= =   (49) 

Now we can derive the π-Equivalent Circuit of the long transmission line for the lossless line 

depending on equations (45, 46, 47): 

 VRVs

Is IR

 

 

( ) cos( ) sin( )

1
( ) sin( ) cos( )

R S R

R R

S

V x x V jZ x I

I x j x V x I
Z

 

 

= +

= +
  (50) 

Wave length (Lossless Line):  

A wavelength is the distance required to change the phase of the voltage or current by 2π 

radians or 360°. 

The velocity of propagation of voltage and current waves on lossless line can be expressed as: 

 
2 f

v
 

 
= =   (51) 

Then, the wavelength of the wave is obtained by: 

 
2 2 1

LC f LC

 


 
= = =   (52) 

Or 

 
1

f v
LC

 = =   (53) 
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The expression for the inductance per unit length (L) and the capacitance per unit length (C) 

can be obtained using the following equations: 

The per-phase inductance: 

 
72 10 ln

L

GMD
L

GMR

−=    H/m (54) 

The per-phase capacitance: 

  

02

ln
C

C
GMD

GMR


=   F/m 

(55) 

Neglecting the internal flux linkage of a conductor gives  

L CGMR GMR=  

In this case, the wave length can be as 

 
0 0

1

f


 
  (56) 

 Noting that 

 
7

0 4 10  −=      12

0 8.85 10 −=   (57) 

So, the velocity of propagation of the voltage and current waves can now be calculated: 

 
8

0 0

1
3 10v f

 
=     m/s (58) 

Surge Impedance Loading:  

SIL is the power delivered by a lossless line to a load resistance equal to the surge impedance 

ZS. where, /SZ L C= . 

The equivalent circuit for studying the SIL is shown in the following figure: 

Vs

Is IR

VR

TL

ZS

 

Figure 7: TL with surge impedance loading Circuit 

This line represents a single phase line or one phase to neutral of a balanced three-phase line. 

From equation (50) we know that V(x) and I(x) can be expressed for a lossless line as: 

 

( ) cos( ) sin( )

1
( ) sin( ) cos( )

R S R

R R

S

V x x V jZ x I

I x j x V x I
Z

 

 

= +

= +
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From figure (7) we see that: 

 
R

R

S

V
I

Z
=   (59) 

Substitute equation (59) in equation (50) yields to 

 

( ) cos( ) sin( ) (cos( ) sin( ))

1
( ) sin( ) cos( ) (cos( ) sin( ))

R
R S R

S

R R
R

S S S

V
V x x V jZ x x j x V

Z

V V
I x j x V x x j x

Z Z Z

   

   

= + = +

= + = +

  (60) 

Using Euler identity, we can rewrite equation (60) as: 

 ( ) j x

RV x e V=      ( ) j x R

S

V
I x e

Z

=  (61) 

From equation (61) we can see that the magnitude of the voltage V(x) is equal to the magnitude 

of the voltage at the receiving end which means that the voltage is constant along the Transmission 

Line. 

 | ( ) | | |RV x V=   (62) 

From the power point of view, we know that the apparent power is calculates by: 

*( ) ( ) ( ) ( ) ( )S x P x jQ x V x I x= + =  

Substituting equation set (61) in the apparent power equation yields to 

  ( )
2

( )
Rj x j x R

R

S S

VV
S x e V e

Z Z

  
= = 

 
 (63) 

From equation (63) we can see that the real power along the line is constant and the reactive 

power flow is zero. 

At rated Line Voltage the SIL power can be expressed as: 

 

2

( )L L rated

S

V
SIL

Z

−
=  MW (64) 

The following table is showing some examples of the SIL power at different tine voltages 

Vrated (kV) /SZ L C=  Ω SIL (MW) 

230 380 140 

345 285 420 

500 250 1000 

765 257 2280 
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Voltage profiles: 

1- At no-load condition: 

 0NL RI I= =  (65) 

Substituting equation (65) in V(x) from equation (50) gives: 

 ( ) cos( )NL RNLV x x V=   (66) 

The no-load voltage increases from VS = cos(βl) VRNL at the sending end to VRNL at the receiving 

end (where x = 0). 

2- At short circuit condition: 

 0SC RV V= =  (67) 

Substituting equation (67) in V(x) from equation (50) gives: 

 ( ) sin( )SC S RSCV x Z x I=   (69) 

The voltage decreases from VS = sin(βl) (ZSVRSC) at the sending end to VRSC = 0 at the receiving 

end. 

3- From equation (62) the voltage profile at SIL is flat 

4- The full-load voltage profile, which depends on the specification of full-load current, lies 

above the short-circuit voltage profile. 

Figure below summarizes these results, showing a high receiving-end voltage at no-load and a 

low receiving-end voltage at full load. This voltage regulation problem becomes more severe as 

the line length increases.  

 

Figure 8: Voltage profiles of a lossless line with fixed sending end voltage for line lengths up to a quarter wavelength 
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𝒁′ 

 

IR

VR 0Vs  δ

Is

Steady state stability limit 

The equivalent π circuit of Figure (6) can be used to obtain an equation for the real power 

delivered by a lossless line with a small change in the angles of the sending and receiving end 

voltages shown in Figure (9). Assume that the voltage magnitudes VS and VR at the ends of the line 

are held constant. Also, let δ denote the voltage-phase angle at the sending end with respect to the 

receiving end. 

 

 

 

 

             Figure 9: The Equivalent π Model for long transmission lines 

1- KCL at the receiving end junction: 

   
'

' 2

S R
R R

V V Y
I V

Z

−
= −    →   

'

' 2

j

S R
R R

V e V j C l
I V

jX

 −
= −  

 
1 '

( ( ) )
' 2 '

j

R R S

C l e
I j V V

X X


= − −   (70) 

Now the complex power at the receiving end can be calculated by: 

*

R R R R RS P jQ V I= + =  

2 ' 1
( ( ))

' 2 '

j

R S R R

e C l
S j V V V

X X

 −

= + −  

Using Euler identity 

 
2sin( ) cos( ) ' 1

( ( ))
' ' 2 '

R S R S R R

C l
S V V j V V V

X X X

  
= + + −   (71) 

The real power 

 { } sin( )
'

S R
S R R

V V
P P P S

X
= = = =   (72) 

Since the Line is Lossless then the real power at the sending end is the same as that at the 

receiving end. Also, we can see that the phase (δ) at the sending end can maximize the real power 

in the power system when it is 90°, then the real power is equal to: 

 max
'

S RV V
P

X
=  W (73) 

Where Pmax is the maximum power that can be transmitted over this Transmission Line. 

𝒀′

𝟐
 

𝒀′

𝟐
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Equation (72) is plotted in Figure (10). For fixed voltage magnitudes VS and VR, the phase 

angle δ increases from 0° to 90° as the real power delivered increases.  

    

Real Power

90°
δ

δ0

P0

 
Figure 10: Real power delivered by a lossless line versus voltage angle across the line 

Synchronous machine can be connected to the power system supplying a power (P0). The 

Voltage angle of the machine is denoted by (δ0). 

1- The machine will operate in stable region when the machines voltage angle is less than 90°.  

2- At 90° the steady-state stability limit occurs  

3- The machine will be unstable for a phase angle more than 90°. 

Mechanical 

Power (Pm)

Electrical 

Power (Pe)
Input   ,δ   ,P0  

 

Figure below illustrates these situations: 

Real Power

90°
δ

δ0

P0

Pm = Pe Pm   Pe

The Machine 

will operate in 

stable region

The Machine 

will operate in 

unstable region

Steady-state stability limit  

If an attempt were made to exceed the steady-state stability limit, then the machine would 

loss the synchronism.  
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Note: Using a Bundle will reduce the GMR of the Line, therefore the Line inductance (L) will be 

reduced, so the series impedance of the lossless line will be reduced and finally the 

transmitted power will increase.   

The maximum power in terms of SIL 

Substituting equation (48.1) in equation (72) gives: 

  
sin( )

sin( )

S R

S

V V
P

Z l




=   (74) 

Rearranging equation (52) in terms of (β) and substitute it in (74) yields to: 

 

sin( )

2
sin( )

S R

S

V V
P

Z l







=   
(75) 

From equation (64) we know that: 

2

( )L L rated

S

V
SIL

Z

−
=  

Therefore, multiplying equation (75) by V2
rated in the nominator and denominator gives: 

2

( )

2

( )

sin( )

2
sin( )

L L ratedS R

L L rated
S

VV V
P

V
Z l







−

−

=   

Rearrange the equation obtained in order to get the SIL: 

2

( )

( ) ( )

sin( )

2
sin( )

L L ratedS R

L L rated L L rated S

VV V
P

V V Z
l







−

− −

=     

Rewrite each term in a new form gives: 

 . . . .

sin( )
( )( )( )

2
sin( )

S p u R p uP V V SIL

l







=  Watt  
(76) 

Now the max power can be expressed in terms of the SIL as: 

 
. . . .

max

( )( )( )

2
sin( )

S p u R p uV V SIL
P

l




=  Watt  
(77) 

Equation (77) reveals that the power transfer capability decreases as the length of the 

transmission line increases. Figure (11) shows the SIL vs the T.L length curve: 
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Figure 11: Transmission-line load ability of SIL vs Transmission line length 

The following table is showing some examples of the SIL powers and the thermal ratings of 

some lines at different tine voltages 

Vrated (kV) SIL (MW) Typical Thermal Rating (MW) 

230 150 400 

345 400 1200 

500 900 2600 

 

Maximum Power Flow of Lossless Line 

After discussing the maximum power flow in previous section, now it is discussed in terms 

of the ABCD parameters for a lossy line (Line with losses).  

From equation (40) we know that: 

cosh( )A l=     sinh( ) 'CB Z l Z= =  

In this section we are using the following notation to express the A and B parameters: 

 
cosh( )

' '

A

Z

A l A

B Z Z

 



= = 

= = 
  (78) 

Also, we are using the same notation for the voltage at the sending end and the receiving end: 

 S SV V =     0R RV V=   (79) 

From ABCD matrix in equation (40) solving for the receiving end current gives: 

' '

A

Z Z

jj

R S Rj j

e Ae
I V V

Z e Z e



 
= −  

 
( ) ( )

' '

Z A Zj j

R S R

e Ae
I V V

Z Z

   − −

= −   (80) 
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The complex power delivered to the receiving end is: 

*

R R R R RS P jQ V I= + =  

 
2

( ) ( )

' '
Z Z Aj jS R R

R

V V V A
S e e

Z Z

   − −= −   (81) 

The real and reactive power delivered to the receiving end are: 

 
2

{ } cos( ) cos( )
' '

S R R
R R Z Z A

V V V A
P S

Z Z
   = = − − −   (82) 

 
2

{ } sin( ) sin( )
' '

S R R
R R Z Z A

V V V A
Q S

Z Z
   =  = − − −  (83) 

Note that for a lossless line, 0A =  , 'B Z= , ' 'jZ X= , 90Z =  . Applying these values to 

the real part of equation (82) gives: 

 sin( )
'

S R
R

V V
P

X
=  (84) 

which is the same as the result obtained in equation (72). 

The theoretical maximum real power delivered (or steady-state stability limit) occurs when 

Z = in equation (82), this gives: 

 
2

,max cos( )
' '

S R R
R Z A

V V V A
P

Z Z
 = − −  (85) 

The second term in equation (85), and the fact that Z’ is larger than X’, reduce PRmax to a value 

somewhat less than that given by equation (73) for a lossless line. 

Transmission Line Steady State Operation (SSO) 

When we talk about SSO on transmission line what we really mean is how the line performs 

when we want to transmit certain amount of power through it. 

G
Generation 

Station

Sending end bus Receiving end bus

Ss = Ps + jQs Sr = Pr + jQr

Is

Vs  δ VR   

Load

Transmission Line 

using ABCD parameters

 

Figure 12: Two bus power system 
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Power Flow on Transmission Lines 

As said before, the ABCD parameters matrix can express the transmission line as follows: 

 
S R

S R

V VA B

I C D I

    
=    
    

 (86) 

From equation (86) we can express the current at the receiving end as: 

 
1

R S R

A
I V V

B B
= −  (87) 

And the current at the sending is as: 

 
1

S S R

A
I V V

B B
= −  (88) 

Again, we are using the following notation for the voltage at the sending and receiving ends: 

 S SV V =     0R RV V=   (89) 

Also, assume that 

 
A

B

A A

B B





= 

= 
  (90) 

Now substitute equation set (90) in equation (87) and (88) gives: 

 

( ) ( )

( ) ( )

S R
R B A B

S R
S A B B

V AV
I

B B

AV V
I

B B

   

   

=  − −  −

=  + − −  −

  (91) 

Now the complex power at the receiving and sending end can be calculated by: 

*S P jQ VI= + =  

At the receiving end: 

*

R R R R RS P jQ V I= + =  

 
2

( ) ( )R S R
R B B A

V V AV
S

B B
   =  − −  −   (92) 

The real and reactive power can now be calculated 

  

2

2

cos( ) cos( )

sin( ) sin( )

R S R
R B B A

R S R
R B B A

V V AV
P

B B

V V AV
Q

B B

   

   

= − − −

= − − −

  (93) 
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At the sending end: 

*

S S S S SS P jQ V I= + =  

 
2

( ) ( )S R S
S B A B

AV V V
S

B B
   =  − −  +   (94) 

The real and reactive power can now be calculated 

  

2

2

cos( ) cos( )

sin( ) sin( )

S R S
S B A B

S R S
S B A B

AV V V
P

B B

AV V V
Q

B B

   

   

= − − +

= − − +

  (95) 

Notes: 

1) For a given voltage level Vs and VR are very near to the system voltage and they don’t 

change much (33 kV……). 

2) ,B A  of transmission line parameters are fixed. 

The maximum power that can be transmitted or delivered is obtained when: 

B =  

And it is expressed as: 

 

2

,max

2

cos( )

sin( )

R S R
R B A

R
R B A

V V AV
P

B B

AV
Q

B

 

 

= − −

= − −

 (96) 

The minus in the reactive power formula indicates that its capacitive. 

Power flow for short transmission Line (As an example of the above): 

From the ABCD matrix of the short Line we know that: 

 1 0A D= =    

 B Z =   

Substituting the values of A and B in the receiving and sending ends equations gives: 

 

2

,

2

,

cos( ) cos( )

sin( ) sin( )

R S R
R SL

R S R
R SL

V V V
P

Z Z

V V V
Q

Z Z

  

  

= − −

= − −

 (97) 

 

2

,

2

,

cos( ) cos( )

sin( ) sin( )

S R S
S SL

S R S
S SL

V V V
P

Z Z

V V V
Q

Z Z

  

  

= − +

= − +

 (98) 
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It is known that  

 Z R jX= +  

Since R X , then Z X and therefore the angle 90 =  . Substituting these values in the 

receiving end power equations gives: 

  

,

2

,

sin( )

cos( )

R S
R SL

R S R
R SL

V V
P

X

V V V
Q

X X





=

= −

 (99) 

As δ is usually small; cos(δ) ≅ 1 

 
2

, ( )R S R R
R SL S R

V V V V
Q V V

X X X
= − = −  (100) 

From these relationships we can conclude the following points: 

1. For fixed values of VS, VR and X, the real power depends on the angle δ (the phase angle by 

which VS leads VR). This angle δ is called the power Angle. When δ = 90° the power is 

maximum. For system Stability considerations δ has to be kept below 90°. 

2. Power can be transferred over line even when |VS| ≤ |VR|. The phase difference δ between VS 

and VR causes the flow of power in the line. Power systems are operated with almost the same 

voltage magnitudes (i.e., p.u) at important busses by using methods of voltage control. 

(because this provides a much better operating conditions for the system.) 

The power angle δ can be positive or negative. Being positive means that VS leads VR (Power 

is flowing from VS to VR (VS→VR). However, if the power angle is negative then VS lags VR 

(Power is flowing from VR to VS (VR→VS). 

𝛿 = {
+

−
   
𝑉𝑆 leads 𝑉𝑅
𝑉𝑆 lags 𝑉𝑅

 [
𝑉𝑆

power flow
→        𝑉𝑅

𝑉𝑅
power flow
→        𝑉𝑆

] 

3. The maximum Real power transferred over a line increases with increase in VS and VR. An 

increase of 100% in VS and VR (means that the voltages were doubled) will increases the power 

transfer to 400%. This is the reason for adopting high and extra high Transmission voltages. 

4. The maximum real power depends on the Reactance X which is directly proportional to line    

inductance. A decrease in inductance increases the line capacity. The line inductance can be 

decreased by using bundled conductors  
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Another method for reducing the line inductance is by inserting capacitance in series with 

the line. This method is known as series compensation. The series capacitors are usually 

installed at the middle of the line. 

 
positive reactance

𝐿
+ negative reactance

𝐶
→ effictive reactance will be decreased 

5. The Reactive power transferred over a line is directly proportional to (VS – VR) i.e., voltage 

drop along the line, and it is independent of power angle. This means that the voltage drop on 

the line is due to the transfer of reactive power over the line. To maintain a good voltage profile, 

reactive power control is necessary.  

Voltage Control 

Reactive Power compensation equipment has the Following effect: 

1. Reduction in current. Since the voltage is constant at the nominal value 

         S P jQ Q S I→ →  → = +     

2. Reduction of losses in the system. Since the current decreases. 

3. Maintain the voltage profile within limits.  

4. Reduction in investment in the system per kw at load supplied. 

5. Decrease in kVA loading of generators and lines. This decrease in kVA loading relieves 

overload condition or releases capacity for additional load growth.  

6. Improvement in power factor of generators  

Reactive compensation of a Transmission line  

- Static Var Compensation  

- Rotating Compensators (synchronous compensator)  

- Using Transformer (Tap Transformer)  

- Using Power Electronics (STAT COM) 

Static Compensation  

The Performance of transmission lines, especially those of medium length and longer, can be 

improved by reactive compensation of series or parallel type. 

1- series compensation consists of a capacitor bank placed in series with each phase conductor 

of the line. series compensation reduces the series impedances of the line, which is the 

principal cause of voltage drop and the most important factor in determining the maximum 

power which the line can transmit. 
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2- Shunt compensation refers to:  

a) The placement of inductors from each line to neutral to reduce partially or completely 

the shunt susceptance of a high-voltage line. Which is particularly important at light loads 

when the voltage at the receiving end may otherwise become very high (Shunt Reactors). 

b) Shunt Capacitors are used for lagging Power factor circuits created by heavy loads. The 

effect is to supply the necessary reactive power to maintain the receiving end voltage at 

satisfactory level. 

 


