
Introduction to Information Theory and Coding ENEE5304
Lecture Outline

• Explain the course objectives

• List the subjects to be covered

• Provide a general description of  a digital communication system

• Model the additive white Gaussian noise and its effect on error rate in 
transmission

• Introduce the term: system reliability

• Introduce the term: system sfficiency
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Information Theory ENEE5304
• Course Objective: The aim of this course is to introduce the undergraduate 

students to the fundamental concepts in information theory and coding
and to indicate where and how the theory can be applied. Focus will be on 
interpretation of results. Try to avoid complex proofs of some theorems.

• Developed and Formulated by C. E. Shannon in 1948

• Fundamental to understanding and characterizing the performance of 
communication systems.

• Originally intended to study communication systems, then evolved to 
encompass other sorts of applications such as the stock market, 
probability, economics, investment, … 

• Gave essential impacts on today’s digital technology
• data compression
• wired/wireless communication/broadcasting
• cryptography, linguistics, bioinformatics, games, ...
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Course Outline
• Information Theory: Uncertainty, 

Information, Entropy, Discrete 
Memory-less Sources, Extension of 
DMS, Markov Sources, Source-
Coding Theorem, Data 
Compression, Prefix-Free Codes, 
Kraft Inequality, Huffman Coding, 
Lempel-Ziv Coding, Discrete 
Memoryless Channels (DMC), The 
Binary Symmetric Channel, Mutual 
Information, Capacity of the 
Discrete Memory-less Channel, 
Capacity of the Gaussian Channel, 
Channel Coding Theorem, 
Information Capacity Theorem.

• Error-Control Coding: Block Codes, 
Linear Codes, Hamming Codes, 
Generator Matrix, Parity-Check Matrix, 
Syndrome, Cyclic Redundancy Check. 
Basics of automatic repeat request.

• Convolutional Codes: Convolutional 
Encoder, General Rate 1/n Constraint 
Length-K Code, Tree, Finite-State 
Machine , and Trellis Representation of 
Convolutional Codes, Maximum 
Likelihood Decoding of a Convolutional 
Code, Viterbi Decoding Algorithm, Free 
Distance of a Convolutional Code.
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A Basic Communication System Block Diagram

Channel
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Source
Encoder

Modulator

Demodulator

Channel
C

Channel
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Source
Decoder

Error control codingCompression
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Receiver

x(t): Transmitted
Waveform (analog) 

y(t)=x(t) +n(t)
Received

Waveform (analog)

channel

codeword

(Digital)

estimated

channel

codeword

(Digital)

source

codeword

(Digital)

estimated

source

codeword

(Digital)

Analog message

estimated

message

Information Source and
Input Transducer

User (destination) and 
output transducer

AWGN Noise 

n(t)

𝒎(𝒕)

𝒎′(𝒕)
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ADC

DAC

𝒔𝟏 𝒕

𝒔𝟐 𝒕
S = {s1, ..., sM} {1, 0} {1, 0}

{1, 0}{1, 0}

෡𝑺 = {s1, ...,sM}



What is Information Theory about?

• Information theory answers two fundamental questions:

• Given a source, how much can we compress the data? Is there any limit?  
(Entropy H)

• Given a channel, how noisy can the channel be, or how much parity bits 
are necessary to minimize error in decoding? 

• What is the maximum rate of communication? (Channel Capacity C)

• In early days, it was thought that increasing transmission rate over a 
channel increases the error rate.

• Shannon showed that this is not necessarily true as long as rate is 
below Channel Capacity.
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Modulation and Error Probability
• Binary digits from the channel encoder are assigned electrical pulses for 

transmission over the channel.

• Transmitted pulses are corrupted by AWGN

• Noise will cause transmission error
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n(t)

y(t)x(t)

Discrete Input Discrete Output

Continuous Input
Continuous Output

Digit 1 -> 𝒔𝟏 𝒕

Digit 0 -> 𝒔𝟐 𝒕

Modulator{1, 0} Demodulator

{1, 0}

Discrete Input Discrete output



Communication System: Additive White Gaussian Noise 
• Additive White Gaussian Noise is a basic noise model used in communication 

systems to mimic the effect of many random processes that occur in nature.

• This noise comes from many natural noise sources, such as the thermal 
vibrations of atoms in conductors (referred to as thermal noise), shot 
noise, black-body radiation from the earth and other warm objects, and from 
celestial sources such as the Sun. 

• The central limit theorem of probability theory indicates that the summation 
of many random processes will tend to have distribution called Gaussian or 
Normal.
• Transmitted signal: 𝑥 𝑡 ; 

• Channel Output: y 𝑡 = 𝑥 𝑡 + 𝑛(𝑡); 

• The pdf of 𝑛 𝑡 follows the Gaussian distribution

• The power spectral density is a constant over a                                                
wide range of the frequency spectrum

Digit 1 -> 𝒔𝟏 𝒕

Digit 0 -> 𝒔𝟐 𝒕



Communication System: Optimum Binary Receiver Performance

• In a digital data transmission, the receiver has to decide which symbol was 
transmitted such that the probability of making errors in minimized. The 
receiver which satisfies this criterion is called an optimum receiver.

• Bit Error Probability (in the binary case):  p = 𝑸
𝟎׬
𝝉
𝒔𝟏 𝒕 −𝒔𝟐 𝒕

𝟐
𝒅𝒕

𝟐𝑵𝟎

• 𝝉: binary symbol duration

• 𝑵𝟎: AWGN power

Discrete Input Discrete Output

Digit 1 -> 𝒔𝟏 𝒕

Digit 0 -> 𝒔𝟐 𝒕



Bit-error probability and data rate

Motivating Example: Binary PSK

 𝑠1 𝑡 = Acos 2𝜋𝑓0𝑡 ; 0 ≤ 𝑡 ≤ 𝜏; 𝜏 = 𝑘𝑇0;   Representing digit 1

 𝑠2 𝑡 = −Acos 2𝜋𝑓0𝑡 ; ; 0 ≤ 𝑡 ≤ 𝜏; Representing digit 0

 p = 𝑸
0׬
𝝉
𝒔1 𝒕 −𝒔2 𝒕

2
𝒅𝒕

2𝑵0
= 𝑄

𝐴2𝜏

𝑁0
= 𝑸

𝑨𝟐

𝑹𝒃𝑵𝟎

 How to minimize the error probability?
 Increase the signal power (by increasing A); quite obvious

 Reduce the data rate 𝑹𝒃.

 as 𝑅𝑏 ↑, 𝑥 𝑜𝑓 𝑄(𝑥) ↓ 𝑎𝑛𝑑, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑃𝑏
∗ ↑. 

 Q(.) is the complementary Gaussian distribution function.

9 𝒑 = 𝑸 𝒙



Bit-error and block error probabilities

bit bit bit bit

1-bit 𝑝 = 𝑸
𝑨𝟐

𝑹𝒃𝑵𝟎
→ 𝟎 𝒂𝒔 𝑹𝒃 → 𝟎, 𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 (𝑨) → ∞

Block of k bits

Encoding Scheme

Block error 
probability of 
error  → 𝟎 for a 
finite data date 
𝑹𝒃 and a finite 
power

Remark: Information theory promises that the probability of error can 

be made arbitrarily small (for a finite rate and a finite power) as long 

as the transmission rate is below a Channel Capacity.

Channel with 
capacity C

𝝉 𝝉 𝝉 𝝉



Efficiency and Reliability of a Digital Communication System

Lecture Outline

• Distinguish between bit error and block error probabilities in a digital 
communication system

• Define the efficiency of a digital communication system

• Explain the difference between fixed and variable length codes

• Define the reliability of a digital communication system
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Modulation and Error Probability
• In a digital data transmission, the receiver has to decide which symbol was transmitted such 

that the probability of making errors in minimized. The receiver which satisfies this criterion 
is called an optimum receiver.

• Bit Error Probability (in the binary case):  p = 𝑸
𝟎׬
𝝉
𝒔𝟏 𝒕 −𝒔𝟐 𝒕

𝟐
𝒅𝒕

𝟐𝑵𝟎
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n(t)

y(t)x(t)

Discrete Input Discrete Output

Continuous Input Continuous Output

Digit 1 -> 𝒔𝟏 𝒕

Digit 0 -> 𝒔𝟐 𝒕

Modulator Demodulator

{1, 0}
Discrete Input

Discrete output
{1, 0}

Channel Encoder

𝝉 𝝉 𝝉



Bit-error probability and data rate

Motivating Example: Binary PSK

 𝑠1 𝑡 = Acos 2𝜋𝑓0𝑡 ; 0 ≤ 𝑡 ≤ 𝜏; 𝜏 = 𝑘𝑇0;   Representing digit 1

 𝑠2 𝑡 = −Acos 2𝜋𝑓0𝑡 ; ; 0 ≤ 𝑡 ≤ 𝜏; Representing digit 0

 p = 𝑸
0׬
𝝉
𝒔1 𝒕 −𝒔2 𝒕

2
𝒅𝒕

2𝑵0
= 𝑄

𝐴2𝜏

𝑁0
= 𝑸

𝑨𝟐

𝑹𝒃𝑵𝟎

 How to minimize the error probability?
 Increase the signal power (by increasing A); quite obvious

 Reduce the data rate 𝑹𝒃.

 as 𝑅𝑏 ↑, 𝑥 𝑜𝑓 𝑄(𝑥) ↓ 𝑎𝑛𝑑, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑃𝑏
∗ ↑. 

 Q(.) is the complementary Gaussian distribution function.
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Bit-error and block error probabilities

bit bit bit bit

1-bit 𝑝 = 𝑸
𝑨𝟐

𝑹𝒃𝑵𝟎
→ 𝟎 𝒂𝒔 𝑹𝒃 → 𝟎, 𝒐𝒓 𝒑𝒐𝒘𝒆𝒓 (𝑨) → ∞

Block of k bits

Encoding Scheme

Block error 
probability of 
error  → 𝟎 for a 
finite data date 
𝑹𝒃 and a finite 
power

Remark: Information theory promises that the probability of error can be made 

arbitrarily small (for a finite rate and a finite power) as long as the transmission 

rate is below a Channel Capacity.

Channel with 
capacity C

𝝉 𝝉 𝝉 𝝉



Problem One: Reliability

Communication is not always reliable.

• transmitted information ≠ received information

• Errors of this kind are unavoidable in real communication.

• In the usual conversation, we sometimes overcome these errors by

• Repeating the sentences

• Using phonetic codes.

ABCABC
ABCADC

ABC Apple, Banana, Charlie
5
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Phonetic Code

• A phonetic code adds redundant characters (parity characters)

• The redundant part helps correcting possible errors.

→ Use this mechanism over 0-1 data, and we can detect and correct errors?

the real
information

redundant information
for correcting possible errors
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Redundancy to Improve Reliability
Q. Can we add “redundant bits” to binary data?

A.   Yes. One possibility is to use parity bits.

A parity bit is: a binary digit, which is added to make the number of 1’s in the data 
message even.

• 00101 → 001010 (two 1’s → two 1’s)

• 11010 → 110101 (three 1’s → four 1’s)

One parity bit may tell you that there are odd numbers of errors. But not more than that, 
i..e., Error Detection (odd number of bits)

Example: Receive 001010 (even number of bits)  accept (received = transmitted)

Example: Receive 001011 (odd number of bits)  Reject (one bit in error)

Example: Receive 001001 (even number of bits)  accept even though 2 bits in error

Note: Error detection is employed in the data link layer of computer networks. There, 
Cyclic Redundancy Check (CRC) error detection codes are used. We shall consider that 
later in the course7



Problem Two: Efficiency

• Given a source S. Source encoder assigns binary digits for each source 
symbol such that

• the average number of digits/symbol is minimum (efficient representation)

• the code is uniquely decodable
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Source alphabet

Source Encoder{s1, ..., sM} {c1, ..., cM}



Problem Two: Efficiency

Example: We need to record the weather of a given city every day.
• Weather = {sunny, cloudy, rainy}; three possible states. 

• We can use only “0” and “1”, cannot use blank spaces.

• The source alphabet M=3.

weather
sunny
cloudy
rainy

codeword
00
01
10

2-bit record everyday (equal length 
code) ; 𝑚 = log(3) ; => m=2

M=3 symbols need 2 binary digits

(100 days, need 200 bits)

0100011000 Can we shorten the representation?

The source consists of 3 messages each one is mapped 
into a sequence of binary digits (source codewords)

9



A Better Code: Variable Length Code

Code B gives a shorter representation than Code A.

• Can we decode Code B correctly?
• Yes, as far as the sequence is processed from the beginning.

• Is there a code which is more compact than code B?
• Let us try that (→ next slide).

• The probability distribution of the source need to be known

weather
sunny
cloudy
rainy

code A
00
01
10

code B
00 (2 digits)
01 (2 digits)
1 (1 digit) code A...0100011000

code B...010001100
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Mean and Variance of a Random Variable

Mean

-1 1

0.5

Mean

𝑓𝑋(𝑥)

The mean is analogous to 
the center of mass of a 
weight distribution

xx

𝑓𝑋(𝑥)Δ𝑥

Point of equilibriumE(X) = (0)(0.4)+(1)(0.3)+(2)(0.2)+(3)(0.1) = 1



Mean and Variance of a Random Variable

Mean

-0.5 0.5

2

Mean

𝑓𝑋(𝑥)

-2 2

0.5

Mean

𝑓𝑋(𝑥)

𝑓𝑋(𝑥)Δ𝑥 𝑓𝑋(𝑥)Δ𝑥

x x

The variance is 
analogous to the 
centralized moment 
of inertia

Mean(X) =1
Var(X) = 1



Average Length of Codes

Sometimes, events are not equally likely... 

→ Probability comes into play

For Code A: 2.0 bit / event (always), (fixed length coding)

Codes B and C are variable length source encoders.

For Code B, (without a calculated knowledge)

20.5  + 20.3  + 10.2 =  1.8 bit / event (on the average)

For Code C,  (educator’s guess: Symbol probabilities exploited)

10.5  + 20.3  + 20.2 =  1.5 bit / event  (on the average)

weather
sunny
cloudy
rainy

probability
0.5
0.3
0.2

code A
00
01
10

code B
00
01
1

code C
1

01
00

13



The Best Code

Question: Can we represent information with 1.1 binary digit/ per event 
(on the average)? 

Answer:  NO, To be investigated later in the course...

• It is likely that there is a “limit” which we cannot get over.

• Shannon investigated the limit mathematically.
→ For this event set, we need 1.485 or more bit per event.

weather
sunny
cloudy
rainy

probability
0.5
0.3
0.2

This is also the average amount of 
information provided by the source.

How do we arrive at  the 1.485?
LATER
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Discrete Memory-less Information Sources
Lecture Outline

• Two models are used describe discrete-time information sources
• Discrete memory-less sources (DMS)

• Markov sources; used to model sources with memory

• Markov sources are treated in the next lecture

• This lecture addresses DMS; two relevant concepts are introduced
• Statistical Independence

• Stationarity

1
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Modeling Discrete Time Digital Information Sources

Two models are used to describe discrete information sources:

• Discrete memory-less  sources (DMS)

• Markov information sources

Assumptions on the source model:

• Discrete: the set of possible symbols S is finite and countable. The number of 
elements in S is the size of the alphabet |S|=M 

• The source generates one symbol from the set S = {a1, ..., aM} each time unit. 
Hence the name M-ary discrete-time information source.

Remark: A continuous-time and/or analogue information sources can be converted 
into discrete source through sampling & quantization, as we have explained earlier.
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Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}



A Basic Communication System Block Diagram: Revisited

Channel
Encoder

Source
Encoder

Modulator

Demodulator

Channel
C

Channel
Decoder

Source
Decoder

Error control codingCompression

Transmitter

Receiver

x(t): Transmitted
Waveform (analog) 

y(t)=x(t) +n(t)
Received

Waveform (analog)

channel

codeword

(Digital)

estimated

channel

codeword

(Digital)

source

codeword

(Digital)

estimated

source

codeword

(Digital)

Analog message

estimated

message

Information Source and
Input Transducer

User (destination) and 
output transducer

AWGN Noise 

n(t)

𝒎(𝒕)

𝒎′(𝒕)
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ADC

DAC

𝒔𝟏 𝒕

𝒔𝟐 𝒕
S = {s1, ..., sM} {1, 0} {1, 0}

{1, 0}{1, 0}

෡𝑺 = {s1, ...,sM}



The Source Encoder

Source
Encoder

source

codeword

(Digital)Analog message

Analog Source
(continuous in time, 

continuous in amplitude)

𝒎(𝒕)
ADC

{1, 0}

S = {s1, ..., sM}

Digital Source
Key-board output



Quantization: the two-bit quantizer
• Example: The signal x t = cos 2𝜋𝑡 is sampled uniformly at a rate of 20 samples per 

second. The samples are applied to a four-level uniform quantizer with input-output 
characteristic

• 𝑦 𝑘𝑇𝑠 =

0.75, 0.5 < 𝑥 < 1
0.25, 0 < 𝑥 < 0.5

−0.25, − 0.5 < 𝑥 < 0
−0.75, −1 < 𝑥 < −0.5

Quantizer

𝒙(𝒌𝑻𝒔) 𝒚(𝒌𝑻𝒔) = ෞ𝒙𝟏, ෞ𝒙𝟐, ෞ𝒙𝟑, ෞ𝒙𝟒

0-1 x+1

ෞ𝒙𝟏 = −𝟎. 𝟕𝟓 ෞ𝒙𝟐 = −𝟎. 𝟐𝟓 ෞ𝒙𝟑 = 𝟎. 𝟐𝟓 ෞ𝒙𝟒 = 𝟎. 𝟕𝟓

-0.5 0.5

SamplerAnalog Source

𝐱 𝒕



Quantization: the two-bit quantizer

0 0.25

0.5

0.75 1

𝑻𝒔 = 𝟎. 𝟎𝟓

𝒚(𝒌𝑻𝒔) = ෣−𝟎. 𝟕𝟓,−𝟎. 𝟐𝟓,−𝟎. 𝟐𝟓, 𝟎. 𝟕𝟓

Sampled Signal

Quantized Signal

𝐱 𝒕 = 𝒄𝒐𝒔 𝟐𝝅𝒕



Discrete Time Digital Information Sources

The concept of statistical independence:

Two events A and B are said to be statistically independent when:

• 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)

• The conditional probability of A given B is given as:

• 𝑃 𝐴|𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)

• For independent events, 

• 𝑃 𝐴|𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑃 𝐴 𝑃(𝐵)

𝑃(𝐵)
= 𝑃(𝐴)

• 𝑷 𝑨|𝑩 = 𝑷(𝑨); whether B is given or not, the probability of A remains the same.
7

Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}

𝑨 ∩ 𝑩
𝐴 𝐵



Discrete Time Digital Information Sources
We apply the concept of statistical independence to the first model of discrete 
memory-less sources 

• 𝑷 𝑿𝟐 = 𝒙𝟐|𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝟐 = 𝒙𝟐 ; independent source

• Also, 

• 𝑷 𝑿𝟐 = 𝒙𝟐 ∩ 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝟐 = 𝒙𝟐 𝑷 𝑿𝟏 = 𝒙𝟏
• And, in general, for an independent source we have:

• 𝑷 𝑿𝒕 = 𝒙𝒕 ∩⋯∩ 𝑿𝟐 = 𝒙𝟐 ∩ 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕 …𝑷 𝑿𝟐 = 𝒙𝟐 𝑷 𝑿𝟏 = 𝒙𝟏
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Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}



Discrete Time Digital Information Sources

• Assume a discrete-time digital information source X:

• X = {a1, ..., aM}... the set of symbols of X (alphabet of X)

(X is said to be an M-ary information source.)

• Xt : the symbol which X produces at time t. Can assume any of M values

• The sequence X1, ..., Xn is called a message produced by X (Here, the 
message consists of n symbols).

Example: Tossing a six-faced fair die 9 times independently

Let the message be , then

9

time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}|M|= 6



Discrete Memoryless Sources (DMS)

• A discrete memoryless and stationary information source satisfies the independence 
(memory-less) condition:

• Memoryless condition: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕

• Memoryless condition: “A symbol is chosen independently from past symbols.”

• Stationary condition:  The probability mass function is independent of time

• For example,   𝑷 𝑿𝒕 = 𝒂𝟏 = 𝑷 𝑿𝟏 = 𝒂𝟏 , for any time t, and so on

10

Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}

Stationarity: The probability distribution is time-invariant.”



Discrete Memoryless Sources (DMS): Example

• Example: Consider a discrete memory-less source S which emits one of three 
possible symbols {a, b, c} every time unit with the following probabilities:

• P(a) = 0.5, P(b) = 0.3, P(c) = 0.2

• The probability mass function of the source is shown below.

• For a stationary source, this represents the pmf of 𝑿𝟏, 𝑿𝟐, …, 𝑿𝒕

• P(𝑋2 = 𝑏) = 0.3, P(𝑋1 = 𝑏) = 0.3, P(𝑋10 = 𝑏) = 0.3

• P(𝑋2 = 𝑏 ∩ 𝑋8 = 𝑎) = 𝑃(𝑋2 = 𝑏)𝑃(𝑋8 = 𝑎) = (0.3)(0.5) = 0.15
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Discrete-time source
S = {a, b, c}

time

X1 X2 Xt

{a, b, c} {a, b, c} {a, b, c}

a b

0.5

0.3

0.2

c

𝑷(𝑿𝒕 = 𝒙𝒕)



Sources with Memory

• A memoryless and stationary information source satisfies the independence condition:

• Memoryless condition: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕

• For a source with memory, past states affect the occurrence of future symbols, i.e.,

• 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 ≠ 𝑷 𝑿𝒕 = 𝒙𝒕

• This implies that the probability mass function is time-dependent.

• For example,   𝑷 𝑿𝒕 = 𝒂𝟏 ≠ 𝑷 𝑿𝒕−𝟏 = 𝒂𝟏 ≠ 𝑷 𝑿𝟏 = 𝒂𝟏
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Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}

The probability distribution is time-dependent



Sources with Memory

• Sources with memory: The probability distribution is time-dependent

Discrete-time source
S = {a, b, c} time

X1 X2 Xt

{a, b, c} {a, b, c} {a, b, c}

a b

0.7

0.25
0.05

c

𝑷(𝑿𝟏 = 𝒙𝟏)

a b

0.6

0.29
0.11

c

𝑷(𝑿𝟐 = 𝒙𝟐)

a b

0.5
0.3

0.2

c

𝑷(𝑿𝟏𝟎 = 𝒙𝟏𝟎)

t = 1 t = 2 t = 10

Same set of 
alphabet as DMS



Sources with Memory 

Example From English Language: 

In a given short story, one can find the following probabilities:

P(o) = 0.063 , P(f) = 0.021, P(of) = 0.035493; P(x)= Nx/N

Assuming independence: P(of) = P(o)P(f) = (0.063)(0.021) = 0.001323

Note that P(of) >> P(o)P(f)

 Similar examples from the English language (sources with memory)

• English text: 𝑃𝑋𝑡|𝑋𝑡−1 𝑢 𝑞 ≫ 𝑃𝑋𝑡|𝑋𝑡−1 𝑢 𝑢

Quality, Prerequisite 
Continuum
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Markov Sources
Lecture Outline

• Two models describe discrete-time information sources:
• Discrete memory-less sources (DMS); addressed in the previous lecture

• Markov sources; used to model sources with memory

• Markov sources are the subject of this lecture. The lecture covers
• The state diagram and the state equations of a simple Markov source.

• Transient analysis of the Markov source

• Steady-state solution of the stationary Markov source

• Regular Markov sources

1

Tec
Text Box
Lecture 4



Modeling Discrete Time Digital Information Sources

Assumptions on the source model:

• Discrete: the set of possible symbols S is finite and countable. The number of 
elements in S is the size of the alphabet |S|=M 

• The source generates one symbol from the set S = {a1, ..., aM} each time unit. 
Hence the name M-ary discrete-time information source.

2

Discrete-time source
S = {a1, ..., aM}

|S| = M
time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}



Sources with Memory
• A memoryless and stationary information source satisfies the independence condition:

• Memoryless condition: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕
• For a DMS source, the probability distribution is time-independent

• The random variables 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒕−𝟏 , 𝑿𝒕 are independent

• For a source with memory, past states affect the occurrence of future symbols, i.e.,

• 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 ≠ 𝑷 𝑿𝒕 = 𝒙𝒕

• This implies that the probability mass function is time-dependent.

• For example,   𝑷 𝑿𝒕 = 𝒂𝟏 ≠ 𝑷 𝑿𝒕−𝟏 = 𝒂𝟏 ≠ 𝑷 𝑿𝟏 = 𝒂𝟏

3

Discrete-time source
S = {a, b, c}

|S| = 3 time

X1 X2 Xt

{a, b, c} {a, b, c} {a, b, c}

a b

0.5

0.3

0.2

c

𝑷(𝑿𝒕 = 𝒙𝒕) pdf of a DMS



Sources with Memory
• Sources with memory:

• The probability distribution is time-dependent

• The random variables 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒕−𝟏 , 𝑿𝒕 are dependent

Discrete-time source
S = {a, b, c} time

X1 X2 Xt

{a, b, c} {a, b, c} {a, b, c}

a b

0.7

0.25
0.05

c

𝑷(𝑿𝟏 = 𝒙𝟏)

a b

0.6

0.29
0.11

c

𝑷(𝑿𝟐 = 𝒙𝟐)

a b

0.5
0.3

0.2

c

𝑷(𝑿𝟑 = 𝒙𝟑)

t = 1 t = 2 t = 3

Same set of 
alphabet as DMS



Sources with Memory 

Example From English Language: 

In a given short story, one can find the following probabilities:

P(o) = 0.063 , P(f) = 0.021, P(of) = 0.035493; P(x)= Nx/N

Assuming independence: P(of) = P(o)P(f) = (0.063)(0.021) = 0.001323

Note that P(of) >> P(o)P(f); 

Languages are structured and letters are not randomly chosen in words

 Similar examples from the English language (sources with memory)

• English text: 𝑃𝑋𝑡|𝑋𝑡−1 𝑢 𝑞 ≫ 𝑃𝑋𝑡|𝑋𝑡−1 𝑢 𝑢

Quality, Prerequisite 
Continuum

5



Sources with Memory: Markov Information Sources

• Used to model information sources with memory.

• For an m-th order Markov source, the occurrence of the current symbol at 
time t depends on the past m symbols at t-1, t-2, …, t-m

• In a simple Markov source, the occurrence of the current symbol at time t 
depends only on the previous symbol at time t-1

• Simple Markov Source to be discussed in this lecture,

• 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏

6

Markov Source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt-1

{a1, ..., aM}

Xt

{a1, ..., aM}



Example: Generation of a Simple Markov Source
The figure below shows how to generate a Markov source 𝑋𝑡. Let S be a 
discrete memoryless and stationary source with P(0) = 0.2, P(1) = 0.8

S

R

1-bit register

The table shows the relationship between 𝑿𝒕, 𝑿𝒕−𝟏 and S.

P(Xt =1)=P(Xt-1 =0 ∩S=1) + P(Xt-1 =1 ∩S=0) 

From probability theory, we know that

𝑷 𝑨 ∩ 𝑩 = 𝑷 𝑨 𝑷(𝑩|𝑨);

P(Xt =1) = P(Xt-1 =0) P(S=1/Xt-1 =0) + P(Xt-1 =1) P(S=0/Xt-1 =1)

But S is an independent source, hence

P(Xt =1) = P(Xt-1 =0) (0.8) + P(Xt-1 =1) (0.2)

DMS with
P(0) = 0.2
P(1) = 0.8

𝑿𝒕 = 𝑺⨁𝑿𝒕−𝟏

7

𝑿𝒕−𝟏 𝑿𝒕−𝟏 S 𝑿𝒕

0 0 0

0 1 1

1 0 1

1 1 0



Example: Generation of a Simple Markov Source
The figure below shows how to generate a Markov source 𝑋𝑡. Let S be a 
discrete memoryless and stationary source with P(0) = 0.2, P(1) = 0.8

S

R

1-bit register

Similarly, we have

P(Xt =0) = P(Xt-1 =0 ∩S=0) + P(Xt-1 =1 ∩S=1) 

P(Xt =0) = P(Xt-1 =0) P(S=0/Xt-1 =0) + P(Xt-1 =1) P(S=1/Xt-1 =1)

But S is an independent source, hence

P(Xt =0)=P(Xt-1 =0) (0.2) + P(Xt-1 =1) (0.8)

Also,  P(Xt = 0) = 1 - P(Xt = 1)

DMS with
P(0) = 0.2
P(1) = 0.8

𝑿𝒕 = 𝑺⨁𝑿𝒕−𝟏

8

𝑿𝒕−𝟏 𝑿𝒕−𝟏 S 𝑿𝒕

0 0 0

0 1 1

1 0 1

1 1 0



The Simple Markov Source

Basic State Equations

P(Xt =1)=P(Xt-1 =0) (0.8)+ P(Xt-1 =1) (0.2)
P(Xt =0)=P(Xt-1 =0)( 0.2)+ P(Xt-1 =1) (0.8)

9

S

R

1-bit register

DMS with
P(0) = 0.2
P(1) = 0.8

𝑿𝒕 = 𝑺⨁𝑿𝒕−𝟏

𝑿𝒕−𝟏

Distribution at time t depends on the distribution at time t-1



State Representation of the Simple Markov Source
• In the previous slides, we have seen that 𝑿𝒕, S, and 𝑿𝒕−𝟏 ∈ 𝟎, 𝟏 .

The state equations are

P(Xt =1)=P(Xt-1 =0) (0.8)+ P(Xt-1 =1) (0.2)

P(Xt =0)=P(Xt-1 =0)( 0.2)+ P(Xt-1 =1) (0.8)

• These equations can be represented in a state-diagram called the finite-state machine 
model. 

• The arrows represent the transition probabilities from a given state to another state.

Xt-1 =1
Xt-1 =0

0.2
0.8

0.8 0.2

Finite State Machine Model

10

DMS with
P(0) =0.2
P(1) =0.8

S

R

1-bit register

𝑿𝒕 = 𝑺⨁𝑿𝒕−𝟏



Transient Analysis of the Simple Markov Source

• The state equations are

• P(Xt =1)=P(Xt-1 =0) (0.8)+ P(Xt-1 =1) (0.2)

• P(Xt = 0)=P(Xt-1 =0)( 0.2)+ P(Xt-1 =1) (0.8)

• Suppose that at t=0, system starts from state zero,

• i.e., P(Xt-1 = 0) = 1, so that P(Xt-1 = 1) = 0.

• With these initial conditions, we get

• P(X1 =1) =P(Xt-1 =0) (0.8)+ P(Xt-1 =1) (0.2) 

= (1) (0.8) + (0)(0.2) = 0.8

• P(X1 =0) = P(Xt-1 =0)( 0.2)+ P(Xt-1 =1) (0.8) 

= (1)(0.2) + (0)(0.8) = 0.2.

• These values serve as initial conditions for the next time 
instance t = 2. The probabilities as a function of time are 
summarized in the table11

t P(Xt =1) P(Xt =0)

0 0 1

1 0.8 0.2

2 0.32 0.68

3 0.608 0.392

4 0.4352 0.5648

5 0.53888 0.46112

6 0.476672 0.523328

7 0.5139968 0.4860032

8 0.49160192 0.50839808

∞ 0.5 0.5



Steady-State Solution of the Simple Markov Source

• The state equations are

• P(Xt =1)=P(Xt-1 = 0) (0.8)+ P(Xt-1 = 1) (0.2)

• P(Xt =0)=P(Xt-1 =0)( 0.2)+ P(Xt-1 =1) (0.8)

• At steady-state, we have P(Xt =1) = P(Xt-1 =1) = α ; time-independent

• P(Xt =0) = P(Xt-1 =0) = β ;

• Therefore,

• P(Xt =1)=P(Xt-1 = 0) (0.8)+ P(Xt-1 = 1) (0.2)

α = β (0.8) + α (0.2) 

0.8 α = (0.8) β

• Hence, α = β = 0.5 

12



Example: a three-state simple Markov source

13

Consider the stationary Markov source with three states of order 1 and transition 
probabilities as shown in the figure.
• Write down the state equations.
• Write down the steady-state state equations.
• Find the steady-state probabilities of the three states



Theorem of Total Probability

• In this example, we make use of the theorem of total probability. 

• Let A1, A2, …, An be a set of events defined over S such that:

• S = A1 U A2 U… U An ;  Ai ∩ Aj = Ø   for i ≠ j,   and P(Ai) > 0   for i = 1, 2, 3, … n.

• For any event (B) defined on S,

𝐏 𝐁 = P(A1)P(B/A1) + P(A2)P(B/A2)

+ P(A3)P(B/A3)

14



Example: a three-state simple Markov source

For the source shown on the previous slide, we can write the following 
state equations.

P(Xt =a)=P(Xt-1 =a) P(Xt =a/Xt-1 =a) + P(Xt-1 =b) P(Xt =a/Xt-1 =b)

+ P(Xt-1 =c) P(Xt =a/Xt-1 =c)

P(Xt =b)=P(Xt-1 =a) P(Xt =b/Xt-1 =a) + P(Xt-1 =b) P(Xt =b/Xt-1 =b)

+ P(Xt-1 =c) P(Xt =b/Xt-1 =c)

P(Xt =c)=P(Xt-1 =a) P(Xt =c/Xt-1 =a) + P(Xt-1 =b) P(Xt =c/Xt-1 =b)

+ P(Xt-1 =c) P(Xt =c/Xt-1 =c)

Substituting the transition probabilities into the state equations above, we get

P(Xt =a)=P(Xt-1 =a) (0.9) + P(Xt-1 =b) (0.1) + P(Xt-1 =c) (0.3)

P(Xt =b)=P(Xt-1 =a) (0.05) + P(Xt-1 =b) (0.8) + P(Xt-1 =c) (0)

P(Xt =c)=P(Xt-1 =a) (0.05) + P(Xt-1 =b) (0.1) + P(Xt-1 =c) (0.7)
15



Example: a three-state simple Markov source

Steady-state solution

Note that the probabilities at time t are dependent on the probabilities at time (t-1).

In the steady-state case, we have 

P(Xt-1 =a) = P(Xt =a) = P(a) ;    P(Xt-1 =b)=P(Xt =b)=P(b);   P(Xt-1 =c)=P(Xt =c)=P(c) 

The state equations now become

P(a)=P(a) (0.9) + P(b) (0.1) + P(c) (0.3)

P(b)=P(a) (0.05) + P(b) (0.8) + P(c) (0)

P(c)=P(a) (0.05) + P(b) (0.1) + P(c) (0.7)

Solving the above equations, we get 

P(a)=4/6; P(b)=1/6; P(c)=1/6 (the following steady-state probabilities
16

P(a)

P(c)P(b)



Two Important Properties of Markov Sources

Irreducible Markov Source

• Any state is accessible from any other state in a finite number of steps
A

B C

this example is NOT irreducible
If we start at B, we cannot reach either A or C

aperiodic Markov source: Source does not have a 
periodic behavior

A B

Periodic Source

irreducible + aperiodic = regular 
(also known as ergodic).

17



Ergodic (Regular) Markov Process

Definition: A finite-state Markov chain is ergodic (regular) if all 
states are accessible from all other states and if all states are 
aperiodic, i.e., have period 1.

An important fact about ergodic Markov chains is 
that the chain has steady-state probabilities p(s) for 
all  states. 

18



Measure of Information
Lecture Outline

• Consider a discrete-time finite-alphabet source S of size M with a given 
probability distribution over its symbols.

• In this lecture, we will try to answer the following questions:
• How do we measure the information produced by the source S?

• What is the amount of information contained in each symbol?

• What is the average amount of information per symbol in S?

1

Tec
Text Box
Lecture 5



2

The Source Entropy
• Main Theme: Consider a discrete-time finite-alphabet source S of size M

with a probability distribution over its symbols given by

Question to be answered in this lecture:

• How do we measure the amount of information produced by the source?

M

1

1, 2,  .. , M( )   ,  m       1m

m

m mpP s s p and


  
Symbol s1 s2 … sM

Probability p1 p2 … pM

Discrete-time source
S = {s1, ..., sM} time

X1

{s1, ..., sM} {s1, ..., sM}

X2 Xt

{s1, ..., sM}



Uncertainty, Information, and Entropy

• Question: What does the word “information” mean?

• There is no exact definition !!!

• Information in a message is meaningful only if the recipient is able to interpret  
it (For example, A chemist may a explain complex chain of reactions to kinder-
garden students or he may present the same work to a group of specialists). 

• Information is also about something which adds to your knowledge

• Motivation for defining information: Consider the following three sentences

1) The sun will rise tomorrow from the east. (certain event; none of us will be 
surprised )

2) The average grade in this class will be 85 and no one will fail the course (it is 
unlikely; some of you will be surprised)

3) No attendance is required in this course, no exams will be given, and all 
students will receive A (almost improbable event; all of you will be surprised).

3



Information and Uncertainty
• Information in a message is a measure of surprise or unpredictability

• sentence 1 has low information content (high predictability)

• sentence 2 has higher information content (less predictable)

• sentence 3 has even higher information content (it is an unlikely event).

• Information content of an event is related to the uncertainty of that event

• Uncertainty is defined as the inverse of probability

• The less expected the event is (smaller probability), the more information it 
contains.

• Shannon’s answer is: The information content of a message is simply the number 
of 1s and 0s needed to represent it.

• Hence, the elementary unit of information is a binary unit: a bit

• One of the basic postulates of information theory is that information can be 
treated like a measurable physical quantity ( such as density or length) with 
units in bits4



5

Uncertainty, Information, and Entropy

Two conditions on the information measure

• First Condition: The self information of event A may be related to the 
inverse of P(A)

𝑵𝒐 𝑺𝒖𝒑𝒓𝒊𝒛𝒆 ⇒ 𝑵𝒐 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏

𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒗𝒆𝒏𝒕 𝑨 ∝
𝟏

𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 (𝑨)
• Second Condition: If A is a surprise event and B is another 

independent surprise event,  then the total information of a 
simultaneous event A and B is:

𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝑨 ∩ 𝑩 = 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝑨 + 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝑩

• The logarithmic function satisfies the above two conditions

𝑰 𝒔𝒎 = 𝒍𝒐𝒈𝟐
𝟏

𝒑𝒎
;  bits         Self Information of Symbol sm
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Properties of Information

1. (s )  0 for p 1
m m

I  

2. ( )  0     for    0  p   1
m m

I s   

k i
3. ( )  ( )     for    p   p

k i
I s I s 

     
k i4. ( ) ( ) ( ), if  s  and  s  statist. indep.

                 1/ P( 1/ P( 1/  = P) ) )(
k i k i

k i k ilo
I s s

g log log
I s I s

s s s s
  

  

𝑰 𝒔𝒎 = 𝒍𝒐𝒈𝟐
𝟏

𝒑𝒎
; Information in each symbol (units in bits)

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)

1:  A certain event (p = 1) contains no information (log(1) = 0)

2. Information is nonnegative (since 𝟎 < 𝒙 < 𝟏), then 
𝟏

𝒙
> 𝟏 ⇒ 𝒍𝒐𝒈

𝟏

𝒙
> 𝟎)

3. The smaller the prob. of an event is, the more information it carries 
3. Info in the intersection of two independent events = sum of information
* Custom is to use logarithm of base 2

Log(ab) = Log(a) + Log(b)



The Average Information per Source Symbol
Source Entropy

• The average information per source symbol,  is the expected value of the 
random variable I.

• This is known as: Entropy of Source S

• If all symbols are equally probable pi = 1/M 
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2

1 1

( ) log (1/ )    bits/symbol
M M

i i i i

i i

E I p I p p
 

  

2 2

1

1
( ) log log

M

i

H X M M
M

 

2

1

(S) log (( )   Source E1 ntr/ ) opy
M

i i

i

H pE pI


 

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)

𝑬 𝑰 =෍

𝒊=𝟏

𝑴

𝒑𝒊𝑰𝒊 =෍

𝒊=𝟏

𝑴

𝒑𝒊𝐥𝐨𝐠𝟐( Τ𝟏 𝒑𝒊)

= −෌
𝒊=𝟏

𝑴
𝒑𝒊𝐥𝐨𝐠𝟐(𝒑𝒊)



Examples of Entropy Computation

8

• Toss a Coin, S = {H, T}, P(H) = P(T) = 0.5

• Rolling a fair die, S = {1, 2, 3, 4, 5, 6}, P(si) = 1/6

• A biased die, P(1) = 0.9, P(s) = 0.02, s=(2, 3, 4, 5, 6)

• Note that the entropy of the fair die is higher than that of the biased die. Why?

• The fair die has higher uncertainty than the biased one; hence higher entropy

symbolbitSH /   1)5.0(log5.0)5.0(log5.0)( 22 

symbolbitSH /   585.2)]
6

1
(log

6

1
[6)( 2 

2 2( ) 0.9log 0.9 5[0.02log 0.02] 0.701   /H S bit symbol   
𝐇 𝐒 = −෍

𝒊=𝟏

𝑴

𝒑𝒊𝒍𝒐𝒈𝟐(𝒑𝒊)



Average Information Content in English Language

Example 1: Calculate the average information in bits/character in English 
assuming each letter is equally likely

𝑯 𝑺 =෍

𝒊=𝟏

𝑴

𝒑𝒊𝒍𝒐𝒈𝟐( Τ𝟏 𝒑𝒊) = −෍

𝒊=𝟏

𝑴

𝒑𝒊𝒍𝒐𝒈𝟐(𝒑𝒊)

𝐻 = −෎

𝑖=1

26

1

26
log2

1

26

= 4.7 𝑏𝑖𝑡 Τ𝑠 𝑐 ℎ𝑎𝑟
9



Average Information Content in English Language

Example 2: Calculate the average information in bits/character in English.

Since characters do not appear with the same frequency, we may use the 
following approximate probabilities

•P = 0.10 for a, e, o, t

•P = 0.07 for h, i, n, r, s

•P = 0.02 for c ,d ,f ,l, m, p, u, y

•P = 0.01 for b, g, j, k, q, v, w, x, z

10

𝐻 = −
4 × 0.1log2 0.1 + 5 × 0.07log2 0.07

+8 × 0.02log2 0.02 + 9 × 0.01log2 0.01
= 4.17 𝑏𝑖𝑡𝑠|𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟

𝐻 𝑆 =෍

𝑖=1

𝑀

𝑝𝑖log2( Τ1 𝑝𝑖) = −෍

𝑖=1

𝑀

𝑝𝑖log2(𝑝𝑖)



The Source Entropy
Lecture Outline

• Define the source entropy

• Study the entropy of the binary source

• Prove that: 0 ≤ H(S) ≤ log2M

1

Tec
Text Box
Lecture 6



2

The Source Entropy
• Main Theme: Consider a discrete-time finite-alphabet source S of size M

with a probability distribution over its symbols given by

• The information content of each symbol is 

• 𝑰 𝒔𝒎 = 𝒍𝒐𝒈𝟐
𝟏

𝒑𝒎
; bits

M

1

1, 2,  .. , M( )   ,  m       1m

m

m mpP s s p and


  

Discrete-time source
S = {s1, ..., sM} time

X1

{s1, ..., sM} {s1, ..., sM}

X2 Xt

{s1, ..., sM}

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)



The Average Information per Source Symbol
Source Entropy

• The average information per source symbol,  is the expected value of the 
random variable I.

• This is known as: Entropy of Source S

• If all symbols are equally probable pi = 1/M 

3

2

1 1

( ) log (1/ )    bits/symbol
M M

i i i i

i i

E I p I p p
 

  

2 2

1

1
( ) log log

M

i

H X M M
M

 

2

1

(S) log (( )   Source E1 ntr/ ) opy
M

i i

i

H pE pI


 

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information
I

Log2(1/p1) Log2(1/p2) … Log2(1/pM)

Entropy is interpreted as:
• Measure of information in the 

source
• Measure of uncertainty in the 

source



Entropy of the Random Binary Source

4 (binary entropy function)

p

H(p)

1.00.5

1.0 H(p) = 0 at p = 0 and at p = 1 (one event is certain)

H(p) is maximum ( =1) when p = ½ (symbols are 
equally probable, and hence uncertainty is 
maximum

• Consider a random binary source S with probability assignment over its 
symbols as: P(S=1) = p, P(S=0)= 1-p. The entropy of the source is:  

• 𝑯(𝒑) = −𝒑𝒍𝒐𝒈𝟐𝒑 − (𝟏 − 𝒑)𝒍𝒐𝒈𝟐(𝟏 − 𝒑) bits/symbol

• The binary entropy as a function of p is plotted below

• Note: lim𝑝→0(𝑝)log(𝑝) = lim𝑝→1(𝑝)log(𝑝) = 0; VERIFY

Discrete-time source
S = {1, 0} time

X1

{1,0} {1, 0}

X2 Xt

{1, 0}



Properties of the Entropy Function

Lemma: For an M-ary information source S,

0 ≤ H(S) ≤ log2M

• min H(S) = 0 (one symbol occurs with prob. 1, the others with 0)

• max H(S) = log2M (when all symbols are equally likely, i.e.,  when 𝑃(𝑠𝑖 =
1

𝑀
)

• Proof : min H(S) = 0. 

• When one probability = 1 and the rest are zeros, we can make use of the 
limits:     𝒍𝒊𝒎𝒑→𝟎(𝒑)𝒍𝒐𝒈(𝒑) = 𝒍𝒊𝒎𝒑→𝟏(𝒑)𝒍𝒐𝒈(𝒑) = 𝟎

5

𝐻 𝑆 =෍

𝑖=1

𝑀

𝑝𝑖log2( Τ1 𝑝𝑖) = −෍

𝑖=1

𝑀

𝑝𝑖log2(𝑝𝑖)



Properties of the Entropy Function
• Here, we show that entropy is maximum when source probabilities are equal (pi = 1/M ) 

We prove that in two steps:

• Define the relative entropy  D(X, Y) between two distributions X and Y as

• 𝐷(𝑋, 𝑌) =෍
𝑗=1

𝑀

𝑝𝑗 log
𝑝𝑗

𝑞𝑗

• First Step, we show that 𝑫 𝑿, 𝒀 ≥ 𝟎

• X is a random variable with distribution pj (the given pmf)

• Y is a reference random variable with distribution qj

• Rewrite  D(X,Y) as: 

• 𝐷(𝑋, 𝑌) =෍
𝑗=1

𝑀

𝑝𝑗 log
𝑝𝑗

𝑞𝑗
= −෍

𝑗=1

𝑀

𝑝𝑗 log
𝑞𝑗

𝑝𝑗

• −𝐷(𝑋, 𝑌) =෍
𝑗=1

𝑀

𝑝𝑗 log
𝑞𝑗

𝑝𝑗

6

p1

P(X = 𝒙)

p2
pM

x1
x2 xM

q1

P(Y = 𝒚)

q2

qM

y1
y2 yM



Properties of the Entropy Function

Since log(x)  (x - 1) we have:

−𝐷(𝑋, 𝑌) =෎

𝑗=1

𝑀

𝑝𝑗log
𝒒𝒋

𝒑𝒋
≤෎

𝑗=1

𝑀

𝑝𝑗
𝒒𝒋

𝒑𝒋
− 𝟏

≤෍

𝑗=1

𝑀

𝑞𝑗 −෍

𝑗=1

𝑀

𝑝𝑗 = 1 − 1 = 0

• −𝑫 𝑿, 𝒀 ≤ 𝟎

• Therefore 𝑫 𝑿, 𝒀 ≥ 𝟎

• Equality (i.e., 𝑫 𝑿, 𝒀 = 𝟎) when  qj = pj.

• This is the first step in the proof 
7

x = 1



Properties of the Entropy Function
• Second step: Now let Y be a uniform distribution , then  qj = 1/M since j 

ranges from 1 to M.

𝐷(𝑋, 𝑌) =෍

𝑗=1

𝑀

𝑝𝑗 log
𝑝𝑗
𝑞𝑗

=෍

𝑗=1

𝑀

𝑝𝑗 log𝑝𝑗 −෍

𝑗=1

𝑀

𝑝𝑗 log𝑞𝑗

= −𝐻(𝑋) −෍

𝑗=1

𝑀

𝑝𝑗 log( Τ1 𝑀) = −𝐻(𝑋) − log( Τ1 𝑀)෍

𝑗=1

𝑀

𝑝𝑗

• 𝐷(𝑋, 𝑌) = log(𝑀) − 𝐻(𝑋) ≥ 0

• Note that:   ෍
𝑗
𝑝𝑗 = 1

• Therefore, since D(X,Y) ≥ 0 , )𝑯(𝑿) ≤ 𝐥𝐨𝐠(𝑴
8

p1

P(X = 𝒙)

p2
pM

x1
x2 xM

q1

P(Y = 𝒚)

q2
qM

y1
y2 yM



Entropy of a Discrete Memory-less Source
Lecture Outline

• Find the entropy of a discrete memory-less source (DMC)

• Define the n’th order extension of a DMS information source.

• Evaluate the first, second,… and n’th order entropies of a DMS

• Find the relationship between the entropy per symbol and the entropy per 
message.

1

Tec
Text Box
Lecture 7



Discrete-time Information Sources
• Assumptions on the source model:

• Discrete: the set of possible symbols S is finite and countable. 

• Discrete-time: The source generates one symbol from the set S = {a1, ..., aM} each time 
unit.

• A memoryless and stationary information source satisfies the independence condition:

• Two models:
• Discrete memoryless sources: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕
• Sources with memory: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 ≠ 𝑷 𝑿𝒕 = 𝒙𝒕 ; Markov Sources

• For a DMS source, the probability distribution is time-independent

• The random variables 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒕−𝟏 , 𝑿𝒕 are independent

2

Discrete-time source
S = {a, b, c}

time

X1 X2 Xt

{a, b, c} {a, b, c} {a, b, c}

a b

0.5

0.3

0.2

c

𝑷(𝑿𝒕 = 𝒙𝒕)
pdf of a DMS is 
time-invariant



3

The Source Entropy
• Main Theme: Consider a discrete-time finite-alphabet source S of size M

with a probability distribution over its symbols given by

• The information content of each symbol is 

• 𝑰 𝒔𝒎 = 𝒍𝒐𝒈𝟐
𝟏

𝒑𝒎
; bits

M

1

1, 2,  .. , M( )   ,  m       1m

m

m mpP s a p and


  

Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}

Symbol a1 a2 … aM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)



The Average Information per Source Symbol
Source Entropy

• The entropy of S is given as:

• H 𝑺 = σ𝒊=𝟏
𝑴 −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊 (𝐛𝐢𝐭/𝐬𝐲𝐦𝐛𝐨𝐥)

• So far, we have two interpretation for the entropy

a. The average amount of information in the source

b. It is a measure of uncertainty in the source

4

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)

Discrete-time source
S = {a1, ..., aM}

time

n symbols n symbols n symbols



Extension of Information Sources
• Consider a source S with symbol probability distribution

𝑃 𝑎𝑖 = 𝑝𝑖; 𝑖 = 1, 2, … ,𝑀

• The n’th order extension of the source, denoted Sn, consists of messages of n-symbols drawn from S.

• Any message 𝑚𝑗 = {𝑥1, 𝑥2, … , 𝑥𝑛};  𝑗 = 1, 2, 3, … ,𝑀𝑛;  𝑥𝑘 = {𝑎1, 𝑎2, … ,𝑀}

• The probability of any message 𝑚𝑗 is: 

• P 𝑚𝑗 = 𝑃{𝑥1, 𝑥2, … , 𝑥𝑛}; = 𝑃 𝑥1 𝑃 𝑥2 𝑥1 𝑃 𝑥3 𝑥1, 𝑥2)…𝑃 𝑥𝑛 𝑥1, … , 𝑥𝑛−1)

• P 𝑚𝑗 = 𝑃{𝑥1, 𝑥2, … , 𝑥𝑛}; = 𝑃 𝑥1 𝑃 𝑥2 𝑃 𝑥3 𝑃 𝑥𝑛 ;  For a DMS

Below, is an example of a second order extension (Here, the message consists of two symbols)

5

S 1 0 0 1 0 0 0 1 1 1 S2 10 01 00 01 11

M = {0, 1}; the original alphabet. M2 = {00, 01, 10, 11}; extended alphabet or 
number of possible messages  (4).

A message of Sn is a block of n symbols 

n symbols
{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏}



Entropy per source symbol and entropy per message

• Consider a source S with symbol probability distribution
𝑃 𝑎𝑖 = 𝑝𝑖; 𝑖 = 1, 2, … ,𝑀

• The source entropy is H(S) = −σ𝑖=1
𝑀 𝑝𝑖𝑙𝑜𝑔𝑝𝑖 bits/symbol

• If a message 𝑚𝑗 consists of n symbols, then the entropy of the extended 
source Sn is:

𝑯(𝑺𝒏) = −σ𝒊=𝟏
𝑴𝒏

𝑷𝒋𝒍𝒐𝒈𝑷𝒋 bits/message

P 𝑚𝑗 = 𝑃{𝑥1, 𝑥2, … , 𝑥𝑛}

We need to find the relationship between H(S) and H(𝑺𝒏) for both of 

• Discrete memoryless sources (DMS)

• Markov sources

6

S SM
H(S) 𝑯(𝑺𝒏)



First and Second Order Entropies of a DMS

7

0
1

0.8
0.2

S
H(S)= –0.8log0.8 – 0.2log0.2 = 0.72 bits/symbol

00
01
10
11

0.64
0.16
0.16
0.04

S2 H(S2)= –0.64log0.64 – 0.16log0.16
–0.16log0.16 – 0.04log0.04 
= 1.44 bit/message

H(S2) = 2 H(S); 

First Order Entropy

• Example: Consider a DMS, S, which emits either a 1 or a 0 with the following 
probability: P(0)=0.8, P(1)=0.2.

• Find H(S) and H(S2)
• Note that for a DMS: 𝑃 𝑥1𝑥2 = 𝑃 𝑥1 𝑃 𝑥2 ; Statistical Independence

For DMS
H(Sn) = n H(S) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑒𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑒𝑟 𝑠𝑦𝑚𝑏𝑜𝑙

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑒𝑟 𝑠𝑦𝑚𝑏𝑜𝑙 =
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑒𝑟 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑛

• Information in one message = twice 
the information in one symbol.

• Amount of uncertainty in one 
message = twice the amount of 
uncertainty in one symbol

Second Order Entropy



Proof for the Entropy of a DMS

Theorem: If S is a discrete memory-less  and stationary source, then H(Sn) = nH(S).

Sketch of the proof, for the case n = 2

8

1 0

0 1

0 1

0 1 0 1

0 1

0

2

1 0 1 0 1

0 1 0 1

0 1 0 0 1 1

0 0 1 1

0 0 1

1 0

( ) (x ,x ) log (x ,x )

(x ) (x ) log (x ) (x )

(x ) (x ) log (x ) (x ) (x ) log (x )

(x )(x ) log (x ) (x ) log (x )

(x ) log (x ) (x ) log (x

(x )

x M x M

x x

x x x x

x xx x

x

H S P P

P P P P

P P P P P P

P P P P

P P

P P

P P

 

 

 

  

  

  

 



 



  

1

1

1

1

2

1

1

)

( )

( ) 2 ( )

( )

x

H S H S

H S H S

 



Memoryless (i.e., independence)
P(x0, x1) = P(x0)P(x1)

the sum of
P(x0) is 1

Entropy in a message of n symbols = n*Entropy of one Symbol

)log𝑃(𝑥0)𝑃(𝑥1 = )log𝑃(𝑥0 + )log𝑃(𝑥1



Entropy of a DMS

9

Summary
For the n’th order extension source (𝑆𝑛), of a DMS (S),

P 𝑚𝑗 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 ; = 𝑃 𝑥1 𝑃 𝑥1 …𝑃(𝑥1)

𝐻 𝑆𝑛 = 𝑛𝐻 𝑆

𝐻 𝑆 =
𝐻 𝑆𝑛

𝑛
𝐻 𝑆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑛.



Entropy of a Simple Markov Source
Lecture Outline

• Find the first order entropy of a simple Markov source.

• Define the n’th extension of a Markov information source.

• Find the Entropy per source symbol and the entropy per message.

• Evaluate the first, second,… and n’th order entropies.

• Find the average (expected value) of the entropy.

1

Tec
Text Box
Lecture 8



Discrete Memory-less Sources
• Memoryless property: 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕

• For a DMS source, the probability distribution is time-independent

• The random variables 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒕−𝟏 , 𝑿𝒕 are independent

• 𝑷 𝑿𝟐 = 𝒙𝟐|𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝟐 = 𝒙𝟐 ; independent source

• 𝑷 𝑿𝟐 = 𝒙𝟐 ∩ 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝟐 = 𝒙𝟐 𝑷 𝑿𝟏 = 𝒙𝟏

• And, in general, for an independent source we have:

• 𝑷 𝑿𝒕 = 𝒙𝒕 ∩⋯∩ 𝑿𝟐 = 𝒙𝟐 ∩ 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕 …𝑷 𝑿𝟐 = 𝒙𝟐 𝑷 𝑿𝟏 = 𝒙𝟏

2

Discrete-time source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt

{a1, ..., aM}



The Average Information per Source Symbol
Source Entropy

• The entropy of S is given as:

• H 𝑺 = σ𝒊=𝟏
𝑴 −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊 (𝐛𝐢𝐭/𝐬𝐲𝐦𝐛𝐨𝐥)

• So far, we have two interpretation for the entropy
a. The average amount of information in the source
b. It is a measure of uncertainty in the source

• Information/message= n*information/symbol

3

Symbol s1 s2 … sM

Probability p1 p2 … pM

Information Log2(1/p1) Log2(1/p2) … Log2(1/pM)

Discrete-time source
S = {a1, ..., aM}

time

n symbols n symbols n symbols

𝑰 𝒔𝒎 = 𝒍𝒐𝒈𝟐
𝟏

𝒑𝒎
; 

1 symbol 1 symbol 1 symbol



Entropy per symbol and entropy per message

4

Summary
For the n’th order extension source (𝑆𝑛), of a DMS (S),

P 𝑚𝑗 = 𝑃 𝑥1 ∩ 𝑥2 ∩⋯∩ 𝑥𝑛 ; = 𝑃 𝑥1 𝑃 𝑥1 …𝑃(𝑥1)

𝐻 𝑆𝑛 = 𝑛𝐻 𝑆

𝑯 𝑺 =
𝑯 𝑺𝒏

𝒏
; 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑛.



Sources with Memory: Markov Information Sources

• Used to model information sources with memory.

• In a simple Markov source, the occurrence of the current symbol at time t 
depends only on the previous symbol at time t-1

• For a simple Markov source,

• 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏, … . 𝑿𝟐 = 𝒙𝟐, 𝑿𝟏 = 𝒙𝟏 = 𝑷 𝑿𝒕 = 𝒙𝒕|𝑿𝒕−𝟏 = 𝒙𝒕−𝟏

5

Markov Source
S = {a1, ..., aM} time

X1

{a1, ..., aM} {a1, ..., aM}

X2 Xt-1

{a1, ..., aM}

Xt

{a1, ..., aM}



Ergodic (Regular) Markov Process

Definition: A finite-state Markov chain is ergodic (regular) if all 
states are accessible from all other states and if all states are 
aperiodic, i.e., have period 1.

An important fact about ergodic Markov chains is 
that the chain has steady-state probabilities p(s) for 
all  states. 

6

P(Xt-1 = aj) = P(Xt = aj) = P(aj); for all states j 
a1

a2

0/0.9
1/0.1

0/0.4 1/0.6



First and Second Order Entropy of a Markov Source
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0 1

0/0.9 1/0.1

0/0.4 1/0.6

Consider a Markov source with two states as shown in the figure. It can be shown 
that the steady-state probabilities are:

𝑷(𝑿𝒕 = 𝟎), 𝑷(𝑿𝒕 = 𝟏)) = (0.8, 0.2); steady-state probabilities (verify)

0 0.8·0.9 + 0.2·0.4 = 0.80
1 0.8·0.1 + 0.2·0.6 = 0.20

00 0.8·0.9·0.9 + 0.2·0.4·0.9 = 0.72
01 0.8·0.9·0.1 + 0.2·0.4·0.1 = 0.08
10 0.8·0.1·0.4 + 0.2·0.6·0.4 = 0.08
11 0.8·0.1·0.6 + 0.2·0.6·0.6 = 0.12

H1(S2) = 1.2914
H2(S) = H1(S2)/2 = 0.6457

First order entropy
H1(S)= –0.8log0.8 – 0.2log0.2
= 0.72 bits/symbol

H1(S2) = –0.72log0.72 – 0.08log0.08 –
0.08log0.08 – 0.12log0.12

= 1.2914

= 0.4+ 0.9 (= 0.8,  =0.2); 
= 0.6 + 0.1; Steady State Equations

=0.2

=0.8

𝑷 𝑩 = 𝑷 𝑨𝟏 𝑷 𝑩 𝑨𝟏 + 𝑷 𝑨𝟐 𝑷 𝑩 𝑨𝟐

H 𝑺 = σ𝒊=𝟏
𝑴 −𝒑𝒊 𝐥𝐨𝐠𝟐 𝒑𝒊



First and Second Order Entropy of a Markov Source
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0 1

0/0.9 1/0.1

0/0.4 1/0.6

What happens whe n=3? What is 𝑯𝟑 𝑺 ?

𝑯𝟏 𝑺 > 𝑯𝟐 𝑺 > 𝑯𝟑 𝑺 > 𝑯𝟒 𝑺 > ⋯ > LIMIT

First Order Entropy
H1(S) = 0.72 bits/symbol

Second Order Entropy
H(S2) = 1.2914/2 = 0.6457

=0.8

=0.2

define the n-th order entropy of S

𝑯𝒏 𝑺 =
𝑯𝟏 𝑺𝒏

𝒏
=

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝒐𝒇 𝒂𝒎𝒆𝒔𝒔𝒂𝒈𝒆

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒃𝒐𝒍𝒔 𝒊𝒏𝒎𝒆𝒔𝒔𝒂𝒈𝒆

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑯 = 𝐥𝐢𝐦
𝒏→∞

𝑯𝟏(𝑺
𝒏)/𝒏

)𝑯(𝑺) = 𝑷(𝑺𝑨)𝑯( Τ𝑺 𝑺𝑨) + 𝑷(𝑺𝑩)𝑯( Τ𝑺 𝑺𝑩



The Entropy of Markov Sources
• For a Markov source, we have H1(S) > H2(S) > ...H(S) (limit entropy)

• Theorem:

The n-th order entropy approaches

the limit entropy H(S)

How to compute the limit entropy H(S) of a Markov source:
1. Determine the stationary probabilities of the states

2. Identify the outgoing probability of each state.

3. Compute entropies of each state (using those of Part 2)

4. Determine the weighted average of the state entropies.

9

n

Hn(S)

H(S)

)𝑯(𝑺) = 𝑷(𝑺𝑨)𝑯( Τ𝑺 𝑺𝑨) + 𝑷(𝑺𝑩)𝑯( Τ𝑺 𝑺𝑩

n=1 n=2 n=3



Example: Entropy of A Markov Source

10

When in state B, source emits 0 and 1 with probabilities:
{P(0)=0.4, P(1)=0.6}. The source entropy is

H(S/SB) = –0.4log0.4 – 0.6log0.6 = 0.971

The expected value (mean value of the entropy)
)𝐻(𝑆) = 𝑃(𝑆𝐴)𝐻( Τ𝑆 𝑆𝐴) + 𝑃(𝑆𝐵)𝐻( Τ𝑆 𝑆𝐵

𝐻(𝑆) = 0.8 × 0.469 + 0.2 × 0.971 = 0.5694 𝑏𝑖 Τ𝑡 𝑠 𝑦𝑚𝑏𝑜𝑙

Consider the Markov source in the figure. Earlier, it was found that 
the stationary probabilities are ( , ) = (0.8, 0.2)

When in state A, source emits 0 and 1 with 
probabilities: {P(0)=0.9, P(1)=0.1}
The source entropy is:
H(S/SA)= –0.9log0.9 – 0.1log0.1= 0.469

A
B

0/0.9
1/0.1

0/0.4
1/0.6

=0.2

=0.8

A

0/0.9
1/0.1

=0.8

B

0/0.4
1/0.6

=0.2
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