
Objectives: Learn how to encode symbols generated by information
sources.

Purpose of source encoding:

to represent the source in a way that is suitable for
transmission (Recall the process of sampling and quantization)

to remove source redundancy (make it more compact)

Desirable Properties of a Source Encoder (in general)

as precise as possible (lossless or with a small controlled loss)

as compact as possible (source compression)

uniquely decodable.

immediately (instantaneously) decodable

Compact Representation of Information

1

SourceEncoder0101101

Tec
Text Box
Lecture 9

Topics to be Covered in this Module

Source Encoding: Map sequences of source symbols
(messages) into binary sequences with unique decodability.

Topics to be covered

Construction of source codes (binary case)

Prefix-free codes for discrete sources

Theoretical limit of the “compression”

Source coding theorem

Related topics:

Fixed length encoding

variable length encoding

Kraft inequality,

2

Words and Terms
First, consider the source encoding on a symbol-by-symbol basis
only.

M: The set of symbols generated by an information source.

For each symbol in M, associate a sequence over the code
alphabet {0, 1}.

codewords : binary sequences associated to symbols in M

code: the set of codewords

Code alphabet: {0, 1} , i.e., binary code (in this course)

Source alphabet M={sunny, cloudy, rainy}, |M|=3.

3

M (Source)
sunny
cloudy
rainy

Codewords)
00

010
101

code C = {00, 010 and 101}
Remark: This is NOT an efficient code. Why?

Encoding and Decoding

encode ... to map a codeword for each source symbol

decode ... to retrieve the source symbol given the codeword

4

sunny
cloudy
rainy

00
010
101

encode

decode

NO separation symbols between codewords;

010 00 101 101 ... Not acceptable, 01000101101 ... OK

Why?

{0, 1 and “space”} ... the alphabet have three symbols, not two

Fixed Length Encoding
Here a fixed number of digits (r) is assigned to every symbol in
the source alphabet without regard to the probability of
occurrence of the symbols.

Choose r to be an integer that satisfies:

log2M ≤ r < log2M +1; M is the size of the alphabet

Example: Let the possible source symbols be the set:

S={red, blue, green, yellow, purple, magenta}; S= {R, B, G, Y, P,M}

Here, M= 6 and r= 3 bits/symbol. 2.584 ≤ r < 3.584;

One possible encoding scheme is:

green → 010 Red → 000 yellow → 011 purple → 100

magenta → 101 blue → 001

Question: Can we do better than 3 bits/symbol for the fixed length
code:

Answer: Use the concept of extended source
5

Fixed Length Encoding
Example: If in the previous example, 3 symbols are combined
together to form a new (message). The new set of possible
messages is:

S’={RRR, RRB, RMM,…,MRM}, M’= M3 = 216; (New source alphabet)

With M’=216, r’=8 bits/three source symbols (i.e., b bits/message)

r’ satisfies the relation:

log2M’ ≤ r’ < log2M’ +1; 7.75 ≤ r’ < 8.75; bits/message

3log2M ≤ r’ <3 log2M +1; Dividing both sides by 3, we get

log2M ≤ r < log2M +1/3; r=8/3=2.66 bits/source symbol

In general, if we combine n source symbols together, r satisfies

log2M ≤ r < log2M +1/n

This says that as n→ infinity,

6

Fixed Length Encoding

log2M’ ≤ r < log2M’ +1/n;

Let M=6; r: number of bits/symbol

7

n
1

M’
M’=6

log2M’
log2M’=2.58

log2M’ ≤ r’ < log2M’ +1
r’=3 bits/mess

r=r’/n
r=3 bits/sym

3 63=216 log216=7.75 r’=8 bits/mess r=2.666 bits/sym

4 64=1296 log1296=10.33 r’=11 bits/mess r=2.75 bits/sym

6 66=46656 logM6=15.48 r’=16 bits/mess r=2.66 bits/sym

8 68=68 log68=20.64 r’=21 bits/mess r=2.62 bits/sym

10 610=610 log610=25.8 r’=26 bits/mess r=2.6 bits/sym

As message size n becomes larger, r approaches 2.58= log26

This is the best that can be done with fixed length encoding.

Question: Can we do better than log2M

Answer: Yes, using variable length encoding

Variable Length Source Encoding

Basic Idea: Symbols with high probability of occurrence should

have shorter codewords than symbols with low probability of

occurrence in order to reduce the average number of bits/symbol.

A variable length source code C assigns to each source symbol s a

codeword C(s) of length l(s).

Example: Let the source alphabet be the set S ={ a, b, c}

C(a) = 0; l(a) = 1 bit

C(b) = 10; l(b) = 2 bits

C(c) = 11; l(c) = 2 bits.

1

Tec
Text Box
Lecture 10

Uniquely Decodable Codes

A code must be uniquely decodable, which means

any two distinct symbols should have distinct code-words.

Different symbol sequences should be encoded to different
binary sequences.

2

a1

a2

a3

a4

C1

00
10
01
11

C2

0
01
011
111

C3

0
10
11
01

C4

0
10
11
0

nonoyes Yes

with the code C3...

a1 a3 a1

a4 a2

0110

a1 a3 a1

a4 a2

00110

11101

with code C2

Same binary
sequence

Different
Sequences

Different
sequences

Different
Sequences

Uniquely Decodable Codes
A Problem with C2 : consider a scenario of using C2

Sequence {a1, a4, a4, a1} is encoded to 01111110.

The receiver may decode it as:

(0)(111)(111)(0) decoded into {a1, a4, a4, a1}

the code is uniquely decodable, but is not instantaneously
decodable)

What is the difference between the two?

Uniquely decodable means we can retrieve the source
symbols from the encoded binary bits, but the first symbol
cannot be decoded without reading all the binary sequence all
the way to the end.

Instantaneously decodable means that once the code-word
corresponding to a symbol is received, the symbol will be
decoded instantaneously, without waiting for the next symbol

3

a1

a2

a3

a4

C1

00
10
01
11

C2

0
01
011
111

Prefix-free codes for discrete sources

Prefix-free codes: A simple class of uniquely decodable
codes. They have the following advantages over other
uniquely-decodable codes:

The decoder can decode each codeword of a prefix-free
code immediately on the arrival of the last bit in that
codeword without waiting for the entire sequence of bits to
arrive.

Given a probability distribution on the source symbols, it is
easy to construct a prefix-free code of minimum expected
length.

 If a uniquely-decodable code exists with a certain set of
codeword lengths, then a prefix-free code can be easily
constructed with the same set of lengths.

4

Prefix-free codes for discrete sources

Definition: A code is prefix-free if no codeword is a prefix of
any other codeword.

Example: The code C1 is not prefix free. Why?

“0” is a prefix of “01” and “011”

“01” is a prefix of “011”

Example: The code C2 is prefix free.

Remark 1: Every fixed-length code with distinct codewords is
prefix-free.

Remark 2: every prefix-free code is

uniquely decodable

5

a1

a2

a3

a4

C1

0
01
011
111

a1

a2

a3

C2

0
10
11

construction of prefix-free codes (binary case)

how to construct a prefix-free code with M codewords

1. construct a binary tree T with M leaf nodes

1. for each branch of T, assign a label in {0,1 }

sibling branches cannot have the same label

3. for each of leaf nodes of T, traverse T from the root to the leaf,

with concatenating labels on branches. The obtained sequence
is the prefix-free codeword of the node.

 Here, we have 5 leaves. The codewords are: {00, 01,10, 111, 110}

6

root

leaf

branch 0

00
11

1

10

Lengths for C1={1, 2, 3, 3}; Lengths for C2={2, 3, 4, 4};

C1 seems to give more compact representation than C3.

Q: Is there a more compact code than C1 and C2?

Q: Can we construct prefix-free codes with the following lengths?

codeword length = [1, 1, 2, 2]?

codeword length = [1, 2, 2, 2]?

codeword length = [1, 2, 2, 3]?

The “best” among Immediately Decodable Codes

7

0

1
0

1
0

1

0

1

0

0

01
0

1 1

C1={0, 10, 110, 111} C2={00, 010, 1010, 1011

Q: What is the criteria?

root root
4 leaves 4 leaves

The Kraft Inequality

Kraft inequality is a test on the existence of prefix-
free code with a given set of codeword lengths {l(s), s
ԑ S}.

Theorem: Every prefix-free code for an alphabet S
with codeword lengths {l(s), s ԑ S} satisfies:

Conversely, if the above inequality above holds, then
a prefix-free code with lengths {l(s)} exists.

The proof is omitted.

8

()2 1l s

s S







The Kraft Inequality: Examples

Example: Can we construct a prefix-free code for the source
with symbols {a, b, c} with lengths {1, 1, 2}

Solution: The Kraft inequality provides a test on the existence of
prefix-free codes with a given set of codeword lengths.

The answer is NO. Recall the code {0, 1, 01} or code {0, 1, 10}

Example: Can we construct a prefix-free code for the source
with symbols {a, b, c} and lengths {1, 2, 2}

Solution: We test the existence of the code using the Kraft
inequality .

The answer is YES. (recall the code 0, 10, 11)

9

1 1 22 2 2 1.25 1     

1 2 22 2 2 1    

Prefix-free codes for DMS

Let l(x) be the length of the codeword for letter x ∈ X . The
probability of symbol x is P(x), for all x

Then, L(X) is a random variable. The mean value of L(X) is

L is the average number of bits /source symbol.

Example: A source emits one of four possible symbols {a, b, c,
d} every unit of time with probabilities:

P(a) = 0.4 P(b)=0.3

P(c) = 0,2 P(d)= 0.1

Three different prefix-free codes are proposed. We compute
the average number of bits/symbol for each code.

10

() ()
x

L l x P x

Example: computing the average codeword length

11

symbol
a
b
c
d

probability
0.4
0.3
0.2
0.1

C1

0
10

110
111

C2

111
110
10
0

C3

00
01
10
11

The average (expected) value of the length of each code is:

C1: L1 = 0.4×1+ 0.3×2+ 0.2×3+ 0.1×3 = 1.9 bits/symbol

C2: L2 = 0.4×3+ 0.3×3+ 0.2×2+ 0.1×1 = 2.6 bits/symbol

C3:L3 =: 0.4×2+ 0.3×2+ 0.2×2+ 0.1×2 = 2.0 bits/symbol

C1 gives the most compact representation in typical cases.

Question: Can we get an average length smaller than that of C1?

All three codes
are prefix-free.

Prefix-free codes with minimum average length

Let X ={1, 2,…, M} be the source alphabet with a known
probability mass function (pmf) P(X=x)= {p1, p2, … mM}

Let l(x) be the length of a codeword in a prefix-free code for
letter x ∈ X . These lengths are unknown and they should be
integers.

Objective: Choose the lengths l(x) so that the average length of
codeword is minimized and at the same time maintain the
prefix-free property of the code.

The problem then becomes

12

()

Given p(1),p(2),...,p(M),find (1), (2),..., (M) that

minimize L= p() ()

subject to: 2 1; Kraft Inequality

x

l x

x

l l l

x l x

 





Prefix-free codes with minimum average length
The problem:

This is a constrained optimization problem which can be solved
using Lagrange method. The derivation is carried out on the
next slide.

The Optimum Solution to the problem (lifting the condition
that l(x) is an integer) is:

13

() log ()l x p x 

min ()log () ()
x

L p x p x H X  

()

Find (1), (2),..., (M) that

Minimize L= p() () Subject to: 2 1; K.I.l x

x x

l l l

x l x   

Optimal Codes

Average codeword length [bits/codeword] Kraft’s Inequality

J: Objective Function
: Lagrange Multiplier
(to be determined)

Optimal Codes

ഥ𝑳𝒎𝒊𝒏 =෍

𝒙=𝟏

𝑴

𝒍 𝒙 𝒑 𝒙 = −෍

𝒙=𝟏

𝑴

𝒑 𝒙 𝒍𝒐𝒈𝒑 𝒙 = 𝑯(𝑿)

𝒑 𝒙 =𝟐−𝒍(𝒙) 𝒍 𝒙 = −𝒍𝒐𝒈𝒑(𝒙)

Prefix-free codes with minimum average length
ത𝐿𝑚𝑖𝑛 = σ𝑝 𝑥 𝑙 𝑥 = −σ𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 = 𝐻

The best average length per symbol is the source entropy and
this is achieved when

symbol x with prob. 𝑝 𝑥 is assigned a length 𝑙 𝑥 = −𝑙𝑜𝑔𝑝(𝑥)

But, 𝑙 𝑥 is not necessarily an integer, in general.

Then, we take the closest higher integer value, i.e., choose

𝑙 𝑥 = −𝑙𝑜𝑔𝑝 𝑥 + 𝑠(𝑥), where 0 < 𝑠 𝑥 < 1,

Hence, the practical bounds on the average length

−σ𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 < ഥ𝐿 < σ𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 + σ𝑝 𝑥 𝑠 𝑥

−σ𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 < ഥ𝐿 < σ𝑝 𝑥 𝑙𝑜𝑔𝑝 𝑥 + 1

𝑯 < ഥ𝑳 < 𝑯+ 𝟏

16

The Source Coding Theorem
Assume that the source X is memory-less.

If we take massages of length n symbols and encode
them, the bounds on the average length per message
becomes:

From which we get the bounds on the average length
per symbol as:

We can come arbitrarily close to the entropy as the
sise of the message n increases!

() () 1nH X nL nH X  

1
() ()H X L H X

n
  

Prefix-free codes with minimum average length

The lower bound on the average length per symbol is achieved
when:

P(x) = 2-l(x)

Example: Let P(a)=0.5 , P(b)=0.25 , P(c)=0.25

Note that: Let P(a)=0.5 = 2-1, P(b)=0.25 = 2-2 , P(c)=0.25 = 2-2 .

l(a) = 1; l(b)=2; l(c)=2;

The Code: {0, 10, 11} has an average length = Entropy H

18

)(log)(xPxl )()(log)(min XHxPxPL
x

 

Creating a Code: The Data Compression Problem

Assume a source with an alphabet X and known symbol
probabilities {𝑃(𝑥)}.

Basic properties needed for source coding

as precise as possible (lossless or with small loss)

as compact as possible

Prefix-free code (instantaneously decodable)

Goal: Choose the codeword lengths as to minimize the
average number of bits per symbol ഥ𝑳 = σ 𝒍 𝒙 𝑷(𝒙)

Restriction: We want an instantaneous code, so σ𝟐−𝒍𝒙 ≤ 𝟏
(Kraft inequality) must be valid

Solution : at least in theory, we must have 𝒍 𝒙 = −𝒍𝒐𝒈𝑷(𝒙)

1

Tec
Text Box
Lecture 11

Huffman Code
Huffman coding is a technique used to compress files for
transmission

Works well for text and fax transmissions

Huffman algorithm gives a clever way to construct

a code with small average codeword length.

Uses statistical coding

symbols with high probability have shorter code words

The idea is to assign to each symbol in the source alphabet a
number of binary digits equal roughly to the amount of
information carried by that symbol 𝒍 𝒙 = −𝒍𝒐𝒈𝑷(𝒙)

If P(i) ≥ P(j), then 𝒍 𝒊 ≤ 𝒍 𝒋 .

The end result is a code whose average length approaches the
entropy limit; [H(X) ≤ L ≤ H(X) +1].

Huffman code satisfies this condition H(X) ≤ L ≤ H(X) +1 (for a
message of length n=1). 2

David Huffman

1925-1999

Huffman Encoding Algorithm
1. Arrange the source symbols in a decreasing order of

probability. (sorting stage)

2. The last two symbols of lowest probability are assigned
a 0 and 1. This step is referred to as a splitting stage.

3. The probability of the last two symbols are tied
together to form a new symbol with prob. = sum of
prob. of last two symbols (merge stage)

4. Arrange the new set of symbols in a decreasing order of
prob. (sorting stage)

5. The last two symbols of lowest probability are assigned
a 0 and 1 (splitting stage)

3

Huffman Encoding Algorithm

6. The probability of the new last two symbols are
tied together to form another new symbol with
prob. = sum of prob. of last two symbols.

7. The procedure is repeated until we end up with
only two symbols. Assign to them the digits 0
and 1.

8. The code for each source symbol is found by
working backward and tracing the sequence of
0’s and 1’s assigned to that symbol and its
successors.

9. Result: Huffman code is an optimal code

4

Huffman Coding
• Two-step algorithm:

Iterate:

– Merge the least two probable symbols.

– Arrange symbols in a decreasing order of probability
(sort)

1. Assign binary bits to each source symbol (codewords)

2. Example: Find the Huffman code for a source with
probabilities {0.5, 0.25, 0.125, 0.125}.

3. Show that: L= 1.75, H = 1.75; explain why

a

d

b

c

0.5

0.25

0.125

0.125

0.5

0.25

0.5

0.25

0.5

Merge

Sort

Assign

0

1

0

1

0

10

110

111 Get code

0

1

6

Huffman Code Example: P(X)= {0.4, 0.2, 0.1, 0.1, 0.1, 0.1}

0.4

0.2

0.1

0.1

0.1

0.1

a

b

c

d

e

f

0.2

0.4

0.2

0.2

0.1

0.1
0.2

0.4

0.2

0.2

0.2
0.4

0.4

0.4

0.2
0.6

0.6

0.4

0

1

0

10

1

0

10

1

The Code:

A 00

B 11

C 010

D 011

E 100

F 101

ത𝐿 = 2.4, H =2.32 (bits/symbol)

Comparison:

Fixed Length:3 bits/symbol

Limit of fixed length:log26=2.58

Huffman Code: 2.4

Limit of variable length: 2.32

Coding for Extended Information Sources
The Huffman code is the best symbol-by-symbol code, but...

the average code length ഥ𝑳 ≥ 𝟏

not good for encoding binary information sources (on a bit
by bit basis). The average is 1 bit regardless of the bit
probabilities

7

symbol
A
B

average

prob.
0.8
0.2

C1

0
1

1.0

C2

1
0

1.0

If we encode several symbols in a block, then...

ത𝐿 (per symbol) can be improved as we shall see next

Example: Coding for Binary DMS Information Sources

The Huffman Code {0, 1}

ത𝐿=0.8×1+ 0.2×1 = 1.0 bit/source symbol

8

A
B

prob.
0.8
0.2

codeword
0
1

AA
AB
BA
BB

prob.
0.64
0.16
0.16
0.04

codeword
0

10
110
111

A message with two source symbols

The Huffman Code: {0, 10, 110, 111}

ത𝐿=0.64*1+ 0.16*2+0.16*3+0.04*3 = 1.56
bit/message

1.56 / 2 = 0.78 bit/source symbol

improvement

Example: Coding for Binary Information Sources

message with three symbols

ത𝐿=0.512×1+ ... + 0.008×5 = 2.184
bit per message

2.184 / 3 = 0.728 bit/source symbol

9

AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB

prob.
0.512
0.128
0.128
0.032
0.128
0.032
0.032
0.008

codeword
0

100
101

11100
110

11101
11110
11111

block size
1
2
3
:

ത𝐿 per symbol
1.0

0.78
0.728

:

larger block size
more compact

H(S) = 0.723

What Shannon Source Coding Theorem Means
Shannon’s source coding theorem:

Use block Huffman codes, and you can approach the limit.

You never overcome the limit (ഥ𝑳 never goes below H(X))

10

A
B

prob.
0.8
0.2

block size
1
2
3
:

ACL per symbol
1.0

0.78
0.728

:
0.723 + εH(S) = 0.723

The average length progressively approaches the limit H as
the word size of n symbols increases

Source

Huffman Code Example
Encode the following short text using Huffman encoding

Eerie eyes seen near lake.

The sentence has 26 characters. Their frequency of
occurrence is

The probability of occurrence of each character can be
determined and will be used in the Huffman code.

P(E) = 1/26, P(e) = 8/26, P(space) = 4/26, P(.)=1/26
11

Huffman Code Example

12

Summary of Results

H=3.16
ഥ𝑳 =3.23 bits/character.

Total number of bits in

message =84 bits.

If ASCII code is used,

we need 26*8= 208

Compression:
𝟖𝟒

𝟐𝟎𝟖
∗ 𝟏𝟎𝟎% = 𝟒𝟎. 𝟑𝟔%

Sentence: Eerie eyes seen near lake.
Code: 1000111001…..1010110000

1

Lempel-Ziv Code
Huffman codes have some shortcomings

Know symbol probability information a priori

Re-compute entire code if symbol probability changes

If source symbol probabilities are not known, one has to
estimate them first.

Coding tree must be known at coder/decoder

Recall example: (Eerie eyes seen near lake.)

Based on the frequency, each symbol has a given
codeword.

Now change to: (Eerie Eyes Seen Near Lake.)

The symbols here have different codewords. Why?

Capital letters have replaced small letters, thus affecting
the frequency of symbols (probabilities).

Tec
Text Box
Lecture 12

2

Lempel-Ziv Code

Lempel-Ziv algorithm, named after its inventors, does
not require prior knowledge of the source probabilities
and uses the source output sequence itself to iteratively
construct the code

Used in gzip, UNIX compress, LZW algorithms

It is a variable to fixed length coding scheme

Any sequence of source symbols is uniquely parsed into
phrases of varying length.

Each phrase is then coded using equal length codewords

Variable
length phrases

Equal length
codewords

Lempel-Ziv Code

Works by identifying phrases of the smallest length that have
not appeared so far, and maintaining these phrases in a
dictionary. When a new phrase is identified, it is encoded as
the concatenation of the previous phrase and the new source
output.

Number the phrases starting from 1 (0 is the empty string)

Each phrase consists of a previously occurring phrase (head)
followed by the new source output (tail).

Encoding: give location of (head) followed by the additional
symbol as (tail)

Decoder uses a similar dictionary

3

New phrase=previously
occurring phrase + new

symbol

Codeword=location of
previously occurring phrase +

new symbol

4

LZ Coding : Example 1

Encode [abaababbbbbbbabbbb]

Encode [a, b, aa, ba, bb, bbb, bba, bbbb]

Code Dictionary
Address Contents Encoded Packets

1 a < 0 , a > (000a)

2 b < 0 , b > (000b)

3 aa < 1 , a > (001a)

4 ba < 2 , a > (010a)

5 bb < 2 , b > (010b)

6 bbb < 5 , b > (101b)

7 bba < 5 , a > (101a)

8 bbbb < 6 , b > (110b)

Transmitted code

Variable length
phrases

Equal length
codewords

5

LZ Encoding of Binary Data: Example 2

49 Binary
digits

Parsing, 16 phrases

5
bits/phrase

16 phrases require
4 bits (head)

Extra bit for new
source symbol
(tail)

6

* Note: 49 data bits are
encoded into 80 bits
* Question: Where does the
compression come from?
Answer: In short sentences,
a saving can hardly be
noticed. But in a long text,
many phrases of longer
lengths become more
frequent, and as such these
long phrases will be
encoded into smaller
number of bits.

LZ Encoding of Binary Data: Example 2 Continued

0100
0010
01001

Error
here

Total number of bits
in encoded message
=16 phrases * 5
bits/phrase = 80 bits

Original message
= 49 bits

7

LZ Compression (non-binary case): Example 3

Example 1: Use the LZ78 algorithm to encode the message

ABBCBCABABCAABCAAB (18 characters)

Solution: The encoding process is presented below in which:

 The symbols are parsed as:

A, B, BC, BCA, BA, BCAA, BCAAB

 We have 7 different phrases

 Therefore, we need three digits to represent each phrase

A 1, B 2, BC 3, BCA 4

BA 5, BCAA 6, BCAAB 7

Encoding:

<(0,A)><(0,B)><(2,C)><(3,A)><(2,A)><(4,A)><(6,B)>

8

LZ Compression (non-binary case): Example 3

 Now, we calculate the number of bits needed to represent the coded

information

<(0,A)><(0,B)><(2,C)><(3,A)><(2,A)><(4,A)><(6,B)>

 We need 8 bits to represent each character using the ASCII code

 Thus, we see that the number of bits required when the string

ABBCBCABABCAABCAAB: has 18 characters

 With LZ compression, the number of bits needed is:

 (3+8)+(3+8)+(3+8)+(3+8)+(3+8)+(3+8)+(3+8) = 77 bits

 With no compression, the number of binary bits is:

 (18 characters)*(8 bits/character)=144 bits.

 Efficiency = (77/144)*100=53.47%

	L9. Compact representation of sources-part 1.pdf
	L10. Compact representation of sources-part 2.pdf
	L11. Source Coding Algorithmas-part 1.pdf
	L12. Source Coding Algorithms-part 2.pdf

