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Channel Coding 

2k2k
2n 2k

• The purpose of channel encoding is to reduce the probability of error when transmitting data over a 
noisy communication channel. It is a consequence of Shannon Channel Coding theorem that it it is 
possible to find an encoding scheme whereby an arbitrarily small error probability can be achieved as 
long as data is transmitted at a rate smaller than the channel capacity.

• It is performed by mapping the incoming data sequence into a channel input sequence and inverse 
mapping the channel output sequence into an output data sequence in such a way that the overall effect 
of channel noise on the system is minimized

• Error reduction is accomplished by introducing redundant bits (parity bits) in the channel encoder.
• The channel decoder uses the redundancy to decide which message bits were actually transmitted.
• We will study two types of channel codes in this series:

• linear block codes (memoryless code)
• convolutional codes (code with memory).
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Linear Block Codes

2k2k
2n 2k

• Notation on the (n, k) linear block code. n is the number of bits in the codeword and k is the 
number of bits in the binary message

• This code can detect and correct errors.
• To generate an (n, k) block code, the channel encoder accepts information in successive k-bit 

blocks. Adds (n-k) redundant bits to each message block to produce an encoded block of n-
bits called a code-word.

• The (n-k) redundant bits are algebraically related to the k message bits.

• 𝟐𝒌 : Number of possible messages. Each message should have a channel codeword.

• 𝟐𝒌 : Number of possible codewords. 
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Linear Block Codes

2k2k
2n 2k

• Design Issue: How to select the 𝟐𝒌 codewords from the 𝟐𝒏 possible sequences?      
• During transmission each bit in the codeword is subject to error. Hence there are  
𝟐𝒏 possible received sequences.

• Decoding: Given 𝒚 ∈ 𝟐𝒏 , decide which codeword was transmitted. Use the 
maximum likelihood  rule (minimum distance rule)

• Design a code that can correct up to t errors. The design parameters are k, n, and t.
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Linear Block Codes

• The channel encoder produces bits at a rate called the channel data rate, RC

• Let 𝑅𝑠: rate in bits/sec at the channel encoder input. Then, 

• 𝑅𝑐 =
𝑛

𝑘
𝑅𝑠 bits/sec is the bit rate at the channel encoder output.

• The  ratio 
𝑘

𝑛
is called the  Code Rate
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Binary Fields and Vectors
• Field: The binary alphabet A={0,1} is properly referred to as a Galois field  

with two elements denoted GF(2).

• Addition (XOR): 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0 

• Multiplication (AND): 0.1 = 0.0 = 1.0 = 0, 1.1 = 1

• This is also referred to as modulo-2 arithmetic  (no carry)

• Examples

• 01001 + 01110 = 00111 (bit by bit addition)

• 10010 . 01110 = 00010 (bit by bit multiplication) 

• (1111+0011) . 0011 = 1100 . 0011 = 0000 (addition and multiplication)

5



Some Features of Linear Block Codes
• Linearity: A code is linear if it contains the zero codeword and the Boolean 

sum of any two codeword must be another codeword. As such, the set of 
codewords forms a vector space.
• Advantage

• simpler procedure for maximum likelihood detection
• faster encoding and less storage space 
• error patterns are easily describable 

• Maximum Likelihood Decoding reduces to Minimum Distance Decoding (if the 
a priori probabilities are equal P(0)=P(1)). 

• Many decoding algorithms are based on minimum distance rule 

6

Nonlinear Code: This is an example of a nonlinear 
code. Note that the sum of any two codewords
does not yield another codeword. Also, the zero 
vector is not a codeword.



Hamming Weight and Hamming Distance

• Def.: The Hamming weight, WH(C), of codeword Cj,  is the number of 1’s in Cj

• Def.: The Hamming distance between two codewords C1 and C2, denoted by
dH [C1,C2], is the number of components in which they differ.

dH [C1,C2]=WH(C1+C2); modulo two addition

Def. : Minimum Distance d =min(dH [Ci, Cj]) , for all codewords, i # j

• WH(011)= 2 WH(001)= 1 WH(000)= 0

dH(011,000) = 2 dH (011,111) = 1 dH (011,101) = 2

Therefore 011 is closer to 111 in terms of the Hamming distance

• Consider the codewords(000, 101, 111, 010, 011)

• You can easily verify that dmin=1.

• Simple Procedure: Calculate the Hamming distance between each 
codeword and the zero vector. min(dH [Ci, Cj])  is the smallest
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Motivation: Bit Error Probability and the Repetition Code

• Consider the binary phase shift keying scheme for transmitting bits 1 and 0: 

• 𝑠1 𝑡 = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡); 𝑠0 𝑡 = −𝐴𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡); 

• For equally probable bits, the average bit probability of error is: 

• Question: Is there another way of reducing the probability of error over the 
same noisy channel with a finite symbol energy?
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This equation says that the bit error 
probability can only be reduced by 
increasing the symbol energy.



Motivation: Repetition Code
Example: (3, 1) Binary Repetition Codes

0 (message)  ==> 000 (codeword) 1 (message)  ==> 111 (codeword)

The channel is independently used three times for each symbol.

Any one of the following eight sequences can be received:

{000, 001, 010, 100, 110, 011, 101, 111};  Observation Space

To minimize the message (block) probability of error, the receiver decides  
1 and 0 when any one of the following sequences are received 
(MAJORITY RULE)

S0 : {000, 001, 010, 100 }:   Decide 0

S1 :{ 110, 011, 101, 111}:    Decide 1

9

An error occurs when (000) is sent but any one of the 
sequences in S1 is received and vice versa. 



Repetition Code: Probability of Error After Decoding
Partitioning of the observation space;  S0 : {000, 001, 010, 100 }: Decide 0

Following the minimum distance rule; S1:  { 110, 011, 101, 111}: Decide 1

Let p be the crossover probability, which is the bit error probability when the channel is used 
once.  

Gain: For a BSC with  p = 10-2, Pu=3x10-4. (In this example, the block error = bit error)

Reason for  gain: (3,1) repetition code can correct single errors.

Cost: Expansion in bandwidth or smaller code rate.

Code Rate: 1/3 = (k/n) = [≠ of message bits/≠ of transmitted bits]

Exercise: Find the probability of error when a (5, 1) repetition 

code is used. How many errors can this code correct?

Exercise: Find the probability of error when a (7, 1) repetition code is used. How many errors 
can this code correct?

10

Undetected block error probability = 𝑃𝑢 =
3
2

(1 − 𝑝)𝑝2 +
3
3

𝑝3

𝑃𝑢 = 𝑝2(3 − 2𝑝) << 𝑝



(3, 1) Repetition Code: Geometrical Illustration
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Decoding Rule:
Minimum Hamming Distance

Set S0 : {000, 001, 010, 100 }: 

S1:  { 110, 011, 101, 111}: 



Minimum Distance of a Code
 Consider the code C=  {C1 C2 … CM };  M = 2k

 Def.: The minimum distance of a code C is the minimum Hamming distance 
between any two different codewords.

Theorem

A code with minimum distance dmin can detect  (dmin -1) error bits

A code with minimum distance dmin can correct all error patterns up to and 
including t-error patterns, where

dmin = 2t + 1

𝒕 =
𝒅𝒎𝒊𝒏−𝟏

𝟐
; 
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            (    ,    )        C     and     C     in    minmin
d d C C C

i j i j
i j

 


Ci Cj

When, dmin =7 , t=3.

When, dmin =5,  t=2.

• define 𝒕𝒎𝒂𝒙 = ⌊
𝒅𝒎𝒊𝒏−𝟏

𝟐
⌋ (⌊𝑥⌋is the largest integer ≤ x)



Example: The (6, 3) Linear Block Code

13

message codeword Hamming weight

000 000000 0

100 110100 3

010 011010 3

110 101110 4

001 101001 3

101 011101 4

011 110011 4

In this example, we compute the minimum distance and the error correcting 
capability of the (6, 3) linear code.

dmin = 3 𝒕 =
𝒅𝒎𝒊𝒏 − 𝟏

𝟐
=

𝟑 − 𝟏

𝟐
= 𝟏

The minimum 
distance of a code 
is the smallest 
Hamming weight 
of the code, other 
than the all-zero 
codeword C0 . 



1

Linear Block Codes

2k2k
2n 2k

• Main Results from previous video: Basics of Channel Coding and Block Coding: Part a. 
• To generate an (n, k) block code, the channel encoder accepts information in successive k-bit 

blocks. Adds (n-k) redundant bits to produce an encoded block of n-bits called a code-word.

• 𝟐𝒌 : Number of possible messages. Each message should have a channel codeword.
• 𝟐𝒌 : Number of possible codewords. 
• Design Issue: How to select the 𝟐𝒌 codewords from the 𝟐𝒏 possible sequences?      
• Decoding: Given 𝒚 ∈ 𝟐𝒏 , decide which codeword was transmitted. Use the maximum 

likelihood  rule (minimum distance rule)
• Design a code that can correct up to t errors. The design parameters are k, n, and t.
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Minimum Distance of a Code
 Consider the code C=  {C1 C2 … CM };  M = 2k

 Def.: The minimum distance of a code C is the minimum Hamming distance 
between any two different codewords.

Theorem

A code with minimum distance dmin can detect  (dmin -1) error bits

A code with minimum distance dmin can correct all error patterns up to and 
including t-error patterns, where

dmin = 2t + 1

𝒕 =
𝒅𝒎𝒊𝒏−𝟏

𝟐
; 

2

            (    ,    )        C     and     C     in    minmin
d d C C C

i j i j
i j

 


Ci Cj

When, dmin =7 , t=3.

When, dmin =5,  t=2.

• define 𝒕𝒎𝒂𝒙 = ⌊
𝒅𝒎𝒊𝒏−𝟏

𝟐
⌋ (⌊𝑥⌋is the largest integer ≤ x)



Hamming Bound

2k codewords2n-k spheres 

• The Hamming bound provides a necessary, 

but not a sufficient, condition for the 

construction of an (n,k) t-error correcting 

code..

• For an (n,k) code, there are 2k codewords

and 2n possible sequences to chose from. 

• Think of the 2k codewords as centers of 

spheres in an n-dimensional space.

• All sequences that differ from codeword Ci

in t or less positions lie within the sphere Si

of center Ci and radius t.

• For the code to be t-error correcting, all 

spheres Si , i =1,.., 2k , must be non-

overlapping.
Copied from Proakis’s Digital

Communications

In total, there are 2n

possible sequences 



Hamming Bound

2k codewords2n-k spheres 

• When a codeword is selected, none of the n-bit sequences that differ 
from that codeword by t or less locations can be selected as a 
codeword.

• Consider the all-zero codeword C0. The number of sequences that differ 

from this codeword by j locations is 𝒏
𝒋

• The total number of sequences in any sphere (C0 at the center plus all 
sequences that differ from C0 by t or less digits) is

• 𝟏 + σ𝒋=𝟏
𝒕 𝒏

𝒋

• For a t bit error correcting code, 

• 2k(𝟏 + σ𝒋=𝟏
𝒕 𝒏

𝒋
) ≤ 2n;  When equality holds, code is called perfect.

• (n−k) ≥ 𝒍𝒐𝒈𝟐 (𝟏 + σ𝒋=𝟏
𝒕 𝒏

𝒋
) ; Hamming Bound

0 0 0 0 0 0 0

0 1 1 0 0 0 0

1 0 0 1 0 0 0

. . . . . . .

1 0 0 0 1 0 0

𝟕
𝟐

= 𝟐𝟏, number of sequences 

that differ from 00000 by two bits
𝟕
𝟏

= 𝟕, number of sequences that 

differ from 00000 by two bits Copied from Proakis’s Digital

Communications

In total, there are 2n

possible sequences 



Hamming Bound: Example
• The above bound is known as the Hamming Bound. It provides a 

necessary, but not a sufficient, condition for the construction of an (n,k) t-
error correcting code.

• Example: Is it theoretically possible to design a (10,7) single-error 
correcting code?

• Condition: 2k(𝟏 + σ𝒋=𝟏
𝒕 𝒏

𝒋
) ≤ 2n ; (𝟏 + σ𝒋=𝟏

𝒕 𝒏
𝒋
) ≤ 2n−k ; t = 1

𝟏𝟎
𝟎

+ 𝟏𝟎
𝟏

Is it less than 23 = 8; Answer NO

5

3
10 10

1 10 11 2 , No, it is not possible
0 1

   
       

   



Generation of a Linear Block Code

6

• Let G be the generator matrix for the linear code C. The rows of G are 
linearly independent and form the basis for the (n, k) code.

• If m is the k-bit message, then the codeword corresponding to m can be 
obtained as:

• 𝒄 = 𝒎 𝑮 ; (1 x k)(k x n)

• Systematic (n, k) linear 
codes:  The first (or last) k bits 
are the information bits. 



Parity Check Matrix of a Linear Block Code

7

• This equation forms the basis for 
demodulation. 

• A codeword c always satisfies 𝒄𝑯𝑻

• Hence, the receiver can use this fact for 
decoding and for error correction, as we 
shall see next.



Syndrome Decoding

8

Error Pattern Syndrome

(0000001)

(0000010)

(0000100)



Syndrome Decoding

9



Example: Syndrome Decoding
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Hamming Codes

11

m=2

m=3

m=4

(Number of parity bits)

For m=2, we have 
the (3, 1) 
repetition code.
For m=3, we have 
the (7, 4) code 
studies earlier).

Rate: k/n = 1/3

Rate: k/n = 4/7

Rate: k/n = 11/15

Note that while all codes correct 1 
bit, the cost becomes less as m 
increases.



Error Control at the Data Link Layer: The Cyclic Redundancy Check Code
• The data link layer is concerned with providing error free 

communication between adjacent nodes in a computer 
communication network.

• Error detection and correction are implemented at the 
data link layer and the transport layer of the OSI model.

• The main functions of the data link layer are:

• Framing: breaking the information bit strings (Received from 
network layer) into smaller strings and encapsulates them into 
frames.

• Error Control: making sure that the delivered frames are error 
free. We have either error correction or error detection or both. 
In this video, we will address the error detection problem.

1

• Framing: Data link layer breaks every packet 
received from the network layer into smaller units 
(frames). Adds a header and a trailer.

• The header contains the destination MAC address 
which is used to identify the intended receiver of 
the packet when the channel is a multiple access.

• The cyclic redundancy check bits (CRC), which are 
used for error detection, are provided in the trailer.
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Data Link Layer: Framing

• The data link layer (DLL) on the receiving node is provided a sequence of bits from 
the physical layer

• It needs to determine where a frame begins and where it ends. It needs to identify 
the header and trailer before it can do subsequent processing.

• The header appears at the beginning of a frame. (easy to know)

• Identifying the trailer is more challenging because the length of the payload may be 
variable.

Two Possible Solutions

a. Framing using payload length: Include the length of the payload in the frame 
header

• problem: An error in the length field can cause some other bits to be interpreted as 
CRC bits affecting the current frame and subsequent ones even if they are error-
free.

2
Header Length Payload CRC



Data Link Layer: Framing
Framing using flag delimiters: Add flag bytes at the start and end of a frame, say the byte

0 1 1 1 1 1 1 0  (0 + 6 1’s in a row + 0)

Problems:

• If the flag bytes are corrupted by channel errors, the frame cannot be correctly identified.

• The appearance of the flag byte in the payload can cause the frame boundaries to be 
erroneously identified 

• To solve this problem, the DLL inserts a 0 bit whenever it encounters five consecutive 1’s 
in the payload. This is called bit stuffing .

Example on Bit Stuffing

• Payload bits        1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

• After bit stuffing 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0

• After destuffing 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

3

Flag Header Payload CRC Flag



Data Link Layer: Error Detection

4

The location of 

errors in the 

frame is random

Single bit 
Error

Double 
bit Errors



Burst Error
• An error burst of length r in a received frame is defined as a contiguous sequence of r bits 

in which the first and last bits or any number of intermediate bits are received in error.

• Burst error does not necessarily mean that the errors occur in consecutive bits, the 
length of the burst is measured from the first corrupted bit to the last corrupted bit. Some 
bits in between may not have been corrupted.

• Burst error is most likely to happen in serial transmission since the duration of noise is 
normally longer than the duration of a bit.

• The number of bits affected depends on the data rate and duration of noise spike.
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The Cyclic Redundancy Check (CRC) Code 
• Error detection means to decide whether the 

received data is correct or not without having a 
copy of the original message.

• Error detection uses the concept of redundancy, 
which means adding extra bits for detecting errors 
at the destination.

• The cyclic redundancy check is a type of linear block 
code (based on the theory of cyclic codes) mainly 
used for frame error detection in the data link layer. 
If the frame is error-free, then it is accepted, 
otherwise a retransmission is requested.

• It is capable of detecting single, double, bust errors 
of length r, and many burst error patterns of length 
greater than r, where r is the order of the prime 
polynomial used for encoding and decoding. 

• The systematic CRC: Here, the codeword consists of 
the message followed by the error control bits

6

Transmitter Receiver



The Cyclic Redundancy Check (CRC) Code 

• CRCs are popular because they are simple to implement in binary hardware 
easy to analyze mathematically, and particularly good at detecting common 
errors caused by noise in transmission channels. 

• The CRC is widely used in many applications such as:

• GSM Mobile Network (Global system for mobile communication)

• CDMA2000 Mobile Networks (Code division multiple access)

• Train Communication Networks

• Bluetooth wireless connectivity network

• WCDMA Mobile Networks (Wide band Code division multiple access)

• Ethernet local area networks

• Cellular area networks in vehicles

7



Cyclic Redundancy Check

• Given a k-bit frame or message, the transmitter generates an r-bit 
sequence, known as the error control bits, so that the resulting frame, 
consisting of (k + r) bits, is exactly divisible by some predetermined 
generator polynomial g(x) (the properties of this polynomial will be 
explored later)

• The receiver then divides the incoming frame by the same polynomial 
g(x) and, if there is no remainder, accepts the frame, otherwise 
requests a retransmission.

xxxxxxxxxx yyyy

k bits 

(message)

r bits

(CRC)

Block of length n = k + r

(Transmitted Frame)

8



• Binary Arithmetic

• Polynomial Representation of a bit stream

1     1      0     1   =   1x3 + 1x2 + 0x + 1(x0)
=    x3+x2+1

• Addition: ( x3 + x2 + 1) + (x + 1) = x3 + x2 + x + (1 + 1) 
= x3 + x2 + x

• Multiplication:  x ( x3 + x2 + 1) = x4 +x3 + x + (0)x; 11010
• Multiplication: x2 ( x3 + x2 + 1) = x5 +x4 + x2 + (0)x + 0(x0) ; 110100
• Multiplication: x3 ( x3 + x2 + 1) = x6 +x5 + x3 + (0) x2 + (0)x + 0(x0) ; 1101000
• Multiplication by x implies a shift to the left by one digit

• Multiplication by x2 implies a shift to the left by two digits.

• Multiplication by xr implies a shift to the left by r digits.

Representing a Binary Sequence by a Polynomial

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1 = 0

9

No Carry



Modulo Two Division

x4 + x2 

x
= x3 + x  with remainder  0 

x4 + x2 + 1

x + 1
=  x3 + x2 with remainder  1 

x4 + 0x3 +  x2  + 0x  + 1x + 1

x3

x4 +   x3

x3 + x2

+ x2

x3 + x2

0x2 + 0x

+ 0x

0x + 1

+ 0

Remainder  1 10



Cyclic Redundancy Check

• Let m(x) be the message polynomial

• Let g(x) be the generator polynomial of order r
• g(x) is fixed for a given CRC scheme
• g(x) is known to both; the sender and receiver
• The number of parity bits = r, the order of g(x)

• Create a block polynomial s(x) based on m(x) and g(x) such that 
s(x) is divisible by g(x). Here, 𝑠 𝑥 = 𝑥𝑟𝑚 𝑥 + 𝑐(𝑥)

( ) 0
( ) ;  Zero remainder

( ) ( )

s x
q x

g x g x
 
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CRC Sending Side

• Multiply m(x) by xr

• Divide xrm(x) by g(x)

• Ignore the quotient and keep 
the remainder c(x)

• Form and send  s(x) = 
xrm(x)+c(x)

12

CRC Receiving Side

• Receive y(x) = s(x) + e(x); 
e(x) is some error pattern 

• Divide y(x) by g(x)

• Accept if remainder is 0, 
reject otherwise

CRC Generation and Detection

𝒔 𝒙 = 𝒙𝒓𝒎 𝒙 + 𝒄(𝒙)
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Example

Sender

• m(x) = 110011 x5+x4+x+1  (k= 6 bits)

• g(x) = 11001  x4+x3+1  (5 bits, r = 4)
 4 bits of redundancy

• Form xrm(x)  x9+x8+x5+x4

 1100110000

• Divide xrm(x) by g(x) to find remainder 
c(x)

• We can show that c(x)= x3+1

• C =(1001); Has to be 4 bits = r

• Send the block S = 1100111001

Receiver

• Case 1: Assume no errors

• y= 1100111001

• y(x)= x9+x8+x5+x4+x3+1

• Divide y(x) by g(x)

• Remainder = 0 (Verify)

• Accept Sequence, else, ask for 

retransmission

• Case 2: If y= 1010111001

• y(x)= x9+x7+x5+x4+x3+1

• find the remainder, if any,  at the 

receiver

13



CRC Sending Side

• Multiply m(x) by xr

• Divide xrm(x) by g(x)

• Ignore the quotient and keep 
the remainder c(x)

• Form and send  

• s(x) = xrm(x) + c(x)

1

CRC Receiving Side

• Receive y(x) = s(x) + e(x); 
e(x) is some error pattern 

• Divide y(x) by g(x)

• Accept if remainder is 0, 
reject otherwise

CRC Generation and Detection

𝒔 𝒙 = 𝒙𝒓𝒎 𝒙 + 𝒄(𝒙)

Remainder 
𝒔 𝒙

𝒈 𝒙
= 𝟎

Generator polynomial g(x) is available 
at both sending and receiving ends.



Proof of CRC Generation

Prove that is divisible by ( ),  i.e., 

Prove that 

( ) ( )
( ) ;  c(x): remainder. Transmitter side

( ) ( )

( ) ( ) ( ) ( )

Add c(x) to both sides

s(x) = ( ) ( ) 

remainder (s(x) / ( )

 and

) 0

 di

r

r

r g x

x m x c x
q x

g x g x

x m x g x q x c x

x m x c x

g x







 



vide by g(x)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
0

( )

rx m x c x g x q x c x c x

g x
re

g
maind

g
er

x x

 
   

Remainder 0 Remainder 0

Note: Binary modular addition is equivalent to 

binary modular subtraction  c(x) + c(x) = 0 2



The Prime Polynomial

3

2

1
( ) 1;  Remainder  0

1

x
x

x x


  

 

3

A polynomial g(x) of degree r is said to be primitive (prime) if the smallest value of m 
for which it divides (xm+1) is 𝒎 = 𝟐𝒓 − 𝟏

That is:     remainder
𝒙𝒎+𝟏

𝒈 𝒙
= 𝟎 𝒇𝒐𝒓 𝒎 = 𝟐𝒓 − 𝟏 𝒂𝒏𝒅 ≠ 𝟎 𝒇𝒐𝒓 𝒎 < 𝟐𝒓 − 𝟏

Example: Is the polynomial g(x) = x2+x+1 primitive?

Solution: Here, r =2. For g(x) to be primitive, the smallest value of m = 22 -1=3. Yes, 
since

Remark:

If r =3 (g(x)= x3+x+1), so that the maximum frame length n =7;  r = 3, k =4.

If r =4 (g(x)= x4+x3+1), so that the maximum frame length 𝒏 = 𝟐𝟒 − 𝟏 = 𝟏𝟓 ; r = 4, k =11

2

2 2

1 1
Remainder : ( ) 0 and ( ) 0

1 1

x x

x x x x

 
 

   



Burst Error
• An error burst of length r in a received frame is defined as a contiguous sequence of r bits 

in which the first and last bits or any number of intermediate bits are received in error.

• Burst error does not necessarily mean that the errors occur in consecutive bits, the 
length of the burst is measured from the first corrupted bit to the last corrupted bit. Some 
bits in between may not have been corrupted.

• Burst error is most likely to happen in serial transmission since the duration of noise is 
normally longer than the duration of a bit.

• The number of bits affected depends on the data rate and duration of noise.

4



Desirable Properties of g(x) to Detect Errors

• Send s(x), receive, y(x) = s(x)+e(x), 𝐫𝐞𝐦
𝒔 𝒙 +𝒆(𝒙)

𝒈 𝒙
= 𝐫𝐞𝐦

𝒆(𝒙)

𝒈 𝒙
𝒔𝒊𝒏𝒄𝒆 rem

𝒔(𝒙)

𝒈 𝒙
= 𝟎

• Question: When will CRC fail to catch an error?

• An error will be detected if the error pattern e(X) is not divisible by g(x)

• When e(x)/g(x) has no remainder, error will go undetected

• When e(x)/g(x) has a remainder, error will be detected

Here are some properties that a g(x)  should have in order to detect many error patterns 
(i.e., to ensure that there is a remainder in the division e(x)/g(x).

1. g(x) contains two or more terms. In particular, the high and low order coefficients 

must be 1.

2. g(x) is not divisible by x.

3. g(x) does not divide (xm+1) for any m up to m= 2r -1, which is the maximum 

frame length. A g(x) which satisfies this condition is a primitive polynomial.

5



Error Detection Capability of CRC

Here we briefly describe how these properties make it possible to detect single, 
double, and burst error patterns.

Single Bit Error  𝑒 𝑥 = 𝑥𝑖, i = 0, 1, …, 2(m-1) 

Since g(x) has two or more terms, g(x) will not divide e(x). That is there is a 
remainder (remainder 𝑥𝑖/𝑔(𝑥) ≠ 0).

Example: Let  g(x)= x3+x+1, Here r=3, maximum frame length n = 2(r-1) =7 , so 
that the message length k=4. Here, find remainder 𝑥𝑖/𝑔(𝑥)

3

3

6

3

1
Remainder : ( ) 0  (i=0, error in first bit)

1

Remainder : ( ) 0 (i=1, error in second bit)
1

Remainder : ( ) 0 (i=6, error in seven'th bit)
1

7
# of single error patterns= 7

1

x x

x

x x

x

x x


 


 


 

 
 

 
6

6 5 4 3 2 i=1 0

A typical received frame y = s + e 
with s single error bit  



Error Detection Capability of CRC

Two Isolated Bit Errors (double errors)

𝑒 𝑥 = 𝑥𝑖 + 𝑥𝑗 , 𝑖 > 𝑗 ⟹ 𝑒 𝑥 = 𝑥𝑗(𝑥𝑖−𝑗+1)

Provided that g(x) is not divisible by x, a sufficient condition to detect all double 
errors is that g(x) does not divide (xm+1) for any m up to m = 𝑖 − 𝑗 (i.e.,  block 
length); This condition is met since g(x) is a primitive polynomial

3

4

3

6

3

1
Remainder : ( ) 0  (error in first and second bits)

1

Remainder : ( ) 0 (error in second fifth bits)
1

1
Remainder : ( ) 0 (error in first and seven'th bit).

1

7
# of double error patterns=

2

x

x x

x x

x x

x

x x




 




 




 




21


 

 7

6 i=5 4 3 J=2 1 0



Error Detection Capability of CRC
Short Burst Errors

(Length b ≤ r, number of redundant bits); burst of length b starting at position i.

𝑒 𝑥 = 𝑥𝑖 + 𝑥𝑖+1 +⋯+ 𝑥𝑖+𝑏−1 = 𝑥𝑖(𝑥𝑏−1+𝑥 + 1)

If g(x) has an x0 (i.e. 1) term and b ≤ r, g(x) will not divide e(x) . The order of the factored 

polynomial in the numerator < order of g(x)

All burst errors up to length r are detected
2

3

3 2 2

3 3

6 5 4 4 2

3 3

1
Remainder : ( ) 0  (error in bits 1, 2, 3), burst length=3

1

( 1)
Remainder : ( ) ( ) 0 (error in bits 2, 3, 4 )

1 1

( 1)
Remainder : ( ) ( ) 0 (error in bits

1 1

x x

x x

x x x x x x

x x x x

x x x x x x

x x x x

 


 

   
 

   

   
 

   
 5, 6. 7)

Hence, all burst errors of size 3 are detected.

Note that power in numerator < power in denominator in all second terms

8
6 5 4 3 2 1 0



Error Detection Capability of CRC
Long Burst Errors (Length b = r + 1)

Only the error pattern that matches the coefficient of g(x) will be undetected. All other 

patterns will be detected. Undetectable only if 

burst error pattern e(x) matches  g(x)

𝑔 𝑥 = 𝑥𝑟 +⋯+ 𝑥 + 1; 𝑒 𝑥 = 𝑥𝑟 +⋯+ 𝑥 + 1

Some longer error bursts can be detected

3

3

3 2

3

1
Remainder : ( ) 0  (error in bits 1, 2, 4), burst length= 4 (undetected)

1

1
Remainder : ( ) #0  (error in bits 1, 2,3, 4), burst length= 4 (detected)

1

x x

x x

x x x

x x

 


 

  

 

9

6 5 4 3 2 1 06 5 4 3 2 1 0

Undetected burst of length 4Detected burst of length 4 



Further Properties of CRC
Odd Number of Bit Errors
If x+1 is a factor of g(x), all odd number of bit errors are detected

Justification:
• In practice, the generator polynomial is chosen to be the product of a primitive polynomial of 
degree r − 1 and the polynomial x + 1. 
•A polynomial e(x) is divisible by x + 1 if and only if it contains an even number of non-zero 
coefficients. This ensures that all error patterns with odd number of errors in the transmitted 
bit string are detected. 

10

Example CRC-16 : Used in Ethernet (Number of check bits r= 16)
CRC-16: g(x) = x16 + x15 + x2 + 1; generating polynomial

g(x) = (x+1)(x15 + x + 1)
g(x) is a product of (x+1) and a prime polynomial of order 15
This enables the receiver to catch odd errors, in addition to the 
ability of the prime polynomial to catch single, double, and burst 
errors.  
Maximum frame length = (215-1) = 32, 767 bits (determined by 
prime polynomial of order  15)

CRC-16 catches all
Single, double, and odd 
number of bit errors
Bursts of length 15 or less
Many burst errors of length 16 
bits
Many burst errors of length 17 
bits and longer.



Automatic Repeat Request (ARQ)

• The idea behind ARQ is to initiate 
frame retransmission when errors 
are detected in the received frame.

• Retransmission are initiated using a 
combination of timeouts and 
acknowledgements.

• There are three types of ARQ 
protocols.

a. Stop and Wait

b. Go back N

c. Selective repeat

• Here we will discuss in detail the 
first one only.

1

CRC Sending Side

Multiply m(x) by xr

Divide xrm(x) by g(x)
Ignore the quotient and 
keep the remainder c(x)
Form and send  
s(x) = xrm(x) + c(x)

CRC Receiving Side
• Receive y(x) = s(x) + e(x); e(x) 

is some error pattern 
• Divide y(x) by g(x)
• Accept if remainder is 0, reject 

otherwise

Process to process

Tec
Text Box
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Packet

sequence

Error-free 

packet

sequence

Information
frames

Control 
frames

Transmitter Receiver

Header

Information

packet

CRC

Station A Station B

Information Frame

Control frame

CRCHeader

Basic Elements of ARQ

Leon-Garcia & Widjaja: 

Communication Networks

2



Stop and Wait ARQ Protocol

• The idea is to ensure that a frame has been received correctly before 
initiating the transmission of the next frame.

• A frame is retransmitted until it is received correctly.

• When a frame is sent, a timer starts.

If an ACK is received, a new frame is transmitted.

If the elapsed time exceeds a predetermined time (called the timeout) 
and ACK is not received, the frame is retransmitted.

• A frame is transmitted once if no errors are detected and the ACK is 
received by the sender.

• If the frame is in error, or the ACK is lost or was in error, then the frame is 
retransmitted.

3



Performance of Stop and Wait

first packet bit transmitted, t = 0

sender receiver

last packet bit transmitted, Tf

first packet bit arrives (т)

last packet bit arrives,

T1 : ACK arrives, send next  packet

Only one frame can be sent per round trip:

Tf=(k + r)/R

Tp: Processing delay

ACK Send ACK

Frame

T1: Time for the successful 

transmission of a frame 

4



Stop and Wait ARQ
k: number of information bits in a frame

r: number of CRC bits in frame.

(k + r ): frame size in bits

m: number of bits in ACK

r: number of CRC bits in ACK.

(m + r): size of ACK in bits.

R: channel capacity in bps.

Tf = (k + r)/R, frame transmission time.

Ta = (m + r)/R, ACK transmission time.

τ: propagation delay.

Tp: processing delay

T1= 2τ + Tf + Ta + Tp, Time for a successful 
transmission.

T2: Timeout duration (time for a failed 
transmission)

T2≥ T1

P(S): Probability of a successful transmission

P(F): Probability of a failed transmission

5

Frame = k CRC = r Tf=(k + r)/R

ACK = m CRC = r Ta=(m + r)/R

Propagation Delay

T1= Time for a successful transmission.

T2: Timeout duration (T2 >=  T1)



Stop and Wait ARQ

• The mean value of T is:

E(T) = [E(X)-1]T2 + T1

• The random variable X has geometric distribution

• The mean value of X is given as

• The expected value of T is:

1( ) ( )[1 ( )] ,   x 1, 2, 3, ...xP X x P S P S    

)(

1
)(

SP
XE 

1 ( )
( ) [ 1] 2 1 2 1

( ) ( )

P F
E T T T T T

P S P S
    

6

• Let T be the random variable representing 
the time needed to transmit one frame 
successfully.

• If the first transmission was successful, then

T= T1; (T1= 2τ + Tf + Ta + Tp)

• If first transmission was a failure, but the 
second one was a success, then

T= T2 + T1 (T2 is the first timeout)

• If first and second transmissions were 
failures, but third one was a success, then

T= 2T2 + T1 (two timeouts + success)

• In general, if X is the random variable 
representing the number of transmissions, 
then

T= (X-1)T2 + T1; xX= 1, 2, 3, …

T is a random variable



Transmission Efficiency in Stop and Wait ARQ

• Note that k bits of information need an 
average time E(T) to be successfully 
transmitted. In fact, most of the time the 
transmitter, the receiver, and the channel are 
idle.

• A measure of the transmission efficiency is 
what is called the throughput, which in this 
case is best defined as

bits edeliver th   taken tomean time Actual

bitsn informatio the transmit  toTime
THR

k/

1 ( ) 2 / ( )

R
THR

T P F T P S




7

• If we let T2 = T1, then by substituting the 
parameters back into the throughput 
equation, we get

• Furthermore, if the data size k in the 
frame is much greater than the CRC bits r, 
m <<k, and the processing delay is 
ignored, the throughput becomes

As can be seen the determining 
parameter is the round trip delay. 

( )
( ) ( ) ( 2 )

k
THR P S

k r m r Tp R


    

( )
/

( )
/ 22

k
P S

k R
THR P S

kR Rk  
 





first packet bit transmitted, t = 0

sender receiver

2τ

last bit transmitted, t = (k+r)/ R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next 

packet, t = = 2τ + (k+r) / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

Pipelining: Increasing Utilization

• In stop-and-wait, at any point in time, there is only one frame that is sent and waiting to be acknowledged.. 
This is not a good use of transmission medium. To improve efficiency, multiple frames should be in transition 
while waiting for ACK. Two protocol use the above concept;  Go-Back-N ARQ and Selective Repeat ARQ

• Pipelining: sender allows multiple, yet-to-be-acknowledged packets without waiting for first to be ACKed to 
keep the pipe full.

3 3 /
( ) ( )

2 / 2

k k R
THR P S P S

k R k R 
 

  8

Assumptions: Data size k in the 
frame is much greater than the 
CRC bits r and the ack size, and 
the processing delay is ignored.



Convolutional Codes

• Linear Block Codes

• In a linear (n, k) block code, a block of k-bit data is encoded into a codeword of 
length n by adding (n-k) redundant bits

• The encoding is done independently from block to block (memory-less encoding)

• Convolutional Codes

• Encoding is done in a bit-by-bit manner

• Previous inputs are stored in shift-registers in the encoder, and affect future 
encoding

1

input data

combinatorial logicencoder outputs

This input bit affects K 
output bits

Tec
Text Box
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Convolutional Codes
• A convolutional code is specified by three 

parameters (n, k, K)

• k input bits will produce n output bits (Here we will 
take k = 1)

• n: will be the number of modulo 2 adders in the 
encoder.

• The most recent (K-1) input message bits will be 
recorded (buffered).

• (K-1): number of memory elements in the encoder.

• The n output bits will be given by a linear 
combination of the buffered input bits and the 
current input bits.

• K: is called the Constraint length of the 
convolutional code and represents the number of 
output bits influenced by a single input bit.

• The encoder output depends on the current input 
message bit and the previous (K – 1) input message 
bits (stored in the buffer).

2

• In this convolutional encoder there are 
two output binary digits for each one 
input binary digit. This gives a rate (k/n = 
½) for the code. 

• Each adder adds its inputs modulo 2.
• There are 3 shift registers, where the 

first one takes the incoming data bit and 
the rest from the memory of the 
encoder.

(n, k, K) = ( 2, 1, 3) 

k=1
n=2

Buffer of size 2



Example: A Rate ½ Convolutional Encoder

1 0 01t

1u

2u

11

21 uu

1 0 13t

1u

2u

00

21 uu

0 1 04t

1u

2u

01

21 uu

)101(m

Time Output

Message sequence:

(Branch word)

0 1 02t

1u

2u

01

21 uu

OutputTime
(Branch word)

3



Example: A Rate ½ Convolutional Encoder

Encoder)101(m )1110001011(U

0 0 15t

1u

2u

11

21 uu

0 0 06t

1u

2u

00

21 uu

Time Output Time Output
(Branch word) (Branch word)

n = 2, k = 1, K = 3, 
L = 3 input bits -> 10 output bits
Note that two extra zeroes have been appended to the message to return the registers to the zero state  

4



Effective code rate

• Initialize the memory before encoding the first bit (all-zero)

• Clear out the memory after encoding the last bit (all-zero)

• Hence, a tail of zero-bits is appended to data bits.

• Effective code rate :

• L is the number of data bits and k=1 is assumed:

data Encoder codewordtail

( 1)
eff c

L
R R

n L K
 

 

Encoder)101(m )1110001011(U

Example: n = 2, k = 1, K = 3, L = 3 input bits.
Output = n(L + K -1) = 2*(3 + 3 – 1) = 10 output bits 

5



State diagram of a convolutional code

6

• One way or representing the convolutional code is by means of a state diagram.

• By a state we mean the contents of the first two registers. At any time, the contents of 
the registers can be at any of the four states (0, 0), (0,1), (1, 0), and (1, 1).

• The output sequence at each stage is determined by the input bits and the state of the 
encoder.

• A state diagram is simply a graph of the possible states of the encoder and the possible 
transitions from one state to another. It can be used to show the relationship  between 
the encoder state, input, and output.

The state refers to the contents of 
the first two registers

𝒖𝟏 = 𝒎𝒏⊕𝒎𝒏−𝟏⊕𝒎𝒏−𝟐

𝒖𝟐 = 𝒎𝒏⊕𝒎𝒏−𝟐



State diagram of a rate 1/2 convolutional code

7

0 0 01t

1u

2u

1 2

0 0

u u

1 0 01t

1u

2u

11

21 uu

0 1 01t

1u

2u

1 2

1 0

u u
1 1 01t

1u

2u

1 2

0 1

u u (11100)m

(11 01 10 01 11)U

Current 
state 00

Current 
state 00

Current 
state 10

Current 
state 10



Trellis diagram of a convolutional code

8

• Trellis diagram is an extension of state diagram 
which explicitly shows the passage of time.

• All the possible states are shown for each 
instant of time.

• Time is indicated by a movement to the right.

• The input data bits and output code bits are 
represented by a unique path through the trellis
(as we shall see on the next slide)

• Each line designated with the input digit and 
output digits in the form x/y.

• After the second stage, each node in the trellis 
has 2 incoming paths and 2 outgoing paths.

• A solid line indicates that the input bit is 0.

• A dotted line indicates that the input bit is 1.

State Diagram

Trellis Diagram



State diagram of a rate 1/2 convolutional code

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

6t1t 2t 3t 4t 5t

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits

Tail bits

000 S

102 S

011 S

113 S
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State diagram of a rate 1/2 convolutional code

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits

Tail bits

Path through the trellis

000 S

102 S

011 S

113 S

10



Maximum Likelihood Decoding of Convolutional Code

1

• As we have seen earlier, bits transmitted over the channel will be 

subject to errors. Here, 

Receiver sequence = Transmitted sequence + Error pattern

• Given the received code word r, determine the most likely path 

through the trellis that caused this r.

• Compare r with the code bits associated with each path. (each 

path represents a codeword)

• Pick the path whose code bits are “closest” to r.

• Measure distance using either Hamming distance for hard decision

decoding or Euclidean distance for soft-decision decoding. In this 

lecture, only hard decision decoding will be considered.

• Once the most likely path has been selected, the estimated data bits 

can be read from the trellis diagram.

Tec
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State diagram of a rate 1/2 convolutional code

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

1 0 1 0 0

11 10 00 10 11

Input bits

Output bits
Tail bits

Hamming Distance from the received sequence  r = 10 01 10 11 00 = 7 

000 S

102 S

011 S

113 S

2

ExampleSolid: 0

Dashed: 1

Each path in the trellis is a codeword



State diagram of a rate 1/2 convolutional code

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

1 0 0 0 0

11 10 11 00 00

Input bits

Output bits
Tail bits

Hamming Distance from the received sequence r = 10 01 10 11 00 = 6

000 S

102 S

011 S

113 S

3

ExampleSolid: 0

Dashed: 1



State diagram of a rate 1/2 convolutional code

1/11

0/00

0/10

1/11

1/01

0/00

0/11

0/10

0/01

1/11

1/01

1/00

0/00

0/11

0/10

0/01

0/00

0/11

0/00

6t1t 2t 3t 4t 5t

1 1 0 0 0

11 01 01 11 00

Input bits

Output bits
Tail bits

Hamming Distance from the received sequence r = 10 01 10 11 00 = 3 

000 S

102 S

011 S

113 S

4

ExampleSolid: 0

Dashed: 1



Example on Maximum Likelihood Decoding

5

• First, we use the maximum likelihood method to decode the message encoded by the 

convolutional encoder below when the received sequence of digits is:

• r = 10 01 10 11 00. The message size L=3 and hence the number of codewords is 8. 

• The state diagram and the trellis diagrams for this encoder were derived in the 

previous lecture. 

r = 10 01 10 11 00

Maximum Likelihood decoding

00 11 10 11 00  --> 01000



Example on Maximum Likelihood Decoding

6

Error Correction Power

For this code, we find that minimum distance of the code dmin=5.

Since dmin = 2t + 1, hence this code can correct up to two bits. 

Received Sequence: 10 01 10 11 00

Maximum Likelihood decoding

00 11 10 11 00  --> 01000

Find the path that is 

closest to the  

received sequence 

in terms of the 

Hamming distance



The Viterbi Algorithm

• The Viterbi algorithm is used to decode convolutional codes and any structure or 

system that can be described by a trellis. 

• It is a maximum likelihood decoding algorithm that selects the most probable 

path that maximizes the likelihood function.

• The algorithm is based on

• Walk through the trellis and compute the Hamming distance between the 

branches in the trellis and the received sequence r 

• At each level, consider the two paths entering the same node and are identical 

from this node onwards. From these two paths, the one that is closer to r at this 

stage will still be so at any time in the future. This path is retained, and the other 

path is discarded.

• Proceeding this way, at each stage one path will be saved for each node. These 

paths are called the survivors. The decoded sequence (based on Minimum 

Distance Decoding MDD) is guaranteed to be one of these survivors.

• Each survivor is associated with a metric of the accumulated Hamming distance 

(the Hamming distance up to this stage).

• Carry out this process until the received sequence is considered completely. 

• Choose the survivor with the smallest metric. 

7



Example on Convolutional Encoder

11

0110

00

0/00

1/11
0/01 0/11

1/10

1/01

0/10
1/00

+

+

𝒎𝒏 𝒎𝒏−𝟏 𝒎𝒏−𝟐

𝑢1

𝑢2

𝒖𝟏 = 𝒎𝒏⊕𝒎𝒏−𝟐

𝒖𝟐 = 𝒎𝒏⊕𝒎𝒏−𝟏⊕𝒎𝒏−𝟐

•When the data sequence 1 1 0 0 1 0 1 0 
is applied to the encoder, the coded  
output bit sequence is

x=[11 10 10 11 11 01 00 01].



Viterbi Decoding Example

•Consider an example 

•When the data sequence 1 1 0 0 1 0 1 0 is 
applied to the encoder, the coded  output bit 
sequence is

x=[11 10 10 11 11 01 00 01].

•The coded output sequence passes through a 
channel, producing the received sequence

r= [ 11 10 00 10 11 01 00 01].

•The two underlined bits are flipped by noise 
in the channel.

Step 1: 



Step 2: Viterbi Decoding Example

r0 =11

00 . .
10 . .
01 . .
11 . .

t=0                    t=1

2

0

R = [ 11  10  00  10 11  01  00  01]



Step 3: Viterbi Decoding Example

r1 =10

00 . . .
10 . . .
01 . . .
11 . . .

t=0                    t=1               t=2

3

3

2

0

R = [ 11  10  00  10 11  01  00  01]



Step 4: Viterbi Decoding Example

r2 =00

00 . . . .
10 . . . .
01 . . . .
11 . . . .

t=0                    t=1               t=2                t=3

3

3

2

0

3

4

5

2

4

1

4

1

R = [ 11  10  00  10 11  01  00  01]



Step 5: Viterbi Decoding Example

r2 =00

00 . . . .
10 . . . .
01 . . . .
11 . . . .

t=0                    t=1               t=2                t=3

3

2

1

1

R = [ 11  10  00  10 11  01  00  01]



Step 6: Viterbi Decoding Example

r3 =10

00 . . . . .
10 . . . . .
01 . . . . .
11 . . . . .

t=0                    t=1               t=2                t=3                t=4

3

2

1

1

4

2

4

2

4

1

2

3

R = [ 11  10  00  10 11  01  00  01]



Step 7: Viterbi Decoding Example

r3 =10

00 . . . . .
10 . . . . .
01 . . . . .
11 . . . . .

t=0                    t=1               t=2                t=3                t=4

2

2

1

2

R = [ 11  10  00  10 11  01  00  01]



Step 8: Viterbi Decoding Example

r4 =11

00 . . . . . .
10 . . . . . .
01 . . . . . .
11 . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5

2

2

1

2

4

1

2

3

3

3

3

3

R = [ 11  10  00  10 11  01  00  01]



Step 9: Viterbi Decoding Example

r4 =11

00 . . . . . .
10 . . . . . .
01 . . . . . .
11 . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5

1

2

3

3

R = [ 11  10  00  10 11  01  00  01]



Step 10: Viterbi Decoding Example

r5 =01

00 . . . . . . .
10 . . . . . . .
01 . . . . . . .
11 . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6

1

2

3

3

2

4

2

4

2

5

4

3

R = [ 11  10  00  10 11  01  00  01]



Step 11: Viterbi Decoding Example

r5 =01

00 . . . . . . .
10 . . . . . . .
01 . . . . . . .
11 . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6

2

2

2

3

R = [ 11  10  00  10 11  01  00  01]



Step 12: Viterbi Decoding Example

r6 =00

00 . . . . . . . .
10 . . . . . . . .
01 . . . . . . . .
11 . . . . . . . .

t=0             t=1               t=2                t=3                t=4               t=5                t=6                t=7

2

2

2

3

2

4

4

2

3

4

3

4

R = [ 11  10  00  10 11  01  00  01]



Step 13: Viterbi Decoding Example

r6 =00

00 . . . . . . . .
10 . . . . . . . .
01 . . . . . . . .
11 . . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6      t=7

2

2

3

3

R = [ 11  10  00  10 11  01  00  01]



Step 14: Viterbi Decoding Example

r7 =01

00 . . . . . . . . .
10 . . . . . . . . .
01 . . . . . . . . .
11 . . . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6      t=7                 t=8

2

2

3

3

3

3

3

4

2

5

4

3

R = [ 11  10  00  10 11  01  00  01]



Step 15: Viterbi Decoding Example

r7 =01

00 . . . . . . . . .
10 . . . . . . . . .
01 . . . . . . . . .
11 . . . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6      t=7                 t=8

3

3

2

3

R = [ 11  10  00  10 11  01  00  01]



Step 16: Viterbi Decoding Example

r7 =01

00 . . . . . . . . .
10 . . . . . . . . .
01 . . . . . . . . .
11 . . . . . . . . .

t=0                    t=1               t=2                t=3                t=4               t=5                t=6      t=7                 t=8

3

3

2

3

1/11

0/10

0/11

1/11

0/01
1/00

0/01
1/10

R = [ 11  10  00  10 11  01  00  01]

•Decoded  output bit sequence is

x=[11 10 10 11 11 01 00 01].

Decoded data sequence 1 1 0 0 1 0 1 0 


	7. L7a Basics of Channel Coding and Block Coding.pdf
	7. L7b Basics of Channel Coding and Block Coding Part b.pdf
	8. L8a Data Link Layer Framing and error control.pdf
	8. L8b Data Link Layer Cyclic redundancy check.pdf
	8. L8c Data Link Layer Automatic repeat request.pdf
	9. L9a Basics of Convolutional Encoding Part a.pdf
	9. L9b Basics of Convolutional Encoding Part b.pdf



