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To the Student

With the hope that this work will stimulate
an interest in Engineering Mechanics
and provide an acceptable guide to its understanding.



| PREFACE

The main purpose of this book is to provide the student with a clear and thorough
presentation of the theory and application of engineering mechanics. To achieve this
objective, this work has been shaped by the comments and suggestions of hundreds
of reviewers in the teaching profession, as well as many of the author’s students. The
twelfth edition of this book has been significantly enhanced from the previous
edition and it is hoped that both the instructor and student will benefit greatly from
these improvements.

New Features

Fundamental Problems. These problem sets are located just after the
example problems. They offer students simple applications of the concepts and,
therefore, provide them with the chance to develop their problem-solving skills
before attempting to solve any of the standard problems that follow. You may
consider these problems as extended examples since they all have partial solutions
and answers that are given in the back of the book. Additionally, the fundamental
problems offer students an excellent means of studying for exams; and they can be
used at a later time as a preparation for the Fundamentals in Engineering Exam.

Rewriting. Each section of the text was carefully reviewed and, in many areas, the
material has been redeveloped to better explain the concepts. This has included adding
or changing several of the examples in order to provide more emphasis on the
applications of the important concepts.

Conceptual Problems. Throughout the text, usually at the end of each
chapter, there is a set of problems that involve conceptual situations related to the
application of the mechanics principles contained in the chapter. These analysis and
design problems are intended to engage the students in thinking through a real-life
situation as depicted in a photo. They can be assigned after the students have
developed some expertise in the subject matter.

Additional Photos. The relevance of knowing the subject matter is reflected
by realistic applications depicted in over 60 new and updated photos placed
throughout the book. These photos are generally used to explain how the
principles of mechanics apply to real-world situations. In some sections,
photographs have been used to show how engineers must first make an idealized
model for analysis and then proceed to draw a free-body diagram of this model in
order to apply the theory.

New Problems. There are approximately 50%, or about 850, new problems
added to this edition including aerospace and petroleum engineering, and
biomechanics applications. Also, this new edition now has approximately 17% more
problems than in the previous edition.



Hallmark Features

Besides the new features mentioned above, other outstanding features that define
the contents of the text include the following.

Organization and Approach. Each chapter is organized into well-defined
sections that contain an explanation of specific topics, illustrative example problems,
and a set of homework problems. The topics within each section are placed into
subgroups defined by boldface titles. The purpose of this is to present a structured
method for introducing each new definition or concept and to make the book
convenient for later reference and review.

Chapter Contents. Each chapter begins with an illustration demonstrating a
broad-range application of the material within the chapter. A bulleted list of the chapter
contents is provided to give a general overview of the material that will be covered.

Emphasis on Free-Body Diagrams. Drawing a free-body diagram is
particularly important when solving problems, and for this reason this step is strongly
emphasized throughout the book. In particular, special sections and examples are
devoted to show how to draw free-body diagrams. Specific homework problems have
also been added to develop this practice.

Procedures for Analysis. A general procedure for analyzing any mechanical
problem is presented at the end of the first chapter. Then this procedure is customized
to relate to specific types of problems that are covered throughout the book. This
unique feature provides the student with a logical and orderly method to follow when
applying the theory. The example problems are solved using this outlined method in
order to clarify its numerical application. Realize, however, that once the relevant
principles have been mastered and enough confidence and judgment have been
obtained, the student can then develop his or her own procedures for solving problems.

Important Points. This feature provides a review or summary of the most
important concepts in a section and highlights the most significant points that should
be realized when applying the theory to solve problems.

Conceptual Understanding. Through the use of photographs placed
throughout the book, theory is applied in a simplified way in order to illustrate some
of its more important conceptual features and instill the physical meaning of many
of the terms used in the equations. These simplified applications increase interest in
the subject matter and better prepare the student to understand the examples and
solve problems.

Homework Problems. Apart from the Fundamental and Conceptual type
problems mentioned previously, other types of problems contained in the book include
the following:

* Free-Body Diagram Problems. Some sections of the book contain introductory
problems that only require drawing the free-body diagram for the specific problems
within a problem set. These assignments will impress upon the student the
importance of mastering this skill as a requirement for a complete solution of any
equilibrium problem.

PREFACE



PREFACE

* General Analysis and Design Problems. The majority of problems in the
book depict realistic situations encountered in engineering practice. Some of
these problems come from actual products used in industry. It is hoped that this
realism will both stimulate the student’s interest in engineering mechanics and
provide a means for developing the skill to reduce any such problem from its
physical description to a model or symbolic representation to which the principles
of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either SI
or FPS units. Furthermore, in any set, an attempt has been made to arrange the
problems in order of increasing difficulty except for the end of chapter review
problems, which are presented in random order.

e Computer Problems. An effort has been made to include some problems that
may be solved using a numerical procedure executed on either a desktop computer
or a programmable pocket calculator. The intent here is to broaden the student’s
capacity for using other forms of mathematical analysis without sacrificing the time
needed to focus on the application of the principles of mechanics. Problems of this
type, which either can or must be solved using numerical procedures, are identified
by a “square” symbol (m) preceding the problem number.

With so many homework problems in this new edition, they have now been placed
in three different categories. Problems that are simply indicated by a problem number
have an answer given in the back of the book. If a bullet (®) precedes the problem
number, then a suggestion, key equation, or additional numerical result is given along
with the answer. Finally, an asterisk (*) before every fourth problem number indicates
a problem without an answer.

Accuracy. As with the previous editions, apart from the author, the accuracy of
the text and problem solutions has been thoroughly checked by four other parties:
Scott Hendricks, Virginia Polytechnic Institute and State University; Karim Nohra,
University of South Florida; Kurt Norlin, Laurel Tech Integrated Publishing
Services; and finally Kai Beng Yap, a practicing engineer, who in addition to
accuracy review provided content development suggestions.

Contents

The book is divided into 11 chapters, in which the principles are applied first to simple,
then to more complicated situations.

The kinematics of a particle is discussed in Chapter 12, followed by a discussion of
particle kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy),
and Chapter 15 (Impulse and Momentum). The concepts of particle dynamics
contained in these four chapters are then summarized in a “review” section, and the
student is given the chance to identify and solve a variety of problems. A similar
sequence of presentation is given for the planar motion of a rigid body: Chapter 16
(Planar Kinematics), Chapter 17 (Equations of Motion), Chapter 18 (Work and
Energy), and Chapter 19 (Impulse and Momentum), followed by a summary and
review set of problems for these chapters.



If time permits, some of the material involving three-dimensional rigid-body motion
may be included in the course. The kinematics and kinetics of this motion are discussed
in Chapters 20 and 21, respectively. Chapter 22 (Vibrations) may be included if the
student has the necessary mathematical background. Sections of the book that are
considered to be beyond the scope of the basic dynamics course are indicated by a star
(%) and may be omitted. Note that this material also provides a suitable reference for
basic principles when it is discussed in more advanced courses. Finally, Appendix A
provides a list of mathematical formulas needed to solve the problems in the book,
Appendix B provides a brief review of vector analysis, and Appendix C reviews
application of the chain rule.

Alternative Coverage. At the discretion of the instructor, it is possible to cover
Chapters 12 through 19 in the following order with no loss in continuity: Chapters 12
and 16 (Kinematics), Chapters 13 and 17 (Equations of Motion), Chapter 14 and 18
(Work and Energy), and Chapters 15 and 19 (Impulse and Momentum).
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Resources to Accompany Engineering Mechanics: Statics, Twelfth Edition

R m
MaSterl[‘_gENGINEERING

MasteringEngineering is the most technologically advanced online tutorial and
homework system. It tutors students individually while providing instructors
with rich teaching diagnostics.

MasteringEngineering is built upon the same platform as MasteringPhysics, the only
online physics homework system with research showing that it improves student
learning. A wide variety of published papers based on NSF-sponsored research and
tests illustrate the benefits of MasteringEngineering. To read these papers, please visit
www.masteringengineering.com.

MasteringEngineering for Students

MasteringEngineering improves understanding. As an Instructor-assigned homework
and tutorial system, MasteringEngineering is designed to provide students with
customized coaching and individualized feedback to help improve problem-solving skills.
Students complete homework efficiently and effectively with tutorials that provide
targeted help.

V Immediate and specific feedback on wrong answers coach
students individually. Specific feedback on common errors helps
explain why a particular answer is not correct.
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MasteringEngineering for Instructors

Incorporate dynamic homework into your course with automatic grading and
adaptive tutoring. Choose from a wide variety of stimulating problems, including
free-body diagram drawing capabilities, algorithmically-generated problem sets,

and more.

MasteringEngineering emulates the instructor’s office-hour environment,
coaching students on problem-solving techniques by asking students simpler
sub-questions.

» One click compiles all your
favorite teaching diagnostics —
the hardest problem, class grade
distribution, even which
students are spending the most
or the least time on homework.

Contact your Pearson Prentice Hall representative for more information.
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X RESOURCES FOR INSTRUCTORS

Resources for Instructors

¢ Instructor’s Solutions Manual. This supplement provides complete solutions supported by problem
statements and problem figures. The twelfth edition manual was revised to improve readability and was triple
accuracy checked.

e Instructor’s Resource CD-ROM. Visual resources to accompany the text are located on this CD as well as on
the Pearson Higher Education website: www.pearsonhighered.com. If you are in need of a login and password
for this site, please contact your local Pearson representative. Visual resources include all art from the text,
available in PowerPoint slide and JPEG format.

e Video Solutions. Developed by Professor Edward Berger, University of Virginia, video solutions are
located on the Companion Website for the text and offer step-by-step solution walkthroughs of representative
homework problems from each section of the text. Make efficient use of class time and office hours by showing
students the complete and concise problem-solving approaches that they can access any time and view at their
own pace. The videos are designed to be a flexible resource to be used however each instructor and student
prefers. A valuable tutorial resource, the videos are also helpful for student self-evaluation as students can
pause the videos to check their understanding and work alongside the video. Access the videos at
www.prenhall.com/hibbeler and follow the links for the Engineering Mechanics: Dynamics, Twelfth Edition text.

Resources for Students

e Dynamics Study Pack. This supplement contains chapter-by-chapter study materials, a Free-Body Diagram
Workbook and access to the Companion Website where additional tutorial resources are located.
e Companion Website. The Companion Website, located at www.prenhall.com/hibbeler, includes opportunities
for practice and review including:
¢ Video Solutions — Complete, step-by-step solution walkthroughs of representative homework problems from
each section. Videos offer:

¢ Fully worked Solutions—Showing every step of representative homework problems, to help students
make vital connections between concepts.

¢ Self-paced Instruction—Students can navigate each problem and select, play, rewind, fast-forward, stop,
and jump-to-sections within each problem’s solution.

e 24/7 Access—Help whenever students need it with over 20 hours of helpful review. An access code for the
Engineering Mechanics: Dynamics, Twelfth Edition website is included inside the Dynamics Study Pack.To
redeem the code and gain access to the site, go to www.prenhall.com/hibbeler and follow the directions on
the access code card. Access can also be purchased directly from the site.

e Dynamics Practice Problems Workbook. This workbook contains additional worked problems. The
problems are partially solved and are designed to help guide students through difficult topics.

Ordering Options
The Dynamics Study Pack and MasteringEngineering resources are available as stand-alone items for student
purchase and are also available packaged with the texts. The ISBN for each valuepack is as follows:

e Engineering Mechanics: Dynamics with Study Pack: 0-13-700239-4

e Engineering Mechanics: Dynamics with Study Pack and MasteringEngineering Student Access Card:
0-13-701630-1

Custom Solutions

New options for textbook customization are now available for Engineering Mechanics, Twelfth Edition. Please
contact your local Pearson/Prentice Hall representative for details.
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Although each of these planes is rather large, from a distance their motion can be
analysed as if each plane were a particle.



Kinematics of a Particle

CHAPTER OBJECTIVES

® To introduce the concepts of position, displacement, velocity, and
acceleration.

® To study particle motion along a straight line and represent this
motion graphically.

® To investigate particle motion along a curved path using different
coordinate systems.

® To present an analysis of dependent motion of two particles.

® To examine the principles of relative motion of two particles using
translating axes.

12.1 Introduction

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies subjected to the action of forces.
Engineering mechanics is divided into two areas of study, namely, statics
and dynamics. Statics is concerned with the equilibrium of a body that is
either at rest or moves with constant velocity. Here we will consider
dynamics, which deals with the accelerated motion of a body. The subject
of dynamics will be presented in two parts: kinematics, which treats only
the geometric aspects of the motion, and kinetics, which is the analysis of
the forces causing the motion. To develop these principles, the dynamics
of a particle will be discussed first, followed by topics in rigid-body
dynamics in two and then three dimensions.



CHAPTER 12

KINEMATICS OF A PARTICLE

Historically, the principles of dynamics developed when it was possible
to make an accurate measurement of time. Galileo Galilei (1564-1642)
was one of the first major contributors to this field. His work consisted of
experiments using pendulums and falling bodies. The most significant
contributions in dynamics, however, were made by Isaac Newton
(1642-1727), who is noted for his formulation of the three fundamental
laws of motion and the law of universal gravitational attraction. Shortly
after these laws were postulated, important techniques for their
application were developed by Euler, D’ Alembert, Lagrange, and others.

There are many problems in engineering whose solutions require
application of the principles of dynamics. Typically the structural design
of any vehicle, such as an automobile or airplane, requires consideration
of the motion to which it is subjected. This is also true for many
mechanical devices, such as motors, pumps, movable tools, industrial
manipulators, and machinery. Furthermore, predictions of the motions of
artificial satellites, projectiles, and spacecraft are based on the theory of
dynamics. With further advances in technology, there will be an even
greater need for knowing how to apply the principles of this subject.

Problem Solving. Dynamics is considered to be more involved
than statics since both the forces applied to a body and its motion must
be taken into account. Also, many applications require using calculus,
rather than just algebra and trigonometry. In any case, the most effective
way of learning the principles of dynamics is to solve problems. To be
successful at this, it is necessary to present the work in a logical and
orderly manner as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical
situation with the theory you have studied.

2. Draw any necessary diagrams and tabulate the problem data.

3. Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

4. Solve the necessary equations algebraically as far as practical; then,
use a consistent set of units and complete the solution numerically.
Report the answer with no more significant figures than the
accuracy of the given data.

5. Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

6. Once the solution has been completed, review the problem. Try to
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible.
Being neat generally stimulates clear and orderly thinking, and vice versa.



12.2  RECTILINEAR KINEMATICS: CONTINUOUS MOTION

12.2 Rectilinear Kinematics: Continuous
Motion

We will begin our study of dynamics by discussing the kinematics of a
particle that moves along a rectilinear or straight line path. Recall that a
particle has a mass but negligible size and shape. Therefore we must limit
application to those objects that have dimensions that are of no
consequence in the analysis of the motion. In most problems, we will be
interested in bodies of finite size, such as rockets, projectiles, or vehicles.
Each of these objects can be considered as a particle, as long as the motion
is characterized by the motion of its mass center and any rotation of the
body is neglected.

Rectilinear Kinematics. The kinematics of a particle is
characterized by specifying, at any given instant, the particle’s position,
velocity, and acceleration.

Position. The straight-line path of a particle will be defined using a
single coordinate axis s, Fig. 12—-1a. The origin O on the path is a fixed
point, and from this point the position coordinate s is used to specify the
location of the particle at any given instant. The magnitude of s is the
distance from O to the particle, usually measured in meters (m) or feet
(ft), and the sense of direction is defined by the algebraic sign on s.
Although the choice is arbitrary, in this case s is positive since the
coordinate axis is positive to the right of the origin. Likewise, it is
negative if the particle is located to the left of O. Realize that position is
a vector quantity since it has both magnitude and direction. Here,
however, it is being represented by the algebraic scalar s since the
direction always remains along the coordinate axis.

Displacement. The displacement of the particle is defined as the
change in its position. For example, if the particle moves from one point
to another, Fig. 12-1b, the displacement is

As =5 —s

In this case As is positive since the particle’s final position is to the right
of its initial position,i.e., s’ > s. Likewise, if the final position were to the
left of its initial position, As would be negative.

The displacement of a particle is also a vector quantity, and it should be
distinguished from the distance the particle travels. Specifically, the
distance traveled is a positive scalar that represents the total length of
path over which the particle travels.

O
|
Position
(a)
Q C
l As {
s |
Displacement
(b)
Fig. 12-1
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Velocity. If the particle moves through a displacement As during the
time interval At, the average velocity of the particle during this time
interval is

As
Vayg = E

If we take smaller and smaller values of Af, the magnitude of As
becomes smaller and smaller. Consequently, the instantaneous velocity is
a vector defined as v = AlimO(As/At), or

[—

() v=" (12-1)

Since At or dt is always positive, the sign used to define the sense of the
velocity is the same as that of As or ds. For example, if the particle is
moving to the right, Fig. 12-1c, the velocity is positive; whereas if it is
moving to the left, the velocity is negative. (This is emphasized here by
the arrow written at the left of Eq. 12-1.) The magnitude of the velocity
is known as the speed, and it is generally expressed in units of m/s or ft/s.

Occasionally, the term “average speed” is used. The average speed is
always a positive scalar and is defined as the total distance traveled by a
particle, s, divided by the elapsed time At; i.e.,

St
(vsp)avg = E

For example, the particle in Fig. 12-1d travels along the path of length s
in time At, so its average speed is (vs,)ag = S7/At, but its average
velocity is v,y = —As/At.

-
P

| Py
i R
St

Average velocity and
Average speed

(d)
Fig. 12-1 (cont.)
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Acceleration. Provided the velocity of the particle is known at two
points, the average acceleration of the particle during the time interval Az
is defined as

Av
Aavg = E

Here Aw represents the difference in the velocity during the time
interval Az, i.e., Av = v — v, Fig. 12-1e.

The instantaneous acceleration at time ¢ is a vector that is found by
taking smaller and smaller values of Ar and corresponding smaller and
smaller values of Av, so thata = Altigo(Av/ At),or

() = (12-2)

Substituting Eq. 12-1 into this result, we can also write

+ =
(_)) a dtZ

Both the average and instantaneous acceleration can be either positive
or negative. In particular, when the particle is slowing down, or its speed
is decreasing, the particle is said to be decelerating. In this case, v’ in
Fig. 12-1f is less than », and so Av =" — v will be negative.
Consequently, a will also be negative, and therefore it will act to the left,
in the opposite sense to v. Also, note that when the velocity is constant,
the acceleration is zero since Av = v — v = 0. Units commonly used to
express the magnitude of acceleration are m/s” or ft/s.

Finally, an important differential relation involving the displacement,
velocity, and acceleration along the path may be obtained by eliminating
the time differential df between Egs. 12-1 and 12-2, which gives

(%) (123

Although we have now produced three important kinematic
equations, realize that the above equation is not independent of
Egs. 12-1 and 12-2.

Acceleration

(e)

Deceleration

(®)
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Constant Acceleration, a = a.. When the acceleration is
constant, each of the three kinematic equations a, = dv/dt, v = ds/dt,
and a. ds = v dv can be integrated to obtain formulas that relate a., v, s,
and t.

Velocity as a Function of Time. Integrate a. = dv/dt, assuming
that initially v = v, when ¢ = 0.

v t
/ dv = /ac dt
Vo 0

= + act
- vt 12-4
(=) Constant Acceleration ( )

Position as a Function of Time. Integrate v = ds/dt = v, + a,
assuming that initially s = sy whent = 0.

N t
/ds = /(vo + agt) dt
So 0

s =S8y T vt + %act2

() (12-5)

Constant Acceleration

Velocity as a Function of Position. Either solve for tin Eq. 124
and substitute into Eq. 12-5, or integrate v dv = a.ds, assuming that

initially v = vyats = 5.
v S
/vdv = /ac ds
Yo So

(%) v? = v + 2a.(s — sp)
Constant Acceleration

(12-6)

The algebraic signs of sy, vy, and a,, used in the above three equations,
are determined from the positive direction of the s axis as indicated by
the arrow written at the left of each equation. Remember that these
equations are useful only when the acceleration is constant and when
t =0,5 = 59, v = 7. A typical example of constant accelerated motion
occurs when a body falls freely toward the earth. If air resistance is
neglected and the distance of fall is short, then the downward
acceleration of the body when it is close to the earth is constant and
approximately 9.81 m/s> or 32.2 ft/s>. The proof of this is given in
Example 13.2.
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Important Points

¢ Dynamics is concerned with bodies that have accelerated motion.
¢ Kinematics is a study of the geometry of the motion.

e Kinetics is a study of the forces that cause the motion.

e Rectilinear kinematics refers to straight-line motion.

e Speed refers to the magnitude of velocity.

® Average speed is the total distance traveled divided by the total
time. This is different from the average velocity, which is the
displacement divided by the time.

® A particle that is slowing down is decelerating.
® A particle can have an acceleration and yet have zero velocity.

® The relationship ads = vdv is derived from a = dv/dt and
v = ds/dt, by eliminating dk.

During the time this rocket undergoes rectilinear
motion, its altitude as a function of time can be
measured and expressed as s = s(¢). Its velocity
can then be found using v = ds/dt, and its
acceleration can be determined from a = dv/dt.

Procedure for Analysis

Coordinate System.
e FEstablish a position coordinate s along the path and specify its fixed origin and positive direction.

e Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be
represented as algebraic scalars. For analytical work the sense of s, v, and a is then defined by their
algebraic signs.

e The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic
equation as it is applied.

Kinematic Equations.

e [f a relation is known between any two of the four variables a, v, s and ¢, then a third variable can be
obtained by using one of the kinematic equations, a = dv/dt, v = ds/dt or ads = v dv, since each
equation relates all three variables.*

® Whenever integration is performed, it is important that the position and velocity be known at a given

instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits
of integration if a definite integral is used.

¢ Remember that Egs. 124 through 12-6 have only limited use. These equations apply only when the
acceleration is constant and the initial conditions are s = sy and v = vy when ¢t = 0.

*Some standard differentiation and integration formulas are given in Appendix A.
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n EXAMPLE |12.1

The car in Fig. 12-2 moves in a straight line such that for a short time
its velocity is defined by v = (3¢ + 2t) ft/s, where ¢ is in seconds.
Determine its position and acceleration when ¢ = 3s. When ¢ = 0,

s = 0.
B i a,v
Fig. 12-2
SOLUTION

Coordinate System. The position coordinate extends from the
fixed origin O to the car, positive to the right.

Position. Since v = f (), the car’s position can be determined from
v = ds/dt, since this equation relates v, s, and ¢. Noting that s = 0
when ¢t = 0, we have*

d
() v=%2 32+ 2)
/dy—/3z+%
s =t + 12
0 0
s=8+ 7
Whent = 3,
s=(3)P+ (3)%*=36ft Ans.

Acceleration. Since v = f(¢), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and ¢.

(5) a=%?=%6ﬂ+h)
=6t + 2
Whent = 3,
a=6(3)+2=20ft/s>—> Ans.

NOTE: The formulas for constant acceleration cannot be used to
solve this problem, because the acceleration is a function of time.

*The same result can be obtained by evaluating a constant of integration C rather
than using definite limits on the integral. For example, integrating ds = (3t + 2t)dt
yields s = 13 + 2 + C. Using the condition that at t = 0, s = 0, then C = 0.
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EXAMPLE |12.2 u

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the e
projectile experiences a deceleration of a = (—0.4v*) m/s?, where v is in
m/s. Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.
Velocity. Here a = f(v) and so we must determine the velocity as a
function of time using a = dv/dt, since this equation relates v, a, and .
(Why not use v = vy + a.t?) Separating the variables and integrating,
with vy = 60 m/s when ¢ = 0, yields

dv

(+1) a=—-=—04

v d t
/ L / dt
60m/s —0.4v 0
1<1>1
_04 _2 1)2 60
I ER
0.8[v*  (60)

N

Here the positive root is taken, since the projectile will continue to
move downward. When ¢t = 4 s,

v = 0.559m/s| Ans.
Position. Knowing v = f(¢), we can obtain the projectile’s position

from v = ds/dt, since this equation relates s, v, and ¢. Using the initial
condition s = 0, when ¢t = 0, we have

Fig. 12-3

v

ds 1 -172
L) =—= [ e O.St}
(+%) dt  1(60)?
s t 1 -1/2
/ds=/[ 2+0.8t] dt
0 o L(60)
172 |t
o= 2[ 1+ o]
0.8 (60) 0
1 1 E2E |
' 0-4{{(60)2 x| gopm
Whent = 4s,

s =443 m Ans.
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n EXAMPLE [12.3

During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height sg
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s> due to gravity. Neglect the effect of air
resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12—-4.

Maximum Height. Since the rocket is traveling upward,

vy = +75m/s when ¢ = 0. At the maximum height s = sy the velocity
vp=0 vp = 0. For the entire motion, the acceleration is a. = —9.81 m/s2
Eﬁ’\ B (negative since it acts in the opposite sense to positive velocity or

positive displacement). Since a, is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eq. 12-6, namely,

(+1) vh = V4 + 2a.(sp — 54)

0

(75 m/s)? + 2(—9.81 m/s?)(sg — 40 m)
sgp = 327 m Ans.

Velocity. To obtain the velocity of the rocket just before it hits the
ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4.

vy =75m/s
" (+1) ?

vp + 2a.(sc — sp)

N

0 + 2(—9.81 m/s?)(0 — 327 m)

54 =40m

ve = —80.1m/s = 80.1m/s | Ans.

<o
a
o mﬁ‘
Q

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C, i.e.,

Fig. 124
= (+1) V2 = v} + 2a.(sc — s54)

(75 m/s)? + 2(—9.81 m/s?)(0 — 40 m)
ve = —80.1m/s = 80.1 m/s | Ans.

NOTE: It should be realized that the rocket is subjected to a
deceleration from A to B of 9.81 m/s?, and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket
momentarily comes to rest at B (vg = 0) the acceleration at B is still
9.81 m/s? downward!
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EXAMPLE |12.4 n

A metallic particle is subjected to the influence of a magnetic field as it
travels downward through a fluid that extends from plate A to plate B,
Fig. 12-5. If the particle is released from rest at the midpoint C,
s = 100 mm, and the acceleration is a = (4s) m/s%, where s is in
meters, determine the velocity of the particle when it reaches plate B,
s = 200 mm, and the time it takes to travel from C to B.

SOLUTION
Coordinate System. As shown in Fig. 12-5, s is positive downward,
measured from plate A. = = - A
Velocity. Since a = f(s), the velocity as a function of position can | F -
be obtained by using v dv = a ds. Realizing that v = 0 at s = 0.1 m, P00 100 mm
we have H\HHHHH
P11yl L]
(+1) vdv = ads fd 200 mm
v s TR
M+ Il
[oav=[ asas -
Am RENNT HEAN -
1 v 4 s .. L | ‘B
2 =22 ;P4
2 o 2 Joim ) o
v =2(s* = 0.01)” m/s (1) Fig. 12-5
Ats =200 mm = 0.2 m,
vp = 0.346 m/s = 346 mm/s | Ans.

The positive root is chosen since the particle is traveling downward,
i.e.,1n the +s direction.

Time. The time for the particle to travel from C to B can be obtained
using v = ds/dt and Eq. 1, where s = 0.1 m when ¢ = 0. From

Appendix A,
(+1) ds = vdt
= 2(s* — 0.01)2d:
s dS t
= [ 2dt
Al (s> = 0.01)"2 /0
s t
In(\/s? — 001 +s5)| =2
0.1 0
In(\/s? = 0.01 + s5) + 2.303 = 2
Ats = 02m,
In(\/(0.2)? — 0.01 + 02) + 2.303
= = 0.658s  Ans.

2
Note: The formulas for constant acceleration cannot be used here
because the acceleration changes with position, i.e.,a = 4s.
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n EXAMPLE |12.5

A particle moves along a horizontal path with a velocity of
v = (3t — 6t) m/s, where ¢ is the time in seconds. If it is initially
located at the origin O, determine the distance traveled in 3.5 s, and the
particle’s average velocity and average speed during the time interval.

SOLUTION

s=-40m | s=6.125m Coordinate System. Here positive motion is to the right, measured
from the origin O, Fig. 12-6a.

E o Distance Traveled. Since v = f(t), the position as a function of
t=2s t=0s t=35s  time may be found by integrating v = ds/dt witht = 0, s = 0.

(a) (5) ds = vdt
= (3¢> — 6t)dt

s t
/ds = /(3t2 — 6t) dt
0 0

s = (£ = 3*)m 1)

v (m/s) In order to determine the distance traveled in 3.5 s, it is necessary to
v =326t investigate the path of motion. If we consider a graph of the velocity
‘®) function, Fig. 12-6b, then it reveals that for 0 < r < 2's the velocity is
(0,0) (2s,0) negative, which means the particle is traveling to the left,and for¢t > 2 s
the velocity is positive, and hence the particle is traveling to the right.
Also, note that v = 0 at t = 2's. The particle’s position when ¢ = 0,

(s, —3m/s) t = 2s,and t = 3.5 s can now be determined from Eq. 1. This yields

(b) S|t=0 =0 s|t=2$ = —40m S|t=3.55 = 6.125m

Fig. 12-6 The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
st =40 + 4.0 + 6.125 = 14.125m = 14.1m Ans.
Velocity. The displacement fromt = 0tot = 3.5sis
As = §|,—35 — Sl,—0 = 6.125m — 0 = 6.125m
and so the average velocity is

_As  6.125m

Vavg = E = m = 1.75 m/s—> Ans.

The average speed is defined in terms of the distance traveled sr. This
positive scalar is

sy 14125m
(olee = 3 =355 -0

Note: In this problem, the accelerationis a = dv/dt = (6t — 6) m/s?,
which is not constant.

= 4.04 m/s Ans.
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. FUNDAMENTAL PROBLEMS n

F12-1. Initially, the car travels along a straight road with a
speed of 35 m/s. If the brakes are applied and the speed of
the car is reduced to 10 m/s in 15 s, determine the constant
deceleration of the car.

...

F12-1

F12-2. A ball is thrown vertically upward with a speed of
15 m/s. Determine the time of flight when it returns to its
original position.

F12-2

F12-3. A particle travels along a straight line with a velocity
of v = (4 — 3t%) m/s, where ¢ is in seconds. Determine the
position of the particle whent = 4s.s = 0 whent = 0.

F12-3

F12-4. A particle travels along a straight line with a speed
v = (0.5t — 8¢) m/s, where ¢ is in seconds. Determine the
acceleration of the particle whent = 2s.

F12-4

F12-5. The position of the particle is given by
s = (2t> — 8t + 6) m, where ¢ is in seconds. Determine the
time when the velocity of the particle is zero, and the total
distance traveled by the particle whent = 3's.

F12-5

F12-6. A particle travels along a straight line with an
acceleration of a = (10 — 0.2s) m/s?, where s is measured in
meters. Determine the velocity of the particle when s = 10 m
ifv=5m/sats = 0.

F12-6

F12-7. A particle moves along a straight line such that its
acceleration is a = (41> — 2) m/s, where ¢ is in seconds.
When ¢ = 0, the particle is located 2 m to the left of the
origin, and when ¢ = 2 s, it is 20 m to the left of the origin.
Determine the position of the particle when ¢ = 4 s.

F12-7

F12-8. A particle travels along a straight line with a
velocity of » = (20 — 0.05s%) m/s, where s is in meters.
Determine the acceleration of the particle at s = 15 m.

F12-8



16 CHAPTER 12

KINEMATICS OF A PARTICLE

“Teropews

e12-1. A car starts from rest and with constant
acceleration achieves a velocity of 15m/s when it travels a
distance of 200 m. Determine the acceleration of the car
and the time required.

12-2. A train starts from rest at a station and travels with a
constant acceleration of 1 m/s?. Determine the velocity of the
train when ¢+ = 305 and the distance traveled during this time.

12-3. An elevator descends from rest with an acceleration
of 5ft/s until it achieves a velocity of 15 ft/s. Determine the
time required and the distance traveled.

*12-4. A car is traveling at 15m/s, when the traffic light
50 m ahead turns yellow. Determine the required constant
deceleration of the car and the time needed to stop the car
at the light.

e12-5. A particle is moving along a straight line with the
acceleration a = (12t — 3t"?)ft/s?, where ¢ is in seconds.
Determine the velocity and the position of the particle as a
function of time. Whent = 0,v = O and s = 15ft.

12-6. A ball is released from the bottom of an elevator
which is traveling upward with a velocity of 6ft/s. If the ball
strikes the bottom of the elevator shaft in 3 s, determine the
height of the elevator from the bottom of the shaft at the
instant the ball is released. Also, find the velocity of the ball
when it strikes the bottom of the shaft.

12-7. A car has an initial speed of 25 m/s and a constant
deceleration of 3 m/s’. Determine the velocity of the car
when t = 4 s.What is the displacement of the car during the
4-s time interval? How much time is needed to stop the car?

*12-8. If a particle has an initial velocity of v, = 12 ft/s to
the right, at sy = 0, determine its position when ¢t = 10 s, if
a = 2 ft/s? to the left.

¢12-9. The acceleration of a particle traveling along a
straight line is @ = k/v, where k is a constant. If s = 0,v = v,
when ¢t = 0, determine the velocity of the particle as a
function of time .

12-10. Car A starts from rest at + = 0 and travels along a
straight road with a constant acceleration of 6 ft/s” until it
reaches a speed of 80 ft/s. Afterwards it maintains this
speed. Also, when ¢ = 0, car B located 6000 ft down the
road is traveling towards A at a constant speed of 60 ft/s.
Determine the distance traveled by car A when they pass
each other.

60 ft /s

e
l

‘ 6000 ft

Prob. 12-10

12-11. A particle travels along a straight line with a velocity
v = (12 — 3t%) m/s, where ¢ is in seconds. When ¢ = 15, the
particle is located 10 m to the left of the origin. Determine
the acceleration when ¢ = 4 s, the displacement from ¢ = 0
tot = 10, and the distance the particle travels during this
time period.

*12-12. A sphere is fired downwards into a medium with
an initial speed of 27 m/s. If it experiences a deceleration of
a = (—6t) m/s?>, where ¢ is in seconds, determine the
distance traveled before it stops.

*12-13. A particle travels along a straight line such
that in 2 s it moves from an initial position s, = +0.5 m to
a position sz = —1.5 m. Then in another 4 s it moves from
sg to sc = +2.5 m. Determine the particle’s average
velocity and average speed during the 6-s time interval.

12-14. A particle travels along a straight-line path such
that in 4 s it moves from an initial position s, = —8m to a
position sz = +3 m.Then in another 5 s it moves from sp to
sc = —6 m. Determine the particle’s average velocity and
average speed during the 9-s time interval.
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12-15. Tests reveal that a normal driver takes about 0.75 s
before he or she can react to a situation to avoid a collision. It
takes about 3 s for a driver having 0.1% alcohol in his system
to do the same. If such drivers are traveling on a straight road
at 30 mph (44 ft/s) and their cars can decelerate at 2 ft/s2,
determine the shortest stopping distance d for each from the
moment they see the pedestrians. Moral: If you must drink,
please don’t drive!

Prob. 12-15

*]12-16. As a train accelerates uniformly it passes successive
kilometer marks while traveling at velocities of 2 m/s and
then 10 m/s. Determine the train’s velocity when it passes
the next kilometer mark and the time it takes to travel the
2-km distance.

*12-17. A ball is thrown with an upward velocity of 5 m/s
from the top of a 10-m high building. One second later
another ball is thrown vertically from the ground with a
velocity of 10 m/s. Determine the height from the ground
where the two balls pass each other.

12-18. A car starts from rest and moves with a constant
acceleration of 1.5 m/s? until it achieves a velocity of 25 m/s.
It then travels with constant velocity for 60 seconds.
Determine the average speed and the total distance
traveled.

12-19. A car is to be hoisted by elevator to the fourth floor
of a parking garage, which is 48 ft above the ground. If the
elevator can accelerate at 0.6 ft/ s%, decelerate at 0.3 ft/ 2,
and reach a maximum speed of 8 ft/s, determine the shortest
time to make the lift, starting from rest and ending at rest.

*12-20. A particle is moving along a straight line such that
its speed is defined as v = (—4s?) m/s, where s is in meters.
If s=2m when ¢ =0, determine the velocity and
acceleration as functions of time.
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e12-21. Two particles A and B start from rest at the origin
s =0 and move along a straight line such that
ay = (6t — 3)ft/s?> and ag = (12¢> — 8) ft/s?, where ¢ is in
seconds. Determine the distance between them when
t = 4 s and the total distance each has traveledin ¢ = 4s.

12-22. A particle moving along a straight line is subjected
to a deceleration a = (—2v%) m/s?, where o is in m/s. If it
has a velocity v = 8 m/s and a position s = 10 m when
t = 0, determine its velocity and position when ¢ = 4s.

12-23. A particle is moving along a straight line such that
its acceleration is defined as @ = (—2v) m/s?, where v is in
meters per second. If v = 20 m/s when s = 0 and ¢ = 0,
determine the particle’s position, velocity, and acceleration
as functions of time.

*12-24. A particle starts from rest and travels along a
straight line with an acceleration a = (30 — 0.2v) ft/s?,
where v is in ft/s. Determine the time when the velocity of
the particle is v = 30 ft/s.

e12-25. When a particle is projected vertically upwards
with an initial velocity of vy, it experiences an acceleration
a = —(g + kv?) ,where g is the acceleration due to gravity,
k is a constant and v is the velocity of the particle.
Determine the maximum height reached by the particle.

12-26. The acceleration of a particle traveling along a
straight line is @ = (0.02¢") m/s?, where ¢ is in seconds. If
v=20, s =0 when ¢ =0, determine the velocity and
acceleration of the particle at s = 4 m.

12-27. A particle moves along a straight line with an
acceleration of a = 5/(3s'3 + s°?) m/s?, where s is in
meters. Determine the particle’s velocity when s = 2 m, if it
starts from rest when s = 1 m. Use Simpson’s rule to
evaluate the integral.

*12-28. If the effects of atmospheric resistance are
accounted for, a falling body has an acceleration defined by
the equation a = 9.81[1 — v*(107*)] m/s? where v is in m/s
and the positive direction is downward. If the body is
released from rest at a very high altitude, determine (a) the
velocity when ¢ = 5s, and (b) the body’s terminal or
maximum attainable velocity (as t — 00).
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©12-29. The position of a particle along a straight line is
given by s = (1.5 — 13.5t> + 22.5¢) ft, where ¢ is in
seconds. Determine the position of the particle when
t = 6s and the total distance it travels during the 6-s time
interval. Hint: Plot the path to determine the total distance
traveled.

12-30. The velocity of a particle traveling along a straight
lineis v = vy — ks, where k is constant. If s = O when ¢ = 0,
determine the position and acceleration of the particle as a
function of time.

12-31. The acceleration of a particle as it moves along a
straight line is given by a = (2t — 1) m/s?, where ¢ is in
seconds. If s = 1 m and v = 2m/s when ¢ = 0, determine
the particle’s velocity and position when ¢ = 65s. Also,
determine the total distance the particle travels during this
time period.

*12-32. Ball A is thrown vertically upward from the top
of a 30-m-high-building with an initial velocity of 5 m/s. At
the same instant another ball B is thrown upward from the
ground with an initial velocity of 20 m/s. Determine the
height from the ground and the time at which they pass.

*12-33. A motorcycle starts from rest at + = 0 and travels
along a straight road with a constant acceleration of 6 ft/s
until it reaches a speed of 50 ft/s. Afterwards it maintains
this speed. Also, when ¢ = 0, a car located 6000 ft down the
road is traveling toward the motorcycle at a constant speed
of 30 ft/s. Determine the time and the distance traveled by
the motorcycle when they pass each other.

12-34. A particle moves along a straight line with a
velocity v = (200s) mm/s, where s is in millimeters.
Determine the acceleration of the particle at s = 2000 mm.
How long does the particle take to reach this position if
s = 500 mm when ¢t = 0?

®12-35. A particle has an initial speed of 27 m/s. If it
experiences a deceleration of a = (—6¢) m/s?, where ¢ is in
seconds, determine its velocity, after it has traveled 10 m.
How much time does this take?

*12-36. The acceleration of a particle traveling along a
straight line is @ = (8 — 2s) m/s?, where s is in meters. If
v =0 at s = 0, determine the velocity of the particle at
s = 2m, and the position of the particle when the velocity
is maximum.

¢12-37. Ball A is thrown vertically upwards with a velocity
of vy. Ball B is thrown upwards from the same point with
the same velocity ¢ seconds later. Determine the elapsed
time ¢ < 2/, from the instant ball A is thrown to when the
balls pass each other, and find the velocity of each ball at
this instant.

12-38. As a body is projected to a high altitude above the
earth’s surface, the variation of the acceleration of gravity
with respect to altitude y must be taken into account.
Neglecting air resistance, this acceleration is determined
from the formula a = —go[R*/(R + y)?], where g, is the
constant gravitational acceleration at sea level, R is the
radius of the earth, and the positive direction is measured
upward. If g, = 9.81 m/s? and R = 6356 km, determine the
minimum initial velocity (escape velocity) at which a
projectile should be shot vertically from the earth’s surface
so that it does not fall back to the earth. Hint: This requires
thatv = Qasy — oo.

12-39. Accounting for the variation of gravitational
acceleration a with respect to altitude y (see Prob. 12-38),
derive an equation that relates the velocity of a freely
falling particle to its altitude. Assume that the particle is
released from rest at an altitude y, from the earth’s surface.
With what velocity does the particle strike the earth if it is
released from rest at an altitude y, = 500 km? Use the
numerical data in Prob. 12-38.

*12-40. When a particle falls through the air, its initial
acceleration a = g diminishes until it is zero, and
thereafter it falls at a constant or terminal velocity v. If
this variation of the acceleration can be expressed as
a= (g/vzf)(vzf — %), determine the time needed for the
velocity to become v = v;/2. Initially the particle falls
from rest.

*12-41. A particle is moving along a straight line such that
its position from a fixed point is s = (12 — 152 + 5¢%) m,
where ¢ is in seconds. Determine the total distance traveled
by the particle from ¢ = 1sto¢ = 3s. Also, find the average
speed of the particle during this time interval.
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12.3 Rectilinear Kinematics: Erratic
Motion

When a particle has erratic or changing motion then its position, velocity,
and acceleration cannot be described by a single continuous mathematical
function along the entire path. Instead, a series of functions will be
required to specify the motion at different intervals. For this reason, it is
convenient to represent the motion as a graph. If a graph of the motion
that relates any two of the variables s,2, g, t can be drawn, then this graph
can be used to construct subsequent graphs relating two other variables
since the variables are related by the differential relationships v = ds/dt,
a = dv/dt,or ads = v dv. Several situations occur frequently.

The s-t, v—t, and a-t Graphs. To construct the v— graph given
the s—t graph, Fig. 12-7a, the equation v = ds/dt should be used, since it
relates the variables s and ¢ to v. This equation states that

dt
1 f
SIOpe ot velocity
s—t graph

For example, by measuring the slope on the s—¢ graph when t = ¢, the
velocity is v, which is plotted in Fig. 12-7b. The v—t graph can be
constructed by plotting this and other values at each instant.

The a—t graph can be constructed from the v—¢ graph in a similar
manner, Fig. 12-8, since

a_,
dt
slope of

= acceleration
v—t graph

Examples of various measurements are shown in Fig. 12-8a and plotted
in Fig. 12-8b.

If the s—t curve for each interval of motion can be expressed by a
mathematical function s = s(¢), then the equation of the v— graph for
the same interval can be obtained by differentiating this function with
respect to time since v = ds/dt. Likewise, the equation of the a—t graph
for the same interval can be determined by differentiating v = () since
a = dv/dt. Since differentiation reduces a polynomial of degree n to
that of degree n — 1, then if the s— graph is parabolic (a second-degree
curve), the v—¢ graph will be a sloping line (a first-degree curve), and the
a—t graph will be a constant or a horizontal line (a zero-degree curve).

N

_ds v, =4
Y= gr|e=0"" dtlt,
_ds _ds
Ul_dz‘tl ”3*dt‘t3
52
St S3
t
o 0 153 I3
(a)
v
vy o
(%) t3
0 f b W !
(b)
Fig. 12-7

_dv
*dt‘@
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If the a—t graph is given, Fig. 12-9a, the v— graph may be constructed
using a = dv/dt, written as

t
Av = [adt
changein _ area under
velocity ~—  a—t graph
v

o | Av Hence, to construct the v— graph, we begin with the particle’s initial
7)0> velocity vy and then add to this small increments of area (Aw)
determined from the a—t graph. In this manner successive points,
2 ! v; = vy + Av, etc., for the v—¢ graph are determined, Fig. 12-9b. Notice

(b) that an algebraic addition of the area increments of the a—t graph is
necessary, since areas lying above the ¢ axis correspond to an increase in
v (“positive” area), whereas those lying below the axis indicate a
decrease in v (“negative” area).

Similarly, if the v—t graph is given, Fig. 12-10a, it is possible to
determine the s— graph using v = ds/dt, written as

Fig. 12-9

As = [wvdt
. area under
z displacement = graph

In the same manner as stated above, we begin with the particle’s initial
position sy and add (algebraically) to this small area increments As
determined from the v—¢ graph, Fig. 12-10b.

If segments of the a—t graph can be described by a series of equations,

S1 | > then each of these equations can be integrated to yield equations
507 | describing the corresponding segments of the v—t graph. In a similar
manner, the s—¢ graph can be obtained by integrating the equations

7 t which describe the segments of the v— graph. As a result, if the a— graph

(b) is linear (a first-degree curve), integration will yield a v— graph that is

parabolic (a second-degree curve) and an s— graph that is cubic (third-
Fig. 12-10 degree curve).
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The v—s and a-s Graphs. If the a—s graph can be constructed,
then points on the v—s graph can be determined by using v dv = a ds.
Integrating this equation between the limits v = vy at s = sy and v = v,
at s = s, we have,

S1

ot - o) = [ ads
So

area under

a-s graph

Therefore, if the red area in Fig. 12-11a is determined, and the initial
velocity v, at s, = 0 is known, then v; = (2fszla ds + v%)l/z, Fig. 12-11b.
Successive points on the v—s graph can be constructed in this manner.

If the v—s graph is known, the acceleration a at any position s can be
determined using a ds = v dv, written as

0= (d)
ds

velocity times
acceleration = slope of
v—s graph

Thus, at any point (s, v) in Fig. 12-12a, the slope dv/ds of the v—s graph is
measured. Then with » and dv/ds known, the value of a can be
calculated, Fig. 12-12b.

The v—s graph can also be constructed from the a—s graph, or vice versa,
by approximating the known graph in various intervals with mathematical
functions, v = f(s) or a = g(s), and then using a ds = v dv to obtain the
other graph.

rla ds =5 (v = o))
0 2

$1

(a)

1

Vo

S1
(b)
Fig. 12-11

Vo

dv
d \/

ag

a = v(dv/ds)

e

(b)
Fig. 12-12
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n EXAMPLE [12.6

A bicycle moves along a straight road such that its position is
described by the graph shown in Fig. 12-13a. Construct the v—t and
a—t graphs for0 = ¢t = 30s.

s (ft)

500 (ﬁ)

s =20t — 100

1()()7_7

10 30 1)
(a)
SOLUTION
v (ft/s) v-t Graph. Since v = ds/dt, the v—t graph can be determined by
differentiating the equations defining the s— graph, Fig. 12-13a. We have

=2t _ d
ol v=20 0=t<10s s = () ft v = j=(2t)ft/s

10s <t =30s; s = (20¢ — 100) ft v = S=20ft/s

10 30 '®  The results are plotted in Fig. 12-13b. We can also obtain specific
values of v by measuring the slope of the s— graph at a given instant.
For example, at ¢t = 20 s, the slope of the s— graph is determined from
the straight line from 10 s to 30 s, i.e.,

As 500 ft — 100 ft
=—=—"—=20ft
T AT a0s-—10s 2008
a (ft/s%) a-t Graph. Since a = dv/dt, the a—t graph can be determined by
differentiating the equations defining the lines of the v—t graph.
This yields
2 dv 2
0=r<10s; v = (2) ft/s a=E=2ft/s
dv
= — = O
dt

(b)

t =20s;

10 <t =30s; v = 20 ft/s a

t(s
10 30 ©

© NOTE: Show that a = 2 ft/s> when ¢ = 5 s by measuring the slope of
Fig. 12-13 the v—t graph.

The results are plotted in Fig. 12-13c.
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EXAMPLE [12.7 u

The car in Fig. 12-14a starts from rest and travels along a straight

2
track such that it accelerates at 10 m/s for 10 s, and then decelerates @) DI
at 2m/s?. Draw the v—t and s—t graphs and determine the time ¢’ — 3
needed to stop the car. How far has the car traveled?

SOLUTION

v—t Graph. Since dv = a dt, the v— graph is determined by integrating A
the straight-line segments of the a—t graph. Using the initial condition
v = Owhent = 0, we have )

v t
0=t<10s; a=(10)m/s% /dv=/10dt, v =10t
0 0

10

10 A2 ‘ t (S)

(a)
When ¢ = 10s, v = 10(10) = 100 m/s. Using this as the initial
condition for the next time period, we have

v t
10s<t=t; a=(-2)m/s% / dv =/ =2dt, v= (=2t +120) m/s
. 100.m/s. 1.05 o)

When ¢t = t' we require v = 0. This yields, Fig. 12-14b,

t"=60s Ans. 100 71):1(”
A more direct solution for ¢' is possible by realizing that the area v = -2+ 120
under the a—t graph is equal to the change in the car’s velocity. We
require Av = 0 = A; + A,, Fig. 12-14a. Thus

0 = 10m/s*(10s) + (—2m/s?)(¢’ — 10s)

t'=60s Ans. : 1(s)

s—t Graph. Since ds = v dt, integrating the equations of the v— 10 r=00

graph yields the corresponding equations of the s— graph. Using the (b)
initial condition s = 0 when t = 0, we have

s t
0=¢r=10s; v = (10f) m/s; /ds = /101 dt, s = (5*) m
0 0
When ¢t = 10s, s = 5(10)> = 500 m. Using this initial condition,

s t
10s =t =60s; v = (=2t + 120) m/s; / ds = / (=2t + 120) dt
500 m 105 s (m)

s — 500

N

—t2 + 120t — [—(10)? + 120(10)] 3000
(—t? + 120t — 600) m
When ¢' = 60 s, the position is

s = —(60)? + 120(60) — 600 = 3000 m ans. O [\ o= =2+ 1200 - 600

s =5

The s—t graph is shown in Fig. 12-14c. 5 t(s)

10 [§
NOTE: A direct solution for s is possible when ¢’ = 60 s, since the ©
triangular area under the v—t graph would yield the displacement
As =s — O0fromt = 0tot’ = 60s. Hence, Fig. 12-14

As = (60 5)(100 m/s) = 3000 m Ans.
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n EXAMPLE |12.8

The v-s graph describing the motion of a motorcycle is shown in
Fig. 12-15a. Construct the a—s graph of the motion and determine the
time needed for the motorcycle to reach the position s = 400 ft.

v (ft/5) SOLUTION

a-s Graph. Since the equations for segments of the v—s graph are

v =025+ 10 given, the a—s graph can be determined using a ds = v dv.
=50
50—/~ 0 =s < 200t v = (025 + 10) ft/s
dv d
= v— = (0.2s + 10)—(0.2s + 10) = 0.04s +
" o a=v_ (0.2s 1O)ds(0 2s +10) = 0.04s + 2
N
200 400 200 ft < s = 400 ft; v = 50 ft/s
(a)
dv d
=v— = (50 50) =0
a = v = (50)--(50)

The results are plotted in Fig. 12-15b.
a (i) Time. The time can be obtained using the v—s graph and v = ds/dt,

because this equation relates v, s, and t. For the first segment of

2= 0.04s +2 motion,s = 0 whent = 0, so . y
s s
=5 < : = (025 + ; =—=—"
0 = s < 200 ft; v = (025 + 10) ft/s; dt >~ 02s + 10

t s
s (ft) /dl‘ — / L
0 0 0.2s + 10

t = (5In(02s +10) — 5In10) s

(b)
Fig. 12-15

At s = 200 ft, t = 51n[0.2(200) + 10] — 5In 10 = 8.05 s. Therefore,
using these initial conditions for the second segment of motion,
ds ds

200 ft < s = 400 ft; = 50 ft/s; dt =
S c Y /s v 50

t s
ds
dt=/ o
\/8‘055 200m50

S s
t — 8.05 50 4; t <50 405>s
Therefore, at s = 400ft,

400
= E +4.05=120s Ans.

NOTE: The graphical results can be checked in part by calculating slopes.
For example, at s = 0, a = v(dv/ds) = 10(50 — 10)/200 = 2 m/s.
Also, the results can be checked in part by inspection. The v—s graph
indicates the initial increase in velocity (acceleration) followed by
constant velocity (a = 0).
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. FUNDAMENTAL PROBLEMS

F12-9. The particle travels along a straight track such that
its position is described by the s—¢ graph. Construct the v—¢
graph for the same time interval.

s (m)

Q

108, s =108

1 t(s)
8 10

F12-9
F12-10. A van travels along a straight road with a velocity

described by the graph. Construct the s—¢ and a—t graphs
during the same period. Take s = 0 when ¢t = 0.

v (ft/s)
e
80 1
v = —4+ 80
‘ t(s)
20
F12-10

F12-11. A bicycle travels along a straight road where its
velocity is described by the v—s graph. Construct the a—s
graph for the same time interval.

v(m/s)

10

v=025s

40 s (m)

F12-11

F12-12. The sports car travels along a straight road such
that its position is described by the graph. Construct the v—¢
and a—t graphs for the time interval 0 = r = 10s.

s (m)
225+
s =30t =175 AN
—8 0@
75
s =37
0 1 —1(s)
5 10
F12-12
F12-13. The dragster starts from rest and has an

acceleration described by the graph. Construct the v—t
graph for the time interval 0 = ¢ = ¢, where ¢’ is the time
for the car to come to rest.

a (m/s?)

M S

t
0 t(s)

—10-

F12-13

F12-14. The dragster starts from rest and has a velocity
described by the graph. Construct the s—¢ graph during the
time interval 0 =t = 15s. Also, determine the total
distance traveled during this time interval.

v (m/s)

v=230t
150+ —

v=—151+225

; 5

F12-14
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12-42. The speed of a train during the first minute has
been recorded as follows:

t(s) 0 20 40 60
v (m/s) 0 16 21 24

Plot the v—t graph, approximating the curve as straight-line
segments between the given points. Determine the total
distance traveled.

12-43. A two-stage missile is fired vertically from rest with
the acceleration shown. In 15 s the first stage A burns out
and the second stage B ignites. Plot the v—¢ and s—¢ graphs
which describe the two-stage motion of the missile for
0=r=20s.

B
A
a (m/s?)
| |
ST RS
251
18
1 1 t(s)
15 20
Prob. 12-43

*12-44. A freight train starts from rest and travels with a
constant acceleration of 0.5 ft/s>. After a time ¢’ it
maintains a constant speed so that when ¢ = 160 s it has
traveled 2000 ft. Determine the time ¢’ and draw the v—¢
graph for the motion.

*12-45. If the position of a particle is defined by
s = [2sin (7/5)t + 4] m, where ¢ is in seconds, construct
the s—t,v—t,and a—t graphs for0 = ¢t = 10s.

KINEMATICS OF A PARTICLE

“lerosiews

12-46. A train starts from station A and for the first
kilometer, it travels with a uniform acceleration. Then, for
the next two kilometers, it travels with a uniform speed.
Finally, the train decelerates uniformly for another
kilometer before coming to rest at station B. If the time for
the whole journey is six minutes, draw the v—¢ graph and
determine the maximum speed of the train.

12-47. The particle travels along a straight line with the
velocity described by the graph. Construct the a—s graph.

v (m/s)

Prob. 12-47

*12-48. The a—s graph for a jeep traveling along a straight
road is given for the first 300 m of its motion. Construct the
v-s graph. Ats = 0,v = 0.

a (m/s?)
O muns ©
2
200 300 ¢ @
Prob. 12-48



*12-49. A particle travels along a curve defined by the
equation s = (2 — 3> + 2f) m. where ¢ is in seconds. Draw
the s — ¢, v — ¢, and a — ¢ graphs for the particle for
0=tr=3s.

12-50. A truck is traveling along the straight line with a
velocity described by the graph. Construct the a—s graph
for 0 = s = 1500 ft.

v (ft/s)

(v = 0.6 s34
75

s(ft)

T T
625 1500

Prob. 12-50

12-51. A car starts from rest and travels along a straight
road with a velocity described by the graph. Determine the
total distance traveled until the car stops. Construct the s—
and a—t graphs.

v(m/s)
30—
V=t v =—0.5t + 45
T T T 1(s)
30 60 90

Prob. 12-51
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*]12-52. A car travels up a hill with the speed shown.
Determine the total distance the car travels until it stops
(t = 60s). Plot the a—t graph.

v (m/s)

10

t(s)

30 60
Prob. 12-52

*12-53. The snowmobile moves along a straight course
according to the v—t graph. Construct the s— and a—t graphs
for the same 50-s time interval. Whent = 0,s = 0.

v (m/s)
el

12

t(s)

30 50
Prob. 12-53

12-54. A motorcyclist at A is traveling at 60 ft/s when he
wishes to pass the truck 7" which is traveling at a constant
speed of 60 ft/s. To do so the motorcyclist accelerates at
6 ft/s? until reaching a maximum speed of 85 ft/s. If he then
maintains this speed, determine the time needed for him to
reach a point located 100 ft in front of the truck. Draw the
v—t and s—¢ graphs for the motorcycle during this time.

(V)1 = 60 ft/s (V)2 = 85 ft/s

— —
'@'A v, = 60 ft/s <
- T |
“40 ft=~———55 ft 4" ‘_7 100 ft *"
Prob. 12-54
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KINEMATICS OF A PARTICLE

12-55. An airplane traveling at 70 m/s lands on a straight
runway and has a deceleration described by the graph.
Determine the time ¢’ and the distance traveled for it to

reach a speed of 5 m/s. Construct the v— and s—¢ graphs for

this time interval, 0 =t = ¢'.

a(m/s%)

—10

Prob. 12-55

*12-56. The position of a cyclist traveling along a straight
road is described by the graph. Construct the v— and a—

graphs.

s=—0.625¢F+27.5t— 162.5

t(s)

s (m)
137.5
50+
s =005F
T
10

20

Prob. 12-56

*12-57. The dragster starts from rest and travels along a
straight track with an acceleration-deceleration described
by the graph. Construct the v—s graph for 0 = s = ', and
determine the distance s’ traveled before the dragster again

comes to rest.

a(m/s%)

25—
a=0.1s+y
5 ’

—15

500 ‘ s(m)

Prob. 12-57

12-58. A sports car travels along a straight road with an
acceleration-deceleration described by the graph. If the car
starts from rest, determine the distance s’ the car travels
until it stops. Construct the v—s graph for 0 = s < s’.

a(ft/s%)
6
1000 s
s(ft)
_4 i
Prob. 12-58
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track and for 10 s has an acceleration as shown. Draw the is shown. Draw the s—t and a—t graphs for the motion.
v—t graph that describes the motion and find the distance
traveled in 10 s.

12-59. A missile starting from rest travels along a straight *12-61. The v—¢ graph of a car while traveling along a road u

a (m/s?) v (m/s)
N SoE=o
a=2t+20
30+
a= 6t 20
!
5 20 30 ®
1 1(s)
5 10
Prob. 12-59 Prob. 12-61
*12-60. A motorcyclist starting from rest travels along a 12-62. The boat travels in a straight line with the
straight road and for 10 s has an acceleration as shown. acceleration described by the a—s graph. If it starts from rest,
Draw the v—t graph that describes the motion and find the construct the v—s graph and determine the boat’s maximum
distance traveled in 10 s. speed. What distance s’ does it travel before it stops?
a(m/s?)
a(m/s)
6 —
N.ozs +6
F I (R
6 o
a=1
6
2 —— s(m)
150 s
t(s)
6 10 —4

Prob. 12-60 Prob. 12-62
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12-63. The rocket has an acceleration described by the ©12-65. The acceleration of the speed boat starting from
graph. If it starts from rest, construct the v—t and s—¢ rest is described by the graph. Construct the v—s graph.
graphs for the motion for the time interval 0 = ¢ =< 14s.

2
/s a(ft/s?)

10
a=oof:ﬁ>///
2 |
! s(ft)

200 500

t(s)

Prob. 12-63 Prob. 12-65

12-66. The boat travels along a straight line with the speed
described by the graph. Construct the s— and a—s graphs.
Also, determine the time required for the boat to travel a
distance s = 400 mif s = 0 when ¢ = 0.

*12-64. The jet bike is moving along a straight road with the
speed described by the v—s graph. Construct the a—s graph.

v(m/s

o(nfs) (m/s) \
80

v =552
A Y E— v=02s5s—
v=-02s + 120
V2 =4s
15 | 20<
T s(m) ‘
225 525
T T s(m)
100 400

Prob. 12-64 Prob. 12-66



12-67. The s—t graph for a train has been determined
experimentally. From the data, construct the v—¢ and a—t
graphs for the motion.

600
s =24t — 360\
360
s = 0.412\
t(s
30 40 ©
Prob. 12-67

*12-68. The airplane lands at 250 ft/s on a straight runway
and has a deceleration described by the graph. Determine
the distance s’ traveled before its speed is decreased to
25 ft/s. Draw the s—t graph.

a(ft/s?)

=7.5

=15

Prob. 12-68
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©12-69. The airplane travels along a straight runway with
an acceleration described by the graph. If it starts from rest
and requires a velocity of 90 m/s to take off, determine the
minimum length of runway required and the time ¢’ for take

off. Construct the v—t and s—t graphs.

a(m/s?)

———

a=0.8¢

12-70. The a-t graph of the bullet train is shown. If the
train starts from rest, determine the elapsed time ¢’ before it
again comes to rest. What is the total distance traveled

10

Prob. 12-69

«s)

31

during this time interval? Construct the v—¢ and s—t graphs.

a(m/s?)

a=0.1t

Prob. 12-70
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Position

(a)

Displacement

(b)

Velocity
(©)
Fig. 12-16

KINEMATICS OF A PARTICLE

12.4 General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis will
be used to formulate the particle’s position, velocity, and acceleration.*
In this section the general aspects of curvilinear motion are discussed, and
in subsequent sections we will consider three types of coordinate systems
often used to analyze this motion.

Position. Consider a particle located at a point on a space curve
defined by the path function s(¢), Fig. 12-16a. The position of the particle,
measured from a fixed point O, will be designated by the position vector
r = r(¢). Notice that both the magnitude and direction of this vector will
change as the particle moves along the curve.

Displacement. Suppose that during a small time interval At the
particle moves a distance As along the curve to a new position, defined
byr’ =r + Ar, Fig. 12-16b. The displacement Ar represents the change
in the particle’s position and is determined by vector subtraction; i.e.,
Ar =71 —r.

Velocity. During the time At, the average velocity of the particle is
Ar

Vavg = E

The instantaneous velocity is determined from this equation by letting
At — 0, and consequently the direction of Ar approaches the tangent to
the curve. Hence, v = AlimO(Ar/ At) or

t—)

_dr

Yo a

(12-7)

Since dr will be tangent to the curve, the direction of v is also tangent to
the curve, Fig. 12-16c. The magnitude of v, which is called the speed, is
obtained by realizing that the length of the straight line segment Ar in
Fig. 12-16b approaches the arc length As as Ar—0, we have
v = Altigo(Ar/At) = Altiglo(As/At), or

_ds

T

(12-8)

Thus, the speed can be obtained by differentiating the path function s
with respect to time.

*A summary of some of the important concepts of vector analysis is given in Appendix B.
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Acceleration. If the particle has a velocity v at time ¢ and a velocity A4 \
v =v + Avatt + At, Fig. 12-16d, then the average acceleration of the
particle during the time interval At is

- Av
avg Tt
(d)

where Av = v’ — v. To study this time rate of change, the two velocity
vectors in Fig. 12-16d are plotted in Fig. 12-16e such that their tails are
located at the fixed point O’ and their arrowheads touch points on a
curve. This curve is called a hodograph, and when constructed, it Ay
describes the locus of points for the arrowhead of the velocity vector in
the same manner as the path s describes the locus of points for the v
arrowhead of the position vector, Fig. 12-16a.
To obtain the instantaneous acceleration, let At — 0 in the above
equation. In the limit Av will approach the tangent to the hodograph, and
soa = Altigo(Av/At), or (e)

a = % (12_9) Hodograph

0’

Substituting Eq. 12-7 into this result, we can also write

®

dr?

By definition of the derivative, a acts tangent to the hodograph,
Fig. 12-16f, and, in general it is not tangent to the path of motion,
Fig. 12-16g. To clarify this point, realize that Av and consequently a
must account for the change made in both the magnitude and direction
of the velocity v as the particle moves from one point to the next along a
the path, Fig. 12-16d. However, in order for the particle to follow any
curved path, the directional change always “swings” the velocity vector Acceleration path
toward the “inside” or “concave side” of the path, and therefore a (@)
cannot remain tangent to the path. In summary, v is always tangent to
the path and a is always tangent to the hodograph. Fig. 12-16 (cont.)
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12.5 Curvilinear Motion: Rectangular
Components

Occasionally the motion of a particle can best be described along a path
that can be expressed in terms of its x, y, z coordinates.

Position. 1If the particle is at point (x, y, z) on the curved path s shown
in Fig. 12-17a, then its location is defined by the position vector

r=xi+ yj + zk (12-10)

Y When the particle moves, the x, y, z components of r will be functions of
time;ie.,x = x(t), y = y(¢),z = z(t),so thatr = r(z).
At any instant the magnitude of r is defined from Eq. C-3 in
Appendix C as

Position

(@ r=\/xz+y2—l-z2

And the direction of r is specified by the unit vector u, = r/r.

z Velocity. The first time derivative of r yields the velocity of the
particle. Hence,
dr d d d
_dr_d o 44

v=uvdi+oj+ok

y When taking this derivative, it is necessary to account for changes in both
the magnitude and direction of each of the vector’s components. For

x example, the derivative of the i component of r is
Velocity
d dx di
(b) —(xi) = —i+x—
dt (i) dt dt
Fig. 12-17

The second term on the right side is zero, provided the x, y, z reference
frame is fixed, and therefore the direction (and the magnitude) of i does
not change with time. Differentiation of the j and k components may be
carried out in a similar manner, which yields the final result,

d
v = d—: = 0+ 0,§ + vk (12-11)

where

Vy=X vy=y v, =2 (12-12)
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The “dot” notation x, y, z represents the first time derivatives of
x = x(t),y = y(t), z = z(t), respectively.
The velocity has a magnitude that is found from

v=\/v: + v} + 0

and a direction that is specified by the unit vector u, = v/v. As discussed
in Sec. 124, this direction is always tangent to the path, as shown in
Fig. 12-17b.

Acceleration. The acceleration of the particle is obtained by taking
the first time derivative of Eq. 12-11 (or the second time derivative of
Eq. 12-10). We have

d
a= d—: = a + a,j + ak (12-13)
where
a, = v, =
Ty = Wy = (12-14)
a, =v, =72

Here a,, ay, a; represent, respectively, the first time derivatives of
vy = 0y(1), v, = v(t), v, = v,(t), or the second time derivatives of the
functions x = x(t), y = y(t), z = z(¢).

The acceleration has a magnitude

a= ai—kai-}—a%

and a direction specified by the unit vector u, = a/a. Since a represents
the time rate of change in both the magnitude and direction of the
velocity, in general a will not be tangent to the path, Fig. 12-17c.

a=ai+aj+ak

35

Acceleration

(©)

y
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Important Points

® Curvilinear motion can cause changes in both the magnitude and
direction of the position, velocity, and acceleration vectors.

® The velocity vector is always directed tangent to the path.

® In general, the acceleration vector is not tangent to the path, but
rather, it is tangent to the hodograph.

e [f the motion is described using rectangular coordinates, then the
components along each of the axes do not change direction, only
their magnitude and sense (algebraic sign) will change.

® By considering the component motions, the change in magnitude
and direction of the particle’s position and velocity are
automatically taken into account.

Procedure for Analysis

Coordinate System.

® A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, z components.

Kinematic Quantities.

® Since rectilinear motion occurs along each coordinate axis, the
motion along each axis is found using v = ds/dt and a = dv/dt;
or in cases where the motion is not expressed as a function of
time, the equation a ds = v dv can be used.

® In two dimensions, the equation of the path y = f(x) can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

® Once the x, y, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B-3, and their coordinate direction angles from the
components of their unit vectors, Eqs. B-4 and B-5.
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EXAMPLE |12.9 n

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8¢) ft, where ¢ is in seconds. If the
equation of the path is y = x?/10, determine the magnitude and
direction of the velocity and the acceleration when ¢t = 2s.

SOLUTION
Velocity. The velocity component in the x direction is

d
vy =X = E(St) = 8 ft/s—

To find the relationship between the velocity components we will use
the chain rule of calculus. (See Appendix A for a full explanation.)

v, =y = %(xz/m) — 2xi/10 = 2(16)(8)/10 = 25.6 ft/s |

When ¢t = 2 s, the magnitude of velocity is therefore

v = \/(8ft/s)? + (25.6 ft/s)> = 26.8 ft/s Ans.
The direction is tangent to the path, Fig. 12-18b, where = 208
5 5.6 0, =72.6°
0, = tan ' — = tan_17 = 72.6° Ans. B L
Acceleration. The relationship between the acceleration components (b)

is determined using the chain rule. (See Appendix C.) We have

o d
ay =9, =(8) =0

a, =, = %(2)@/10) = 2(&)%/10 + 2x(¥)/10

= 2(8)%/10 + 2(16)(0)/10 = 12.8 ft/s* 1

Thus,

a=1281t)
a=\/(0)>+ (128)* = 128 ft/ s’ Ans. 6, = 90°
B
The direction of a, as shown in Fig. 12-18c, is .
C
12.8
0, = tanﬁlT = 90° Ans. Fig. 12-18

NOTE: It is also possible to obtain v, and a, by first expressing
y = f(t) = (8¢)?/10 = 6.4¢* and then taking successive time derivatives.
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n EXAMPLE [12.10

For a short time, the path of the plane in Fig. 12-19a is described by
y = (0.001x?) m. If the plane is rising with a constant velocity of 10 m/s,
determine the magnitudes of the velocity and acceleration of the plane
whenitisat y = 100 m.

SOLUTION
When y = 100 m, then 100 = 0.001x? or x = 316.2 m. Also, since
v, = 10 m/s, then

Y = vyl 100 m = (10 m/s) ¢ t=10s

Velocity. Using the chain rule (see Appendix C) to find the
relationship between the velocity components, we have

d
, vy = ¥ = - (0001x%) = (0.002x)% = 0.002x, )
Thus
y=o00e 10 m/s = 0.002(316.2 m)(v,)
o > v, = 15.81 m/s

The magnitude of the velocity is therefore

v=\/v+ vyz = \/(15.81 m/s)? + (10 m/s)*> = 18.7m/s  Ans.

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

(a)

a, = b, = 0.002xv, + 0.002x0, = 0.002(v: + xa,)

y When x = 3162 m, v, = 15.81 m/s, v, = a, = 0,
vyzv 0 = 0.002((15.81 m/s)* + 316.2 m(a,))
a a, = —0.791 m/s?
v)(
100 m

*  The magnitude of the plane’s acceleration is therefore

(b) a= \/ai + ai = \/(—0.791 m/s?)? + (0 m/s?)?
Fig. 12-19 = 0.791 m/s’ Ans.

These results are shown in Fig. 12-195b.
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12.6 Motion of a Projectile

The free-flight motion of a projectile is often studied in terms of its
rectangular components. To illustrate the kinematic analysis, consider a
projectile launched at point (x,, y,), with an initial velocity of v,, having
components (vy), and (vy),, Fig. 12-20. When air resistance is neglected,
the only force acting on the projectile is its weight, which causes the
projectile to have a constant downward acceleration of approximately
a, = g =981 m/s? or g = 32.2 ft/s>.*

VX

; ->
(VO)y1 ; Y vy¥ v
(VO)X r
y
Yo
| .
I
X
Fig. 12-20

Horizontal Motion. Since a, = 0, application of the constant
acceleration equations, 12—4 to 12-6, yields

(—t) v =y + ad, v, = (Vy)y
(i>) x = xg + vt + %actz; x = xo + (o)t
(5) V' = 0§ + 2ac(x — xo); vy = (V)

The first and last equations indicate that the horizontal component of
velocity always remains constant during the motion.

Vertical Motion. Since the positive y axis is directed upward, then
a, = —g. Applying Egs. 12-4 to 12-6, we get

(+1) v =1 + ad v, = (vg), — &t
(+1) Y=y + vt + yad’ Y=y + (vo)t — 38t

(+1) v* = 0§ + 2a.(y — y); vy = (v)y — 28(y — )

2

Recall that the last equation can be formulated on the basis of eliminating
the time ¢ from the first two equations, and therefore only two of the
above three equations are independent of one another.

* This assumes that the earth’s gravitational field does not vary with altitude.

Each picture in this sequence is taken
after the same time interval. The red ball
falls from rest, whereas the yellow ball is
given a horizontal velocity when released.
Both balls accelerate downward at the
same rate, and so they remain at the same
elevation at any instant. This acceleration
causes the difference in elevation between
the balls to increase between successive
photos. Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant.
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Gravel falling off the end of this conveyor
belt follows a path that can be predicted
using the equations of constant acceleration.
In this way the location of the accumulated
pile can be determined. Rectangular
coordinates are used for the analysis since
the acceleration is only in the vertical
direction.

To summarize, problems involving the motion of a projectile can have
at most three unknowns since only three independent equations can be
written; that is, one equation in the horizontal direction and two in the
vertical direction. Once v, and v, are obtained, the resultant velocity v,
which is always tangent to the path, can be determined by the vector sum
as shown in Fig. 12-20.

Procedure for Analysis

Coordinate System.

e Establish the fixed x, y coordinate axes and sketch the trajectory
of the particle. Between any two points on the path specify the
given problem data and identify the three unknowns. In all cases
the acceleration of gravity acts downward and equals 9.81 m/s?
or 32.2 ft/s*. The particle’s initial and final velocities should be
represented in terms of their x and y components.

® Remember that positive and negative position, velocity, and
acceleration components always act in accordance with their
associated coordinate directions.

Kinematic Equations.

¢ Depending upon the known data and what is to be determined, a
choice should be made as to which three of the following four
equations should be applied between the two points on the path
to obtain the most direct solution to the problem.

Horizontal Motion.

® The velocity in the horizontal or x direction is constant, i.e.,
v, = (), and

X = Xp + (’Uo)xt

Vertical Motion.

® In the vertical or y direction only two of the following three
equations can be used for solution.

vy, = (vg), + act
Y =y + (w),t + a1
v = (v9); + 2a.(y — )

For example, if the particle’s final velocity v, is not needed, then
the first and third of these equations will not be useful.
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EXAMPLE [12.11 u

A sack slides off the ramp, shown in Fig. 12-21, with a horizontal
velocity of 12 m/s. If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

y

Fig. 12-21
SOLUTION

Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12-21. The initial velocity of a sack has
components (v4), = 12m/sand (v4), = 0. Also, between points A and
B the acceleration is a, = —9.81 m/s” Since (v3), = (v4), = 12 m/s,
the three unknowns are (vg),, R, and the time of flight ¢ 4 5. Here we do
not need to determine (vg),.
Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for z 45 by using the equation

(+h Y8 = Ya + (Va)ytap + 2acp
—6m =0+ 0 + 3(—9.81 m/s?)i%5
tag = 1.11s Ans.

Horizontal Motion. Since 7,5 has been calculated, R is determined
as follows:
() xp = Xg T (Va)ddan

R=0+12m/s (1.11s)

R =133m Ans.

NOTE: The calculation for 745 also indicates that if a sack were
released from rest at A, it would take the same amount of time to strike
the floor at C, Fig. 12-21.




42 CHAPTER 12 KINEMATICS OF A PARTICLE

n EXAMPLE [12.12

The chipping machine is designed to eject wood chips at vy = 25 ft/s
as shown in Fig. 12-22. If the tube is oriented at 30° from the
horizontal, determine how high, 4, the chips strike the pile if at this
instant they land on the pile 20 ft from the tube.

Fig. 12-22

SOLUTION

Coordinate System. When the motion is analyzed between points
O and A, the three unknowns are the height 4, time of flight 754, and
vertical component of velocity (v,),. [Note that (v4), = (vp),.] With
the origin of coordinates at O, Fig. 12-22, the initial velocity of a chip
has components of

(vo)x = (25 cos 30°) ft/s = 21.65 ft/s —
(vo)y = (25sin30°) ft/s = 12.5 ft/s]

Also, (v4)x = (vo)y = 21.65 ft/sand a, = —32.2 ft/s2. Since we do
not need to determine (vy),, we have

Horizontal Motion.

(i’) x4 = X0 + (Vo)doa
20ft =0 + (2165ft/5)t0A
toa = 0.9238's

Vertical Motion. Relating 7, 4 to the initial and final elevations of a
chip, we have

(+1)  ya = yo + (vo)ytoa + 30cdha
(h — 4ft) =0 + (12.5 ft/s)(0.9238 s) + 2(—32.2 ft/s?)(0.9238 5)?
h = 1.81ft Ans.

NOTE: We can determine (v,4), by using (v,4), = (vo), + aloa.
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EXAMPLE [12.13 u

The track for this racing event was designed so that riders jump off the
slope at 30°, from a height of 1 m. During a race it was observed that
the rider shown in Fig. 12-23a remained in mid air for 1.5 s. Determine
the speed at which he was traveling off the ramp, the horizontal
distance he travels before striking the ground, and the maximum
height he attains. Neglect the size of the bike and rider.

SOLUTION y
Coordinate System. As shown in Fig. 12-23b, the origin of the C
coordinates is established at A. Between the end points of the path 30° 7
AB the three unknowns are the initial speed v,4, range R, and the ) h
vertical component of velocity (vg),. A &
m
Vertical Motion. Since the time of flight and the vertical distance i B
between the ends of the path are known, we can determine v 4. R
+1) Y8 = Ya + (Va)ytap + 2acdp ®)
—1m =0 + vysin30°(1.5s) + %(—9.81 m/s?)(1.5s)?

vy = 1338 m/s = 13.4m/s Ans. Fig. 12-23
Horizontal Motion. The range R can now be determined.
(+) Xp = Xa + (Va)dap

R =0 + 13.38 cos 30° m/s(1.5 s)
=174m Ans.

In order to find the maximum height # we will consider the path
AC, Fig. 12-23b. Here the three unknowns are the time of flight ¢ 4¢,
the horizontal distance from A to C, and the height A. At the
maximum height (v¢), = 0, and since v, is known, we can determine
h directly without considering ¢ 4¢ using the following equation.

(vc); = (va); + 2alyc — yal
0% = (13.38 sin 30° m/s)? + 2(—9.81 m/s*)[(h — 1 m) — 0]
h =328m Ans.

NOTE: Show that the bike will strike the ground at B with a velocity
having components of

(vg), = 11.6m/s—, (vg), = 8.02m/s]
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F12-15. If the x and y components of a particle’s velocity
are v, = (32t) m/s and v, = 8 m/s, determine the equation
of the path y = f(x). x = 0and y = 0 when¢ = 0.

F12-16. A particle is traveling along the straight path. If its
position along the xaxis is x = (8f) m, where ¢ is in
seconds, determine its speed when t = 2s.

y = 0.75x

x =8t

4m

F12-16

F12-17. A particle is constrained to travel along the path.
If x=(4*)m, where ¢ is in seconds, determine the
magnitude of the particle’s velocity and acceleration when
t=05s.

KINEMATICS OF A PARTICLE

. FUNDAMENTAL PROBLEMS

F12-18. A particle travels along a straight-line path
y = 0.5x. If the x component of the particle’s velocity is
v, = (2f*) m/s, where ¢ is in seconds, determine the
magnitude of the particle’s velocity and acceleration
whent = 4s.

y

-

y = 0.5x

F12-18

F12-19. A particle is traveling along the parabolic path
y = 025x2.If x = (2t*) m, where ¢ is in seconds, determine
the magnitude of the particle’s velocity and acceleration

whent = 2s.
% 0.25x

F12-19

F12-20. The position of a box sliding down the spiral can
be described by r = [2sin (2¢)i + 2 cos tj — 2¢%k] ft, where
t is in seconds and the arguments for the sine and cosine are
in radians. Determine the velocity and acceleration of the
box when ¢t = 2.

y

F12-20



F12-21. The ball is kicked from point A with the initial
velocity v, = 10 m/s. Determine the maximum height /4 it
reaches.

F12-22. The ball is kicked from point A with the initial
velocity v, = 10 m/s. Determine the range R, and the
speed when the ball strikes the ground.

F12-21/22

F12-23. Determine the speed at which the basketball at A
must be thrown at the angle of 30° so that it makes it to the
basket at B.

A\

1
fid |

10 m

—_
<~ N

F12-23

F12-24. Water is sprayed at an angle of 90° from the slope
at 20 m/s. Determine the range R.

F12-24
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F12-25. A ball is thrown from A. If it is required to clear
the wall at B, determine the minimum magnitude of its

initial velocity v 4.

3ft

12 ft

F12-25

F12-26. A projectile is fired with an initial velocity of
v, = 150 m/s off the roof of the building. Determine the
range R where it strikes the ground at B.

vy =150m/s

150 m
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12-71. The position of a particle is r = {(3t> — 20)i
— (42 + 1)j + 3> — 2)k}m, where ¢ is in seconds.
Determine the magnitude of the particle’s velocity and
acceleration when ¢t = 2 s.

*]12-72. The velocity of a particle is v = {3i + (6 — 2¢)j} m/s,
where ¢ is in seconds. If r = 0 whent = 0, determine the
displacement of the particle during the time interval
t=1stot =3s.

*12-73. A particle travels along the parabolic path y = bx?.
If its component of velocity along the y axis is v, = ct?,
determine the x and y components of the particle’s
acceleration. Here b and c are constants.

12-74. The velocity of a particle is given by
v = {16¢% + 4% + (5t + 2)k} m/s, where ¢ is in seconds. If
the particle is at the origin when ¢ = 0, determine the
magnitude of the particle’s acceleration when ¢ = 2 s. Also,
what is the x, y, z coordinate position of the particle at this
instant?

12-75. A particle travels along the circular path
x> + y* = r2.If the y component of the particle’s velocity is
v, = 2r cos 2t, determine the x and y components of its
acceleration at any instant.

*12-76. The box slides down the slope described by the
equation y = (0.05x%) m, where x is in meters. If the box has
x components of velocity and acceleration of v, = -3 m/s
and a, = -1.5m/s? at x = 5m, determine the y components
of the velocity and the acceleration of the box at this instant.

y = 0.05 x?

Prob. 12-76

KINEMATICS OF A PARTICLE

“Teropews

e12-77. The position of a particle is defined by
r = {5cos2ti + 4sin2¢j} m,where ¢ is in seconds and the
arguments for the sine and cosine are given in radians.
Determine the magnitudes of the velocity and acceleration
of the particle when ¢t = 1 s. Also, prove that the path of the
particle is elliptical.

12-78. Pegs A and B are restricted to move in the elliptical
slots due to the motion of the slotted link. If the link moves
with a constant speed of 10 m/s, determine the magnitude of
the velocity and acceleration of peg A when x = 1m.

Prob. 12-78

12-79. A particle travels along the path y?> = 4x with a
constant speed of v = 4m/s. Determine the x and y
components of the particle’s velocity and acceleration when
the particle is at x = 4 m.

*12-80. The van travels over the hill described by
y = (—1.5(107) x> + 15)ft. If it has a constant speed of
75ft/s, determine the x and y components of the van’s
velocity and acceleration when x = 50ft.

y
15 ft y=(—15(107%) x> + 15) ft
/ x
100 ft
Prob. 12-80



12.6  MOTION OF A PROJECTILE 47

Bin 1s. If it takes 3 s for it to go from A to C, determine its the component of velocity along the y axis is v, = cf, where
average velocity when it goes from B to C. both k and ¢ are constants. Determine the x and y
components of acceleration when y = yj.

*12-81. A particle travels along the circular path from A to #12-84. The path of a particle is defined by y* = 4kx, and u

y *12-85. A particle moves along the curve y = x — (x%/400),
where x and y are in ft. If the velocity component in the x
direction is v, = 2 ft/s and remains constant, determine the
magnitudes of the velocity and acceleration when x = 20 ft.

12-86. The motorcycle travels with constant speed v, along
the path that, for a short distance, takes the form of a sine
curve. Determine the x and y components of its velocity at
any instant on the curve.

y
X
Yo
Prob. 12-81 _’E y=csin (%x)
Y X

12-82. A car travels east 2 km for 5 minutes, then north 3 km ‘ \—bc(
for 8 minutes, and then west 4 km for 10 minutes. Determine U SR I
the total distance traveled and the magnitude of displacement

Prob. 12-86

of the car. Also, what is the magnitude of the average velocity

and the average speed?
12-87. The skateboard rider leaves the ramp at A with an

12-83. The roller coaster car travels down the helical path at initial velocity v, at a 30° angle. If he strikes the ground at
constant speed such that the parametric equations that define B, determine v, and the time of flight.

its position are x = csin kt,y = c cos kt,z = h — bt,where

¢, h, and b are constants. Determine the magnitudes of its

va
velocity and acceleration. A 4’ ’Q
T 30°
A -
| ) B

Sm ‘

Prob. 12-87

d *12-88. The pitcher throws the baseball horizontally with a
speed of 140 ft/s from a height of 5 ft. If the batter is 60 ft

jzz Vi/ away, determine the time for the ball to arrive at the batter

E ; and the height £ at which it passes the batter.
y [ n

St

: | |
| 60 ft |

Prob. 12-83 Prob. 12-88
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*12-89. The ball is thrown off the top of the building. If it
strikes the ground at B in 3 s, determine the initial velocity
v 4 and the inclination angle 6 4 at which it was thrown. Also,
find the magnitude of the ball’s velocity when it strikes the
ground.

75 ft

B
‘ 60 ft |

Prob. 12-89

12-90. A projectile is fired with a speed of v = 60 m/s at an
angle of 60°. A second projectile is then fired with the same
speed 0.5 s later. Determine the angle 6 of the second
projectile so that the two projectiles collide. At what
position (x, y) will this happen?

Prob. 12-90

12-91. The fireman holds the hose at an angle # = 30° with
horizontal, and the water is discharged from the hose at A
with a speed of v, = 40ft/s. If the water stream strikes the
building at B, determine his two possible distances s from
the building.

Prob. 12-91

*12-92, Water is discharged from the hose with a speed of
40ft/s. Determine the two possible angles 6 the fireman can
hold the hose so that the water strikes the building at B.
Take s = 20 ft.

Prob. 12-92



©12-93. The pitching machine is adjusted so that the
baseball is launched with a speed of v, = 30m/s. If the ball
strikes the ground at B, determine the two possible angles 6 4
at which it was launched.

vy =30m/s

Prob. 12-93

12-94. It is observed that the time for the ball to strike the
ground at B is 2.5 s. Determine the speed v 4 and angle 6 4 at
which the ball was thrown.

50 m

Prob. 12-94

12-95. If the motorcycle leaves the ramp traveling at
110 ft/s, determine the height # ramp B must have so that
the motorcycle lands safely.

110 ft /s
)
4& ot W R

4| 350 fit | B

Prob. 12-95
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*12-96. The baseball player A hits the baseball with
vy = 40 ft/s and 6, = 60°. When the ball is directly above
of player B he begins to run under it. Determine the
constant speed vy and the distance d at which B must run in
order to make the catch at the same elevation at which the
ball was hit.

| 15 £t | d |

Prob. 12-96

*12-97. A boy throws a ball at O in the air with a speed v,
at an angle 0,. If he then throws another ball with the same
speed v, at an angle 6, < 6, determine the time between
the throws so that the balls collide in mid air at B.

(@)

Y A
]

Hg%‘w

X

|
‘ X

Prob. 12-97



50 CHAPTER 12 KINEMATICS OF A PARTICLE

12-98. The golf ball is hit at A with a speed of v, = 40m/s *12-100. The velocity of the water jet discharging from the
n and directed at an angle of 30° with the horizontal as orifice can be obtained from v = V2gh, where h = 2m is
shown. Determine the distance d where the ball strikes the the depth of the orifice from the free water surface.
slope at B. Determine the time for a particle of water leaving the orifice

to reach point B and the horizontal distance x where it hits
the surface.

Prob. 12-98 Prob. 12-100

¢12-101. A projectile is fired from the platform at B. The
shooter fires his gun from point A at an angle of 30°.
Determine the muzzle speed of the bullet if it hits the
projectile at C.

12-99. If the football is kicked at the 45°angle, determine
its minimum initial speed v 4 so that it passes over the goal
post at C. At what distance s from the goal post will the
football strike the ground at B?

B
T
Va 1o‘m
A A 300
% ﬁ/ ]1.8 m l
A 160 ft 5B 20m

Prob. 12-99 Prob. 12-101



12-102. A golf ball is struck with a velocity of 80 ft/s as
shown. Determine the distance d to where it will land.

Prob. 12-102

12-103. The football is to be kicked over the goalpost,
which is 15 ft high. If its initial speed is v, = 80 ft/s,
determine if it makes it over the goalpost, and if so, by how
much, A.

*12-104. The football is kicked over the goalpost with an
initial velocity of v, = 80 ft/s as shown. Determine the
point B (x, y) where it strikes the bleachers.

T e
Vyp = 80 ft/S At; B
15 1t
60 451 |
25 f— 30 ft —x—|

Probs. 12-103/104
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*12-105. The boy at A attempts to throw a ball over the
roof of a barn with an initial speed of v, = 15m/s.
Determine the angle 6 4 at which the ball must be thrown so
that it reaches its maximum height at C. Also, find the
distance d where the boy should stand to make the throw.

Prob. 12-105

12-106. The boy at A attempts to throw a ball over the roof
of a barn such that it is launched at an angle 6, = 40°.
Determine the minimum speed v, at which he must throw
the ball so that it reaches its maximum height at C. Also,
find the distance d where the boy must stand so that he can
make the throw.

Prob. 12-106
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12-107. The fireman wishes to direct the flow of water ¢12-109. Determine the horizontal velocity v, of a tennis
from his hose to the fire at B. Determine two possible ball at A so that it just clears the net at B. Also, find the
angles 0, and 6, at which this can be done. Water flows from distance s where the ball strikes the ground.

the hose at v, = 80 ft/s.

20 ft
B
‘ N ‘ 21 ft }
35 ft |
Prob. 12-107 Prob. 12-109

*12-108. Small packages traveling on the conveyor belt fall 12-110. Itis observed that the skier leaves the ramp A at an
off into a I-m-long loading car. If the conveyor is running at a angle 6, = 25° with the horizontal. If he strikes the ground
constant speed of ve = 2 m/s, determine the smallest and at B, determine his initial speed v 4 and the time of flight ¢ 4.

largest distance R at which the end A of the car may be
placed from the conveyor so that the packages enter the car.

AN
‘\V
>% 3m

\{ AB

R Tm -

Prob. 12-108 Prob. 12-110
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12.7 Curvilinear Motion: Normal and
Tangential Components

When the path along which a particle travels is known, then it is often
convenient to describe the motion using n and ¢ coordinate axes which
act normal and tangent to the path, respectively, and at the instant
considered have their origin located at the particle.

Planar Motion. Consider the particle shown in Fig. 12-24a, which
moves in a plane along a fixed curve, such that at a given instant it is at
position s, measured from point O. We will now consider a coordinate
system that has its origin at a fixed point on the curve, and at the instant
considered this origin happens to coincide with the location of the
particle. The ¢ axis is tangent to the curve at the point and is positive in
the direction of increasing s. We will designate this positive direction with
the unit vector u,. A unique choice for the normal axis can be made by
noting that geometrically the curve is constructed from a series of
differential arc segments ds, Fig. 12-24b. Each segment ds is formed from
the arc of an associated circle having a radius of curvature p (rho) and
center of curvature O'. The normal axis n is perpendicular to the ¢ axis with
its positive sense directed toward the center of curvature O, Fig. 12-24a.
This positive direction, which is always on the concave side of the curve,
will be designated by the unit vector u,,. The plane which contains the n
and ¢ axes is referred to as the embracing or osculating plane, and in this
case it is fixed in the plane of motion.*

Velocity. Since the particle moves, s is a function of time. As
indicated in Sec. 12.4, the particle’s velocity v has a direction that is
always tangent to the path, Fig. 12-24c, and a magnitude that is
determined by taking the time derivative of the path function s = s(t),
ie,v = ds/dt (Eq.12-8). Hence

219

where

v =5 (12-16)

*The osculating plane may also be defined as the plane which has the greatest contact
with the curve at a point. It is the limiting position of a plane contacting both the point and
the arc segment ds. As noted above, the osculating plane is always coincident with a plane
curve; however, each point on a three-dimensional curve has a unique osculating plane.

Position

(a)

Radius of curvature

(®)

Velocity
©

Fig. 12-24
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Acceleration. The acceleration of the particle is the time rate of
change of the velocity. Thus,

a=v=1u + v (12-17)

In order to determine the time derivative u,, note that as the particle
moves along the arc ds in time dt, u, preserves its magnitude of unity;
however, its direction changes, and becomes u;, Fig. 12-24d. As shown in
Fig. 12-24e, we require uw; = u, + du,. Here du, stretches between the
arrowheads of u, and u;, which lie on an infinitesimal arc of radius u, = 1.
Hence, du, has a magnitude of du, = (1) d6, and its direction is defined by
u,,. Consequently, du, = d6u,,, and therefore the time derivative becomes

u, = Ou,,. Since ds = pd®, Fig. 12-24d, then § = §/p, and therefore

<

. : S
u, = fu, = —u, = —u,

Substituting into Eq. 12-17, a can be written as the sum of its two

components,
© a = gu, + a,u, (12-18)
where
a, = v or ads = v dv (12-19)
o
and
2
v
an=" (12-20)
Acceleration
@) These two mutually perpendicular components are shown in Fig. 12-24f.

Therefore, the magnitude of acceleration is the positive value of

a=\/a’ +a (12-21)

Fig. 12-24 (cont.)
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To better understand these results, consider the following two special
cases of motion.

1. If the particle moves along a straight line, then p — c0 and from
Eq. 12-20, a,, = 0. Thus a = a, = v, and we can conclude that the
tangential component of acceleration represents the time rate of
change in the magnitude of the velocity.

2. If the particle moves along a curve with a constant speed, then
a, =9 =0 and a = a, = v*/p. Therefore, the normal component
of acceleration represents the time rate of change in the direction of
the velocity. Since a,, always acts towards the center of curvature,
this component is sometimes referred to as the centripetal (or center
seeking) acceleration.

As aresult of these interpretations, a particle moving along the curved
path in Fig. 12-25 will have accelerations directed as shown.

a=a,

Change in
direction of
velocity >
Increasing -

an
speed -

o
Change in
magnitude of
velocity

Fig. 12-25

Three-Dimensional Motion. If the particle moves along a space
curve, Fig. 12-26, then at a given instant the ¢ axis is uniquely specified;
however, an infinite number of straight lines can be constructed normal
to the tangent axis. As in the case of planar motion, we will choose the
positive n axis directed toward the path’s center of curvature O'. This axis
is referred to as the principal normal to the curve. With the n and ¢ axes so
defined, Eqs. 12-15 through 12-21 can be used to determine v and a. Since
u, and u, are always perpendicular to one another and lie in the
osculating plane, for spatial motion a third unit vector, u,, defines the
binormal axis b which is perpendicular to u, and u,,, Fig. 12-26.

Since the three unit vectors are related to one another by the vector
cross product, e.g.,u, = u, X u,, Fig. 12-26, it may be possible to use this
relation to establish the direction of one of the axes, if the directions of
the other two are known. For example, if no motion occurs in the u,
direction, and this direction and w, are known, then u, can be
determined, where in this case u, = u, X u,, Fig. 12-26. Remember,
though, that u,, is always on the concave side of the curve.

osculating plane

Fig. 12-26

55



56 CHAPTER 12 KINEMATICS OF A PARTICLE

Procedure for Analysis

Coordinate System.

e Provided the path of the particle is known, we can establish a set
of n and ¢ coordinates having a fixed origin, which is coincident
with the particle at the instant considered.

e The positive tangent axis acts in the direction of motion and the
positive normal axis is directed toward the path’s center of
curvature.

Velocity.

e The particle’s velocity is always tangent to the path.

e The magnitude of velocity is found from the time derivative of
the path function.

v=37

Tangential Acceleration.

e The tangential component of acceleration is the result of the time
rate of change in the magnitude of velocity. This component acts
in the positive s direction if the particle’s speed is increasing or in
the opposite direction if the speed is decreasing.

e The relations between a,, v, t and s are the same as for rectilinear
motion, namely,

a,=v ads=vdv
e If a,is constant,a, = (a,)., the above equations, when integrated,
yield
— 1 2
s =58yt vt + 5(a,)t
Vo + (at)ct

W2 = o} + 2(a)(s — %)

Normal Acceleration.

e The normal component of acceleration is the result of the time
rate of change in the direction of the velocity. This component is
always directed toward the center of curvature of the path, i.e.,
along the positive n axis.

e The magnitude of this component is determined from

a, = —
Motorists traveling along this clover- p

leaf interchange experience a normal ] . .
acceleration due to the change in e If the path is expressed as y = f(x), the radius of curvature p at

direction of their velocity. A tangential any point on the path is determined from the equation

component of acceleration occurs when 213/2
the cars’ speed is increased or decreased. = [ = {dyjax)]

|d?y/dx?|

The derivation of this result is given in any standard calculus text.
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EXAMPLE |12.14 u

When the skier reaches point A along the parabolic path in Fig. 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s%. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
of its x and y coordinates, we can still establish the origin of the n, f axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Velocity. By definition, the velocity is always directed tangent to the
path. Since y = zlfoxz, dy/dx = %x, then at x = 10 m, dy/dx = 1.
Hence, at A, v makes an angle of 6 = tan 1 = 45° with the x axis,
Fig. 12-27a. Therefore,

vy = 6m/s 45° Ans.

The acceleration is determined from a = vu, + (v?/p)u,. However,
it is first necessary to determine the radius of curvature of the path at
A (10 m, 5 m). Since d?y/dx* = 75, then

[+ (dy/dx)2? 1+ (55x)2 ] 28.28
= = = 0 m
|d2y/dx2| |11*0| x=10m

The acceleration becomes

. v?

m, + —u,
P
(6m/s)?

2828m "
= {2u, + 1.273u,}m/s’

ay

=2u, +

As shown in Fig. 12-27b,

a= \/(2 m/s?)? + (1.273 m/s?)? = 2.37 m/s?

2
= tan l——— = 57.5°
¢ =tan o0

Thus, 45° + 90° + 57.5° — 180° = 12.5° so that,
a=237m/s 12.5°%7 Ans.

NOTE: By using n, t coordinates, we were able to readily solve this
problem through the use of Eq. 12-18, since it accounts for the separate
changes in the magnitude and direction of v.

(b)
Fig. 12-27
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n EXAMPLE |12.15

A race car C travels around the horizontal circular track that has a
radius of 300 ft, Fig. 12-28. If the car increases its speed at a constant
rate of 7 ft/s?, starting from rest, determine the time needed for it to
reach an acceleration of 8 ft/s?. What is its speed at this instant?

r =300 ft

Fig. 12-28

SOLUTION

Coordinate System. The origin of the n and ¢ axes is coincident
with the car at the instant considered. The ¢ axis is in the direction of
motion, and the positive n axis is directed toward the center of the
circle. This coordinate system is selected since the path is known.

Acceleration. The magnitude of acceleration can be related to its
components using ¢ = \/a? + a2.Here a, = 7 ft/s* Since a, = v*/p,
the velocity as a function of time must be determined first.

v =1+ (a)t

v=0+ 7t
Thus 5 (7 )2
v t
= — = —"— = 0.163¢*ft/s>
=T 300 /s

The time needed for the acceleration to reach 8 ft/s? is therefore
a="\/ a,2 + a%,
8ft/s> = \/ (7 ft/s)? + (0.163r2)
Solving for the positive value of ¢ yields
01632 = \/(8 ft/s2)? — (7 ft/s2)?

t =4387s Ans.
Velocity. The speed at time ¢ = 4.87 s is
v ="Tt="7(487) = 34.1 ft/s Ans.

NOTE: Remember the velocity will always be tangent to the path,
whereas the acceleration will be directed within the curvature of the path.
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EXAMPLE |12.16 u

The boxes in Fig. 12-29a travel along the industrial conveyor. If a box
as in Fig. 12-29b starts from rest at A and increases its speed such that
a, = (0.2¢t) m/s?, where t is in seconds, determine the magnitude of its
acceleration when it arrives at point B.

SOLUTION

Coordinate System. The position of the box at any instant is
defined from the fixed point A using the position or path coordinate s,
Fig. 12-29b. The acceleration is to be determined at B, so the origin of
the n, t axes is at this point.

Acceleration. To determine the acceleration components a, = v
and a, = v*/p, it is first necessary to formulate » and  so that they
may be evaluated at B. Since v, = 0 when ¢t = 0, then

a,=v =02 1)
v t
/ dv = / 0.2t dt
0 0
v =0.1¢ ()

The time needed for the box to reach point B can be determined by
realizing that the position of B is sz =3 + 27 (2)/4 = 6.142 m,
Fig. 12-29b, and since s, = 0 when t = 0 we have

ds
=— =017
T

6.142 ts
/ ds = / 0.1¢%dt (b)
0 0

6.142 m = 0.0333r3
tB = 5690S

Substituting into Eqs. 1 and 2 yields
(ag), = vg = 0.2(5.690) = 1.138 m/s>
vg = 0.1(5.69)* = 3.238 m/s
At B, pp = 2 m, so that

2 2
vy (3.238m/s) )
=—=———""=5242
(an)y = -2 == m/s &

B 1.138m/s?

©
ag =\/(1.138 m/s)% + (5242 m/s?)? = 536 m/s> Ans Fig. 12-29

_=+

apg

5.242 m/s?

The magnitude of ag, Fig. 12-29c¢, is therefore
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F12-27. The boat is traveling along the circular path with a
speed of v = (0.0625¢%) m/s, where ¢ is in seconds. Determine
the magnitude of its acceleration when t = 10 s.

FUNDAMENTAL PROBLEMS

t

v = 0.0625
40 m n

O
F12-27

F12-28. The car is traveling along the road with a speed of
v = (300/s) m/s, where s is in meters. Determine the
magnitude of its acceleration whent = 3sift = Oats = 0.

v = (300)m/s

N

F12-28

F12-29. If the car decelerates uniformly along the curved
road from 25m/s at A to 15m/s at C, determine the
acceleration of the car at B.

F12-29

KINEMATICS OF A PARTICLE

F12-30. When x = 10 ft, the crate has a speed of 20 ft/s
which is increasing at 6 ft/s?. Determine the direction of the
crate’s velocity and the magnitude of the crate’s acceleration
at this instant.

20 ft /s

ps

~—10 ft——‘

F12-30

F12-31. If the motorcycle has a deceleration of
a, = —(0.001s) m/s? and its speed at position A is 25 m/s,
determine the magnitude of its acceleration when it passes
point B.

F12-31

F12-32. The car travels up the hill with a speed of
v = (0.2s) m/s, where s is in meters, measured from A.
Determine the magnitude of its acceleration when it is at
point s = 50 m, where p = 500 m.
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“lerosiews

12-111. When designing a highway curve it is required that
cars traveling at a constant speed of 25 m/s must not have
an acceleration that exceeds 3 m/s’. Determine the
minimum radius of curvature of the curve.

*12-112. At a given instant, a car travels along a circular
curved road with a speed of 20 m/s while decreasing its speed
at the rate of 3 m/s?. If the magnitude of the car’s acceleration
is 5 m/s?, determine the radius of curvature of the road.

¢12-113. Determine the maximum constant speed a race
car can have if the acceleration of the car cannot exceed
7.5 m/s? while rounding a track having a radius of curvature
of 200 m.

12-114. An automobile is traveling on a horizontal circular
curve having a radius of 800 ft. If the acceleration of the
automobile is 5 ft/s?, determine the constant speed at
which the automobile is traveling.

12-115. A car travels along a horizontal circular curved
road that has a radius of 600 m. If the speed is uniformly
increased at a rate of 2000 km/ h?, determine the magnitude
of the acceleration at the instant the speed of the car is
60 km/h.

*]12-116. The automobile has a speed of 80 ft/s at point A
and an acceleration a having a magnitude of 10 ft/s? acting
in the direction shown. Determine the radius of curvature
of the path at point A and the tangential component of
acceleration.

Prob. 12-116

*12-117. Starting from rest the motorboat travels around
the circular path, p = 50 m, at a speed v = (0.8¢) m/s,
where ¢ is in seconds. Determine the magnitudes of the
boat’s velocity and acceleration when it has traveled 20 m.

12-118. Starting from rest, the motorboat travels around
the circular path, p = 50 m, at a speed v = (0.2¢%) m/s,
where ¢ is in seconds. Determine the magnitudes of the
boat’s velocity and acceleration at the instant ¢t = 3s.

p=50m

Probs. 12-117/118
12-119. A car moves along a circular track of radius 250 ft,
and its speed for a short period of time 0 <t < 25 is
v = 3(t + ?) ft/s, where ¢ is in seconds. Determine the
magnitude of the car’s acceleration when ¢ = 2 s. How far
has it traveled in t = 2s?

*12-120. The car travels along the circular path such that its
speed is increased by a, = (0.5¢') m/s?>, where ¢ is in
seconds. Determine the magnitudes of its velocity and
acceleration after the car has traveled s = 18 m starting
from rest. Neglect the size of the car.

\

s=18m

p=30m

Prob. 12-120
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©12-121. The train passes point B with a speed of 20 m/s
which is decreasing at a, = —0.5 m/s%. Determine the
magnitude of acceleration of the train at this point.

12-122. The train passes point A with a speed of 30 m/s
and begins to decrease its speed at a constant rate of
a, = —-025m/s>. Determine the magnitude of the
acceleration of the train when it reaches point B, where
Sap = 412 m.

x

y = 200 1000

~——400 m——

Probs. 12-121/122

12-123. The car passes point A with a speed of 25 m/s after
which its speed is defined by » = (25 — 0.15s) m/s.
Determine the magnitude of the car’s acceleration when it
reaches point B, where s = 51.5 m.

*12-124. 1If the car passes point A with a speed of 20 m/s
and begins to increase its speed at a constant rate of
a, = 0.5m/s?, determine the magnitude of the car’s
acceleration when s = 100 m.

16m ‘\74

Probs. 12-123/124

*12-125. When the car reaches point A it has a speed of
25 m/s. If the brakes are applied, its speed is reduced by
a, = (—3 tl/z) m/s?. Determine the magnitude of acceleration
of the car just before it reaches point C.

12-126. When the car reaches point A, it has a speed of
25 m/s. If the brakes are applied, its speed is reduced by
a, = (0.001s — 1) m/s>. Determine the magnitude of
acceleration of the car just before it reaches point C.

200 m

Probs. 12-125/126

12-127. Determine the magnitude of acceleration of the
airplane during the turn. It flies along the horizontal
circular path AB in 40 s, while maintaining a constant speed
of 300 ft/s.

*12-128. The airplane flies along the horizontal circular path
AB in 60 s. If its speed at point A is 400 ft/s, which decreases
at arate of @, = (-0.1¢) ft/s?, determine the magnitude of the
plane’s acceleration when it reaches point B.

60°

Probs. 12-127/128
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¢12-129. When the roller coaster is at B, it has a speed of
25 m/s, which is increasing at a, = 3 m/s>. Determine the
magnitude of the acceleration of the roller coaster at this
instant and the direction angle it makes with the x axis.

12-130. If the roller coaster starts from rest at A and its
speed increases at a, = (6—0.06s)m/s>, determine the
magnitude of its acceleration when it reaches B where

sp = 40 m.
_ 1 2
%‘100)‘
fA

<

~—30m—

Probs. 12-129/130

12-131. The car is traveling at a constant speed of 30 m/s.
The driver then applies the brakes at A and thereby reduces
the car’s speed at the rate of a, = (~0.08v) m/s?, where v is
in m/s. Determine the acceleration of the car just before it
reaches point C on the circular curve. It takes 15 s for the
car to travel from A to C.

*]12-132. The car is traveling at a speed of 30 m/s. The

driver applies the brakes at A and thereby reduces the
_ (1 2 ..

speed at the rate of a, = ( 8t) m/s”, where ¢ is in seconds.

Determine the acceleration of the car just before it reaches

point C on the circular curve. It takes 15 s for the car to

travel from A to C.

Probs. 12-131/132

*12-133. A particle is traveling along a circular curve
having a radius of 20 m. If it has an initial speed of 20m/s
and then begins to decrease its speed at the rate of
a, = (—0.25s5)m/s?, determine the magnitude of the
acceleration of the particle two seconds later.

12-134. A racing car travels with a constant speed of
240 km/h around the elliptical race track. Determine the
acceleration experienced by the driver at A.

12-135. The racing car travels with a constant speed of
240 km/h around the elliptical race track. Determine the
acceleration experienced by the driver at B.

—— 4 km

Probs. 12-134/135

*]12-136. The position of a particle is defined by
r= {2sin({ri + 2cos(§)rj + 3tk} m, where ¢ is in
seconds. Determine the magnitudes of the velocity and
acceleration at any instant.

¢12-137. The position of a particle is defined by
r = {3i + 3r%j + 8tk} m, where ¢is in seconds. Determine
the magnitude of the velocity and acceleration and the
radius of curvature of the path when ¢ = 2 s.
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12-138. Car B turns such that its speed is increased by
(a)p = (0.5¢") m/s?, where ¢ is in seconds. If the car starts
from rest when 6 = 0°, determine the magnitudes of its
velocity and acceleration when the arm AB rotates § = 30°.
Neglect the size of the car.

12-139. Car B turns such that its speed is increased by
(a)p = (0.5¢") m/s?, where ¢ is in seconds. If the car starts
from rest when 6 = 0°, determine the magnitudes of its
velocity and acceleration when ¢ = 2 's. Neglect the size of
the car.

Ve

Probs. 12-138/139

*12-140. The truck travels at a speed of 4 m/s along a
circular road that has a radius of 50 m. For a short distance
from s = 0, its speed is then increased by @, = (0.05s) m/s?,
where s is in meters. Determine its speed and the magnitude
of its acceleration when it has moved s = 10 m.

¢12-141. The truck travels along a circular road that has a
radius of 50 m at a speed of 4 m/s. For a short distance when
t = 0,its speed is then increased by a, = (0.4t) m/s?, where
t is in seconds. Determine the speed and the magnitude of
the truck’s acceleration when t = 4.

Probs. 12-140/141

12-142. Two cyclists, A and B, are traveling counterclockwise
around a circular track at a constant speed of 8 ft/s at
the instant shown. If the speed of A is increased at
()4 = (sy) ft/s>, where s, is in feet, determine the
distance measured counterclockwise along the track from B
to A between the cyclists when ¢ = 1s. What is the
magnitude of the acceleration of each cyclist at this instant?

Prob. 12-142

12-143. A toboggan is traveling down along a curve which
can be approximated by the parabola y = 0.01x2
Determine the magnitude of its acceleration when it
reaches point A, where its speed is v, = 10 m/s, and it is
increasing at the rate of (¢,) 4 = 3 m/s.

y = 0.01x?

: |
—— 60m——|

Prob. 12-143
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*12-144. The jet plane is traveling with a speed of 120 m/s 12-146. The motorcyclist travels along the curve at a
which is decreasing at 40 m/s> when it reaches point A. constant speed of 30 ft/s. Determine his acceleration when
Determine the magnitude of its acceleration when it is at he is located at point A. Neglect the size of the motorcycle

this point. Also, specify the direction of flight, measured and rider for the calculation.
from the x axis.

‘ 100 ft

Prob. 12-144 Prob. 12-146

*12-145. The jet plane is traveling with a constant speed of 12-147. The box of negligible size is sliding down along a

110 m/s along the curved path. Determine the magnitude of curved path defined by the parabola y = 0.4x% When it is at
the acceleration of the plane at the instant it reaches point A(xy =2m,y, = 1.6 m), the speed is vz = 8 m/s and the
Ay =0). increase in speed is dvg/dt = 4m/s’. Determine the

magnitude of the acceleration of the box at this instant.

y = 0.4x2

2m

Prob. 12-145 Prob. 12-147
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*12-148. A spiral transition curve is used on railroads to
connect a straight portion of the track with a curved
portion. If the spiral is defined by the equation
y = (107%)x3, where x and y are in feet, determine the
magnitude of the acceleration of a train engine moving with
a constant speed of 40 ft/s when it is at point x = 600 ft.

[—— 600 ft ——

Prob. 12-148

©12-149. Particles A and B are traveling counter-clockwise
around a circular track at a constant speed of 8 m/s. If at
the instant shown the speed of A begins to increase by
(a;)4 =(0.4s,) m/s>, where s, is in meters, determine the
distance measured counterclockwise along the track from B
to A when ¢t = 1s. What is the magnitude of the
acceleration of each particle at this instant?

Prob. 12-149

12-150. Particles A and B are traveling around a circular
track at a speed of 8 m/s at the instant shown. If the speed of
B is increasing by (a,)5 = 4 m/s?, and at the same instant A
has an increase in speed of (a,) 4 = 0.8t m/s?, determine how
long it takes for a collision to occur. What is the magnitude of
the acceleration of each particle just before the collision
occurs?

Prob. 12-150

12-151. The race car travels around the circular track with a
speed of 16 m/s. When it reaches point A it increases its
speed at a, = (% v'4)m/s?, where v is in m/s. Determine the
magnitudes of the velocity and acceleration of the car when
it reaches point B. Also, how much time is required for it to
travel from A to B?

200 m

Prob. 12-151
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#12-152. A particle travels along the path y = a + bx + cx?, 12-154. The motion of a particle is defined by the
where a, b, ¢ are constants. If the speed of the particle is equations x = (2t + ) m and y = (*) m, where ¢ is in
constant, v = v), determine the x and y components seconds. Determine the normal and tangential components
of velocity and the normal component of acceleration of the particle’s velocity and acceleration when ¢t = 2s.

when x = 0.

e12-153. The ball is kicked with an initial speed 12-155. The motorcycle travels along the elliptical track at

v, = 8 m/s at an angle 6, = 40° with the horizontal. Find a constant speed v. Determine the greatest magnitude of
the equation of the path, y = f(x), and then determine the the acceleration if a > b.
normal and tangential components of its acceleration when
t=1025s.
y
o
vy=8m/s T
- Y
9A = 40° \
X
A X
Prob. 12-153 Prob. 12-155

12.8 Curvilinear Motion: Cylindrical
Components

Sometimes the motion of the particle is constrained on a path that is best
described using cylindrical coordinates. If motion is restricted to the plane,
then polar coordinates are used.

Polar Coordinates. We can specify the location of the particle
shown in Fig. 12-30a using a radial coordinate r, which extends outward
from the fixed origin O to the particle, and a fransverse coordinate 0,
which is the counterclockwise angle between a fixed reference line and
the r axis. The angle is generally measured in degrees or radians, where
1 rad = 180°/7r. The positive directions of the r and 6 coordinates are
defined by the unit vectors u, and wuy, respectively. Here wu, is in the
direction of increasing r when 6 is held fixed, and uy is in a direction of
increasing # when r is held fixed. Note that these directions are
perpendicular to one another.

Position
(a)
Fig. 12-30



ahmad
Highlight

ahmad
Highlight


68

CHAPTER 12

Uy

Position

(a)

KINEMATICS OF A PARTICLE

Velocity
(0)

Fig. 12-30 (cont.)

Position. At any instant the position of the particle, Fig. 12-30a, is
defined by the position vector

r =ru, (12-22)

Velocity. The instantaneous velocity v is obtained by taking the time
derivative of r. Using a dot to represent the time derivative, we have

vV=rt=ru + ru,

To evaluate u,, notice that u, only changes its direction with respect to
time, since by definition the magnitude of this vector is always one unit.
Hence, during the time At, a change Ar will not cause a change in the
direction of u,; however, a change A6 will cause u, to become u,, where
u, = u, + Au,, Fig. 12-30b. The time change in u, is then Au,. For small
angles A@ this vector has a magnitude Au, ~ 1(A@) and acts in the u,
direction. Therefore, Au, = Afu,, and so

A (A
= e At ot At Yo
u, = bu, (12-23)

Substituting into the above equation, the velocity can be written in
component form as

vV = v, + vhly (12-24)
where
v, =F
" . 122
Vg = ré ( 5)

These components are shown graphically in Fig. 12-30c. The radial
component v, is a measure of the rate of increase or decrease in the
length of the radial coordinate, i.e., 7; whereas the transverse component
vy can be interpreted as the rate of motion along the circumference of a
circle having a radius r. In particular, the term 6 = df/dt is called the
angular velocity, since it indicates the time rate of change of the angle 6.
Common units used for this measurement are rad/s.

Since v, and vy are mutually perpendicular, the magnitude of velocity
or speed is simply the positive value of

v=\/()?+ () (12-26)

and the direction of v is, of course, tangent to the path, Fig. 12-30c.
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Acceleration. Taking the time derivatives of Eq. 12-24, using
Eqgs. 12-25, we obtain the particle’s instantaneous acceleration,

a=v=ru +r, + iu, + rou, + rou,

To evaluate uy, it is necessary only to find the change in the direction of ug
since its magnitude is always unity. During the time At, a change Ar will not
change the direction of u,, however, a change A# will cause u, to become
uy, where uy = uy + Awuy, Fig. 12-30d. The time change in ug is thus Au,.
For small angles this vector has a magnitude Auy ~ 1(A6) and acts in the

—u,, direction; i.e., Auy; = —Afu,. Thus,
= L Auy - —(y ﬁ
Yoo 0% A \aBoan
i, = —6u, (12-27)

Substituting this result and Eq. 12-23 into the above equation for a, we
can write the acceleration in component form as

a = qu, + aguy (12-28)

where

a, =7 — ré?

ag = ro + 2r0 (12-29)

The term 6 = d?0/dt> = d/dt(d6/dt) is called the angular acceleration
since it measures the change made in the angular velocity during an
instant of time. Units for this measurement are rad/s’.

Since a,, and a, are always perpendicular, the magnitude of
acceleration is simply the positive value of

a=\/(F — r0? + (r6 + 2 0)? (12-30)

The direction is determined from the vector addition of its two
components. In general, a will not be tangent to the path, Fig. 12-30e.

(d)

Acceleration

(e)

69
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The spiral motion of this boy can be
followed by using cylindrical components.
Here the radial coordinate r is constant,
the transverse coordinate 6 will increase
with time as the boy rotates about the
vertical, and his altitude z will decrease
with time.

Cylindrical Coordinates. If the particle moves along a space
curve as shown in Fig. 12-31, then its location may be specified by the
three cylindrical coordinates, r, 0, 7. The z coordinate is identical to that
used for rectangular coordinates. Since the unit vector defining its
direction, u,, is constant, the time derivatives of this vector are zero, and
therefore the position, velocity, and acceleration of the particle can be
written in terms of its cylindrical coordinates as follows:

rp =ru, + zu,
v = iu, + rbu, + zu, (12-31)
(F — r6®)u, + (r + 2i6)u, + Zu, (12-32)

a

Time Derivatives. The above equations require that we obtain the
time derivatives 7, 7, 6, and 6 in order to evaluate the r and 6 components
of v and a. Two types of problems generally occur:

1. If the polar coordinates are specified as time parametric equations,
r = r(t)and 0 = 6(¢), then the time derivatives can be found directly.

2. If the time-parametric equations are not given, then the path
r = f(#) must be known. Using the chain rule of calculus we can

then find the relation between 7 and 6, and between ¥ and 6.
Application of the chain rule, along with some examples, is
explained in Appendix C.

Procedure for Analysis

Coordinate System.

® Polar coordinates are a suitable choice for solving problems when
data regarding the angular motion of the radial coordinate r is
given to describe the particle’s motion. Also, some paths of motion
can conveniently be described in terms of these coordinates.

® To use polar coordinates, the origin is established at a fixed point,
and the radial line 7 is directed to the particle.

e The transverse coordinate 0 is measured from a fixed reference
line to the radial line.

Velocity and Acceleration.

® Once r and the four time derivatives r, 7, é, and 0 have been
evaluated at the instant considered, their values can be
substituted into Egs. 12-25 and 12-29 to obtain the radial and
transverse components of v and a.

e Ifitis necessary to take the time derivatives of r = f(6), then the
chain rule of calculus must be used. See Appendix C.

® Motion in three dimensions requires a simple extension of the
above procedure to include z and Z.
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EXAMPLE [12.17 n

The amusement park ride shown in Fig. 12-32a consists of a chair that
is rotating in a horizontal circular path of radius r such that the arm
OB has an angular velocity 6 and angular acceleration 6. Determine
the radial and transverse components of velocity and acceleration of
the passenger. Neglect his size in the calculation.

(a) (b)
Fig. 12-32

SOLUTION

Coordinate System. Since the angular motion of the arm is
reported, polar coordinates are chosen for the solution, Fig. 12-32a.
Here 6 is not related to r, since the radius is constant for all 6.

Velocity and Acceleration. Tt is first necessary to specify the first
and second time derivatives of r and 6. Since r is constant, we have

r=r r=0 =0
Thus,
v,=7r=0 Ans.
Vg = ro Ans.
a, =71 — re? = —r6? Ans.
ag = ro + 210 = ro Ans.

These results are shown in Fig. 12-32b.

NOTE: The n, t axes are also shown in Fig. 12-32b, which in this
special case of circular motion happen to be collinear with the r and 6
axes, respectively. Since v = v, = v, = r6, then by comparison,

2
—a,=a,=—= =r
p

Lo g A
== TV T Tar !
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n EXAMPLE |12.18

The rod OA in Fig. 12-33a rotates in the horizontal plane such that
6 = (¢*)rad. At the same time, the collar B is sliding outward along
OA so that r = (100¢*) mm. If in both cases  is in seconds, determine
the velocity and acceleration of the collar when ¢t = 1.

SOLUTION

Coordinate System. Since time-parametric equations of the path
are given, it is not necessary to relate r to 6.

Velocity and Acceleration. Determining the time derivatives and
evaluating them when ¢ = 1's, we have

r = 100¢? =100mm 6 = 3 = 1rad = 57.3°
t=1s t=1s
(a) '
i = 200t =200 mm/s 6 = 3> = 3rad/s
t=1s t=1s
7 = 200 =200 mm/s> 6 = 61 = 6rad/s’.
t=1s t=1s

As shown in Fig. 12-33b,
v = ru, + réu,,
= 200u, + 100(3)uy = {200u, + 300u,} mm/s
The magnitude of v is

v =/ (200)> + (300)*> = 361 mm/s Ans.

v, = 200 mm/s

(b)

300
0= tan_l(zoo) = 56.3° 6 + 57.3° =114° Ans.

As shown in Fig. 12-33c,

0 =573 0 B " . p

~ a= (¥ —ro)u, + (r6 + 2r0)u,
a, = 1800 mm /s>

= [200 — 100(3)?Ju, + [100(6) + 2(200)3]u,
= {—700u, + 1800u,} mm/s>
The magnitude of a is
a = V/(700)? + (1800)> = 1930 mm/s> Ans.

Fig. 12-33 1 800
b=t 1(
700

a, = 700 mm /s

(©
) = 68.7° (180° — ¢) + 57.3° = 169° Ans.

NOTE: The velocity is tangent to the path; however, the acceleration
is directed within the curvature of the path, as expected.
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EXAMPLE [12.19

The searchlight in Fig. 12-34a casts a spot of light along the face of a wall
that is located 100 m from the searchlight. Determine the magnitudes of
the velocity and acceleration at which the spot appears to travel across
the wall at the instant = 45°. The searchlight rotates at a constant rate
of § = 4 rad/s.

SOLUTION

Coordinate System. Polar coordinates will be used to solve this
problem since the angular rate of the searchlight is given. To find the
necessary time derivatives it is first necessary to relate r to 6. From
Fig. 12-34a,

r = 100/cos 8 = 100 sec 6
Velocity and Acceleration. Using the chain rule of calculus, noting
that d(sec 8) = sec 6 tan 0 d6, and d(tan ) = sec” 6 df, we have

7 = 100(sec 6 tan )6
¥ = 100(sec 0 tan 0)f(tan 6)8 + 100 sec O(sec®0)6(6)
+ 100 sec 6 tan 6(6)
= 100 sec 6 tan® 6 (6)* + 100 sec’d (6)* + 100(sec 6 tan 6)6

Since 6 = 4 rad/s = constant, then 9 = 0, and the above equations,
when 6 = 45°, become

= 100 sec 45° = 141.4
400 sec 45° tan 45° = 565.7
1600 (sec 45° tan® 45° + sec®45°) = 6788.2

As shown in Fig. 12-34b,
v =ru, + réug
= 565.7u, + 141.4(4)u,
= {565.7u, + 565.7uy} m/s
v =\/v? + v} = \/(565.7 + (565.7)
= 800 m/s Ans.
As shown in Fig. 12-34c,
a= (¥ — ré®u, + (r6 + 2i0)u,
= [6788.2 — 141.4(4)’Ju, + [141.4(0) + 2(565.7)4]u,
= {4525.5u, + 4525.5u,} m/s’

a=\/a? + al = \/(45255)? + (4525.5)?

= 6400 m/s> Ans.

NOTE: Itis also possible to find a without having to calculate 7 (or a,.).
As shown in Fig. 12-34d, since a, = 4525.5m/s’, then by vector
resolution, a = 4525.5/cos 45° = 6400 m/s’.

a
0 = 45°
a, ay = 4525.5 m/s?

(d)
Fig. 12-34
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n EXAMPLE |12.20

Due to the rotation of the forked rod, the ball in Fig. 12-35a travels
around the slotted path, a portion of which is in the shape of a
cardioid, r = 0.5(1 — cos ) ft, where 0 is in radians. If the ball’s
velocity is v = 4 ft/s and its acceleration is @ = 30 ft/s” at the instant

0 = 180°, determine the angular velocity 6 and angular acceleration 6
of the fork.

r=05(1—cos0) ft

SOLUTION

Coordinate System. This path is most unusual, and mathematically
it is best expressed using polar coordinates, as done here, rather than
rectangular coordinates. Also, since § and # must be determined, then
r, 6 coordinates are an obvious choice.

Velocity and Acceleration. The time derivatives of r and 6 can be
determined using the chain rule.

r=0.5(1 - cos0)

F = 0.5(sin 6)

¥ = 0.5(cos 6)0(6) + 0.5(sin 6)6
Evaluating these results at 6 = 180°, we have

r=1ft =0 7= —056

Since v = 4 ft/s, using Eq. 12-26 to determine ) yields

v =\/ () + (ro)
4 =\/(07 + (16)

RN 6 = 4rad/s Ans.
e \ .
/ \ In a similar manner, 6 can be found using Eq. 12-30.
| gLq
/
/ 5 3 s
. € / %j/ a=\/('r'—r(92)2-|—(r(‘)+2i0)2
bt | 30 = \/[-0.5(4)* — 1(4)]2 + [16 + 2(0)(4)2
\ | (30)2 = (—24)> + 67
o a =30 ft/s? v ..
N y 9 = 18rad/s*  Ans.
0 ~_ ~
(b) Vectors a and v are shown in Fig. 12-35b.
Fig. 12-35

NOTE: At this location, the 6 and ¢ (tangential) axes will coincide. The
+n (normal) axis is directed to the right, opposite to +r.
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. FUNDAMENTAL PROBLEMS n

F12-33. The car has a speed of 55 ft/s. Determine the
angular velocity 6 of the radial line OA at this instant.

r =400 ft

A

o F12-33
F12-34. The platform is rotating about the vertical axis
such that at any instant its angular position is
0 = (4r3?) rad, where ¢ is in seconds. A ball rolls outward
along the radial groove so that its position is 7 = (0.1¢%) m,
where ¢ is in seconds. Determine the magnitudes of the
velocity and acceleration of the ball whent = 1.5s.

F12-34
F12-35. Peg P is driven by the fork link OA along the
curved path described by r = (26) ft. At the instant
6 = /4 rad, the angular velocity and angular acceleration
of the link are § = 3 rad/s and § = 1 rad/s%. Determine the
magnitude of the peg’s acceleration at this instant.

F12-35

F12-36. Peg P is driven by the forked link OA along the
path described by r = ¢’. When 6 = 7 rad, the link has an
angular velocity and angular acceleration of 6= 2 rad/s
and 6 = 4 rad/s>. Determine the radial and transverse
components of the peg’s acceleration at this instant.

F12-36
F12-37. The collars are pin-connected at B and are free

to move along rod OA and the curved guide OC having
the shape of a cardioid, r = [0.2(1 + cos 6)] m. At 6 = 30°,
the angular velocity of OA is # = 3 rad/s. Determine the

magnitudes of the velocity of the collars at this point.
A

r=0.2(1+cosf) m

N
0 =3rad/s F12-37
F12-38. At the instant § = 45°, the athlete is running with
a constant speed of 2 m/s. Determine the angular velocity
at which the camera must turn in order to follow the
motion. r = (30 csc ) m

F12-38
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__|PROBLEMS

*12-156. A particle moves along a circular path of radius
300 mm. If its angular velocity is § = (2¢%) rad/s, where tis in
seconds, determine the magnitude of the particle’s
acceleration when ¢t = 2s.

*12-157. A particle moves along a circular path of radius
300 mm. If its angular velocity is § = (3¢%) rad/s, where tis in
seconds, determine the magnitudes of the particle’s velocity
and acceleration when 6 = 45°. The particle starts from rest
when 6 = 0°.

12-158. A particle moves along a circular path of radius
5 ft. If its position is = (e*)rad, where ¢ is in seconds,
determine the magnitude of the particle’s acceleration
when 6 = 90°.

12-159. The position of a particle is described by
r=(+ 4 — 4)mand 6 = (+¥?)rad, where ¢ is in seconds.
Determine the magnitudes of the particle’s velocity and
acceleration at the instant ¢ = 2's.

*#12-160. The position of a particle is described by
r = (300e*)mm and 6 = (0.3t?)rad, where ¢ is in seconds.
Determine the magnitudes of the particle’s velocity and
acceleration at the instant t = 1.5s.

®12-161. An airplane is flying in a straight line with a
velocity of 200 mi/h and an acceleration of 3 mi/h% If the
propeller has a diameter of 6 ft and is rotating at an angular
rate of 120 rad/s, determine the magnitudes of velocity and
acceleration of a particle located on the tip of the propeller.

12-162. A particle moves along a circular path having a
radius of 4 in. such that its position as a function of time is
given by 6 = (cos 2¢) rad, where ¢ is in seconds. Determine
the magnitude of the acceleration of the particle when
6 = 30°.

12-163. A particle travels around a limagon, defined by the
equation r = b — a cos 6, where a and b are constants.
Determine the particle’s radial and transverse components
of velocity and acceleration as a function of 6 and its time
derivatives.

*12-164. A particle travels around a lituus, defined by the
equation 720 = a2, where a is a constant. Determine the
particle’s radial and transverse components of velocity and
acceleration as a function of # and its time derivatives.

*12-165. A car travels along the circular curve of radius
r = 300 ft. At the instant shown, its angular rate of rotation
is 6=04 rad/s, which is increasing at the rate of
6=02 rad/s>. Determine the magnitudes of the car’s
velocity and acceleration at this instant.

A

N

6 =0.4rad/s r=3001k

6 = 0.2 rad/s?
%

Prob. 12-165

12-166. The slotted arm OA rotates counterclockwise
about O with a constant angular velocity of §. The motion of
pin B is constrained such that it moves on the fixed circular
surface and along the slot in OA. Determine the magnitudes
of the velocity and acceleration of pin B as a function of .

12-167. The slotted arm OA rotates counterclockwise
about O such that when 6 = 7/4, arm OA is rotating with
an angular velocity of 6 and an angular acceleration of 6.
Determine the magnitudes of the velocity and acceleration
of pin B at this instant. The motion of pin B is constrained
such that it moves on the fixed circular surface and along
the slot in OA.

Probs. 12-166/167
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*12-168. The car travels along the circular curve having a
radius r = 400 ft. At the instant shown, its angular rate of
rotation is # = 0.025 rad/s, which is decreasing at the rate
6 = —0.008 rad/s?. Determine the radial and transverse
components of the car’s velocity and acceleration at this
instant and sketch these components on the curve.

©12-169. The car travels along the circular curve of radius
r = 400 ft with a constant speed of v = 30 ft/s. Determine
the angular rate of rotation 6 of the radial line r and the
magnitude of the car’s acceleration.

_—

r =400 ft

|
Oy TN\
+
Probs. 12-168/169

12-170. Starting from rest, the boy runs outward in the
radial direction from the center of the platform with a
constant acceleration of 0.5 m/s2. If the platform is rotating
at a constant rate 6 = 0.2 rad/s, determine the radial and
transverse components of the velocity and acceleration of
the boy when ¢ = 3 s. Neglect his size.

60 =02rad/s . g\ 0.5 m/s?
< 0

Prob. 12-170

12-171. The small washer slides down the cord OA. When
it is at the midpoint, its speed is 200 mm/s and its
acceleration is 10 mm/s’. Express the velocity and
acceleration of the washer at this point in terms of its
cylindrical components.

700 mm

300 mm

400 mm

X e

Prob. 12-171

*12-172. If arm OA rotates counterclockwise with a
constant angular velocity of 6 = 2rad/s, determine the
magnitudes of the velocity and acceleration of peg P at
0 = 30°. The peg moves in the fixed groove defined by the
lemniscate, and along the slot in the arm.

*12-173. The peg moves in the curved slot defined by the
lemniscate, and through the slot in the arm. At 6 = 30°, the
angular velocity is 6=2 rad/s, and the angular acceleration
s =15 rad/s%. Determine the magnitudes of the velocity
and acceleration of peg P at this instant.

7? = (4sin 2 )m?

Probs. 12-172/173
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12-174. The airplane on the amusement park ride moves
along a path defined by the equations r =4m,
0 = (0.2t) rad, and z = (0.5 cos §) m, where ¢ is in seconds.
Determine the cylindrical components of the velocity and
acceleration of the airplane when t = 6s.

Prob. 12-174

12-175. The motion of peg P is constrained by the
lemniscate curved slot in OB and by the slotted arm OA. If
OA rotates  counterclockwise with a constant angular
velocity of 6 = 3rad/s, determine the magnitudes of the
velocity and acceleration of peg P at § = 30°.

*12-176. The motion of peg P is constrained by the
lemniscate curved slot in OB and by the slotted arm OA.
If OA rotates counterclockwise with an angular velocity of
6 = (3t**) rad/s, where ¢ is in seconds, determine the
magnitudes of the velocity and acceleration of peg P at
6 = 30°.Whent = 0,0 = 0°.

Probs. 12-175/176

©12-177. The driver of the car maintains a constant speed
of 40 m/s. Determine the angular velocity of the camera
tracking the car when 6 = 15°.

12-178. When 6 = 15°, the car has a speed of 50 m/s which
is increasing at 6 m/s>. Determine the angular velocity of
the camera tracking the car at this instant.

r = (100 cos 26) m

\

Probs. 12-177/178

12-179. 1f the cam rotates clockwise with a constant
angular velocity of # = 5rad/s, determine the magnitudes
of the velocity and acceleration of the follower rod AB at
the instant # = 30°. The surface of the cam has a shape of
limagon defined by r = (200 + 100 cos #) mm.

*12-180. At the instant 6 = 30°, the cam rotates with a
clockwise angular velocity of =5 rad/s and and angular
acceleration of § = 6 rad/s”. Determine the magnitudes of
the velocity and acceleration of the follower rod AB at this
instant. The surface of the cam has a shape of a limacon
defined by r = (200 + 100 cos ) mm.

__ r=(200 + 100 cos ) mm

Probs. 12-179/180
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*12-181. The automobile travels from a parking deck
down along a cylindrical spiral ramp at a constant speed of
v = 1.5 m/s. If the ramp descends a distance of 12 m for
every full revolution, # = 27 rad, determine the magnitude
of the car’s acceleration as it moves along the ramp,
r = 10 m. Hint: For part of the solution, note that the
tangent to the ramp at any point is at an angle of
¢ = tan"! (12/[27(10)]) = 10.81° from the horizontal.
Use this to determine the velocity components vy and v,
which in turn are used to determine 6 and z.

Prob. 12-181

12-182. The box slides down the helical ramp with a
constant speed of v = 2 m/s. Determine the magnitude of
its acceleration. The ramp descends a vertical distance of
1m for every full revolution. The mean radius of the ramp is
r=0.5m.

12-183. The box slides down the helical ramp which is
defined by r = 0.5m, 0 = (0.5%)rad,and z = (2 -0.2¢%) m,
where ¢ is in seconds. Determine the magnitudes of the
velocity and acceleration of the box at the instant
0 = 2mrad.

Probs. 12-182/183

*12-184. Rod OA rotates counterclockwise with a constant
angular velocity of § = 6 rad/s. Through mechanical means
collar B moves along the rod with a speed of i = (4¢%)m/s,
where ¢ is in seconds. If r = 0 when ¢t = 0, determine the
magnitudes of velocity and acceleration of the collar when
t = 0.75s.

*12-185. Rod OA is rotating counterclockwise with an angular
velocity of @ = (2¢) rad/s. Through mechanical means collar B
moves along the rod with a speed of 7 = (4t%)m/s.1f# = Oand
r = 0 when ¢ = 0, determine the magnitudes of velocity and
acceleration of the collar at 6 = 60°.

Probs. 12-184/185

12-186. The slotted arm AB drives pin C through the spiral
groove described by the equation r = a6. If the angular
velocity is constant at 0, determine the radial and transverse
components of velocity and acceleration of the pin.

12-187. The slotted arm AB drives pin C through the spiral
groove described by the equation r = (1.5 0) ft, where 6 is in
radians. If the arm starts from rest when 6 = 60° and is
driven at an angular velocity of 6 = (4¢) rad/s, where ¢ is in
seconds, determine the radial and transverse components of
velocity and acceleration of the pin C whent = 1.

Probs. 12-186/187
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*12-188. The partial surface of the cam is that of a
logarithmic spiral 7 = (40¢"%%) mm, where 6 is in radians. If
the cam rotates at a constant angular velocity of = 4 rad/s,
determine the magnitudes of the velocity and acceleration of
the point on the cam that contacts the follower rod at the
instant § = 30°.

*12-189. Solve”Prob. 12-188, if the cam has an angular
acceleration of 6 = 2 rad/s’> when its angular velocity is
6 = 4rad/s at 6 = 30°.

—
6= 4rad/s

Probs. 12-188/189

12-190. A particle moves along an Archimedean spiral
r = (80) ft, where 6 is given in radians. If 6 = 4 rad/s
(constant), determine the radial and transverse components
of the particle’s velocity and acceleration at the instant
6 = /2 rad. Sketch the curve and show the components on
the curve.

12-191. Solve Prob. 12-190 if the particle has an angular
acceleration § = 5 rad/s’> when § = 4 rad/s at § = 7/2 rad.

Probs. 12-190/191

*12-192. The boat moves along a path defined by
r? = [10(10°) cos 20]ft>, where 6 is in radians. If
6 = (0.4¢%) rad, where ¢ is in seconds, determine the radial
and transverse components of the boat’s velocity and
acceleration at the instant ¢ = 1s.

Prob. 12-192

©12-193. A car travels along a road, which for a short
distance is defined by r = (200/6) ft, where 6 is in radians. If
it maintains a constant speed of v = 35 ft/s, determine the
radial and transverse components of its velocity when
6 = /3 rad.

12-194. For a short time the jet plane moves along a path
in the shape of a lemniscate, r> = (2500 cos 26) km?’. At the
instant 6 = 30°, the radar tracking device is rotating at
6 = 5(107%) rad/s with 6 = 2(10~>) rad/s>. Determine the
radial and transverse components of velocity and
acceleration of the plane at this instant.

7 = 2500 cos 26

Prob. 12-194
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12.9 Absolute Dependent Motion
Analysis of Two Particles

In some types of problems the motion of one particle will depend on the
corresponding motion of another particle. This dependency commonly
occurs if the particles, here represented by blocks, are interconnected by
inextensible cords which are wrapped around pulleys. For example, the
movement of block A downward along the inclined plane in Fig. 12-36
will cause a corresponding movement of block B up the other incline. We
can show this mathematically by first specifying the location of the blocks
using position coordinates s 4 and sg. Note that each of the coordinate axes
is (1) measured from a fixed point (O) or fixed datum line, (2) measured
along each inclined plane in the direction of motion of each block, and
(3) has a positive sense from C to A and D to B.If the total cord length is
I7, the two position coordinates are related by the equation

SA+ICD+SBZZT

Here I p is the length of the cord passing over arc CD. Taking the time
derivative of this expression, realizing that /-p and Iy remain constant,
while 54 and sp measure the segments of the cord that change in length.
We have

dsy | dsy
dt dt
The negative sign indicates that when block A has a velocity downward,
i.e., in the direction of positive s, it causes a corresponding upward
velocity of block B;i.e., B moves in the negative sz direction.

In a similar manner, time differentiation of the velocities yields the

relation between the accelerations, i.e.,

=0 or Vg = —Vy

ag = —agyu

A more complicated example is shown in Fig. 12-37a. In this case, the
position of block A is specified by s 4, and the position of the end of the
cord from which block B is suspended is defined by sg. As above, we
have chosen position coordinates which (1) have their origin at fixed
points or datums, (2) are measured in the direction of motion of each
block, and (3) are positive to the right for s, and positive downward for
sg. During the motion, the length of the red colored segments of the cord
in Fig. 12-37a remains constant. If [ represents the total length of cord
minus these segments, then the position coordinates can be related by
the equation

2s B +h+s A= l
Since / and /4 are constant during the motion, the two time derivatives yield
ZUB: —Vap 2(132 —ay

Hence, when B moves downward (+sg), A moves to the left (—s,) with
twice the motion.

81

Fig. 12-36
) Datum
<~
Sg
!
B h

ﬁ(@,

Datum ¢—54 —
(a)
Fig. 12-37
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This example can also be worked by defining the position of block B
from the center of the bottom pulley (a fixed point), Fig. 12-37b. In

Datum this case
- 20h —sp) +h+sy=1
—_— Time differentiation yields
2'UB = Vy 2613 = day
Sp B i Here the signs are the same. Why?
Procedure for Analysis
Datum ﬁ A
L J The above method of relating the dependent motion of one particle
Datum ¢S54 to that of another can be performed using algebraic scalars or
) position coordinates provided each particle moves along a
rectilinear path. When this is the case, only the magnitudes of the
Fig. 12-37 (cont.) velocity and acceleration of the particles will change, not their line

of direction.

Position-Coordinate Equation.

e Establish each position coordinate with an origin located at a
fixed point or datum.

® [t is not necessary that the origin be the same for each of the
coordinates; however, it is important that each coordinate axis
selected be directed along the path of motion of the particle.

® Using geometry or trigonometry, relate the position coordinates
to the total length of the cord, /, or to that portion of cord, /,
which excludes the segments that do not change length as the
particles move —such as arc segments wrapped over pulleys.

e [f a problem involves a system of two or more cords wrapped
around pulleys, then the position of a point on one cord must be
related to the position of a point on another cord using the above
procedure. Separate equations are written for a fixed length of
each cord of the system and the positions of the two particles are
then related by these equations (see Examples 12.22 and 12.23).

Time Derivatives.

. . . ® Two successive time derivatives of the position-coordinate
The motion of the traveling block on this ] ; X X X X
oil rig depends upon the motion of the equations yield the required velocity and acceleration equations

cable connected to the winch which which relate the motions of the particles.

operates it. It is important to be able to e The signs of the terms in these equations will be consistent with
relate these motions in order to determine

the power requirements of the winch and those that specify the positive and negative sense of the position

the force in the cable caused by any coordinates.
accelerated motion.
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EXAMPLE [12.21 u

Determine the speed of block A in Fig. 12-38 if block B has an

upward speed of 6 ft/s.
© T D Datum
Sp
Sa E
B
IE T 6 ft/s
A
Fig. 12-38
SOLUTION

Position-Coordinate Equation. There is one cord in this system
having segments which change length. Position coordinates s, and sg
will be used since each is measured from a fixed point (C or D) and
extends along each block’s path of motion. In particular, sg is directed
to point E since motion of B and E is the same.

The red colored segments of the cord in Fig. 12-38 remain at a
constant length and do not have to be considered as the blocks move.
The remaining length of cord, /, is also constant and is related to the
changing position coordinates s, and sz by the equation

sqt+3sp =1

Time Derivative. Taking the time derivative yields
vy + 30 =0

so that when vg = —6 ft/s (upward),

vy = 18 ft/s Ans.
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n EXAMPLE |12.22

Determine the speed of A in Fig. 12-39 if B has an upward speed
of 6 ft/s.

Datum
CITIE

SOLUTION

Position-Coordinate Equation. As shown, the positions of blocks
A and B are defined using coordinates s 4 and sg. Since the system has
two cords with segments that change length, it will be necessary to use
a third coordinate, sc, in order to relate s4 to sgz. In other words, the
length of one of the cords can be expressed in terms of s4 and s¢, and
the length of the other cord can be expressed in terms of s and sc.

The red colored segments of the cords in Fig. 12-39 do not have to
be considered in the analysis. Why? For the remaining cord lengths,
say [ and [,, we have

sat+2sc =14 s+ (sg—s¢c) =1,
Time Derivative. Taking the time derivative of these equations yields
vy + 200 =0 2vg — v =0

Eliminating v produces the relationship between the motions of each
cylinder.

’UA+4’I)B=0

so that when vy = —6 ft/s (upward),

vy = +24ft/s = 24 ft/s | Ans.
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EXAMPLE [12.23 u

Determine the speed of block B in Fig. 12-40 if the end of the cord at
A is pulled down with a speed of 2 m/s.

Fig. 12-40

SOLUTION

Position-Coordinate Equation. The position of point A is defined
by s4, and the position of block B is specified by sp since point £ on
the pulley will have the same motion as the block. Both coordinates
are measured from a horizontal datum passing through the fixed pin
at pulley D. Since the system consists of two cords, the coordinates s 4
and sp cannot be related directly. Instead, by establishing a third
position coordinate, sc, we can now express the length of one of the
cords in terms of sz and s¢, and the length of the other cord in terms
of SA,SB, and Sc.

Excluding the red colored segments of the cords in Fig. 12-40, the
remaining constant cord lengths /; and /, (along with the hook and
link dimensions) can be expressed as

sc tsg =1
(sa=c) + (s = sc) + sp=1
Time Derivative. The time derivative of each equation gives
ve +vg =0
vy — 2vc + 20 =0
Eliminating v¢, we obtain

UA+4'UB:0

so that when v, = 2 m/s (downward),

vg = —05m/s = 0.5m/s | Ans.
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n EXAMPLE [12.24

A man at A is hoisting a safe S as shown in Fig. 12-41 by walking to
the right with a constant velocity v, = 0.5 m/s. Determine the
velocity and acceleration of the safe when it reaches the elevation of
10 m. The rope is 30 m long and passes over a small pulley at D.

SOLUTION

Position-Coordinate Equation. This problem is unlike the previous
examples since rope segment DA changes both direction and
magnitude. However, the ends of the rope, which define the positions
of S and A, are specified by means of the x and y coordinates since
they must be measured from a fixed point and directed along the paths
of motion of the ends of the rope.

The x and y coordinates may be related since the rope has a fixed
length / = 30 m, which at all times is equal to the length of segment DA

plus CD. Using the Pythagorean theorem to determine /4, we have
Ipa = \/ (15)* + x?;also,lcp = 15 — y. Hence,

l:lDA+lCD

4 =0.5m/s 30 = \/ (15)2 + x% + (15 - y)
y=\/225+x*-15 (1)

Time Derivatives. Taking the time derivative, using the chain rule
Fig. 12-41 (see Appendix C), where vg = dy/dt and v, = dx/dt, yields

LAy 1 2 Jax
STdt | 2\22s + 2 dt
=, (2)

\/225 + x*

Aty = 10 m, x is determined from Eq. 1,1i.e., x = 20 m. Hence, from
Eq.2 with v, = 0.5m/s,

20
vy = ———(0.5) = 04m/s = 400mm/s T Ans.

\/ 225 + (20)°

The acceleration is determined by taking the time derivative of Eq. 2.
Since v is constant, then a4, = dv,/dt = 0, and we have

d*y —x(dx/dt) 1 dx 1 dvy 225v%
ag = ——> = 723/2)6’0144— —_— di vy t+ 7)(7:723/2
dt (225 + x7) \/225 + x2 I\t \/225 + x2d dt (225 + x7)
At x = 20 m, with v4 = 0.5 m/s, the acceleration becomes
_ 225(0.5m/s)
225 + (20 m)PR2
NOTE: The constant velocity at A causes the other end C of the rope

to have an acceleration since v, causes segment DA to change its
direction as well as its length.

as = 0.00360 m/s* = 3.60 mm/s*> T Ans.
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12.10 Relative-Motion of Two Particles
Using Translating Axes

Throughout this chapter the absolute motion of a particle has been
determined using a single fixed reference frame. There are many cases,
however, where the path of motion for a particle is complicated, so that it
may be easier to analyze the motion in parts by using two or more frames
of reference. For example, the motion of a particle located at the tip of an
airplane propeller, while the plane is in flight, is more easily described if
one observes first the motion of the airplane from a fixed reference and
then superimposes (vectorially) the circular motion of the particle
measured from a reference attached to the airplane.

In this section translating frames of reference will be considered for the
analysis. Relative-motion analysis of particles using rotating frames of
reference will be treated in Secs. 16.8 and 20.4, since such an analysis
depends on prior knowledge of the kinematics of line segments.

Position. Consider particles A and B, which move along the
arbitrary paths shown in Fig. 12-42. The absolute position of each
particle, r 4 and rp, is measured from the common origin O of the fixed x,
vy, z reference frame. The origin of a second frame of reference x’, y’, 7' is
attached to and moves with particle A. The axes of this frame are only
permitted to translate relative to the fixed frame. The position of B
measured relative to A is denoted by the relative-position vector rp) 4.
Using vector addition, the three vectors shown in Fig. 12-42 can be
related by the equation

Ip =Ty + Ip/p (12-33)

Velocity. An equation that relates the velocities of the particles is
determined by taking the time derivative of the above equation;i.e.,

Vp = Vyu r VB/A (12—34)

Here vg = drg/dt and v, = dr,/dt refer to absolute velocities, since
they are observed from the fixed frame; whereas the relative velocity
Vg/a = drp/dt is observed from the translating frame. It is important
to note that since the x', y’, z’ axes translate, the components of rp/4
will not change direction and therefore the time derivative of these
components will only have to account for the change in their
magnitudes. Equation 12-34 therefore states that the velocity of B is
equal to the velocity of A plus (vectorially) the velocity of “B with
respect to A,” as measured by the translating observer fixed in the x’', y’,
7' reference frame.

Fixed
observer

Translating
observer

Fig. 12-42
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Acceleration. The time derivative of Eq. 12-34 yields a similar
vector relation between the absolute and relative accelerations of
particles A and B.

Ap = Ay arF aB/A (12—35)

Here ag, 4 is the acceleration of B as seen by the observer located at A
and translating with the x’, y’, z’ reference frame.*

Procedure For Analysis

® When applying the relative velocity and acceleration equations,
it is first necessary to specify the particle A that is the origin for
the translating x’, y’, z’ axes. Usually this point has a known
velocity or acceleration.

® Since vector addition forms a triangle, there can be at most two
unknowns, represented by the magnitudes and/or directions of
the vector quantities.

® These unknowns can be solved for either graphically, using
trigonometry (law of sines, law of cosines), or by resolving each
of the three vectors into rectangular or Cartesian components,
thereby generating a set of scalar equations.

The pilots of these jet planes flying close
to one another must be aware of their
relative positions and velocities at all
times in order to avoid a collision.

>

* An easy way to remember the setup of these equations, is to note the “cancellation’
of the subscript A between the two terms, e.g., ap = a4 + ag/x.
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EXAMPLE |12.25 n

A train travels at a constant speed of 60 mi/h, crosses over a road as
shown in Fig. 12-43a. If the automobile A is traveling at 45 mi/h along

the road, determine the magnitude and direction of the velocity of the r /450-
train relative to the automobile. s s srt et iil]

SOLUTION |

Vector Analysis. The relative velocity vy is measured from the
translating x’, y" axes attached to the automobile, Fig. 12-43a. It is
determined from vy = v,4 + v/ 4. Since vy and v4 are known in both
magnitude and direction, the unknowns become the x and y
components of vz, 4. Using the x, y axes in Fig. 12-43a, we have

V7 = Va4t Vryu
60i = (45 cos 45°% + 455in 45%) + vy4

vra = {28.2i — 31.8j} mi/h Ans.
The magnitude of v, is thus
o4 = V(282)2 + (-31.8)% = 42.5mi/h Ans.
From the direction of each component, Fig. 12-43b, the direction of 28.2mi/h
VT/A is é
¢
g — (vrya)y 318
(vr/a)x 282
0 =485° X Ans.
Note that the vector addition shown in Fig. 12-43b indicates the
correct sense for vz, 4. This figure anticipates the answer and can be 31.8mi/h v/
used to check it.
SOLUTION Ii ®)

Scalar Analysis. The unknown components of v/, can also be
determined by applying a scalar analysis. We will assume these
components act in the positive x and y directions. Thus,

Vi = Va t Vra

{60 mi/h} _ [45 mi/h] I {(vT/A)x] 4 {(W{A)y}

= s’ -

Resolving each vector into its x and y components yields

(5) 60 = 45 cos 45° + (v7/4), + 0

(+h 0 = 45sin45° + 0 + (vr/a)y

Solving, we obtain the previous results, vr = 60mi/h
(vr/4)x = 282 mi/h = 282 mi/h — (©

(vr/a)y = —31.8 mi/h = 31.8 mi/h | Fig. 12-43
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n EXAMPLE |12.26

Plane A in Fig. 12-44a is flying along a straight-line path, whereas
plane B is flying along a circular path having a radius of curvature of
pp = 400 km. Determine the velocity and acceleration of B as
measured by the pilot of A.

SOLUTION

Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to plane A is to be determined,
the translating frame of reference x', y' is attached to it, Fig. 12-44a.
(a) Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

(+1) Vg = V4t Vpja
600 km/h = 700 km/h + v/,
VB4 vg/a = —100 km/h = 100 km/h | Ans.

va=700km/| 600 km b The vector addition is shown in Fig. 12-44b.

Acceleration. Plane B has both tangential and normal components
of acceleration since it is flying along a curved path. From Eq. 12-20,

©) the magnitude of the normal component is
% (600 km/h)
(ap) = = = (600 km/m)” 7 kr/n y_ 900 km/h>

Applying the relative-acceleration equation gives
ag = a, + ap/A

900i — 100j = 50j + ap/4
Thus,

ag/s = {900i — 150j} km/h*

From Fig. 12-44c, the magnitude and direction of ag, 4 are therefore

150
aps = 912km/h* 6 = tan‘lﬁ —946° 5 Ans

900 km /h? . . . . .
NOTE: The solution to this problem was possible using a translating

Jo frame of reference, since the pilot in plane A is “translating.”

a4 Observation of the motion of plane A with respect to the pilot of

plane B, however, must be obtained using a rotating set of axes

© attached to plane B. (This assumes, of course, that the pilot of B is

Fig. 12-44 fixed in the rotating frame, so he does not turn his eyes to follow the
motion of A.) The analysis for this case is given in Example 16.21.

150 km /h?
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EXAMPLE [12.27 u

At the instant shown in Fig. 12-45a, cars A and B are traveling with % ,
speeds of 18 m/s and 12 m/s, respectively. Also at this instant, A has a P “;{)So
decrease in speed of 2 m/s?, and B has an increase in speed of 3 m/s%. A P
Determine the velocity and acceleration of B with respect to A. /
N 3m/s 18 m/s
SOLUTION X
Velocity. The fixed x, y axes are established at an arbitrary point on p=100m \\\ l
the ground and the translating x’, y" axes are attached to car A, Fig. 12m/s
12-45a. Why? The relative velocity is determined from B
Vg = V4 + vp/4. What are the two unknowns? Using a Cartesian
vector analysis, we have y
Vg = V4t Vg /\60o B
—12j = (=18 cos 60°i — 18in 60°%j) + vp/4 Y
vgia = {91 + 3.588j} m/s @
a
Thus,
vpa =\ (9)* + (3.588)% = 9.69 m/s Ans.
Noting that vz, 4 has +i and +j components, Fig. 12-45b, its direction is
a0 (vs/4)y  3.588 1585 m)
= = 5 m/s
(vB/a)x 9 y o
0 =217 < Ans.
Acceleration. Car B has both tangential and normal components of 8
acceleration. Why? The magnitude of the normal component is 9m/s
2 2 (b)
vh  (12m/s) ,
=—=——"—=1440
(aB)n p 100 m m/s
Applying the equation for relative acceleration yields
aAg — Ay + aB/A
(—1.440i — 3j) = (2cos 60°i + 2sin 60°%) + ag/4
apa = {—2.440i — 4.732j} m/s’ 2.440 m/s’ :
¢
Here ag/ 4 has —i and —j components. Thu