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Text books

You revise some maths (i.e. trigonometric identities, derivatives

and integrals)
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Part 1

Objectives




Objectives

Concepts such as position, displacement, velocity and acceleration are introduced

O  Study the motion of particles along a straight line. Graphical representation

O Investigation of a particle motion along a curved path. Use of different coordinate
systems

O  Analysis of dependent motion of two particles

Principles of relative motion of two particles. Use of translating axis

e T
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Part 2

Problem solving procedure




Problem solving procedure

Read the problem carefully (and read it again)

Physical situation and theory link

Draw diagrams and tabulate problem data
Coordinate system!!!

Solve equations and be careful with units

Be critical. A mass of an aeroplane can not be 50 g

N o O &~ DN PRF

Read the problem carefully

e T
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Part 3

Introduction




An Overview of Mechanics

Mechanics: The study of how bodies react to
the forces acting on them.

Sta’FifJSi_The study of bodies in Dynamics: Accelerated motion of a body

equilibrium. _ 1. Kinematics — concerned with the

It is at rest/moves with constant geometric aspects of motion

velocity 2. Kinetics - concerned with the forces
causing the motion

Important contributors Galileo Galilei, Newton, Euler
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An Overview of Dynamics

Dynamics: Accelerated motion of a body
1. Kinematics — study of the geometry of motion.
Relates displacement, velocity, acceleration, and time without reference to the

cause of motion. Fatrast
» . ! /

~Zs il

Kinetics - study of the relations existing between the forces acting on a body, the
mass of the body, and the motion of the body. Kinetics is used to predict the

motion caused by given forces or to determine the forces required to produce a
given motion. o
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Sections’ Objectives
Students should be able to:

Find the kinematic quantities (position, displacement, velocity, and
acceleration) of a particle traveling along a straight path (12.2)

Determine position, velocity, and acceleration of a particle using
graphs (12.3)

Dr. Mamon Horoub



The Particle

The particle has a mass but negligible size and shape. Therefore we must limit

application to those objects that have dimensions that are of no consequence in

the analysis of the motion.

In most problems, we will be interested in bodies of finite size, such as

’

,or . Each of these objects can be considered as a particle, as long
as the motion is characterized by the motion of its mass center and any of
the body is

rrrrrr A 553 i et o
avit L
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The Motion

Rectilinear motion: position, Velocity, and acceleration of a particle as it moves

along a straight line.
Curvilinear motion: position, velocity, and acceleration of a particle as it moves

along a curved line in two or three dimensions.

-
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Part 4

Rectilinear kinematics:
Continuous motion




The Position

0 A -+ Rectilinear motion: particle moving along a
b—— straight line
PO S » Position coordinate: defined by positive or
| | X negative distance from a fixed origin on the line.

« The motion of a particle is known if the position

coordinate for particle is known for every value of
time t.

xim)

« May be expressed in the form of a function, e.g.,
X =6t% —t>

or in the form of a graph x vs. t.

En Tk
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Rectilinear kinematics: Continuous motion

" X A particle travels along a straight-line path defined by the
lp coordinate axis s
“ , The POSITION of the particle at any instant, relative to
o the origin, O, iIs defined by the position vector r, or the
scalar s.
r > Scalar s can be positive or negative. Typical units for r
¥ >—Ar - and s are meters (m) or feet (ft).
P B _ iy . _ _
ol v : The Displacement of the particle is defined as its change
\ ke In position.
¥ Scalar form: As=s’-s Vector form: Ar=r’-r
Displacement

The total distance traveled by the particle, s, is a positive scalar that represents the ¢,
total length of the path over which the particle travels.
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Velocity

Velocity is a measure of the rate of change in the position of a particle. It is a vector quantity (it
has both magnitude and direction). The magnitude of the velocity is called speed, with units of
m/s or ft/s.

v The average velocity of a particle during a time interval At
% O s IS
o V. = Ar/At
L»ls. ‘_i avg
A5 The instantaneous velocity is the time-derivative of position
| rF_k .
0| s v = dr/dt
' N

Speed is the magnitude of velocity: v = ds/dt

Average velocity and
Average speed

Average speed Is the total distance traveled divided by elapsed time: (v

BIRZEIT UNIVERSITY
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Average velocity Vs. average speed

For example, the particle in Fig. 12-1d travels along the path of length s;
= s,/ At, but its average

in time Ar, so its average speed 1S (V).

velocity 1s v,,, = —As/At.

t—— As—
| S j
Rt L=
0| | —
. I"‘=:.-T
Average veloaty and
Average speed

Dr. Mamon Horoub
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Acceleration

Acceleration. Provided the velocity of the particle is known at two
points, the average acceleration of the particle during the time interval At
is defined as

Av
ﬂ —_— —
" Ar
Here Av represents the difference in the velocity during the time
interval A7, 1.e, Av = v — v, Fig. 12-le.
a
l o
0| all R
" = - -
Acceleration
@g’*‘/k
Figr_ 12=1e. BIRZEIT UNIVERSITY
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Acceleration

IS the rate of change in the velocity of a particle. —
Itisa guantity. o% o s
Typical units are m/s? or ft/s2. — —
The is the time derivative _
Of VeIOCity. A(‘(‘nh‘r:ﬂm:
Scalar form: a = dv/dt = d2s/dt? | A
0] v —
a- v v v

Acceleration can be positive ( ) or negative Deaanion

( ). (f)

As the book indicates, the derivative equations for velocity and

acceleration can be manipulatedtoget ads =vdv .

BIRZEIT UNIVERSITY
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Acceleration (Constant Acc.)

The three kinematic equations can be integrated for the special case when acceleration is
constant (a = a.) to obtain very useful equations. A common example of constant acceleration

is gravity; i.e., a body freely falling toward earth. In this case, a, = g = 9.81 m/s? = 32.2 ft/s?
downward These equatlons are.

> jdV T ja dt yields vV = V0 + act Velocity as a Function of Time
Vo

[ds = _fv dt  yields s =s,+ v t+ (U2at?

0]

—] jV dv = j‘ a, ds vyields V2= (V0 )2 + 2a C(S - So) Velocity as a Function of Position
Y 705 ‘*/

)/V\_/M
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Important Points

» Dynamics: Accelerated motion of bodies

» Kinematics: Geometry of motion , A
» Average speed and average velocity TN
» Redctilinear kinematics or straight-line motion ‘ '

» Acceleration is negative when patrticle is slowing down ‘; ) :\
>

vt W
a ds = v dv; relation of acceleration, velocity, displacement  # ‘ [’
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Analyzing problems in dynamics

Coordinate system

Establish a position coordinate along the path and specify its fixed origin and
positive direction

Motion is along a straight line and therefore s, v and o can be represented as
algebraic scalars

Use an arrow alongside each kinematic equation in order to indicate positive
sense of each scalar

Kinematic equations

If any two of a, v, s and t are related, then a third variable can be obtained using
one of the kinematic equations

When performing integration, position and velocity must be known at a given
instant (...so the constants or limits can be evaluated)

Some equations must be used only when a is constant ngﬁ@

BIRZEIT UNIVERSITY
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Problems

The car in Fig. 12-2 moves in a straight line such that for a short time
its velocity is defined by v = (3t> + 2t) ft/s, where ¢ is in seconds.

Determine its position and acceleration when ¢ = 3 s. When ¢ = 0,
s =0.

(o]

SOLUTION Fig, 12-2

Coordinate System. The position coordinate extends from the
fixed origin O to the car, positive to the right.

BIRZEIT UNIVERSITY
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Problems
EXAMPLE | 12.1 Position. Since v = f(t), the car’s position can be determined from

v = ds/dt, since this equation relates v, s, and . Noting that s = 0
The car in Fig. 12-2 moves in a straight line such that for a short time | when ¢ = 0, we have* d
its velocity is defined by v = (3t> + 2t) ft/s, where ¢ is in seconds. ( i 4 ) v = K (3,2 + 21)
Determine its position and acceleration when ¢ = 3 s. When ¢ = 0, dt
s =0. 5 t
| - [ds = ](3:2 + 21)dt
0 0
s t
o s = I3 + ¢'2
0 0
s=0+ 1
SOLUTION
Coordi S Th iti di ds f h PheRastie
-oor |r-|a'te ystem. e P051t10n coor inate extends from the o (3)3 + (3)2 — 36 ft
fixed origin O to the car, positive to the right.

Acceleration. Since v = f(t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and .

(5) dv d (32 + 2) NOTE: The formulas for constant acceleration cannot be used to
(= == = — . . . 3 .
dt  dt solve this problem, because the acceleration is a function of time.
o2 *The same result can be obtained by evaluating a constant of integration C rather
Whent = 35,

than using definite limits on the integral. For example, integrating ds = (3> + 2t)dt
a=6(3)+2=20ft/s>— yields s = £ + > + C. Using the condition that at t = 0, s = 0, then C = 0.
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Problems

EXAVPLE

A small projectile is fired vertically downward into a fluid medium with = il
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the
projectile experiences a deceleration of a = (—0.4v°) m/s?, where vis in

m/s. Determine the projectile’s velocity and position 4 s after it is fired.
SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

- ,.*‘/
BIRZEIT UNIVERSITY
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EXAVPLE

A small projectile is fired vertically downward into a fluid medium with - B * .
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the wg" e
projectile experiences a deceleration of a = (=0.4v°) m/s?, where vis in RS
m/s. Determine the projectile’s velocity and position 4 s after it is fired. b {

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

Velocity. Here a = f(v) and so we must determine the velocity as a
function of time using @ = dv/dt, since this equation relates v, a,and .
(Why not use v = v, + a.?) Separating the variables and integrating,
with vy = 60 m/s when ¢ = (), yields

Problems

_dv_ s
ﬂ_dr_ 0.4v

(+4) g0 dv ’

——= [ d
60 m/s —(0.4v 0

=oa (). - e
o8| % ~ o] =

= (L o] o

Here the positive root is taken, since the projectile will continue to

move downward. Whent = 4 s,
559 m/s

L") m
BIRZEIT UNlVERSlTY

Ans.
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Problems

- .
B

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the
projectile experiences a deceleration of a = (—0.4v°) m/s?, where vis in
m/s. Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

Position. Knowing » = f(t), we can obtain the projectile’s position
from v = ds/dt, since this equation relates s, v, and t. Using the initial
condition s = 0, when t = 0, we have

Whent = 4s

) =15
v = s = % + (.8t
dt L (60) |
fjd f i 0.8 --md
5 = + '8 I
o o ,{60}3
2 1 12
= +
5 ,S[[ﬁﬂ}z DEI] ;

=443 m

e
L/‘) At e
BIRZEIT UNIVERSITY
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Vg = 0
\MPLE [52.9 Problems L r
SOLUTION .1

: o Coordinate System. The origin O for the position coordinate s is
During a test a rocket travels upward at 75 m/s, and when it is 40 m | taken at ground level with positive upward, Fig. 12-4.

from the ground its engine falls\ Detemne the maximum height 5 | Maximum Height. Since the rocket is_traveling upward,
reached by the rocket and its speed just before it hits the ground. | va = +75m/s when = 0. At the maximum height s = s; the velocity

.o . : ' vg = 0. For the entire motion, the acceleration is a. = —9.81 rn;’s2
While i motion the rocket is SUb]eCtEd {0 a constant downward (negative since it acts in the opposite sense to positive velocity or

acceleration of 981 m/s” due to gravity. Neglect the effect of air | positive displacement). Since a, is constant the rocket’s position may
: be related to its velocity at the two points A and B on the path by using 5B

resistance.

Eq. 12-6, namely,

t;A=?5m/sTﬁ

14

s4=40m

!
- §
iC 0

Fig. 12-4

- ,.*‘/
BIRZEIT UNIVERSITY
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(+1) ve = v4 + 2a.(sc — Sa)

(75 m/s)* + 2(—9.81 m/s*)(0 — 40 m)

ve = —80.1 m/s = 80.1 m/s |

Vg = 0
Problems s
SOLUTION T
c " Coordinate System. The origin O for the position coordinate s is
During a test a rocket travels upward at 75 m/s, and when it s 40m | taken at gronnﬂ level with positgive upward, Fig. 12-4.
from the ground its engine falls\ Detemne the maximum height 5 | Maximum Height. Since the rocket is traveling upward,
reached by the rocket and its speed just before it hits the ground. | va = +75m/s when = 0. At the maximum height s = s the velocity
.o . : ' vg = 0. For the entire motion, the acceleration is a, = —9.81 m/s
While m' motion the mgke{ I$ SUb]ecFEd 0-a constant dOWI’lWﬁI"d (negative since it acts in the opposite sense to positive velocity or
acceleration of 981 m/s™ due to gravity. Neglect the effect of air | positive displacement). Since a, is constant the rocket’s position may
resistance be related to its velocity at the two points A and B on the path by using 5B
' Eq. 12-6, namely,

S ) (+ T) Velocity. To obtain the velocity of the rocket just before it hits the — ?4=7 M/ST

B= VAT &S84 ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4. - ﬁ

0= (75m/s)? + 2(~9.81 m/s?)(s5 — 40m) | (+1) % = v + 2a,(sc - 53)

s54=40m
sg=327Tm =0 + 2(-9.81 m/s?)(0 — 327 m) ! i 7
ic SO
ve = —80.1 m/s = 80.1 m/s | Ans. )

The negative root was chosen since the rocket is moving downward.

Similarly, Eq. 12-6 may also be applied between points A and C,i.e., Fig. 12-4

NOTE: It should be realized that the rocket is subjected to a
deceleration from A to B of 9.81 m/s?, and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket
momentarily comes to rest at B (vg = 0) the acceleration at B is still
Ans. | 9.81 m/s? downward!
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Problems

SOLUTION
Coordinate System. Here positive motion is to the right, measured

e L THELLS A particle moves along a horizontal path with a velocity of | from the origin 0, Fig. 12-6a.
—0—10 v = (3t* — 6t) m/s, where ¢ is the time in seconds. If it is initially
—0 located at the origin 0, determine the distance traveledin 35s,and the | Distance Traveled. Since v = f(r), the position as a function of
1=2s 1=0s 1=35s  particle’s average velocity and average speed during the time interval. | time may be found by integrating v = ds/dt witht = 0, s = (.

v (mfs)
v=730 -6t
1(s)
(0,0) (25.0)
e

(1s,=3m/s) "BIRZEIT UNIVERSITY

by Dr. Mamon Horoub
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Problems

SOLUTION
Coordinate System. Here positive motion is to the right, measured

SN S A particle moves along a horizontal path with a velocity of | from the origin 0, Fig. 12-6a.
—3¥=0 v = (3t* - 6t) m/s, where ¢ is the time in seconds. If it is initially
—0 located at the origin 0, determine the distance traveledin 35s,and the | Distance Traveled. Since v = f(r), the position as a function of
1=2s 1=0s 1=35s  particle’s average velocity and average speed during the time interval. | time may be found by integrating v = ds/dt witht = 0, s = (.
@ In order to determine the distance traveled in 3.5 s, it is necessary to  y(m/s)
(i,) ds = vdi investigate the path of motion. If we consider a graph of the velocity =3¢ - &
A function, Fig. 12-6b, then it reveals that for 0 < 1 < 2 s the velocity is ‘©
= (3" = 61)dt negative, which means the particle is traveling to the left,and fort > 2s (g g (25.0)
the velocity is positive, and hence the particle is traveling to the right.
] ds = / 3 - Also, note that v = 0 at r = 2s. The particle’s position when ¢ = 0,
1 = 2s,and 1 = 3.5 s can now be determined from Eq. 1. This yields (1s. -3 mjs)
s=(-3m (1) Slieo =0  slese=—40m  5|,o35. = 6.125m )
The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is | The average speed is defined in terms of the distance traveled sy.
itive scalar is
sr=40+40+6125=14125m=141m  Ans [P
Velocity. The displ tfromt =0tor =35si (V) Al 4.04 m/s
elocity. The displacement fromt = 0tor = 35518 =—=—m=
g el Ty T 355
As = $|,o355 = Sl,ep = 6.125m - 0 = 6.125m :
and so the average velocity is As_ 615m No.te:. In this problem, the accelerationis a = dv/dt = (6t — 6) m/s",
Doy = = 1.75 m/s — Which is not constant.
ave j,l' 3 55 —1) Dr. Mamon Horoub
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Problems (Solve it at your home)

A particle moves along a straight line such that its position
is defined by s = (£ — 61 + 5) m. Determine the average
velocity, the average speed. and the acceleration of the
particle when = 6s.

1355 (Wl 01

BIRZEIT UNIVERSITY
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Problems (Solve it at your home)
12-22. The acceleration of a rocket traveling upward is
given by a = (6 + 0.025) m/s®, where s is in meters:
Determine the rocket’s velocity when s = 2 km and the
time needed to reach -this -altitude. Initially, v = 0 and

s = Owhent =0

Lé/fg/

BIRZEIT UNIVERSITY
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Problems (Solve it at your home)
12-26. Ball A is released from rest at a height of 40 ft

at the same time that a second ball B is thrown upward |
5 ft from the ground. If the balls pass one another at a
height of 20 ft, determine the speed at which ball:B was 40 ft
thrown upward. 2
¢ B
W F
B S ft
N

/'k_/vw
'BIRZEIT UNIVERSITY
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Part 5

Rectilinear kinematics: Erratic motion

(Self Study)




Erratic (discontinuous) motion

Graphing provides a good way to handle complex motions that would be difficult to
describe with formulas. Graphs also provide a visual description of motion and
reinforce the calculus concepts of differentiation and integration as used in dynamics

CANT YOU DO
ANYTHING RIGHTZ
o
@)
O

The approach builds on the facts that slope and differentiation are linked and that

Integration can be thought of as finding the area under a curve @‘*@,

BIRZEIT UNIVERSITY
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s-t graph => construct v-t

_d " ... : i
"’D‘Tf|:=n"- d |t Plots of position vs. time can be used to find
w=251 _[__ﬁt‘ﬁ% t velocity vs. time curves. Finding the slope of
= < the line tangent to the motion curve at any
| point is the velocity at that point (or v = ds/dt)
S |
Y e t Therefore, the v-t graph can be constructed by
finding the slope at various points along the s-t
graph
T Also, the distance moved (displacement) of the
/ﬂl s particle is the area under the v-t graph during
ott) as time At

I I B En T =ik

BIRZEIT UNIVERSITY
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ﬁ s-t graph => construct v-t

S
o L ; Given the a-t curve, the change In
7 ~ velocity (Av) during a time period is
(a) the area under the a-t curve.
/ So we can construct a v-t graph from
an a-t graph if we know the initial
i 22 velocity of the particle
T | s

BIRZEIT UNIVERSITY

Mo 17—
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s-t graph => construct v-t

We begin with initial position So and add algebraically
increments As determined from the v-t graph !

Equations described by v-t graphs may be integrated in

order to yield equations that describe segments of the
s-t graph

BIRZEIT UNIVERSITY
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Please remember the link!!!

Handle complex motions

1

Graphing
. !

Visual description of motion

1

Differentiation and integration

Slope and area under curve

Dr. Mamon Horoub
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Explanation of Example 12.7

The test car in Fig. 12—12a starts from rest and travels along a straight

track such that it accelerates at a constant rate for 10 s and then
decelerates at a constant rate. Draw the v— and s— graphs and determine

the time ¢’ needed to stop the car. How far has the car traveled?

SOLUTION

v—t Graph. Since dv = adt, the v—t graph is determined by
integrating the straight-line segments of the a— graph. Using the initial
condition v = 0 when t = 0, we have

v I
0=1r<10s; a = 10; / dv = /1() dt, v = 10¢
0 0

When ¢ = 10s, v = 10(10) = 100 m/s. Using this as the initial
condition for the next time period, we have
v {
e &= =008 a= -2 / dv = /—2 dt, = =2t + 120
J 100 J10

When ¢ = t" we require v = 0. This yields, Fig. 12-12b,

t' =60s Ans.

A more direct solution for ¢’ is possible by realizing that the area
under the a—t graph is equal to the change in the car’s velocity. We
require Av = 0 = A, + A,, Fig. 12-12a. Thus
0 = 10m/s*(10s) + (=2 m/s*)(¢' — 10s)
t"=60s Ans.

-
10
Aj
rf
t(s)
1, 10 A, ‘
» (M/s) (@)
= 10¢
100 [~/ —
p=—2t+ 120

(b)

(./’*"/ L%
A S

BIRZEIT UNIVERSITY
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Explanation of Example 12.7

The test car in Fig. 12—12a starts from rest and travels along a straight

track such that it accelerates at a constant rate for 10 s and then

decelerates at a constant rate. Draw the v— and s— graphs and determine

the time ¢’ needed to stop the car. How far has the car traveled?
s—t Graph. Since ds = v dt, integrating the equations of the v—¢
graph yields the corresponding equations of the s—¢ graph. Using the
initial condition s = 0 when t = 0, we have

5 5
0<1t=10s; v = 10t fds= /101dz, s = 582
)] 0

Whent = 10s, s = ﬁ(I())2 = 500 m. Using this initial condition,

t

b}
= =2t + 120; f ds = [ (=2t + 120) dt
500

10

10s =t =60s; v

s — 500 = —* + 120t — [—(10)* + 120(10)]

s = —t* + 120t — 600
When t" = 60 s, the position is
—(60)? + 120(60) — 600 = 3000 m Ans.

NOTE: A direct solution for s is possible when ¢t = 60 s, since the
triangular area under the v—t graph would yicld the displacement
As = s — 0fromt = 0tot" = 60s. Hence,

As = 3(60)(100) =

a (m/s%) v (m/s)
e v 1o
: 100 f[—
10 v=—2t+ 120
A
p
s 10 A e
It
10 =60 )
(a)
(b)
s (m)
3000
s = 5¢ .
500 e -/
s=—t+ 120t — 600
1(s)
10 60
(c)
55) q’*;/
BIRZEIT UNIVERSITY

3000

Ans.
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A couple of cases more...

A couple of cases that are a bit
more and
therefore need more attention!!!




a-s graph => construct v-s

A more complex case Is presented by the a-s graph. The area under the acceleration
Versus position curve represents (recall Jads =] vdv)

v

V1

)

81

ntice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved

This equation can be solved for v,, allowing you to solve for the velocity

at a point. By doing this repeatedly, you can : v
P y g P Y, Y Q%@;

BIRZEIT UNIVERSITY
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v-s graph => construct a-s

N Another complex case Is presented by the
v-s graph. By reading the velocity v at a
) point on the curve and multiplying it by the
slope of the curve (dv/ds) at this same
L — point, we can obtain the acceleration at that
U S ¢ 0] (1]
a =V (dv/ds)

/F Thus, we can obtain a plot of a vs. s from

oy : the v-s curve. TR e

BIRZEIT UNIVERSITY
(b) »
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Please think about it

If a particle In rectilinear motion has zero speed at some
Instant In time, Is the acceleration necessarily zero at the same
Instant ?

i,
A *
2 : 22,2 LN
= Evb..",‘ Tl | T
< ~ .)/tu LR’, g
’
NS

BIRZEIT U&IVERSITY
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Groups think about this problem please

v(ft/s)
The v-t graph shown

The a-t graph, average speed, and distance

- traveled for the 30 s Interval

v=1+ 30~ ;5  

AP % Find slopes of the curves and draw the

a-t graph.
s Find the area under the curve--that is
e the distance traveled.
' Hs) . . :
10 30 ' * Finally, calculate average speed (using
basic definitions!)

i

BIRZEIT Ul:lIVERSITY

Dr. Mamon Horoub



Groups think about this problem please

The v-t graph shown
The a-t graph, average speed, and distance traveled for the 30 s interval

¢ Find slopes of the curves and draw the a-t graph.
¢ Find the area under the curve--that is the distance traveled.
 Finally, calculate average speed (using basic definitions!)

For 0<t<10 a=dv/dt=0.8t ft/s? For 10<t<30 a=dv/dt=1 ft/s?

v (ft/s)

60

40

= oA

)

1(s) 10 30 BIRZEIT UNIVERSITY

10 30
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Solution to the problem

The v-t graph shown
The a-t graph, average speed, and distance traveled for the 30 s interval

¢ Find slopes of the curves and draw the a-t graph.
¢ Find the area under the curve--that is the distance traveled.
 Finally, calculate average speed (using basic definitions!)

For 0<t<10 a=dv/dt=0.81t ft/s? For 10<t<30 a=dv/dt=1 ft/s?

v (ft/s)

60

Sl P

1(s) 10 30 BIRZEIT UNIVERSITY
Dr. Mamon Horoub

10 30



Solution to the problem (Contd.)

The v-t graph shown

The a-t graph, average speed, and distance traveled for the 30 s interval
¢ Find slopes of the curves and draw the a-t graph.

¢ Find the area under the curve--that is the distance traveled.
 Finally, calculate average speed (using basic definitions!)

o=04:7"

10 3b

Aseo = v dt =(1/3) (0.4)(10)} = 400/3 fi

AS 030 =] v dt = (0.5)(30)2 + 30(30) — 0.5(10)> — 30(10)
= 1000 ft

Vavg(0-30) = ST(0-30) / time
= 1133.3/30

=37.78 ft/s
ST(O—BO) — 1000 + 400/3 = ]]33.3

oo B

BIRZEIT UNIVERSITY
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Try at home please (1)

12-42. The v—t graph for a particle moving through an
electric field from one plate to another has the shape
shown in the figure, where ¢’ = 0.2's and vy, = 10 m/s.
Draw the s—t and a—t graphs for the particle. When
t = t'/2 the particle is at s = 0.5 m.

- - Smax

—s=

/Umax

—NRAC
BIRZEIT UNIVERSITY
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Try at home please (I1)

12-53. Two cars start from rest side by side and travel
along a straight road. Car A accelerates at 4 m/s® for 10 s
and then maintains a constant speed. Car B accelerates
at 5 m/s? until reaching a constant speed of 25 m/s and
then maintains this speed. Construct the a—t, v—¢, and s—t
graphs for each car until ¢ = 15 s. What is the distance
between the two cars when ¢t = 15 s?

/‘*//
BIRZEIT UNIVERSITY
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Try at home please (1)

v (m/s)

12-65. The v-s graph was determined experimentally —
to describe the straight-line motion of a rocket sled. | —
Determine the acceleration of the sled when s = 100 m, "
and when s = 200 m.

20

s (m)
50 300
C. Hibbeler. To be publi Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All ights reserved,

—NRAC
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Part 1

Objectives




Sections’ Objectives
Students should be able to:

Describe the motion of a particle traveling along a curved path (12.4)

Relate kinematic quantities in terms of the rectangular components of
the vectors (12.5)

Analyze the free-flight motion of a projectile (12.6, Self Study)

e
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Curvilinear motion

Curvilinear motion occurs when a particle moves along a curved path. Since this path is

often described in three dimensions, vector analysis will be used to formulate the

particle’s position, velocity, and acceleration.
| ———

e T

BIRZEIT UI;IIVERSITY
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N0

Related applications

The path of motion of each plane in this formation can be tracked
with radar and their X, y, and z coordinates (relative to a point on
earth) recorded as a function of time

1

How can we determine the velocity or acceleration at any
instant?

A roller coaster car travels down a fixed, helical path at a constant
speed

If you are designing the track, why is it important to be able to
predict the acceleration of the car?

o T

BIRZEIT UI;IIVERSITY
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General curvilinear motion

A particle moving along a curved path undergoes curvilinear motion. Since the motion is often
three-dimensional, vectors are used to describe the motion

A particle moves along a curve defined by the path function, s

&
jL The position of the particle at any instant is designated by the vector

r = r(t). Both the magnitude and direction of r may vary with time

If the particle moves a distance As along the curve during time
interval At, the displacement is determined by vector
subtraction: Ar=r’-r

Displacement 3 L@L_%@h;

‘BIRZEIT Uf\IIVERSITY
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Velocit
Velocity represents the rate of change in the position of a particle

v The average velocity of the particle during the time
Increment At is

Vavg = ATAL

The instantaneous velocity is the time-derivative of
position

v = dr/dt

Velocity | The velocity vector, v, is always tangent to the path of
3 motion

The magnitude of v is called the speed. Since the arc length As approaches the magnitude of
Ar as t—0, the speed can be obtained by differentiating the path function (v = ds/dt). Note that
this is not a vector!

‘BIRZEIT UP.\IIVERSITY
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Acceleration
Acceleration represents the rate of change in the velocity of a particle

If a particle’s velocity changes from v to v’ over a time increment At,
the average acceleration during that increment is:

Aavg = AV/IAL = (v - v’)/At

The instantaneous acceleration is the time-derivative of velocity:
a = dv/dt = dr/dt?

A plot of the locus of points defined by the arrowhead of the velocity
vector is called a hodograph The acceleration vector is tangent to the
hodograph, but not, in general, tangent to the path function.

Acceleration path

€ el

‘BIRZEIT UP.\IIVERSITY
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Curvilinear motion: Rectangular components

It is often convenient to describe the motion of a particle in terms of its X, y, z or
rectangular components, relative to a fixed frame of reference

The position of the particle can be defined at

any instant by the position vector ,, """"0\\

r=xi+yj+zk g 5 z ‘

5 .
The X, y, z components may all be functions of 1P el 1Y S p
time, i.e., 2eX y
.t'/f Y
X =Xx(t), y =y(t), and z = z(t)
Position
The of the position vector is: r=./(x? + y? + z%)
e et

The of r 1s defined by the unit vector: u, = (r /1)

Dr. Mamon Horoub



Rectangular components: Velocity

The velocity vector is the time derivative of the position vector:

v = dr/dt = d(xi)/dt + d(yj)/dt + d(zk)/dt
Since the unit vectors i, j, k are constant in magnitude and direction, this equation reduces to

V=V i+v, j+v, K

where; v, = dx/dt, v, = dy/dt, v, = dz/dt
. The magnitude of the velocity
_2 vector is
-/ \ V= (VP + (V) + (%)
_ v=oitojtok The direction of v is tangent to the
/ y path of motion.
i The d'll”eCtl()H of v is defined by @/&@t
Velocity the unit vector: u, = (v /v) e
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Rectangular components: Acceleration

The acceleration vector is the time derivative of the velocity vector (second derivative of the
position vector):

a=dvidt=dr/dt*=a,i+a,j+a, K

where a,=dv,/dt, a =dv,/dt, a,=dv,/dt

Z The magnitude of the acceleration vector is
""Q\
e \ a=v=/(a) +(a) +(a)
. ‘ The direction of a is usually not tangent to the path of the
a=adta)tak particle

The direction of a is defined by the unit vector: u, = (a /a)

s ‘BIRZEIT UI;IIVERSITY
Acceleration
Dr. Mamon Horoub



Important points and analysis

1. Kinematic e uaﬁions used becaétse rectilinear
motion occurs along each coordinate axis

2. M?T%;nitudes of moti?n fOJ X, % Z vector
%r?eo eor?]ents can be found using Pythagorean

Appendix C will help Use rgctanqular

you With vectors - ,| coordinate system to
solve problems

Curvilinear motion can cause ' S

changes in both magnitude and = O \he

direction of the position, N direction of motion of the

velocity and acceleration vectors article is automatically

aken into account

DON'T PANIC

When using rectangular
: coordinates, the
_ - In general the acceleration components along each of
Velocity vector is always vector is not tangent to the the axes do not change
directed tangent to the path path, but rather, to the direction. e
hodograph Only magnitude and it
algebraic sign will change § /- on Horous




Problems

EXAMPLE [12.9

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8t) ft, where ¢ is in seconds. If the
equation of the path is y = x*/10, determine the magnitude and
direction of the velocity and the acceleration when t = 2.

o

BIRZEIT Ul.\IIVERSITY
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Problems

EXAMPLE |12.9

At any instant the horizontal position of the weather balloon in
Fig. 12-18a is defined by x = (8¢) ft, where ¢ is in seconds. If the
equation of the path is y = x*/10, determine the magnitude and
direction of the velocity and the acceleration when t = 2.

SOLUTION
Velocity. The velocity component in the x direction is Acceleration. The relationship between the acceleration components
J is determined using the chain rule. (See Appendix C.) We have
v, =x=—(8) = 8ft/s— ) o
. . . . . i _ _
To fmd'the relationship between the ve‘10c1ty components we Iwnll use ay = b, = <L (2xi/10) = 2(2)/10 + 2x(3)/10 v=2680tfs a=128f
the chain rule of calculus. (See Appendix A for a full explanation.) vy T dt b, = T26° 0, = OF
= 2(8)*/10 + 2(16)(0)/10 = 128 /s> | B :
Nyd : /
»=y= E(xZ/IO) = 2xx/10 = 2(16)(8)/10 = 25.6 ft/s 1 Thus, (b) ©
] . a=\/(0)? + (128)* = 1281/ Ans.
When ¢ = 2 s, the magnitude of velocity is therefore e o ,
The direction of a. as shown in Fig. 12-13¢, 1s
2 2
_ = : 128
v \/(8 ft/s)” + (25.6 ft/s)” = 26.8 ft/s Ans. 6, = “m_,T - 50" e
The direction is tangent to the path, Fig. 12-18b, where
v, 25.6 NOTE: It is also possible to obtain v, and a, by [irst expressing
6, = tan™ i tan™ 8 = 72.6° Ans. |y = f(r) = (8)%10 = 6.4¢* and then taking successive time derivatives. m‘g
! BIRZEIT UNIVERSITY
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Problems

EXAMPLE |12.10

For a short time, the path of the plane in Fig. 12-19a is described by
y = (0.001x%) m. If the plane is rising with a constant velocity of 10 m/s,
determine the magnitudes of the velocity and acceleration of the plane
whenitisaty = 100 m.

e
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Problems

EXAMPLE |12.10

For a short time, the path of the plane in Fig. 12-19a is described by
y = (0.001x%) m. If the plane is rising with a constant velocity of 10 m/s,
determine the magnitudes of the velocity and acceleration of the plane
whenitisaty = 100 m.

“elliuel y Acceleration. Using the chain rule, the time derivative of Eq. (1)

When y = 100 m, then 100 = 0.001x> or x = 316.2 m. Also, since : : .
_ gives the relation between the acceleration components.
v, = 10 m/s, then

y = v 100m = (10m/s)r =105 y=0mie g =g = 0002k, + 0002x5, = 000202 + xa,)
> w4

Velocity. Using the chain rule (see Appendix C) to find the 100m ,
Rp B s ) i/ © Wheny = 3162m,v, = 1581 mfs,d, =, = 0,

relationship between the velocity components, we have

= 5= 4 (00013 = = Y 0 = 0.002((15.81 m/s)? + 3162
v, = = 2 (000Lx%) = (00029)% = 0.002x0, (1) o (1581 m/s) 2 m(a,))
a, = =0.791 m/s
10m/s = 0.002(3162 m)(v,)
v, = 1581 m/s "_r% V' The magnitude of the plane’s acceleration s therefore
. N a
The magnitude of the velocity is therefore o . < Y, . \/,,2‘ ) “f- - \/(_0.791 o /sz)z +(Om /sz)z
v=\/v2+ 02 = /(1581 m/sf + (10m/s)? = 187m/s  Ans = = X = 0791 m/s? Ans
st

These results are shown in Flg 12-19b. BIRZEIT UNIVERSITY
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Projectile motion (Self Study)

&

t= — s
= —-mfs Yg= —mfs

BIRZEIT UNIVERSITY
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Motion of a projectile

Projectile motion can be treated as two rectilinear motions, one in the horizontal direction experiencing
zero acceleration and the other in the vertical direction experiencing constant acceleration (i.e., gravity)

For illustration, consider the two balls on the left. The red ball falls
from rest, whereas the yellow ball is given a horizontal velocity.
Each picture in this sequence is taken after the same time interval.
Notice both balls are subjected to the same downward acceleration
since they remain at the same elevation at any instant. Also, note
that the horizontal distance between successive photos of the
yellow ball is constant since the velocity in the horizontal
direction is constant

BIRZEIT UNIVERSITY
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Kinematic equations: Horizontal &Vertical motion

Since a, = 0, the velocity in the horizontal direction
remains constant (v, = v,,) and the position in the x
direction can be determined by:

X =X, + (Vo) (D)

Since the positive y-axis is directed upward, a, = -g. Application of the constant acceleration equations
yields:

Vy = Voy - g(t)
Y =Y, + (Vo) (1) — %29(1)? o
Vy2 = V0y2 — 29(y — yo) BIRZEIT UNIVERSITY
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—l Example

Given: Snowmobile is going 15 m/s at point A.

Find:  The horizontal distance it travels (R) and the time in the air.

Solution:
First, place the coordinate system at point A. Then write the equation for horizontal motion.

+ Xg=Xa*Vatag and v, =15 cos 40° m/s
—_—

Now write a vertical motion equation. Use the distance equation.
1+ Y =Ya* Vaglag —0.50ctag? Vay = 15sin 40° m/s

Note that Xz = R, X, =0, Y5 =-(3/4)R, and y, = 0.

i

BIRZEIT UNIVERSITY

Solving the two equations together (two unknowns) yields
R=19.0m tag=2.48s

Dr. Mamon Horoub



Problems

EXAMPLE |12.12 SOLUTION

The chipping machine is designed to eject wood chips at vy = 25 ft/s
as shown in Fig. 12-22. If the tube is oriented at 30° from the
horizontal, determine how high, h, the chips strike the pile if at this
instant they land on the pile 20 ft from the tube.

Fig, 12-22

Coordinate System. When the motion is analyzed between points
O and A, the three unknowns are the height A, time of flight ¢, 4. and
vertical component of velocity (v,4),. [Note that (v,4), = (vp),.] With
the origin of coordinates at O, Fig. 12-22, the initial velocity of a chip
has components of

(vo)x = (25 cos 30°) ft/s = 21.65 ft/s —
(vo)y = (255sin30°) ft/s = 12.5 ft/st

Also, (v4), = (vo), = 21.65ft/s and a, = —32.2 ft/s”. Since we do
not need to determine (vy4),, we have

Horizontal Motion.

(:t’) X4 = X0 + (Vo)itoa
20t = 0 + (21.656t/s)o4
IOA = (09238 s

Vertical Motion. Relating ¢, 4 to the initial and final elevations of a

chip, we have

(+1) ya=r0+ (vo)ytoa + %acIEOA
(h — 4ft) =0 + (12,5 ft/s)(0.9238 s) + 3(—32.2 ft/s>)(0.9238 5)?
h = 1.811t Ans.
&
NOTE: We can determine (v4), by using (v4), = (vo), + aloa- Y

Dr. Mamon Horoub



Problems

I P T N S OLUTION

A sack slides off the ramp, shown in Fig. 12-21, with a horizontal
velocity of 12 m/s. If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

y
N\_A 12m/s

g X
\ 1 1

Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12-21. The initial velocity of a sack has
components (v4), = 12m/sand (v4), = 0. Also, between points A and

B the acceleration is a, = —9.81 m/s”. Since (v3), = (v4), = 12 m/s,
the three unknowns are (vg),, R, and the time of flight ¢4 5. Here we do
not need to determine (vg),.

Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for ¢ 45 by using the equation

(+T1) g = Ya + (Va)tap + %ﬂc-‘fis
—6m=0+0 + %(—9.8‘1 m/s?)t% 5
IAB = 111s Ans.

Horizontal Motion. Since ¢,z has been calculated, R is determined
as follows:

(_t) xp = X4+ (Va)dap
R=0+ 12m/s (1.11s)
R=133m Ans.
.
'BIRZEIT UNIVERSITY
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Problems (Solve it at your home)

12-71. A particle travels along the curve from A4 to B in
2 s. It takes 4 s for it to go from B to C and then 3 s to
go from Cto D. Determine its average speed when it goes

from A to D.
y
D
S5m
15m
B M
= %
10 m
X 5355 imlR peO <

BIRZEIT UNIVERSITY
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Part 1

Objectives




Sections’ Objectives
Students should be able to:

Determine the normal and tangential components of velocity and
acceleration of a particle traveling along a curved path. (Sec 12.7)

Determine velocity and acceleration components using cylindrical
coordinates. (Sec 12.8)

Dr. Mamon Horoub



Normal and tangential components |

When a particle moves along a curved path, it is sometimes convenient to describe its

motion using coordinates other than Cartesian. When the path of motion is known,

normal (n) and tangential (t) coordinates are often used

In the n-t coordinate system, the origin is located on the

particle (the origin moves with the particle)

The t-axis is tangent to the path (curve) at the instant considered, positive in the direction of the particle’s
motion

The n-axis is perpendicular to the t-axis with the positive direction toward the center of curvature . _ . k.
of the curve

Dr. Mamon Horoub



Normal and tangential components |l

The positive n and t directions are defined by the unit vectors u, and u;
respectively.

The center of curvature, O’, always lies on the concave side of the curve.

The radius of curvature, p, is defined as the perpendicular distance from the
curve to the center of curvature at that point.

The position of the particle at any instant is defined by the distance, s, along
the curve from a fixed reference point.

(o)

BIRZEIT UNIVERSITY
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Velocity in the n-t coordinate system

The velocity vector is always tangent to the path of motion (t-direction)

The magnitude is determined by taking the time derivative of the path function

s(t)
v =V u, where V =ds/dt=S

Here V defines the magnitude of the velocity (speed) and u, defines the
direction of the velocity vector.

BIRZEIT UNIVERSITY
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Acceleration in the n-t coordinate system |

Acceleration is the time rate of change of velocity:
a = dv/dt = d(vu,)/dt = vu, + v U,
Here v represents the change in the magnitude of velocity and ljt represents the rate of change in

the direction of u..
: U molE il a8 Ghe parlicls moves
alone (s are S 1 e

“

Vv
urdut =1(d9)=6un ESin
After mathematical manipulation, the acceleration vector can be expressed

as: a U, U =all +a

e

BIRZEIT UNIVERSITY
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Acceleration in the n-t coordinate system Il

There are two components to the acceleration vector:
a au au,
The tangential component is tangent to the curve and in the direction of increasing or
decreasing velocity.
a,=v or ads=vdv

The normal or centripetal component is always directed toward the center of curvature
of the curve. a,=Vvip =

/

The magnitude of the acceleration vector is \M
T —
[(a)” *(a,) ;

a, e

BIRZEIT UNIVERSITY
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Special cases of motion |

There are some special cases of motion to consider 7 &
I
1) The particle moves along a straight line.

A

p = = an:VZ/p:() => a:at:\'/

The tangential component represents the time rate of change in the
magnitude of the velocity.

The particle moves along a curve at constant speed.
a,=v=0 => a=a,=vip

The normal component represents the time rate of change in the
direction of the velocity.

553 i et o
BIRZEIT UNIVERSITY
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Special cases of motion Il

3) The tangential component of acceleration is constant, a, = (a,),. /
a=a,
In this case, dihctne ot
al velocity ‘)

S =5y + Vgt + (L12) (@) s SN =
mn . . >
V=V, + (@)t

r
Change in
magnitude of

V2= (Vo)2 i 2(at)c(s v So) velocity

As before, s, and v, are the initial position and velocity of the particle att = 0

4) The particle moves along a path expressed as y = f(x).
The radius of curvature, p, at any point on the path can be calculated from

o= [1+ (dy/dx)? P2
d2y/dx |

553 i et o
BIRZEIT UNIVERSITY
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Three dimensional motion

If a particle moves along a space curve, the n and t axes are - euatnEoge

defined as before. At any point, the t-axis is to the
path and the n-axis points toward the center of curvature. 2~
The plane containing the n and t axes is called the osculating '
plane.

A third axis can be defined, called the binomial axis, b. The
pinemial unit vector, uy, is directed perpendicular to the osculating
plane, and its sense is defined by the cross product u, = u, X U,

There is no motion, thus no velocity or acceleration, in the binomial direction.

e
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EXRE P Problem

When the skier reaches point A along the parabolic path in Fig. 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s”. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
of its x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

10 m

o

BIRZEIT Ul.\IIVERSITY
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Problem y

When the skier reaches point A along the parabolic path in Fg, 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s”. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
ofits x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Velocity. By definition, the velomty is always directed tangent to the
path. Since y = Zlﬂx dy/dx = ﬂJc then at x = 10m, dy/dx = 1.

Hence, at A, v makes an angle of § = tan ~1| = 45° with the x axis,
Fig. 12-27a. Therefore,

v =omfs 45T Ans,

| 10m ‘

The acceleration is determined from a = du, + (v*/p)u,. However,
it is first necessary to determine the radius of curvature of the path at
A (10 m, 5 m). Since d?y/dx? = &, then

[+ (dydx [+ (PR
= 5 > = T = 2828 m
The acceleration becomes
: v -
a, =, +—u,
(6 m/s)?
=t s m e
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Problem

When the skier reaches point A along the parabolic path in Fg, 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s”. Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
ofits x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Velocity. By definition, the velocity is always directed tangent to the
path. Since y = 551°, dy/dx = 5, then at x = 10m, dy/dx = 1.
Hence, at A, v makes an angle of § = tan™'1 = 45° with the x axis,
Fig. 12-27a. Therefore,

v =omfs 45T Ans,

| m
As shown in Fig, 12-27,
0=\ + (123 m/s)? = 237 )’
)
= tan " —— = §75°
o=
Thus 45° + 90° + 7.5 = 180° = 12° 0 that
0=23Tmjss 125 Ans

NOTE: By using n, t coordinates, we were able to readily solve this
problem through the use of Eq. 12-18, since it accounts for the separate
changes in the magnitude and direction of v.

\1.2?3 m/s
oF

Fig, 12-27

o
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Curvilinear motion: Cylindrical components (12.8)

Applications

Sometimes the motion of the particle is constrained on a
path that is best described using cylindrical coordinates. If
motion is restricted to the plane, then polar coordinates are
used.

The cylindrical coordinate system is used in cases where the
particle moves along a 3-D curve.

(spiral motion)
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Cylindrical components

]
We can express the location of P in \ \
, |

polar coordinates as using a radial

r
coordinate r, which extends outward f""-f’

from the fixed origin O to the particle, 3

and a transverse coordinate 8 which is .

the counterclockwise angle between a \15

fixed reference line and the r axis. 0 R
Position
=11
1s in the direction of increasing r when 6 is held fixed, and is in
a direction of increasing 8 when r is held fixed. and ug is in a

direction of increasing & when r is held fixed.

Note that these directions are perpendicular to one another. coi®a

BIRZEIT Ul.\IIVERSITY

Dr. Mamon Horoub



Velocity (Polar coordinates)

The instantaneous velocity is defined as:
=d /dt = d(ru )/dt

d
=r +rE

Using the chain rule:

i e do.,/dt = (dv., /d0)(d0/dt)
fi s We can prove that dii,/dO =, sodv, /dt = @

Therefore: v=71. + 16

| X
called the radial component, and 76, called the
transverse component. The speed of the particle at
any given instant is the sum of the squares of both
components or

o T

Velocity y= \/ (TB. )2 + (f, )2 BIRZEIT UNIVERSITY
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Acceleration (Polar coordinates)
The mmstantaneous acceleration 1s defined as:

= dv/dt= d(Tu,+10uy)/dt

After manipulation, the acceleration can be
expressed as

a={F—10% 1, + (0 +2r0)

i The term (¥ — 78%), is the radial acceleration or a

0
Acceleration

The term (6 + 270) is the transverse acceleration or
Ay

oo T

The magnitude of acceleration is a= \/ ((F —162) )2+ (10 + 276)? E
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Cylindrical coordinates

—  If the particle P moves along a space curve,
1ts position can be written as

rp=ru,+zu, +6 %eg

Taking time derivatives and using the chain
rule:

Velocity: vp=iu,+ ru, + zu,

Acceleration: ap = (t — 0?)u, + (10 + 2i0)u, + Zu, e e
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Problem

EXAVPLEM2

The rod OA in Fig. 12-33a rotates in the horizontal plane such that
6 = (1) rad. At the same time, the collar B is sliding outward along

OA so that r = (100*) mm. If in both cases s in seconds, determine
the velocity and acceleration of the collar when t = 1.

SOLUTION

Coordinate System. Since time-parametric equations of the path
are given, it is not necessary to relate r to 6.

Velocity and Acceleration. Determining the time derivatives and
evaluating them when t = 1's, we have

=100mm =1

1=1s

r = 1002 =11ad = 573°

1=1ls

F=2000  =200mm/s =3

1=1s

= 3rad/s

1=1s

e B
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Problem

EXavPLEM2

The rod OA in Fig. 12-33a rotates in the horizontal plane such that
6 = (*) rad. At the same time, the collar B is sliding outward along
0Aso that r = (100%) mm. If in both cases ¢ is in seconds, determine
the velocity and acceleration of the collar when t = 1.

SOLUTION

P20 =200mm/s* 6= 6

i=1s

= frad/s’.

=13

As shown in Fig. 12-33b,
V=ru,t rf}uH
= 200u, + 100(3)uy = {200, + 300u,} mmjs

The magnitude of vis

(b)
v =/ (200 + (300)* = 361 mm/s Ans,
30
b=t = |=563 §+57F=11¢ Ans
| <2) :

o
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Problem

EXavPLEM2

The rod OA in Fig. 12-33a rotates in the horizontal plane such that
6 = (*) rad. At the same time, the collar B is sliding outward along
0Aso that r = (100%) mm. If in both cases ¢ is in seconds, determine
the velocity and acceleration of the collar when t = 1.

As shown in Fig. 12-33¢,
0= (F - ri)u, + (16 + 2,
= [200 - 100(3)u, + [100(6) + 2(200)3]u

= {~700u, + 1800u,} mm/s’
" The magnitude of ais

9 ¢ = VOO + (1800) = 1930mm)s® Aus

Fig. 12-3 1800
0= tan'l(ﬁ) =687 (180°-¢)+7F¥=16°  Ans

NOTE: The velocity is tangent to the path; however, the acceleration
is directed within the curvature of the path, as expected.

o
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Problem

The amusement park ride shown in Fig. 12-32a consists of a chair that
is rotating in a horizontal circular path of radius r such that the arm
OB has an angular velocity 6 and angular acceleration 6. Determine
the radial and transverse components of velocity and acceleration of
the passenger. Neglect his size in the calculation.

Fig. 12-32

o
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Problem

EXAMPLE |12.17 SOLUTION

The amusement park ride shown in Fig. 12-32a consists of a chair that Coordinate System. Since the angular motion of the arm is

is rotating in a horizontal circular path of radius r such that the arm reported, polar coordinates are chosen for the solution, Fig. 12-32a.

OB has an angular velocity 6 and angular acceleration 6. Determine Here 6 is not related to r, since the radius is constant for all .

the radial and transverse components of velocity and acceleration of

the passenger. Neglect his size in the calculation. Velocity and Acceleration. It is first necessary to specify the first
and second time derivatives of r and 6. Since r is constant, we have

r=r r=20 r=20
Thus,
v, =r=20 Ans.
Vg = o Ans.
Fpne s = 9 = —ré? Ans.
(a) (b) t o b
ag =rf + 2r0 = ro Ans.
Fig. 12-32
These results are shown in Fig. 12-32b.
a12
. v (r9) "
These results are shown in Fig. 12-325b. —a,=a,=—= =rt
p r
NOTE: The n, t axes are also shown in Fig. 12-32b, which in this : ‘*
special case of circular motion happen to be collinear with the r and @ ag = a, = dv _ i(ré) _ ﬁf; i r@ =0+ g Sk
axes, respectively. Since v = v, = v, = rf, then by comparison, de  dt dt dt e
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Problems (Solve it at your home)
*12-100. A car is traveling along a circular curve that
has a radius of S0 m. If its speed is 16 m/s and is increasing
uniformly at 8 m/s°, determine the magnitude of its
acceleration at this instant.
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Problems (Solve it at your home)

12-111. At a given instant the train engine at £ has a'

.. . . ' . . '!-'.i.‘ P
speed of 20 m/s and an accelération of 14 m/s* acting in Wi
the direction shown. Determine the rate of increase in the “

train’s speed and the radius of curvature p of the path.

© 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.
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Problems (Solve it at your home)
12-153. The boy slides down the slide at a constant

speed of 2 m/s. If the slide is in the form of a helix, defined A

by the equations r = 1.5 m and z = — 8/, determine the i
boy’s angular velocity about the z axis, 6, and the . g
magnitude of his acceleration. e

AW ! 7|
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Part 1

Objectives




Sections’ Objectives
Students should be able to:

Relate the positions, velocities, and accelerations of particles
undergoing dependent motion (Sec 12.9)

Understand translating frames of reference

Use translating frames of reference to analyze relative motion (Sec
12.10)

553 i et o
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Applications |

The cable and pulley system shown here
can be used to modify the speed of
block B relative to the speed of the
motor. It Is important to relate the
various motions in order to determine
the power requirements for the motor
and the tension In the cable

BIRZEIT UNIVERSITY
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Applications I

Rope and pulley arrangements are
often used to assist in lifting heavy
objects. The total lifting force
required from the truck depends

on the acceleration of the cabinet.

oo T
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Dependent motion

In many kinematics problems, the motion of one object will on
the motion of another object

A — The blocks 1mn this figure are
connected by an

wrapped around a pulley. If block

A moves downward along the

inclined plane, block B will move

up the other incline

The motion of each block can be related mathematically by defining
, s, and sg. Each coordinate axis 1s defined from

a , measured along each plane in the
of each block.

BIRZEIT UNIVERSITY
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Dependent motion

Datum
-

. Datum In this example, position
coordinates s, and sy can be
defined from fixed datum lines
extending from the center of the

pulley along each incline to blocks
A and B

[f the the position coordinates s, and sy are
by the equation

Sp tlep Tsg =1t

Here I 1s the total cord length and 1.y 1s the length of cord passing over -
arc CD on the pulley SOk

Dr. Mamon Horoub



Dependent motion

{Dulum S The of blocks A and B
s A can be related by
the position equation. Note that

b

so dl.p/dt = dl;/dt = 0

ds,/dt + dsp/dt =0 Vg = -Vu

-The negative sign indicates that as A moves down the incline (positive
s, direction), B moves up the incline (negative sy direction)

can be found by the velocity expression

aB _— - a A "BIRZEIT UNIVERSITY
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Example

_— Consider a more complicated example.
. Position coordinates (s, and sg) are defined
from fixed datum lines, measured along the

direction of motion of each block

that sy 1s only defined to the center
of the pulley above block B, since this
block moves with the pulley. Also, h is
a constant

m(a—-é ' A

Datum ¢S54 —

The red colored segments of the cord remain constant in length
during motion of the blocks

o T
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Example

The position coordinates are related
by the equation

Datum

‘ RN Rk

Where [ 1s the

Since [ and h remain constant

| during the motion, the velocities

f(@'—’@ ¢ and accelerations can be related by
| two successive time derivatives:

Datum 54 —

2vg=-v, and 2ag=-a,

When block B moves downward (+sg), block A moves to the left (-s,). .9

' ‘BIRZEIT Ul.\IIVERSITY
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Datum

Example

This example can also be worked by
defining the position coordinate for B (sp)
from the bottom pulley instead of the top
pulley

The position, velocity, and
acceleration relations then become

2(h—sg) +h+s,=1

and 2vg=v, 2ap = a,

o T
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Dependent motion: Procedures for analysis

These procedures can be used to relate the dependent motion of particles
moving along rectilinear paths (only the magnitudes of velocity and
acceleration change, not their line of direction)

) Define position coordinates from fixed datum lines, along the path of
each particle. Different datum lines can be used for each particle

2) Relate the position coordinates to the cord length. Segments of cord
that do not change in length during the motion may be left out

3) If a system contains more than one cord, relate the position of a point
on one cord to a point on another cord. Separate equations are
written for each cord

4) Differentiate the position coordinate equation(s) to relate velocities
and accelerations. Keep track of signs! e

A T
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Example

M
© I In the figure on the left, the cord at
| " A 1s pulled down with a speed of 8 ft/s
(0) | p p

C

| ‘@
78 ;
= ,‘_,\,;E_ @
9
B

The speed of block B

There are two cords involved in the motion in this
example. The position of a point on one cord must be related to
the position of a point on the other cord. There will be two
position equations (one for each cord)

i I
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E\I‘m“ll\
CAaAlmpic

from a fixed datum line. Three
coordinates must be defined: one for point A (s,), one for block B (sg),
and one relating positions on the two cords. Note that pulley C relates
the motion of the two cords

Define the datum line through the top
pulley (which has a fixed position).

Datum § & é&
- —— s, can be defined to the center of the
S ‘ :
,\J _@ ‘ | Sc A pulley above point A.
‘@ - s can be defined to the center of the
\4 Cn o pulley above B.
_‘2 sc 1s defined to the center of pulley C.

All coordinates are defined as positive

down and along the direction of
motion of each point/object.

i I

BIRZEIT Ul.\IIVERSITY

Dr. Mamon Horoub



Example

Define 1, as the length of the

first cord, minus any segments of constant length. Define |, in a similar manner

for the second cord:

Cord 1: 2s, +2s.=1,

Cord 2: sg+(sg—sc)=1,

Datum bYE Q}%
L= -

s | L]
-@ -l Sc
| —

between the two
equations, we get:

2sp T4sg =1, +2l,

Relate velocities by
this expression. Note that |, and I, are
constant lengths.

2vy+4vg =0
=> vp=-0.5v,=-0.5(8) =- 4 ft/s

The velocity of block B is 4
ft/s up (negative sy direction).

i I

BIRZEIT Ul.\IIVERSITY

Dr. Mamon Horoub



Example

Determine the speed of block B in Fig. 12-40 if the end of the cord at
A is pulled down with a speed of 2 m/s.
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Example

Determine the speed of block B in Fig. 12-40 if the end of the cord at
A is pulled down with a speed of 2 m/s.

Excluding the red colored segments of the cords in Fig. 1240, the
remaining constant cord lengths /; and /, (along with the hook and
link dimensions) can be expressed as

—Datum

SC+.EB:.'!1

-
=
;
h
-]

\“/’2 (54 —5c) + (sg —sc) +sg=1b
+—f Q'&E’ Time Derivative. The time derivative of each equation gives
P T & o
2m/J (\Y B a7

Vg4 — 20+ 20 =0
Fig. 12-40 Eliminating v., we obtain
'UA + 4?_?3 — O

so that when v, = 2 m/s (downward),

vg = —05m/s = 05m/s | Ans,

BIRZEIT UI;IIVERSITY
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(A) 60 mom
100 mm dia

—

[ /77 A D
(e

. o S

MOTOR
DRIVER PULLEY

Think about it...

(B) 200 mm dia
(C)100 mm dia

- T

o SN

COMPOUND PULLEY
WHEEL

(D) 120 mm dia
(E}40 mm dia

COMPOUND PULLEY
WHEEL

(F) 30 mm dia

OUTPUT PULLEY
WHEEL
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Now it is time to move to 12.10...

Relative motion analysis of two particles

using translating axis YLy

¢

Dr. Mamon Horoub



Applications |

20 fe

When you try to hit a moving object, the position, velocity, and
acceleration of the object must be known. Here, the boy on the ground is
at d = 10 ft when the girl in the window throws the ball to him

If the boy on the ground is running at a constant speed of 4 ft/s,
how fast should the ball be thrown? o o

Dr. Mamon Horoub



Applications I

When fighter jets take off or land on an
aircraft carrier, the velocity of the carrier
becomes an issue.

S0km/h

If the aircraft carrier travels at a forward velocity of 50 km/hr and plane A takes
off at a horizontal air speed of 200 km/hr (measured by someone on the water),
how do we find the velocity of the plane relative to the carrier?

How would you find the same thing for airplane B?

How does the wind impact this sort of situation?

Dr. Mamon Horoub



Relative position

The absolute position of two particles A
and B with respect to the fixed X, y, z
reference frame are given by r, and rg.
The position of B relative to A is
represented by

F'gia = s = I'a

Therefore, if re=(10i+2j)m
and r,=(@4i1+5j)m

then rga=(01—3))m

| Translating
observer

Fixed
observer

BIRZEIT UNIVERSITY
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Relative velocity

To determine the relative velocity of B
with respect to A, the time derivative of
the relative position equation is taken.

Veia = VB = Va

or

Vg = Vo T Vg

In these equations, vg and v, are called absolute velocities and vg, Is the relative
velocity of B with respect to A.

NOte that VB/A - - VA/B %ﬁ‘%ﬁ%

Dr. Mamon Horoub



Ap/q

Relative acceleration

The time derivative of the relative
velocity equation yields a similar vector
relationship between the absolute and
relative accelerations of particles A and
B.

dg/pa — g —ap
or

dg = ap T dg)a

553 i et o
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Solving problems

Since the relative motion equations are vector equations, problems involving them may be
solved in one of two ways.

For instance, the velocity vectors in vz = v, + Vg,a could be written as Cartesian vectors and the
resulting scalar equations solved for up to two unknowns.

N SN

(o (s

S %Zp
Alternatively, vector problems can be solved “graphically” by use of trigonometry. This
approach usually makes use of the law of sines or the law of cosines

e
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C

Laws of sines and cosines

Since vector addition or subtraction forms a triangle, sine
and cosine laws can be applied to solve for relative or
absolute velocities and accelerations. For review, their
formulations are provided below.

Law of Sines: a b C

sin A sin B sin C
Law of Cosines: a2 - p2 4+ c® - 2bc cos A

2 2 2
b"=a“"+ ¢ — 2ac cos B

CZ= a2+ bz— 2ab cos C

‘BIRZEIT UNIVERSITY
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Problems

Plane A in Fig. 12-44a is flying along a straight-line path, whereas
plane B is flying along a circular path having a radius of curvature of
pp = 400 km. Determine the velocity and acceleration of B as
measured by the pilot of A.

SOLUTION

Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to plane A is to be determined,
the translating frame of reference x', y' is attached to it, Fig. 12-44a.
Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

o
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ouweLEl22e

y
600 km/h LI
B

1100 km/h

. L 400 km

g

Problems

Plane A in Fig. 12-44a is flying along a straight-line path, whereas
plane B is flying along a circular path having a radius of curvature of
pp = 400km. Determine the velocity and acceleration of B as
measured by the pilot of A.

SOLUTION

Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to plane A is to be determined,
the translating frame of reference x', y" is attached to it, Fig. 12-44a.
Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

(+1) Ug = Uy + Vgja
600](1‘1’1/1’1 =700 km/h T° Up/a
v/ = ~100km/h = 100 km/h | Ans,

Acceleration. Plane B has both tangential and normal components
of acceleration since it is flying along a curved path. From Eq. 12-20,
the magnitude of the normal component is

2
Applying the relative-acceleration equation gives
ag = a4 + ag/y
900i — 100j = 50j + ap/4
Thus,
ag/4 = {900i — 150j} km/h?

From Fig. 12-44¢, the magnitude and direction of ag, 4 are therefore

150
apa = 912km/h? 6 = tan_lﬁ =946° <5 Ans.

900 km /h?

| R

150 km/h*

Ap 4

o
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Problems
DHANPLE

At the instant shown in Fig. 12-45a, cars A and B are traveling with y .
speeds of 18 m/s and 12 m/s, respectively. Also at this instant, A has a ’ mé)f
decrease in speed of 2 m/s”, and B has an increase in speed of 3 m/s. y

v
Determine the velocity and acceleration of B with respect to A.

\\ 3mps’ /18 m/s

SOLUTION X5
\
Velocity. The fixed x, y axes are established at an arbitrary pointon = 100m 1 ¥ l
the ground and the translating x', y" axes are attached to car A, Fig. 12m)s
12-45a. Why? The relative velocity is determined from B
Vg = V4 + Vg4 What are the two unknowns? Using a Cartesian
vector analysis, we have ¥
/\ 60° L
)

o
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O

At the instant shown in Fig. 12-45a, cars A and B are traveling with
speeds of 18 m/s and 12 m/fs, respectively. Also at this instant, A has a
decrease in speed of 2 m/s’, and B has an increase in speed of 3 m/s”.
Determine the velocity and acceleration of B with respect to A.

SOLUTION

Velocity. The fixed x, y axes are established at an arbitrary point on
the ground and the translating x', y" axes are attached to car A, Fig.
12-450. Why? The relative velocity is determined from
Vg = V4 T Vs What are the two unknowns? Using a Cartesian
vector analysis, we have

Vg = V¥4 3= vB/A
—12j = (—18 cos 60°i — 18 sin 60°) + vj4
Va4 = {Yi + 3.588)} m/s
Thus

h

vaa = \/(9)F + (3.588)% = 9.69m/s Ans.

Problems

\\\Bm,’sz 8m/s
\
p=100m \l
12mfs
B
v
/61? LX
)

m/s*

;
2
60°
%ﬁﬂ
‘

Noting that v, 4 has +i and +j components, Fig. 12-45b, its direction is

(vs/a)y  3.588
tanf = = —
(vB/a)x 9
g=217" < Ans.

Acceleration. Car B has both tangential and normal components of

acceleration. Why? The magnitude of the normal component is
2 2
vy (12m/s) ]
= ey — 1440
(aB)n p 100 m m/S

Applying the equation for relative acceleration yields
ag =a, + ag,
(—1.440i — 3j) = (2 cos 60°i + 25sin 60°j) + ap/,
ap 4 = {—2.440i — 4732j} m/s*

Here ap 4 has —i and —j components. Thus, from Fig. 12-45c,

aga = V(2440 + (4732 = 5.32m/s*  Ans

Here ag,, has —i and —j components. Thus, from Fig. 12-45c,

aga = V(2.440)% + (4732)% = 532 m/s’ Ans.
(apa)y 4732
tan ¢ = ==
(HB;'A)A' 2.440
é=627" F Ans.

3.588 m/s Vi

9mfs

2440 m/s?

T
¢

a
i 4732 m/s?

(©

o
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Next lecture;
Help Session
and may be...

Starting

Chapter 16...
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| ) Absolute Dependent Motion Analysis of Two Particles
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2 Relative-Motion of Two Particles Using Translating Axes
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| ) Solve different problems on CH12
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Problems

A particle moves along a straight line such that its position
is defined by s = ( — 61 + 5) m. Determine the average

velocity, the average speed, and the acceleration of the
particle whenr=6s.

e
U‘) At e
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Problems

A particle moves along a straight line such that its position
is defined by s = (¢ — 61 + 5) m. Determine the average
velocity, the average speed, and the acceleration of the

particle whenr=6s.

SOLUTION

2

s=t —60 +5

ds
v=—=2t— 6
! dt
v _
dt

Il

v = 0Owhent = 3
5|i=0 =5
§|=3 = -4
$l;=6 =5
AT ()
Uag = " ===

st 949

("‘*'.sp)a\'g T =3m/s
At 6

ali=s = 2m/s’

Ans.

Ans.

Ans.

1355 (Wl 01
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Problems

12-22. 'The acceleration of a rocket traveling upward is
given by a = (6 + 0.025) m/s°, where s is in meters:
Determine the rocket’s velocity when s = 2 km and the
time needed to reach -this -altitude. Initially, v = 0 and

s = Owhent =0

@/@/
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Problems
12-22. 'The acceleration of a rocket traveling upward is /“ [\
given by a = (6 + 0.025) m/s°, where s is in meters: r
Determine the rocket’s velocity when s = 2 km and the
time needed to reach -this -altitude. Initially, v = 0 and | t
s = 0 when ¢t = 0. | -

To find the time, remember that:

Solution:
Show me the final answer] o= E
dt
As the acceleration is not constant, we will need to integrate our acceleration to figure out the velocity. To do so, we will d s
need to use the following equation: dt = &8
v
ads = vdv
Again, take the integral of both sides:
Take the integral of both sides:
s v dt= [ —
f 0 v
ads = vdv
% b (substitute the velocity equation we found)
s v
/ (6 +0.02s) :/ vdv f f’”nr‘ ds
0 0
(For the acceleration integral, the lower limit is O because the rocket starts at a height of 0 m. For the velocity integral, 123 +0.02s*
if it’s hard to visualize the right side of this integral, remember that you can write it like so:

remember that the rocket starts from rest, meaning the lower limit is 0 m/s.)

i 2000 1
f dt = [ ———ds
0 0 /125 +0.025°

0.02s% s+ 2
5+ ==
( 2 o 2o
2 2
63 + M _Z (This is a complicated integral, however, you can see the integral solved here: https://goo.gl/iwgq1f)
2 2
https://www.questionsolutions.com/the-

t=19.27 s " "
acceleration-of-a-rocket-traveling-upward

= /125 + 0.02s2
«../ *x/

When the height is 2000 m, the velocity is:
v — +/12(2000) + 0.02(2000) Final Answers:
BIRZEIT UNIVERSITY

v =322.5 m/s

v = 3225 m/s
t=19.2Ts Dr. Mamon Horoub
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Problems

12-26. Ball A is released from rest at a height of 40 ft
at the same time that a second ball B is thrown upward
5 ft from the ground. If the balls pass one another at a

height of 20 ft, determine the speed at which ball:B was
thrown upward.

Plan: Both balls experience a constant downward acceleration
of 32.2 ft & due to gravity. Apply the formulas for

* : = o -
constant acceleration, with a, = -32.2 ft's=.

40 ft

g T
B S ft

l\v
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Problems
12-26. Ball A is released from rest at a height of 40 ft °
at the same time that a second ball B is thrown upward
5 ft from the ground. If the balls pass one another at a

height of 20 ft, determine the speed at which ball:B was ' 40 ft
thrown upward.

z]
Plan: Both balls experience a constant downward acceleration s =Sg + Vot + 5 t2 g
of 32.2 ft & due to gravity. Apply the formulas for
constant acceleration, with a, = -32.2 ft & - Ball A: \¥: oy
p 5 ft
1 . | N
20=40+0+ 5(—32.2}:'Z
t=111s
Ball B:
1 2
20 =5+ 1v5(1.11) + 5(—32.2}(1.11 )
vo =314 ft/s "BIRZEIT UNIVERSITY

Dr. Mamon Horoub



Problems (Solve it at your home)

12-71. A particle travels along the curve from A4 to B in
2 s. It takes 4 s for it to go from B to C and then 3 s to
go from C to D. Determine its average speed \;.fhen it goes

from A to D.
B ‘ @

15m

O

10 m

/‘*//
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Problems (Solve it at your home)

12-71. A particle travels along the curve from A4 to B in
2 s. It takes 4 s for it to go from B to C and then 3 s to
go from Cto D. Determine its average speed when it goes

from A to D.

Solution:

We must first figure out the total distance traveled by the particle. To do so, we must realize that each curved section is in

fact Lth of the circumference of a circle. The length of each curved part is:

L = (=)(2)()(10) = 15.71 m

lo = (=)(2)(x)(5) =7.85 m

| = | =

(Remember, the circumference of a circle is ¢ = (2)(7)(r), where r is the radius)

The total distance the particle traveled = 15.71 + 15 + 7.85 = 38.56 m

Thus, the speed is:

distance
speed=——-:
time
38.56
speed= = 4.28 m/s

2444+

y

15m

%

10 m

~

O

C

& 2007 by R. C. Hibbeler. To be published by Pearson

X

Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.
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Problems (Solve it at your home)
*12-100. A car is traveling along a circular curve that
has a radius of S0 m. If its speed is 16 m/s and is increasing
uniformly at 8 m/s°, determine the magnitude of its
acceleration at this instant.

BIRZEIT UNIVERSITY
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Problems (Solve it at your home)
*12-100. A car is traveling along a circular curve that
has a radius of 50 m. Ifits speed is 16 m /s and is increasing
uniformly at 8 m/s?, determine the magnitude of its
acceleration at this instant.

Solution:

The tangential acceleration, a; is equal to 8 m/s%. We now need to find the normal acceleration since the car is travelling
along a circular curve. We can use the following formula to do so:

v
a-n = —
p
(Where a,, is normal acceleration, v is velocity, and p is the radius of the circle)
162
ap = —— = 5.12 m/s?
n 50

The magnitude of acceleration is:

a = /(@) + (an)? e,
S N
_ — 2 T — A0
= 4/8% 1+ 5.122 = 9.5 m/s BIRZEIT UNIVERSITY

Dr. Mamon Horoub



Problems (Solve it at your home)

12-111. At a given instant the train engine at £ has a'
speed of 20 m/s and an accelération of 14 m/s? acting in
the direction shown. Determine the rate of increase in the
train’s speed and the radius of curvature p of the path.

v =20m/s

a
iz}‘s\
'/."/‘
75580

a=14m/s’ ‘)/E

/

P

/

/

i

© 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.
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Problems (Solve it at your home)

12-111. At a given instant the train engine at £ has a'
speed of 20 m/s and an accelération of 14 m/s? acting in
the direction shown. Determine the rate of increase in the
train’s speed and the radius of curvature p of the path.

SOLUTION

o, -~ 5
a, = 14 cos 75 = 3.62 m/s”

© 2007 by R. C. Hibbeler. To be published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey. All rights reserved.

a, = 14sin75

ay

p = 29.6m

i
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Problems (Solve it at your home)
12-153. The boy slides down the slide at a constant

speed of 2 m/s. If the slide is in the form of a helix, defined A

by the equations r = 1.5 m and z = — 8/, determine the i
boy’s angular velocity about the z axis, 6, and the . g
magnitude of his acceleration. e

AW ! 7|
BIRZEIT UNIVERSITY
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Problems (Solve it at your home)
12-153. The boy slides down the slide at a constant

speed of 2 m/s. If the slide is in the form of a helix, defined N
by the equations r = 1.5 m and z = — 8/, determine the |
boy’s angular velocity about the z axis, 6, and the ) i
magnitude of his acceleration. Qe |
3dMam . .
vp=iu, + Ou, + zu, 5 ) el 16, + (16 + 2:0)u, + 2u,
= o\t \SQ \Ae+ (—77: 2| —p-vellUt(o H,>ue-}o U\Z .

Z:Y\-c)?)z\- Q;ﬂ_?_)"
50 =—
0=7

= A - /F@?)z
() /=)t _ vo°

= J
= \.%0Y redfs A’; = (.5(1.30‘0
_ " A
L TR = o
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Problems (Help Session)

12-195. The mine car Cis being pulled up the incline using
the motor M and the rope-and-pulley arrangement shown.
Determine the speed vp at which a point P on the cable
must be traveling toward the motor to move the car up the
plane with a constant speed of v = 2 m/s.

t’;‘, :‘*‘/L
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Problems (Help Session)

12-195. The mine car Cis being pulled up the incline using
the motor M and the rope-and-pulley arrangement shown.
Determine the speed vp at which a point P on the cable
must be traveling toward the motor to move the car up the
plane with a constant speed of v = 2 m/s.

Datum

g

25(‘ + (S¢ — Sp) = [ SP

Thus.

3ve — vp =0

Hence.

vp=3(-2)=-6m/s=6m/s

-
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Problems (Help Session)

*12-208. If the end of the cable at A is pulled down with a
speed of 2 m/s, determine the speed at which block E rises.

6;0 ;‘*‘/L
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Problems (Help Session)

*12-208. If the end of the cable at A is pulled down with a
speed of 2 m/s, determine the speed at which block E rises.

Since v

A~

2SB+SA:II

sc + (s¢ —sp) = b,

s+ (Sg—5Sc) =14

Ua A (\)U[." =0

2 m/s. from Eq. [3]

(+4)

2'7"8U[.;

v = —0.250 m/s

Eliminating s and s from Egs. [1].[2] and [3]. we have

S/\ T (\)SI.: = [| =r 2[2 i 4[‘;

Time Derivative: Taking the time derivative of the above equation yields

0

=0.250m/s 1

(4]

2o éI!I! E"/ b2
Ans. W@o

3 -y
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Problems (Help Session)

A train travels at a constant speed of 60 mi/h, crosses over a road as
shown in Fig. 12-43a. If the automobile A is traveling at 45 mi/h along
the road, determine the magnitude and direction of the velocity of the
train relative to the automobile.

SOLUTION |

Vector Analysis. The relative velocity vr/4 is measured from the
translating x’, y" axes attached to the automobile, Fig. 12-43a. It is
determined from vz = v4 + vr/4. Since vy and v4 are known in both
magnitude and direction, the unknowns become the x and y
components of vz, 4. Using the x, y axes in Fig. 12-43a, we have

2 L J v
,‘;.%:u‘*‘% 1
L/", N A=A

3 -y
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Problems (Help Session)

T~ﬁ‘5‘

A train travels at a constant speed of 60 mi/h, crosses over a road as
shown in Fig. 12-43a. If the automobile A is traveling at 45 mi/h along
the road, determine the magnitude and direction of the velocity of the
train relative to the automobile.

SOLUTION |

Vector Analysis. The relative velocity v7/4 is measured from the
translating x’, y" axes attached to the automobile, Fig. 12-43a. It is
determined from vz = v4 + v7/4. Since vr and v4 are known in both
magnitude and direction, the unknowns become the x and y
components of vz, 4. Using the x, y axes in Fig. 12-43a, we have

Yl =VA -+ VT/A

60i = (45 cos 45° + 45sin 45°%) + vr/4
vr/a = {28.2i — 31.8j} mi/h Ans.
The magnitude of v7/4 is thus
vrja = V(282)7 + (-31.8)% = 42.5 mi/h Ans.

From the direction of each component, Fig. 12-43b, the direction of
Vr/a 1S

(vr/a)y 318

(vr/a): 282

=485 X Ans.

Note that the vector addition shown in Fig. 12-43b indicates the
correct sense for vz, 4. This figure anticipates the answer and can be
used to check it.

tan 6 =

|
i}

282 mi/h

Y

31.8 mi/h

Y1/

2 L J v
MW iE E"/ I
Lﬂ, N A=A

3 -y
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Problems (Help Session)

*12-216. Car A travels along a straight road at a speed of
25 m/s while accelerating at 1.5 m/s’. At this same instant
car C is traveling along the straight road with a speed of
30 m/s while decelerating at 3 m/s*. Determine the velocity
and acceleration of car A relative to car C.

oy
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Problems (Help Session)

*12-216. Car A travels along a straight road at a speed of
25 m/s while accelerating at 1.5 m/s’. At this same instant
car C is traveling along the straight road with a speed of
30 m/s while decelerating at 3 m/s*. Determine the velocity
and acceleration of car A relative to car C.

Velocity: The velocity of cars A and B expressed in Cartesian vector form are Acceleration: The acceleration of cars A and B expressed in Cartesiar
v,y = [=25cos 45% — 25sin45% | m/s = [—17.68i — 17.68j] m/s a, = [—1.5cos45% — 1.5sin 45%] m/s* = [—1.061i — 1.061j] m/s’
ve = [—30j] m/s ac = [3jlm/s’
Applying the relative velocity equation. we have Applying the relative acceleration equation.
Ya = Yo £ Var ay = ac T ayc
—17.68i = 17.68] = =30j + v4c —1L061i — 1.061j = 3j + a,,c
Vae = [-17.68i + 12.32§] m/s a,c = [-1.061i — 4.061j] m/s*
Thus, the magnitude of v 4, is given by Thus. the magnitude of a, ¢ is given by
vae = V(-1768) + 12.32% = 21.5m/s Ans. aac = V(=1.061)2 + (=4.061)? = 4.20 m/s? Ans.
and the direction angle 8, that v, makes with the x axis is and the direction angle 8, that a,, makes with the x axis is

12.32 4.061
=<—l_= o = —1_=~‘c .
6, = tan (17.68) 34.9° & Ans. 6, = tan (1.%1) 754° 7 Ans ‘*U
BIRZEIT UNIVERSITY
Dr. Mamon Horoub
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