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Part 1
Introduction
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o To classify the various types of rigid-body planar motion.
o To investigate rigid body translation and analyze it.
o Study planar motion.
o Relative motion analysis using translating frame of reference.
o Find instantaneous center of zero velocity.
o Relative motion analysis using rotating frame of reference.

Chapter Objectives
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Students should be able to:
o Analyze the kinematics of a rigid body undergoing planar

translation or rotation about a fixed axis

Today’s Objectives
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub



What is the rigid body?
In physics, a rigid body is an idealization of a solid body in
which deformation is neglected. In other words, the distance between any
two given points of a rigid body remains constant in time regardless of
external force exerted on it. Even though such an object cannot physically
exist due to relativity, objects can normally be assumed to be perfectly
rigid if they are not moving near the speed of light.

Today’s Objectives
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➢ Passengers on this amusement ride are subjected to curvilinear
translation since the vehicle moves in a circular path but always
remains upright.

➢ If the angular motion of the rotating arms is known, how can we
determine the velocity and acceleration experienced by the
passengers?

➢ Does each passenger feel the same acceleration?

Applications
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➢ Gears, pulleys and cams, which rotate about fixed axes, are often used
in machinery to generate motion and transmit forces. The angular
motion of these components must be understood to properly design
the system.

➢ How can we relate the angular motions of contacting bodies that
rotate about different fixed axes?

Applications (continued)
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Part 2
Planar Rigid body motion (section 16.1)
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➢ There are cases where an object cannot be treated as a particle. In these cases the size or
shape of the body must be considered. Also, rotation of the body about its center of mass
requires a different approach.

➢ For example, in the design of gears, cams, and links in machinery or mechanisms, rotation of
the body is an important aspect in the analysis of motion.

➢ We will now start to study rigid body motion. The analysis will be limited to planar motion.

Introduction
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A body is said to undergo planar motion when all parts of  the body 

move along paths equidistant from a fixed plane.



Introduction
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Planar rigid body motion 
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There are three types of planar rigid body motion.



Planar rigid body motion 
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Translation: Translation occurs if every line segment on the body

remains parallel to its original direction during the motion. When all

points move along straight lines, the motion is called rectilinear

translation.

When the paths of motion are curved lines, the motion is called

curvilinear translation.



Planar rigid body motion 
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General plane motion: In this case, the

body undergoes both translation and

rotation. Translation occurs within a plane

and rotation occurs about an axis

perpendicular to this plane.

Rotation about a fixed axis: In this case, all the particles

of the body, except those on the axis of rotation, move

along circular paths in planes perpendicular to the axis

of rotation.



Planar rigid body motion 
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• The piston undergoes rectilinear translation since it is constrained to slide in a

straight line.

• The connecting rod undergoes curvilinear translation, since it will remain

horizontal as it moves along a circular path.

• The wheel and crank undergo rotation about a fixed axis. In this case, both

axes of rotation are at the location of the pins and perpendicular to the plane of

the figure.

An example of bodies undergoing the

three types of motion is shown in this

mechanism.

• The connecting rod undergoes general plane motion, as it will both translate

and rotate.



Part 3
Rigid body motion – Translation (16.2)
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Rigid body motion – Translation
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The positions of two points A and B on a

translating body can be related by

rB = rA + rB/A

Where rA & rB are the absolute position vectors

defined from the fixed x-y coordinate system,

and rB/A is the relative-position vector between

B and A.

Note, all points in a rigid body subjected to translation move with the same

velocity and acceleration.

The velocity at B is vB = vA+ drB/A/dt .

Now drB/A/dt = 0 since rB/A is constant. So, vB = vA, and by following similar logic,

aB = aA.



Part 4
Rigid body motion – Rotation about a  
fixed axis (16.3) 
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Rigid body motion – Rotation about a fixed axis 
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The change in angular position, d, is called the angular displacement,

with units of either radians or revolutions. They are related by

1 revolution  =  2 radians

When a body rotates about a fixed axis, any point P in the body travels

along a circular path. The angular position of P is defined by .

Angular velocity, , is obtained by taking the time derivative 

of angular displacement:

 = d/dt (rad/s)  +

Similarly, angular acceleration is

 = d2/dt2 = d/dt  or  = (d/d) + rad/s2



Rigid body motion – Rotation about a fixed axis 
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If the angular acceleration of the body is constant,  = C, the

equations for angular velocity and acceleration can be integrated to

yield the set of algebraic equations below.

 = 0 + Ct

 = 0 + 0t + 0.5Ct2

2 = (0)
2 + 2C ( – 0)

0 and 0 are the initial values of the body’s angular position and

angular velocity.

Note: these equations are very similar to the constant acceleration

relations developed for the rectilinear motion of a particle.



Rigid body rotation – Velocity of point P
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The magnitude of the velocity of P is equal to r (the

text provides the derivation). The velocity’s direction is

tangent to the circular path of P.

In the vector formulation, the magnitude and direction of

v can be determined from the cross product of  and rp.

Here rp is a vector from any point on the axis of rotation

to P.

v =  x rp =  x r

The direction of v is determined by the right-hand rule.



Rigid body rotation – Acceleration of point P
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The acceleration of P is expressed in terms of its normal (an) 

and tangential (at) components.

In scalar form, these are at =  r and  an = 2 r.

The tangential component, at, represents the time rate of

change in the velocity's magnitude. It is directed tangent to

the path of motion.

The normal component, an, represents the time rate of 

change in the velocity’s direction.  It is directed toward the

center of the circular path.



Rigid body rotation – Acceleration of point P
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Using the vector formulation, the acceleration of P can also 

be defined by differentiating the velocity.

a = dv/dt = d/dt x rP +  x drP/dt

=  x rP +  x ( x rP)

It can be shown that this equation reduces to

a =  x r – 2r = at + an

The magnitude of the acceleration vector is a =    (at)
2 + (an)

2



Rotation about a fixed axis - Procedure
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• Establish a sign convention along the axis of rotation.

• Alternatively, the vector form of the equations can be used (with i, j, k components).

v =  x rP =  x r

a = at + an =  x rP +  x ( x rP) =  x r – 2r

• If  is constant, use the equations for constant angular acceleration.

• If a relationship is known between any two of the variables (, , , or t), the other variables

can be determined from the equations:  = d/dt  = d/dt  d =  d

• To determine the motion of a point, the scalar equations  v =  r,    at =  r,  an = 2r , and 

a =    (at)
2 + (an)

2    can be used.



Example
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Given: The motor M begins rotating at  = 4(1 – e-t) rad/s, where t

is in seconds. The radii of the motor, fan pulleys, and fan

blades are 1 in, 4 in, and 16 in, respectively.

Find: The magnitudes of the velocity and acceleration at point P

on the fan blade when t = 0.5 s.

Plan: 1) Determine the angular velocity and acceleration of the

motor using kinematics of angular motion.

2) Assuming the belt does not slip, the angular velocity

and acceleration of the fan are related to the motor's

values by the belt.

3) The magnitudes of the velocity and acceleration of

point P can be determined from the scalar equations of

motion for a point on a rotating body.



Example
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Solution:

2) Since the belt does not slip (and is assumed inextensible), it must have the same

speed and tangential component of acceleration at all points. Thus the pulleys

must have the same speed and tangential acceleration at their contact points

with the belt. Therefore, the angular velocities of the motor (m) and fan (f)

are related as

v = m rm = f rf =>  (1.5739)(1) = f(4)  =>  f = 0.3935 rad/s

When t = 0.5 s,

m = 4(1 – e-0.5) = 1.5739 rad/s, m = 4e-0.5 = 2.4261 rad/s2

m = dm/dt = 4e-t rad/s2

1) Since the angular velocity is given as a function of time, m = 4(1 – e-t), the 

angular acceleration can be found by differentiation.



Example
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Solution:

4) The speed of point P on  the fan, at a radius of 16 in, is now determined as

vP = frP = (0.3935)(16) = 6.30 in/s

The normal and tangential components of acceleration of point P are calculated as

an = (f)
2 rP = (0.3935)2 (16) = 2.477 in/s2

at = f rP = (0.6065) (16) = 9.704 in/s2

3) Similarly, the tangential accelerations are related as

at = m rm = f rf =>  (2.4261)(1) = f(4)  =>  f = 0.6065 rad/s2

The magnitude of the acceleration of P can be determined by

aP =    (an)
2 + (at)

2 =    (2.477)2 + (9.704)2 = 10.0 in/s2



Example
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Example
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Example
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Example
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o Absolute motion analysis, Relative motion analysis: Velocity, Instantaneous centre of
zero velocity, Relative motion analysis: Acceleration

o 16.4-16.7

Planar kinematics of a rigid body: 
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Students should be able to:
o Determine the velocity and acceleration of a rigid body undergoing general plane motion

using the absolute motion analysis (16.4)
o Describe the velocity of a rigid body in terms of translation and rotation components (16.5)
o Perform a relative-motion velocity analysis of a point on the body (16.5)
o Locate the instantaneous center of zero velocity.
o Use the instantaneous center to determine the velocity of any point on a rigid body in

general plane motion (16.6)
o Resolve the acceleration of a point on a body into components of translation and rotation

(16.7)
o Determine the acceleration of a point on a body by using a relative acceleration analysis

(16.7)

Sections’ Objectives
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Part 5
Absolute motion analysis (16.4)
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➢ The position of the piston, x, can be defined as a function of the angular position

of the crank, θ. By differentiating x with respect to time, the velocity of the
piston can be related to the angular velocity,ω, of the crank.

Applications for absolute motion analysis (16.4)
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➢ The rolling of a cylinder is an example of general plane motion.
➢ During this motion, the cylinder rotates counter clockwise while it translates to

the left.

Applications for absolute motion analysis (16.4)
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub



Procedure for Analysis
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The absolute motion analysis method (also called the parametric

method) relates the position of a point, P, on a rigid body undergoing

rectilinear motion to the angular position,  (parameter), of a line

contained in the body. (Often this line is a link in a machine.)

Once a relationship in the form of sP = f() is established, the velocity

and acceleration of point P are obtained in terms of the angular velocity,

, and angular acceleration, , of the rigid body by taking the first and

second time derivatives of the position function. Usually the chain rule

must be used when taking the derivatives of the position coordinate

equation.



Problem 1 (16.4)
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Given: Two slider blocks are connected by a rod of

length 2 m. Also, vA = 8 m/s and aA = 0.

Find: Angular velocity, , and angular acceleration, ,

of the rod when  = 60°.

Plan: Choose a fixed reference point and define the position of the slider A in terms

of the parameter . Notice from the position vector of A, positive angular

position  is measured clockwise.



Problem 1 (16.4)
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Solution:

aA = -2 sin  – 22 cos  = 0

 = - 2/tan  = -12.32 rad/s2

Using  = 60° and vA = 8 m/s and solving for :

 = 8/(-2 sin 60°) = - 4.62 rad/s

(The negative sign means the rod rotates

counterclockwise as point A goes to the right.)

By geometry, sA = 2 cos 

By differentiating with respect to time,

vA = -2  sin A

reference

sA



Differentiating vA and solving for a,



Problem 1 (16.4)
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Solution:



Problem 2 (16.4)
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub



Problem 2 (16.4)
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Problem 3 (16.4)
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Problem 3 (16.4)
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Part 6
Relative motion analysis: Velocity (16.5)
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As the slider block A moves horizontally to the left with vA, it causes the

link CB to rotate counterclockwise. Thus vB is directed tangent to its

circular path.

Applications for Relative motion analysis: Velocity (16.5)
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Relative motion analysis (16.5)
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When a body is subjected to general plane motion, it undergoes a combination of

translation and rotation.

=

drB =    drA +    drB/A

Disp. due to translation and rotation

Disp. due to translation

Disp. due to rotation

Point A is called the base point in this analysis. It is generally has a known motion.

The x’-y’ frame translates with the body, but does not rotate. The displacement of point

B can be written:



Relative motion analysis: Velocity (16.5)
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The velocity at B is given as : (drB/dt) = (drA/dt) + (drB/A/dt) or

vB = vA + vB/A

= +

Since the body is taken as rotating about A,

vB/A = drB/A/dt =  x rB/A

Here  will only have a k component since the axis of rotation is perpendicular to the 

plane of translation.



Relative motion analysis: Velocity (16.5)
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When using the relative velocity equation, points A and B should generally be points

on the body with a known motion. Often these points are pin connections in linkages.

Here both points A and B have circular motion

since the disk and link BC move in circular

paths. The directions of vA and vB are known

since they are always tangent to the circular

path of motion.

vB = vA +  x rB/A



Relative motion analysis: Velocity (16.5)
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vB = vA +  x rB/A

When a wheel rolls without slipping, point A is often selected to be at the point of 

contact with the ground.  Since there is no slipping, point A has zero velocity.

Furthermore, point B at the center of the wheel moves along a horizontal 

path.  Thus, vB has a known direction, e.g., parallel to the surface.



Relative motion analysis: Analysis Procedure
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3. Write the scalar equations from the x and y components of these graphical 

representations of the vectors.  Solve for the unknowns.

1. Establish the fixed x-y coordinate directions and draw a kinematic diagram for

the body. Then, establish the magnitude and direction of the relative velocity

vector vB/A.

Scalar  Analysis:

2. Write the equation vB = vA + vB/A and by using the kinematic diagram,

underneath each term represent the vectors graphically by showing their

magnitudes and directions.

The relative velocity equation can be applied using either a Cartesian vector analysis or

by writing scalar x and y component equations directly.



Relative motion analysis: Analysis Procedure
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Vector Analysis:

The relative velocity equation can be applied using either a Cartesian vector analysis or

by writing scalar x and y component equations directly.

3. If the solution yields a negative answer, the sense of direction of the vector is

opposite to that assumed.

2. Express the vectors in Cartesian vector form and substitute into vB = vA +  x rB/A.

Evaluate the cross product and equate respective i and j components to obtain two

scalar equations.

1. Establish the fixed x-y coordinate directions and draw the kinematic diagram of the

body, showing the vectors vA, vB, rB/A and . If the magnitudes are unknown, the

sense of direction may be assumed.



Relative motion analysis: Velocity (16.5) Problem 1
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Given: Block A is moving down at 2 m/s.

Find: The velocity of B at the instant   = 45.

Plan: 1. Establish the fixed x-y directions and draw a kinematic diagram.

2. Express each of the velocity vectors in terms of their i, j, k components and 

solve vB = vA +  x rB/A.



Relative motion analysis: Velocity (16.5) Problem 1
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Solution:



Relative motion analysis: Velocity (16.5) Problem 1
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Equating the i and j components gives:

vB = 0.2  cos 45

0 = -2 + 0.2  sin 45

vB = vA + AB x rB/A

vB i =  -2 j + ( k x (0.2 sin 45 i - 0.2 cos 45 j ))

vB i =  -2 j + 0.2  sin 45 j + 0.2  cos 45 i

Solution:

Solving:

 = 14.1 rad/s  or AB = 14.1 rad/s k

vB = 2 m/s   or vB = 2 m/s i



Relative motion analysis: Velocity (16.5) Problem 2
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Relative motion analysis: Velocity (16.5) Problem 2
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Relative motion analysis: Velocity (16.5) Problem 3
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Relative motion analysis: Velocity (16.5) Problem 3
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Relative motion analysis: Velocity (16.5) Problem 3
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Relative motion analysis: Velocity (16.5) Problem 4
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Relative motion analysis: Velocity (16.5) Problem 4
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Part 7
Instantaneous center of zero velocity (16.6)
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The instantaneous center (IC) of zero velocity for this bicycle wheel is at

the point in contact with ground. The velocity direction at any point on

the rim is perpendicular to the line connecting the point to the IC.

Instantaneous center of zero velocity (16.6)
Applications :
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Instantaneous center of zero velocity (16.6)
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For any body undergoing planar motion, there always exists a point in the plane of

motion at which the velocity is instantaneously zero (if it were rigidly connected to the

body).

This point is called the instantaneous center of zero velocity, or IC. It may or may not

lie on the body!

If the location of this point can be determined, the velocity analysis can be simplified

because the body appears to rotate about this point at that instant.



Instantaneous center of zero velocity (16.6)
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To locate the IC, we can use the fact that the velocity of a point on a body is always

perpendicular to the relative position vector from the IC to the point. Several

possibilities exist.

First, consider the case when velocity vA of a point A on

the body and the angular velocity  of the body are

known.

In this case, the IC is located along the line drawn

perpendicular to vA at A, a distance rA/IC = vA/ from

A. Note that the IC lies up and to the right of A since

vA must cause a clockwise angular velocity  about the

IC.



Instantaneous center of zero velocity (16.6)
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The second case is when the lines of

action of two non-parallel velocities,

vA and vB, are known.

First, construct line segments from

A and B perpendicular to vA and vB.

The point of intersection of these

two line segments locates the IC of

the body.



Instantaneous center of zero velocity (16.6)
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The third case is when the

magnitude and direction of two

parallel velocities at A and B are

known.

Here the location of the IC is

determined by proportional

triangles. As a special case, note

that if the body is translating only

(vA = vB), then the IC would be

located at infinity. Then  equals

zero, as expected.



Instantaneous center of zero velocity (16.6)
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The velocity of any point on a body undergoing general plane motion can be

determined easily once the instantaneous center of zero velocity of the body is located.

Since the body seems to rotate about the IC at

any instant, as shown in this kinematic diagram,

the magnitude of velocity of any arbitrary point

is v =  r, where r is the radial distance from the

IC to the point. The velocity’s line of action is

perpendicular to its associated radial line. Note

the velocity has a sense of direction which tends

to move the point in a manner consistent with the

angular rotation direction.



Instantaneous center of zero velocity (16.6)
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Instantaneous center of zero velocity (16.6)
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Instantaneous center of zero velocity (16.6)
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Instantaneous center of zero velocity (16.6)
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Instantaneous center of zero velocity (16.6)
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Instantaneous center of zero velocity (16.6)
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Part 8
Relative motion analysis: Acceleration
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In the mechanism for a window, link AC rotates about

a fixed axis through C, while point B slides in a

straight track. The components of acceleration of

these points can be inferred since their motions are

known.

To prevent damage to the window, the accelerations

of the links must be limited.

Relative motion analysis: 
Acceleration (16.7) Applications
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The equation relating the accelerations of two points on the body is determined by

differentiating the velocity equation with respect to time.

The result is aB = aA + (aB/A)t + (aB/A)n

These are absolute accelerations of points

A and B. They are measured from a set of

fixed x, y axes.

This term is the acceleration of B

with respect to A.

It will develop tangential and normal

components.
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The relative normal acceleration component (aB/A)n is (-2 rB/A) and the direction is always from

B towards A.

= +

Graphically: aB =    aA +     (aB/A)t + (aB/A)n

The relative tangential acceleration component (aB/A)t is ( x rB/A) and perpendicular to rB/A.



Relative motion analysis: Acceleration (16.7)
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub

Since the relative acceleration components can be expressed as (aB/A)t =   rB/A and

(aB/A)n = - 2 rB/A the relative acceleration equation becomes

aB = aA +   rB/A - 2 rB/A

Note that the last term in the relative acceleration equation is not a cross product. It is

the product of a scalar (square of the magnitude of angular velocity, 2) and the relative

position vector, rB/A.



Application of relative acceleration equation
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In applying the relative acceleration equation, the two points used in the analysis (A and B)

should generally be selected as points which have a known motion, such as pin connections with

other bodies.

Point C, connecting link BC and the piston, moves along a straight-line path. Hence, aC is

directed horizontally.

In this mechanism, point B is known to travel along a circular path, so aB can be expressed in

terms of its normal and tangential components. Note that point B on link BC will have the same

acceleration as point B on link AB.



Procedure of analysis (16.7)
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub

1. Establish a fixed coordinate system.

2. Draw the kinematic diagram of the body.

3. Indicate on it aA, aB, , , and rB/A. If the points A and B move along curved paths,

then their accelerations should be indicated in terms of their tangential and normal

components, i.e., aA = (aA)t + (aA)n and aB = (aB)t + (aB)n.

4. Apply the relative acceleration equation:

aB = aA +   rB/A - 2 rB/A

5. If the solution yields a negative answer for an unknown magnitude, it indicates the

sense of direction of the vector is opposite to that shown on the diagram.
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Bodies in contact (16.7)
Copyright © 2020 by Mamon Horoub. All rights reserved.

Dr. Mamon Horoub

Consider two bodies in contact with one another without slipping, where the

points in contact move along different paths.

In this case, the tangential components of acceleration will be the same, i. e.,

(aA)t = (aA’)t (which implies BrB = CrC ).

The normal components of acceleration will not be the same.

(aA)n  (aA’)n so aA  aA’



Rolling motion (16.7)
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Another common type of problem encountered in dynamics involves rolling motion

without slip; e.g., a ball or disk rolling along a flat surface without slipping. This

problem can be analyzed using relative velocity and acceleration equations.

As the cylinder rolls, point G (center) moves along a straight line, while point A, on the

rim of the cylinder, moves along a curved path called a cycloid. If  and  are known,

the relative velocity and acceleration equations can be applied to these points, at the

instant A is in contact with the ground.



Rolling motion (16.7)
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Since G moves along a straight-line path, aG is horizontal. Just before A

touches ground, its velocity is directed downward, and just after contact, its

velocity is directed upward. Thus, point A accelerates upward as it leaves

the ground.

Evaluating and equating i and j components:

aG = r and   aA = 2r   or   aG = r i and   aA = 2r j

aG = aA +  x rG/A – 2rG/A =>  aG i = aA j + (- k) x (r j) – 2(r j)

Since no slip occurs, vA = 0 when A is in contact with ground. From the

kinematic diagram:

vG = vA +  x rG/A

vG i = 0 + (- k) x (r j)

vG = r or   vG = r i

• Velocity:

• Acceleration:
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Given: The ball rolls without slipping.

Find: The accelerations of points A and B at this 

instant.

Plan: Follow the solution procedure.

Solution: Since the ball is rolling without slip, aO is directed to the left with a 

magnitude of:

aO = r = (4 rad/s2)(0.5 ft)=2 ft/s2
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Now, apply the relative acceleration equation between points O and B.

Now do the same for point A.

aB =  aO +  x rB/O – 2rB/O

aB =  -2i + (4k) x (0.5i) – (6)2(0.5i)

=  (-20i + 2j) ft/s2

aA =  aO +  x rA/O – 2rA/O

aA =  -2i + (4k) x (0.5j) – (6)2(0.5j)

=  (-4i – 18j) ft/s2
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Part 9
Relative Motion Analysis Using
Rotating Axes
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➢ In the previous sections the relative-motion analysis for velocity and acceleration was

described using a translating coordinate system. This type of analysis is useful for determining

the motion of points on the same rigid body, or the motion of points located on several pin-

connected bodies.

➢ In some problems the rigid bodies (mechanisms) are constructed such that sliding will occur at

their connections. The kinematic analysis for such cases is best performed if the motion is

analyzed using a coordinate system which both translates and rotates. Furthermore, this frame

of reference is useful for analyzing the motions of two points on a mechanism which are not

located in the same body and for specifying the kinematics of particle motion when the particle

moves along a rotating path.

Relative Motion Analysis Using Rotating Axes (16.8)
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The rotation of the dumping bin of the

truck about point C is operated by the

extension of the hydraulic cylinder AB.

To determine the rotation of the bin due

to this extension, we can use the

equations of relative motion and fix the

x, y axes to the cylinder so that the

relative motion of the cylinder’s

extension occurs along the y axis.
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Velocity
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Acceleration
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▪ The acceleration of point B is determined by taking the time

derivative of the previous equation, which yields



Acceleration
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Procedure for Analysis
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