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Part 1

Introduction




Chapter Objectives

To classify the various types of rigid-body planar motion.
To investigate rigid body translation and analyze it.

Study planar motion.

Relative motion analysis using translating frame of reference.

Find instantaneous center of zero Velocity.

Relative motion analysis using rotating frame of reference.
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Today's Objectives

Students should be able to:
O Analyze the kinematics of a rigid body undergoing planar

translation or rotation about a fixed axis

e B
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Today's Objectives

What s the

In physics, a is an idealization of a solid body in
which deformation is neglected. In other words, the distance between any
two given points of a rigid body remains constant in time regardless of
external force exerted on it. Even though such an object cannot physically

exist due to relativity, objects can normally be assumed to be perfectly

rigid if they are not moving near the speed of light.
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Applications

> Passengers on this amusement ride are subjected to curvilinear
translation since the vehicle moves in a circular path but always
remains upright.

> If the angular motion of the rotating arms is known, how can we

determine the velocity and acceleration experienced by the

passengers?

> Does each passenger feel the same acceleration?

= O A0
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Applications (continued)

> Gears, pulleys and cams, which rotate about fixed axes, are often used
in machinery to generate motion and transmit forces. The angular y
motion of these components must be understood to properly design ’A S ¢
the system. ‘
> How can we relate the angular motions of contacting bodies that _ T o A .

rotate about different fixed axes?
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Part 2

Planar Rigid body motion (section 16.1)
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Introduction

» There are cases where an object be treated as a particle. In these cases the or
of the body must be considered. Also, of the body about its center of mass
requires a different approach.
> For example, in the design of gears, cams, and links in machinery or mechanisms, rotation of
the body is an important aspect in the analysis of motion.

> We will now start to study . The analysis will be limited to

IS said to undergo planar motion when all parts of the bod
move along paths equidistant from a fixed i

= O A0
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Planar rigid body motion

There are three types of planar rigid body motion.
| I

0@

Path of rectilinear translation Path of curvilinear translation
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Rotation about a fixed axis General plane mation @*/ =
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Planar rigid body motion

Translation: Translation occurs If every line segment on the body
remains parallel to its original direction during the motion. When all
points move along straight lines, the motion Is called rectilinear
translation.

When the paths of motion are curved lines, the motion Is called
curvilinear translation.

|
Path of rectilinear translation Path of curvilinear translation W! #2
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Planar rigid body motion

Rotation about a fixed axis: In this case, all the particles
of the body, except those on the axis of rotation, move
along circular paths in planes perpendicular to the axis
of rotation.

Rotation about a fixed axis

1 General plane motion: In this case, the
/@i“@%/ body undergoes both translation and
|

"~ rotation. Translation occurs within a plane

and rotation occurs about an axis
perpendicular to this plane. soi

Dr. Mamon Horoub
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Planar rigid body motion

An example of bodies undergoing the
three types of motion is shown in this
mechanism.

Rectilinear translation

The wheel and crank undergo rotation about a fixed axis.
axes of rotation are at the location of the pins and perpendicular to the plane of

the figure.

Ceneral plane motion

T

o]
ok

Curvilinear translation

Rotation about a fixed axis

In this case, both

The piston undergoes rectilinear translation since it is constrained to slide in a

straight line.

The connecting rod undergoes curvilinear translation, since it will remain

horizontal as it moves along a circular path.

The connecting rod undergoes general plane motion, as it will both translate

and rotate.

e
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Part 3

Rigid body motion — Translation (16.2)
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Rigid body motion — Translation

The positions of two points A and B on a
translating body can be related by

5 g = A Tgja
4 Where r, & rg are the absolute position vectors
/"A o  defined from the fixed x-y coordinate system,
P ‘ and rg,, IS the relative-position vector between
o B and A.

coordinate system

The velocity at B is vg =Vt drg/dt

Now drg,,/dt= 0 since rg,, IS constant. So, vz = V,, and by following similar logic,
ag = aa.

Note, all points in a rigid body subjected to translation move with the same i

velocity and acceleration areer UeRay
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Part 4

Rigid body motion — Rotation about a
fixed axis (16.3)
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Rigid body motion — Rotation about a fixed axis

When a body rotates about a fixed axis, any point P in the body travels
an 1 along a circular path. The angular position of P is defined by 6.

a1 The change in angular position, do, is called the angular displacement,
with units of either radians or revolutions. They are related by
- 1 revolution = 2z radians

ﬂ Angular velocity, w, is obtained by taking the time derivative
of angular displacement:

o = do/dt (rad/s) +'>

@ Similarly, angular acceleration is
I&\M‘T a0

@ = GP0/d= doldt or o = o(de/de) +) radis?
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Rigid body motion — Rotation about a fixed axis

3

If the angular acceleration of the body is constant, ¢ = o the
equations for angular velocity and acceleration can be integrated to
yield the set of algebraic equations below.

O =0y + ot

0 = 0, + oyt + 0.50t

®? = (5)* + 201c (6 — 6p)

0, and », are the initial values of the body’s angular position and
angular velocity.

Note: these equations are very similar to the constant acceleration
relations developed for the rectilinear motion of a particle.

',’*; 2z
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Rigid body rotation — Velocity of point P

The magnitude of the velocity of P is equal to wr (the
text provides the derivation). The velocity’s direction Is
tangent to the circular path of P.

In the vector formulation, the magnitude and direction of

- v can be determined from the cross product of @ and r,.
| P
o] Here 1, is a vector from any point on the axis of rotation
| )|/ to P. A axo
R, V= @ XTy=@ XT $?3K
@ The direction of v is determined by the right-hand rule.

\
" (iRl PO
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Rigid body rotation — Acceleration of point P

The acceleration of P is expressed in terms of its normal (a,)
and tangential (a,) components.
A In scalar form, these are a, = o rand a, = »?r.
The tangential component, a,, represents the time rate of
change in the velocity's magnitude. It is directed tangent to
a, the path of motion.

The normal component, a,,, represents the time rate of
change in the velocity’s direction. It is directed toward the
center of the circular path.

@ ',;*", 2271
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Rigid body rotation — Acceleration of point P

Using the vector formulation, the acceleration of P can also
@ be defined by differentiating the velocity.
A

a=dv/dt=daldt X 1, + @ x drp/dt
—a X+ o X (o Xrp)

It can be shown that this equation reduces to

a=a Xr—o’r=a+a,

@ The magnitude of the acceleration vector is a :\/ (a)? + (a,)?

e
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Rotation about a fixed axis - Procedure
Establish a sign convention along the axis of rotation.

If a relationship is known between any two of the variables (o, ®, 0, or t), the other variables
can be determined from the equations: ® =do6/dt o =do/dt o« dd=odo

If o IS constant, use the equations for constant angular acceleration.

To determine the motion of a point, the scalar equations v=or, a=ar, a,= o’ ,and
a :\/ (a)? + (a,)?> can be used.

Alternatively, the vector form of the equations can be used (with i, j, K components).
V=@ XIh=® XTI
a=ata,=aXxXrpto X(® Xr)=a Xr—o’r
',’*; 221

BIRZEIT UNIVERSITY

Dr. Mamon Horoub



Given:;

Find:

Plan:

The motor M begins rotating at = 4(1 — e?) rad/s, where t
IS in seconds. The radii of the motor, fan pulleys, and fan

Example

blades are 1 in, 4 in, and 16 in, respectively.

The magnitudes of the velocity and acceleration at point P
on the fan blade whent=0.5s.

1)

2)

3)

Determine the angular velocity and acceleration of the
motor using kinematics of angular motion.

Assuming the belt does not slip, the angular velocity
and acceleration of the fan are related to the motor's
values by the belt.

The magnitudes of the velocity and acceleration of
point P can be determined from the scalar equations of
motion for a point on a rotating body.

4

€5 :,‘*_; 227
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_ Example
Solution:

1) Since the angular velocity is given as a function of time, ., = 4(1 — € t) the
angular acceleration can be found by differentiation. < "W

o, = do/dt = 4et rad/s?

Whent=0.5s,
®, = 4(1 —e9°) =1.5739 rad/s, a,, = 4e9° = 2.4261 rad/s?

2) Since the belt does not slip (and is assumed inextensible), it must héf\}ié’ the same
speed and tangential component of acceleration at all points. Thus the pulleys
must have the same speed and tangential acceleration at their contact points
with the belt. Therefore, the angular velocities of the motor (»,,) and fan ()
are related as

Vo, o= ol => (1.5739)(1) = 0f4) => o =0.3935 radls it

Dr. Mamon Horoub



_ Example
Solution:

3) Similarly, the tangential accelerations are related as
a = oy, My = o ly => (2.4261)(1) = a(4) => o, = 0.6065 rad/s?

4) The speed of point P on the fan, at a radius of 16 in, is now determined as
Vp = odp = (0.3935)(16) = 6.30 in/s

The normal and tangential components of acceleration of point P are calculated as
a. = (wg)? rp = (0.3935)? (16) = 2.477 in/s?
a, = o, I, = (0.6065) (16) = 9.704 in/s?

The magnitude of the acceleration of P can be determined by
2, = \f(2,)? + (8)? =\f(2.477)2 + (9.704)2 =10.0 in/s?

\r=tin @‘,‘*,/ 5
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Example

A cord is wrapped around a wheel in Fig. 16-5, which is initially at rest
when 6 = 0. If a force is applied to the cord and gives it an
acceleration a = (4) m/s’, where ¢ is in seconds, determine, as a
function of time, (a) the angular velocity of the wheel, and (b) the
angular position of line OP in radians.

= 't 3
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YE

Example

A cord is wrapped around a wheel in Fig. 16-5, which is initially at rest
when 0 = 0. If a force is applied to the cord and gives it an
acceleration a = (4) m/s’, where ¢ is in seconds, determine, as a
function of time, (a) the angular velocity of the wheel, and (b) the
angular position of line OP in radians.

SOLUTION

Part (a). The wheel is subjected to rotation about a fixed axis passing
through point O. Thus, point P on the wheel has motion about a
circular path, and the acceleration of this point has both tangential and
normal components. The tangential component is (ap), = (4t) m/s’,
since the cord is wrapped around the wheel and moves tangent to it.
Hence the angular acceleration of the wheel is

Using this result, the wheel’s angular velocity @ can now be
determined from a = dw/dt, since this equation relates a, ¢, and .
Integrating, with the initial condition that @ = 0 when ¢ = 0, yields

Part (b). Using this result, the angular position 6 of OP can be
found from @ = d@/dt, since this equation relates 6, w, and .
Integrating, with the initial condition # = 0 when ¢t = 0, we have

NOTE: We cannot use the equation of constant angular acceleration,
since a is a function of time.

(ap) = ar
(4t) m/s*> = a(0.2m) (C+)
a = (20¢) rad/s?* D
d(l) )
am - (20r) rad/s” (C+)
A dw = 1201 dt
@ = 10 rad/s D
d—0=w= (10¢%) rad/s (C+)

dt
o t
/ do = / 10¢° dt
0 0

6 = 3.33¢° rad

= 't 3
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Example

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig. 16-6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of @, = 2 rad/s,
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION
Angular Motion.
First we will convert the

two revolutions to

radians. Since there are 27 rad
in one revolution, then

Dr. Mamon Horoub



Example

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig. 16-6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of @, = 2 rad/s,
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION

The belt has the same speed and tangential component of

Angular Motion. acceleration as it passes over the pulley and wheel. Thus,

First we will convert the
caVravaltticomaTie V= wyrgq = wprg: 7.090rad/s (0.15 m) = wg(0.4 m)

radians. Since there are 27 rad wg = 2.659 rad/s

IORETEOItonSthicH a, = arp = agrg; 2rad/s’ (0.15m) = ag(0.4 m)

27 rad
1 rev

04 =2 rcv( ) = 12.57 rad ay = 0.750 rad/s*
. Motion of P. As shown on the kinematic diagram in Fig. 16-6b,

Since a , is constant, the angular velocity of pulley A is therefore ¢ have

(C+) o = @ + 2a,(0 — 6,) vp = wprg = 2.659 rad/s (0.4 m) = 1.06 m/s Ans. {L
0 ¢ 0
2 )
o = 0 + 2(2 rad/s*)(12.57 rad - 0) (ap); = aprs = 0750 rad/s* (04 m) = 0.3 m/s (..P
w, = 7.090 rad/s (ap), = wprg = (2.659 rad/s)*(0.4 m) = 2.827 m/s’

"2 2 w 3 - :"
Thus ap = \/(().3 m/s®)* + (2.827 m/s’)? = 2.84 m/s*  Ans. srzET oNveRsTY

Dr. Mamon Horoub



Planar kinematics of a rigid body:

O Absolute motion analysis, Relative motion analysis: Velocity, Instantaneous centre of

zero velocity, Relative motion analysis: Acceleration
O 16.4-16.7

= O A0
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Sections’ Objectives

Students should be able to:
O  Determine the velocity and acceleration of a rigid body undergoing general plane motion
using the absolute motion analysis (16.4)

Describe the velocity of a rigid body in terms of translation and rotation components (16.5)
Perform a relative-motion velocity analysis of a point on the body (16.5)

Locate the instantaneous center of zero velocity.

O O O O

Use the instantaneous center to determine the velocity of any point on a rigid body in

general plane motion (16.6)

O

Resolve the acceleration of a point on a body into components of translation and rotation
(16.7)

O  Determine the acceleration of a point on a body by using a relative acceleration analysis
(16.7)

= 4 A0
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Part 5

Absolute motion analysis (16.4)




Applications for absolute motion analysis (16.4)

> The position of the piston, x, can be defined as a function of the angular position

of the crank, O. By differentiating x with respect to time, the velocity of the

piston can be related to the angular velocity, @, of the crank.

@'*“1;‘%

= 4 A0
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Applications for absolute motion analysis (16.4)

> The roIIing of a cylinder is an example of general plane motion.

> During this motion, the cylinder rotates counter clockwise while it translates to

the left.

BIRZEIT UNIVERSITY
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Procedure for Analysis

The absolute motion analysis method (also called the parametric
method) relates the position of a point, P, on a rigid body undergoing
rectilinear motion to the angular position, 6 (parameter), of a line
contained in the body. (Often this line is a link in a machine.)

Once a relationship in the form of s, = (0) Is established, the velocity
and acceleration of point P are obtained in terms of the angular velocity,
o, and angular acceleration, o, of the rigid body by taking the first and
second time derivatives of the position function. Usually the chain rule
must be used when taking the derivatives of the position coordinate
equation.




Problem 1(16.4)

Given: Two slider blocks are connected by a rod of
length 2 m. Also, v, =8 m/sand a, =0.

Find: Angular velocity, », and angular acceleration, a,
of the rod when 6 = 60°.

Choose a fixed reference point and define the position of the slider A in terms
of the parameter 6. Notice from the position vector of A, positive angular
position 6 Is measured clockwise. T

BIRZEIT UNIVERSITY
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reference

Problem 1(16.4)

Solution:

By geometry, s, = 2 cos 0

0 By differentiating with respect to time,
S ’l Using 6 = 60° and v, = 8 m/s and solving for w:
A

® = 8/(-2 sin 60°) = - 4.62 rad/s
(The negative sign means the rod
counterclockwise as point A goes to the right.)

Differentiating v, and solving for a,
a, =-20.8iN 0 —2w?cos 6 =0
a = - w?/tan 6 = -12.32 rad/s?

rotates

Dr. Mamon Horoub



Problem 1 (16.4)

Solution:

Dr. Mamon Horoub



Problem 2 (16.4)

The end of rod R shown in Fig. 16-7 maintains contact with the cam
by means of a spring. If the cam rotates about an axis passing through
point O with an angular acceleration a and angular velocity ®,
determine the velocity and acceleration of the rod when the cam is in
the arbitrary position 6.

= 't 3
BIRZEIT UNIVERSITY

Dr. Mamon Horoub



Problem 2 (16.4)

The end of rod R shown in Fig. 16-7 maintains contact with the cam
by means of a spring. If the cam rotates about an axis passing through
point O with an angular acceleration a and angular velocity ,
determine the velocity and acceleration of the rod when the cam is in
the arbitrary position 6.

SOLUTION

Position Coordinate Equation. Coordinates 6 and x are chosen in
order to relate the rotational motion of the line segment OA on the
cam to the rectilinear translation of the rod. These coordinates are
measured from the fixed point O and can be related to each other
using trigonometry. Since OC = CB = r cos 0, Fig. 16-7, then

X = 2rcosé

Time Derivatives. Using the chain rule of calculus, we have

dx de
— = —=2r(sin 0)—
dr ( ) dt
v = —2rwsinf Ans. NOTE: The negative signs indicate that v and a are opposite to the
direction of positive x. This seems reasonable when you visualize
dv = _2,(19) sin @ — 2rw(cos g)ﬂig the motion.
dt di dt @‘*»/,

— 3 N g
BIRZEIT UNIVERSITY
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Problem 3 (16.4)

The large window in Fig. 169 is opened using a hydraulic cylinder
AB.If the cylinder extends at a constant rate of 0.5 m/s, determine the

angular velocity and angular acceleration of the window at the instant
0 = 30°

Fig. 16-9

= 't 3
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Problem 3 (16.4)

The large window in Fig. 169 is opened using a hydraulic cylinder
AB.If the cylinder extends at a constant rate of 0.5 m/s, determine the
angular velocity and angular acceleration of the window at the instant
0 = 30°

SOLUTION

. _ Since v, = 0.5 m/s, then at 6 = 30°,
Position Coordinate Equation. The angular motion of the window

can be obtained using the coordinate §, whereas the extension or (1.239 m)(0.5 m/s) = 2sin 30°

motion along the hydraulic cylinder is defined using a coordinate s, © = 0.6197 rad/s = 0.620 rad/s Ans.
which measures its length from the fixed point A to the moving
point B. These coordinates can be related using the law of cosines,

ol

4 2 3 Taking the time derivative of Eq. 2 yield
namely, £ = 2m)t + (1m)? ~ 2(2m)(1 m) cos 8 aking the time derivative of Eq. 2 yields
) ds dv, de ! dw
-4 1 — — = - —
s°=5-4cosh (1) o Us + s o 2(cos 8) Y + 2(sin 8) o
When § = 30°, v? + sa, = 2(cos 0)w® + 2(sin 0)a Fig. 16-9
Time Derivatives. $=1239m Since a, = dv /dr = 0, then
Taking the time derivatives of Eq. 1. we have (0.5 m/s)® + 0 = 2 cos 30°(0.6197 rad/s)* + 2 sin 30°«
= —0.415 rad/s’ Ans.
2sf'13 =0 - 4(-sin o)%f = 4
“ ) / Because the result is negative, it indicates the window has an @*
s(v,) = 2(sin 0)w () angular deceleration. LTVt NS
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Part 6

Relative motion analysis: Velocity (16.5)




Applications for Relative motion analysis: Velocity (16.5)

As the slider block A moves horizontally to the left with , it causes the
link CB to rotate counterclockwise. Thus Is directed tangent to its
circular path.

BIRZEIT UNIVERSITY
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Relative motion analysis (16.5)

When a body is subjected to general plane motion, it undergoes a combination of
translation and rotation

A da__»eA Y
/ X'
. B- == —
dl'b’ B —
Time ¢ Time 1 + dt

General plane
motion Translation — Rotation

Point A is called the base point in this analysis. It is generally has a known motion.
The x’-y’ frame translates with the body, but does not rotate. The displacement of point
B can be written: Disp. due to translation

-

BIRZEIT UNIVERSITY
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Relative motion analysis: Velocity (16.5)

Path of
point A ;
} A’\V‘,\ Vg = O s § /
A\
l ¥A 1
A
v N\ 2
N - - & +
B \V‘,‘
\\»
~ Pathof
G Rotation about the

Translation base point A

General plane motion

The velocity at B is given as : (drg/dt) = (dr,/dt) + (drg,,/dt) or

_ Vg=Va T Vgia
Since the body is taken as rotating about A,

Vgia = drga/dt = @ X g
Here @ will only have a k component since the axis of rotation is perpendicular to the
plane of translation. e

BIRZEIT UNIVERSITY
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Relative motion analysis: Velocity (16.5)

Vg =Vpt @ X I's/A

When using the relative velocity equation, points A and B should generally be points
on the body with a known motion. Often these points are pin connections in linkages.

Here both points A and B have circular motion
VB | since the disk and link BC move in circular

4s>=  paths. The directions of v, and vg are known
| since they are always tangent to the circular

% 8 path of motion.

',’*; -
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Relative motion analysis: Velocity (16.5)

|1||-'|I||I |l
T l|||| l

When a wheel rolls without slipping, point A is often selected to be at the point of
contact with the ground. Since there is no slipping, point A has zero velocity.

Furthermore, point B at the center of the wheel moves along a horizontal
path. Thus, vg has a known direction, e.g., parallel to the surface.

VAT v

BIRZEIT UNIVERSITY
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Relative motion analysis: Analysis Procedure

The relative velocity equation can be applied using either a Cartesian vector analysis or
by writing scalar x and y component equations directly.

Scalar Analysis:

1.

Establish the fixed x-y coordinate directions and draw a kinematic diagram for

the body. Then, establish the magnitude and direction of the relative velocity
VeCtor Vg,a.

Write the equation vg = v, + vg,, and by using the kinematic diagram,
underneath each term represent the vectors graphically by showing their
magnitudes and directions.

Write the scalar equations from the x and y components of these graphical
representations of the vectors. Solve for the unknowns.

',‘*‘, e
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Relative motion analysis: Analysis Procedure

The relative velocity equation can be applied using either a Cartesian vector analysis or
by writing scalar x and y component equations directly.

Vector Analysis:

1. Establish the fixed x-y coordinate directions and draw the kinematic diagram of the
body, showing the vectors va, Vg, I'g;a and @. If the magnitudes are unknown, the

sense of direction may be assumed.
2. Express the vectors in Cartesian vector form and substitute into vg = Vo + @ X Igja.
Evaluate the cross product and equate respective | and j components to obtain two

scalar equations.
3. If the solution yields a negative answer, the sense of direction of the vector Is

opposite to that assumed.
i
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Relative motion analysis: Velocity (16.5) Problem 1

Given: Block A is moving down at 2 m/s.

Find:  The velocity of B at the instant 6 = 45°.

Plan: 1. Establish the fixed x-y directions and draw a kinematic diagram.

2. Express each of the velocity vectors in terms of their i, j, K components and
solve Vg = Vo + @ X Ig/a.

%53) ,‘*, e
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Relative motion analysis: Velocity (16.5) Problem 1

Solution:

= O A0
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Relative motion analysis: Velocity (16.5) Problem 1

Solution:

Vg =Vat @pp XTI
Vgi= -2]+(wkx(0.2sin451-0.2cos45]))
Vgi= -2]+0.2msin45] +0.2wcos45 1

Equating the i and ] components gives:

Vg = 0.2 o cos 45

0=-2+0.2 o sin 45 ) m\

o = 14.1rad/s or w,g = 14.1rad/s k
Vg =2m/s or Vg =2m/si

Solving:

Dr. Mamon Horoub



Relative motion analysis: Velocity (16.5) Problem 2

The collar C in Fig. 16-15a is moving downward with a velocity of
2 m/s. Determine the angular velocity of CB at this instant.

@'*“1;‘%
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Relative motion analysis: Velocity (16.5) Problem 2

The collar C in Fig. 16-15a 1s moving downward with a velocity of
2 m/s. Determine the angular velocity of CB at this instant.

SOLUTION | (VECTOR ANALYSIS)

Kinematic Diagram. The downward motion of C causes B to
move to the right along a curved path. Also, CB and AB rotate
counterclockwise.

Velocity Equation. Link CB (general plane motion): See Fig. 16-15b.
Vg = Y¢ + Wep X fB/('

vgi = =2 + wegk X (02i = 02§)

vgi = _2j + ()Zw(Bj + ()Zw(Bi

vg = 0.20¢p (1)
0=-2+ 020cp (2)

wcg = 10rad/s ) Ans. 0
gl i
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Relative motion analysis: Velocity (16.5) Problem 3

The cylinder shown in Fig. 16=14a rolls without slipping on the surface

of a conveyor belt which is moving at 2 ft/s. Determine the velocity of e SN
point A. The cylinder has a clockwise angular velocity @ = 15 rad/s at —
the instant shown. x

ve=2ft)s

= 't 3
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Relative motion analysis: Velocity (16.5) Problem 3

The cylinder shown in Fig. 16-14a rolls without slipping on the surface
of a conveyor belt which is moving at 2 ft/s. Determine the velocity of
point A. The cylinder has a clockwise angular velocity @ = 15 rad/s at
the instant shown.

SOLUTION | (VECTOR ANALYSIS)

Kinematic Diagram. Since no slipping occurs, point B on the
cylinder has the same velocity as the conveyor, Fig. 16-14b. Also, the
angular velocity of the cylinder is known, so we can apply the velocity
equation to B, the base point, and A to determine v 4.

Velocity Equation.
Va= ¥t @ Xty
(2a)d + (va)yj = 2 + (—15k) x (—0.5i + 0.5f)
(va)d + (va)yd = 2i + 7.50§ + 7.50i

so that
(24) = 2 +7.50 = 950 ft/s (1)
(v4)y, = 750 ftfs (2)
Thus,
vy = V(9.50) + (7.50) = 12.1 fi/s Ans.
0 = lan":]g-(—.)- = 383° £ Ans
9.50

@'*"/l
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Relative motion analysis: Velocity (16.5) Problem 3

The cylinder shown in Fig. 16-14a rolls without slipping on the surface
of a conveyor belt which is moving at 2 ft/s. Determine the velocity of
point A. The cylinder has a clockwise angular velocity @ = 15 rad/s at
the instant shown.

SOLUTION Il (SCALAR ANALYSIS)

As an alternative procedure, the scalar components of v, = v + v
can be obtained directly. From the kinematic diagram showing the
relative “circular” motion which produces vz, Fig. 16~14¢, we haye

051t
Vap = @ryp = (15 rad/s)(cos 450) = 106 ft/s

Thus,

Ya= Vgt Vs

[(UA).:] A [(va),-] _ [2 fl/s] " [10.6 Il/s]
S R U | 2 45°

Equating the x and y components gives the same results as before,
namely,

(%) (va), = 2 + 10,6 cos 45° = 9.50 /s
(+1) (v4)y = 0 + 106sin 45° = 7.50 ft/s

_w=15mdfs |
i ::“ 4

Rclative motion
(c)

= 't 3
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Relative motion analysis: Velocity (16.5) Problem 4

The bar AB of the linkage shown in Fig, 16-16a has a clockwise
angular velocity of 30 rad/s when 6 = 60°, Determine the angular
velocities of member BC and the wheel at this instant.

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. By inspection, the velocities of points B and C
are defined by the rotation of link AB and the wheel about their fixed
axes. The position vectors and the angular velocity of each member
are shown on the kinematic diagram in Fig, 16-16b. To solve, we will
write the appropriate kinematic equation for each member.

= 't A0
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Relative motion analysis: Velocity (16.5) Problem 4

The bar AB of the linkage shown in Fig, 16-16a has a clockwise
angular velocity of 30 rad/s when 6 = 60°, Determine the angular
velocities of member BC and the wheel at this instant.

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. By inspection, the velocities of points B and C
are defined by the rotation of link AB and the wheel about their fixed
axes. The position vectors and the angular velocity of each member
are shown on the kinematic diagram in Fig, 16-16b. To solve, we will
write the appropriate kinematic equation for each member.

02m /

("0 = 30 fi!d/3
0 = o

| rend

Vg = wAerB

= (—=30k) X (0.2 cos 60° + 0.2 sin 60%)

= {5.20i — 3.0j} m/s
Link BC (general plane motion):

Yo = Vg + wge X Teyp

vl = 520i — 3.0j + (wpck) X (0.2i)

v = 5.20i + (02w — 3.0)j
ve = 520 m/s

wpe = 15rad/s) Ans.
Wheel (rotation about a fixed axis):

Ve = wp X I¢
5.20i = (wpk) X (—0.1j)

5.20 = 0. l“'n

wp = 520radfs? Ans

= 't 3
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Part 7

Instantaneous center of zero velocity (16.6)




Instantaneous center of zero velocity (16.6)

Applications :

The instantaneous center (IC) of zero velocity for this bicycle wheel is at
the point in contact with ground. The velocity direction at any point on
the rim Is perpendicular to the line connecting the point to the IC.

7
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Instantaneous center of zero velocity (16.6)

For any body undergoing planar motion, there always exists a point in the plane of

motion at which the velocity is instantaneously zero (if it were rigidly connected to the
body).

This point is called the instantaneous center of zero velocity, or IC. It may or may not
lie on the body!

If the location of this point can be determined, the velocity analysis can be simplified
because the body appears to rotate about this point at that instant.

',’*; 22
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Instantaneous center of zero velocity (16.6)

To locate the IC, we can use the fact that the velocity of a point on a body is always
perpendicular to the relative position vector from the IC to the point. Several
possibilities exist.

Centrode,

First, consider the case when velocity v, of a point A on
the body and the angular velocity @ of the body are
known.

In this case, the IC is located along the line drawn @)
perpendicular to v, at A, a distance r,;,c = Va/o from
A. Note that the IC lies up and to the right of A since
Vv, must cause a clockwise angular velocity @ about the '.

|C Location of /C
. knowing v, and @

(a) D T i
BIRZEIT UNIVERSITY
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Instantaneous center of zero velocity (16.6)

The second case Is when the lines of
o A action of two non-parallel velocities,
V, and vg, are known.

First, construct line segments from
A and B perpendicular to v, and vg.
The point of intersection of these
two line segments locates the IC of
Location of /¢ the body.

knowing the directions
of v, and vy

@ ',;*", 2271
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Instantaneous center of zero velocity (16.6)

The third case is when the
magnitude and direction of two
parallel velocities at A and B are
known.

Here the location of the IC is
determined by  proportional
triangles. As a special case, note
that if the body is translating only
(Vo = Vg), then the IC would be
located at infinity. Then o equals
Zero, as expected.

_a
1
|
.
.
..
=
s

Tgic

5] ',‘*; 2oy
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Instantaneous center of zero velocity (16.6)

The velocity of any point on a body undergoing general plane motion can be
determined easily once the instantaneous center of zero velocity of the body is located.

——IC

NA = wranc

Since the body seems to rotate about the IC at
any instant, as shown in this kinematic diagram,
the magnitude of velocity of any arbitrary point
ISV = o r, where r is the radial distance from the
IC to the point. The velocity’s line of action is
perpendicular to its associated radial line. Note
the velocity has a sense of direction which tends
to move the point in a manner consistent with the
angular rotation direction.

',‘*; 22
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Instantaneous center of zero velocity (16.6)

' ‘ ‘ 0 (AAPDADAPD DG
The cylinder shown in Fig. 16-22a rolls without slipping between the v
two moving plates £ and D. Determine the angular velocity of the £ AN rp=025ms
cylinder and the velocity of its center C. :
sy
roa().lm,‘s B D

PRIl

(a)

= 't ACr
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The cylinder shown in Fig. 16-22a rolls without slipping between the
two moving plates £ and D. Determine the angular velocity of the
cylinder and the velocity of its center C.

SOLUTION

Since no slipping occurs, the contact points A and B on the cylinder
have the same velocities as the plates £ and D, respectively.
Furthermore, the velocities v, and vg are parallel, so that by the
proportionality of right tniangles the /C is located at a point on line AB.
Fig 16-22b. Assuming this point to be a distance x from B, we have

vy = @x; 04 m/s = wx
vy = o(025m - x); 025m/s = (025 m - x)

Dividing one equation into the other eliminates @ and yields

0.4(025 — x) = 0.25«x

0.1
x = —— = (),]538
X 0.65 0.1538 m

(b)
The velocity of point C is theref
Hence, the angular velocity of the cylinder is T
© = wrcpe = 2. 153 = 0.125
S A £, : i ve = wrcye = 2.60 rad/s (0.1538 m = 0.125m) u’/*)//
- X 01538 m -60 rad/s s = (0.0750 m/s < Ans. asz‘lT UNIVERSITY
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Instantaneous center of zero velocity (16.6)
Block D shown in Fig. 16-21a moves with a speed of 3 m/s. Determine /\/ \
the angular velocities of links BD and AB, at the instant shown. / ‘

= 't A0
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Instantaneous center of zero velocity (16.6)

Block D shown in Fig. 16-21a moves with a speed of 3 m/s. Determine
the angular velocities of links BD and AB, at the instant shown.

SOLUTION

As D moves to the right, it causes AB to rotate clockwise about point
A. Hence, vy is directed perpendicular to AB. The instantancous
center of zero velocity for BD is located at the intersection of the line
segments drawn perpendicular to vg and vy, Fig. 16-21b. From the

geometry,

Tge = 041and45°m = 04 m

04m

'piic - T = ().5657 m

Since the magnitude of vy, is known, the angular velocity of link BD is

Up 3m/s S0ved ) 1
- rojic 0.5657 m = 5.30 rad/s Ans.

WED

The velocity of B is therefore
vy = wgp(rgpc) = 530rad/s (04m) = 2.12m/s ~T45°
From Fig. 16-21c. the angular velocity of AB is

) 212 m/s
W = - / = 530 rad/s) Ans.
rp/a 04m

N

NOTE: Try and solve this problem by applying v, = vg + v tO

member BD.

= 't 3
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Instantaneous center of zero velocity (16.6)

The crankshaft AB turns with a clockwise angular velocity of 10 rad/s,
Fig. 16-23a. Determine the velocity of the piston at the instant shown.

075 n L13.6°

g = 243 fad/.\

025 ft A

(a)

= 't 3
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Instantaneous center of zero velocity (16.6)

The crankshaft AB turns with a clockwise angular velocity of 10 rad/s,
Fig. 16-23a. Determine the velocity of the piston at the instant shown.

SOLUTION
The crankshaft rotates about a fixed axis, and so the velocity of point
Bis
vg = 10 rad/s (0.25 ft) = 250 ft/s & 45°

Since the directions of the velocities of B and C are known, then the
location of the IC for the connecting rod BC is at the intersection of
the lines extended from these points, perpendicular to vy and v,
Fig. 16-23b. The magnitudes of rgyc and reyc can be obtained from
the geometry of the triangle and the law of sines i.e.,

0.75 ft Tsjic

sin 45  sin 76.4°

rB/,(- 1.031 ft

0.75 ft Iepic
sin 45°  sin 58.6°
’('/l(' = 0.%56 h

The rotational sense of @z~ must be the same as the rotation caused
by vz about the /C, which is counterclockwise. Therefore,

vy 251t/s
rB/,( 1.031 ft

wge = = 2.425rad/s

Using this result, the velocity of the piston is

Ve = wgcrepe = (2425 rad/s)(0.9056 ft) = 220 ft/s Ans

(b)
Fig. 16-23

BI3R L1360

wge = 243 rad /s

0.25 f A

(a)

Dr. Mamon Horoub



Part 8

Relative motion analysis: Acceleration
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Relative motion analysis:

Acceleration (16.7) Applications

In the mechanism for a window, link AC rotates about “@

a fixed axis through C, while point B slides in a N
straight track. The components of acceleration of
these points can be inferred since their motions are \ Ty,

known.

To prevent damage to the window, the accelerations
of the links must be limited.

Dr. Mamon Horoub



Relative motion analysis: Acceleration (16.7)

The equation relating the accelerations of two points on the body is determined by
differentiating the velocity equation with respect to time.

These are absolute accelerations of points
A and B. They are measured from a set of
fixed X, y axes.

The result is ag = a, + (ag;a), + (Ag/p),

B/A

dt

This term is the acceleration of B
with respect to A.

It will develop tangential and normal
components.

@ ',;*", 2271
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Relative motion analysis: Acceleration (16.7)

Graphically: b = + (@)t (@ga)y
a, 1

Path of
point A

™ Pathof
point B

Rotation about the
Translation base point A

General plane motion

The relative tangential acceleration component (ag,»); 1S (@ X rg;») and perpendicular to rg,.

The relative normal acceleration component (ag,,), is (- rg;,) and the direction is always from
B towards A. el

BIRZEIT UNIVERSITY
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Relative motion analysis: Acceleration (16.7)

Since the relative acceleration components can be expressed as (aga);= o x I'gx and
(ag/a), = - ®? rg the relative acceleration equation becomes

_ 2
dg=adp T O X I'gjp- O I'gp

Note that the last term in the relative acceleration equation is not a cross product. It is

the product of a scalar (square of the magnitude of angular velocity, »?) and the relative
position vector, I'ga.

BIRZEIT UNIVERSITY
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Application of relative acceleration equation

In applying the relative acceleration equation, the two points used in the analysis (A and B)
should generally be selected as points which have a known motion, such as pin connections with

other bodies.

Path of B~ p

In this mechanism, point B is known to travel along a circular path, so ag can be expressed in
terms of its normal and tangential components. Note that point B on link BC will have the same

acceleration as point B on link AB.
Point C, connecting link BC and the piston, moves along a straight-line path. Hence, a; is

directed horizontally. .
BT
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Procedure of analysis (16.7)

1. Establish a fixed coordinate system.
2. Draw the kinematic diagram of the body.

3. Indicate on it a,, ag, @, a, and rg,,. If the points A and B move along curved paths,
then their accelerations should be indicated in terms of their tangential and normal
components, i.e., a, = (a,); + (aa), and ag = (ag); + (ag),-

4. Apply the relative acceleration equation:
ag=ap+ 0 X Igp- ©° Iy

5. If the solution yields a negative answer for an unknown magnitude, it indicates the

sense of direction of the vector is opposite to that shown on the diagram. —

BIRZEIT UNIVERSITY
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Example 1

The collar C in Fig. 16-30a moves downward with an acceleration of
1 m/s’. At the instant shown, it has a speed of 2 m/s which gives links
CB and AB an angular velocity w,gy = weg = 10rad/s. (See
Example 16.8.) Determine the angular accelerations of CB and AB at
this instant.

= 't 3
BIRZEIT UNIVERSITY

Dr. Mamon Horoub



Example 1

The collar C in Fig. 16-30a moves downward with an acceleration o
1 m/s’. At the instant shown, it has a speed of 2 m/s which gives links"
CB and AB an angular velocity w,gy = weg = 10rad/s. (See

Example 16.8.) Determine the angular accelerations of CB and AB at

this instant. _ ’
SOLUTION (VECTOR ANALYSIS) ac=1mp
Kinematic Diagram. The kinematic diagrams of both links AB and

CB are shown in Fig. 16-30b. To solve, we will apply the appropriate
kinematic equation to each link.

and
te

!
Can

0.2m

Acceleration Equation.
Link AB (rotation about a fixed axis):

~ ac=1
g = @5 X Ty — wypfy
ag = (apk) X (=02§) - (10)(-02j)
ap = 0205 + 20j (b)
II:I:;;: that ag has # and 1 components since it moves along a circular T Fig. 16-30
Link BC (general plane motion): Using the result for ag and applying 02a4p = 0.2acs — 20
Eq. 16-18, we have 20 = =1 + 02acyg + 20
ag = ac + acg X Ty — wf‘xl's/c Solving.
0.2a 445 +20j = —1j + (acgk) X (0.2i — 0.2§) — (10)*(0.2i — 0.2§) acy = Srad/s’D Ans. o Ty
0.2a458 + 20j = —1j + 0.2acgj + 02acs — 20i + 20j asg = =95 rad/s® = 95 rad/s*D Ang o ONVERSTY
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Example 2

The crankshaft AB turns with a clockwise angular acceleration of

20 rad/s", Fig. 16-31a. Determine the acceleration of the piston at the

instant AB is in the position shown. At this instant @,z = 10 rad/s

and wge = 243 rad/s (See Example 16.13.) 0350 Jff N136°

SOLUTION (VECTOR ANALYSIS)  wpe ® 243 tad s

Kinematic Diagram, The kinematic diagrams for both AB and BC B

are shown in Fig. 16-31b. Here a. is vertical since C moves along a N stindh

straight-line path. /< a:: = M rad /‘
A

= 't 3
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The crankshaft AB turns with a clockwise angular acceleration of
20 rad/s", Fig. 16-31a. Determine the acceleration of the piston at the
instant AB is in the position shown. At this instant @,z = 10 rad/s
and wpe = 243 rad/s (See Example 16.13.)

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram, The kinematic diagrams for both AB and BC
are shown in Fig. 16-31b. Here a. is vertical since C moves along a
straight-line path.

Acceleration Equation. Expressing each of the position vectors in
Cartesian vector form

tp = (=025 sin 45% + 025 cos 457} ft = {=0.177 + 0.177j)

resp = {075 sin 13.6% + 075 cos 136%) ft = {01774 + 0.729) ft
Crankshaft AB (rotation about a fixed axis):
A3 = aap X fg — whars
= (=20k) X (=0.177i + 0.177j) = (10)*(=0.177i + 0.177j)
= {2121 - 14.14j} fr/s’

Connecting Rod BC (general plane motion): Using the result for ag
and noting that a. is in the vertical direction, we have

Example 2

NS A

F13.6°
~ Xyc

" wyc= 243 fl’/!

Wag= 10 lﬁ/i
asn = 20rad/s?

.
ac =ag + age X ey — Opcloyp

X

acj = 21.21i = 14.14j + (agck) X (0.177i + 0.7295) - (2.43)*(0.177i + 0.729§)
acj = 21.21i = 14.14j + 0177apj — 0.729apd — 1.04i — 4.30

0 = 20.17 ~ 0.729a
Solving yields ac = 0.177age — 1845
Ape = 27.7 rad/sz D

ac = —135 fi/s°
NOTE: Since the piston is moving upward, the negative sign for a,
indicates that the piston is decelerating, i.c., ac = {—13.5§} ft/s’. This
causes the speed of the piston to decrease until AB becomes vertical,
at which time the piston is momentarily at rest.

= 't 3
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Example 3

The rod AB shown in Fig. 16-27a is confined to move along the
inclined planes at A and B. If point A has an acceleration of 3 m/s*
and a velocity of 2 m/s, both directed down the plane at the instant

the rod is horizontal, determine the angular acceleration of the rod at
this instant.

SOLUTION I (VECTOR ANALYSIS)
We will apply the acceleration equation to points A and B on the rod.
To doso it is first necessary to determine the angular velocity of the

rod. Show that it is @ = 0283 rad/s") using cither the velocity
equation or the method of instantancous centers

; 10m ]
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Example 3

Acceleration Equation.

The rod AB shown in Fig. 16-27a is confined to move along the
inclined planes at A and B. If point A has an acceleration of 3 m/s*

and a velocity of 2 m/s, both directed down the plane at the instant Ap =8, + @ XTg, — 0Tg,
the rod is horizontal, determine the angular acceleration of the rod at ap cos 45% + ap'sin 45% = 3 cos 45°% — 3 5in 45% + (ak) X (108) — (0.283)%(10i)
this instant.
Carrying out the cross product and equating the i and j components
SOLUTION | (VECTOR ANALYSIS) i i = oy
We will apply the acceleration equation to points A and B on the rod.
To doso it is first necessary to determine the angular velocity of the agcos 45° = 3 cos 45° — (0.283)*(10) (1)
rod. Show that it is @ = 0.283rad/s") using either the velocity ' agsin 45° = =3 sin 45° + a(10) (2)
equation or the method of instantaneous centers. i
. . ag = 1.87 m/s’£45°

KiM Diagram. Since points A and B both move along o = 0344 rad/s? 3 A (@agad = ata,
straight-line paths, they have no components of acceleration normal : da
to lhc|palhsTherc are two unkn|owns in Fig. 16-27h, namely, a and a. Al o\ e o g

10 . v x?l :

| " s y SOLUTION Il (SCALAR ANALYSIS) = 0283 radjs “eajs
It From the kinematic diagram, showing the relative-acceleration
X ] components (2g;4), and (ag/,4),. Fig. 16-27¢, we have
(c)
fl a\, \ 'BIA\ 3/45' =a, + (aga) + (8g4)n
35‘;«»’; 028 rad)s = [ ] [3 m/s’ ] [a(l() m)] [(0 283 rad/s)*(10 m)
245°] | <45 -
- 2 ? :
(@) 4y =3mfs Equating the x and y components yields Egs. | and 2, and the solution "BIRZEIT UNIVERSITY
(b) proceeds as before.
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Bodies in contact (16.7)

Consider two bodies in contact with one another without slipping, where the
points in contact move along different paths.

4 (agly (ag) M

In this case, the tangential components of acceleration will be the same, 1. e.,
(ap); = (aa-); (Which implies agrg = aclc).

The normal components of acceleration will not be the same.
an), # (), SO ay # Ay,
( A)n ( A )n A A b{*/

= 't A0
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Rolling motion (16.7)

Another common type of problem encountered in dynamics involves rolling motion

without slip; e.g., a ball or disk rolling along a flat surface without slipping. This
problem can be analyzed using relative velocity and acceleration equations.

h

Path of point A

o

,,,,,

r’/'/

/
- S o e

(
Path of point G

X

As the cylinder rolls, point G (center) moves along a straight line, while point A, on the
rim of the cylinder, moves along a curved path called a cycloid. If w and o are known,

the relative velocity and acceleration equations can be applied to these points, at the
Instant A is in contact with the ground.

BIRZEIT UNIVERSITY
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 Velocity:

Evaluating and equating i and j components: e

Rolling motion (16.7)

Since no slip occurs, vo, = 0 when A is in contact with ground. From the
kinematic diagram:
Vg =Vat @ XTga
Vgl =0+ (o K) X (rj)
Vg=or or Vg=ori

Since G moves along a straight-line path, as is horizontal. Just before A
touches ground, its velocity is directed downward, and just after contact, its
velocity is directed upward. Thus, point A accelerates upward as it leaves
the ground.

ag = apt+ AXTgp— 0Tga => agi=ax] + (-o k) X (1 J) — o?(r ])

ac=ar and a,=ox or as=ari and a,= o j o e
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Example 4

« @@= nfrad/s

“.o¢=4radis  Given: The ball rolls without slipping.

B Find: The accelerations of points A and B at this
Instant.

Plan: Follow the solution procedure.

Solution:  Since the ball is rolling without slip, a, is directed to the left with a
magnitude of:

ao = of = (4 rad/s?)(0.5 ft)=2 ft/s?

o

BIRZEIT UNIVERSITY
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Example 4
Now, apply the relative acceleration equation between points O and B.

v w=6rads _

dg = ag T aXIgo— 0Tgq
a, = -2i + (4K) x (0.5i) — (6)2(0.5)
= (-20i + 2j) ft/s?

dp = Apt+ aXlyg— 07Ty
a, = -2i + (4K) X (0.5]) — (6)%(0.5))
= (-4i — 18]) ft/s?
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The spool shown in Fig. 16-29% unravels from the cord, such that at
the instant shown it has an angular velocity of 3 rad/s and an angular
acceleration of 4 rad/s”. Determine the acceleration of point B.

SOLUTION I (VECTOR ANALYSIS)

The spool “appears™ to be rolling downward without slipping at point
A. Therefore, we can use the results of Example 16.15 to determine
the acceleration of point G.1.¢..

Example 5

\ 0= 3rads
= A = dnadjs’

= 't ACr
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Example 5

The spool shown in Fig. 16-29% unravels from the cord, such that at
the instant shown it has an angular velocity of 3 rad/s and an angular
acceleration of 4 rad/s”. Determine the acceleration of point B.

SOLUTION I (VECTOR ANALYSIS)
The spool “appears” to be rolling downward without slipping at point A celeration Equation.
A. Therefore, we can use the results of Example 16.15 to determine
the acceleration of point G.1.¢..

ag = ar = (drad/s")(05 ft) = 2ft/s
We will apply the acceleration equation to points G and B.

2=+ @ X Iyg - Ty
(e + {agh = =1 + (~4) X (075) - (351075)
Equating the i and j terms, the component equations are

" o , . =4 i { :3 [
Kinematic Diagram.  Point B moves along a curved path having an ag)=405) = 35~ g
unknown radius of curvature.* Its acceleration will be represented by (ag), = =2 - 675 = -815 s =858l ()

its unknown x and y components as shown in Fig. 16-29b. The mapntode anddirecionlay e hereove

ay= VOF + (8757 = 925t Ans

= —]@-:7 8
f = tan 3 n° S Ans.

N/ /0=3ndf
4 /z =4 rad)s

(b} “BIRZEIT UNIVERSITY
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Part9

Relative Motion Analysis Using
Rotating Axes
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Relative Motion Analysis Using Rotating Axes (16.8)

> In the previous sections the relative-motion analysis for velocity and acceleration was
described using a translating coordinate system. This type of analysis is useful for determining
the motion of points on the same rigid body, or the motion of points located on several pin-
connected bodies.

> In some problems the rigid bodies (mechanisms) are constructed such that sliding will occur at
their connections. The kinematic analysis for such cases is best performed if the motion is
analyzed using a coordinate system which both translates and rotates. Furthermore, this frame
of reference is useful for analyzing the motions of two points on a mechanism which are not
located in the same body and for specifying the kinematics of particle motion when the particle
moves along a rotating path.
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Application

The rotation of the dumping bin of the
truck about point C is operated by the
extension of the hydraulic cylinder AB.

To determine the rotation of the bin due |

to this extension, we can use the
equations of relative motion and fix the
X, y axes to the cylinder so that the
relative  motion of the cylinder’s
extension occurs along the y axis.

'\ ,.

€5 :,‘*_; 227
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Position
* (Consider the two points A and B shown in Fig. below. Their
location is specified by the position vectors = and = which are
measured with respect to the fixed X.Y, Z coordinate system. As
shown in the figure, the “base point™ A represents the origin of the
X, V, z coordinate system, which is assumed to be both translating
and rotating with respect to the X,Y, Z system. The position of B

with respect to A 1s specified by the relative-position vector

Y
* The components of the vector Q.

may be expressed either in terms of fagt
unit vectors along the X, Y axes, i.c., N

and ', or by unit vectors along the B
X, y axes, 1.e.,  and . r5/A

rgia = Xpi + ypj )

r
g @'*"1;‘%

= 't A0
BIRZEIT UNIVERSITY
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Velocity

At the instant considered, point A has a velocity . and an
acceleration while the angular velocity and angular

acceleration of the x, y axes are Q (omega) and Q
= dQ)/dt respectively.

The velocity of point B 1s determined by taking the time
derivative of the previous equation, which yields

d r B/ A

Vg = V4 T
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Velocity

vg = V4 + Q Xrgia+ (VB/4)xy:

where

vy = velocity of B, measured from the X, Y, Z reference

v, = velocity of the origin A of the x, y, z reference,
measured from the X, Y, Z reference

(vB/a)«y: = velocity of “B with respect to A,” as measured by an
observer attached to the rotating x, y, z reference

) = angular velocity of the x, y, z reference, measured
from the X, Y, Z reference

rg/4 = position of B with respect to A

oo
BIRZEIT UNIVERSITY
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Velocity

{absolute velocity of B

Vg
(equals)
{absolute velocity of the
v =
A origin of x, y, z frame
(plus)

angular velocity effect caused
Q X Ip/A > 7

by rotation of x, y, z frame

(plus)

velocity of B
( vB/A )x_vz . v
with respect to A

}motion of B observed
from the X, Y, Z frame

motion of x, y, z frame

»observed from the
X.,Y. Z frame

}motion of B observed
from the x, y, z frame

= O A0
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Acceleration

The acceleration of point B is determined by taking
derivative of the previous equation, which yields
dvg dv, dQ drp . i d (VB/A).r_\.':

= + X + Q X
dt dt dt ‘B/A & dt dt

ap =a, + Q X rg/a + QX (Q Xrga) + 20 X (Vg/a)ry: + (2B/4)xyz

ap = acceleration of B, measured from the X, Y, Z
reference

a, = acceleration of the origin A of the x, y, z
reference, measured from the X, Y, Z reference

(@B/4)xyz» (VB/a)xy: = acceleration and velocity of B with respect to A,
as measured by an observer attached to the
rotating x, y, z reference

1, ) = angular acceleration and angular velocity of the
x, y, z reference, measured from the X, Y, Z
reference

rg 4 = position of B with respect to A

the

time

g}:j "1‘*‘,/ P
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Acceleration

{absolute acceleration of the
a ..
A origin of x, y, z frame
(plus)
angular acceleration effect motion of
Q X rp/a caused by rotation of x, y, z X, y, z frame
o observed from
the X, Y, Z frame
(plus)
angular velocity effect caused
Q X (Q X rg,) {bg RN
y rotation of x, y, z frame
/
(plus)
combined effect of B moving
20 X (¥B/a)xyz relative to x, y, z coordinates ¢interacting motion

and rotation of x, y, z frame

(plus)

acceleration of B with | motion of B observed
(aB/A).\'_vz

respect to A from the x, y, z frame

= O A0
BIRZEIT UNIVERSITY
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Procedure for Analysis
Equations 16-24 and 16-27 can be applied to the solution of
problems involving the planar motion of particles or rigid bodies
using the following procedure.

Coordinate Axes.

® Choose an appropriate location for the origin and proper
orientation of the axes for both fixed X, Y, Z and moving x, y, z
reference frames.

® Most often solutions are easily obtained if at the instant
considered:

1. the origins are coincident
2. the corresponding axes are collinear
3. the corresponding axes are parallel

® The moving frame should be selected fixed to the body or device
along which the relative motion occurs.

@'*"f.;‘%

= 't A0
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Procedure for Analysis
Kinematic Equations.

® After defining the origin A of the moving reference and
specifying the moving point B, Eqs. 16-24 and 16-27 should be
written in symbolic form

vg = Va+ Q Xrga+ (Vpra)sy:

ag=a, + Q X Tp/a + ) X (Q X l.15‘//1) + 24} X (vB/A)xyz + (aB/A)xyz

® The Cartesian components of all these vectors may be expressed
along either the X, Y, Z axes or the x, y, z axes. The choice is
arbitrary provided a consistent set of unit vectors is used.

® Motion of the moving reference is expressed by V4, a4, {2, and ﬂ;
and motion of B with respect to the moving reference is expressed
o

by l'B/A ’ (vB/A)xyz ,and (aB/A)xyz . ery
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Example 1

At the instant § = 60°, the rod in Fig. 16-33 has an angular velocity of
3 rad/s and an angular acceleration of 2 rad/s’. At this same instant,
collar C travels outward along the rod such that when x = 0.2 m the
velocity is 2m/s and the acceleration is 3 m/s>, both measured
relative to the rod. Determine the Coriolis acceleration and the
velocity and acceleration of the collar at this instant.

= O A0
BIRZEIT UNIVERSITY
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Example 1
At the instant § = 60°, the rod in Fig. 16-33 has an angular velocity of
3rad/s and an angular acceleration of 2 rad/s>. At this same instant,
collar C travels outward along the rod such that when x = 0.2 m the
velocity is 2m/s and the acceleration is 3 m/s’, both measured
relative to the rod. Determine the Coriolis acceleration and the

velocity and acceleration of the collar at this instant.

SOLUTION

Coordinate Axes. The origin of both coordinate systems is located
at point O, Fig. 16-33. Since motion of the collar is reported relative to
the rod. the moving x, y, z frame of reference is attached to the rod.

Kinematic Equations.

Ve = Vo + Q X xci0 + (Vei0)xy: )
ac =29+ Xrcio+ O X (@ Xre) + 20 X (Vejo)xy: + (/o) xye
(2)

It will be simpler to express the data in terms of i, j. k component
vectors rather than L J, K components. Hence,

Motion of Motion of C with respect
moving reference to moving reference
OV 0 rc/() = {0.2i} m
ag = 0 (Yejo)vy: = {2i} m/s
Q0 = {—3k} rad/s (ac/0)vy: = {3i} m/s?

Q = {—2k} rad/s?
The Coriolis acceleration is defined as
oo, = 20 X (Veo)ay: = 2(—3k) x (2i) = {—12j} m/s2 Ans.

This vector is shown dashed in Fig. 16-33. If desired, it may be resolved &
into L, J components acting along the X and Y axes, respectively.
The velocity and acceleration of the collar are determined by

substituting the data into Eqs. 1 and 2 and evaluating the cross products,
which yields

Ve=vot QXK+ (VC;‘O):_\':
=0+ (-3k) X (0.2i) + 2
= {2 - 0.6j} m/s Ans

ac =2+ 0 Xrg+ 0 X (QX rcj0) + 20 X (v¢joley: + (a0}
=0+ (-2k) x (02i) + (-3k) X [(-3k) X (0.2i)] + 2(-3k) X (2i) +
=0 - 04— 180i - 12 + 3i
= {120i - 124j} m/s’ Ans
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Example 2
Rod AB, shown in Fig. 16-34, rotates clockwise such that it has an

angular velocity w5 = 3 rad/s and angular acceleration a ;5 = 4 rad/s”
when 6 =45°. Determine the angular motion of rod DE at this instant.
The collar at C'is pin connected to AB and shides over rod DE.

(4m

N = Andfs
B =4¥°

= 't 3
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Example 2
Rod AB, shown in Fig. 16-34, rotates clockwise such that it has an

Motion of C: Since the collar moves along a circular path of radius

angu]ar Ve](xi[y Wp = 3rad /S and angular acceleration ayp=4rad /53 ::ncd :lg‘ \l"u;locily and acceleration can be determined using Egs. 16-9
when 6 =45°. Determine the angular motion of rod DE at this instant. Ve = wag X T = (~3K) X (040 + 04) = {120 — 12} m/s

The collar at Cis pin connected to AB and slides over rod DE. 8¢ = @ap X RCiA ~ @antcyA

SOLUTION = {—4k) X (04i + 0.4§) — (3)%(04i + 04§) = {=2 - 52§} m/§*
Coordinate Axes. The origin of both the fixed and moving frames Substituting the data into Eqs. 1 and 2, we have

Yoy

of reference is located at D, Fig. 16-34. Furthermore, the x, y, ¢
reference is attached to and rotates with rod DE so that the relative
motion of the collar is easy to follow.

Substituting the data into Egs. 1 and 2, we have
VC = VD + ﬂ X rC_/'D + IIVCI,'D}

X357

Kinematic Equations. 12i — 12§ = 0 + (—wpgk) X (0.4i) + (vesp)yyd
Yo =Vp + O Xrgp + (V) (1) . 12i — 12§ = 0 — 0dwpgj + (v¢p)yyd
< : : ] X (UC 'D):v: =132 m/S
ac=ap+ 0 Xrgp+ 0 X (0 Xegyp) + 20 X (vejp)uy: + (acjp)aye ; /N -
(2) .. _ - \ : ,
All vectors will be expressed in terms of i, j, k components. 0Am! B ac=ap+ 0 Xrgp + 0 X (Q Xxgp) +2Q X (Yeyp)iy: + (8g/p)ay
_ : _ Am § opp= 3rafi/s —2i —52j = 0 + (~apk) X (04i) + (-3k) X [(-3k) X (0.40)]
Motton of Motion of C with respect I = dradfs +2(-3k) X (128) + (agp)od
moving reference to moving reference ’ )= g5 ~2i - 52) = ~0dapg] — 36i - 7""j +‘ (@cp)od
¥p = 0 rC/D = {0.4i}m s i B (a'C/Dl;E _ {ﬁmfsi“ CiDlxyz
= ; = (v i x¥z s
=0 (Ycip)ayz = (eo)epd apg = ~S1ad/s’ = S1ad/s?) Ans.
0 = —opk (ac/p)xy: = (acip) ey "
ﬂ = —apgk g:%zgnuﬁwségl}v:
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Example 3

6-143. At a given instant, rod AB has the angular
notions shown. Determine the angular velocity and angular
icceleration of rod CD at this instant. There is a collar at C.

- "‘\,‘

- -~

war = Srad/fs S
asp = 12rad/fs”
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Example 3

6-143. At a given instant, rod AB has the angular i ST
notions shown. Determine the angular velocity and angular ayp = 12 radje’
icceleration of rod CD at this instant. There is a collar at C. 21t

vy =10 B
a‘,‘ = 0 "‘--\ - B

Q = {-5k} rad/s ) (vefa)eye = 1732(10) = 17,3215 ! ) .i g )

Q = {-12k} rad/s’ TS : b %

. a=a,+ Q Xrepp t 0 X (X l'(‘/A) +20 X (v(‘/A).r)': + (a(‘/A)xy:
r(‘/A = {2.} ft

In

ac =0+ (=12k) X (2i) + (=5k) X [(=5k) X (2i)] + 2(=3K) X [(vesa)nd] + (acsa)yy: i

= [(ag/a)ey: = SO}i - [lO(v(-/ o 24]j

(v('/A).r)'z = (vC/A)xy:i

(Acja)ey: = (Acpa) sy i

Ve =va+ Q Xrepa + (Vopa)oy: Ao

)
ac = acp X Tep = wipfep
ve = 0+ (=5k) X (2i) + (veya)nd

o [(aca)ey: = 50Ji = [10017.32) + 24]j = (=aacpK) X (2 cos 60% + 2sin 60%5) = (10)%(2 cos 60 + 2sin 60°5)

T [(acpadey: = 50Ji = (1001732) + 24]j = (1L732acp = 100)i = (ap + 1732)]
(vefa)y: 1 = 10§ = (mwcpk) X (2cos 60°% + 2 sin 60°%) Solving:
(Veradyed = 105 = L7320 pi = wepj ) ,
~[100732) 4 4] = ~(acp + 112)  acp = Uradfs® ) Ans. .
Solving: f{;;, : e
N : bl BIRZEIT UNIVERSITY
R (ag/)ye = 50 = 1732(24) = 100 (acj)e = =843 1tfs e e
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