

Faculty of Engineering and Technology

Department of Mechanical and Mechatronics Engineering

Refrigeration and Air Conditioning ENME 432

Cooling load calculations

Prepared by:

Sanad Abu Shama: 1150701

Suhaib Abu Raidah: 1150004

Ahmad Al-Jundi:1150665

Instructor: Dr. Adel Dweik

Indoor Conditions: 24 C, 50% RH and $\omega_{in} = 0.009 kg/kg$

Outdoor Conditions: 35 C, 40% RH and $\omega_{out} = 0.014 \ kg/kg$

Supply Temperature: 13 C.

For the supermarket:

1) Transmission with solarload:

Northern side:

$$\begin{split} q_{wall} &= U_{wall} * A_{wall} * CLTD \\ A_{wall} &= hieght * \sum wall \ lengths = 4*31.24 = 125 \ \text{m2} \\ R_{wall} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{wall} &= \frac{1}{\sum R_{wall}} = 0.49 \ \text{KW/m2.K} \\ \Delta T_{wall} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ CLTD &= 12 \\ q_{wall} &= U_{wall} * A_{wall} * CLTD = 0.49*125*12 = \boxed{735\text{W}} \end{split}$$

Western side:

$$\begin{split} A_{wall} &= hieght * \sum wall \ lengths = 4*31.1 = 124.5 \ \text{m2} \\ R_{wall} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{wall} &= \frac{1}{\sum R_{wall}} = 0.49 \ \text{KW/m2.K} \\ \Delta T_{wall} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ CLTD &= 27 \\ q_{wall} &= U_{wall} * A_{wall} * CLTD = 0.49*124.5*27 = \boxed{1650\text{W}} \end{split}$$

Southern side:

$$\begin{split} A_{wall} &= hieght * \sum wall \ lengths = 4*31.24 = 125 \ \text{m2} \\ R_{wall} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{wall} &= \frac{1}{\sum R_{wall}} = 0.49 \ \text{KW/m2.K} \\ \Delta T_{wall} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ CLTD &= 19 \\ q_{wall} &= U_{wall} * A_{wall} * CLTD = 0.49*125*19 = \boxed{1164\text{W}} \end{split}$$

Roof:

$$\begin{split} q_{roof} &= U_{roof} * A_{roof} * CLTD \\ A_{roof} &= 31.24*31.1=972 \text{ m2} \\ R_{roof} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{roof} &= \frac{1}{\sum R_{roof}} = 0.49 \text{ KW/m2.K} \\ \Delta T_{roof} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ CLTD &= 21 \\ q_{roof} &= U_{roof} * A_{roof} * CLTD = 0.49*972*21 = \boxed{10000 \text{ W}} \end{split}$$

Floor:

$$\begin{split} q_{floor} &= U_{floor} * A_{floor} * \Delta T_{floor} \\ A_{floor} &= 972 \text{ m2} \\ R_{floor} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 1.33 \\ U_{floor} &= \frac{1}{\sum R_{floor}} = 0.75 \text{ KW/m2.K} \\ \Delta T_{floor} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C}. \end{split}$$

$$q_{floor} = U_{floor} * A_{floor} * \Delta T_{floor} = 0.75*972*11 = 8020 \text{ W}$$

2) Ventilation load:

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega$$

$$(\#people) = A_s * (occupation) = 972 \text{ (m2)} * 0.08 \text{ (people/m2)} = \frac{78 \text{ people.}}{}$$

 $\dot{V}_{vent} = (air \, requierments / \, person) * (\#people) = 8(liters/person) * 78 = 642 litres.$

$$\Delta T = T_i - T_\circ = 35-24 = 11$$
C.

$$\Delta \omega = \omega_i - \omega_0 = 0.014 - .009 = 0.005.$$

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega = 1.23 *642*11 + 3000*642*.005 = 18316 W.$$

3) Infiltration load:

$$q_{infiltration} = 1.23 * \dot{V}_{infil} * \Delta T + 3000 * \dot{V}_{infil} * \Delta \omega$$

 $\dot{V}_{infil} = V * (air changes per second) = 972*4*(0.5/3600) = 540 litres.$

$$\Delta T = T_i - T_\circ = 35-24 = 11$$
C.

$$\Delta \omega = \omega_i - \omega_0 = 0.014 - .009 = 0.005.$$

$$q_{infiltration} = 1.23 * \dot{V}_{infil} * \Delta T + 3000 * \dot{V}_{infil} * \Delta \omega = 1.23 *540*11 + 3000*540*.005 = 15406 W.$$

4) Internal load:

■ Lights:

$$q_{lights} = lamp \ rating * Fu * Fb * CLF$$

$$lamp\ rating = 25\left(\frac{watt}{m2}\right) * area = 25\left(\frac{watt}{m2}\right) * 972\ m2 = 24300\ W$$

$$q_{lights} = lamp \ rating * Fu * Fb * CLF = 24300 * .97 * 1 * 1.2 = 28285 \text{ W}$$

People:

$$q_{s_{\it people}} = sensible \; heat \; gain * CLF * \# \; of people$$

$$q_{l_{neanle}} = latent heat gain * CLF * (# of people)$$

$$(\#people) = A_s * (occupation) = 972 \text{ (m2)} * 0.08 \text{ (people/m2)} = \frac{78 \text{ people.}}{}$$

$$q_{s_{people}} = sensible \ heat \ gain * CLF * \# \ of people = 92.5*1*78 = 7215 \ W.$$

$$q_{lpeople} = latent\ heat\ gain*(\#\ ofpeople) = 92.5*78 = \underline{7215\ W}.$$

$$q_{people} = 7215 * 2 = 14430 \text{ W}$$

Equipment:

3 refrigerators, 1000 watt each = 3*1000 = 3000 W.

 $q_{TOTAL\ room\ load\ of\ the\ supermarket} = q_{Transmission} + q_{Internal} + q_{infiltration}$ = 82690 W

 $q_{Snsible of the supermarket} = 67375 \text{ W}$

♣ Main Duct #1 for the supermarket:

$$SHR_1 = \frac{67375}{82690} = 0.814$$

$$h_{S1} = 33.5 \ Kj/Kg$$

$$h_i = 47.5 \, Kj/Kg$$

 $q_{Room\ of\ Supermarket} = \dot{m}_{S1} \times (h_i - h_{S1})$

$$\dot{m}_{S1} = \frac{q_{Room\ of the\ Supermarket}}{(h_i - h_{S1})} = \frac{82.690\ KW}{(47.5 - 33.5)} = 5.9\ Kg/s.$$

$$v_{S1} = 0.82 \ m^3/Kg$$

$$\dot{V}_{S1} = \dot{m}_{S1} \times v_{S1} = 5.9 \times 0.82 = 4.84 \, m^3/s = 10255 \, CFM$$

$$\dot{V}_{grill} = \frac{\dot{V}_{S1}}{9}$$

$$\dot{V}_{grill} = \frac{4.84}{9} = 0.538 \text{ m}3/\text{s}.$$

Throw_{horizental} =
$$\frac{L}{2 * n}$$

$$n=3$$

$$Throw_{horizental} = \frac{31}{2*3} = 5.17m$$

Throw_{vertical} =
$$\frac{L}{2 * n}$$

n=3

Throw_{vertical} =
$$\frac{31}{2*3}$$
 = 5.17m

Longest run =
$$(31-5.17) + (2*10.34) + 5.17 = 51.68m$$

Let
$$V_{main} = 10m/s$$

$$\dot{V}_{ab} = 4840 \; l/s$$

$$\frac{\Delta p}{L} = 1.2$$

$$D_{ab} = 800 \text{ mm}$$

$$a = 550$$
mm

$$b=1000mm$$

$$\dot{V}_{bc}=3227~l/s$$

$$D_{bc} = 720 \text{ mm}$$

$$a = 550$$
mm

$$b = 800 \text{mm}$$

$$\dot{V}_{bc}=1613\;l/s$$

$$D_{bc} = 500 \text{ mm}$$

$$a = 550$$
mm

$$B-1=C-1=D-1=500mm$$

$$a = 550$$
mm

For the gym:

1) Transmission with solar load:

East walls:

$$A_{East\ Walls} = (3 + 3.69 + 0.63 + 2.48 + +3.13 + 3.13 + +1.78) \times 4$$

= 71.36 m^2 .

 U_{walls} was found based on the Table in Example 5-1 (Outside wall):

$$U_{walls} = 0.49 \ W/m^2 \, C.$$

$$q_{East\ walls} = U_{walls} \times A_{East\ Walls} \times (CLTD)$$

 $CLTD_{max}$ = 21 from Table (4-15) in the book.

$$q_{East\;walls} = 0.49 \times 71.36 \times 21 = \boxed{734.3\;\text{W}}$$

South walls:

$$A_{South\ Walls} = (0.53 + 1.24 + 1.26 + 0.91 + 0.84 + 0.77) \times 4 = 22.2\ m^2$$

$$CLTD_{max} = 19$$
 from Table (4-15).

$$q_{South\ walls} = 0.49 \times 22.2 \times 19 = 206.7 \text{ W}$$

East windows:

$$q_{glass\;total} = U_g \times A_g \times (T_{out} - T_{in}) + A_g \times (SHGF) \times (S.C) \times (CLF)$$

$$A_{East\ Windows} = (0.81 + 0.81 + 1.88 + 1.88 + 1.88) \times 4 = 29.04\ m^2.$$

$$U_q = 3.3 \ W/m^2 C$$
 for double glass.

$$SHGF = 700 \ W/m^2 \text{ from Table (4-10)}.$$

S. C. (Shading Coefficienct) =
$$0.4$$
 for reflective double glass. (Table 4-11).

$$CLF = 0.8$$
 at 8 a.m. facing East from Table (4-12).

$$q_{East\ windows} = 3.3 \times 29.04 \times (35 - 24) + 29.04 \times (700) \times (0.4) \times (0.8)$$

= $\boxed{7560\ \text{W}}$

South windows:

$$A_{South\ Windows} = (4.14 + 3.57 + 3.19 + 3.42 + 2.47) \times 4 = 67.16\ m^2.$$

$$SHGF = 355 \ W/m^2$$
 from Table (4-10) for May, Aug.

S.C=0.4 reflective double glass.

CLF = 0.83 from Table (4-12) at 12 noon facing south.

$$q_{South Wins.} = 3.3 \times 67.16 \times (35 - 24) + 67.16 \times (355) \times (0.4) \times (0.83)$$

= 10353 W

Roof:

$$q_{Roof} = U_{Roof} \times A_{Roof} \times (CLTD_{Roof})$$

$$U_{Roof} = 0.48 \ W/m^2 C.$$

$$A_{Roof}=312~m^2.$$

 $CLTD_{Roof} = 21$ From Table (4-14) at 20 solar time with suspended ceiling.

$$q_{Roof} = 0.48 \times 312 \times (21) = 3145W$$

Floor:

$$q_{Floor} = U_{Floor} \times A_{Floor} \times (T_{out} - T_{in})$$

$$U_{Floor} = 0.757 W/m^2 C$$

$$A_{Floor} = 312 m^2$$

$$q_{Floor} = 0.757 \times 312 \times (35 - 24) = 2600 \text{ W}$$

 $q_{Transmission of the gym} = 24600 \text{ W}$

2) Internal Loads:

People:

■ **In the Arena**: 75 people.

$$q_{People} = (SHG \times CLF \times People) + (LHG \times People)$$

$$SHG = 35\% \times 300 = 105 W$$
. From Table (4-7).

$$LHG = 300 - 105 = 195 W.$$

CLF = 0.64 from Table (4-9) for 12 hours in space and 2 hours after each entry.

$$q_{People} = (105 \times 0.64 \times 75) + (195 \times 75) = 19665 \text{ W}$$

• **In the reception:** 27 people.

$$SHG = 60\% \times 100 = 60 W$$

$$LHG = 100 - 60 = 40 W$$
 from Table (4-7) for seated people.

CLF = 0.55 for 12 hours in space and 1 hour after each entry. Table (4-9)

$$q_{People} = (60 \times 0.55 \times 27) + (40 \times 27) = 1971 \text{ W}$$

■ In the lockers room: 9 people.

$$SHG = 50\% \times 150 = 75 W$$

$$LHG = 150 - 75 = 75 W$$
 Table (4-7) for standing people.

$$CLF = 0.55$$
 Table (4-9).

$$q_{People} = (75 \times 0.55 \times 9) + (75 \times 9) = 1046 \text{ W}$$

Lights:

$$q_{Lights} = Lamp\ Rating \times F_u \times F_b \times CLF$$

Lamp Rating =
$$25 W/m^2 \times 312 = 7800 W$$

CLF = 0.97 for 10 hour operation at fixture Y in Table (4-6).

$$q_{Lights} = 7800 \times 1 \times 1.2 \times 0.97 = 9080 \text{ W}$$

Equipment:

■ Two domestic refrigerators:

$$q_{Sensible} = 2 \times 120 = 240 \ kcal/hr = 279 \ W$$
$$q_{Latent} = 2 \times 80 = 160 \ kcal/hr = 186 \ W$$

■ Electric Coffee Maker (25 L):

 $q_{Sensible} = 1000~kcal/hr = 1162~W.$

 $q_{Latent} = 1000 \, kcal/hr = 1162 \, W.$

 $q_{Sensible\ total} = 1162 + 279 = 1441\ W.$

 $q_{Latent\ total} = 1162 + 186 = 1348\ W.$

 $q_{Total} = 2789 \text{ W}$

 $q_{internal\ of the\ gym} = 34550\ W$

3) Ventilation Load:

$$q_{Ventilation} = 1.23 \times \dot{V}_{vent.} \times (T_{out} - T_{in}) + \left[3000 \times \dot{V}_{vent.} \times (\omega_{out} - \omega_{in})\right]$$

Arena:

 $\dot{V}_{vent.} = 750 \ L/s$. From previous heating calculations.

$$q_{Vent.\ Arena} = 1.23 \times 750 \times (35 - 24) + [3000 \times 750 \times (0.014 - 0.009)]$$

= $10150 + 11250 = 21400 \text{ W}$

Reception:

$$\dot{V}_{vent. Recep.} = 216 L/s$$

$$q_{Vent.\ Recep.} = 1.23 \times 216 \times (35 - 24) + [3000 \times 216 \times (0.014 - 0.009)]$$

= 2922 + 3240 = 6162 W

Lockers room:

$$\dot{V}_{vent.\ Lockers} = 112.5\ L/s.$$

$$q_{Vent.} = 1.23 \times 112.5 \times (35 - 24) + [3000 \times 112.5 \times (0.014 - 0.009)]$$

$$= 1522 + 1687 = 3209 \text{ W}$$

4) Infiltration Load:

Arena:

$$\dot{V}_{infil} = 415 \ L/s$$

$$q_{Infil.} = 1.23 \times 415 \times (35 - 24) + [3000 \times 415 \times (0.014 - 0.009)]$$

$$= 5615 + 6225 = \boxed{11840 \text{ W}}$$

Reception:

$$\dot{V}_{infil} = 99 L/s$$

$$q_{Infil.} = 1.23 \times 99 \times (35 - 24) + [3000 \times 99 \times (0.014 - 0.009)]$$

$$= 1339 + 1485 = 2824 \text{ W}$$

Lockers room:

$$\dot{V}_{infil} = 18 L/s$$
 $q_{Infil.} = 1.23 \times 18 \times (35 - 24) + [3000 \times 18 \times (0.014 - 0.009)]$
 $= 243 + 270 = 513 \text{ W}$
 $q_{TOTAL room load of the gym} = q_{Transmission} + q_{Internal} + q_{infiltration}$
 $= 24017 + 31276 + 513 + 2824 + 11840$

 $q_{Sensible of the gym} = 48620 \text{ W}$

For shop 1:

1) Transmission with solar load:

Northern windows:

$$\begin{split} q_{glass} &= U_{glass} * A_{glass} * \Delta T_{glass} + A_{glass} * (SHGF) * (S.C) * (CLF) \\ A_{glass} &= hieght * \sum glass \ lengths = 4* \ 1.3 = 5.2 \ \text{m2} \\ U_{glass} &= 3.3 \\ \Delta T_{glass} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C}. \\ q_{glass} &= U_{glass} * A_{glass} * \Delta T_{glass} + A_{glass} * (SHGF) * (S.C) * (CLF) \\ &= 3.3*5.2*11+5.2*140*.3*.91 = \boxed{387 \ \text{W}} \end{split}$$

Northern walls:

$$\begin{array}{l} \blacktriangleright \quad q_{wall} = U_{wall} * A_{wall} * \textit{CLTD} \\ \\ A_{wall} = hieght * \sum wall \ lengths = 4* \ 4.76 = 19 \ \text{m2} \\ R_{wall} = R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{wall} = \frac{1}{\sum R_{wall}} = 0.49 \ \text{KW/m2.K} \\ \Delta T_{wall} = T_{\circ} - T_{i} = 35\text{-}24 = 11 \text{C.} \\ \\ q_{wall} = U_{wall} * A_{wall} * \textit{CLTD} = 0.49*19*12 = \boxed{112 \text{W}} \end{array}$$

Roof:

$$\begin{split} q_{roof} &= U_{roof} * A_{roof} * CLTD \\ A_{roof} &= 27.3 \text{ m2} \\ R_{roof} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{roof} &= \frac{1}{\sum R_{roof}} = 0.49 \text{ KW/m2.K} \\ \Delta T_{roof} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ q_{roof} &= U_{roof} * A_{roof} * CLTD = 0.49*27.3*21 = \boxed{281 \text{ W}} \end{split}$$

Floor:

$$\begin{aligned} q_{floor} &= U_{floor} * A_{floor} * \Delta T_{floor} \\ A_{floor} &= 27.3 \text{ m2} \\ R_{floor} &= R_{\circ} + R_{st} + R_c + R_{in} + R_B + R_{plas} + R_i = 1.33 \\ U_{floor} &= \frac{1}{\sum R_{floor}} = 0.75 \text{ KW/m2.K} \\ \Delta T_{roof} &= T_{\circ} - T_i = 35-24 = 11\text{C}. \end{aligned}$$

$$q_{floor} = U_{floor} * A_{floor} * \Delta T_{floor} = 0.75*27.3*11 = \underline{225 \text{ W}}.$$

2) Ventilation load:

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega$$
people = 15 people
$$\dot{V}_{vent} = (air\ requierments/person) * (\#\ people) = 5\ (\text{L/s}) * 6 = 30\ \text{L/s}$$

$$\Delta T = T_i - T_\circ = 35\text{-}24 = 11\text{C}.$$

$$\Delta \omega = \omega_i - \omega_\circ = 0.014\text{-}.009 = 0.005.$$

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega = 1.23 * 30*11 + 3000*30*.005 = 856\ \text{W}.$$

3) Infiltration load:

$$q_{infiltration} = 1.23 * \dot{V}_{infil} * \Delta T + 3000 * \dot{V}_{infil} * \Delta \omega$$

$$\dot{V}_{infil} = V * (air\ changes\ per\ second) = 27.3*4*(1/3600) = 30.3\ L/s$$

$$\Delta T = T_i - T_\circ = 35-24 = 11C.$$

$$\Delta \omega = \omega_i - \omega_\circ = 0.014-.009 = 0.005.$$

$$q_{infiltration} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega = 1.23 * 30.3*11 + 3000*30.3*.005 = 865 \text{ W}.$$

4) Internal load:

Lights:

$$\begin{split} q_{lights} &= lamp\ rating * Fu * Fb * CLF \\ lamp\ rating &= 25 \left(\frac{watt}{m2}\right) * area = 25 \left(\frac{watt}{m2}\right) * 27.3m2 = 683\ W \\ q_{lights} &= lamp\ rating * Fu * Fb * CLF = 683 * .97 * 1 * 1.2 = \boxed{795\ W} \end{split}$$

People:

$$\begin{split} q_{s_{people}} &= sensible\ heat\ gain*CLF*\#ofpeople \\ q_{l_{people}} &= latent\ heat\ gain*CLF*(\#ofpeople) \\ (\#people) &= \underline{6}\ people. \\ q_{s_{people}} &= sensible\ heat\ gain*CLF*\#ofpeople = 92.5*1*6= \underline{555}\ W. \\ q_{l_{people}} &= latent\ heat\ gain*(\#ofpeople) = 92.5*6= \underline{555}\ W. \\ q_{people} &= 555+555 = \underline{1110}\ W. \end{split}$$

 $q_{TOTAL\ of\ Shop\ 1} = q_{Transmission} + q_{Internal} + q_{infiltration}$

$$= 3775 W$$

 $q_{Sensible\ of\ Shop\ 1} = 2765\ W$

For shop 2:

1) Transmission with solar load:

Northern windows:

$$q_{glass} = U_{glass} * A_{glass} * \Delta T_{glass} + A_{glass} * (SHGF) * (S.C) * (CLF)$$

$$A_{glass} = hieght * \sum glass \ lengths = 4* \ 1.3 = 5.2 \ m2$$

$$A_{glass} = hieght * \sum glass \ lengths = 4* 1.3 = 5.2 \text{ m}$$

 $U_{glass} = 3.3$

$$\Delta T_{glass} = T_{\circ} - T_i = 35\text{-}24 = 11\text{C}.$$

$$q_{glass} = U_{glass} * A_{glass} * \Delta T_{glass} + A_{glass} * (SHGF) * (S.C) * (CLF)$$

= $3.3*5.2*11+5.2*140*.3*.91 = 387 \text{ W}$

Northern walls:

$$q_{wall} = U_{wall} * A_{wall} * CLTD$$

$$A_{wall} = hieght * \sum wall lengths = 4* 4.76 = 19 \text{ m}2$$

$$R_{wall} = R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166$$

$$U_{wall} = \frac{1}{\sum R_{wall}} = 0.49 \text{ KW/m2.K}$$

$$\Delta T_{wall} = T_{\circ} - T_i = 35-24 = 11C.$$

$$q_{wall} = U_{wall} * A_{wall} * CLTD = 0.49*19*12 = 112W$$

Roof:

$$\begin{split} q_{roof} &= U_{roof} * A_{roof} * CLTD \\ A_{roof} &= 27.3 \text{ m2} \\ R_{roof} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 2.0166 \\ U_{roof} &= \frac{1}{\sum R_{roof}} = 0.49 \text{ KW/m2.K} \\ \Delta T_{roof} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ q_{roof} &= U_{roof} * A_{roof} * CLTD = 0.49*27.3*21 = 281 \text{ W} \end{split}$$

Floor:

$$\begin{split} q_{floor} &= U_{floor} * A_{floor} * \Delta T_{floor} \\ A_{floor} &= 27.3 \text{ m2} \\ R_{floor} &= R_{\circ} + R_{st} + R_{c} + R_{in} + R_{B} + R_{plas} + R_{i} = 1.33 \\ U_{floor} &= \frac{1}{\sum R_{floor}} = 0.75 \text{ KW/m2.K} \\ \Delta T_{roof} &= T_{\circ} - T_{i} = 35\text{-}24 = 11\text{C.} \\ q_{floor} &= U_{floor} * A_{floor} * \Delta T_{floor} = 0.75 * 27.3 * 11 = \boxed{225 \text{ W}}. \end{split}$$

2) Ventilation load:

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega$$
$people = 15$ people
$$\dot{V}_{vent} = (air\ requierments/person) * (\#\ people) = 5\ (\text{L/s}) * 6 = 30\ \text{L/s}$$

$$\Delta T = T_i - T_\circ = 35\text{-}24 = 11\text{C}.$$

$$\Delta \omega = \omega_i - \omega_\circ = 0.014\text{-}.009 = 0.005.$$

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega = 1.23 * 30*11 + 3000*30*.005 = 856\ \text{W}.}$$

3) Infiltration load:

$$\begin{split} q_{infiltration} &= 1.23 * \dot{V}_{infil} * \Delta T + 3000 * \dot{V}_{infil} * \Delta \omega \\ \dot{V}_{infil} &= V * (air\ changes\ per\ second) = 27.3*4*(1/3600) = 30.3\ \text{L/s} \\ \Delta T &= T_i - T_\circ = 35\text{-}24 = 11\text{C}. \\ \Delta \omega &= \omega_i - \omega_\circ = 0.014\text{-}.009 = 0.005. \\ q_{infiltration} &= 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega = 1.23 * 30.3*11 + 3000*30.3*.005 = 865\ \text{W}. \end{split}$$

4) Internal load:

Lights:

$$\begin{split} q_{lights} &= lamp\ rating*Fu*Fb*CLF \\ lamp\ rating &= 25\left(\frac{watt}{m2}\right)*area = 25\left(\frac{watt}{m2}\right)*27.3m2 = 683\ W \\ q_{lights} &= lamp\ rating*Fu*Fb*CLF = 683*.97*1*1.2 = \boxed{795\ W} \end{split}$$

• People:

$$\begin{split} q_{speople} &= sensible\ heat\ gain*CLF* \#\ of\ people \\ q_{lpeople} &= latent\ heat\ gain*CLF* (\#\ of\ people) \\ (\#people) &= \underline{6}\ people. \\ q_{speople} &= sensible\ heat\ gain*CLF* \#\ of\ people = 92.5*1*6= \underline{555}\ W. \\ q_{lpeople} &= latent\ heat\ gain*CLF* (\#\ of\ people) = 92.5*1*6= \underline{555}\ W. \\ q_{people} &= 555+555 = \underline{1110}\ W. \end{split}$$

$$q_{TOTAL \ of \ Shop \ 2} = q_{Transmission} + q_{Internal} + q_{infiltration}$$

$$= 3775 \text{ W}$$

$$q_{Sensible\ of\ Shop\ 2} = \overline{2765\ W}$$

$$q_{TOTAL \ of \ Gym+Shops} = q_{Transmission} + q_{Internal} + q_{infiltration}$$

$$= 81875 \text{ W}$$

$$q_{Sensible\ of\ Gym+Shops} = 2765 + 2765 + 48620 = 54150\ W$$

♣ Main Duct # 2 (2 shops & gym):

$$SHR_2 = \frac{54150}{81875} = 0.660$$

$$h_{S2} = 31 \, Kj/Kg$$

$$h_i = 47.5 \ Kj/Kg$$

 $q_{TOTAL\ of\ Gym+Shops} = \dot{m}_{S2} \times (h_i - h_{S2})$

$$\dot{m}_{S2} = \frac{q_{TOTAL\ of\ Gym+Shops}}{(h_i-h_{S1})} = \frac{81.875KW}{(47.5-31)} = 4.96\ Kg/s.$$

$$v_{S2} = 0.82 \ m^3 / Kg$$

$$\dot{V}_{S2} = \dot{m}_{S2} \times v_{S2} = 4.96 \times 0.82 = 4.0 \, m^3/s = 8622 \, CFM$$

4 Flow rate for the shops:

$$\dot{m}_{S For each shop} = \frac{q_{TOTAL of Shop}}{(h_i - h_{S1})} = \frac{3.775 \, KW}{(47.5 - 31)} = 0.228 \, Kg/s$$

$$\dot{V}_{S\,For\,each\,shop} = \dot{m}_S \times v_{S2} = 0.228 \times 0.82 = 0.187\,m^3/s = 396\,CFM$$

Flow rate for the gym:

$$\dot{m}_{S\,For\,theGym} = \dot{m}_{S2} - \left(2 \times \dot{m}_{S\,For\,each\,shop}\right) = 4.5 \, Kg/s$$

$$\dot{V}_{S\,For\,the\,gym} = \dot{V}_{S2} - (2 \times \dot{V}_{S\,For\,each\,shop}) = 4.0 - 2 \times 0.187 = 3.63\,m^3/s$$

$$= 8622 - 2 \times 396 = 7830 \ CFM$$

$$\dot{V}_{grill} = \frac{\dot{V}_{S1}}{8}$$

$$\dot{V}_{grill} = \frac{4.0}{8} = 0.5 \text{ m}3/\text{s}.$$

$$Throw_{horizental} = \frac{L}{2*n}$$

n=

 $Throw_{horizental} =$

Throw_{vertical} =
$$\frac{L}{2 * n}$$

n=

 $Throw_{vertical} =$

Longest run =

Let
$$V_{main} = 10m/s$$

$$\dot{V}_{ab} = 4000 \; l/s$$

$$\frac{\Delta p}{L} = 1.3$$

$$D_{ab} = 715 \text{ mm}$$

a =

b =

$$\dot{V}_{bc}=3815\ l/s$$

$$D_{bc} = 690 \text{ mm}$$

$$a = mm$$

$$b = mm$$

$$\dot{V}_{cd} = 3625 \; l/s$$

$$D_{cd} = 670 \text{ mm}$$

$$a = mm$$

$$b = mm$$

$$B-1 = C-1 = D-1 = mm$$

$$a = mm$$

$$b = mm$$

For the cafeteria:

1) Skylight transmission with solar load:

 $A_{\text{Sky lights}} = 613.739 \, m^2$ From previous heating calculations.

$$U_{Skylight} = 3.3 W/m^2C$$

 $SHGF = 870 \ W/m^2$ From Table (4-10) for horizontal glass (Skylight).

S.C = 0.9 For a regular sheet double glass (no internal shading) from Table (4-11).

CLF = 0.85 From Table (4-12) for horizontal glass at noon.

$$q_{Skylight} = U_{Skylight} * A_{Skylight} * \Delta T_{Skylight} + A_{Skylight} * (SHGF) * (S.C) * (CLF)$$

$$q_{Skylight} = 3.3 * 613.739 * 11 + 613.739 * (870) * (0.2) * (0.85)$$

= 113051 W

2) Floor transmission:

$$q_{floor} = U_{floor} * A_{floor} * \Delta T_{floor}$$

$$A_{floor} = 613.739 m^2$$

 $U_{floor} = 0.757 W/m^2 C$.

$$q_{floor} = 0.757 * 613.739 * 11 = 5111 \text{ W}$$

3) Ventilation load:

$$q_{ventilation} = 1.23 * \dot{V}_{vent} * \Delta T + 3000 * \dot{V}_{vent} * \Delta \omega$$

people = 15 people

 $\dot{V}_{vent} = (air\ requierments/person)*(\#\ people) = 5\ (L/s)*15 = 75\ L/s$

$$q_{ventilation} = 1.23 * 75 * 11 + 3000 * 75 * 0.005 = 2140 \text{ W}$$

4) Infiltration load:

$$q_{infiltration} = 1.23 * \dot{V}_{infil} * \Delta T + 3000 * \dot{V}_{infil} * \Delta \omega$$

 $\dot{V}_{infil} = V * (air\ changes\ per\ second) = 75.7*4*(1/3600) = 84\ L/s$

$$q_{infiltration} = 1.23 * 84 * 11 + 3000 * 84 * 0.005 = 2396 \text{ W}$$

 $q_{TOTAL\,room\,load\,of\,the\,cafeteria}=q_{Transmission}+q_{Internal}+q_{infiltration}$

= 120558 W

 $q_{Sensible of cafeteria} = 119298 \text{ W}$