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P R E F A C E

In each chapter, there are five problem types:

Exercises

Problems

Advanced Problems

Design Problems/Continuous Design Problem

Computer Problems

In total, there are over 1000 problems. The abundance of problems of in-
creasing complexity gives students confidence in their problem-solving
ability as they work their way from the exercises to the design and
computer-based problems.

It is assumed that instructors (and students) have access to MATLAB

and the Control System Toolbox or to LabVIEW and the MathScript RT
Module. All of the computer solutions in this Solution Manual were devel-
oped and tested on an Apple MacBook Pro platform using MATLAB 7.6
Release 2008a and the Control System Toolbox Version 8.1 and LabVIEW
2009. It is not possible to verify each solution on all the available computer
platforms that are compatible with MATLAB and LabVIEW MathScript
RT Module. Please forward any incompatibilities you encounter with the
scripts to Prof. Bishop at the email address given below.

The authors and the staff at Prentice Hall would like to establish an
open line of communication with the instructors using Modern Control

Systems. We encourage you to contact Prentice Hall with comments and
suggestions for this and future editions.

Robert H. Bishop rhbishop@marquette.edu

iii
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C H A P T E R 1

Introduction to Control Systems

There are, in general, no unique solutions to the following exercises and
problems. Other equally valid block diagrams may be submitted by the
student.

Exercises

E1.1 A microprocessor controlled laser system:

Controller

Error Current i(t)
Power

out

Desired

power

output

Measured

power

- Laser

Process

   processor
Micro-

Power

Sensor

Measurement

E1.2 A driver controlled cruise control system:

Desired

speed

Foot pedal
Actual

auto

speed

Visual indication of speed

Controller

-

Process

Measurement

Driver
Car and

Engine

Speedometer

E1.3 Although the principle of conservation of momentum explains much of
the process of fly-casting, there does not exist a comprehensive scientific
explanation of how a fly-fisher uses the small backward and forward mo-
tion of the fly rod to cast an almost weightless fly lure long distances (the

1
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2 CHAPTER 1 Introduction to Control Systems

current world-record is 236 ft). The fly lure is attached to a short invisible
leader about 15-ft long, which is in turn attached to a longer and thicker
Dacron line. The objective is cast the fly lure to a distant spot with dead-
eye accuracy so that the thicker part of the line touches the water first
and then the fly gently settles on the water just as an insect might.

Desired

position of
the !y

Actual
position
of the !y

Visual indication
of the position of 
the !y

Fly-"sher
Wind 

disturbance
Controller

-

Process

Measurement

Mind and 
body of the
!y-"sher  

Rod, line,
and cast

Vision of 
the !y-"sher

E1.4 An autofocus camera control system:

One-way trip time for the beam

Distance to subject

Lens focusing

motor

K 1

Lens

Conversion factor

(speed of light or
     sound)

Emitter/

Receiver

Beam

Beam return Subject
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Exercises 3

E1.5 Tacking a sailboat as the wind shifts:

Desired

sailboat

direction

Actual

sailboat

direction

Measured sailboat direction

Wind

Error

-

Process

Measurement

ActuatorsController

Sailboat

Gyro compass

Rudder and
sail adjustment

Sailor

E1.6 An automated highway control system merging two lanes of traffic:

Desired
gap

Actual
gap

Measured gap

Error

-

Process

Measurement

ActuatorsController

Active
vehicleBrakes, gas or

steering

Embedded
computer

Radar

E1.7 Using the speedometer, the driver calculates the difference between the
measured speed and the desired speed. The driver throotle knob or the
brakes as necessary to adjust the speed. If the current speed is not too
much over the desired speed, the driver may let friction and gravity slow
the motorcycle down.

Desired
speed

Visual indication of speed

Actual
motorcycle
speed

Error

-

Process

Measurement

ActuatorsController

Throttle or
brakes

Driver Motorcycle

Speedometer

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



4 CHAPTER 1 Introduction to Control Systems

E1.8 Human biofeedback control system:

Measurement

Desired

body

temp

Actual

body

temp

Visual indication of 

body temperature

Message to

blood vessels

-

ProcessController

Body sensor

Hypothalumus Human body

 TV display

E1.9 E-enabled aircraft with ground-based flight path control:

Corrections to the

!ight path

Controller

Gc(s)

Aircraft

G(s)-
Desired

Flight

Path

Flight

Path

Corrections to the

!ight path

Controller

Gc(s)

Aircraft

G(s)

-
Desired

Flight

Path

Flight

Path

Ground-Based Computer Network

Health

Parameters

Health

Parameters

Meteorological

data

Meteorological

data

Optimal

!ight path

Optimal

!ight path

Location

and speed

Location

and speed

E1.10 Unmanned aerial vehicle used for crop monitoring in an autonomous
mode:

Gc(s) G(s)-

Camera

Ground

photo

Controller UAV

Specified

Flight

Trajectory

Location with

respect to the ground

Flight

Trajectory

Map

Correlation

Algorithm

Trajectory

error

Sensor
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Exercises 5

E1.11 An inverted pendulum control system using an optical encoder to measure
the angle of the pendulum and a motor producing a control torque:

Error
AngleDesired

angle

Measured

angle

- Pendulum

Process

Optical
encoder

Measurement

Motor

Actuator

TorqueVoltage

Controller

E1.12 In the video game, the player can serve as both the controller and the sen-
sor. The objective of the game might be to drive a car along a prescribed
path. The player controls the car trajectory using the joystick using the
visual queues from the game displayed on the computer monitor.

Error
Game
objective

Desired
game
objective

- Video game

Process

Player
(eyesight, tactile, etc.)

Measurement

Joystick

Actuator

Player

Controller
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6 CHAPTER 1 Introduction to Control Systems

Problems

P1.1 An automobile interior cabin temperature control system block diagram:

Desired

temperature
set by the
driver

Automobile
cabin temperature

Measured temperature

Error

-

Process

Measurement

Controller

Automobile
cabin

Temperature 
 sensor

Thermostat and
air conditioning
unit

P1.2 A human operator controlled valve system:

Desired

 uid

output *

Error *
Fluid

output

* = operator functions

Visual indication

of  uid output *

-

Process

Measurement

Controller

Valve

Meter

Tank

P1.3 A chemical composition control block diagram:

Desired

chemical

composition

Error
Chemical

composition

Measured chemical

composition

-

Process

Measurement

Controller

Valve Mixer tube

Infrared analyzer
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Problems 7

P1.4 A nuclear reactor control block diagram:

Desired

power level
Output

power level

Error

Measured chemical

composition

-

Process

Measurement

Controller

Ionization chamber

Reactor
and rods

Motor and
ampli!er

P1.5 A light seeking control system to track the sun:

Ligh
intensity

Desired
carriage
position

Light 
source

Photocell
carriage
position

Motor
inputsError

-

ProcessController

Motor, 
carriage,
and gears

K

Controller

Trajectory
Planner

Dual
Photocells

Measurement

P1.6 If you assume that increasing worker’s wages results in increased prices,
then by delaying or falsifying cost-of-living data you could reduce or elim-
inate the pressure to increase worker’s wages, thus stabilizing prices. This
would work only if there were no other factors forcing the cost-of-living
up. Government price and wage economic guidelines would take the place
of additional “controllers” in the block diagram, as shown in the block
diagram.

Initial
wages

Prices

Wage increases

Market-based prices

Cost-of-living

-

Controller

Industry
Government
price
guidelines

K1Government
wage
guidelines

Controller

Process
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8 CHAPTER 1 Introduction to Control Systems

P1.7 Assume that the cannon fires initially at exactly 5:00 p.m.. We have a
positive feedback system. Denote by ∆t the time lost per day, and the
net time error by ET . Then the follwoing relationships hold:

∆t = 4/3 min.+ 3 min. = 13/3 min.

and

ET = 12 days× 13/3 min./day .

Therefore, the net time error after 15 days is

ET = 52 min.

P1.8 The student-teacher learning process:

Desired
knowledge

Error Lectures

Knowledge

Measured knowledge

-

Controller Process

Teacher Student

Measurement

Exams

P1.9 A human arm control system:

Visual indication of
arm location

z
y

u e

d

s

-

Controller Process

Measurement

Desired

arm

location

Arm

location
Nerve signals

Eyes and

pressure

receptors

Brain Arm &

muscles

Pressure
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Problems 9

P1.10 An aircraft flight path control system using GPS:

Desired
 ight path
from air tra"c
controllers

Flight

path

Measured  ight path

Error

-

Process

Measurement

ActuatorsController

Aircraft

Global Positioning
System

Computer

Auto-pilot
Ailerons, elevators,
rudder, and 
engine power

P1.11 The accuracy of the clock is dependent upon a constant flow from the
orifice; the flow is dependent upon the height of the water in the float
tank. The height of the water is controlled by the float. The control system
controls only the height of the water. Any errors due to enlargement of
the orifice or evaporation of the water in the lower tank is not accounted
for. The control system can be seen as:

Desired
height of 
the water
in !oat tank

Actual

height-

ProcessController

Flow from
upper tank 
to !oat tank

Float  level  

P1.12 Assume that the turret and fantail are at 90◦, if θw 6= θF -90
◦. The fantail

operates on the error signal θw - θT , and as the fantail turns, it drives the
turret to turn.

x

y

Wind

*
*

qW

qT

qF

Fantail

Turret

  = Wind angle
  =  Fantail angle
  =  Turret angle

qW

qT

qF

Torque

qTqW

Error

-

ProcessController

Gears & turret
Fantail
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10 CHAPTER 1 Introduction to Control Systems

P1.13 This scheme assumes the person adjusts the hot water for temperature
control, and then adjusts the cold water for flow rate control.

Desired water
temperature

Actual
water temperature
and !ow rate

Cold
water

Desired water
!ow rate

Measured water !ow

Measured water temperature

Error

-

ProcessController

-

Measurement

Human: visual
and touch

Valve adjust

Valve adjust Hot water
system

Cold water
system

Hot
water

P1.14 If the rewards in a specific trade is greater than the average reward, there
is a positive influx of workers, since

q(t) = f1(c(t)− r(t)).

If an influx of workers occurs, then reward in specific trade decreases,
since

c(t) = −f2(q(t)).

-
Error

-

ProcessController

f1(c(t)-r(t)) f2(q(t))
q(t)

Total of

rewards

c(t)

Average

rewards

r(t)

P1.15 A computer controlled fuel injection system:

Desired
Fuel
Pressure

Fuel 
Pressure

Measured fuel pressure

-

Process

Measurement

Controller

Fuel Pressure 
Sensor

Electronic
Control Unit

High Pressure Fuel
Supply Pump and
Electronic Fuel 
Injectors
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Problems 11

P1.16 With the onset of a fever, the body thermostat is turned up. The body
adjusts by shivering and less blood flows to the skin surface. Aspirin acts
to lowers the thermal set-point in the brain.

Body
temperature

Desired temperature
or set-point from body
thermostat in the brain

Measured body temperature

-

Process

Measurement

Controller

Internal sensor

Body
Adjustments 
within the
body

P1.17 Hitting a baseball is arguably one of the most difficult feats in all of sports.
Given that pitchers may throw the ball at speeds of 90 mph (or higher!),
batters have only about 0.1 second to make the decision to swing—with
bat speeds aproaching 90 mph. The key to hitting a baseball a long dis-
tance is to make contact with the ball with a high bat velocity. This is
more important than the bat’s weight, which is usually around 33 ounces
(compared to Ty Cobb’s bat which was 41 ounces!). Since the pitcher can
throw a variety of pitches (fast ball, curve ball, slider, etc.), a batter must
decide if the ball is going to enter the strike zone and if possible, decide
the type of pitch. The batter uses his/her vision as the sensor in the feed-
back loop. A high degree of eye-hand coordination is key to success—that
is, an accurate feedback control system.

P1.18 Define the following variables: p = output pressure, fs = spring force
= Kx, fd = diaphragm force = Ap, and fv = valve force = fs - fd.
The motion of the valve is described by ÿ = fv/m where m is the valve
mass. The output pressure is proportional to the valve displacement, thus
p = cy , where c is the constant of proportionality.

Screw
displacement
       x(t)

y

Valve position

Output 
pressure
   p(t)

fs

-

Diaphragm area

cValve

Constant of
proportionality

A

K

Spring

fv

fd
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12 CHAPTER 1 Introduction to Control Systems

P1.19 A control system to keep a car at a given relative position offset from a
lead car:

Throttle
Position of 
follower

u
Reference
photo

Relative 
position

Desired relative position

Position 
of lead

-

Controller
Video camera 
& processing
algorithms

Follower
car

Actuator

Fuel
throttle
(fuel)

Lead car

-

P1.20 A control system for a high-performance car with an adjustable wing:

Desired  
road 
adhesion

Road
adhesion

Measured road adhesion

Road 
conditions

-

Process

Measurement

Controller

Tire internal
strain gauges

Race Car

K

Actuator

Adjustable
wingComputer

P1.21 A control system for a twin-lift helicopter system:

Desired altitude Altitude

Measured altitude

Separation distanceDesired separation
distance

Measured separation

distance

-

-

Measurement

Measurement

Radar

Altimeter

Controller

Pilot

Process

Helicopter
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Problems 13

P1.22 The desired building deflection would not necessarily be zero. Rather it
would be prescribed so that the building is allowed moderate movement
up to a point, and then active control is applied if the movement is larger
than some predetermined amount.

Desired
de ection

De ection

Measured de ection

-

Process

Measurement

Controller

K

BuildingHydraulic
sti"eners

Strain gauges
on truss structure

P1.23 The human-like face of the robot might have micro-actuators placed at
strategic points on the interior of the malleable facial structure. Coopera-
tive control of the micro-actuators would then enable the robot to achieve
various facial expressions.

Desired
actuator
position

Voltage
Actuator
position

Measured position

Error

-

Process

Measurement

Controller

Ampli!er

Position
sensor

Electro-
mechanical
actuator

P1.24 We might envision a sensor embedded in a “gutter” at the base of the
windshield which measures water levels—higher water levels corresponds
to higher intensity rain. This information would be used to modulate the
wiper blade speed.

Desired
wiper speed

Wiper 
blade
speed

Measured water level

-

Process

Measurement

Controller

K Water depth
sensor

Wiper blade
and motor

Electronic
Control Unit
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14 CHAPTER 1 Introduction to Control Systems

P1.25 A feedback control system for the space traffic control:

Desired
orbit position

Actual
orbit position

Measured orbit position

Jet

commands

Applied

forces

Error

-

Process

Measurement

ActuatorController

SatelliteReaction
control jets

Control
law

Radar or GPS

P1.26 Earth-based control of a microrover to point the camera:

Microrover
Camera position

command

Controller

Gc(s)

Cam
era position com

m
and

Camera

Position

Receiver/

Transmitter Rover

position

Camera

M
easured cam

era position

G(s)

Measured camera

position

Sensor

P1.27 Control of a methanol fuel cell:

Methanol water

solution

Controller

Gc(s)

Recharging

System

GR(s)

Fuel Cell

G(s)-
Charge

Level
Desired

Charge

Level

Measured charge level

Sensor

H(s)

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Advanced Problems 15

Advanced Problems

AP1.1 Control of a robotic microsurgical device:

Controller

Gc(s)

Microsurgical

robotic manipulator

G(s)-
End-effector

Position
Desired

End-effector

Position

Sensor

H(s)

AP1.2 An advanced wind energy system viewed as a mechatronic system:

WIND ENERGY

SYSTEM

Physical System Modeling

Signals and Systems

Sensors and Actuators

Computers and 

Logic Systems
Software and 

Data Acquisition

COMPUTER EQUIPMENT FOR CONTROLLING THE SYSTEM

SAFETY MONITORING SYSTEMS
CONTROLLER ALGORITHMS

DATA ACQUISTION: WIND SPEED AND DIRECTION

        ROTOR ANGULAR SPEED

        PROPELLOR PITCH ANGLE  

   

CONTROL SYSTEM DESIGN AND ANALYSIS

ELECTRICAL SYSTEM DESIGN AND ANALYSIS

POWER GENERATION AND STORAGE

SENSORS

   Rotor rotational sensor

    Wind speed and direction sensor

ACTUATORS

   Motors for manipulatiing the propeller pitch

AERODYNAMIC DESIGN

STRUCTURAL DESIGN OF THE TOWER

ELECTRICAL AND POWER SYSTEMS

AP1.3 The automatic parallel parking system might use multiple ultrasound
sensors to measure distances to the parked automobiles and the curb.
The sensor measurements would be processed by an on-board computer
to determine the steering wheel, accelerator, and brake inputs to avoid
collision and to properly align the vehicle in the desired space.
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16 CHAPTER 1 Introduction to Control Systems

Even though the sensors may accurately measure the distance between
the two parked vehicles, there will be a problem if the available space is
not big enough to accommodate the parking car.

Error
Actual
automobile
position

Desired
automobile
position

- Automobile

Process

Ultrasound

Measurement

Steering wheel,
accelerator, and
brake

Actuators

On-board
computer

Controller

Position of automobile

relative to parked cars
and curb

AP1.4 There are various control methods that can be considered, including plac-
ing the controller in the feedforward loop (as in Figure 1.3). The adaptive
optics block diagram below shows the controller in the feedback loop, as
an alternative control system architecture.

Compensated
image

Uncompensated

image
Astronomical
telescope 
mirror

Process

Wavefront 
sensor

Measurement

Wavefront
corrector

Actuator & controller

Wavefront
reconstructor

Astronomical

object

AP1.5 The control system might have an inner loop for controlling the acceler-
ation and an outer loop to reach the desired floor level precisely.

Elevator Floor
Desired

acceleration
Desired

floor

Elevator

motor, 

cables, etc.

Controller #2 Controller #1
Error

-
Error

-

Acceleration

MeasurementMeasured acceleration

Outer 

Loop

Inner 

Loop
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Advanced Problems 17

AP1.6 An obstacle avoidance control system would keep the robotic vacuum
cleaner from colliding with furniture but it would not necessarily put the
vacuum cleaner on an optimal path to reach the entire floor. This would
require another sensor to measure position in the room, a digital map of
the room layout, and a control system in the outer loop.

Desired

distance

from 

obstacles

Distance

from 

obstacles

Error

-

Infrared

sensorsMeasured distance from obstacle

Controller

Process

Robotic

vacuum

cleaner

Motors, 

wheels, etc.
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18 CHAPTER 1 Introduction to Control Systems

Design Problems
The machine tool with the movable table in a feedback control configu-CDP1.1

ration:

Desired
position
    x

Measured position

Actual
position
    x

Error

-

Process

Measurement

ActuatorController

Position sensor

Machine 
tool with 
table

Ampli!er Positioning 
motor

DP1.1 Use the stereo system and amplifiers to cancel out the noise by emitting
signals 180◦ out of phase with the noise.

Desired
noise = 0

Noise
signal

Noise in
cabin-

Process

Measurement

Controller

Machine 
tool with 
table

Positioning 
motor

Microphone

Shift phase
by 180 deg

DP1.2 An automobile cruise control system:

Desired 
speed
of auto 
set by
driver

Desired
shaft 
speed

Actual
speed
of auto

Drive shaf t speedMeasured shaft speed

-

Process

Measurement

Controller

Automobile
and engine

Valve
Electric
motor

Shaft speed
sensor

K1/K
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Design Problems 19

DP1.3 An automoted cow milking system:

Location 
of cup

Milk

Desired cup
location

Measured cup location

Cow location

-

Measurement

Vision system

Measurement

Vision system

Controller Process

Motor and
gears

Robot arm and
cup gripper

Actuator

Cow and
milker

DP1.4 A feedback control system for a robot welder:

Desired
position

Voltage
Weld 
top 
position

Measured position

Error

-

Process

Measurement

Controller

Motor and
arm

Computer and
ampli!er

Vision camera

DP1.5 A control system for one wheel of a traction control system:

Brake torque

Wheel 
speed

Actual slip
Measured 
slip

Vehicle speed

Rw = Radius of wheel

-

-

Sensor
Vehicle
dynamics

Sensor

-

Antiskid 
controller

-
Wheel
dynamics

Engine torque Antislip 
controller

1/Rw

+ +

++
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20 CHAPTER 1 Introduction to Control Systems

DP1.6 A vibration damping system for the Hubble Space Telescope:

Signal to
cancel the jitter

Jitter of
vibration

Measurement of 0.05 Hz jitter

Desired
jitter = 0

Error

-

Process

Measurement

ActuatorsController

Rate gyro
sensor

Computer Gyro and
reaction wheels

Spacecraft
dynamics

DP1.7 A control system for a nanorobot:

Error
Actual
nanorobot
position

Desired
nanorobot
position

- Nanorobot

Process

External beacons 

Measurement

Plane surfaces
and propellers

Actuators

Bio-
computer

Controller

Many concepts from underwater robotics can be applied to nanorobotics
within the bloodstream. For example, plane surfaces and propellers can
provide the required actuation with screw drives providing the propul-
sion. The nanorobots can use signals from beacons located outside the
skin as sensors to determine their position. The nanorobots use energy
from the chemical reaction of oxygen and glucose available in the human
body. The control system requires a bio-computer–an innovation that is
not yet available.

For further reading, see A. Cavalcanti, L. Rosen, L. C. Kretly, M. Rosen-
feld, and S. Einav, “Nanorobotic Challenges n Biomedical Application,
Design, and Control,” IEEE ICECS Intl Conf. on Electronics, Circuits

and Systems, Tel-Aviv, Israel, December 2004.

DP1.8 The feedback control system might use gyros and/or accelerometers to
measure angle change and assuming the HTV was originally in the vertical
position, the feedback would retain the vertical position using commands
to motors and other actuators that produced torques and could move the
HTV forward and backward.
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C H A P T E R 2

Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

y = r2

and for the closed-loop

e = r − y and y = e2 .

So, e = r − e2 and e2 + e− r = 0 .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

r

y

open-loop

closed-loop

FIGURE E2.1
Plot of open-loop versus closed-loop.

For example, if r = 1, then e2 + e − 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.

22
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E2.2 Define

f(T ) = R = R0e
−0.1T

and

∆R = f(T )− f(T0) , ∆T = T − T0 .

Then,

∆R = f(T )− f(T0) =
∂f

∂T

∣

∣

∣

∣

T=T0=20◦
∆T + · · ·

where

∂f

∂T

∣

∣

∣

∣

T=T0=20◦
= −0.1R0e

−0.1T0 = −135,

when R0 = 10, 000Ω. Thus, the linear approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

∆R = −135∆T .

E2.3 The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point y = 0.5cm, see Figure E2.3. The slope of the line is
K ≈ 1.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

y=Displacement (cm)

Fo
rc

e
 (

n
)

Spring compresses

Spring breaks

FIGURE E2.3
Spring force as a function of displacement.
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E2.4 Since

R(s) =
1

s

we have

Y (s) =
4(s+ 50)

s(s+ 20)(s + 10)
.

The partial fraction expansion of Y (s) is given by

Y (s) =
A1

s
+

A2

s+ 20
+

A3

s+ 10

where

A1 = 1 , A2 = 0.6 and A3 = −1.6 .

Using the Laplace transform table, we find that

y(t) = 1 + 0.6e−20t − 1.6e−10t .

The final value is computed using the final value theorem:

lim
t→∞

y(t) = lim
s→0

s

[

4(s + 50)

s(s2 + 30s + 200)

]

= 1 .

E2.5 The circuit diagram is shown in Figure E2.5.

vin
v0

+

--

+
+

-

R2

R1

v-

A

FIGURE E2.5
Noninverting op-amp circuit.

With an ideal op-amp, we have

vo = A(vin − v−),
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where A is very large. We have the relationship

v− =
R1

R1 +R2
vo.

Therefore,

vo = A(vin − R1

R1 +R2
vo),

and solving for vo yields

vo =
A

1 + AR1
R1+R2

vin.

Since A ≫ 1, it follows that 1 + AR1
R1+R2

≈ AR1
R1+R2

. Then the expression for
vo simplifies to

vo =
R1 +R2

R1
vin.

E2.6 Given

y = f(x) = ex

and the operating point xo = 1, we have the linear approximation

y = f(x) = f(xo) +
∂f

∂x

∣

∣

∣

∣

x=xo

(x− xo) + · · ·

where

f(xo) = e,
df

dx

∣

∣

∣

∣

x=xo=1

= e, and x− xo = x− 1.

Therefore, we obtain the linear approximation y = ex.

E2.7 The block diagram is shown in Figure E2.7.

+
I(s)R(s)

-

H(s)

G2(s)G1(s)
Ea(s)

FIGURE E2.7
Block diagram model.
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Starting at the output we obtain

I(s) = G1(s)G2(s)E(s).

But E(s) = R(s)−H(s)I(s), so

I(s) = G1(s)G2(s) [R(s)−H(s)I(s)] .

Solving for I(s) yields the closed-loop transfer function

I(s)

R(s)
=

G1(s)G2(s)

1 +G1(s)G2(s)H(s)
.

E2.8 The block diagram is shown in Figure E2.8.

Y(s)G2(s)G1(s)R(s)
-

H3(s)

- -

H1(s)

K 1
s

-

H2(s)

A(s)

W(s)

Z(s)

E(s)

FIGURE E2.8
Block diagram model.

Starting at the output we obtain

Y (s) =
1

s
Z(s) =

1

s
G2(s)A(s).

But A(s) = G1(s) [−H2(s)Z(s)−H3(s)A(s) +W (s)] and Z(s) = sY (s),
so

Y (s) = −G1(s)G2(s)H2(s)Y (s)−G1(s)H3(s)Y (s) +
1

s
G1(s)G2(s)W (s).

Substituting W (s) = KE(s)−H1(s)Z(s) into the above equation yields

Y (s) = −G1(s)G2(s)H2(s)Y (s)−G1(s)H3(s)Y (s)

+
1

s
G1(s)G2(s) [KE(s)−H1(s)Z(s)]
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and with E(s) = R(s)− Y (s) and Z(s) = sY (s) this reduces to

Y (s) = [−G1(s)G2(s) (H2(s) +H1(s))−G1(s)H3(s)

− 1

s
G1(s)G2(s)K]Y (s) +

1

s
G1(s)G2(s)KR(s).

Solving for Y (s) yields the transfer function

Y (s) = T (s)R(s),

where

T (s) =
KG1(s)G2(s)/s

1 +G1(s)G2(s) [(H2(s) +H1(s)] +G1(s)H3(s) +KG1(s)G2(s)/s
.

E2.9 From Figure E2.9, we observe that

Ff (s) = G2(s)U(s)

and

FR(s) = G3(s)U(s) .

Then, solving for U(s) yields

U(s) =
1

G2(s)
Ff (s)

and it follows that

FR(s) =
G3(s)

G2(s)
U(s) .

Again, considering the block diagram in Figure E2.9 we determine

Ff (s) = G1(s)G2(s)[R(s)−H2(s)Ff (s)−H2(s)FR(s)] .

But, from the previous result, we substitute for FR(s) resulting in

Ff (s) = G1(s)G2(s)R(s)−G1(s)G2(s)H2(s)Ff (s)−G1(s)H2(s)G3(s)Ff (s) .

Solving for Ff (s) yields

Ff (s) =

[

G1(s)G2(s)

1 +G1(s)G2(s)H2(s) +G1(s)G3(s)H2(s)

]

R(s) .
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R(s) G1(s)

H2(s)

-

+

G2(s)

G3(s)

H2(s)

-

Ff (s)

FR(s)

U(s)

U(s)

FIGURE E2.9
Block diagram model.

E2.10 The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

T (s) =
Gc(s)Gp(s)G(s)

1 +H(s)Gc(s)Gp(s)G(s)
.

+

-

R(s)

Desired piston

travel

Y(s)

Piston 

travel

Controller

Gc(s)

Plunger and

Piston System

G(s)

Sensor

H(s)

Gear Motor

Gp(s)

Piston travel

measurement

FIGURE E2.10
Shock absorber block diagram.

E2.11 Let f denote the spring force (n) and x denote the deflection (m). Then

K =
∆f

∆x
.

Computing the slope from the graph yields:

(a) xo = −0.14m → K = ∆f/∆x = 10 n / 0.04 m = 250 n/m

(b) xo = 0m → K = ∆f/∆x = 10 n / 0.05 m = 200 n/m

(c) xo = 0.35m → K = ∆f/∆x = 3n / 0.05 m = 60 n/m
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E2.12 The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

Y (s)

-1

K
2

G(s)

-K
1

1

Td(s)

FIGURE E2.12
Signal flow graph.

The transfer function from Td(s) to Y (s) is

Y (s) =
G(s)Td(s)−K1K2G(s)Td(s)

1− (−K2G(s))
=

G(s)(1 −K1K2)Td(s)

1 +K2G(s)
.

If we set

K1K2 = 1 ,

then Y (s) = 0 for any Td(s).

E2.13 The transfer function from R(s), Td(s), and N(s) to Y (s) is

Y (s) =

[

K

s2 + 10s +K

]

R(s)+

[

1

s2 + 10s+K

]

Td(s)−
[

K

s2 + 10s+K

]

N(s)

Therefore, we find that

Y (s)/Td(s) =
1

s2 + 10s +K
and Y (s)/N(s) = − K

s2 + 10s+K

E2.14 Since we want to compute the transfer function from R2(s) to Y1(s), we
can assume that R1 = 0 (application of the principle of superposition).
Then, starting at the output Y1(s) we obtain

Y1(s) = G3(s) [−H1(s)Y1(s) +G2(s)G8(s)W (s) +G9(s)W (s)] ,

or

[1 +G3(s)H1(s)] Y1(s) = [G3(s)G2(s)G8(s)W (s) +G3(s)G9(s)]W (s).

Considering the signal W (s) (see Figure E2.14), we determine that

W (s) = G5(s) [G4(s)R2(s)−H2(s)W (s)] ,
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G2(s)G1(s)

-

H1(s)

G3(s)

G5(s)G4(s)

-

H2(s)

G6(s)

R1(s)

R2(s)

Y1(s)

Y2(s)

+
+

G7(s) G8(s) G9(s)

+

+

+

+

W(s)

FIGURE E2.14
Block diagram model.

or

[1 +G5(s)H2(s)]W (s) = G5(s)G4(s)R2(s).

Substituting the expression for W (s) into the above equation for Y1(s)
yields

Y1(s)

R2(s)
=

G2(s)G3(s)G4(s)G5(s)G8(s) +G3(s)G4(s)G5(s)G9(s)

1 +G3(s)H1(s) +G5(s)H2(s) +G3(s)G5(s)H1(s)H2(s)
.

E2.15 For loop 1, we have

R1i1 + L1
di1
dt

+
1

C1

∫

(i1 − i2)dt+R2(i1 − i2) = v(t) .

And for loop 2, we have

1

C2

∫

i2dt+ L2
di2
dt

+R2(i2 − i1) +
1

C1

∫

(i2 − i1)dt = 0 .

E2.16 The transfer function from R(s) to P (s) is

P (s)

R(s)
=

4.2

s3 + 2s2 + 4s + 4.2
.

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

P (s)/R(s) =
4.2

s3 + 2s2 + 4s+ 4.2
.
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v1(s)

-
R(s) P(s)7

v2(s) 0.6
s

q(s) 1

s2+2s+4

(a)

V 2
0.6
s

R(s ) P (s)

-1

1 7
V 1

1

s2 + 2 s + 4

(b)

FIGURE E2.16
(a) Block diagram, (b) Signal flow graph.

E2.17 A linear approximation for f is given by

∆f =
∂f

∂x

∣

∣

∣

∣

x=xo

∆x = 2kxo∆x = k∆x

where xo = 1/2, ∆f = f(x)− f(xo), and ∆x = x− xo.

E2.18 The linear approximation is given by

∆y = m∆x

where

m =
∂y

∂x

∣

∣

∣

∣

x=xo

.

(a) When xo = 1, we find that yo = 2.4, and yo = 13.2 when xo = 2.

(b) The slope m is computed as follows:

m =
∂y

∂x

∣

∣

∣

∣

x=xo

= 1 + 4.2x2o .

Therefore, m = 5.2 at xo = 1, and m = 18.8 at xo = 2.
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E2.19 The output (with a step input) is

Y (s) =
15(s + 1)

s(s+ 7)(s + 2)
.

The partial fraction expansion is

Y (s) =
15

14s
− 18

7

1

s+ 7
+

3

2

1

s+ 2
.

Taking the inverse Laplace transform yields

y(t) =
15

14
− 18

7
e−7t +

3

2
e−2t .

E2.20 The input-output relationship is

Vo

V
=

A(K − 1)

1 +AK

where

K =
Z1

Z1 + Z2
.

Assume A ≫ 1. Then,

Vo

V
=

K − 1

K
= −Z2

Z1

where

Z1 =
R1

R1C1s+ 1
and Z2 =

R2

R2C2s+ 1
.

Therefore,

Vo(s)

V (s)
= −R2(R1C1s+ 1)

R1(R2C2s+ 1)
= −2(s+ 1)

s+ 2
.

E2.21 The equation of motion of the mass mc is

mcẍp + (bd + bs)ẋp + kdxp = bdẋin + kdxin .

Taking the Laplace transform with zero initial conditions yields

[mcs
2 + (bd + bs)s+ kd]Xp(s) = [bds+ kd]Xin(s) .

So, the transfer function is

Xp(s)

Xin(s)
=

bds+ kd
mcs2 + (bd + bs)s+ kd

=
0.7s + 2

s2 + 2.8s + 2
.
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E2.22 The rotational velocity is

ω(s) =
2(s+ 4)

(s+ 5)(s + 1)2
1

s
.

Expanding in a partial fraction expansion yields

ω(s) =
8

5

1

s
+

1

40

1

s+ 5
− 3

2

1

(s+ 1)2
− 13

8

1

s+ 1
.

Taking the inverse Laplace transform yields

ω(t) =
8

5
+

1

40
e−5t − 3

2
te−t − 13

8
e−t .

E2.23 The closed-loop transfer function is

Y (s)

R(s)
= T (s) =

K1K2

s2 + (K1 +K2K3 +K1K2)s +K1K2K3
.

E2.24 The closed-loop tranfser function is

Y (s)

R(s)
= T (s) =

10

s2 + 21s + 10
.

E2.25 Let x = 0.6 and y = 0.8. Then, with y = ax3, we have

0.8 = a(0.6)3 .

Solving for a yields a = 3.704. A linear approximation is

y − yo = 3ax2o(x− xo)

or y = 4x− 1.6, where yo = 0.8 and xo = 0.6.

E2.26 The equations of motion are

m1ẍ1 + k(x1 − x2) = F

m2ẍ2 + k(x2 − x1) = 0 .

Taking the Laplace transform (with zero initial conditions) and solving
for X2(s) yields

X2(s) =
k

(m2s2 + k)(m1s2 + k)− k2
F (s) .

Then, with m1 = m2 = k = 1, we have

X2(s)/F (s) =
1

s2(s2 + 2)
.
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E2.27 The transfer function from Td(s) to Y (s) is

Y (s)/Td(s) =
G2(s)

1 +G1G2H(s)
.

E2.28 The transfer function is

Vo(s)

V (s)
=

R2R4C

R3
s+

R2R4

R1R3
= 24s+ 144 .

E2.29 (a) If

G(s) =
1

s2 + 15s + 50
and H(s) = 2s + 15 ,

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

T (s) =
1

s2 + 17s + 65
.

E2.30 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)

1

s
=

10

s(s2 + 2s + 20)
where G(s) =

10

s2 + 2s + 10
.
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FIGURE E2.30
Step response.
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(b) The output Y (s) (when R(s) = 1/s) is

Y (s) =
0.5

s
− −0.25 + 0.0573j

s+ 1− 4.3589j
+

−0.25− 0.0573j

s+ 1 + 4.3589j
.

(c) The plot of y(t) is shown in Figure E2.30. The output is given by

y(t) =
1

2

[

1− e−t
(

cos
√
19t− 1√

19
sin

√
19t

)]

E2.31 The partial fraction expansion is

V (s) =
a

s+ p1
+

b

s+ p2

where p1 = 4− 19.6j and p2 = 4 + 19.6j. Then, the residues are

a = −10.2j b = 10.2j .

The inverse Laplace transform is

v(t) = −10.2je(−4+19.6j)t + 10.2je(−4−19.6j)t = 20.4e−4t sin 19.6t .
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Problems

P2.1 The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

R1i1 +
1

C1

∫

i1dt+ L1
d(i1 − i2)

dt
+R2(i1 − i2) = v(t) (loop 1)

and

R3i2 +
1

C2

∫

i2dt+R2(i2 − i1) + L1
d(i2 − i1)

dt
= 0 (loop 2) .

P2.2 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

M1ÿ1 + k12(y1 − y2) + bẏ1 + k1y1 = F (t)

M2ÿ2 + k12(y2 − y1) = 0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where Ci → Mi , L1 → 1/k1 , L12 → 1/k12 , and R → 1/b .

FIGURE P2.2
Analagous electric circuit.

P2.3 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

Mẍ1 + kx1 + k(x1 − x2) = F (t)

Mẍ2 + k(x2 − x1) + bẋ2 = 0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C → M L → 1/k R → 1/b .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 37

FIGURE P2.3
Analagous electric circuit.

P2.4 (a) The linear approximation around vin = 0 is vo = 0vin, see Fig-
ure P2.4(a).

(b) The linear approximation around vin = 1 is vo = 2vin − 1, see Fig-
ure P2.4(b).

-1 -0.5 0 0.5 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
(a)

vin

vo

linear approximation

-1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
(b)

vin
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FIGURE P2.4
Nonlinear functions and approximations.
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P2.5 Given

Q = K(P1 − P2)
1/2 .

Let δP = P1 − P2 and δPo = operating point. Using a Taylor series
expansion of Q, we have

Q = Qo +
∂Q

∂δP

∣

∣

∣

∣

δP=δPo

(δP − δPo) + · · ·

where

Qo = KδP 1/2
o and

∂Q

∂δP

∣

∣

∣

∣

δP=δPo

=
K

2
δP−1/2

o .

Define ∆Q = Q−Qo and ∆P = δP − δPo. Then, dropping higher-order
terms in the Taylor series expansion yields

∆Q = m∆P

where

m =
K

2δP
1/2
o

.

P2.6 From P2.1 we have

R1i1 +
1

C1

∫

i1dt+ L1
d(i1 − i2)

dt
+R2(i1 − i2) = v(t)

and

R3i2 +
1

C2

∫

i2dt+R2(i2 − i1) + L1
d(i2 − i1)

dt
= 0 .

Taking the Laplace transform and using the fact that the initial voltage
across C2 is 10v yields

[R1 +
1

C1s
+ L1s+R2]I1(s) + [−R2 − L1s]I2(s) = 0

and

[−R2 − L1s]I1(s) + [L1s+R3 +
1

C2s
+R2]I2(s) = −10

s
.

Rewriting in matrix form we have





R1 +
1

C1s
+ L1s+R2 −R2 − L1s

−R2 − L1s L1s+R3 +
1

C2s
+R2









I1(s)

I2(s)



 =





0

−10/s



 .
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Solving for I2 yields





I1(s)

I2(s)



 =
1

∆





L1s+R3 +
1

C2s
+R2 R2 + L1s

R2 + L1s R1 +
1

C1s
+ L1s+R2









0

−10/s



 .

or

I2(s) =
−10(R1 + 1/C1s+ L1s+R2)

s∆

where

∆ = (R1 +
1

C1s
+ L1s+R2)(L1s+R3 +

1

C2s
+R2)− (R2 + L1s)

2 .

P2.7 Consider the differentiating op-amp circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

V2(s) = −Z2(s)

Z1(s)
V1(s),

where

Z1 =
R1

1 +R1Cs

and Z2 = R2 are the respective circuit impedances. Therefore, we obtain

V2(s) = −
[

R2(1 +R1Cs)

R1

]

V1(s).

V1(s) V2(s)

+

--

+

+

-

C

R1

R2

Z
1 Z

2

FIGURE P2.7
Differentiating op-amp circuit.
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P2.8 Let

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G2 + Cs −Cs −G2

−Cs G1 + 2Cs −Cs

−G2 −Cs Cs+G2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then,

Vj =
∆ij

∆
I1 or or

V3

V1
=

∆13I1/∆

∆11I1/∆
.

Therefore, the transfer function is

T (s) =
V3

V1
=

∆13

∆11
=

∣

∣

∣

∣

∣

∣

−Cs 2Cs+G1

−G2 −Cs

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2Cs+G1 −Cs

−Cs Cs+G2

∣

∣

∣

∣

∣

∣

-3

-2

-1

0

1

2

3

-8 -7 -6 -5 -4 -3 -2 -1 0

x x

o

o

Real Axis

Im
a

g
 A

xi
s

Pole-zero map (x:poles and o:zeros)

FIGURE P2.8
Pole-zero map.
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=
C2R1R2s

2 + 2CR1s+ 1

C2R1R2s2 + (2R1 +R2)Cs+ 1
.

Using R1 = 0.5, R2 = 1, and C = 0.5, we have

T (s) =
s2 + 4s+ 8

s2 + 8s+ 8
=

(s+ 2 + 2j)(s + 2− 2j)

(s+ 4 +
√
8)(s + 4−

√
8)

.

The pole-zero map is shown in Figure P2.8.

P2.9 From P2.3 we have

Mẍ1 + kx1 + k(x1 − x2) = F (t)

Mẍ2 + k(x2 − x1) + bẋ2 = 0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that





Ms2 + 2k −k

−k Ms2 + bs+ k









X1(s)

X2(s)



 =





F (s)

0



 ,

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
-0.4

-0.3

-0.2

- 0.1

0

0.1

0.2

0.3

0.4

Real Axis

Im
a

g
 A

xi
s

Pole zero map

FIGURE P2.9
Pole-zero map.
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or




X1(s)

X2(s)



 =
1

∆





Ms2 + bs+ k k

k Ms2 + 2k









F (s)

0





where ∆ = (Ms2 + bs+ k)(Ms2 + 2k)− k2 . So,

G(s) =
X1(s)

F (s)
=

Ms2 + bs+ k

∆
.

When b/k = 1, M = 1 , b2/Mk = 0.04, we have

G(s) =
s2 + 0.04s + 0.04

s4 + 0.04s3 + 0.12s2 + 0.0032s + 0.0016
.

The pole-zero map is shown in Figure P2.9.

P2.10 From P2.2 we have

M1ÿ1 + k12(y1 − y2) + bẏ1 + k1y1 = F (t)

M2ÿ2 + k12(y2 − y1) = 0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that





M1s
2 + bs+ k1 + k12 −k12

−k12 M2s
2 + k12









Y1(s)

Y2(s)



 =





F (s)

0





or




Y1(s)

Y2(s)



 =
1

∆





M2s
2 + k12 k12

k12 M1s
2 + bs+ k1 + k12









F (s)

0





where

∆ = (M2s
2 + k12)(M1s

2 + bs+ k1 + k12)− k212 .

So, when f(t) = a sinωot, we have that Y1(s) is given by

Y1(s) =
aM2ωo(s

2 + k12/M2)

(s2 + ω2
o)∆(s)

.

For motionless response (in the steady-state), set the zero of the transfer
function so that

(s2 +
k12
M2

) = s2 + ω2
o or ω2

o =
k12
M2

.
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P2.11 The transfer functions from Vc(s) to Vd(s) and from Vd(s) to θ(s) are:

Vd(s)/Vc(s) =
K1K2

(Lqs+Rq)(Lcs+Rc)
, and

θ(s)/Vd(s) =
Km

(Js2 + fs)((Ld + La)s+Rd +Ra) +K3Kms
.

The block diagram for θ(s)/Vc(s) is shown in Figure P2.11, where

θ(s)/Vc(s) =
θ(s)

Vd(s)

Vd(s)

Vc(s)
=

K1K2Km

∆(s)
,

where

∆(s) = s(Lcs+Rc)(Lqs+Rq)((Js+ b)((Ld +La)s+Rd+Ra)+KmK3) .

-

+ 1
(L d+L a)s+R d+R a

1
Js+f

1
sK m

K 3

1
L cs+R c

1
L qs+R q

K 1 K 2V c

I c Vq V d I d T m

V b

I q w

q

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y (s)

R(s)
=

K

s+ 20
.

With R(s) = 1/s, we have

Y (s) =
K

s(s+ 20)
.

The partial fraction expansion is

Y (s) =
K

20

(

1

s
− 1

s+ 20

)

,

and the inverse Laplace transform is

y(t) =
K

20

(

1− e−20t
)

,

As t → ∞, it follows that y(t) → K/20. So we choose K = 20 so that y(t)
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approaches 1. Alternatively we can use the final value theorem to obtain

y(t)t→∞ = lim
s→0

sY (s) =
K

20
= 1 .

It follows that choosing K = 20 leads to y(t) → 1 as t → ∞.

P2.13 The motor torque is given by

Tm(s) = (Jms2 + bms)θm(s) + (JLs
2 + bLs)nθL(s)

= n((Jms2 + bms)/n2 + JLs
2 + bLs)θL(s)

where

n = θL(s)/θm(s) = gear ratio .

But

Tm(s) = KmIg(s)

and

Ig(s) =
1

(Lg + Lf )s +Rg +Rf
Vg(s) ,

and

Vg(s) = KgIf (s) =
Kg

Rf + Lfs
Vf (s) .

Combining the above expressions yields

θL(s)

Vf (s)
=

KgKm

n∆1(s)∆2(s)
.

where

∆1(s) = JLs
2 + bLs+

Jms2 + bms

n2

and

∆2(s) = (Lgs+ Lfs+Rg +Rf )(Rf + Lfs) .

P2.14 For a field-controlled dc electric motor we have

ω(s)/Vf (s) =
Km/Rf

Js+ b
.
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With a step input of Vf (s) = 80/s, the final value of ω(t) is

ω(t)t→∞ = lim
s→0

sω(s) =
80Km

Rf b
= 2.4 or

Km

Rf b
= 0.03 .

Solving for ω(t) yields

ω(t) =
80Km

RfJ
L−1

{

1

s(s+ b/J)

}

=
80Km

Rfb
(1−e−(b/J)t) = 2.4(1−e−(b/J)t) .

At t = 1/2, ω(t) = 1, so

ω(1/2) = 2.4(1 − e−(b/J)t) = 1 implies b/J = 1.08 sec .

Therefore,

ω(s)/Vf (s) =
0.0324

s+ 1.08
.

P2.15 Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

ẍ+
k

m
x = 0 .

The system has no damping and no external inputs. Taking the Laplace
transform yields

X(s) =
x0s

s2 + k/m
,

where we used the fact that x(0) = x0 and ẋ(0) = 0. Then taking the
inverse Laplace transform yields

x(t) = x0 cos

√

k

m
t .

P2.16 Using Cramer’s rule, we have





1 1.5

2 4









x1

x2



 =





6

11





or





x1

x2



 =
1

∆





4 −1.5

−2 1









6

11
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where ∆ = 4(1) − 2(1.5) = 1 . Therefore,

x1 =
4(6) − 1.5(11)

1
= 7.5 and x2 =

−2(6) + 1(11)

1
= −1 .

The signal flow graph is shown in Figure P2.16.

1/4

1

-1.5

X 1

11

6
-1/2

X 2

FIGURE P2.16
Signal flow graph.

So,

x1 =
6(1) − 1.5(114 )

1− 3
4

= 7.5 and x2 =
11(14 ) +

−1
2 (6)

1− 3
4

= −1 .

P2.17 (a) For mass 1 and 2, we have

M1ẍ1 +K1(x1 − x2) + b1(ẋ3 − ẋ1) = 0

M2ẍ2 +K2(x2 − x3) + b2(ẋ3 − ẋ2) +K1(x2 − x1) = 0 .

(b) Taking the Laplace transform yields

(M1s
2 + b1s+K1)X1(s)−K1X2(s) = b1sX3(s)

−K1X1(s) + (M2s
2 + b2s+K1 +K2)X2(s) = (b2s+K2)X3(s) .

(c) Let

G1(s) = K2 + b2s

G2(s) = 1/p(s)

G3(s) = 1/q(s)

G4(s) = sb1 ,

where

p(s) = s2M2 + sf2 +K1 +K2

and

q(s) = s2M1 + sf1 +K1 .
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The signal flow graph is shown in Figure P2.17.

X 3 X 1

K 1

G
3

K 1G 2G
1

G 4

FIGURE P2.17
Signal flow graph.

(d) The transfer function from X3(s) to X1(s) is

X1(s)

X3(s)
=

K1G1(s)G2(s)G3(s) +G4(s)G3(s)

1−K2
1G2(s)G3(s)

.

P2.18 The signal flow graph is shown in Figure P2.18.

V1 V 2

Z 4Y 3
Z

2

Y 1

-Y 3-Y
1

I a
V aI 1

-Z 2

FIGURE P2.18
Signal flow graph.

The transfer function is

V2(s)

V1(s)
=

Y1Z2Y3Z4

1 + Y1Z2 + Y3Z2 + Y3Z4 + Y1Z2Z4Y3
.

P2.19 For a noninerting op-amp circuit, depicted in Figure P2.19a, the voltage
gain (as a function of frequency) is

Vo(s) =
Z1(s) + Z2(s)

Z1(s)
Vin(s),

where Z1(s) and Z2(s) are the impedances of the respective circuits. In
the case of the voltage follower circuit, shown in Figure P2.19b, we have
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vin

v0+

-

vin

v0+

-

Z2

Z1

(a)(a) (b)

FIGURE P2.19
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

Z1 = ∞ (open circuit) and Z2 = 0. Therefore, the transfer function is

Vo(s)

Vin(s)
=

Z1

Z1
= 1.

P2.20 (a) Assume Rg ≫ Rs and Rs ≫ R1. Then Rs = R1 +R2 ≈ R2, and

vgs = vin − vo ,

where we neglect iin, since Rg ≫ Rs. At node S, we have

vo
Rs

= gmvgs = gm(vin − vo) or
vo
vin

=
gmRs

1 + gmRs
.

(b) With gmRs = 20, we have

vo
vin

=
20

21
= 0.95 .

(c) The block diagram is shown in Figure P2.20.

gmRs-
vin(s) vo(s)

FIGURE P2.20
Block diagram model.

P2.21 From the geometry we find that

∆z = k
l1 − l2
l1

(x− y)− l2
l1
y .
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The flow rate balance yields

A
dy

dt
= p∆z which implies Y (s) =

p∆Z(s)

As
.

By combining the above results it follows that

Y (s) =
p

As

[

k

(

l1 − l2
l1

)

(X(s)− Y (s))− l2
l1
Y (s)

]

.

Therefore, the signal flow graph is shown in Figure P2.21. Using Mason’s

X Y

p/Ask

1

DZ

-l / l
2 1

(l - l
1 2

)/l 1

-1

FIGURE P2.21
Signal flow graph.

gain formula we find that the transfer function is given by

Y (s)

X(s)
=

k(l1−l2)p
l1As

1 + l2p
l1As +

k(l1−l2)p
l1As

=
K1

s+K2 +K1
,

where

K1 =
k(l1 − l2)p

l1A
p and K2 =

l2p

l1A
.

P2.22 (a) The equations of motion for the two masses are

ML2θ̈1 +MgLθ1 + k

(

L

2

)2

(θ1 − θ2) =
L

2
f(t)

ML2θ̈2 +MgLθ2 + k

(

L

2

)2

(θ2 − θ1) = 0 .

With θ̇1 = ω1 and θ̇2 = ω2, we have

ω̇1 = −
(

g

L
+

k

4M

)

θ1 +
k

4M
θ2 +

f(t)

2ML

ω̇2 =
k

4M
θ1 −

(

g

L
+

k

4M

)

θ2 .
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1/2ML

 1/s  1/s

   a

   b 

  1/s   1/s

  a

F (t) w
1 q

1

q 2
w

2

(a)

-

+ j
g
L

+ k
2M

+ j
g

L

+ j
g
L

+ k
4M

X

X

Re(s)

Imag(s)

O

(b)

FIGURE P2.22
(a) Block diagram. (b) Pole-zero map.

(b) Define a = g/L+ k/4M and b = k/4M . Then

θ1(s)

F (s)
=

1

2ML

s2 + a

(s2 + a)2 − b2
.

(c) The block diagram and pole-zero map are shown in Figure P2.22.

P2.23 The input-output ratio, Vce/Vin, is found to be

Vce

Vin
=

β(R− 1) + hieRf

−βhre + hie(−hoe +Rf )
.

P2.24 (a) The voltage gain is given by

vo
vin

=
RLβ1β2(R1 +R2)

(R1 +R2)(Rg + hie1) +R1(R1 +R2)(1 + β1) +R1RLβ1β2
.
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(b) The current gain is found to be

ic2
ib1

= β1β2 .

(c) The input impedance is

vin
ib1

=
(R1 +R2)(Rg + hie1) +R1(R1 +R2)(1 + β1) +R1RLβ1β2

R1 +R2
,

and when β1β2 is very large, we have the approximation

vin
ib1

≈ RLR1β1β2
R1 +R2

.

P2.25 The transfer function from R(s) and Td(s) to Y (s) is given by

Y (s) = G(s)

(

R(s)− 1

G(s)
(G(s)R(s) + Td(s))

)

+ Td(s) +G(s)R(s)

= G(s)R(s) .

Thus,

Y (s)/R(s) = G(s) .

Also, we have that

Y (s) = 0 .

when R(s) = 0. Therefore, the effect of the disturbance, Td(s), is elimi-
nated.

P2.26 The equations of motion for the two mass model of the robot are

Mẍ+ b(ẋ− ẏ) + k(x− y) = F (t)

mÿ + b(ẏ − ẋ) + k(y − x) = 0 .

Taking the Laplace transform and writing the result in matrix form yields





Ms2 + bs+ k −(bs+ k)

−(bs+ k) ms2 + bs+ k









X(s)

Y (s)



 =





F (s)

0



 .

Solving for Y (s) we find that

Y (s)

F (s)
=

1
mM (bs+ k)

s2[s2 +
(

1 + m
M

)

(

b
ms+ k

m

)

]
.
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P2.27 The describing equation of motion is

mz̈ = mg − k
i2

z2
.

Defining

f(z, i) = g − ki2

mz2

leads to

z̈ = f(z, i) .

The equilibrium condition for io and zo, found by solving the equation of
motion when

ż = z̈ = 0 ,

is

ki2o
mg

= z2o .

We linearize the equation of motion using a Taylor series approximation.
With the definitions

∆z = z − zo and ∆i = i− io ,

we have ∆̇z = ż and ∆̈z = z̈. Therefore,

∆̈z = f(z, i) = f(zo, io) +
∂f

∂z

∣

∣

∣

∣
z=zo
i=io

∆z +
∂f

∂i

∣

∣

∣

∣
z=zo
i=io

∆i+ · · ·

But f(zo, io) = 0, and neglecting higher-order terms in the expansion
yields

∆̈z =
2ki2o
mz3o

∆z − 2kio
mz2o

∆i .

Using the equilibrium condition which relates zo to io, we determine that

∆̈z =
2g

zo
∆z − g

io
∆i .

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

∆Z(s)

∆I(s)
=

−g/io
s2 − 2g/zo

.
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P2.28 The signal flow graph is shown in Figure P2.28.

P D

M

C

+f

+g

+e

+a

G B
+b +c

S

-m
-k

-d

+h

FIGURE P2.28
Signal flow graph.

(a) The PGBDP loop gain is equal to -abcd. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases, thus reducing the population.

(b) The PMCP loop gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration, thus increasing the population.

(c) The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

(d) The PMSBDP loop gain is equal to +ehmcd. This is a positive

transmission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current

Tm = ki .

Then, the equation of motion of the beam is

Jφ̈ = ki ,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mẍ = mgφ− bẋ
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where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sinφ ≈ φ. Taking the Laplace transfor
of both equations of motion and solving for X(s) yields

X(s)/I(s) =
gk/J

s2(s2 + b/m)
.

P2.30 Given

H(s) =
k

τs+ 1

where τ = 4µs = 4 × 10−6 seconds and 0.999 ≤ k < 1.001. The step
response is

Y (s) =
k

τs+ 1
· 1
s
=

k

s
− k

s+ 1/τ
.

Taking the inverse Laplace transform yields

y(t) = k − ke−t/τ = k(1− e−t/τ ) .

The final value is k. The time it takes to reach 98% of the final value is
t = 15.6µs independent of k.

P2.31 From the block diagram we have

Y1(s) = G2(s)[G1(s)E1(s) +G3(s)E2(s)]

= G2(s)G1(s)[R1(s)−H1(s)Y1(s)] +G2(s)G3(s)E2(s) .

Therefore,

Y1(s) =
G1(s)G2(s)

1 +G1(s)G2(s)H1(s)
R1(s) +

G2(s)G3(s)

1 +G1(s)G2(s)H1(s)
E2(s) .

And, computing E2(s) (with R2(s) = 0) we find

E2(s) = H2(s)Y2(s) = H2(s)G6(s)

[

G4(s)

G2(s)
Y1(s) +G5(s)E2(s)

]

or

E2(s) =
G4(s)G6(s)H2(s)

G2(s)(1−G5(s)G6(s)H2(s))
Y1(s) .

Substituting E2(s) into equation for Y1(s) yields

Y1(s) =
G1(s)G2(s)

1 +G1(s)G2(s)H1(s)
R1(s)
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+
G3(s)G4(s)G6(s)H2(s)

(1 +G1(s)G2(s)H1(s))(1 −G5(s)G6(s)H2(s))
Y1(s) .

Finally, solving for Y1(s) yields

Y1(s) = T1(s)R1(s)

where

T1(s) =
[

G1(s)G2(s)(1−G5(s)G6(s)H2(s))

(1 +G1(s)G2(s)H1(s))(1−G5(s)G6(s)H2(s))−G3(s)G4(s)G6(s)H2(s)

]

.

Similarly, for Y2(s) we obtain

Y2(s) = T2(s)R1(s) .

where

T2(s) =
[

G1(s)G4(s)G6(s)

(1 +G1(s)G2(s)H1(s))(1−G5(s)G6(s)H2(s))−G3(s)G4(s)G6(s)H2(s)

]

.

P2.32 The signal flow graph shows three loops:

L1 = −G1G3G4H2

L2 = −G2G5G6H1

L3 = −H1G8G6G2G7G4H2G1 .

The transfer function Y2/R1 is found to be

Y2(s)

R1(s)
=

G1G8G6∆1 −G2G5G6∆2

1− (L1 + L2 + L3) + (L1L2)
,

where for path 1

∆1 = 1

and for path 2

∆2 = 1− L1 .

Since we want Y2 to be independent of R1, we need Y2/R1 = 0. Therefore,
we require

G1G8G6 −G2G5G6(1 +G1G3G4H2) = 0 .
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P2.33 The closed-loop transfer function is

Y (s)

R(s)
=

G3(s)G1(s)(G2(s) +K5K6)

1−G3(s)(H1(s) +K6) +G3(s)G1(s)(G2(s) +K5K6)(H2(s) +K4)
.

P2.34 The equations of motion are

m1ÿ1 + b(ẏ1 − ẏ2) + k1(y1 − y2) = 0

m2ÿ2 + b(ẏ2 − ẏ1) + k1(y2 − y1) + k2y2 = k2x

Taking the Laplace transform yields

(m1s
2 + bs+ k1)Y1(s)− (bs+ k1)Y2(s) = 0

(m2s
2 + bs+ k1 + k2)Y2(s)− (bs+ k1)Y1(s) = k2X(s)

Therefore, after solving for Y1(s)/X(s), we have

Y2(s)

X(s)
=

k2(bs+ k1)

(m1s2 + bs+ k1)(m2s2 + bs+ k1 + k2)− (bs+ k1)2
.

P2.35 (a) We can redraw the block diagram as shown in Figure P2.35. Then,

T (s) =
K1/s(s+ 1)

1 +K1(1 +K2s)/s(s+ 1)
=

K1

s2 + (1 +K2K1)s+K2
.

(b) The signal flow graph reveals two loops (both touching):

L1 =
−K1

s(s+ 1)
and L2 =

−K1K2

s+ 1
.

Therefore,

T (s) =
K1/s(s+ 1)

1 +K1/s(s+ 1) +K1K2/(s + 1)
=

K1

s2 + (1 +K2K1)s+K1
.

(c) We want to choose K1 and K2 such that

s2 + (1 +K2K1)s+K1 = s2 + 20s + 100 = (s+ 10)2 .

Therefore, K1 = 100 and 1 +K2K1 = 20 or K2 = 0.19.

(d) The step response is shown in Figure P2.35.
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FIGURE P2.35
The equivalent block diagram and the system step response.

P2.36 (a) Given R(s) = 1/s2, the partial fraction expansion is

Y (s) =
24

s2(s + 2)(s + 3)(s + 4)
=

3

s+ 2
− 8/3

s+ 3
+

3/4

s+ 4
+

1

s2
− 13/12

s
.

Therefore, using the Laplace transform table, we determine that the
ramp response is

y(t) = 3e−2t − 8

3
e−3t +

3

4
e−4t + t− 13

12
, t ≥ 0 .

(b) For the ramp input, y(t) ≈ 0.21 at t = 1. second (see Figure P2.36a).

(c) Given R(s) = 1, the partial fraction expansion is

Y (s) =
24

(s + 2)(s + 3)(s + 4)
=

12

s+ 2
− 24

s+ 3
+

12

s+ 4
.

Therefore, using the Laplace transform table, we determine that the
impulse response is

y(t) = 12e−2t − 24e−3t + 412e−4t , t ≥ 0 .
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(d) For the impulse input, y(t) ≈ 0.65 at t = 1 seconds (see Figure P2.36b).
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FIGURE P2.36
(a) Ramp input response. (b) Impulse input response.

P2.37 The equations of motion are

m1
d2x

dt2
= −(k1 + k2)x+ k2y and m2

d2y

dt2
= k2(x− y) + u .

When m1 = m2 = 1 and k1 = k2 = 1, we have

d2x

dt2
= −2x+ y and

d2y

dt2
= x− y + u .

P2.38 The equation of motion for the system is

J
d2θ

dt2
+ b

dθ

dt
+ kθ = 0 ,

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are θ(0) = θo and θ̇(0) = 0. Taking the
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Laplace transform yields

J(s2θ(s)− sθo) + b(sθ(s)− θo) + kθ(s) = 0 .

Therefore,

θ(s) =
(s + b

J θo)

(s2 + b
J s+

K
J )

=
(s + 2ζωn)θo

s2 + 2ζωns+ ω2
n

.

Neglecting the mass of the rod, the moment of inertia is detemined to be

J = 2Mr2 = 0.5 kg ·m2 .

Also,

ωn =

√

k

J
= 0.02 rad/s and ζ =

b

2Jωn
= 0.01 .

Solving for θ(t), we find that

θ(t) =
θo

√

1− ζ2
e−ζωnt sin(ωn

√

1− ζ2 t+ φ) ,

where tan φ =
√

1− ζ2/ζ). Therefore, the envelope decay is

θe =
θo

√

1− ζ2
e−ζωnt .

So, with ζωn = 2 × 10−4, θo = 4000o and θf = 10o, the elapsed time is
computed as

t =
1

ζωn
ln

θo
√

1− ζ2θf
= 8.32 hours .

P2.39 When t < 0, we have the steady-state conditions

i1(0) = 1A , va(0) = 2V and vc(0) = 5V ,

where vc(0) is associated with the 1F capacitor. After t ≥ 0, we have

2
di1
dt

+ 2i1 + 4(i1 − i2) = 10e−2t

and
∫

i2dt+ 10i2 + 4(i2 − i1)− i1 = 0 .
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Taking the Laplace transform (using the initial conditions) yields

2(sI1− i1(0))+2I1+4I1−4I2 =
10

s+ 2
or (s+3)I1(s)−2I2(s) =

s+ 7

s+ 2

and

[
1

s
I2−vc(0)]+10I2+4(I2−I1) = I1(s) or −5sI1(s)+(14s+1)I2(s) = 5s .

Solving for I2(s) yields

I2 =
5s(s2 + 6s+ 13)

14(s + 2)∆(s)
,

where

∆(s) =

∣

∣

∣

∣

∣

∣

s+ 3 −2

−5s 14s + 1

∣

∣

∣

∣

∣

∣

= 14s2 + 33s + 3 .

Then,

Vo(s) = 10I2(s) .

P2.40 The equations of motion are

J1θ̈1 = K(θ2 − θ1)− b(θ̇1 − θ̇2) + T and J2θ̈2 = b(θ̇1 − θ̇2) .

Taking the Laplace transform yields

(J1s
2 + bs+K)θ1(s)− bsθ2(s) = Kθ2(s) + T (s)

and

(J2s
2 + bs)θ2(s)− bsθ1(s) = 0 .

Solving for θ1(s) and θ2(s), we find that

θ1(s) =
(Kθ2(s) + T (s))(J2s+ b)

∆(s)
and θ2(s) =

b(Kθ2(s) + T (s))

∆(s)
,

where

∆(s) = J1J2s
3 + b(J1 + J2)s

2 + J2Ks+ bK .

P2.41 Assume that the only external torques acting on the rocket are control
torques, Tc and disturbance torques, Td, and assume small angles, θ(t).
Using the small angle approximation, we have

ḣ = V θ

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 61

Jθ̈ = Tc + Td ,

where J is the moment of inertia of the rocket and V is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

Tc(s) = −KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

-
+

1
Js2

V
s

K
+

+Tc

Td

H desired=0 H( s)

FIGURE P2.41
Block diagram.

P2.42 (a) The equation of motion of the motor is

J
dω

dt
= Tm − bω ,

where J = 0.1, b = 0.06, and Tm is the motor input torque.

(b) Given Tm(s) = 1/s, and ω(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sω(s)− ω(0) + 0.6ω(s) = 10Tm

or

ω(s) =
0.7s + 10

s(s+ 0.6)
.

Then, computing the partial fraction expansion, we find that

ω(s) =
A

s
+

B

s+ 0.6
=

16.67

s
− 15.97

s+ 0.6
.

The step response, determined by taking the inverse Laplace trans-
form, is

ω(t) = 16.67 − 15.97e−0.6t , t ≥ 0 .
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P2.43 The work done by each gear is equal to that of the other, therefore

Tmθm = TLθL .

Also, the travel distance is the same for each gear, so

r1θm = r2θL .

The number of teeth on each gear is proportional to the radius, or

r1N2 = r2N1 .

So,

θm
θL

=
r2
r1

=
N2

N1
,

and

N1θm = N2θL

θL =
N1

N2
θm = nθm ,

where

n = N1/N2 .

Finally,

Tm

TL
=

θL
θm

=
N1

N2
= n .

P2.44 The inertia of the load is

JL =
πρLr4

2
.

Also, from the dynamics we have

T2 = JLω̇2 + bLω2

and

T1 = nT2 = n(JLω̇2 + bLω2) .

So,

T1 = n2(JLω̇1 + bLω1) ,
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since

ω2 = nω1 .

Therefore, the torque at the motor shaft is

T = T1 + Tm = n2(JLω̇1 + bLω1) + Jmω̇1 + bmω1 .

P2.45 Let U(s) denote the human input and F (s) the load input. The transfer
function is

P (s) =
G(s) +KG1(s)

∆(s)
U(s) +

Gc(s) +KG1(s)

∆(s)
F (s) ,

where

∆ = 1 +GH(s) +G1KBH(s) +GcE(s) +G1KE(s) .

P2.46 Consider the application of Newton’s law (
∑

F = mẍ). From the mass
mv we obtain

mvẍ1 = F − k1(x1 − x2)− b1(ẋ1 − ẋ2).

Taking the Laplace transform, and solving for X1(s) yields

X1(s) =
1

∆1(s)
F (s) +

b1s+ k1
∆1(s)

X2(s),

where

∆1 := mvs
2 + b1s+ k1.

From the mass mt we obtain

mtẍ2 = −k2x2 − b2ẋ2 + k1(x1 − x2) + b1(ẋ1 − ẋ2).

Taking the Laplace transform, and solving for X2(s) yields

X2(s) =
b1s+ k1
∆2(s)

X1(s),

where

∆2 := mts
2 + (b1 + b2)s+ k1 + k2.

Substituting X2(s) above into the relationship fpr X1(s) yields the trans-
fer function

X1(s)

F (s)
=

∆2(s)

∆1(s)∆2(s)− (b1s+ k1)2
.
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P2.47 Using the following relationships

h(t) =

∫

(1.6θ(t) − h(t))dt

ω(t) = θ̇(t)

Jω̇(t) = Kmia(t)

va(t) = 50vi(t) = 10ia(t) + vb(t)

θ̇ = Kvb

we find the differential equation is

d3h

dt3
+

(

1 +
Km

10JK

)

d2h

dt2
+

Km

10JK

dh

dt
=

8Km

J
vi .

P2.48 (a) The transfer function is

V2(s)

V1(s)
=

(1 + sR1C1)(1 + sR2C2)

R1C2s
.

(b) When R1 = 100 kΩ, R2 = 200 kΩ, C1 = 1 µF and C2 = 0.1 µF , we
have

V2(s)

V1(s)
=

0.2(s + 10)(s + 50)

s
.

P2.49 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)
=

6205

s3 + 13s2 + 1281s + 6205
.

(b) The poles of T (s) are s1 = −5 and s2,3 = −4± j35.

(c) The partial fraction expansion (with a step input) is

Y (s) = 1− 1.0122

s+ 5
+

0.0061 + 0.0716j

s+ 4 + j35
+

0.0061 − 0.0716j

s+ 4− j35
.

(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (secs)

A
m

p
lit

u
d

e

FIGURE P2.49
Step response.

P2.50 (a) The closed-loop transfer function is

T (s) =
14000

s3 + 45s2 + 3100s + 14500
.

(b) The poles of T (s) are

s1 = −5 and s2,3 = −20± j50.

(c) The partial fraction expansion (with a step input) is

Y (s) =
0.9655

s
− 1.0275

s+ 5
+

0.0310 − 0.0390j

s+ 20 + j50
+

0.0310 + 0.0390j

s+ 20− j50
.

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is

yss = lim
s→0

sY (s) = 0.9655 .
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FIGURE P2.50
Step response.

P2.51 Consider the free body diagram in Figure P2.51. Using Newton’s Law
and summing the forces on the two masses yields

M1ẍ(t) + b1ẋ(t) + k1x(t) = b1ẏ(t)

M2ÿ(t) + b1ẏ(t) + k2y(t) = b1ẋ(t) + u(t)

M1

M2

k1

b1

k2

u(t)

x

y

M1

M2

k1x

k2

u(t)

x

y

b1(x - y)
. .

b1(y - x)
. . y

FIGURE P2.51
Free body diagram.
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Advanced Problems

AP2.1 The transfer function from V (s) to ω(s) has the form

ω(s)

V (s)
=

Km

τms+ 1
.

In the steady-state,

ωss = lim
s→0

s

[

Km

τms+ 1

]

5

s
= 5Km .

So,

Km = 70/5 = 14 .

Also,

ω(t) = VmKm(1− e−t/τm)

where V (s) = Vm/s. Solving for τm yields

τm =
−t

ln(1− ω(t)/ωss)
.

When t = 2, we have

τm =
−2

ln(1− 30/70)
= 3.57 .

Therefore, the transfer function is

ω(s)

V (s)
=

14

3.57s + 1
.

AP2.2 The closed-loop transfer function form R1(s) to Y2(s) is

Y2(s)

R1(s)
=

G1G4G5(s) +G1G2G3G4G6(s)

∆

where

∆ = [1 +G3G4H2(s)][1 +G1G2H3(s)] .

If we select

G5(s) = −G2G3G6(s)

then the numerator is zero, and Y2(s)/R1(s) = 0. The system is now
decoupled.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



68 CHAPTER 2 Mathematical Models of Systems

AP2.3 (a) Computing the closed-loop transfer function:

Y (s) =

[

G(s)Gc(s)

1 +Gc(s)G(s)H(s)

]

R(s) .

Then, with E(s) = R(s)− Y (s) we obtain

E(s) =

[

1 +Gc(s)G(s)(H(s) − 1)

1 +Gc(s)G(s)H(s)

]

R(s) .

If we require that E(s) ≡ 0 for any input, we need 1+Gc(s)G(s)(H(s)−
1) = 0 or

H(s) =
Gc(s)G(s) − 1

Gc(s)G(s)
=

n(s)

d(s)
.

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both Gc(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making E ≡ 0
for any input R(s) is possible only in certain circumstances.
(b) The transfer function from Td(s) to Y (s) is

Y (s) =

[

Gd(s)G(s)

1 +Gc(s)G(s)H(s)

]

Td(s) .

With H(s) as in part (a) we have

Y (s) =

[

Gd(s)

Gc(s)

]

Td(s) .

(c) No. Since

Y (s) =

[

Gd(s)G(s)

1 +Gc(s)G(s)H(s)

]

Td(s) = T (s)Td(s) ,

the only way to have Y (s) ≡ 0 for any Td(s) is for the transfer function
T (s) ≡ 0 which is not possible in general (since G(s) 6= 0).

AP2.4 (a) With q(s) = 1/s we obtain

τ(s) =
1/Ct

s+ QS+1/R
Ct

· 1
s
.

Define

α :=
QS + 1/R

Ct
and β := 1/Ct .
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Then, it follows that

τ(s) =
β

s+ α
· 1
s
=

−β/α

s+ α
+

β/α

s
.

Taking the inverse Laplace transform yields

τ(t) =
−β

α
e−αt +

β

α
=

β

α
[1− e−αt] .

(b) As t → ∞, τ(t) → β
α = 1

Qs+1/R .

(c) To increase the speed of response, you want to choose Ct, Q, S and
R such that

α :=
Qs+ 1/R

Ct

is ”large.”

AP2.5 Considering the motion of each mass, we have

M3ẍ3 + b3ẋ3 + k3x3 = u3 + b3ẋ2 + k3x2

M2ẍ2 + (b2 + b3)ẋ2 + (k2 + k3)x2 = u2 + b3ẋ3 + k3x3 + b2ẋ1 + k2x1

M1ẍ1 + (b1 + b2)ẋ1 + (k1 + k2)x1 = u1 + b2ẋ2 + k2x2

In matrix form the three equations can be written as












M1 0 0

0 M2 0

0 0 M3

























ẍ1

ẍ2

ẍ3













+













b1 + b2 −b2 0

−b2 b2 + b3 −b3

0 −b3 b3

























ẋ1

ẋ2

ẋ3













+













k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

























x1

x2

x3













=













u1

u2

u3













.

AP2.6 Considering the cart mass and using Newton’s Law we obtain

Mẍ = u− bẋ− F sinϕ

where F is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain

m
d2(x+ L sinϕ)

dt2
= F sinϕ
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m
d2(L cosϕ)

dt2
= F cosϕ+mg

Eliminating the reaction force F yields the two equations

(m+M)ẍ+ bẋ+mLϕ̈ cosϕ−mLϕ̇2 sinϕ = u

mL2ϕ̈+mgL sinϕ+mLẍ cosϕ = 0

If we assume that the angle ϕ ≈ 0, then we have the linear model

(m+M)ẍ+ bẋ+mLϕ̈ = u

mL2ϕ̈+mgLϕ = −mLẍ

AP2.7 The transfer function from the disturbance input to the output is

Y (s) =
1

s+ 20 +K
Td(s) .

When Td(s) = 1, we obtain

y(t) = e−(20+K)t .

Solving for t when y(t) < 0.1 yields

t >
2.3

20 +K
.

When t = 0.05 and y(0.05) = 0.1, we find K = 26.05.

AP2.8 The closed-loop transfer function is

T (s) =
200K(0.25s + 1)

(0.25s + 1)(s + 1)(s + 8) + 200K

The final value due to a step input of R(s) = A/s is

v(t) → A
200K

200K + 8
.

We need to select K so that v(t) → 50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

v(t) = 50 + 9.85e−9.15t − e−1.93t (59.85 cos(2.24t) + 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.
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System: untitled1
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At time (sec): 1.15

FIGURE AP2.8
(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9 The transfer function is

Vo(s)

Vi(s)
= −Z2(s)

Z1(s)
,
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where

Z1(s) =
R1

R1C1s+ 1
and Z2(s) =

R2C2s+ 1

C2s
.

Then we can write

Vo(s)

Vi(s)
= Kp +

KI

s
+KDs

where

KP = −
(

R1C1

R2C2
+ 1

)

, KI = − 1

R1C2
, KD = −R2C1 .
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Design Problems
The model of the traction drive, capstan roller, and linear slide followsCDP2.1

closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

T (s) =
rKm

s [(Lms+Rm)(JT s+ bm) +KbKm]
,

where

JT = Jm + r2(Ms +Mb) .

-

V
a
(s) X(s)

K
b

Back EMF

K
m

L
m
s+R

m

1

J
T
s+b

m

1

s

qw
r

DP2.1 The closed-loop transfer function is

Y (s)

R(s)
=

G1(s)G2(s)

1 +G1(s)H1(s)−G2(s)H2(s)
.

When G1H1 = G2H2 and G1G2 = 1, then Y (s)/R(s) = 1. Therefore,
select

G1(s) =
1

G2(s)
and H1(s) =

G2(s)H2(s)

G1(s)
= G2

2(s)H2(s) .

DP2.2 At the lower node we have

v

(

1

4
+

1

3
+G

)

+ 2i2 − 20 = 0 .

Also, we have v = 24 and i2 = Gv . So

v

(

1

4
+

1

3
+G

)

+ 2Gv − 20 = 0
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and

G =
20 − v

(

1
4 + 1

3

)

3v
=

1

12
S .

DP2.3 Taking the Laplace transform of

y(t) = e−t − 1

4
e−2t − 3

4
+

1

2
t

yields

Y (s) =
1

s+ 1
− 1

4(s+ 2)
− 3

4s
+

1

2s2
.

Similarly, taking the Laplace transform of the ramp input yields

R(s) =
1

s2
.

Therefore

G(s) =
Y (s)

R(s)
=

1

(s+ 1)(s + 2)
.

DP2.4 For an ideal op-amp, at node a we have

vin − va
R1

+
vo − va
R1

= 0 ,

and at node b

vin − vb
R2

= Cv̇b ,

from it follows that
[

1

R2
+ Cs

]

Vb =
1

R2
Vin .

Also, for an ideal op-amp, Vb − Va = 0. Then solving for Vb in the above
equation and substituting the result into the node a equation for Va yields

Vo

Vin
=

2
1
R2

+ Cs

[

1

R2
−

1
R2

+ Cs

2

]

or

Vo(s)

Vin(s)
= −R2Cs− 1

R2Cs+ 1
.
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For vin(t) = At, we have Vin(s) = A/s2, therefore

vo(t) = A

[

2

β
e−βt + t− 2

β

]

where β = 1/R2C.

DP2.5 The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is

ϕ̈+
g

L
ϕ = 0 .

Assuming a solution of the form ϕ = k cosϕ, taking the appropriate
derivatives and substituting the result into the equation of motion yields
the relationship

ϕ̇ =

√

g

L
.

If the period is T = 2 seconds, we compute ϕ̇ = 2π/T . Then solving for L
yields L = 0.99 meters when g = 9.81 m/s2. So, to fit the pendulum into
the grandfather clock, the dimensions are generally about 1.5 meters or
more.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

pq =

     1    9    24    20

P =

    -5

    -2

Z =

    -2

value =

     4

p=[1 7 10]; q=[1 2];

% Part (a)

pq=conv(p,q)

% Part (b)

P=roots(p), Z=roots(q)

% Part (c)

value=polyval(p,-1)

FIGURE CP2.1
Script for various polynomial evaluations.

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc = [1 1]; sysc = tf(numc,denc)

numg = [1 2]; deng = [1 3]; sysg = tf(numg,deng)

% part (a)

sys_s = series(sysc,sysg);

sys_cl = feedback(sys_s,[1])

% part (b)

step(sys_cl); grid on

Transfer function:

    s + 2

-------------

s^2 + 5 s + 5

Time (sec.)
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Step Response
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(1
)

FIGURE CP2.2
Step response.
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CP2.3 Given

ÿ + 4ẏ + 3y = u

with y(0) = ẏ = 0 and U(s) = 1/s, we obtain (via Laplace transform)

Y (s) =
1

s(s2 + 4s+ 3)
=

1

s(s+ 3)(s+ 1)
.

Expanding in a partial fraction expansion yields

Y (s) =
1

3s
− 1

6(s+ 3)
− 1

2(s + 1)
.

Taking the inverse Laplace transform we obtain the solution

y(t) = 0.3333 + 0.1667e−3t − 0.5e−t .

The m-file script and step response is shown in Figure CP2.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Step Response

Time (sec)

A
m

p
lit

u
d
e n=[1]; d=[1 4 3]; sys = tf(n,d);

t=[0:0.1:5];

y = step(sys,t);

ya=0.3333+0.1667*exp(-3*t)-0.5*exp(-t);

plot(t,y,t,ya); grid;

title('Step Response');

xlabel('Time (sec)');

ylabel('Amplitude');

FIGURE CP2.3
Step response.
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CP2.4 The mass-spring-damper system is represented by

mẍ+ bẋ+ kx = f .

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

X(s)/F (s) =
1/m

s2 + bs/m+ k/m
.

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;

num=[1/m]; den=[1 b/m k/m];

sys = tf(num,den);

t=[0:0.1:150];

step(sys,t)

Time (sec.)

A
m

p
lit
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d

e

Step Response
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FIGURE CP2.4
Step response.

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10o decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); O!-nominal 80% (dashed); O!-nominal 50% (dotted)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;

num=k*[1 a];

den=J*[1  b 0 0];  sys=tf(num,den);

sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0 .1 :100] ;

%

% Nominal case

f=10*pi/180; sysf=sys_cl*f ;

y=step(sysf,t);

%

% O�-nominal case 80%

J=10.8e+08*0.8; den=J*[1 b 0 0];

sys=tf(num,den); sys_cl=feedback(sys,[1]);

sysf=sys_cl*f ;

y1=step(sysf,t);

%

% O�-nominal case 50%

J=10.8e+08*0.5; den=J*[1 b 0 0];

sys=tf(num,den); sys_cl=feedback(sys,[1]);

sysf=sys_cl*f ;

y2=step(sysf,t);

%

plot(t ,y*180/pi ,t ,y1*180/pi ,' - - ', t ,y2*180/pi ,' : ' ) ,gr id

xlabel('Time (sec)')

ylabel('Spacecraft attitude (deg)')

title('Nominal (solid); O�-nominal 80% (dashed); O�-nominal 50% (dotted)')

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

T (s) =
4s6 + 8s5 + 4s4 + 56s3 + 112s2 + 56s

∆(s)
,

num1=[4]; den1=[1]; sys1 = tf(num1,den1);

num2=[1]; den2=[1 1]; sys2 = tf(num2,den2);

num3=[1 0]; den3=[1 0 2]; sys3 = tf(num3,den3);

num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4);

num5=[4 2]; den5=[1 2 1]; sys5 = tf(num5,den5);

num6=[50]; den6=[1]; sys6 = tf(num6,den6);

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(num7,den7);

sysa = feedback(sys4,sys6,+1);

sysb = series(sys2,sys3);

sysc = feedback(sysb,sys5);

sysd = series(sysc,sysa);

syse = feedback(sysd,sys7);

sys = series(sys1,syse)

%

pzmap(sys)

%

p=pole(sys)

z=zero(sys)

p =

   7.0709

  -7.0713

   1.2051 + 2.0863i

   1.2051 - 2.0863i

   0.1219 + 1.8374i

   0.1219 - 1.8374i

  -2.3933

  -2.3333

  -0.4635 + 0.1997i

  -0.4635 - 0.1997i

z =

        0

   1.2051 + 2.0872i

   1.2051 - 2.0872i

  -2.4101

  -1.0000 + 0.0000i

  -1.0000 - 0.0000i

poles
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FIGURE CP2.6
Pole-zero map.
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where

∆(s) = s10 + 3s9 − 45s8 − 125s7 − 200s6 − 1177s5

− 2344s4 − 3485s3 − 7668s2 − 5598s − 1400 .

CP2.7 The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

θ(s) =
θ0s

s2 + g/L
.

To use the step function with the m-file, we can multiply the transfer
function as follows:

θ(s) =
s2

s2 + g/L

θ0
s
,

which is equivalent to the original transfer function except that we can
use the step function input with magnitude θ0. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of θ0 = 30◦ is not that large.
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L=0.5; m=1; g=9.8;

theta0=30;

% Linear simulation

sys=tf([1 0 0],[1 0 g/L]);

[y,t]=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation

[t,ynl]=ode45(@pend,t,[theta0*pi/180 0]);   

plot(t,ynl(:,1)*180/pi,t,y,'--');

xlabel('Time (s)')

ylabel('\theta (deg)')

function [yd]=pend(t,y)

L=0.5; g=9.8;

yd(1)=y(2);

yd(2)=-(g/L)*sin(y(1));

yd=yd';

FIGURE CP2.7
Plot of θ versus xt when θ0 = 30◦.
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CP2.8 The system step responses for z = 5, 10, and 15 are shown in Fig-
ure CP2.8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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z=5 (solid), z=10 (dashed), z=15 dotted)

Time (sec)

x(
t)

FIGURE CP2.8
The system response.

CP2.9 (a,b) Computing the closed-loop transfer function yields

T (s) =
G(s)

1 +G(s)H(s)
=

s2 + 2s+ 1

s2 + 4s+ 3
.

The poles are s = −3,−1 and the zeros are s = −1,−1.
(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

T (s) =
s+ 1

s+ 3
.
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ng=[1 1]; dg=[1 2]; sysg = tf(ng,dg);

nh=[1]; dh=[1 1]; sysh = tf(nh,dh);

sys=feedback(sysg,sysh)

%

pzmap(sys)

%

pole(sys)

zero(sys)

>>  

Transfer function:

s^2 + 2 s + 1

-------------

s^2 + 4 s + 3

 

p =

    -3

    -1

z =

    -1

    -1

zeros

FIGURE CP2.9
Pole-zero map.

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state
response.
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Disturbance Response Steady-State

Input Response Steady-State

K=1

K=[0.1:0.1:10];
sysg=tf([1],[1 20 20]);
for i=1:length(K)
    nc=K(i); dc=[1];sysc=tf(nc,dc);
    syscl=feedback(sysc*sysg,1);
    systd=feedback(sysg,sysc);
    y1=step(syscl);
    Tf1(i)=y1(end);
    y2=step(systd);
    Tf2(i)=y2(end);
end
plot(K,Tf1,K,Tf2,'--')
xlabel('K')
ylabel('Steady-state response')

FIGURE CP2.10
Gain K versus steady-state value.
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C H A P T E R 3

State Variable Models

Exercises

E3.1 One possible set of state variables is

(a) the current iL2 through L2,

(b) the voltage vC2 across C2, and

(c) the current iL1 through L1.

We can also choose vC1 , the voltage across C1 as the third state variable,
in place of the current through L1.

E3.2 We know that the velocity is the derivative of the position, therefore we
have

dy

dt
= v ,

and from the problem statement

dv

dt
= −k1v(t)− k2y(t) + k3i(t) .

This can be written in matrix form as

d

dt





y

v



 =





0 1

−k2 −k1









y

v



+





0

k3



 i .

Define u = i, and let k1 = k2 = 1. Then,

ẋ = Ax+Bu

where

A =





0 1

−1 −1



 , B =





0

k3



 , and x =





y

v



 .

85
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E3.3 The charactersitic roots, denoted by λ, are the solutions of det(λI−A) =
0. For this problem we have

det(λI−A) = det









λ −1

1 λ+ 2







 = λ(λ+ 2) + 1 = λ2 + 2λ+ 1 = 0 .

Therefore, the characteristic roots are

λ1 = −1 and λ2 = −1 .

E3.4 The system in phase variable form is

ẋ = Ax+Bu

y = Cx

where

A =













0 1 0

0 0 1

−8 −6 −4













, B =













0

0

20













, C =
[

1 0 0
]

.

E3.5 From the block diagram we determine that the state equations are

ẋ2 = −(fk + d)x2 + ax1 + fu

ẋ1 = −kx2 + u

and the output equation is

y = bx2 .

Therefore,

ẋ = Ax+Bu

y = Cx+Du ,

where

A =





0 −k

a −(fk + d)



 , B =





1

f



 , C =
[

0 b
]

and D = [0] .

E3.6 (a) The state transition matrix is

Φ(t) = eAt = I+At+
1

2!
A2t2 + · · ·
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But A2 = 0, thus A3 = A4 = · · · = 0. So,

Φ(t) = eAt = I+At =





1 0

0 1



+





0 1

0 0



 t =





1 t

0 1



 .

(b) The state at any time t ≥ 0 is given by

x(t) = Φ(t)x(0)

and since x1(0) = x2(0) = 1, we determine that

x1(t) = x1(0) + tx2(0) = 1 + t

x2(t) = x2(0) = 1 .

E3.7 The state equations are

ẋ1 = x2

ẋ2 = −100x1 − 20x2 + u

or, in matrix form

ẋ =





0 1

−100 −20



x+





0

1



 u .

So, the characteristic equation is determined to be

det(λI −A) = det





λ −1

100 λ+ 20



 = λ2 + 20λ+ 100 = (λ+ 10)2 = 0 .

Thus, the roots of the characteristic equation are

λ1 = λ2 = −10 .

E3.8 The characteristic equation is

det(λI−A) = det













λ −1 0

0 λ −1

0 6 λ+ 3













= λ(λ2 + 3λ+ 6) = 0 .

Thus, the roots of the characteristic equation are

λ1 = 0 , λ2 = −1.5 + j1.9365 and λ3 = −1.5− j1.9365 .
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E3.9 Analyzing the block diagram yields

ẋ1 = −x1 +
1

2
x2 + r

ẋ2 = x1 −
3

2
x2 − r

y = x1 −
3

2
x2 − r.

In state-variable form we have

ẋ =





−1 1
2

1 −3
2



x+





1

−1



 r , y =

[

1 − 3

2

]

x+
[

−1
]

r .

The characteristic equation is

s2 +
5

2
s+ 1 = (s+ 2)(s +

1

2
) = 0 .

E3.10 (a) The characteristic equation is

det[λI−A] = det





λ −6

1 (λ+ 5)



 = λ(λ+5)+6 = (λ+2)(λ+3) = 0 .

So, the roots are λ1 = −2 and λ2 = −3.

(b) We note that

Φ(s) = [sI−A]−1 =





s −6

1 s+ 5





−1

=
1

(s+ 2)(s + 3)





s+ 5 6

−1 s



 .

Taking the inverse Laplace transform yields the transition matrix

Φ(t) =





3e−2t − 2e−3t 6e−2t − 6e−3t

−e−2t + e−3t −2e−2t + 3e−3t



 .

E3.11 A state variable representation is

ẋ = Ax+Br

y = Cx

where

A =





0 1

−12 −8



 , B =





0

1



 , C =
[

12 4
]

.
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E3.12 The equation of motion is

L
di

dt
+Ri+ vc = vin

where

vc =
1

C

∫

i dt .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(sec)

S
ta

te
 r

es
po

ns
e

x1: capacitor voltage

x2: inductor current

Unit step response

FIGURE E3.12
State variable time history for a unit step input.

Selecting the state variables x1 = vc and x2 = i, we have

ẋ1 =
1

C
x2

ẋ2 = −R

L
x2 −

1

L
x1 +

1

L
vin .

This can be written in matrix form as

ẋ =





0 1/C

−1/L −R/L



x+





0

1/L



 vin .
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When C = 0.001F , R = 4Ω, and L = 0.1H, we have

ẋ =





0 1000

−10 −40



x+





0

10



 vin .

The step response is shown in Figure E3.12.

E3.13 (a) Select the state variables as x1 = y and x2 = ω.

(b) The corresponding state equation is

ẋ1 = −x1 − ax2 + 2u

ẋ2 = bx1 − 4u

or, in matrix form

ẋ =





−1 −a

b 0



x+





2

−4



 u and x =





x1

x2



 .

(c) The characteristic equation is

det[λI−A] = det





λ+ 1 a

−b λ



 = λ2 + λ+ ab = 0 .

So, the roots are

λ = −1

2
± 1

2

√
1− 4ab .

E3.14 Assume that the mass decay is proportional to the mass present, so that

Ṁ = −qM +Ku

where q is the constant of proportionality. Select the state variable, x, to
be the mass, M . Then, the state equation is

ẋ = −qx+Ku .

E3.15 The equations of motion are

mẍ+ kx+ k1(x− q) + bẋ = 0

mq̈ + kq + bq̇ + k1(q − x) = 0 .
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In state variable form we have

ẋ =



















0 1 0 0

− (k+k1)
m − b

m
k1
m 0

0 0 0 1

k1
m 0 − (k+k1)

m − b
m



















x

where x1 = x, x2 = ẋ, x3 = q and x4 = q̇.

E3.16 The governing equations of motion are

m1ẍ+ k1(x− q) + b1(ẋ− q̇) = u(t)

m2q̈ + k2q + b2q̇ + b1(q̇ − ẋ) + k1(q − x) = 0 .

Let x1 = x, x2 = ẋ, x3 = q and x4 = q̇. Then,

ẋ =



















0 1 0 0

− k1
m1

− b1
m1

k1
m1

b1
m1

0 0 0 1

k1
m2

b1
m2

− (k1+k2)
m2

− (b1+b2)
m2



















x+



















0

1
m1

0

0



















u(t) .

Since the output is y(t) = q(t), then

y =
[

0 0 1 0
]

x .

E3.17 At node 1 we have

C1v̇1 =
va − v1
R1

+
v2 − v1
R2

and at node 2 we have

C2v̇2 =
vb − v2
R3

+
v1 − v2
R2

.

Let

x1 = v1

and

x2 = v2 .
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Then, in matrix form we have

ẋ =







−
(

1
R1C1

+ 1
R2C1

)

1
R2C1

− 1
R2C2

−
(

1
R3C2

+ 1
R2C2

)






x+





1
R1C1

0

0 1
R3C2









va

vb



 .

E3.18 The governing equations of motion are

Ri1 + L1
di1
dt

+ v = va

L2
di2
dt

+ v = vb

iL = i1 + i2 = C
dv

dt
.

Let x1 = i1, x2 = i2, x3 = v, u1 = va and u2 = vb. Then,

ẋ =













− R
L1

0 − 1
L1

0 0 − 1
L2

1
C

1
C 0













x+













1
L1

0

0 1
L2

0 0













u

y =
[

0 0 1
]

x+ [0]u .

E3.19 First, compute the matrix

sI −A =





s −1

3 s+ 4



 .

Then, Φ(s) is

Φ(s) = (sI−A)−1 =
1

∆(s)





s+ 4 1

−3 s





where ∆(s) = s2 + 4s+ 3, and

G(s) =
[

10 0
]





s+4
∆(s)

1
∆(s)

− 3
∆(s)

s
∆(s)









0

1



 =
10

s2 + 4s + 3
.

E3.20 The linearized equation can be derived from the observation that sin θ ≈ θ
when θ ≈ 0. In this case, the linearized equations are

θ̈ +
g

L
θ +

k

m
θ̇ = 0 .
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Let x1 = θ and x2 = θ̇. Then in state variable form we have

ẋ = Ax

y = Cx

where

A =





0 1

−g/L −k/m



 , C =
[

1 0
]

, and x(0) =





θ(0)

θ̇(0)



 .

E3.21 The transfer function is

G(s) = C [sI−A]−1
B+D =

−1

s2 + 2s + 1
.

The unit step response is

y(t) = −1 + e−t + te−t .

E3.22 The transfer function is

G(s) =
s− 6

s2 − 7s + 6
.

The poles are at s1 = 1 and s2 = 6. The zero is at s = 6. So, we see
that there is a pole-zero cancellation. We can write the system in state
variable form as

ẋ = x−
√
2u

y = −
√
2

2
x

and the transfer function is

G(s) =
1

s− 1
.

E3.23 The system in state variable form can be represented by

ẋ = Ax+Bu

y = Cx+Du

where

A =













0 1 0

0 0 1

−1 −3 −3













, B =













0

0

1













, C =
[

0 1 −1
]

, D =
[

1
]

.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



94 CHAPTER 3 State Variable Models

U(s)

X(s)

x1x2

s
1x3

s
1

s
1

3

3

+

- --

+

+

-

FIGURE E3.23
Block diagram.
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Problems

P3.1 The loop equation, derived from Kirchoff’s voltage law, is

di

dt
=

1

L
v − R

L
i− 1

L
vc

where

vc =
1

C

∫

i dt .

(a) Select the state variables as x1 = i and x2 = vc.

(b) The corresponding state equations are

ẋ1 =
1

L
v − R

L
x1 −

1

L
x2

ẋ2 =
1

C
x1 .

(c) Let the input u = v. Then, in matrix form, we have

ẋ =





−R/L −1/L

1/C 0



x+





1/L

0



 u .

1/L

v

-1/L

1/s

-R/L

x
1

1/C 1/s

x
2

FIGURE P3.1
Signal flow graph.

P3.2 Let

a11 =
−2

(R1 +R2)C
, a22 =

−2R1R2

(R1 +R2)L
,

b11 = b12 =
1

(R1 +R2)C
, b21 = −b22 =

R2

(R1 +R2)L
.

The corresponding block diagram is shown in Figure P3.2.
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1/(R1+R2)C

  1/s

-

x
1

x
2

-

2/(R1+R2)C

v1

v
2

R2

1/(R1+R2)C

  1/s

2R1R2/(R1+R2)C

x
2

1/s

1/s

x
1

v
2

v1

b22

b21

b12

b11

a22

a11

(a)

(b)

FIGURE P3.2
(a) Block diagram. (b) Signal flow graph.

P3.3 Using Kirchoff’s voltage law around the outer loop, we have

L
diL
dt

− vc + v2 − v1 = 0 .

Then, using Kirchoff’s current law at the node, we determine that

C
dvc
dt

= −iL + iR ,

where iR is the current through the resistor R. Considering the right loop
we have

iRR− v2 + vc = 0 or iR = −vc
R

+
v2
R

.
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Thus,

dvc
dt

= − vc
RC

− iL
C

+
v2
RC

and
diL
dt

=
vc
dt

+
v1
L

− v2
L

.

In matrix form, the state equations are





ẋ1

ẋ2



 =





0 1/L

−1/C −1/RC









x1

x2



+





1/L −1/L

0 1/RC









v1

v2



 ,

where x1 = iL and x2 = vc. The signal flow graph is shown in Figure P3.3.

1/L

1/RC

1/s

1/L

x
1

-1/C 1/s

x
2

v
1

v
2

-1/L

-1/RC

FIGURE P3.3
Signal flow graph.

P3.4 (a) The block diagram model for phase variable form is shown in Fig-
ure P3.4a. The phase variable form is given by

ẋ =













0 1 0

0 0 1

−10 −6 −4













x+













0

0

1













r

y =
[

10 2 1
]

x .

(b) The block diagram in input feedforward form is shown in Figure P3.4b.
The input feedforward form is given by

ẋ =













−4 1 0

−6 0 1

−10 0 0













x+













1

2

10













r(t)

y =
[

1 0 0
]

x .
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R(s) Y(s)10
x1

x2

s
1

10

x3

s
1

s
1

4

6

2

1

-
-

-

+
+

+
+

(a)

R(s) Y(s)10 s
1

10

s
1

s
1

6

4

2

1

x1
.

x2
.

x3
.

- --

+ + +
+

+

(b)

FIGURE P3.4
(a)Block diagram model for phase variable form. (b) Block diagram model for input feedforward form.

P3.5 (a) The closed-loop transfer function is

T (s) =
s+ 1

s3 + 4s2 − 11s + 1
.

(b) A matrix differential equation is

ẋ = Ax+Bu

y = Cx

where

A =













0 1 0

0 0 1

−1 11 −4













, B =













0

0

1













, C =
[

1 1 0
]

.

The block diagram is shown in Figure P3.5.
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R(s) Y(s)1
x1x2

s
1

1

x3

s
1

s
1

4

-11

1

-
-

-

+
+

+

FIGURE P3.5
Block diagram model.

P3.6 The node equations are

0.00025
dv1
dt

+ iL − vi − v1
4000

= 0

0.0005
dv2
dt

− iL +
v2

1000
− i3 = 0

0.002
diL
dt

+ v2 − v1 = 0 .

Define the state variables

x1 = v1 x2 = v2 x3 = iL .

Then,

ẋ = Ax+Bu

where

A =













−1 0 −4000

0 −2 2000

500 −500 0













, B =













1 0

0 2000

0 0













P3.7 Given K = 1, we have

KG(s) · 1
s
=

(s+ 1)2

s(s2 + 1)
.

We then compute the closed-loop transfer function as

T (s) =
s2 + 2s+ 1

3s3 + 5s2 + 5s+ 1
=

s−1 + 2s−2 + s−3

3 + 5s−1 + 5s−2 + s−3
.
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A state variable model is

ẋ =













0 1 0

0 0 1

−1/3 −5/3 −5/3













x+













0

0

1/3













r

y =
[

1 2 1
]

x .

P3.8 The state-space equations are

ẋ1 = x2

ẋ2 =
ku

x3
− g

ẋ3 = u .

This is a set of nonlinear equations.

P3.9 (a) The closed-loop transfer function is

T (s) =
10

Js3 + (b+ 10J)s2 + 10bs+ 10K1
=

10s−3

1 + 10.1s−1 + s−2 + 5s−3
,

where K1 = 0.5, J = 1, and b = 0.1.

(b) A state-space model is

ẋ =













0 1 0

0 0 1

−5 −1 −10.1













x+













0

0

10













r

ω =
[

1 0 0
]

x .

(c) The characteristic equation is

det[sI−A] = det













s −1 0

0 s −1

5 1 s+ 10.1













= s3 + 10.1s2 + s+ 5 = 0 .

The roots of the characteristic equation are

s1 = −10.05 and s2,3 = −0.0250 ± 0.7049j .

All roots lie in the left hand-plane, therefore, the system is stable.
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P3.10 (a) From the signal flow diagram, we determine that a state-space model
is given by

ẋ =





−K1 K2

−K1 −K2



x+





K1 −K2

K1 K2









r1

r2





y =





y1

y2



 =





1 0

0 1



x .

(b) The characteristic equation is

det[sI−A] = s2 + (K2 +K1)s + 2K1K2 = 0 .

(c) When K1 = K2 = 1, then

A =





−1 1

−1 −1



 .

The state transition matrix associated with A is

Φ = L−1
{

[sI−A]−1
}

= e−t





cos t sin t

− sin t cos t



 .

P3.11 The state transition matrix is

Φ(t) =





(2t− 1)e−t −2te−t

2te−t (−2t+ 1)e−t



 .

So, when x1(0) = x2(0) = 10, we have

x(t) = Φ(t)x(0)

or

x1(t) = 10e−t

x2(t) = 10e−t

P3.12 (a) A state variable representation is given by

ẋ =













0 1 0

0 0 1

−48 −44 −12













x+













0

0

1













r
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y = [40 8 0]x .

(b) The state transition matrix is

Φ(t) =

[

Φ1(t)
...Φ2(t)

...Φ3(t)

]

,

where

Φ1(t) =













e−6t − 3e−4t + 3e−2t

−6e−6t + 12e−4t − 6e−2t

36e−6t − 48e−4t + 12e−2t













Φ2(t) =













3
4e

−6t − 2e−4t + 5
4e

−2t

−9
2e

−6t + 8e−4t − 5
2e

−2t

27e−6t − 32e−4t + 5e−2t













Φ3(t) =













1
8e

−6t − 1
4e

−4t + 1
8e

−2t

−3
4e

−6t + e−4t − 1
4e

−2t

9
2e

−6t − 4e−4t + 1
2e

−2t













.

P3.13 (a) The RLC circuit state variable representation is

ẋ =





−10 −4

6 0



x+





4

0



u .

The characteristic equation is

s2 + 10s+ 24 = 0 .

All roots of the characteristic equation (that is, s1 = −4 and s2 = −6)
are in the left half-plane; therefore the system is stable.

(b) The state transition matrix is

Φ(t) =





3e−6t − 2e−4t 2e−6t + 2e−4t

−3e−6t + 3e−4t −2e−6t + 3e−4t



 .

(c) Given

x1(0) = 0.1 , x2(0) = 0 and e(t) = 0 ,

we have

i(t) = x1(t) = 0.3e−6t − 0.2e−4t

vc(t) = x2(t) = −0.3e−6t + 0.3e−4t .
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(d) When x(0) = 0 and u(t) = E, we have

x(t) =

∫ t

0
Φ(t− τ)Bu(τ)dτ ,

where

Bu(t) =





4E

0



 .

Integrating yields

x1(t) = (−2e−6t + 2e−4t)E

x2(t) = (1 + 2e−6t − 3e−4t)E .

P3.14 A state space representation is

ẋ = Ax+Br , y = Cx

where

A =



















0 1 0 0

0 0 1 0

0 0 0 1

−50 −34 −10 −12



















, B =



















0

0

0

1



















, C = [50 1 0 0] .

P3.15 A state variable representation is

ẋ =













0 1 0

0 0 1

−16 −31 −10













x+













0

0

1













r

y = [56 14 0]x .

The block diagram is shown in Figure P3.15.
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R(s) Y(s)56
x1x2

s
1

16

x3

s
1

s
1

10

31

14

-
-

-

+
+

+

FIGURE P3.15
Block diagram model.

P3.16 (a) The characteristic equation is

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (s)

S
te

p
 r

e
sp

o
n

se
)

x1 - solid; x2 - dotted; x3 - dashed

FIGURE P3.16
Step response of magnitude 0.285◦.

det(sI−A) = det













s −1 0

0.0071 s+ 0.111 −0.12

0 −0.07 s+ 0.3
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= s3 + 0.411s2 + 0.032s + 0.00213 = 0 .

The roots are

s1 = −0.3343 and s2,3 = −0.0383 ± 0.0700j .

All the poles lie in the left half-plane, therefore, the system is stable.

(b) The solution of the system to a step of magnitude 0.285◦ is given by

x1(t) = −2.66 − 0.11e−0.33t + e−0.038t (2.77 cos 0.07t + 0.99 sin 0.07t)

x2(t) = 0.037e−0.33t − e−0.038t (0.037 cos 0.07t+ 0.23 sin 0.07t)

x3(t) = 0.069 − 0.075e−0.33t + e−0.038t (0.006 cos 0.07t − 0.06 sin 0.07t)

P3.17 The transfer function is

G(s) = C(sI−A)−1B =
−4s+ 12

s3 − 14s2 + 37s + 20
.

P3.18 Define the state variables as

x1 = φ1 − φ2

x2 =
ω1

ωo

x3 =
ω2

ωo
.

Then, the state equations of the robot are

ẋ1 = ωox2 − ωox3

ẋ2 =
−J2ωo

J1 + J2
x1 −

b

J1
x2 +

b

J1
x3 +

Km

J1ωo
i

ẋ3 =
J1ωo

J1 + J2
x2 +

b

J2
x2 −

b

J2
x3

or, in matrix form

ẋ = ωo













0 1 −1

a− 1 −b1 b1

a b2 −b2













x+













0

d

0













i

where

a =
J1

(J1 + J2)
, b1 =

b

J1ωo
, b2 =

b

J2ωo
and d =

Km

J1ωo
.
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P3.19 The state equation is given by

ẋ =





0 1

−2 −3



x

where x1(0) = 1 and x2(0) = −1. The state transition matrix is

Φ(t) =





−e−2t + 2e−t −e−2t + e−t

2e−2t − 2e−t 2e−2t − e−t



 .

The system response is

x1(t) =
(

−e−2t + 2e−t
)

x1(0) +
(

−e−2t + e−t
)

x2(0)

x2(t) =
(

2e−2t − 2e−t
)

x1(0) +
(

2e−2t − e−t
)

x2(0) .

The state response is shown in Figure P3.19.
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FIGURE P3.19
Response with x1(0) = 1 and x2(0) = −1.

P3.20 The state equation is given by

ẋ =





−0.693
6.7 0

−1 −0.693
9.2



x where x(0) =





0.3× 1016

7× 1016



 .
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The state transition matrix is

Φ(t) =





e−0.103433t 0

35.5786(e−0.103433t − e−0.0753261t) e−0.075326t



 .

The system response is

x1(t) = e−0.103433tx1(0)

x2(t) = 35.5786
[

e−0.103433t − e−0.0753261t
]

x1(0) + e−0.075326tx2(0) .

The state response is shown in Figure P3.20.

0 10 20 30 40 50
-1

0

1

2

3

4

5

6

7

Time (hours)

N
u

cl
e

id
e

 d
e

n
si

ti
e

s 
in

 a
to

m
s 

p
e

r 
u

n
it

 v
o

lu
m

e

X=Xenon 135 
I=Iodine 135

FIGURE P3.20
Nuclear reactor state response to initial conditions.
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P3.21 Referring to Figure P3.21 we have

Y (s) =
1

s
W (s) =

1

s

[

h1U(s) +
1

s
Q(s)

]

=
h1
s
U(s) +

1

s2
[h0U(s)− a0Y (s)− a1sY (s) + a1h1U(s)] .

Gathering like terms and re-arranging yields

(

1 +
a1
s

+
a0
s2

)

Y (s) =

(

h1
s

+
h0
s2

+
a1h1
s2

)

U(s)

or

Y (s) =

[

h1s+ h0 + a1h1
s2 + a1s+ a0

]

U(s) .

Computing the transfer function from the state variable representation
yields

G(s) = C (sI−A)−1
B

=
[

1 0
]





s+a1
s2+a1s+a0

1
s2+a1s+a0

−a0
s2+a1s+a0

s
s2+a1s+a0









h1

h0



 =
h1s+ h0 + a1h1
s2 + a1s+ a0

.

U(s)
W(s)

Q(s)

s
1 Y(s)

-

+ +
s
1

-

+

a0

a1

h0

h1

FIGURE P3.21
Block diagram with labeled signals.

P3.22 The governing equations are

L
di

dt
= v2

C1
dv1
dt

+
1

R1
(v1 − v) +

1

R2
(v1 − v2) = 0
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C2
dv2
dt

+
1

R2
(v2 − v1) + i+

v2
R3

= 0 .

Let u = v, x1 = i, x2 = v1 and x3 = v2. Then,

ẋ =













0 0 1
L

0 − 1
a

(

1
R1

+ 1
R2

)

1
C1R2

− 1
C2

1
R2C2

−
(

1
R2C2

+ 1
R3C2

)













x+













0

1
R1C1

0













u

y = [0 0 1]x .

P3.23 A state variable representation is given by

ẋ =













0 1 0

0 0 1

−30 −31 −10













x+













0

0

1













r

y = [1 0 0]x .

Other representations include the input feedforward representation

ẋ =













−10 1 0

−31 0 1

−30 0 0













x+













0

0

1













r

y = [1 0 0]x ,

the physical variable representation

ẋ =













−3 1 0

0 −2 1

0 0 −5













x+













0

0

1













r

y = [1 0 0]x ,

and the decoupled representation

ẋ =













−3 0 0

0 −2 0

0 0 −5













x+













1

1

1













r
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y =

[

1

6

1

3
− 1

2

]

x .

P3.24 The matrix representation of the state equations is

ẋ =





3 0

0 2



x+





1 1

0 1









u1

u2



+





0

1



 d .

When u1 = 0 and u2 = d = 1, we have

ẋ1 = 3x1 + u2

ẋ2 = 2x2 + 2u2

So we see that we have two independent equations for x1 and x2. With
U2(s) = 1/s and zero initial conditions, the solution for x1 is found to be

x1(t) = L−1 {X1(s)} = L−1
{

1

s(s− 3)

}

= L−1
{

− 1

3s
+

1

3

1

s− 3

}

= −1

3

(

1− e3t
)

and the solution for x2 is

x2(t) = L−1 {X2(s)} = L−1
{

2

s(s− 2)

}

= L−1
{

−1

s
+

1

s− 2

}

= −1+e2t .

P3.25 Since Φ(s) = (sI−A)−1, we have

Φ(s) =





s+ 1 0

−2 s+ 3





−1

=





s+ 3 0

2 s+ 1





1

∆(s)

where ∆(s) = (s+ 1)(s + 3). The state transition matrix is

Φ(t) = L−1{Φ(s)} =





e−t 0

e−t − e−3t e−3t



 .

P3.26 The state variable differential equation is

ẋ =





0 1

−25 −6



x+





0

25



 r

y = [1 0]x .
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and

Φ(s) = (sI−A)−1 =





s+ 6 1

−25 s





1

∆(s)

where ∆(s) = s2 + 6s+ 25.

P3.27 Equating the change in angular momentum to the sum of the external
torques yields

Jθ̈ −Hω cos θ = −bθ̇ − kθ

where b is the damping coefficient, k is the spring constant, and J is the
wheel moment of inertia. Defining the state variables x1 = θ and x2 = ẋ
and the input u = ω, we can write the equations of motion as

ẋ1 = x2

ẋ2 = − k

J
x1 −

b

J
x2 +

H

J
u cos x1

With a small angle assumption (that is, cos x1 ≈ 1) we have

ẋ =





0 1

−k/J −b/J



x+





0

H/J



 u

y = θ =
[

1 0
]

x .

P3.28 The governing equations of motion are

m1ÿ1 + k(y1 − y2) + bẏ1 = u

m2ÿ2 + k(y2 − y1) + bẏ2 = 0

y = y2 .

Let x1 = y1, x2 = ẏ1, x3 = y2 and x4 = ẏ2. Then

ẋ =



















0 1 0 0

− k
m1

− b
m1

k
m1

0

0 0 0 1

k
m2

0 − k
m2

− b
m2



















x+



















0

1
m1

0

0



















u

y =
[

0 0 1 0
]

x .
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P3.29 The equations of motion are

Iq̈1 +MgL sin q1 + k(q1 − q2) = 0

Jq̈2 − k(q1 − q2) = u .

Let x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2 and linearize the equations
using small angle assumptions (i.e. sin q1 ≈ q1). Then, we have

ẋ1 = x2

ẋ2 = −MgL

I
x1 −

k

I
(x1 − x3)

ẋ3 = x4

ẋ4 =
k

J
(x1 − x3) +

1

J
u .

P3.30 Using Kirchoff’s current law, we find that

C
dvc
dt

= i2 + i3

where i3 = current in R3. Let i1 = current in R1. Using Kirchoff’s voltage
law, we have

L
diL
dt

= v1 −R1i1

and

R1i1 +R2i2 + vc = v1 .

But

i2 = i1 − iL ,

so

(R1 +R2)i1 = v1 − vc +R2iL .

Using Kirchoff’s voltage law once again, we calculate i3 as

i3 =
v2 − vc
R3

.

Utilizing the above equations, we can solve for diL/dt and dvc/dt, as
follows:

diL
dt

=
R2

L(R1 +R2)
v1 +

R1

L(R1 +R2)
vc −

R1R2

L(R1 +R2)
iL

vc
dt

=
v1

C(R1 +R2)
− vc

C(R1 +R2)
− vc

CR3
− R1iL

C(R1 +R2)
+

v2
CR3
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Define the state variables x1 = vc and x2 = iL. Then, in matrix form we
have

ẋ =





− (R1+R2+R3)
CR3(R1+R2)

− R1
C(R1+R2)

R1
L(R1+R2)

− R1R2
L(R1+R2)



x+





1
C(R1+R2)

1
CR3

R2
L(R1+R2)

0









v1

v2





y = i2 =
[

− 1
(R1+R2)

− R1
(R1+R2)

]

x+
[

1
(R1+R2)

0
]





v1

v2





P3.31 A state variable representation is

ẋ =





0 1

−3 −4



x+





0

30



u .

The state transition matrix can be computed as follows:

Φ = L−1
{

[sI−A]−1
}

= L−1







1

∆(s)





s+ 4 1

−3 s











=





3
2e

−t − 1
2e

−3t 1
2e

−t − 1
2e

−3t

−3
2e

−t + 3
2e

−3t −1
2e

−t + 3
2e

−3t





where

∆(s) = s2 + 4s+ 3 = (s+ 1)(s + 3) .

P3.32 A state variable representation is

ṁ1 = −k1m1 + r

ṁ2 = k1m1 − k2m2

where k1 and k2 are constants of proportionality. In matrix form, we have

ẋ = Ax+Br =





−k1 0

k1 −k2



x+





1

0



 r

where x1 = m1 and x2 = m2. Let k1 = k2 = 1 and assume that r(t) = 0
and x1 = 1 and x2 = 0. Then

x(t) = Φ(t)x(0) =





e−t 0

te−t e−t



x(0) =





e−t

te−t



 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



114 CHAPTER 3 State Variable Models

The simulation is shown in Figure P3.32.
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FIGURE P3.32
Actual versus approximate state response.

P3.33 The system (including the feedback) is described by

ẋ = Ax =





0 1

−1/2 −1



x .

The charactersitic equation is

det[λI−A] = det





λ −1

1/2 λ+ 1



 = λ2 + λ+
1

2
= 0 .

The roots of the characteristic equation are

λ1,2 = −1

2
± j

1

2
.
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The system response is

x(t) = eAtx(0) =





e−t/2 cos t
2 + e−t/2 sin t

2 2e−t/2 sin t
2

−e−t/2 sin t
2 e−t/2 cos t

2 − e−t/2 sin t
2



x(0)

= e−t/2





2 sin t
2

cos t
2 − sin t

2





where x1(0) = 0 and x2(0) = 1.

P3.34 (a) The state space representation is

ẋ =













0 1 0

0 0 1

−6 −11 −6













x+













0

0

1













r

y = [6 0 0] x .

(b) The element φ11(t) of the state transition matrix is

φ11(t) = e−3t − 3e−2t + 3e−t .

P3.35 The state equations are

ḣ = ẋ1 =
1

50
[80θ − 50h] = −x1 +

8

5
x2

θ̇ = ẋ2 = ω = x3

ω̇ = ẋ3 =
Km

J
ia = −KmKb

JRa
ω +

KmKa

JRa
vi = −353

30
x3 +

25000

3
vi .

In state variable form, we have

ẋ =













−1 8
5 0

0 0 1

0 0 −353
30













x+













0

0

25000
3













vi .

P3.36 Using Newton’s Law and summing the forces on the two masses yields

M1ẍ(t) + b1ẋ(t) + k1x(t) = b1ẏ(t)

M2ÿ(t) + b1ẏ(t) + k2y(t) = b1ẋ(t) + u(t)

Let

z1 = x, z2 = ẋ, z3 = y, and z4 = ẏ .
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Then we write the system in state variable form as

ż =



















0 1 0 0

− k1
M1

− b1
M1

0 b1
M1

0 0 0 1

0 b1
M2

− k2
M2

− b1
M2



















z+



















0

0

0

1
M2



















u

y =
[

1 0 0 0
]

z .

P3.37 From the block diagram in Figure P3.37, we obtain

ẋ1 = x2

ẋ2 = x3

ẋ3 = −10x1 − 4x2 − 3x3 + u

y = x1 + 12x2 + 5x3

or

ẋ =













0 1 0

0 0 1

−10 −4 −3













x+













0

0

1













u

y = [1 12 5] x .

The third-order differential equation model is

...
y +3ÿ + 4ẏ + 10y = 5ü+ 12u̇+ u .

10

3

4

12

5

∫ ∫ ∫---+ +

++
U(s) Y(s)

x3 x2 x1

FIGURE P3.37
Block diagram with states labeled.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Advanced Problems 117

Advanced Problems

AP3.1 With the state variables are defined as

z =













x

ẋ

i













,

the nonlinear equations of motion are













ż1

ż2

ż3













=













z2

g − K
m

(Io+z3)2

(Xo+z1)2

1
L(v −Rz3)













,

where the control is the voltage v. We assume that z1 = x is measurable.
The linearized equations of motion are

ż = Az+Bv

y = Cz

where

A =













0 1 0

2K
m

I2o
X3

o
0 −2K

m
Io
X2

o

0 0 −R
L













, B =













0

0

1
L













, and C =
[

1 0 0
]

.

The transfer function is

G(s) = C(sI−A)−1
B .

With the constants

R = 23.2

L = 0.508

m = 1.75

K = 2.9 × 10−4

Io = 1.06

Xo = 4.36 × 10−3
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the transfer function is

G(s) =
−36.38

s3 + 45.67s2 + 4493s + 205195
.

AP3.2 The differential equation describing the motion of y is

mÿ + bẏ + ky = bu̇+ ku .

Taking Laplace tranforms (with zero initial conditions) yields the transfer
function

Y (s)

U(s)
=

(b/m)s+ (k/m)

s2 + (b/m)s + (k/m)
.

In state space form, we have

ẋ =





0 1

−k/m −b/m



x+





0

1



u

y =
[

k/m b/m
]

x .

AP3.3 The transfer function is

Y (s)

R(s)
=

2s2 + 6s+ 5

s3 + 4s2 + 5s+ 2
.

In (nearly) diagonal form, we have

A =













−1 1 0

0 −1 0

0 0 −2













, B =













0

1

1













, and C =
[

1 1 1
]

.

The matrix A is not exactly diagonal due to the repeated roots in the
denominator of the transfer function.

AP3.4 The differential equations describing the motion of y and q are

mÿ + k2ẏ + k1(y − q) = f

−bq̇ + k1(y − q) = f

where k1 = 2 and k2 = 1. Assume the mass m = 1. Then with the state
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variables defined as z =
[

y ẏ q
]T

, we have the state variable model

ż =













0 1 0

−3 0 2

2/b 0 −2/b













z+













0

1

−1/b













f

y =
[

1 0 0
]

z

If we model a large bump at high speeds as an impulse and a small bump
at low speeds as a step, then b = 0.8 provides good performance. In both
cases, the ride settles out completely in about 10 seconds.

AP3.5 The differential equations describing the motion of x and θ are

(M +m)ẍ+ML cos θθ̈ −ML sin θθ̇2 = −kx

g sin θ + cos θẍ+ Lθ̈ = 0

Assuming θ and θ̇ are small, it follows that

(M +m)ẍ+MLθ̈ = −kx

ẍ+ Lθ̈ = −gθ

Define the state variables as z =
[

x ẋ θ θ̇
]T

. Then, the state vari-

able model is

ż =



















0 1 0 0

−k/m 0 gM/m 0

0 0 0 1

k/(Lm) 0 −g(M +m)/(Lm) 0



















z

AP3.6

AP3.7 Computing the closed-loop system yields

A−BK =





−1 1

−K1 −K2



 , B =





0

1



 , and C =
[

2 1
]

.

The characteristic polynomial is

|sI− (A−BK)| = s2 + (K2 + 1)s+K1 +K2 = 0.

The roots are in the left-half plane whenever K2+1 > 0 and K1+K2 > 0.
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AP3.8 (a) A state variable representation is given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −Kx1 − 12x2 − 6x3 +Kr

y = x1

or, in matrix form

ẋ =













0 1 0

0 0 1

−K −12 −6













x+













0

0

K













r

y =
[

1 0 0
]

x

(b) The characteristic roots are found by solving

det [λI−A] = 0

or

λ3 + 6λ2 + 12λ +K = 0

When K = 8, we have characteristic roots at λ1 = −2, λ2 = −2, and
λ3 = −2, as desired.

(c) The unit step response is given by

y(t) = 1− e−2t − 2te−2t − 2t2e−2t .
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Design Problems
The transfer model of the traction drive, capstan roller, and linear slideCDP3.1

was given in CDP2.1 as

X(s)

Va(s)
=

rKm

s [(Lms+Rm)(JT s+ bm) +KbKm]
,

where

JT = Jm + r2(Ms +Mb) .

Define x1 = x, x2 = ẋ, and x3 = ẍ. Then, a state variable representation
is

ẋ = Ax+Bva

y = Cx

where

A =













0 1 0

0 0 1

0 −Rmbm+KbKm

LmJT
−Lmbm+RmJT

LmJT













, B =













0

0

rKm

LmJT













C =
[

1 0 0
]

.

DP3.1 (a) The equation of motion of the spring-mass-damper is

mÿ + bẏ + ky = u

or

ÿ = − b

m
ẏ − k

m
y +

1

m
u .

Select the state variables

x1 = y and x2 = ẏ .

Then, we have

ẋ = Ax+Bu

y = Cx
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where

A =





0 1

−20 −9



 , B =





0

1



 , C =
[

1 0
]

.

A is the system matrix. The characteristic equation is

det[λI−A] = det





s −1

20 s+ 9



 = s2 + 9s + 20 = 0 .

The roots of the characteristic equation are s1 = −4 and s2 = −5 ,
and the transistion matrix is

Φ(t) =





5e−4t − 4e−5t e−4t − e−5t

−20e−4t + 20e−5t −4e−4t + 5e−5t



 .

(b) Assume the initial conditions are x1(0) = 1 and x2(0) = 2. The zero-
input response is shown in Figure DP3.1.

(c) Suppose we redesign the system by choosing b and k to quickly damp
out x2 and x1. We can select b and k to achieve critical damping.
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FIGURE DP3.1
Zero input state response.
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If we desire the characteristic polynomial to be pd(s) = (s + 10)2 =
s2 + 20s + 100, then we need b = 20 and k = 100.

DP3.2 The desired transfer function is

Y (s)

U(s)
=

6

s2 + 7s + 10
.

The transfer function derived from the phase variable representation is

Y (s)

U(s)
=

d

s2 + bs+ a
.

Therefore, we select d = 6, a = 10 and b = 7.

DP3.3 Assume the aircraft lands precisely on the centerline. The linearized equa-
tions of motion are

m3ẍ3 + KDẋ3 +K2(x3 − x2) = 0

m2ẍ2 + K2(x2 − x3) +K1(x2 − x1) = 0

m1ẍ1 = − 2√
2
K2(x1 − x2)

where x1(0) = x2(0) = ẋ2(0) = ẋ3 = 0 and ẋ1(0) = 60. The system
response is shown in Figure DP3.3 where KD = 215. The aircraft settles
out at 30 m, although initially it overshoots by about 10 m at 1 second.
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FIGURE DP3.3
Aircraft arresting gear response.
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DP3.4 We can model the bungi cord system as a mass-spring-damper. This is
actually an over-simplification because the bungi cord cannot “push” the
jumper down as a spring would—it can only exert a restoring force when
the cord is stretched (that is, when the jumper exceeds the length, L, of
the cord). The problem is nonlinear! When the distance of the jumper
from the platform is less than L we should model the cord spring constant
and damping as K = 0 and b = 0, respectively. Only gravity acts on the
jumper. Also, when ẋ (the jumper velocity) is negative (where we define
positive towards the ground), then we should model b = 0. A reasonable
set of equations of motion are

ẋ1 = x2

ẋ2 = −K

m
x1 −

b

m
x2 + g

where x1 is the distance measured from the top of the platform and x2
is the jumper velocity. For the initial conditions we have x1(0) = 10
and x2(0) = 0. A reasonable set of parameters for the bungi cord are
L = 40 m, K = 40 N/m and b = 20 kg/m. The system response is
shown in Figure DP3.4 for a person with m = 100 kg. The accelerations
experienced by the jumper never exceed 1.5 g.

global MASS GRAVITY LENGTH K b

MASS=100; HEIGHT=100; GRAVITY=9.806;

LENGTH=40; SPRINGCONSTANT=40; SPRINGDAMPING=20;

x0=[10;0] ;

t=0;  dt=0.1;

n=round(120/dt) ;

for i=1:n;

if x0(1)<LENGTH

K=0; b=0;

elseif x0(2)<0

 b=0;

else

K=SPRINGCONSTANT; b=SPRINGDAMPING;

end

t f= t + d t ;

         [ T,x] = ode45('bungi',[t tf ] ,x0);

xs(i,:)=x(length(x),:); t=tf ;

         x0=x(length(x),:); ts(i)=tf ;

end

plot(ts,HEIGHT-xs(:,1)), grid

function [xdot] = bungi(t,x)

global MASS GRAVITY LENGTH K b

xdot(1)=x(2);

xdot(2)=-(K/MASS)*(x(1)-

LENGTH)-(b/MASS)*x(2)+GRAVITY;

xdot=xdot';

FIGURE DP3.4
(a) Bungi cord system response m-file script.
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FIGURE DP3.4
CONTINUED: Bungi cord system time history response.

DP3.5 Computing the closed-loop system yields

A−BK =





0 1

−2−K1 3−K2



 , B =





0

1



 , and C =
[

1 0
]

.

The characteristic polynomial is

|sI− (A−BK)| = s2 + (K2 − 3)s +K1 + 2 = 0.

Suppose that the desired poles are in the left-half plane and are denoted
by −p1 and −p2. Then the desired characteristic polynomial is

(s+ p1)(s + p2) = s2 + (p1 + p2)s + p1p2 = 0.

Equating coefficients and solving for K = [K1 K2] yields

K1 = p1p2 − 2

K2 = p1 + p2 + 3.
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Computer Problems

CP3.1 The m-file script to compute the state-space models using the ss function
is shown in Figure CP3.1.

% Part(a)

num = [1]; den = [1 25]; 

sys = tf(num,den);

sys_ss = ss(sys) 

% Part(b)

num = [3 10 3]; den = [1 8 5]; 

sys = tf(num,den);

sys_ss = ss(sys)

% Part(c)

num = [1 10]; den = [1 3 3 1];

sys = tf(num,den);

sys_ss = ss(sys)

a = 

        x1

   x1  -25

 

b = 

       u1

   x1   1

 

c = 

       x1

   y1   1

 

d = 

       u1

   y1   0

a = 

         x1    x2

   x1    -8  -2.5

   x2     2     0

 

b = 

       u1

   x1   4

   x2   0

 

c = 

         x1    x2

   y1  -3.5  -1.5

 

d = 

       u1

   y1   3 a = 

          x1     x2     x3

   x1     -3   -1.5  -0.25

   x2      2      0      0

   x3      0      2      0

 

b = 

       u1

   x1   2

   x2   0

   x3   0

 

c = 

         x1    x2    x3

   y1     0  0.25  1.25

 

d = 

       u1

   y1   0

FIGURE CP3.1
Script to compute state-space models from transfer functions.

For example, in part (c) the state-space model is

ẋ = Ax+Bu

y = Cx+Du ,
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where D = [0] and

A =













−3 −1.5 −0.25

2 0 0

0 2 0













, B =













2

0

0













, C =
[

0 0.25 1.25
]

.

CP3.2 The m-file script to compute the transfer function models using the tf

function is shown in Figure CP3.2.

Transfer function:

   1
-------------

s^2 - 4 s - 2

 

Transfer function:

        6s - 48

-----------------------

s^3 - 11 s^2 + 4 s - 36

Transfer function:

    s - 2

-------------

s^2 + 2 s + 1

% Part (a)

A=[0 1;2 4]; B=[0;1]; C=[1 0]; D=[0];

sys_ss=ss(A,B,C,D);

sys_tf = tf(sys_ss)

% Part (b)

A=[1 1 0;-2 0 4; 6 2 10]; B=[-1;0;1]; C=[0 1 0]; D=[0];

sys_ss=ss(A,B,C,D);

sys_tf = tf(sys_ss) 

% Part (c)

A=[0 1;-1 -2]; B=[0;1]; C=[-2 1]; D=[0];

sys_ss=ss(A,B,C,D);

sys_tf = tf(sys_ss)

FIGURE CP3.2
Script to compute transfer function models from the state-space models.

CP3.3 For an ideal op-amp, the voltage gain (as a function of frequency) is

Vo(s) = −Z2(s)

Z1(s)
Vin(s),

where

Z1 = R1 +
1

C1s

Z2 =
R2

1 +R2C2s

are the respective circuit impedances. Therefore, we obtain

Vo(s) = −
[

R2C1s

(1 +R1C1s)(1 +R2C2s)

]

Vin(s).

The m-file script and step response is shown in Figure CP3.3.
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R1=1000; R2=10000; C1=0.0005; C2=0.0001;

numg=[R2*C1 0];

deng=conv([R1*C1 1],[R2*C2 1]);

 sys_tf=tf(numg,deng)

% Part (a)

%

sys_ss=ss(sys_tf )

% Part (b)

%

step(sys_ss)

a = 

                        x1           x2

           x1     -3.00000     -1.00000

           x2      2.00000            0

b = 

                        u1

           x1      4.00000

           x2            0

c = 

                        x1           x2

           y1      2.50000            0

d = 

                        u1

           y1            0

 

Continuous-time system.

Time (sec.)

A
m

p
lit

u
d

e

Step Response

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
 

FIGURE CP3.3
The m-file script using the step function to determine the step response.

CP3.4 The m-file script and state history is shown in Figure CP3.4. The transfer
function equivalent is

G(s) =
1

s3 + 5s2 + 2s+ 3
.

The computed state vector at t = 10 is the same using the simulation and
the state transition matrix.
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a=[0 1 0; 0 0 1; -3 -2 -5];

b=[0;0;1];

c=[1 0 0];

d=[0];

%

% Part (a)

%

sys_ss = ss(a,b,c,d)

sys_tf = tf(sys_ss)

%

% Part (b)

%

x0 = [0 -1 1];

t = [0:0.1:10];

u = 0*t;

[y,t,x] = lsim(sys_ss,u,t,x0);

plot(t,x(:,1),t,x(:,2),':',t,x(:,3),'--');

xlabel('time (sec)'), ylabel('x(t)'), grid

title('x1 - solid; x2 - dotted; x3 - dashed')

xf_sim = x(length(t),:)'

%

% Part (c)

%

dt = 10;

Phi = expm(a*dt);

xf_phi = Phi*x0'

Transfer function:

          1

---------------------

s^3 + 5 s^2 + 2 s + 3

xf_sim =

   -0.2545

    0.0418

    0.1500

xf_phi =

   -0.2545

    0.0418

    0.1500

FIGURE CP3.4
The m-file script using the lsim function to determine the step response.
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CP3.5 The two state-space models represent the same transfer function, as shown
in Figure CP3.5. The transfer function in both cases is

G(s) =
4

s3 + 8s2 + 5s+ 4
.

We see that a state-space representation of a transfer function is not
unique.

a1=[0 1 0; 0 0 1; -4 -5 -8];

b1=[0;0;4];

c1=[1 0 0];

d1=[0];

%

% Part (a)

%

sys_ss = ss(a1,b1,c1,d1);

sys_tf = tf(sys_ss)

%

% Part (b)

%

a2=[ 0.5000  0.5000  0.7071;

    -0.5000 -0.5000  0.7071;

    -6.3640 -0.7071 -8.0000];

b2=[0;0;4];

c2=[0.7071 -0.7071  0];

d2=[0];

sys_ss = ss(a2,b2,c2,d2);

sys_tf = tf(sys_ss)

Transfer function:

          4

---------------------

s^3 + 8 s^2 + 5 s + 4

Transfer function:

          4

---------------------

s^3 + 8 s^2 + 5 s + 4

FIGURE CP3.5
Comparison of the transfer functions of two state-space models.

CP3.6 The m-file script and impulse response are shown in Figure CP3.6. The
controller state-space representation is

ẋ = −2x+ u

y = x

and the plant state-space representation is

ẋ =





−2 −2

2 0



x+





0.5

0



u

y =
[

0 1
]

x

The closed-loop system state variable representation is

ẋ = Ax+Bu

y = Cx+Du ,

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Computer Problems 131

where D = [0] and

A =













−2 −2 0.5

2 0 0

0 −1 −2













, B =













0

0

1













, C =
[

0 1 0
]

.

numc=[1]; denc=[1 2]; sys_tfc = tf(numc,denc)

numg=[1]; deng=[1 2 4]; sys_tfg = tf(numg,deng)

%

% Part (a)

%

sys_ssc = ss(sys_tfc)

%

% Part (b)

%

sys_ssg = ss(sys_tfg)

%

% Part (c)

%

sys_s = series(sys_ssc,sys_ssg);

sys_cl = feedback(sys_s,[1]);

impulse(sys_cl)

Time (sec.)
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p
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Impulse Response
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-0.02

0

0.02

0.04

0.06

0.08

0.1
From: U(1)

To
: Y

(1
)

FIGURE CP3.6
Computing the state-space representations and the impulse response.
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CP3.7 The m-file script and system response is shown in Figure CP3.7.

a=[0 1;-2 -3]; b=[0;1]; c=[1 0]; d=[0];

sys = ss(a,b,c,d);

x0=[1;0];

t=[0:0.1:10]; u=0*t;

[y,t,x]=lsim(sys,u,t,x0);

plot(t,x(:,1),t,x(:,2),'--')

xlabel('Time (sec)')

ylabel('State Response')

legend('x1','x2',-1)

grid
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FIGURE CP3.7
Using the lsim function to compute the zero input response.
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C H A P T E R 4

Feedback Control System

Characteristics

Exercises

E4.1 (a) The system sensitivity to τ is given by

ST
τ = ST

GS
G
τ .

In this case, we have

ST
G =

1

1 +GH(s)
=

1

1 + 100
3s+1

=
3s+ 1

3s+ 101

and

SG
τ =

−τs

τs+ 1
=

−3s

3s + 1
,

where τ = 3. Therefore,

ST
τ =

−3s

3s+ 101
.

(b) The closed-loop transfer function is

T (s) =
G(s)

1 +GH(s)
=

100

3s+ 101
=

100/101
3

101s+ 1
=

0.99

τcs+ 1
,

where the time-constant τc = 3/101 = 0.0297 second.

E4.2 (a) The system sensitivity to K2 is

ST
K2

=
∂T

∂K2

K2

T
=

1

1 +K1K2
.

133
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(b) The transfer function from Td(s) to Vo(s) is

Vo(s) =
K2

1 +K1K2
Td(s) .

(c) We would select K1 ≫ 1, so that the transfer function from Td(s) to
Vo(s) is small.

E4.3 (a) The tracking error, E(s) = R(s)− Y (s), is given by

E(s) =
R(s)

1 +G(s)
=

A/s

1 +K/(s + 5)2
.

The steady-state error (computed using the final value theorem) is

ess = lim
s→0

sE(s) = lim
s→0





A

1 + K
(s+5)2



 =
A

1 +K/25
.

(b) A disturbance would be the wind shaking the robot arm.

E4.4 (a) The tracking error, E(s) = R(s)− Y (s), is given by

E(s) =
R(s)

1 +KG(s)
.

The steady-state position error is computed (using the final value
theorem) to be

ess = lim
s→0

s

[

A/s

1 +KG(s)

]

= lim
s→0





A

1 + 10K
s(τs+1)



 = 0 .

(b) The ramp input of 0.1 m/sec is given by

R(s) =
0.1

s2
.

Then, using the final value theorem, we have

ess = lim
s→0

s





0.1/s2

1 + 10K
s(τs+1)



 = lim
s→0

[

0.1

s+ 10K
τs+1

]

,

or

ess =
0.1

10K
=

0.01

K
.
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We desire ess ≤ 0.0001 m, so

K ≥ 0.01

0.0001
= 100 .

E4.5 (a) The sensitivity is

ST
p =

∂T

∂p

p

T
= p

[

−s4 − 15s2 + 3s+ 10

(s2 + ps+ 10)2

]

T (s).

(b) The tracking error is

E(s) = [1− T (s)]R(s) =
s3 + (2p− 1)s2 + (4− p)s− 7− p

s3 + 2ps2 + 4s + 3− p
R(s)

Using the final value theorem with R(s) = 1/s we obtain the steady-
state tracking error as

ess = lim
s→0

sE(s) =
−7− p

3− p
.

E4.6 The closed-loop transfer function is

T (s) =
10K

s2 + bs+ 10K
.

The tracking error is

E(s) = [1− T (s)]R(s) =
s(s+ b)

s2 + bs+ 10K

1

s2
,

where we let R(s) = 1/s2. Using the final value theorem we obtain the
steady-state tracking error as

ess = lim
s→0

sE(s) =
b

10K
.

If we require that b < K then the steady-state error is less than 0.1 to
the ramp input.

E4.7 The light bounces off the surface of the slide and into a detector. If the
light fails to hit the detector dead center, the unbalanced electric signal
causes the motor to adjust the position of the light source, and simulta-
neously the lens.

E4.8 The closed-loop transfer function is

T (s) =
5(s+ 3)

s2 + 20s + 15
.

The step response is shown in Figure E4.8.
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FIGURE E4.8
Step response.

E4.9 (a) The closed-loop transfer function is

T (s) =
KK1

s+K1(K +K2)
.

(b) The sensitivities are

ST
K =

∂T/T

∂K/K
=

s+K1K2

s+K1(K +K2)

and

ST
K1

=
s

s+K1(K +K2)
.

(c) The transfer function from Td(s) to Y (s) is

Y (s)

Td(s)
=

−1

s+K1(K2 +K)
.

Therefore, since E(s) = −KY (s) (when R(s) = 0), we have

E(s) =
K

s+K1(K2 +K)
Td(s)
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and

ess = lim
s→0

sE(s) =
K

K1(K +K2)
.

(d) With K = K2 = 1, we have

T (s) =
K1

s+ 2K1
.

Then,

Y (s) =
K1

s+ 2K1

1

s

and

y(t) =
1

2

[

1− e−2K1t
]

u(t) ,

where u(t) is the unit step function. Therefore, select K1 = 10 for the
fastest response.

E4.10 The closed-loop transfer function is

T (s) =
46.24K(s + 50)(s + 425)

(s + 200)(s + 425)(s2 + 16.7s + 72.9) + 19652K(s + 50)
.

The steady-state error is determined to be

ess = lim
s→0

sE(s) = lim
s→0

s(1− T (s))
1

s
= 1− lim

s→0
T (s) = 1− T (0)

=
6.3

6.3 +K
.

The plots of the steady-state error versus K and the percent overshoot
P.O. versus K are shown in Figure E4.10 for

40 ≤ K ≤ 400.
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FIGURE E4.10
(a) Steady-state error. (b) Percent overshoot.

E4.11 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)H(s)
=

K(s2 + 5s+ 6)

s3 + 15s2 + 56s + 60 + 14K

(b) With E(s) = R(s)− Y (s) we obtain

E(s) =

[

1− G(s)

1 +G(s)H(s)

]

R(s) =
1−G(s)(1−H(s))

1 +G(s)H(s)
R(s)

=
s3 + (15−K)s2 + (56− 5K)s+ (60 + 8K)

s3 + 15s2 + 56s + 60 + 14K
· 1
s
.

Then, using the final value theorem we find

lim
s→0

sE(s) =
(60 + 8K)

60 + 14K
.

(c) The transfer function from the disturbance Td(s) to the output is

Y (s) =
1

1 +G(s)H(s)
Td(s) =

s3 + 15s2 + 56s + 60

s3 + 15s2 + 56s + 60 + 14K
Td(s) .

The steady-state error to a unit step disturbance is

lim
s→0

sY (s) = lim
s→0

s
s3 + 15s2 + 56s+ 60

s3 + 15s2 + 56s+ 60 + 14K
· 1
s
=

60

60 + 14K
.
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(d) The sensitivity is

ST
K =

∂T

∂K

K

T
=

∂T

∂G

∂G

∂K

K

T

=
1

(1 +G(s)H(s))2

(

K

s+ 10

)

1 +G(s)H(s)

G(s)
=

1

1 +G(s)H(s)
.

E4.12 (a) The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)H(s)
=

100K1(s+ 5)

s2 + 105s + (500 + 100K1K2)
.

The steady-state tracking error is

E(s) = R(s)− Y (s) =

[

1−Gc(s)G(s)(1 −H(s))

1 +Gc(s)G(s)H(s)

]

R(s)

=
s2 + (105− 100K1)s + 500 − 100K1(5−K2)

s2 + 105s + 500 + 100K1K2
· 1
s

and

lim
s→0

sE(s) =
5−K1(5−K2)

5 +K1K2
.

(b) The transfer function from the noise disturbance N(s) to the output
Y (s) is

Y (s) =

[ −Gc(s)G(s)H(s)

1 +Gc(s)G(s)H(s)

]

N(s) =

[ −100K1K2

s2 + 105s + (500 + 100K1K2)

]

N(s) .

The steady-state error to a unit step N(s) = 1/s is

lim
s→0

sY (s) = lim
s→0

s

[ −100K1K2

s2 + 105s + (500 + 100K1K2)

]

· 1
s
=

−K1K2

5 +K1K2
.

(c) The design trade-off would be to make K1K2 as large as possible
to improve tracking performance while keeping K1K2 as small as
possible to reject the noise.

E4.13 The closed-loop transfer function is

T (s) =
K

s2 + 20s+K
.

The sensitivity is

ST
K =

∂T/T

∂K/K
=

s2 + 20s

s2 + 20s +K
.
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E4.14 (a) The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)H(s)
=

K

s2 +K1s+K
.

The sensitivity is

ST
K1

=
∂T/T

∂K1/K1
= − sK1

s2 +K1s+K
.

(b) You would make K as large as possible to reduce the sensitivity to
changes in K1. But the design trade-off would be to keep K as small
as possible to reject measurement noise.

E4.15 (a) The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)H(s)
=

120

s2 + 10s + 120
.

The steady-state tracking error is

E(s) = R(s)− Y (s) =

[

1

1 +Gc(s)G(s)

]

R(s)

=
s2 + 10s

s2 + 10s + 120
· 1
s

and

lim
s→0

sE(s) = 0 .

(b) The transfer function from the disturbance Td(s) to the output Y (s)
is

Y (s) =

[

1

s2 + 10s + 120

]

Td(s) .

The steady-state error to a unit step Td(s) = 1/s is

lim
s→0

sY (s) = lim
s→0

s

[

1

s2 + 10s+ 120

]

· 1
s
=

1

120
.
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Problems

P4.1 The tank level control block diagram is shown in Figure P4.1.

-

+
G1(s)

K

DH

dH

DQ1

+

+

FIGURE P4.1
Tank level control block diagram.

(a) For the open-loop system the transfer function is

G1(s) =
R

RCs+ 1
.

Thus,

SG1
R =

∂G1

∂R
· R

G1
=

1

RCs+ 1
.

For the closed-loop system, the transfer function is

T (s) =
G1

1 +KG1
=

R

RCs+ 1 +KR
.

Thus,

ST
R =

∂T

∂R
· R
T

=
1

RCs+ 1 +KR
,

and

ST
K =

∂T

∂K
· K
T

=
−KR

RCs+ 1 +KR
.

(b) For the open-loop system

∆H(s)

δH(s)
= 1 .

All disturbances show up directly in the output, thus the open-loop
system has no capability to reject disturbances. On the other hand,
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for the closed-loop system we have

∆H(s)

δH(s)
=

1

1 +KG1(s)
=

RCs+ 1

RCs+ 1 +KR
.

By selecting K large, we reduce the effects of any disturbances. For
example, consider a step disturbance. The steady-state error due to
the disturbance is

ess = lim
s→0

s

( −(RCs+ 1)

RCs+ 1 +KR

)

A

s
=

−A

1 +KR
.

As K gets larger, the steady-state error magnitude gets smaller, as
desired.

(c) Consider the step input

∆Q1(s) =
A

s
.

Then, for the open-loop system we have

ess = lim
s→0

s (1−G1)
A

s
= (1−R)A .

The steady-state error is zero when R = 1, but is sensitive to changes
in R. For the closed-loop system we have

ess = lim
s→0

s

(

1

1 +KG1

)

A

s
=

A

1 +KR
.

By selecting K large, the effect of the disturbance is reduced and is
relatively insensitive to changes in R.

P4.2 (a) The open-loop transfer function is

T (s) = KaG(s) .

Therefore, ST
K1

is undefined and

ST
Ka

= 1 .

The closed-loop transfer function is

T (s) =
KaG(s)

1 +KaK1G(s)
.

Therefore,

ST
K1

=
∂T

∂K1
· K1

T
=

−KaK1G(s)

1 +KaK1G(s)
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and

ST
Ka

=
1

1 +K1KaG(s)
.

(b) The tracking error, E(s) = θd(s)−θ(s) = −θ(s), since θd(s) = 0. The
transfer function from the wave disturbance to the output θ(s) is

θ(s) =
G(s)

1 +K1KaG(s)
Td(s) .

Consider a step disturbance input for the open- and closed-loop sys-
tems. For the open-loop system, we have

ess = − lim
s→0

sG(s)
A

s
= −A .

Thus, we see that the open-loop system does not have the capability
to reduce the effect of disturbances. For the closed-loop system, we
have

ess = lim
s→0

s

( −G(s)

1 +K1KaG(s)

)

A

s
=

−Aω2
n

1 +K1Kaω2
n

.

We see that the larger we make K1Ka, that smaller the effect of the
wave disturbance on the output in steady-state.

P4.3 (a) The open-loop transfer function is

G(s) =
K

τs+ 1

where K = k1kaEb. Then, computing the sensitivity yields

SG
K = 1 .

The closed-loop system transfer function is

T (s) =
K

τs+KKth + 1
.

Similarly, computing the sensitivity yields

ST
K =

1

1 +KthG(s)
=

τs+ 1

τs+ 1 +KKth
.

(b) For the closed-loop system

T (s) =
1/(τs + 1)

1 +KKth/(τs + 1)
Te(s) ≈

Te(s)
KKth
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when KKth ≫ 1. So, by choosing KKth large, we can reduce the
effect of the disturbance. This cannot be done with the open-loop
system.

(c) Consider the step input

Edes(s) =
A

s
.

The tracking error for the open-loop system is

E(s) = Edes(s)− T (s) .

Thus,

ess = lim
s→0

s

[

1− K

τs+ 1

](

A

s

)

= (1−K)A .

So, ess = 0 whenK = 1, but is sensitive to changes inK. The tracking
error for the closed-loop system is

E(s) =
τs+ 1 +K(Kth − 1)

τs+ 1 +KKth
Edes(s)

and

ess = lim
s→0

sE(s) = lim
s→0

s

(

τs+ 1 +K(Kth − 1)

τs+ 1 +KKth

)

A

s
=

A(1 +K(Kth − 1))

1 +KKth
.

Selecting Kth = 1 and K ≫ 1 reduces the steady-state error.

P4.4 (a) The overall transfer function is

T (s) =
Y (s)

R(s)
=

MG(s) + UQG(s)

1 +QG(s)
.

(b) From Eq. (4.16) in Dorf & Bishop, we have

ST
G = SN

G − SD
G .

In our case, we find that

SN
G = 1 ,

and

SD
G =

QG(s)

1 +QG(s)
.
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Thus,

ST
G = 1− QG(s)

1 +QG(s)
=

1

1 +QG(s)
.

(c) The sensitivity does not depend upon U(s) or M(s).

P4.5 The closed-loop transfer function is

T (s) =
G1G(s)

1 +G1G(s)
.

(a) The sensitivity of T (s) to changes in ka is

ST
ka =

1

1 +G1G(s)
.

(b) The transfer function from Td(s) to θ(s) is

θ(s) =
G(s)

1 +G1G(s)
Td(s) .

Since we want θ(s) due to a disturbance, E(s) = −θ(s) and

ess = lim
s→0

sE(s) = lim
s→0

s

( −G(s)

1 +G1G(s)

)

10

s
=

−10

ka
.

Since our maximum desired error magnitude is

ess =
0.10o · π

180
= 0.001745 rad ,

we select

ka ≥ 5730 .

(c) The open-loop transfer function is

θ(s) = G(s)Td(s) .

So,

ess = − lim
s→0

sG(s)

(

10

s

)

→ ∞ .

P4.6 The closed-loop transfer function is

T (s) =
G1G(s)

1 +G1G(s)
.
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(a) The sensitivity is

ST
Ke

=
1

1 +G1G(s)
=

(τ1s+ 1)(τes+ 1)

(τ1s+ 1)(τes+ 1) +K1Ke
.

(b) The speed is affected by the load torque through the transfer function

V (s) =
−KgG(s)

1 +GG1(s)
∆Td(s) .

(c) Let R(s) = 30/s , and KeK1 ≫ 1 . When the car stalls, V (s) = 0.
Using the final value theorem, we find

lim
s→0

s

( −KgG(s)

1 +GG1(s)

)

∆d

s
+ lim

s→0
s

(

G1G(s)

1 +GG1(s)

)

30

s

= −∆d

(

+KgKe

1 +KeK1

)

+ 30

(

K1Ke

1 +K1Ke

)

.

Since KeK1 ≫ 1, we have

Vss = −∆d

(

Kg

K1

)

+ 30 .

When Vss = 0, we have

∆d =
30K1

Kg
.

Thus, if

Kg

K1
= 2 ,

then ∆d = 15 percent grade ( i.e. ∆d = 15 ft rise per 100 ft horizon-
tally) will stall the car.

P4.7 (a) Let

G1(s) = k1 , G2(s) =
k2

s(τs+ 1)
, and H(s) = k3 + k4s .

Then the transfer function from TL(s) to Y (s) is

Y (s) = − G2(s)

1 +G1G2H(s)
TL(s) = − k2

s(τs+ 1) + k1k2(k3 + k4s)
TL(s) .

(b) The sensitivity of the closed-loop system to k2 is

ST
k2 =

1

1 +G1G2H(s)
,
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where T (s) is the closed loop transfer function

T (s) =
G1G2(s)

1 +G1G2H(s)
=

k1k2
s(τs+ 1) + k1k2(k3 + k4s)

.

(c) The error is given by

E(s) = R(s)− T (s)R(s) .

With

R(s) =
1

s
,

we have

ess = lim
s→0

s(1− T (s))
1

s
= 1− T (0) = 1− 1

k3
.

P4.8 (a) The sensitivity is

ST
K =

1

1 +GcG(s)
=

(0.1s + 1)(s2 + 20s + 180)

(0.1s + 1)(s2 + 20s + 180) + 180K
.

(b) The transfer function from Td(s) to Y (s) is

Y (s) =
G(s)

1 +GcG(s)
Td(s) =

180(0.1s + 1)

(0.1s + 1)(s2 + 20s+ 180) + 180K
Td(s) .

P4.9 (a) Computing the derivative of R with respect to i yields

dR

di
=

−0.201R

(i− 0.005)3/2
.

When vout = 35 volts, we have

i =
35

5000
= 7ma .

At the operating point i = 7 ma, we find from Figure P4.9(b) in Dorf
& Bishop that R ≈ 20K (note: If we use the given formula, we find
that R ≈ 8.2K when i = 7 ma, thus we see that the formula is just
an approximation to the plot). Using R = 20K, we have

dR

di
=

−0.402 × 104

0.896 × 10−4
= −45 kohms/ma .
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The transfer function (valid around the operating point) is

T (s) =
Vout(s)

Vin(s)
=

K

(sτ + 1) +K
(

45I
5

)

=
K

sτ + 1 + 9KI
.

The photosensor block diagram is shown in Figure P4.9.

-
+

K
ts + 1

1
545 I

i (ma)

vin vout

FIGURE P4.9
Photosensor block diagram.

(b) The sensitivity of the system to changes in K is

ST
K =

τs+ 1

τs+ 1 + 9KI
.

P4.10 (a) and (b) The paper tension control block diagram is shown in Fig-
ure P4.10.

-
+

T( s)
R(s ) K m

ts + 1

2
1
s

2
k 1

DT (s)

V 1 + DV 1(s)

-

+

-

+

Y (s)

E o( s) w
o( s)

k 3

k 2

FIGURE P4.10
Paper tension control block diagram.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 149

(c) The closed-loop transfer function, Tc, is given by

Tc(s) =
T (s)

R(s)
=

2Km

s(τs+1)

1 + 4Kmk2
k1s(τs+1)

=
2Km

τs2 + s+ 4Kmk2
k1

.

The sensitivity of Tc to changes in Km is

STc

Km
=

1

1 + 4Kmk2
k1s(τs+1)

=
s(τs+ 1)

τs2 + s+ 4Kmk2
k1

.

(d) The transfer function from ∆V1(s) to T (s) is

T (s) =
−1
s

1 + 4Kmk2
k1s(τs+1)

∆V1(s) =
−1

s+ 4Kmk2
k1(τs+1)

∆V1(s) .

When ∆V1(s) = A/s, we have

T (s) =
−(τs+ 1)

τs2 + s+ 4Kmk2
k1

A

s
.

and

lim
t→∞

T (t) = lim
s→0

sT (s) =
−Ak1
4Kmk2

.

P4.11 (a) The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

K

(8s + 1)(3s + 1) +K
=

K

24s2 + 11s + 1 +K
.

(b) The sensitivity ST
K is

ST
K =

∂T

∂K
· K
T

=
24s2 + 11s + 1

24s2 + 11s + 1 +K
.

(c) Define E(s) = R(s)− Y (s). Then

E(s) =
R(s)

1 +Gc(s)G(s)
=

[

24s2 + 11s + 1

24s2 + 11s +K + 1

]

R(s) .

With

R(s) =
A

s
,

we have

ess = lim
s→0

sE(s) =
A

1 +K
.
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(d) We want |e(t)| ≤ 0.02A as t → ∞ . So,

0.02A ≥ A

K + 1

implies

K ≥ 49 .

P4.12 (a) The two transfer functions are

T1(s) =
K1K2

s2 + 3s− 4 + 6K1K2

and

T2(s) =
K1K2

s2 + (3− 2K1 + 2K2)s − 4 + 8K2 + 2K1 − 4K1K2
.

When K1 = K2 = 1, we find that

T1(s) = T2(s) =
1

s2 + 3s+ 2
.

(b) The sensitivity ST1
K1

is

ST1
K1

=
∂T1

∂K1
· K1

T1
=

s2 + 3s− 4

s2 + 3s − 4 + 6K1K2
=

(s+ 4)(s − 1)

(s+ 2)(s + 1)
,

when K1 = K2 = 1. The sensitivity ST2
K1

is

ST2
K1

=
∂T2

∂K1
· K1

T2
=

s+ 4

s+ 4− 2K1
=

s+ 4

s+ 2
,

when K1 = 1. Thus,

ST1
K1

= ST2
K1

s− 1

s+ 1
.

P4.13 (a) Let N(s) = G1(s) + kG2(s) and Td(s) = G3(s) + kG4(s). Then

ST
k =

∂N

∂k
· k

N
− ∂D

∂k
· k

D
=

G2k

G1 + kG2
− G4k

G3 + kG4

=
k(G2G3 −G1G4)

(G1 + kG2)(G3 + kG4)
.

(b) The closed-loop transfer function is

T (s) =
MG(s) + kUG(s)

1 + kGH(s)
=

G1(s) + kG2(s)

G3(s) + kG4(s)
.
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Then using result from (a), we have

ST
k =

k(UG(s)−MG2H(s))

(MG(s) + kUG(s))(1 + kGH(s))
.

P4.14 The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)
=

10(s + 4)

s(s+ a)(s+ 1) + 10(s + 4)
.

Then

ST
a = SN

a − SD
a ,

where N is the numerator and D is the denominator. We have

SN
a = 0 .

Let

G(s) =
p(s)

q(s)(s + a)
,

where p(s) = 10(s + 4) and q(s) = s(s+ 1). Then

T (s) =
G(s)

1 +G(s)
=

p(s)

q(s)(s+ a) + p(s)
,

and

ST
a = −SD

a = −dD

da
· a

D
=

−aq(s)

q(s)(s + a) + p(s)
= − a

s+ a
· 1

1 +G(s)
.

P4.15 (a) The closed-loop transfer function for the disturbance to the output is

Y (s)

Td(s)
=

G(s)

1 +KG(s)
,

with R = 0. The steady-state deviation is

yss = lim
s→0

s

(

G(s)

1 +KG(s)

)

1

s
=

G(0)

1 +KG(0)
=

1

1 +K
.

So, with K = 10 we have yss = 1/11, and with K = 25 we have
yss = 1/26.

(b) Considering the rudder input, we have

Y (s) =
G(s)Td(s) +KG(s)R(s)

1 +KG(s)
=

G(s)(Td(s) +KR(s))

1 +KG(s)
.
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Setting R(s) = −Td(s)
K yields Y (s) = 0.

P4.16 (a) Let

G1(s) =
1

(τ1s+ 1)(τ2s+ 1)
and G2(s) =

G1(s)

100
.

Then

T2(s) =
G1(s)

1 +G2Gc(s)
To(s) +

G2Gc(s)

1 +G2Gc(s)
T2d(s) .

(b) We can equivalently consider the case of a step input, T2d = A/s,
To = 0, and zero initial conditions. Thus,

T2(s) =
GcG2

1 +GcG2
T2d =

5

500s2 + 60s + 6

A

s
,

where Gc(s) = 500. The transient response is shown in the Fig-
ure P4.16 for a unit step input (A = 1).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

time (sec)

T
2

Tp=34.3 sec

p.o. = 12.8% Ts=66.7 sec

Unit step response, A=1

FIGURE P4.16
Two tank temperature control system response.

(c) With

E(s) = T2d(s)− T2(s) ,
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we have

E(s) = T2d(s)−M(s)T2d(s)

where

M(s) =
G2Gc(s)

1 +G2Gc(s)
.

Then

ess = lim
s→0

s(1−M(s))
A

s
= (1−M(0))A = (1− 5

6
)A =

A

6
.

P4.17 (a) The closed-loop transfer function is

θ(s)

θd(s)
=

600

0.1s2 + s+ 600
=

6000

s2 + 10s + 6000
.

The solution for a step input is

θ(t) = 1− 1.0021e−5.0349t sin(77.2962t + 1.5058).

(b) The transfer function from the disturbance to the output is

θ(s)

Td(s)
=

−1

0.1s2 + s+ 600
.

Thus,

θss = − lim
s→0

sθ(s) =
A

600
.

Therefore, the disturbance input magnitude reduced by 600 at the
output.

(c) Using the final value theorem we have (for θd(s) = 1/s2 )

ess = lim
s→0

sE(s) = lim
s→0

s(1− T (s))θd(s)

= lim
s→0

s

(

0.1s2 + s

0.1s2 + s+ 600

)

1

s2
=

1

600
.
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Advanced Problems

AP4.1 The plant transfer function is

Gp(s) =
R

RCs+ 1
.

The closed-loop output is given by

H(s) =
1

1 +GGp(s)
Q3(s) +

GGp(s)

1 +GGp(s)
Hd(s) .

Therefore, with E(s) = Hd(s)−H(s), we have

E(s) =
−1

1 +GGp(s)
Q3(s) ,

since Hd(s) = 0.

(a) When G(s) = K, we have

ess = lim
s→0

sE(s) =
−1

1 +KR
.

(b) When G(s) = K/s, we have

ess = lim
s→0

sE(s) = 0 .

AP4.2 Define

G(s) =
KmGc(s)

s(Las+Ra)(Js+ f) +KmKbGc(s)
.

Then,

θ(s)/θd(s) =
nG(s)

1 + nG(s)

and

E(s) =
1

1 + nG(s)
θd(s) .

So,

ess = lim
s→0

sE(s) = lim
s→0

s
1

1 + nG(s)

A

s
=

A

1 + nG(0)
=

AKb

Kb + n
.
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When θd(s) = 0 and Td(s) = M/s, we have

θ(s)/Td(s) =
n(Las+Ra)

s(Las+Ra)(Js + f) +KmKb +KmGcn
.

If Gc(s) = K, then

ess =
−nMRa

Km(Kb + nK)

and if Gc(s) = K/s, we determine that ess = 0.

AP4.3 (a) The input R(s) is

R(s) =
1

s
− 1

s2

and the disturbance is Td(s) = 0. So,

ess = lim
s→0

s
1

1 +G(s)
R(s) = lim

s→0

1− 1
s

1 + 10(2s+4)
7s(s+5)

= −0.8750 .

(b) The error plot is shown in Figure AP4.3a.
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FIGURE AP4.3
(a) Error plot with d(t)=0.
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FIGURE AP4.3
CONTINUED: (b) Error plot with r(t)=0.

(c) The transfer function from Td(s) to Y (s) (with R(s) = 0 ) is

Y (s)/Td(s) =
−70

7s2 + 55s+ 40
.

The steady-state error due to a disturbance Td(s) = 1/s is

ess = lim
s→0

s
−70

7s2 + 55s + 40

1

s
= −1.75 .

(d) The error e(t) is shown in Figure AP4.3b.

AP4.4 (a) The closed-loop transfer function is

ω(s)/V (s) =
Km

RaJs2 +KbKms+KmKKt
.

With v(t) = t, we have V (s) = 1/s2, and Td(s) = 0. Using the final
value theorem yields

ess = lim
s→0

sE(s) = lim
s→0

1

s+ KKm

RaJs+KmKb

=
Kb

K
=

0.1

K
.

We desire that

ess =
0.1

K
< 0.1 .
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Therefore, we should select K > 1. For example, we can take K = 8.

(b) The transfer function from Td(s) to ω(s) is given by

ω(s)

Td(s)
=

−10s

s2 + 10s + 100
.

The error plot is shown in Figure AP4.4, where e(s) = −ω(s) (V (s) =
0.)
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FIGURE AP4.4
Error plot with a ramp disturbance input.

AP4.5 (a) The transfer function from the disturbance Td(s) to the output Y (s)
is

Y (s)

Td(s)
=

−s

s3 + 4s2 + 4s +K
.

The steady-state error (when Td(s) = 1/s) is

ess = lim
s→0

s
s

s3 + 4s2 + 4s+K

1

s
= 0 .
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(b) The closed-loop transfer function is

Y (s)

R(s)
=

K

s3 + 4s2 + 4s +K
.

The steady-state error (when R(s) = 1/s2) is

ess = lim
s→0

s(1− T (s))
1

s2
= lim

s→0

s3 + 4s2 + 4s

s(s3 + 4s2 + 4s+K)
=

4

K
.

(c) Let K = 8. Then,

Y (s)

Td(s)
=

−s

s3 + 4s2 + 4s+ 8
.

The error plot is shown in Figure AP4.5, for r(t) = 0.
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FIGURE AP4.5
Error plot with a step disturbance input and K=8.

AP4.6 (a) The transfer function is

Vo(s)

V (s)
=

1 +RCs

2 +RCs
.
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(b) The system sensitivity is defined as

SG
C =

∂G/G

∂C/C
.

Therefore, the sensitivity is determined to be

SG
C =

RCs

(2 +RCs)(1 +RCs)
=

1
(

1 + 2
RCs

) (

1 + 1
RCs

) .

(c) Let V (s) = 1/s. Then

Vo(s) =
1 +RCs

2 +RCs

1

s
=

0.5

s
+

0.5RC

RCs+ 2
.

Taking the inverse Laplace transform yields

vo(t) = 0.5(1 + e−2t/RC )u(t)

where u(t) is the unit step function. A plot of vo(t) versus t/RC is
shown in Figure AP4.6.
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FIGURE AP4.6
Step response.
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AP4.7 (a) The transfer function from Td(s) to Y (s) is

Y (s)

Td(s)
= − s

s(s+ 1) +K
.

(b) The transfer function from N(s) to Y (s) is

Y (s)

N(s)
=

K

s(s+ 1) +K
.

(c) Let Td(s) = A/s and N(s) = B/s. Then,

ess = −yss = lim
s→0

s
s

s(s+ 1) +K

A

s
− lim

s→0
s

K

s(s+ 1) +K

B

s
= −B .

So, K has no effect on the steady-state errors. However, choosing
K = 100 will minimize the effects of the disturbance Td(s) during the
transient period.

AP4.8 (a) The closed-loop transfer function is

T (s) =
Kb

s+Kb+ 2
.

(b) The sensitivity is determined to be

ST
b =

∂T/T

∂b/b
=

s+ 2

s+Kb+ 2
.

(c) The transfer function from Td(s) to Y (s) is

Y (s)

Td(s)
=

b

s+Kb+ 2
.

So, choose K as large as possible, to make Y (s)/Td(s) as “small” as
possible. Thus, select

K = 50 .

This also minimizes ST
b at low frequencies.
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Design Problems
The model of the traction drive, capstan roller, and linear slide was de-CDP4.1

veloped in CDP2.1:

θ(s)

Va(s)
=

Km

s [(Lms+Rm)(JT s+ bm) +KbKm]
.

The step response for the closed-loop system (with the tachometer not in
the loop) and various values of the controller gain Ka is shown below.

% System parameters

Ms=5.693; Mb=6.96; Jm=10.91e-03; r=31.75e-03;

bm=0.268; Km=0.8379; Kb=0.838; Rm=1.36; Lm=3.6e-03; Lm=0;

% Controller gain

Ka=100; 

% Motor and slide model

Jt=Jm+r^2*(Ms+Mb);

num=[Km];

den=[Lm*Jt Rm*Jt+Lm*bm Kb*Km+Rm*bm 0];

sys=tf(num,den);

%Closed-loop tf and step response

sys_cl=feedback(Ka*sys,[1]);

step(sys_cl)
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DP4.1 (a) The transfer function from the load disturbance to the output speed
is

ω(s)

Td(s)
=

−G(s)

1 +GcG(s)
=

−s

s2 + 4s+K
.

Thus, the effect on ω(s) (of a unit step disturbance) at steady-state
is

lim
t→∞

ω(t) = lim
s→0

s

( −s

s2 + 4s+K

)

1

s
= 0 .

We see that the load disturbance has no effect on the output at steady-
state.

(b) The system response for 10 ≤ K ≤ 25 is shown in Figure DP4.1.
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K=10,12,16,18,20,23,25

FIGURE DP4.1
Speed control system response.

For example , if we select K = 16, then ωn = 4, ζ = 1
2 , and the

response due to a unit step disturbance is

ω(s) =
−s

s2 + 4s + 16

(

1

s

)

=
−1

(s+ 2)2 + 12
.

Hence, if we are originally at ω(t) = 100 for t < τ , we have

ω(t) = 100 − 1√
12

e−2t sin
√
12t t ≥ τ .
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DP4.2 With θd = 0, we have

θ(s) =
G(s)

1 +G(s)KK1
s

Td(s) =
s

s3 + 4s2 + 9s +KK1
Td(s) .

For Td = A/s, we have

θ(s) =
A

s3 + 4s2 + 9s+KK1
.

The system response to a unit step disturbance for various values of KK1

are shown in Figure DP4.2. From the plot we see that when KK1 is small
the response is slow but not oscillatory. On the other hand, when KK1

is large the response is fast but highly oscillatory. In fact, if KK1 > 35,
the system is unstable. Thus, we might select KK1 = 10 as a reasonable
trade-off between fast performance and stability.
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KK1=1
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FIGURE DP4.2
Aircraft roll angle control system response to a disturbance.

DP4.3 (a) The closed-loop transfer function is

T (s) =
ω(s)

ωd(s)
=

K

s2 + 5s+KK1
.
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Then,

E(s) = (1− T (s))ωd(s) =
s2 + 5s+K(K1 − 1)

s2 + 5s+KK1

1

s
.

So, if

0.99 < K1 < 1.01 ,

then

|ess| < 0.01 .

(b) The transfer function from Td(s) to ω(s) is

ω(s) =
−s

s2 + 5s+KK1
Td(s) .

So, with E(s) = −ω(s) and Td(s) = 2/s2, we have

lim
s→0

sE(s) =
2

KK1
.

Therefore, we select KK1 > 20 to obtain ess < 0.1.

DP4.4 The steady-state error for a step input command is zero for any K1. The
transfer function from Td(s) to Y (s) is

Y (s)

Td(s)
=

G(s)

1 +KG(s)
=

2

s3 + 5s2 + 4s+ 2K
.

Thus, the output at steady-state due to a step disturbance Td(s) = A/s
is

lim
s→0

sY (s) =
A

K
.

We want to maximize K to reduce the effect of the disturbance. As we will
see in Chapter 6, we cannot select K too high or the system will become
unstable. That is why the problem statement suggests a maximum gain
of K = 10. For the design we choose

K = 10 .

DP4.5 The transfer function from V (s) to Vo(s) is

Vo(s)/V (s) =
ks

s+ a
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where

k =
R2 +R3

R2
and a =

1

R1C
.

Computing the step response, we find that

vo(t) = ke−at = 5e−100t .

Solving for R1, R2, R3 and C yields

R1C = 0.01 and
R2

R3
= 4 .

DP4.6 (a) The closed-loop transfer function is

θ(s) =
K/J

s2 +K/J
θd(s) .

Since J > 0, the system is unstable when K < 0 and marginally
stable when K > 0.

(b) Since the system is marginally stable, the system response does not
have a steady-state value—it oscillates indefinitely.

(c) The closed-loop transfer function is

θ(s) =
KDs+KP

Js2 +KDs+KP
θd(s) .

The system is stable for all KD > 0 and KP > 0, given that J > 0.

(d) The tracking error E(s) = θd(s)− θ(s) is

E(s) =
Js2

Js2 +KDs+KP
.

Therefore, using the final value theorem we obtain the steady-state
value

lim
s→0

sE(s) = lim
s→0

s
Js2

Js2 +KDs+KP
· 1
s
= 0 .

DP4.7 (a) The closed-loop transfer function is

Y (s) =
s

s2 +Ks+ 2K
Td(s) =

1

s2 +Ks+ 2K

where the disturbance is a unit step Td(s) = 1/s. Considering the
poles of the closed-loop system, we find that when K > 8 the system
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has two real poles. In that case the disturbance step response is

y(t) =
1√

K2 − 8K

(

e−αt − e−βt
)

,

where

α =
K −

√
K2 − 8K

2
and β =

K +
√
K2 − 8K

2

Bounding the maximum y(t) yields the inequality

|y(t)| = 1√
K2 − 8K

∣

∣

∣e−αt − e−βt
∣

∣

∣ ≤ 0.05.

We know that
∣

∣

∣e−αt − e−βt
∣

∣

∣ ≤ 1,

for any α and β computed as shown above where K > 8. So, if we
choose K such that

1√
K2 − 8K

≤ 0.05.

we will guarantee that the maximum bound of 0.05 is not exceeded.
Solving for K yields

K > 24.4.

For anyK > 24.4 we know that the maximum value of the disturbance
step response will be less than 0.05. When K = 24.4 the maximum
unit step disturbance response is 0.035. Solving explicitly for K so
that the maximum is 0.05 we find that K = 16.3 (this was found
numerically since it is very difficult to obtain analytically).

(b) Since the system is type 2, we know that the steady-state value of
the disturbance step response is zero for a unit step disturbance.

DP4.8 (a) The sensitivities are

ST
τ1 =

∂T/T

∂τ1/τ1
=

[

−s2 (τ2s+ 1) τ1
K

]

T (s)

and

ST
τ2 =

∂T/T

∂τ2/τ2
=

[

−s2 (τ1s+ 1) τ2
K

]

T (s)

where we assume that K 6= 0.
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(b) Computing the closed-loop transfer function yields

Y (s) =
s (τ1s+ 1)

s (τ1s+ 1) (τ2s+ 1) +K
Td(s)

When Td(s) = 1/s, using the final value theorem we find that

lim
s→0

sY (s) = lim
s→0

s (τ1s+ 1)

s (τ1s+ 1) (τ2s+ 1) +K
= 0

as long as K 6= 0. We assume here that final value theorem applies
(i.e., the system is stable, more on this in Chapter 6).

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



168 CHAPTER 4 Feedback Control System Characteristics

Computer Problems

CP4.1 The step response and an m-file script which generates the step response
is shown in Figure CP4.1. The closed-loop transfer function is

T (s) =
12

s2 + 2s+ 22
.

The percent overshoot is P.O. = 50.2% and the steady-state error is
ess = 0.45.

num = [12]; den = [1 2 10];

sys = tf(num,den);

sys_cl = feedback(sys,[1])

step(sys_cl)

Step Response
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System: sys_cl
Peak amplitude: 0.82
Overshoot (%): 50.2
At time (sec): 0.67

FIGURE CP4.1
Step response.

CP4.2 The transfer function is

G(s) =
4

s2 + 2s+ 20
.

Anm-file script which generates the step response is shown in Figure CP4.2.
The step response is also shown in Figure CP4.2. The step response is
generated using the step function. In the script, the transfer function
numerator is represented by num and the denominator is represented by
den. The steady-state value is yss = 0.2 and the desired value is 1.0.
Therefore, the steady-state error is

ess = 0.8 .
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num=[4]; den=[1 2 20]; 

sys = tf(num,den);

axis([0 6 0 1]);

t=[0:0.01:6];

step(sys,t) 

y = step(sys,t);

yss = y(length(t))

yss =

    0.20
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FIGURE CP4.2
Step response.

CP4.3 The step responses and the m-file script which generates the step re-
sponses is shown in Figure CP4.3.

K=[10,200,500];

t=[0:0.01:7];

for i=1:3

   num=5*K(i); den=[1 15 K(i)];

   sys = tf(num,den)

   y(:,i)= step(sys,t);

end

plot(t,y(:,1),t,y(:,2),'--',t,y(:,3),':')

legend('K=10','K=200','K=500',-1)
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FIGURE CP4.3
Step responses for K = 10, 100, 500.
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CP4.4 (a,b) The m-file and plots are shown in Figure CP4.4.

ng=1;dg=[1 1.91 0];sysg=tf(ng,dg);

K=10;

syscl=feedback(K*sysg,1);

figure(1)

subplot(211)

step(syscl)

subplot(212)

syst=feedback(sysg,K)

step(syst)
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Disturbance response

y(t)
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FIGURE CP4.4
Step response and disturbance response.

(c) The estimated steady-state tracking error due to a unit step input is
zero, and the estimated steady-state tracking error to a unit distur-
bance is 0.1.

(d) The estimated maximum tracking error due to a unit step input is
0.4, and the estimated maximum tracking error to a unit disturbance
is 0.14. The maximum occurs at approximately t = 1 s.

CP4.5 The step response and the m-file script which generates the step response
is shown in Figure CP4.5. The closed-loop transfer function is determined
to be

T (s) =
10

s2 + 3.7s + 10
.

Using the m-file script, a trial-and-error search on k yields

k = 3.7 .

The percent overshoot P.O. = 10% and the steady-state value is 1, as
expected.
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k = 3.7; % Final value of k=3.7

numcg = [10]; dencg = [1 k 0];

sys_o = tf(numcg,dencg);

sys_cl = feedback(sys_o,[1])

t = [0:0.1:5];

[y,t] = step(sys_cl,t);

plot(t,y,[0 5],[1.1 1.1],'--'); grid

xlabel('Time (sec)'); ylabel('y(t)');

Transfer function:

       10

----------------

s^2 + 3.7 s + 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8
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1.4

Time (sec)

y(
t)

FIGURE CP4.5
Step response.

CP4.6 The closed-loop transfer function is

T (s) =
K

s− a+K

where K = 2. When a = 1 and R(s) = 1/s, the final value is

lim
s→0

sT (s)R(s) = lim
s→0

T (s) =
K

K − a
= 2 .

The output is within 2% of the final value at around t = 4.6 seconds. The
plot of the step responses for

a = 1, 0.5, 2, 5

is shown in Figure CP4.6. The output is unstable for

a > 2.
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K=2; t=[0:0.1:5];

num=K*[1]; 

a=[1 0.5 2 5];

for i=1:4

 den=[1 -a(i)]; sys = tf(num,den);

 sys_cl = feedback(sys,[1]);

 y(:,i)=step(sys_cl,t);

end  

plot(t,y(:,1),t,y(:,2),':',t,y(:,3),'--',t,y(:,4),'-.')

axis([0 5 0 5]);

xlabel('Time (sec)'), ylabel('y(t)')

title('a=1 (solid); a=0.5 (dotted); a=2 (dashed); a=5 (dashdot)')
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FIGURE CP4.6
Step response for a=1, 0.5, 2, and 5.

CP4.7 The transfer function from the disturbance to the output is

T (s) =
G(s)

1 +K0G(s)
=

1

Js2 + bs+ k +K0
.

The disturbance response is shown in Figure CP4.7. The compensated
system response is significantly reduced from the uncompensated system
response. The compensated system output is about 11 times less than the
uncompensated system output. So, closed-loop feedback has the advan-
tage of reducing the effect of unwanted disturbances on the output.
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J=1; k=5; c=0.9;

num=[1/J]; den=[1 c/J k/J];

sys = tf(num,den);

t=[0:0.1:10];

% 

yu=step(sys,t);  % Part (a)

K0=50;

numk=[K0]; denk=[1]; sysk = tf(numk,denk);

sys_cl = feedback(sys,sysk);

yc=step(sys_cl,t);  % Part (b)

plot(t,yu,t,yc,'--')

xlabel('Time (sec)'), ylabel('\theta')

title('Uncompensated response (solid) & Compensated response (dashed)')
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FIGURE CP4.7
Disturbance responses for both the uncompensated and compensated systems.

CP4.8 The step responses for the proportional and PI controller are shown in
Figure CP4.8. The steady-state tracking error for the proportional con-
troller is

ess = 0.33 .

Increasing the complexity of the controller from a proportional controller
to a proportional plus integral (PI) controller allows the closed-loop sys-
tem to track the unit step response with zero steady-state error. The cost
is controller complexity, which translates into higher costs ($).
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numg=[10]; deng=[1 10]; sysg = tf(numg,deng);

t=[0:0.001:0.5];

% Part (a)

numc=[2]; denc=[1]; sysc = tf(numc,denc);                         

sys_o = series(sysc,sysg);

sys_cl = feedback(sys_o,[1]);

yk=step(sys_cl,t);

% Part (b)

numc=[2 20]; denc=[1 0]; sysc = tf(numc,denc);

sys_o = series(sysc,sysg);

sys_cl = feedback(sys_o,[1]);

yp=step(sys_cl,t);

%

plot(t,yk,t,yp,'--')

xlabel('Time (sec)'),ylabel('y(t)')

title('Proportional controller (solid) & PI controller (dashed)')
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Proportional controller (solid) & PI controller (dashed)

FIGURE CP4.8
Step response for proportional controller and PI controller.

CP4.9 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)H(s)
R(s) =

10s2 + 500s

s2 + 200s + 5000
R(s) .

The step response is shown in Figure CP4.9a.
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(b) The response of the system to the sinusoidal disturbance

N(s) =
100

s2 + 100

is shown in Figure CP4.9b.

(c) In the steady-state, the magnitude of the peak response is 0.095 and
the frequency is 10 rad/sec (see Figure CP4.9b).
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% Part (a)

ng=10*[1 0]; dg=[1 100]; sysg=tf(ng,dg);

nh=[5]; dh=[1 50]; sysh=tf(nh,dh);

sys=feedback(sysg,sysh)

figure(1)

step(sys)

% Part (b)

sysn=-feedback(sysg*sysh,1)

syss=tf([100],[1 0 100]); 

% This is the sinusoidal input

figure(2)

t=[0:0.001:7];

step(syss*sysn,t)

>>  

Transfer function:

  10 s^2 + 500 s

------------------

s^2 + 200 s + 5000

(a)

(b)

FIGURE CP4.9
(a) Unit step response. (b) Response to sinusoidal noise input at ω = 10 rad/sec.

CP4.10 (a) The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +G(s)Gc(s)
R(s) =

K(s+ 1)

(s+ 15)(s2 + s+ 6.5) +K(s+ 1)
R(s) .

(b) The step responses are shown in Figure CP4.10a.
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(c) The unit disturbance response of the system is shown in Figure CP4.10b.
The steady-state value is 0.14.
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FIGURE CP4.10
(a) Unit step responses for K = [5, 10, 50]. (b) Disturbance unit step response.

CP4.11 The m-file is shown in Figure CP4.11a and the step responses in Fig-
ure CP4.11b.

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

5

Time (s)

S
te

p
 r

e
sp

o
n

se

 

 
K=10

K=12

K=15

K=[10, 12, 15];

t=[0:0.1:20];

ng=[20]; dg=[1 4.5 64]; sysg=tf(ng,dg);

nh=[1]; dh=[1 1]; sysh=tf(nh,dh);

for i=1:length(K)

   sys=K(i)*sysg;

   syscl=feedback(sys,sysh)

   y(:,i)= step(syscl,t);

end

plot(t,y(:,1),t,y(:,2),'--',t,y(:,3),':')

xlabel('Time (s)')

ylabel('Step response')

legend('K=10','K=12','K=15',-1)

(a) (b)

FIGURE CP4.11
(a) M-file script. (b) Unit step responses for K = [10, 12, 15].
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C H A P T E R 5

The Performance of Feedback

Control Systems

Exercises

E5.1 For a zero steady-state error, when the input is a step we need one inte-
gration, or a type 1 system. A type 2 system is required for ess = 0 for a
ramp input.

E5.2 (a) The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

G(s)

1 +G(s)
=

240

(s+ 4)(s + 6) + 240
=

240

s2 + 2ζωns+ ω2
n

.

The steady-state error is given by

ess =
A

1 +Kp
,

where R(s) = A/s and

Kp = lim
s→0

G(s) =
240

24
= 10 .

Therefore,

ess =
A

11
.

(b) The closed-loop system is a second-order system with natural fre-
quency

ωn =
√
264 ,

177
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and damping ratio

ζ =
10

2
√
264

= 0.31 .

The percent overshoot is thus computed to be

P.O. = 100e−πζ/
√

1−ζ2 = 36% .

E5.3 The closed-loop transfer function is

Y (s)

I(s)
=

G(s)

1 +G(s)
=

K

s(s+ 14) +K
=

K

s2 + 14s+K
.

Utilizing Table 5.6 in Dorf & Bishop, we find that the optimum coefficients
are given by

s2 + 1.4ωns+ ω2
n .

We have

s2 + 14s+K ,

so equating coefficients yields ωn = 10 and K = ω2
n = 100 . We can also

compute the damping ratio as

ζ =
14

2ωn
= 0.7 .

Then, using Figure 5.8 in Dorf & Bishop, we find that P.O. ≈ 5%.

E5.4 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)
=

2(s+ 8)

s2 + 6s+ 16
.

(b) We can expand Y (s) in a partial fraction expansion as

Y (s) =
2(s + 8)

(s2 + 6s+ 16)

A

s
= A

(

1

s
− s+ 4

s2 + 6s + 16

)

.

Taking the inverse Laplace transform (using the Laplace transform
tables), we find

y(t) = A[1− 1.07e−3t sin(
√
7t+ 1.21)] .

(c) Using the closed-loop transfer function, we compute ζ = 0.75 and
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ωn = 4. Thus,

a

ζωn
=

8

3
= 2.67 ,

where a = 8. From Figure 5.13(a) in Dorf & Bishop, we find (approx-
imately) that P.O. = 4% .

(d) This is a type 1 system, thus the steady-state error is zero and y(t) →
A as t → ∞.

E5.5 The closed-loop transfer function is

Y (s)

R(s)
=

K

s2 + 4s+K
.

Utilizing Table 5.6 in Dorf & Bishop, we find that the optimum coefficients
are given by

s2 + 1.4ωns+ ω2
n .

We have

s2 + 4s +K ,

so equating coefficients yields ωn = 2.86 and K = ω2
n = 8.16 . We can

also compute the damping ratio as

ζ =
4

2ωn
= 0.7 .

Then, using Figure 5.8 in Dorf & Bishop, we find that P.O. ≈ 5%.

E5.6 (a) The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

G(s)

1 +GH(s)
=

100

s2 + 100Ks + 100
,

where H(s) = 1 + Ks and G(s) = 100/s2. The steady-state error is
computed as follows:

ess = lim
s→0

s[R(s)− Y (s)] = lim
s→0

s[1− T (s)]
A

s2

= lim
s→0

[

1−
100
s2

1 + 100
s2

(1 +Ks)

]

A

s
= KA .

(b) From the closed-loop transfer function, T (s), we determine that ωn =
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10 and

ζ =
100K

2(10)
= 5K .

We want to choose K so that the system is critically damped, or
ζ = 1.0. Thus,

K =
1

5
= 0.20 .

The closed-loop system has no zeros and the poles are at

s1,2 = −50K ± 10
√

25K2 − 1 .

The percent overshoot to a step input is

P.O. = 100e
−5πK√
1−25K2 for 0 < K < 0.2

and P.O. = 0 for K > 0.2.

E5.7 The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

KG(s)

1 +KG(s)
=

K(s+ 2)

s(s+ 1) +K(s+ 2)
=

K(s+ 2)

s2 + s(K + 1) + 2K
.

Therefore, ωn =
√
2K and ζ = K+1

2
√
2K

. So,

a

ζωn
=

4

K + 1
.

From Figure 5.13a in Dorf & Bishop, we determine that

a

ζωn
≈ 1.5

when ζ = 0.707. Thus, solving for K yields

4

K + 1
= 1.5

or K = 1.67.

E5.8 The pole-zero map is shown in Figure E5.8. Since the dominant poles are
at s = −2 ± 2.45i we have a damping ratio ζ = 0.63. We estimate the
percent overshoot to be

P.O. = 100e−πζ/
√

1−ζ2 = 7.69%

The step response is shown in Figure E5.8b. The actual overshoot is 8%.
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Pole−Zero Map
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FIGURE E5.8
(a) Pole-zero map. (b) Unit step response.

E5.9 (a) The closed-loop transfer function is

T (s) =
K

s2 +
√
2Ks+K

.
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The damping ratio is ζ =
√
2/2 and the natural frequency is ωn =√

K. Therefore, we compute the percent overshoot to be

P.O. = 100e−πζ/
√

1−ζ2 = 4.3%

for ζ = 0.707. The settling time is estimated via

Ts =
4

ζωn
=

8√
2K

.

(b) The settling time is less than 1 second whenever K > 32.

E5.10 The second-order closed-loop transfer function is given by

T (s) =
ω2
n

s2 + 2ζωns+ ω2
n

.

From the percent overshoot specification, we determine that P.O. ≤ 5%
implies ζ ≥ 0.69. From the settling time specification, we find that Ts < 4
implies ωnζ > 1. And finally, from the peak time specification we have
Tp < 1 implies ωn

√

1− ζ2 > π. The constraints imposed on ζ and ωn by
the performance specifications define the permissible area for the poles of
T (s), as shown in Figure E5.10.
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desired

region

for poles

z w
n
 = -1

w
n 1-z2 = - P

w
n 1-z2 = P

46o

z  = 0.69

FIGURE E5.10
Permissible area for poles of T (s).

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Exercises 183

E5.11 The system is a type 1. The error constants are

Kp = ∞ and Kv = 1.0 .

Therefore, the steady-state error to a step input is 0; the steady-state
error to a ramp input is 1.0A0, where A0 is the magnitude (slope) of the
ramp input.

E5.12 (a) The tracking error is given by

E(s) =
R(s)

1 +GcG(s)
=

(s + 9)(s + 2)(s + 4)

(s+ 9)(s + 2)(s + 4) +K(s+ 6)
R(s) .

The steady-state tracking error (with R(s) = 1/s) is

lim
s→0

sE(s) =
72

72 + 6K
.

We require ess < 0.05, so solving for K yields K > 228.

(b) The tracking error due to the disturbance is

E(s) =
−G(s)

1 +GcG(s)
Td(s) =

−(s+ 9)(s + 6)

(s+ 9)(s + 2)(s+ 4) +K(s+ 6)
Td(s) .

The tracking error is shown in Figure E5.12.
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FIGURE E5.12
Tracking error due a step disturbance.
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E5.13 The system is a type 0. The error constants are Kp = 0.4 and Kv = 0.
The steady-state error to a ramp input is ∞. The steady-state error to a
step input is

ess =
1

1 +Kp
= 0.71.

E5.14 (a) The tracking error is given by

E(s) = [1− T (s)]R(s) .

The steady-state tracking error (with R(s) = 1/s) is

ess = lim
s→0

s [1− T (s)]R(s) = lim
s→0

[1− T (s)] = 1− T (0) .

The closed-loop transfer function is

T (s) =
K(s+ 0.1)

s(s+ 0.1)(s + 2) +K(s+ 3)
,

and T (0) = 0.033. Therefore, ess = 1− T (0) = 0.967.

(b) Use Gp(s) = 30. Then,

ess = lim
s→0

s [1− T (s)Gp(s)]R(s) = 1−lim
s→0

T (s)Gp(s) = 1−30 T (0) = 0 .

E5.15 The plot of y(t) is shown in Figure E5.15.
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FIGURE E5.15
Plot of y(t) with T (s) (solid line) and approximate Ta(s) (dashed line).
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Using the dominant poles, the approximate closed-loop transfer function
is

Ta(s) =
50

s2 + 10s+ 50
.

The actual transfer function is

T (s) =
500

(s+ 10)(s2 + 10s+ 50)
.

E5.16 The partial fraction expansion is

y(t) = −10(z − 1)

7z
e−t +

10(z − 8)

56z
e−8t + 1.25 .

The plot of y(t) for z = 2, 4, 6 is shown in Figure E5.16.
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FIGURE E5.16
Plot of y(t) for z=2, 4, 6.

E5.17 The desired pole locations for the 5 different cases are shown in Fig-
ure E5.17.
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FIGURE E5.17
Desired pole locations.
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(d)  0.707 > z  and 5 < wn <10
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FIGURE E5.17
CONTINUED: Desired pole locations.

E5.18 The output is given by

Y (s) = T (s)R(s) = K
G(s)

1 +G(s)
R(s) .

When K = 1, the steady-state error is

ess = 0.2

which implies that

lim
s→0

sY (s) = 0.8 .
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Since we want ess = 0, it follows that

lim
s→0

sY (s) = 1 ,

or

0.8K = 1 .

Therefore, K = 1.25.

E5.19 (a) The characteristic equation is

s2 = 2ζωns+ ω2
n = s2 + 3.17s + 7 = 0 ,

from which it follows that

ωn =
√
7 = 2.65, ζ =

3.17

2ωn
= 0.6 .

Therefore, we compute the percent overshoot and the estimated set-
tling time to be

P.O. = 100e−πζ/
√

1−ζ2 = 9.53% and Ts =
4

ζωn
= 2.5 s .

(b) The unit step response is shown in Figure E5.19.
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FIGURE E5.19
Unit step response.
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E5.20 (a) The closed-loop transfer function is

T (s) =
K

s2 +
√
2Ks+K

.

The damping ratio is

ζ =

√
2

2

and the natural frequency is ωn =
√
K. Therefore, we compute the

percent overshoot to be

P.O. = 100e−πζ/
√

1−ζ2 = 4.3%

for ζ = 0.707. The settling time is estimated via

Ts =
4

ζωn
=

8√
2K

.

(b) The settling time is less than 1 second whenever K > 32.
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Problems

P5.1 (a) The system error is

E(s) =
1

1 + KaKm

sτm+1

R(s)

where

R(s) =
25o/sec

s
.

So,

lim
t→0

e(t) = lim
s→0

sE(s) =
25

1 +KaKm
.

(b) If we desire ess ≤ 1o/sec, then

25o/s

1 +KaKm
≤ 1o/sec ,

and solving for KaKm yields

KaKm ≥ 24 .

(c) The closed-loop transfer function is

T (s) =
Vb(s)

Vc(s)
=

KaKm

sτm + 1 +KaKm
.

The step response of the system (i.e. vc(t) = A) is

vb(t) =
AKaKm

1 +KaKm

(

1− e
−(KaKm+1)

τm
t
)

.

So, at settling time, we have

1− e
−(1+KaKm)

τm
t ≥ 0.98 ,

where τm = 0.4. Setting t = 0.03 and solving for KaKm yields

KaKm ≥ 52 .

P5.2 (a) The settling time specification

Ts =
4

ζωn
< 0.6
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is used to determine that ζωn > 6.67. The P.O. < 20% requirement
is used to determine

ζ < 0.45 which implies θ < 63o

and the P.O. > 10% requirement is used to determine

ζ > 0.60 which implies θ > 53o,

since cos θ = ζ. The desired region for the poles is shown in Fig-
ure P5.2.

Re(s)

Im(s)

s = -6.67

63
o

desired

region

for poles

53
o

FIGURE P5.2
Desired region for pole placement.

(b) The third root should be at least 10 times farther in the left half-
plane, so

|r3| ≥ 10|ζωn| = 66.7 .

(c) We select the third pole such that r3 = −66.7. Then, with ζ = 0.45
and ζωn = 6.67, we determine that ωn = 14.8. So, the closed-loop
transfer function is

T (s) =
66.7(219.7)

(s+ 66.7)(s2 + 13.3s + 219.7)
,

where the gain K = (66.7)(219.7) is chosen so that the steady-state
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tracking error due to a step input is zero. Then,

T (s) =
G(s)

1 +G(s)
,

or

G(s) =
T (s)

1− T (s)
.

P5.3 Given the input

R(s) =
1

s3
,

we compute the steady-state error as

ess = lim
s→0

s

(

1

1 +G(s)

)

1

s3
= lim

s→0

(

1

s2G(s)

)

= lim
s→0





1

s2
(

K
s2

)



 =
1

K
.

Since we require that ess ≤ 0.5 cm, we determine

K ≥ 2 .

P5.4 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)
=

K

s2 + 2s+K
=

ω2
n

s2 + 2ζωns+ ω2
n

.

Thus,

ωn =
√
K and ζ = 1/ωn = 1/

√
K .

Our percent overshoot requirement of 5% implies that ζ = 1/
√
2 ,

which in turn implies that ωn =
√
2. However, the corresponding

time to peak would be

Tp =
4.4√
2
= 3.15 .

Our desired Tp = 1.1—we cannot meet both specification simultane-
ously.

(b) Let Tp = 1.1∆ and P.O. = 0.05∆, where ∆ is the relaxation factor
to be determined. We have that K = ω2

n and ζωn = 1, so

ζ =
1√
K

.
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Thus,

P.O. = e−πζ/
√

1−ζ2 = e−π/
√
K−1 .

Also,

Tp =
π√

K − 1
= 1.1∆ .

Therefore, from the proceeding two equations we determine that

P.O. = 0.05∆ = e−1.1∆ .

Solving for ∆ yields

f(∆) = ln∆ + ln(0.05) + 1.1∆ = 0 .

The plot of f(∆) versus ∆ is shown in Figure P5.4. From the plot we
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-5

-4

-3

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5 3

*

D

f(
D

)

 D=2.07

FIGURE P5.4
Solving for the zeros of f.

see that ∆ = 2.07 results in f(∆) = 0. Thus,

P.O. = 0.05∆ = 10%

Tp = 1.1∆ = 2.3 sec.
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So, we can meet the specifications if they are relaxed by a factor of
about 2 (i.e. ∆ = 2.07).

P5.5 (a) The closed-loop transfer function is

T (s) =
K1K2(s+ 1)

s2 +K1K2s+K1K2
.

A percent overshoot less than 5% implies ζ ≥ 0.69. So, choose ζ =
0.69. Then set 2ζωn = K1K2 and ω2

n = K1K2. Then

2(0.69)ωn = ω2
n ;

and solving for ωn yields

ωn = 1.38 .

Therefore K1K2 = ω2
n = 1.9. When K1K2 ≥ 1.9 it follows that

ζ ≥ 0.69.

(b) We have a type 2 system, so the steady-state tracking error to both
a step and ramp input is zero.

(c) For a step input, the optimum ITAE characteristic equation is

s2 + 1.4ωns+ ω2
n = 0 .

For a ramp input, the optimum ITAE characteristic equation is

s2 + 3.2ωns+ ω2
n = 0 .

Thus, K1K2 = ω2
n = 3.2ωn. So, ωn = 3.2 and K1K2 = 10.24.

P5.6 We have a ramp input, r(t) = t. So

Kv = lim
s→0

sG(s) = lim
s→0

s

[

75(s + 1)

s(s+ 5)(s + 25)

]

=
75

125
= 0.6 ,

and

ess =
|R|
Kv

=
1

0.6
= 1.67 .

P5.7 (a) The closed-loop transfer function is

T (s) =
K1K2

Is2 +K1K2K3s+K1K2
.

The steady-state tracking error for a ramp input is

ess = lim
s→0

sE(s) = lim
s→0

s(1− T (s))R(s) = lim
s→0

s(1− T (s))
1

s2
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= lim
s→0

Is+K1K2K3

Is2 +K1K2K3s+K1K2
= K3 .

But we desire ess = 0.01 m, so K3 = 0.01.

(b) For P.O. = 10%, we have ζ = 0.6. Also,

2ζωn =
0.01K1K2

25

and

ω2
n =

K1K2

25
.

Thus, solving for K1K2 yields K1K2 = 36× 104.

P5.8 (a) The closed-loop transfer function is

T (s) =
P (s)

R(s)
=

G(s)/s

1 +G(s)H(s)/s
=

20

s(s+ 40)
.

Therefore, the closed-loop system time constant is τ = 1/40 sec.

(b) The transfer function from Td(s) to the output P (s) is

P (s)

Td(s)
=

−G(s)

1 +G(s)H(s)/s
=

−20

s+ 40
.

The response to a unit step disturbance is

p(t) = −1

2
(1− e−40t) .

At settling time, p(t) = 0.98pss = −0.49. Thus, solving for t(= Ts)
we determine that Ts = 0.098 sec.

P5.9 We need to track at the rate

ω =
v

r
=

16000

2500
= 1.78× 10−3 radians/sec .

The desired steady-state tracking error is

ess ≤
1

10
degree = 0.1754 × 10−2 rad .

Therefore, with

ess =
|ω|
Kv

,
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we compute Kv as

Kv =
1.78× 10−3

0.1754 × 10−2
= 1.02 .

This assumes that the system is type 1.

P5.10 (a) The armature controlled DC motorblock diagram is shown in Fig-
ure P5.10.

-
+

K

K b

K m

R a + L a s

1

J s + b

w(s)R(s )

back emf

ampli!er

FIGURE P5.10
Armature controlled DC motor block diagram.

(b) The closed-loop transfer function is

T (s) =
ω(s)

R(s)
=

KG(s)

1 +KKbG(s)
,

where

G(s) =
Km

(Ra + Las)(Js+ b)
.

Thus,

T (s) =
K

s2 + 2s+ 1 +K
,

where Ra = La = J = b = Kb = Km = 1. The steady-state tracking
error is

ess = lim
s→0

s(R(s)− Y (s)) = lim
s→0

s

(

A

s

)

(1− T (s))

= A(1 − T (0)) =

(

1− K

1 +K

)

=
A

1 +K
.

(c) For a percent overshoot of 15%, we determine that ζ = 0.5. From
our characteristic polynomial we have 2ζωn = 2 and ωn =

√
1 +K.

Solving for ωn yields ωn = 2, thus K = 3.
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P5.11 (a) The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

K

s+K
.

To include the initial condition, we obtain the differential equation:

ẏ(t) +Ky(t) = Kr(t) .

Taking the Laplace transform yields:

sY (s)− y(to) +KY (s) = K

(

A

s

)

,

where y(to) = Q. Computing the inverse Laplace transform, L−1{Y (s)}
yields

y(t) = A(1− e−Kt) +Qe−Kt .

Also, the tracking error is given by

e(t) = A− y(t) = e−Kt(A−Q) .

Thus, the performance index, I is determined to be (for K > 0)

I =

∫ ∞

0
(A−Q)2e−2Ktdt = (A−Q)2

(

1

−2K

)

e−2Kt
∣

∣

∣

∞

0

=
(A−Q)2

2K
.

(b) The minimum I is obtained when K = ∞, which is not practical.

(c) Set K at the maximum value allowable such that the process does not
saturate. For example, if K = 50, then

I =
(A−Q)2

100
.

P5.12 The optimum ITAE transfer function for a ramp input is

T (s) =
3.25ω2

ns+ ω3
n

s3 + 1.75ωns+ 3.25ω2
ns+ ω3

n

.

The steady-state tracking error, ess = 0, for a ramp input. The step
response is shown in Figure P5.12 for ωn = 10. The percent overshoot is
P.O. = 39%, and the settling time is Ts = 0.72 s .
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FIGURE P5.12
Step input system response.

P5.13 The step responses for the actual system and the approximate system
are shown in Figure P5.13. It can be seen that the responses are nearly
identical.
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FIGURE P5.13
Closed-loop system step response: Actual T(s) (solid line) and second-order approximation
(dashed line).
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P5.14 Consider

L(s) =
2(c1s+ 1)

(s + 1)(s + 2)
.

After cancellation of like factors, we compute H(s)/L(s),

H(s)

L(s)
=

s3 + 7s2 + 24s + 24

(s+ 3)(s + 4)2(c1s+ 1)
.

Therefore,

M(s) = s3 + 7s2 + 24s + 24 , and

∆(s) = 2[c1s
3 + (7c1 + 1)s2 + (12c1 + 7)s+ 12] .

Then, following the procedure outlined in Section 5.10, we have

Mo(0) = 24, M1(0) = 24, M2(0) = 14, M3(0) = 6, and

∆0(0) = 24, ∆1(0) = (12c1+7)2, ∆2(0) = 2(2 · (7c1 +1)), ∆3(0) = 12c1 .

For q = 1:

M2 = 240, and

∆2 = 4[144c21 + 25] .

Then, equating ∆2 and M2, we find c1,

c1 = 0.493 .

So,

L(s) =
2(0.493s + 1)

(s+ 1)(s + 2)
=

0.986s + 2

s2 + 3s+ 2
=

0.986(s + 2.028)

(s + 1)(s + 2)
.

P5.15 The closed-loop transfer function is

T (s) =
K(s+ 1)

(s+ 4)(s2 + s+ 10) +K(s+ 1)
.

The percent overshoot as function of the gain,K, is shown in Figure P5.15.
It can be seen that the percent overshoot decreases as the gain increases
approaching a minimum around 85%. The larger the gain, the smaller the
percent overshoot. For a gain K ≈ 250, we have essentially minimized the
percent overshoot.
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FIGURE P5.15
Percent overshoot versus the gain, K.

P5.16 The open-loop transfer function is

G(s) =
10

(s+ 1)(50Cs + 1)
.

Define τ = 50C. Then, the closed-loop transfer function is

Vo(s)

Vin(s)
=

10

(s+ 1)(τs + 1) + 10
=

10/τ

s2 +
(

τ+1
τ

)

s+ 11
τ

.

With

ω2
n =

11

τ
and ζ =

1√
2
=

τ + 1

2τωn
,

we can solve for τ , yielding

τ2 − 20τ + 1 = 0 .

Therefore, τ = 19.95 and 0.05. For each value of τ we determine C as
follows: τ = 19.95 = 50C, implies C = 0.399F , and τ = 0.05 = 50C,
implies C = 1mF .
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P5.17 (a) The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

12K

s2 + 12s+ 12K
.

The percent overshoot specification P.O. ≤ 10% implies ζ ≥ 0.59.
From the characteristic equation we find that

ω2
n = 12K and ζωn = 6 .

Solving for K yields

2(0.59)
√
12K = 12 which implies that K = 8.6 .

So, any gain in the interval 0 < K < 8.6 is valid. The settling time is
Ts = 4/ζωn = 4/6 seconds and satisfies the requirement. Notice that
Ts is not a function of K.

(b) The sensitivity is

ST
K(s) =

1

1 +G(s)
=

s(s+ 12)

s2 + 12s + 120

when K = 10.

(c) The sensitivity at DC (s = 0) is

ST
K(0) = 0 .

(d) In this case, s = j2π ·1 beat/sec = j2π. So, the sensitivity at s = 2πj
is

|ST
K(j2π)| = 85.1084

110.31
= 0.77 .

P5.18 We select L(s) as

L(s) =
1

αs+ 1
,

then

H(s)

L(s)
=

6αs + 6

s3 + 6s2 + 11s+ 6
.

Therefore,

M(s) = 6αs + 6 ,
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and Mo(0) = 6, M1(0) = 6α, M2(0) = 0. Also,

∆(s) = s3 + 6s2 + 11s + 6 ,

and ∆o(0) = 6 , ∆1(0) = 11 , ∆2(0) = 12. So, computing M2 and ∆2

yields

M2 = 36α2 , and

∆2 = 49 .

Finally, equating M2 = ∆2 yields 36α2 = 49 , or

α = 1.167 .

Thus,

L(s) =
1

1.167s + 1
=

0.857

s+ 0.857
.

P5.19 (a) The closed-loop transfer function is

T (s) =
8

s3 + 6s2 + 12s + 8
.

(b) The second-order approximation is

L(s) =
1

d2s2 + d1s+ 1
,

where d1 and d2 are to be determined using the methods of Section
5.10 in Dorf & Bishop. Given

M(s) = 8d2s
2 + 8d1s+ 8

∆(s) = s3 + 6s2 + 12s + 8

we determine that

M2 = −128d2 + 64d21
M4 = 64d22
∆2 = 48

∆4 = 18 .

Equating M2 = ∆2 and M4 = ∆4, and solving for d1 and d2 yields

d1 = 1.35 and d2 = 0.53 .
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FIGURE P5.19
Closed-loop system step response: Actual T (s) (solid line) and second-order approximation
(dashed line).

Thus, the second-order approximation is

L(s) =
1

0.53s2 + 1.35s + 1
.

(c) The plot of the step response for the actual system and the approxi-
mate system is shown in Figure P5.19.

P5.20 The steady-state error is

ess = lim
s→0

(s+ 5)(s + 11) +K(1−K1)

(s+ 5)(s + 11) +K
=

55 +K(1−K1)

55 +K
.

To achieve a zero steady-state tracking error, select K1 as follows:

K1 = 1 +
55

K
.

P5.21 The closed-loop transfer function is

T (s) =
s+ a

s2 + (2k + a)s+ 2ak + 1
.
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(a) If R(s) = 1/s, we have the tracking error

E(s) = R(s)− Y (s) = [1− T (s)]R(s)

or

E(s) =
s2 + (2k + a− 1)s + 2ak + 1− a

s2 + (2k + a)s+ 2ak + 1
· 1
s
.

From the final value theorem we obtain

ess = lim
s→0

sE(s) =
2ak + 1− a

2ak + 1
.

Selecting k = (a− 1)/(2a) leads to a zero steady-state error due to a
unit step input.

(b) To meet the percent overshoot specification we desire ζ ≥ 0.69. From
T (s) we find ω2

n = 2ak + 1 and 2ζωn = 2k + a. Therefore, solving for
a and k yields

a = 1.5978 and k = 0.1871

when we select ζ = 0.78. We select ζ > 0.69 to account for the zero
in the closed-loop transfer function which will impact the percent
overshoot. With a and k, as chosen, we have

T (s) =
s+ 1.598

s2 + 1.972s + 1.598

and the step response yields P.O. ≈ 4%.

P5.22 The closed-loop transfer function is

T (s) =
2(2s + τ)

(s+ 0.2K)(2s + τ) + 4
.

(a) If R(s) = 1/s, we have the unit step response

Y (s) =
2(2s + τ)

(s+ 0.2K)(2s + τ) + 4

1

s
.

From the final value theorem we obtain

yss = lim
s→0

sY (s) =
2τ

0.2Kτ + 4
.

Selecting K = 10−20/τ leads to yss = 1 and a zero steady-state error
due to a unit step input.
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(b) The characteristic equation is

(s + 0.2K)(2s + τ) + 4 = 2s2 + (0.4K + τ)s+ 0.2Kτ + 4 = 0 .

So, with K = 10 − 20/τ , the natural frequency and damping ratio
are:

ωn =
√
τ and ζ =

τ2 + 4τ − 8

4τ3/2
.

The settling time and percent overshoot are found using the standard
design formulas

Tp =
π

ωn

√

1− ζ2
and P.O. = 100e−ζπ

√
1−ζ2

with ωn and ζ given above (as a function of τ). Since the closed-loop
system has a zero at s = −τ/2, the formulas for Tp and P.O. will
only be approximate. Also, note that for the closed-loop system poles
to be in the left half-plane (that is, all the poles have negative real
parts), we require that τ > 2

√
3 − 2 ≈ 1.4642. As seen in the next

chapter, this is the condition for stability. Having τ > 2
√
3−2 insures

that the damping ratio ζ is positive.
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Advanced Problems

AP5.1 (a) The steady-state error is

ess = lim
s→0

s(1− T (s))R(s) = 1− T (0) = 1− 108(3)

9(36)
= 0 .

(b) Assume the complex poles are dominant. Then, we compute

a

ζωn
= 0.75 ,

since a = 3, ζ = 0.67 and ωn = 6. Using Figure 5.13 in Dorf & Bishop,
we estimate the settling time and percent overshoot to be

P.O. = 45% and Ts =
4

ζωn
= 1 second .

(c) The step response is shown in Figure AP5.1. The actual settling time
and percent overshoot are

P.O. = 34.4% and Ts = 1.18 second .
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FIGURE AP5.1
Closed-loop system step response.
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AP5.2 The closed-loop transfer function is

T (s) =
5440(τzs+ 1)

s3 + 28s2 + (432 + 5440τz)s+ 5440
.

The closed-loop step responses are shown in Figure AP5.2. The perfor-
mance results are summarized in Table AP5.2.
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FIGURE AP5.2
Closed-loop system step responses.

τz Tr Ts P.O. closed-loop poles

0 0.16 0.89 32.7% p = −20, −4± 16j

0.05 0.14 0.39 4.5% p = −10.4, −8.77± 21.06j

0.1 0.10 0.49 0% p = −6.5, −10.74± 26.84j

0.5 0.04 1.05 29.2% p = −1.75, −13.12± 54.16j

TABLE AP5.2 Performance summary.

As τz increases from 0 to 0.1, the P.O. decreases and the response is faster
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and more stable. However, as τz is increased beyond 0.1, the P.O. and Ts

increase, although Tr continues to decrease.

AP5.3 The closed-loop transfer function is

T (s) =
1

τps3 + (1 + 2τp)s2 + 2s+ 1
.

The closed-loop step responses for τp = 0, 0.5, 2, 5 are shown in Fig-
ure AP5.3. The performance results are summarized in Table AP5.3.
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FIGURE AP5.3
Closed-loop system step responses.

τp Tr Ts P.O. closed-loop poles

0 4 5.8 0% p = −1, −1

0.5 3.6 7.4 4.75% p = −2.84, −0.58± 0.6j

2 4.6 22.4 27.7% p = −2.14, −0.18± 0.45j

5 6 45.8 46% p = −2.05, −0.07± 0.3j

TABLE AP5.3 Performance summary.
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As τp increases, the P.O., Tr and Ts also increase; adding the pole makes
the system less stable with more overshoot.

AP5.4 The system transfer function is

Y (s) =
15K

(s+ 5)(s + 7) + 15K
R(s) +

15

(s + 5)(s + 7) + 15K
Td(s) .

When considering the input response, we set Td(s) = 0, and similarly,
when considering the disturbance response, we set R(s) = 0. The closed-
loop step input and disturbance responses for K = 1, 10, 100 are shown in
Figure AP5.4. The performance results are summarized in Table AP5.4.
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FIGURE AP5.4
Closed-loop system input and disturbance responses (K=1: solid line, K=10: dotted line,
and K=100:dashed line).

K ess Ts P.O. |y/d|max

1 0.7 0.45 0% 0.3

10 0.19 0.6 17.3% 0.1

100 0.023 0.59 60.0% 0.01

TABLE AP5.4 Performance summary.
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The best value of the gain is K = 10, which is compromise between (i)
percent overshoot, and (ii) disturbance rejection and tracking error.

AP5.5 The system transfer function is

Y (s) =
50(s + α)(s + 2)

s(s+ 3)(s + 4) + 50(s + α)(s + 2)
R(s)

+
50s(s + 2)

s(s+ 3)(s + 4) + 50(s + α)(s + 2)
Td(s) .
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FIGURE AP5.5
Closed-loop system disturbance response.

When considering the input response, we set Td(s) = 0, and similarly,
when considering the disturbance response, we set R(s) = 0. The steady-
state tracking error is

ess = lim
s→0

s(1− T (s))R(s) = lim
s→0

1− 50(s + α)(s + 2)

s(s+ 3)(s + 4) + 50(s + α)(s + 2)
.

When α = 0, we have

ess = 1− 100

100 + 12
= 0.11 ,
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and, for α 6= 0

ess = 0 .

The closed-loop step input and disturbance responses for α = 0, 10, 100
are shown in Figure AP5.5. For disturbance rejection and steady-state
tracking error the best value of the parameter is

α = 100 .

However, when considering both the disturbance and input response we
would select the parameter

α = 10 ,

since it offers a good compromise between input response overshoot (about
5% for α = 10) and disturbance rejection/tracking error.

AP5.6 (a) The closed-loop transfer function is

T (s) =
KKm

KKm + s(s+KmKb + 0.01)
.

The steady-state tracking error for a ramp input R(s) = 1/s2 is

ess = lim
s→0

s(1− T (s))R(s)

= lim
s→0

s+KmKb + 0.01

KKm + s(s+KmKb + 0.01)

=
KmKb + 0.01

KKm
.

(b) With

Km = 10

and

Kb = 0.05 ,

we have

KmKb + 0.01

KKm
=

10(0.05) + 0.01

10K
= 1 .

Solving for K yields

K = 0.051 .
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(c) The plot of the step and ramp responses are shown in Figure AP5.6.
The responses are acceptable.
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FIGURE AP5.6
Closed-loop system step and ramp responses.

AP5.7 The performance is summarized in Table AP5.7 and shown in graphical
form in Fig. AP5.7.

K Estimated Percent Overshoot Actual Percent Overshoot

1000 8.8 % 8.5 %

2000 32.1 % 30.2 %

3000 50.0 % 46.6 %

4000 64.4 % 59.4 %

5000 76.4 % 69.9 %

TABLE AP5.7 Performance summary.
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FIGURE AP5.7
Percent overshoot versus K.

The closed-loop transfer function is

T (s) =
100K

s(s+ 50)(s + 100) + 100K
.

The impact of the third pole is more evident as K gets larger as the
estimated and actual percent overshoot deviate in the range 0.3% at K =
1000 to 6.5% at K = 5000.

AP5.8 The closed-loop transfer function is

T (s) =
K(s+ 2)

s2 + (23 +K)s+ 1
3 + 2K

.

Comparing T (s) to a second-order system we have

ωn =
√

1/3 + 2K

ζ =
2/3 +K

2
√

1/3 + 2K

For the closed-loop transfer function to have complex roots, we require
K2 − (20/3)K − (8/9) < 0. This occurs when −0.13 ≤ K ≤ 6.8. When
K = 1/3, we have the minimum ζ = 0.5, as shown in Figure AP5.8.
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FIGURE AP5.8
Damping ratio, ζ, versus K.

AP5.9 The closed-loop characteristic equation is

s4 + 40s3 + 375s2 +KP s+KI = 0.

The desired characteristic equation is

(s+ a)(s + b)(s2 +
√
2ωns+ ω2

n) = 0.

Expanding the desired characteristic equation and equating terms to the
actual characteristic equation yields

abω2
n = KI , ω2

n(a+ b) +
√
2abωn = KP

√
2(a+ b)ωn + ab = 375,

√
2ωn + a+ b = 40

This represents 4 equations with 5 unknowns (a, b, KP , KI , and ωn).
We can choose one variable as part of the controller design. Let KI =
0.1KP . Then, solving the 4 equations for the remaining 4 variables yields
a = 29.15, b = 0.1, KP = 1720, KI = 172, and ωn = 7.6. The resulting
Ts = 1.1s and P.O. = 6.4%, as shown in Figure AP5.9.
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Step Response
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FIGURE AP5.9
Step response for KP = 1720 and KI = 172.
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP5.1

Bishop is given by:

θ(s)

Va(s)
=

26.035

s(s+ 33.142)
,

where we neglect the motor inductance Lm. The closed-loop transfer func-
tion from the disturbance to the output is

θ(s)

Td(s)
=

26.035

s2 + 33.142s + 26.035Ka
.

For a unit step disturbance input the steady-state response is

θss =
1

Ka
.

Therefore, we want to use the maximum Ka while keeping the percent
overshoot less than 5%. The step response for the closed-loop system (with
the tachometer not in the loop) and Ka = 22 is shown below. Values of
Ka greater than 22 lead to overshoots greater than 5%.
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DP5.1 (a) The closed-loop transfer function is

φ(s)

φd(s)
=

12.2K

s(s+ 2.2)(s + 7) + 12.2K
=

12.2K

s3 + 9.2s2 + 15.4s + 12.2K
.

(b) For K = 0.7, we have the characteristic equation

s3 + 9.2s2 + 15.4s + 8.54 = 0 ,

with roots s1 = −7.23 and s2,3 = −0.98 ± 0.46j. For K = 3, we have
the characteristic equation

s3 + 9.2s2 + 15.4s + 36.6 = 0 ,

with roots s1 = −7.83 and s2,3 = −0.68 ± 2.05j. And for K = 6, we
have the characteristic equation

s3 + 9.2s2 + 15.4s + 73.2 = 0 ,

with roots s1 = −8.4 and s2,3 = −0.4± 2.9j.

(c) Assuming the complex conjugate pair are the dominant roots, we
expect the following:

(i) for K = 0.7: P.O.=0.13% and Tp = 6.8 sec

(ii) for K = 3: P.O.=35.0% and Tp = 1.5 sec

(iii) for K = 6: P.O.=65.2% and Tp = 1.1 sec

(d),(e) We select

K = 1.71

to have a P.O. = 16% and Tp = 2.18sec. All four cases (K =
0.7, 3, 6, 1.71) are shown in Figure DP5.1. In each case, the approxi-
mate transfer function is derived by neglecting the non-dominant real
pole and adjusting the gain for zero steady-state error. The approxi-
mate transfer functions are

TK=0.7(s) =
1.18

s2 + 1.965s + 1.18
=

0.7908

(s+ 0.98 + 0.46j)(s + 0.98 − 0.46j)

TK=3(s) =
4.67

s2 + 1.37s + 4.67
=

3.299

(s+ 0.68 + 2.05j)(s + 0.68 − 2.05j)

TK=6(s) =
8.71

s2 + 0.796s + 8.71
=

6.399

(s+ 0.4 + 2.9j)(s + 0.4− 2.9j)

TK=1.71(s) =
2.77

s2 + 1.679s + 2.77
=

1.458

(s+ 0.83 + 1.43j)(s + 0.83 − 1.43j)
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FIGURE DP5.1
Step responses (actual response:solid lines; approximate response: dotted lines).

DP5.2 The closed-loop transfer function is

T (s) =
Kω2

n

s3 + 2ζωns2 + ω2
ns+Kω2

n

,

where ζ = 0.6. From the second-order system approximation, we have

Tp =
π

ωn

√

1− ζ2
.

So, with ζ = 0.6 given, we should select ωn “large” to make Tp “small.”
Also, from the problem hint, let

0.2 < K/ωn < 0.4 .

As a first attempt, we can select ωn = 10. See Figure DP5.8 for various
values of K/ωn. Our final selection is

K = 3.33 and ωn = 10 .

This results in P.O. = 3.6% and Tp = 0.66 second.
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Closed-loop system response.

DP5.3 The closed-loop transfer function is

T (s) =
K

s2 + qs+K
.

From the ITAE specification, we desire

T (s) =
ω2
n

s2 + 1.4ωns+ ω2
n

.

But

2ζωn = 1.4ωn which implies ζ = 0.7 .

Since we want Ts ≤ 0.5, we require ζωn ≥ 8. So,

ωn ≥ 8

0.7
= 11.4 .

We can select ωn = 12. Then,

T (s) =
144

s2 + 16.8s + 144
.

Therefore, K = 144 and q = 16.8. The predicted percent overshoot is
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P.O. = 4.5%.

DP5.4 The loop transfer function is

Gc(s)G(s) =
10K

(s+ 70)(s + 3)(s + 7)
=

10K/70

(s/70 + 1)(s + 3)(s + 7)
.

The second-order approximation is obtained by neglecting the fastest first-
order pole. Thus,

Gc(s)G(s) ≈ K/7

(s+ 3)(s + 7)
.

The closed-loop transfer function is

T (s) =
K/7

s2 + 10s + 21 +K/7
.

When ζ ≥ 0.52, we have less than 15% overshoot. So, we have

2ζωn = 10

and

ωn =
√

21 +K/7.

Eliminating ωn and solving for K (with P.O. ≤ 15%) yields

K ≤ 500.19 .

Also,

Kp = lim
s→0

GGc(s) =
K

7(21)

and

ess =
1

1 +Kp
=

1

1 + K
147

< 0.12

implies

K ≥ 1078 .

Therefore, we have an inconsistency. We require 1078 ≤ K to meet the
steady-state requirement and K ≤ 500.18 to meet the percent overshoot
requirement. It is not possible to meet both specifications.
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DP5.5 The closed-loop characteristic equation is

1 +K1G1(s) +K2G1G2(s) = 1 +
K1

s(s+ 1)
− 2K2

s(s+ 1)(s + 2)
= 0

or

s3 + 3s2 + (2 +K1)s+ 2(K1 −K2) = 0 .

Assuming that K1 > 0 and K2 > 0, the range of the gains for stability is

0 < K2 < K1 .

DP5.6 The closed-loop transfer function is

T (s) =
K1

s2 + (K1K2 + 1)s +K1
.

The percent overshoot specification P.O. ≤ 2% is satisfied when ζ > 0.78.
The peak time specification Tp ≤ 0.5 s is satisfied when ωn = 10 and
ζ = 0.78. So, given

K1 = ω2
n and K1K2 + 1 = 2ζωn ,

we determine that the specifications are satisfied when

K1 = 100

and

K2 = 0.15 .

DP5.7 The plant is

G(s) =
2

s(s+ 1)(s + 4)

and the PD controller is

Gc(s) = KDs+KP .

The characteristic equation is

s3 + 6s2 + (8 + 2KD)s+ 2KP = 0.

The desired characteristic equation is

(s+ a)(s2 +2ζωns+ω2
n) = s3 + (2ζωn + a)s2 + (ω2

n +2ζωna)s+ aω2
n = 0.

Equating the desired characteristic equation to the actual characteristic
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equation yields

2ζωn + a = 6, ω2
n + 2ζωna = 8 + 2KD, aω2

n = 2KP ,

where ζ = 0.69 and ωn = 3 to meet the design specifications. This repre-
sents 3 equations in 3 unknowns (a, KD, andKP ). Solving yields a = 1.86,
KD = 4.35 and KP = 8.37. The step response is shown in Figure DP5.7.
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FIGURE DP5.7
Step response withKD = 4.35 and KP = 8.37.

DP5.8 The closed-loop transfer function is

T (s) =
K

s2 + 6s+ 5 +K

The damping ratio and natural frequency is

ζ =
3√

K + 5
and ωn =

√
K + 5

Using the design formulas for second-order systems we have

PO = 100e−ζπ/
√

1−ζ2 and Ts =
4

ζωn
.

We know that the formula for Ts is approximate and that the formulas
apply only to systems with ζ < 1. For K = 1 the closed-loop poles are
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both real, so there is no overshoot and the design formula for settling time
does not apply. Thus we obtain the results shown in Table DP5.8. We can
choose K = 10 as a good trade-off between percent overshoot, settling
time, and steady-state tracking error. The disturbance response is shown
in Figure DP5.8.

TABLE DP5.8 Step response for K=1, 10, and 20.

K % P.O. Ts, sec Ts, sec ess

Estimated Actual

1 0 - 3.24 0.83

10 2.13 1.33 1.38 0.33

20 9.48 1.33 1.19 0.20
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FIGURE DP5.8
Closed-loop system disturbance response for K = 10.
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Computer Problems

CP5.1 With the impulse input we have R(s) = 1. The transfer function is

Y (s) =
15

(s+ 3)(s + 5)
R(s) =

15

(s+ 3)(s + 5)
.

Therefore, taking the inverse Laplace transforms yields the output re-
sponse:

y(t) =
15

2
e−3t − 15

2
e−5t .

The impulse response and the analytic response is shown in Figure CP5.1.

n=15; d=[1 8 15];

t=[0:0.1:6];

ya=(15/2)*exp(-3.*t)-(15/2)*exp(-5.*t);

sys = tf(n,d)

y=impulse(sys,t);

plot(t,y,t,ya,'o')

xlabel('Time (sec)'), ylabel('y(t)'),  legend('Computer','Analytic',-1)
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FIGURE CP5.1
Impulse responses.
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CP5.2 The ramp response is shown in Figure CP5.2. The unity feedback system
is type 2, so that the steady-state tracking error is lim

t→∞
ess → 0.

n=[1 10]; d=[1 15 0 0];

t=[0:0.1:50];

sys= tf(n,d);

sys_cl = feedback(sys,[1]);

u=t;

lsim(sys_cl,u,t);
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FIGURE CP5.2
Ramp responses.

CP5.3 The m-file script and the four plots are shown in Figure CP5.3. The plots
can be compared to Figure 5.17 in Dorf & Bishop.
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FIGURE CP5.3
Impulse responses.
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w1=2; z1=0;

w2=2; z2=0.1;

w3=1; z3=0;

w4=1; z4=0.2;

t=[0:0.1:20];

%

num1=[w1^2]; den1=[1 2*z1*w1 w1^2];

sys1 = tf(num1,den1);

[y1,x1]=impulse(sys1,t);

%

num2=[w2^2]; den2=[1 2*z2*w2 w2^2];

sys2 = tf(num2,den2);

[y2,x2]=impulse(sys2,t);

%

num3=[w3^2]; den3=[1 2*z3*w3 w3^2];

sys3 = tf(num3,den3);

[y3,x3]=impulse(sys3,t);

%

num4=[w4^2]; den4=[1 2*z4*w4 w4^2];

sys4 = tf(num4,den4);

[y4,x4]=impulse(sys4,t);

%

clf

subplot(221),plot(t,y1),title('wn=2, zeta=0')

subplot(222),plot(t,y2),title('wn=2, zeta=0.1')

subplot(223),plot(t,y3),title('wn=1, zeta=0')

subplot(224),plot(t,y4),title('wn=1, zeta=0.2')

FIGURE CP5.3
CONTINUED: Impulse response m-file script.

CP5.4 The closed-loop system is

T (s) =
21

s2 + 2s+ 21
.

Therefore, the natural frequency is

ωm =
√
21 = 4.58

and the damping ratio is computed as

2ζωn = 2 ,

which implies

ζ = 0.218 .

The percent overshoot is estimated to be

P.O. = 100e−ζπ/
√

1−ζ2 = 50% ,

since ζ = 0.218. The actual overshoot is shown in Figure CP5.4.
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numc=[21]; denc=[1 0]; 

sysc = tf(numc,denc);

numg=[1]; deng=[1 2]; 

sysg = tf(numg,deng);

sys_o = series(sysc,sysg);

sys_cl = feedback(sys_o,[1])

step(sys_cl)
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FIGURE CP5.4
Impulse responses.

CP5.5 For a step input, the optimum ITAE characteristic equation is

s3 + 1.75ωs2 + 2.15ω2s+ ω3 = 0 .

Examining Figure 5.30 for n=3 in Dorf & Bishop, we estimate that

ωTs = 8.

So, once we decide on the desired Ts we can estimate ω. For this design we
let Ts=8 so that ω = 1. Computing the desired characteristic equation and
the actual characteristic equation and comparing the coefficients leads to
the following relationships:

p = 1.75ω − 2ζωn

K = (2.15ω2 − ω2
n − 2ζωnp)/ω

2
n

z = (ω3 − pω2
n)/(Kω2

n)

where ζ = 0.59 and ωn = 0.45. The controller and prefilter are

Gc(s) = 6.42
s + 0.58

s + 1.22
and Gp(s) =

1

1.3s + 0.75
.

The unit step response is shown in Figure CP5.5.
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wn=0.45; zeta=0.59

ng=wn^2; dg=[1 2*zeta*wn wn^2]; 

sysg=tf(ng,dg);

Ts=8; w=8/Ts;

p=1.75*w-2*zeta*wn;

K=(2.15*w^2-wn^2-2*zeta*wn*p)/wn^2;

z=(w^3-p*wn^2)/(K*wn^2);

nc=K*[1 z]; dc=[1 p]; sysc=tf(nc,dc);

sys=series(sysc,sysg); 

syscl=feedback(sys,1);

[num,den]=tfdata(syscl,'v');

sysp=tf([den(end)],num);

step(syscl*sysp)

Step Response

Time (sec)

A
m

pl
itu

de

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System: untitled1
Peak amplitude: 1.02
Overshoot (%): 1.98
At time (sec): 4.68

System: untitled1
Settling Time (sec): 7.54

FIGURE CP5.5
Closed-loop system step response m-file script.

CP5.6 The unit step response is shown in Figure CP5.6. The performance num-
bers are as follows: Mp = 1.16, Tp = 0.73, and Ts = 1.62.

numg=[25]; deng=[1 5 0];

sys = tf(numg,deng);

sys_cl = feedback(sys,[1]);

t=[0:0.01:2];

step(sys_cl,t);
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FIGURE CP5.6
Closed-loop system step response m-file script.
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CP5.7 The m-file script and the simulations are shown in Figure CP5.7.

% Part (a)

numc=[2]; denc=[1]; sys_c = tf(numc,denc); 

nums=[-10]; dens=[1 10]; sys_s = tf(nums,dens);

numg=[-1 -5]; deng=[1 3.5 6 0]; sys_g = tf(numg,deng);

sysa = series(sys_c,sys_s);

sysb = series(sysa,sys_g);

sys = feedback(sysb,[1]);

f=0.5*pi/180; % Convert to rad/sec

t=[0:0.1:10]; u=f*t;

[y,x]=lsim(sys,u,t);(y(length(t),1)-u(1,length(t)))*180/pi

subplot(211)

plot(t,y*180/pi,t,u*180/pi,'--'), grid

xlabel('Time (sec)'),ylabel('theta')

title('Constant gain C(s) = 2: theta (solid) & input (dashed)') 

% Part (b)

numc=[2 1]; denc=[1 0]; sys_c = tf(numc,denc); 

[numa,dena]=series(numc,denc,nums,dens);

sysa = series(sys_c,sys_s);

sysb = series(sysa,sys_g);

sys = feedback(sysb,[1]);

[y,x]=lsim(sys,u,t);(y(length(t),1)-u(1,length(t)))*180/pi

subplot(212), plot(t,y*180/pi,t,u*180/pi,'--'), grid

xlabel('Time (sec)'),ylabel('theta')

title('PI controller C(s) = 2 + 1/s: theta (solid) & input (dashed)') 
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PI controller C(s) = 2 + 1/s: theta (solid) & input (dashed)

FIGURE CP5.7
Closed-loop system response to a ramp input for two controllers.

For the constant gain controller, the attitude error after 10 seconds is
ess = −0.3 deg. On the other hand, the PI controller has a zero steady-
state error ess = 0 deg. So, we can decrease the steady-state error by
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using a more sophisticated controller, in this case a PI controller versus a
constant gain controller.

CP5.8 The closed-loop characteristic equation is

s3 + 12s2 + 610s + 500 = (s + 0.8324)(s2 + 11.1676s + 600.7027) = 0 .

The natural frequency and damping ratio of the complex roots are ωn =
24.5 and ζ = 0.23. From this we predict Mp = 1.48, Ts = 0.72, and
Tp = 0.13. The actual response is shown in Figure CP5.8. The differences

numg=[100 100]; deng=[1 2 100]; 

sysg = tf(numg,deng);

numc=[0.1 5]; denc=[1 0]; 

sysc = tf(numc,denc);

sys_o = series(sysg,sysc);

sys_cl = feedback(sys_o,[1])

t=[0:0.01:3];

step(sys_cl,t);

ylabel('theta dot')
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FIGURE CP5.8
Missile rate loop autopilot simulation.

can be explained by realizing that the system is not a second-order system.
The closed-loop system actually has two zeros, one real pole, and two
complex-conjugate poles:

T (s) =
(s+ 50)(s + 1)

(s + 0.8324)(s2 + 11.1676s + 600.7027)
.

The effect of the pole at s = −0.8324 is diminished by the zero at s = −1.
The third pole and the zeros affect the overall response such that the
analytic formulas for second-order systems are not exact predictors of the
transient response.
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CP5.9 Figure CP5.9 shows an m-file to compute the closed-loop transfer function
and to simulate and plot the step response.

numg=[10]; deng=[1 10]; sysg = tf(numg,deng);

numh=[0.5]; denh=[10 0.5]; sysh = tf(numh,denh);

sys = feedback(sysg,sysh)

step(sys);

 

Transfer function:

      100 s + 5

---------------------

10 s^2 + 100.5 s + 10
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FIGURE CP5.9
M-file to compute the transfer function and to simulate the step response.

CP5.10 Figure CP5.10 shows an m-file to compute the closed-loop transfer func-
tion and to simulate and plot the ramp response. The steady-state error

numg=[10]; deng=[1 20 75 0]; 

sysg = tf(numg,deng);

sys = feedback(sysg,1)

t=[0:0.1:100];

u=t; % Unit ramp input

lsim(sys,u,t);
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FIGURE CP5.10
M-file to compute the transfer function and to simulate the ramp response.

is 7.5.
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CP5.11 Figure CP5.11 shows an m-file to compute the closed-loop transfer func-
tion and to simulate and plot the impulse, step, and ramp responses.
Notice that the closed-loop system is unstable.

numg=[1]; deng=[1 2 0]; sysg = tf(numg,deng);

numc=[0.5 2]; denc=[1 0]; sysc = tf(numc,denc);

syss=series(sysg,sysc);

sys = feedback(syss,1)

t=[0:0.1:20];

subplot(311)

impulse(sys,t);

subplot(312)

step(sys,t);

subplot(313)

u=t; % Unit ramp input

lsim(sys,u,t);
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FIGURE CP5.11
M-file to compute the transfer function and to simulate the ramp response.

CP5.12 Figure CP5.12 shows an m-file to simulate and plot the step response
for the original system and the 2nd-order approximation. For the orig-
inal system, we find Ts = 2.28 and P.O. = 80.6%. For the 2nd-order
approximation we find Ts = 2.16 and P.O. = 101%
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num=77*[1 2]; den=conv([1 7],[1 4 22]); 

sys = tf(num,den)

na=(77/7)*[1 2]; da=[1 4 22]; sysa=tf(na,da);

t=[0:0.01:5];

y=step(sys,t);

ya=step(sysa,t);

plot(t,y,t,ya,'--')

xlabel('Time (s)'), ylabel('Step response')
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FIGURE CP5.12
Step response.
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C H A P T E R 6

The Stability of Linear Feedback

Systems

Exercises

E6.1 The Routh array is

s3 1 K + 1

s2 K 6

s1 b 0

so 6

where

b =
K(K + 1)− 6

K
.

For stability, we require K > 0 and b > 0. Therefore, using the condition
that b > 0, we obtain

K2 +K − 6 > 0 ,

and solving for K yields K > 2 and K < −3. We select K > 2, since we
also have the condition that K > 0.

E6.2 The Routh array is

s3 1 2

s2 10 30

s1 -1 0

so 30

The system is unstable since the first column shows two sign changes.

234
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E6.3 The Routh array is

s4 1 32 20

s3 10 37

s2 28.3 20

s1 29.9

s0 20

By the Routh-Hurwitz criterion, the system is stable (i.e., all the numbers
in the first column are positive).

E6.4 The closed-loop transfer function is

T (s) =
−K(s− 2)

s3 + 5s2 + (4−K)s+ 2K
.

Therefore, the characteristic equation is

s3 + 5s2 + (4−K)s+ 2K = 0 .

The corresponding Routh array is given by

s3 1 4−K

s2 5 2K

s1 b 0

so 2K

where

b =
5(4−K)− 2K

5
=

20− 7K

5
.

For stability we require K > 0 and b > 0 . Thus, the range of K for
stability is 0 < K < 20/7.

E6.5 The closed-loop transfer function is

T (s) =
K

s3 + 10s2 + 27s+ 18 +K
.

When K = 20, the roots of the characteristic polynomial are

s1,2 = −1.56 ± j1.76
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and

s3 = −6.88 .

E6.6 When K = 252, the roots of the characteristic equation are on the imag-
inary axis. The roots are

s1,2 = ±j5.2 and s3 = −10 .

E6.7 (a) The closed-loop system characteristic equation is

1 +GH(s) = 1 +
K(s+ 2)

s(s− 1)
= 0 ,

or

s2 + (K − 1)s+ 2K = 0 .

We have the relationships ωn =
√
2K and 2ζωn = K − 1, where

ζ = 0.707. Thus,

2

(

1√
2

)√
2K = K − 1 ,

or
(

2√
2

)2

=

(

K − 1√
2K

)2

,

and

K2 − 6K + 1 = 0 .

Solving for K yields K = 5.83 and K = 0.17. However, for stability
we require K > 1 (from the Routh array), so we select K = 5.83.

(b) The two roots on the imaginary axis when K = 1 are s1,2 = ±j
√
2.

E6.8 The closed-loop system characteristic equation is

3 + 20s2 + (100 +K)s+ 20K = 0 .

The corresponding Routh array is

s3 1 (100 +K)

s2 20 20K

s1 b 0

so 20K
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where

b =
20(100 +K)− 20K

20
=

20(100)

20
= 100 .

Therefore, the system is stable for all K > 0.

E6.9 The characteristic equation is

s3 + 2s2 + (K + 1)s+ 8 = 0 ,

and the Routh array is given by

s3 1 K + 1

s2 2 8

s1 b 0

so 8

where

b =
2(K + 1)− 8

2
= K − 3 .

Setting b = 0, yields

K − 3 = 0 or K > 3 .

E6.10 Stable with your eyes open and (generally) unstable with your eyes closed.

E6.11 The system is unstable. The poles are s1 = −5.66, s2 = −0.90 and s3,4 =
0.28 ± j0.714.

E6.12 The characteristic equation is

s2 + as+ b = 0,

so, the Routh array is

s2 1 b

s1 a 0

so b

The system is stable if and only if a > 0 and b > 0. For a second-order
system, a necessary and sufficient condition for stability is that all the
coefficients have the same sign.

E6.13 The characteristic equation is

s2 + (KD + 2)s + 4KP = 0.
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The Routh array is

s2 1 4KP

s1 KD + 2 0

so 4KP

The system is stable if and only if KP > 0 and KD > −2.

E6.14 The characteristic equation associated with the system matrix is

s3 + 3s2 + 5s+ 6 = 0 .

The roots of the characteristic equation are s1 = −2 and s2,3 = −5±j1.66.
The system is stable.

E6.15 The roots of q(s) are s1 = −4, s2 = −3, s3,4 = −1± j2 and s5,6 = ±j0.5.
The system is marginally stable. The Routh array is

s6 1 31.25 67.75 15

s5 9 61.25 14.75

s4 24.44 66.11 15

s3 31.909 9.2273 0

s2 60 15

s1 0 0

so

The auxillary equation is

60s2 + 15 = 0 .

Solving the auxillary equation yields two roots at s1,2 = ±j0.5. After
accounting for the row of zeros, the completed Routh array verifies that
the system has no poles in the right half-plane.

E6.16 The Routh array is

s4 1 45 50

s3 9 87

s2 35.33 50

s1 74.26 0

so 50

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Exercises 239

The system is stable. The roots of q(s) are s1,2 = −3 ± j4, s3 = −2 and
s4 = −1.

E6.17 The characteristic equation is

s3 + 7s2 + 36s + 24 = 0 .

The system is stable. The roots of the characteristic equation are s1 =
−0.77, s2,3 = −3.12 ± 4.64i.

E6.18 The roots of q(s) are s1 = −20 and s2,3 = ±j2.24. The system is marginally
stable. The Routh array is

s3 1 5

s2 20 100

s1 0 0

so

The auxillary equation is

20s2 + 100 = 0 .

The roots are s = ±j2.24. So, the system has roots at s = ±j2.24.
Completing the Routh array (after accounting for the row of zeros) verifies
that no poles lie in the right half-plane.

E6.19 (a) Unstable.

(b) Stable.

(c) Stable.

E6.20 (a) The roots are s1,2 = −2 and s3 = −1.

(b) The roots are s1,2,3 = −3.

E6.21 The characteristic equation is

(sn − 2)3 + 10(sn − 2)2 + 29(sn − 2) +K = 0

or

s3n + 4s2n + sn − 26 +K = 0 .

The Routh array is
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s3 1 1

s2 4 K − 26

s1 30−K
4 0

so K − 26

If K = 30, then the auxillary equation is 4s2n + 4 = 0 or sn = ±j.
Therefore, s = sn − 2 implies s = −2± j.

E6.22 This system is not stable. The output response to a step input is a ramp
y(t) = kt.

E6.23 The characteristic polynomial is

s3 + 4s2 + ks+ 8 = 0 .

The Routh array is

s3 1 k

s2 4 8

s1 4k−8
4

so 8

So, k > 2 for stability.

E6.24 The transfer function is

G(s) = C(sI−A)−1B+D

= [ 1 0 0 ]













s −1 0

0 s −1

k k s+ k

























0

0

1













= [ 1 0 0 ]













s2 + ks+ k s+ k 1

−k s2 + ks s

−ks −ks− k s2

























0

0

1













1

∆(s)

where ∆(s) = s3 + ks2 + ks+ k. Thus, the transfer function is

G(s) =
1

s3 + ks2 + ks+ k
.

The Routh array is
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s3 1 k

s2 k k

s1 k − 1

so k

For stability k > 1.

E6.25 The closed-loop transfer function is

T (s) =
Ks+ 1

s2(s+ p) +Ks+ 1
.

Therefore, the characteristic equation is

s3 + ps2 +Ks+ 1 = 0 .

The Routh array is

s3 1 K

s2 p 1

s1 (pK − 1)/p

so 1

We see that the system is stable for any value of p > 0 and pK − 1 > 0.

E6.26 The closed-loop transfer function is

T (s) =
10

2s2 + (K − 20)s + 10− 10K
.

Therefore, the characteristic equation is

2s2 + (K − 20)s + 10− 10K = 0 .

The Routh array is

s2 2 10-10K

s1 K − 20

so 10− 10K

We see that the system is stable for any value of K > 20 and any K < 1.
Therefore, the system is unstable for all K > 0 since the gain K cannot
be simultaneously greater than 20 and less than 1.
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Problems

P6.1 (a) Given

s2 + 5s + 2 ,

we have the Routh array

s2 1 2

s1 5 0

so 2

Each element in the first column is positive, thus the system is stable.

(b) Given

s3 + 4s2 + 8s+ 4 ,

we have the Routh array

s3 1 8

s2 4 4

s1 7 0

so 4

Each element in the first column is positive, thus the system is stable.

(c) Given

s3 + 2s2 − 6s+ 20 ,

we determine by inspection that the system is unstable, since it is
necessary that all coefficients have the same sign. There are two roots
in the right half-plane.

(d) Given

s4 + s3 + 2s2 + 12s + 10 ,

we have the Routh array

s4 1 2 10

s3 1 12 0

s2 -10 10 0

s1 13 0

so 10
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There are two sign changes in the first column, thus the system is
unstable with two roots in the right half-plane.

(e) Given

s4 + s3 + 3s2 + 2s+K ,

we have the Routh array

s4 1 3 K

s3 1 2 0

s2 1 K

s1 2−K 0

so K

Examining the first column, we determine that the system is stable
for 0 < K < 2.

(f) Given

s5 + s4 + 2s3 + s+ 6 ,

we know the system is unstable since the coefficient of the s2 term is
missing. There are two roots in the right half-plane.

(g) Given

s5 + s4 + 2s3 + s2 + s+K ,

we have the Routh array

s5 1 2 1

s4 1 1 K

s3 1 1−K

s2 K K

s1 −K 0

so K

Examining the first column, we determine that for stability we need
K > 0 and K < 0. Therefore the system is unstable for all K.

P6.2 (a) The closed-loop characteristic polynomial is

s4 + 27.88s3 + 366.4s2 + 1500s + 1500ka = 0 .

The Routh array is
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s4 1 366.4 1500ka

s3 27.88 1500

s2 312.6 1500ka

s1 b

so 1500ka

where

b = 1500 − 133.78ka .

Examining the first column of the Routh array, we find that b > 0
and 1500ka > 0 for stability. Thus,

0 < ka < 11.21 .

(b) With

Ts = 1.5 =
4

ζωn
,

we determine that

ζωn = 2.67 .

So, shift the axis by s = so − 2.67, and

(so − 2.67)4 + 27.88(so − 2.67)3 + 366.4(so − 2.67)2 + 1500(so − 2.67) +

1500ka = s4o + 17.2s3o + 185.85s2o + 63.55so − 1872.8 + 1500ka .

The Routh array is

s4 1 185.85 1500ka-1872.8

s3 17.2 63.55

s2 182.16 1500ka-1872.8

s1 b

so 1500ka-1872.8

where

b = 240.38 − 141.63ka .

Examining the first column of the Routh array, we find that b > 0
and 1500ka − 1872.8 > 0. Thus, 1.25 < ka < 1.69.
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P6.3 (a) Given

G(s) =
K

(s+ 1)(s + 2)(0.5s + 1)
,

and

H(s) =
1

0.005s + 1
,

the closed-loop transfer function is

T (s) =
K(0.005s + 1)

0.0025s4 + 0.5125s3 + 2.52s2 + 4.01s + 2 +K
.

Therefore, the characteristic equation is

0.0025s4 + 0.5125s3 + 2.52s2 + 4.01s + (2 +K) = 0 .

The Routh array is given by

s4 0.0025 2.52 2 +K

s3 0.5125 4.01 0

s2 2.50 2 +K

s1 3.6− 0.205K 0

so 2 +K

Examining the first column, we determine that for stability we require

−2 < K < 17.6 .

(b) Using K = 9, the roots of the characteristic equation are

s1 = −200 , s2,3 = −0.33± 2.23j , and s4 = −4.35 .

Assuming the complex roots are dominant, we compute the damping
ratio ζ = 0.15. Therefore, we estimate the percent overshoot as

P.O. = 100e−πζ/
√

1−ζ2 = 62% .

The actual overshoot is 27%, so we see that assuming that the complex
poles are dominant does not lead to accurate predictions of the system
response.

P6.4 (a) The closed-loop characteristic equation is

1 +GH(s) = 1 +
K(s+ 40)

s(s+ 10)(s + 20)
= 0 ,
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or

s3 + 30s2 + 200s +Ks+ 40K = 0 .

The Routh array is

s3 1 200 +K

s2 30 40K

s1 200− K
3 0

so 40K

Therefore, for stability we require 200 −K/3 > 0 and 40K > 0. So,
the range of K for stability is

0 < K < 600 .

(b) At K = 600, the auxilary equation is

30s2 + 40(600) = 0 or s2 + 800 = 0 .

The roots of the auxiliary equation are

s = ±j28.3 .

(c) Let K = 600/2 = 300. Then, to the shift the axis, first define so =
s+ 1. Substituting s = so − 1 into the characteristic equation yields

(so−1)3+30(so−1)2+500(so−1)+12000 = s3o+27s2o+443so+11529 .

The Routh array is

s3 1 443

s2 27 11529

s1 16 0

so 11529

All the elements of the first column are positive, therefore all the
roots lie to left of s = −1. We repeat the procedure for s = so − 2
and obtain

s3o + 24s2o + 392so + 10992 = 0 .

The Routh array is
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s3 1 392

s2 24 10992

s1 -66 0

so 10992

There are two sign changes in the first column indicating two roots
to right of s = −2. Combining the results, we determine that there
are two roots located between s = −1 and s = −2. The roots of the
characteristic equation are

s1 = −27.6250 and s2,3 = −1.1875 ± 20.8082j .

We see that indeed the two roots s2,3 = −1.1875±20.8082j lie between
-1 and -2.

P6.5 (a) Given the characteristic equation,

s3 + 3s2 + 4s+ 2 = 0 ,

we compute the roots s1 = −1, and s2,3 = −1± j.

(b) The roots of the characteristic equation

s4 + 9s3 + 30s2 + 42s+ 20 = 0

are s1 = −1, s2 = −2, and s3,4 = −3± j1.

(c) The roots of the characteristic equation

s3 + 19s2 + 110s + 200 = 0

are s1 = −4, s2 = −5, and s3 = −10.

P6.6 (a) The characteristic equation is

1 +G(s) = 0 ,

or

s3 + s2 + 10s+ 2 = 0 .

The roots are: s1 = −0.2033, and s2,3 = −0.3984 ± j3.1112.

(b) The characteristic equation is

s4 + 10s3 + 35s2 + 50s + 24 = 0 .

The roots are s1 = −1, s2 = −2, s3 = −3, and s4 = −4.
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(c) The characteristic equation is

s3 + 11s2 + 29s + 6 = 0 .

The roots are s1 = −0.2258, s2 = −3.8206 and s3 = −6.9536.

P6.7 (a) The closed-loop characteristic equation is

s3 + 101s2 + (100 + 10KKa)s+ 100KKa = 0 .

The Routh array is

s3 1 100 + 10KKa

s2 101 100KKa

s1 b

so 100KKa

where

b = 100 +
910

101
KKa > 0 .

Thus, examing the first column, we determine that KKa > 0 stabi-
lizes the system.

(b) The tracking error is

e(s) = lim
s→0

s(1− T (s))
100

s2
=

100

KKa
.

We require E(s) < 1o = 0.01745. So,

KKa >
100

0.01745
= 5729 .

When KKa = 5729, the roots of the characteristic polynomial are

s1 = −10.15 and s2,3 = −45.43 ± j233.25 .

P6.8 (a) The closed-loop characteristic equation is

1 +
K

(0.5s + 1)(s + 1)(14s+ 1)
= 0 ,

or

s3 + 7s2 + 14s + 8(1 +K) = 0 .

The Routh array is
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s3 1 14

s2 7 8(1 +K)

s1 b

so 8(1 +K)

where

b =
7(14) − 8(1 +K)

7
.

For stability, we require b > 0 and 8(1+K) > 0. Therefore, the range
of K for stability is

−1 < K < 11.25 .

(b) Let K = 11.25/3 = 3.75. Then, the closed-loop transfer function is

T (s) =
3.37

s3 + 7s2 + 14s + 38
.

The settling time to a step input is Ts ≈ 6 seconds.

(c) We want Ts = 4 sec, so

Ts = 4 =
4

ζωn
implies ζωn = 1 .

Our desired characteristic polynomial is

(s+ b)(s2 + 2ζωns+ ω2
n) = s3 + (2 + b)s2 + (ω2

n + 2b)s+ bω2
n

where we have used the fact that ζωn = 1 and ωn and b are to be
determined. Our actual characteristic polynomial is

s3 + 7s2 + 14s + 8(1 +K) = 0 .

Comparing the coefficients of the actual and desired characteristic
polynomials, we find the following relationships:

2 + b = 7

ω2
n + 2b = 14

bω2
n = 8(1 +K) .

Solving these three equations yields

b = 5 , ωn = 2 and K = 1.5 .

The actual settling time is Ts = 4.17 sec. This is not exactly our
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desired Ts since we have the contribution of the additional pole at
s = −5. The closed-loop poles are

s1 = −5 and s2,3 = −1± 1.73j .

P6.9 (a) The closed-loop characteristic equation is

1 +GH(s) = 1 +
10K

(s + 100)(s + 20)2
,

or

s3 + 140s2 + 4400s + 40000 + 10K = 0 .

The Routh array is

s3 1 4400

s2 140 40000 + 10K

s1 b

so 40000 + 10K

where

b =
140(4400) − (40000 + 10K)

140
.

Examining the first column and requiring all the terms to be positive,
we determine that the system is stable if

−4000 < K < 57600 .

(b) The desired characteristic polynomial is

(s+b)(s2+1.38ωns+ω2
n) = s3+(1.38ωn+b)s2+(ω2

n+1.38ωnb)s+bω2
n

where we have used the fact that ζ = 0.69 to achieve a 5% over-
shoot, and ωn and b are to be determined. The actual characteristic
polynomial is

s3 + 140s2 + 4400s + 40000 + 10K = 0 .

Equating the coefficients of the actual and desired characteristic poly-
nomials, and solving for K, b, and ωn yields

b = 104.2 , ωn = 25.9 and K = 3003 .

So, a suitable gain is K = 3003.
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P6.10 (a) The closed-loop characteristic equation is

s4 + 7s3 + 20s2 + (24 +K)s+ 10K = 0 .

The Routh array is

s4 1 20 10K

s3 7 24 +K 0

s2 116−K
7 10K

s1 b

so 10K

where

b =

(

116−K
7

)

(24 +K)− 70K
(

116−K
7

) .

Setting b > 0 yields

2784 − 398K −K2 > 0 ,

which holds when

−404.88 < K < 6.876 .

Examining the first column, we also find that K < 116 and K > 0
for stability. Combining all the stability regions, we determine that
for stability

0 < K < 6.876 .

(b) When K = 6.876, the roots are

s1,2 = −3.5± 1.63j , and s3,4 = ±2.1j .

P6.11 Given

s3 + (1 +K)s2 + 10s + (5 + 15K) = 0 ,

the Routh array is

s3 1 10

s2 1 +K 5 + 15K

s1 b

so 5 + 15K
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where

b =
(1 +K)10 − (5 + 15K)

1 +K
=

5− 5K

1 +K
.

Given thatK > 0, we determine that the system is stable when 5−5K > 0
or

0 < K < 1 .

When K = 1, the s2 row yields the auxilary equation

2s2 + 20 = 0 .

The roots are s = ±j
√
10. So, the system frequency of oscillation is

√
10

rads/sec.

P6.12 The characteristic equation is

s3 + as2 + bs+ c = 0,

so, the Routh array is

s3 1 b

s2 a c

s1 ab−c
a

s0 c

For the system to be stable, we require that a > 0, ab− c > 0 and c > 0.
When a > 0 and c > 0, we know that b > 0. So, a necessary condition for
stability is that all coefficients a, b, and c be positive. The necessary and
sufficient conditions for stability also require that b > c/a, in addition to
a > 0 and c > 0.

P6.13 The characteristic equation is

s3 + (p+ 2ζωn)s
2 + (2ζωnp+Kω2

n)s+Kω2
nz = 0.

The conditions for stability (see P6.12) are p+2ζωn > 0, 2ζωnp+Kω2
n >

(Kω2
nz)/(p + 2ζωn), and Kω2

nz > 0. Since we know that K > 0, ζ > 0,
and ωn > 0, it follows that for stability z > 0, p > −2ζωn, and

2ζωnp+Kω2
n >

Kω2
nz

p+ 2ζωn
.

P6.14 The system has the roots

s1,2 = ±j , s3,4 = ±j , and s5,6 = −1± 3j ,
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Therefore, the system is not stable since there are repeated roots on the
jω-axis.

P6.15 (a) Neglecting the zeros and poles, we have the characteristic equation

s4 + 30s3 + 325s2 + 2500s +K = 0 .

The Routh array is

s4 1 325 K

s3 30 2500 0

s2 241.67 K

s1 b

so K

where

b =
604166.67 − 30K

241.67
.

Therefore, the system is stable for 0 < K < 20139.

(b) Without neglecting the zeros and poles, the closed-loop characteristic
equation is

s6 + 90s5 + 5525s4 + 12400s3 + (1255000 +K)s2

+ (8500000 + 30K)s+ 1125K = 0 .

This is stable for

0 < K < 61818 .

We see that the additional poles and zero makes the system stable
for a much larger gain K.

P6.16 (a) The Routh array is

s3 1 5

s2 5 6

s1 3.8

so 6

Examining the first column of the Routh array, we see no sign changes.
So, the system is stable.

(b) The roots of the system are s1 = −0.3246 and s2,3 = −2.3377 ±
3.6080j.
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(c) The step response is shown in Figure P6.16.
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FIGURE P6.16
Unit step response.

P6.17 The closed-loop transfer function is

T (s) =
K + 1

s3 + 3s2 + 3s+K + 1
.

The Routh array is

s3 1 3

s2 3 K + 1

s1 8−K
3

so K + 1

So, for stability we require −1 < K < 8.

P6.18 The system characteristic equation is

s2 + (h− k)s+ ab− kh = 0 .

For stability we require h > k and ab > kh. If k > h, the system is
unstable.
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P6.19 (a) The characteristic equation is

s3 + 9s2 + (K − 10)s + 2K = 0 .

The Routh array is

s3 1 K − 10

s2 9 2K

s1 7K−90
9

so 2K

For stability

K > 90/7 .

(b) When K = 90/7, the system is marginally stable. The roots are

s1,2 = ±j
√

20/7 ,

at the jω-axis crossing.

P6.20 The closed-loop characteristic equation is

q(s) = s5 + s4 + 9s3 +Ks2 + 2Ks+K .

The range of stability for the vertical-liftoff vehicle is

5.177 < K < 7.823 .

Therefore, for K = 6, the system is stable. When K = 6 we have

q(s) = s5 + s4 + 9s3 + 6s2 + 12s + 6

The Routh array is

s5 1 9 12

s4 1 6 6

s3 3 6

s2 4 6

s1 1.5

so 6

All entries in the first column are positive, so the system is stable.
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P6.21 The state transition matrix is

Φ(t, 0) =
1

p2 − p1





(k2 − p1)e
−p1t − (k2 − p2)e

−p2t e−p1t − e−p2t

−k1e
−p1t + k1e

−p2t −p1e
−p1t + p2e

−p2t





where p1p2 = k1 and p1 + p2 = k2. We assume that p1 6= p2. In the case
when p1 = p2, the state transition matrix will change, but the factors e−p1t

and e−p2t will remain. The eigenvalues of A are given by the solution to

det |λI−A| = λ2 + k2λ+ k1 = 0 .

Therefore, the eigenvalues are λ1,2 = −k2/2 ±
√

k22 − 4k1. If k2 > 0 and
k1 > 0, then the eigenvalues are in the left half-plane, and the system is
stable. The transfer function is given by

G(s) = C (sI−A)−1
B = − s− 1

s2 + k2s+ k1
.

Therefore the characteristic equation is s2 + k2s + k1 = 0 and the poles

are s1,2 = −k2/2±
√

k22 − 4k1. If k2 > 0 and k1 > 0, then the poles are in
the left half-plane, and the system is stable. Notice that the values of λ1,2

and s1,2 are the same. Also, the eigenvalues are the same as the values of
−p1 and −p2. So, if the eigenvalues are negative, then the elements of the
state transition matrix will decay exponentially.
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Advanced Problems

AP6.1 The Routh array is

s4 1 K1 K2

s3 20 4

s2 20K1−4
20 K2

s1 b 0

so K2

where

b =
20K1 − 4− 100K2

5K1 − 1
.

For stability, we require K2 > 0, K1 > 0.2, and b > 0. Therefore, using
the condition that b > 0, we obtain

K2 < 0.2K1 − 0.04 .

The stability region is shown in Figure AP6.1.
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FIGURE AP6.1
Stability region.
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AP6.2 The Routh array is

s4 1 30 K

s3 9 K − 40

s2 310−K
9 K

s1 b 0

so K

where

b =
(310 −K)(K − 40) − 81K

310−K
.

Therefore, using the condition that b > 0, we obtain the stability range
for K:

59.07 < K < 209.94 .

AP6.3 (a) The steady-state tracking error to a step input is

ess = lim
s→0

s(1− T (s))R(s) = 1− T (0) = 1− α .

We want

|1− α| < 0.05 .

This yields the bounds for α

0.95 < α < 1.05 .

(b) The Routh array is

s3 1 α

s2 1 + α 1

s1 b 0

so 1

where

b =
α2 + α− 1

1 + α
.

Therefore, using the condition that b > 0, we obtain the stability
range for α:

α > 0.618 .
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(c) Choosing α = 1 satisfies both the steady-state tracking requirement
and the stability requirement.

AP6.4 The closed-loop transfer function is

T (s) =
K

s3 + (p+ 1)s2 + ps+K
.

The Routh array is

s3 1 p

s2 1 + p K

s1 b 0

so K

where

b =
p2 + p−K

1 + p
.

Therefore, using the condition that b > 0, we obtain the the relationship

K < p2 + p .

The plot of K as a function of p is shown in Figure AP6.4.
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FIGURE AP6.4
Stability region.
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AP6.5 The closed-loop transfer function is

T (s) =
30K1K2

(s+ 1 +K1K3)(s− 10)(2s +K2K3 − 4) + 30K1K2K4
.

The Routh array is

s3 2 a

s2 b c

s1 d 0

so c

where a = −9K2K3+16+K1K2K
2
3 − 24K1K3, b = 2K1K3 +K2K3− 22,

and c = −10K2K3 + 40 − 10K1K2K
2
3 + 40K1K3 and d = (ab − 2c)/b .

The conditions for stability are

2K1K3 +K2K3 − 22 > 0

−10K2K3 + 40− 10K1K2K
2
3 + 40K1K3 > 0

−2(−10K2K3 + 40− 10K1K2K
2
3 + 40K1K3) + (9K2K3

+16 +K1K2K
2
3 − 24K1K3)(2K1K3 + K2K3 − 22) > 0

Valid values for the various gains are: K1 = 50, K2 = 30, K3 = 1, and
K4 = 0.3. The step response is shown in Figure AP6.5.
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FIGURE AP6.5
Stability region.
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AP6.6 The characteristic equation is

s3 + 7s2 + (KD + 14)s +KP + 8 = 0.

For stability we require that KP > −8 and

KD >
KP + 8

7
− 14.

The relationship between KD and KP is shown in Figure AP6.6.
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FIGURE AP6.6
Stability region.

AP6.7 The characteristic equation is

0.1s4 + 2.05s3 + s2 + 8KP s+ 8KI = 0.

From the Routh array we find the conditions for stability are

0 < KI < 0.3125

1.2812 −
√

1.6416 − 5.2531KI < KP < 1.2812 +
√

1.6416 − 5.2531KI
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP6.1

Bishop is given by:

θ(s)

Va(s)
=

26.035

s(s+ 33.142)
.

In the above transfer function we have neglected the motor inductance
Lm. The closed-loop transfer function from the input to the output is

θ(s)

R(s)
=

26.035Ka

s2 + 33.142s + 26.035Ka
.

The Routh array is

s2 1 26.035Ka

s1 33.142 0

s0 26.035Ka

Stability is achieved for any 0 < Ka < ∞.

DP6.1 The closed-loop characteristic polynomial is

s3 + s2(5 + p+
1

5
K) + s(

1

5
Kp+

1

5
K + 5p) +K = 0 .

(i) When p = 2, we have

s3 + s2(7 +
1

5
K) + s(10 +

3

5
K) +K = 0 .

The Routh array is

s3 1 10 + 3
5K

s2 7 + K
5 K

s1 b

so K

where

b =
(7 +K/5)(10 + 3K/5) −K

7 + 1
5K

.

When −32.98 < K < −17.69, we find that b > 0. Examining the
other terms in the first column of the array, we find that the system
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is stable for any K > 0.

(ii) When p = 0, we have

s3 + s2(5 +
1

5
K) + s(

1

5
K) +K = 0 .

The Routh array is

s3 1 1
5K

s2 5 + 1
5K K

s1 b

so K

where

b =
(5 + 1

5K)15K −K

(5 +K/5)
=

K2/25

(5 +K/5)
.

Again, examination of the first column reveals that any K > 0 results
in a stable system. So, we just need to select any K > 0; e.g. K = 10.

DP6.2 (a) The closed-loop characteristic equation is

1 +
20(Ks+ 1)

s2(s+ 20)
= 0 ,

or

s3 + 20s2 + 20Ks+ 20 = 0 .

The Routh array is

s3 1 20K

s2 20 20

s1 b

so 1

where

b =
20K − 1

1
.

For stability, we require K > 0.05.

(b) The desired characteristic polynomial is

(s2 + as+ b)(s+ 5) = s3 + s2(a+ 5) + s(5a+ b) + 5b = 0 .

Equating coefficients with the actual characteristic equation we can
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solve for a, b and K, yielding b = 4, a = 15, and

K =
5a+ b

20
=

79

20
.

(c) The remaining two poles are s1 = −14.73 and s2 = −0.27.

(d) The step response is shown in Figure DP6.2.
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FIGURE DP6.2
Mars guided vehicle step response.

DP6.3 (a) The closed-loop characteristic equation is

2τs3 + (τ + 2)s2 + (K + 1)s+ 2K = 0 .

The Routh array is

s3 2τ K + 1

s2 τ + 2 2K

s1 b

so 2K

where

b =
(τ + 2)(K + 1)− 4Kτ

(τ + 2)
.
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Examining the first column of the Routh array, we determine that for
stability τ > 0, K > 0 and setting b > 0 yields the relationships:

(1) K <
τ + 2

3τ − 2
when τ >

2

3
(2) K > 0 when 0 < τ ≤ 2

3
.

The plot of τ versus K is shown in Figure DP6.3a.
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FIGURE DP6.3
(a) The plot of τ versus K.

(b) The steady-state error is

ess =
A

Kv
, where Kv = 2K .

So,

ess
A

=
1

2K
.

We require that ess ≤ 0.25A, therefore

K ≥ 2 .

One solution is to select τ = 0.5, then we remain within the stable
region.

(c) The step response is shown in Figure DP6.3b. The percent overshoot
is P.O. = 57%.
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FIGURE DP6.3
CONTINUED: (b) Closed-loop system step response.

DP6.4 (a) The closed-loop characteristic polynomial is

s3 +Ks2 + [(2 +m)K − 1]s+ 2mK = 0 .

The Routh array is

s3 1 2K +mK − 1

s2 K 2mK

s1 b

so 2mK

Examining the first column of the Routh array, we see that for sta-
bility we require m > 0,K > 0, and b > 0, where

b =
(2K +mK − 1)K − 2mK

K
= (2 +m)K − (1 + 2m) > 0 ,

or

K >
1 + 2m

2 +m
.

The plot of K vs m is shown in Figure DP6.4a.
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FIGURE DP6.4
(a) The plot of K versus m.
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FIGURE DP6.4
CONTINUED: (b) Shuttle attitude control step response.

(b) The steady-state error is

ess
A

=
1

Kv
=

1

2mK
< 0.10 ,
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or mK > 5. For example, we can select m = 0.5 and K = 2.

(c) See Figure DP6.4b for the step response where P.O. = 64.3%.

DP6.5 The closed-loop transfer function is

T (s) =
K

s3 + 10s2 + 20s +K
.

The range of K for stability is 0 < K < 200. If we let K = Km/N where
Km = 200, then N = 6.25 results in a step response with P.O. = 15.7%
and Ts = 1.96 seconds.

DP6.6 The closed-loop system is given by

ẋ =





0 1

2−K1 −2−K2



x+





0

1



 r

The characteristic polynomial is s2+(2+K2)s+K1−2 = 0. So the system

is stable for K1 > 2 and K2 > −2. Selecting K =
[

10 2
]

results in

closed-loop eigenvalues at s = −2±2j. The closed-loop step response has
a settling time of 2.11 s and a percent overshoot of 4.32%.

Re(s)

Im(s)

desired

region

for eigenvalues

ζωn = -1

sin-1 ζ = sin-1 0.69=43.63ο

FIGURE DP6.6
Performance region.
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DP6.7 (a) The inner loop closed-loop transfer function is

Y (s)

U(s)
=

20s

s3 + 10s2 + 20s + 20K1
.

The Routh array is

s3 1 20

s2 ω 20K1

s1 200−20K1
10

so 20K1

For stability 0 < K1 < 10.

(b) The fastest response (that is, the quickest settling time) occurs when
K1 = 2.2

(c) With K1 = 2.2, the closed-loop transfer function is

Y (s)

R(s)
=

20K2s

s3 + 10s2 + (20 + 20K2)s+ 44
.

The Routh array is

s3 1 20(K2 + 1)

s2 10 44

s1 200K2+156
10

so 44

For stability, we require

200K2 + 156 > 0 .

Therefore, K2 > −0.78.

DP6.8 The closed-loop characteristic equation is

s2 + 4KDs+ 4(KP + 1) = 0.

So, it is possible to find KP and KD to stabilize the system. For example,
any KP > 0 and KD > 0 leads to stability. Choosing KP ≥ 9 results in a
steady-state tracking error less than 0.1 due to a unit step input. Then,
the damping ratio ζ =

√
2/2 is achieved by selecting

KD =

√
2
√
KP + 1

2
.
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Computer Problems

CP6.1 The m-file script is shown in Figure CP6.1.

ans =

  -0.6063 + 2.7322i

  -0.6063 - 2.7322i

  -1.7874          

ans =

  -2.0004          

  -2.0000 + 0.0004i

  -2.0000 - 0.0004i

  -1.9996          

ans =

   0.2267 + 1.4677i

   0.2267 - 1.4677i

  -0.4534 

pa=[1 3 10 14]; roots(pa)

pb=[1 8 24 32 16]; roots(pb)

pc=[1 0 2 1]; roots(pc)

FIGURE CP6.1
Computing the polynomial roots with the rootsfunction.

CP6.2 The m-file script is shown in Figure CP6.2.

ans =

 -2.5000e -01 + 1.1990e+00i

 -2.5000e-01 - 1.1990e+00i

ans =

           0 + 1.2910e+00i

           0 - 1.2910e+00i

ans =

  2.5000e -01 + 1.3307e+00i

  2.5000e -01 - 1.3307e+00i

K1=1;K2=2;K3=5; den=[1 2 1];

num1=K1*[1 -1 2];num2=K2*[1 -1 2];num3=K3*[1 -1 2];

sys1 = tf(num1,den); sys2 = tf(num2,den); sys3 = tf(num3,den);

sys1_cl=feedback(sys1,[1]);

sys2_cl=feedback(sys2,[1]);

sys3_cl=feedback(sys3,[1]);

p1 = pole(sys1_cl),  p2 = pole(sys2_cl),  p3 = pole(sys3_cl) 

FIGURE CP6.2
K = 1 is stable;K = 2 is marginally stable; and K = 5 is unstable.
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CP6.3 The closed-loop transfer function and the roots of the characteristic equa-
tion are shown in Figure CP6.3.

numg=[1 1];  deng=[1 4 6 10];  

sysg = tf(numg,deng);

sys = feedback(sysg,[1])

r=pole(sys)

Transfer function:

        s + 1

----------------------

s^3 + 4 s^2 + 7 s + 11

 

r =

  -2.8946          

  -0.5527 + 1.8694i

  -0.5527 - 1.8694i

FIGURE CP6.3
Closed-loop transfer function and roots.

CP6.4 There are no poles in the right half-plane, but the system is unstable
since there are multiple poles on the jω-axis at s = ±j and s = ±j (see
Figure CP6.4).

num=[1];  den=[1 2 2 4 1 2];  

sys = tf(num,den);

pole(sys)

t = 0:0.1:100;

step(sys,t)

ans =

  -2.0000          

   0.0000 + 1.0000i

   0.0000 - 1.0000i

  -0.0000 + 1.0000i

  -0.0000 - 1.0000i

Time (sec.)

A
m

p
lit

u
d

e

Step Response
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-25

-20

-15

-10
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From: U(1)

To
: Y
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FIGURE CP6.4
Unstable system step response.
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CP6.5 The closed-loop system poles for the slow/fast pilots are shown in Fig-
ure CP6.5. The maximum allowable time delay is 0.2045seconds. At the
maximum allowable time delay, the system has roots on the jω-axis at
s = ±2.6j. The slow pilot destabilizes the aircraft.

closed-loop

system poles

nume=[-10]; dene=[1 10]; syse = tf(nume,dene);

numg=[-1 -6]; deng=[1 3 6 0]; sysg = tf(numg,deng);

%

% Fast pilot

%

tau=0.1; tau1=2; K=1; tau2=0.5;

nump=-K*[tau1*tau tau-2*tau1 -2];

denp=[tau2*tau tau+2*tau2 2];

sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);

fast_pilot=pole(sys)

%

% Slow pilot

%

tau=0.6; tau1=2; K=1; tau2=0.5;

nump=-K*[tau1*tau tau-2*tau1 -2];

denp=[tau2*tau tau+2*tau2 2];

sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);

slow_pilot = pole(sys)

%

% Maximum pilot time delay, tau = 0.2045 sec

%

tau=0.2045; tau1=2; K=1; tau2=0.5;

nump=-K*[tau1*tau tau-2*tau1 -2];

denp=[tau2*tau tau+2*tau2 2];

sysp = tf(nump,denp);

sysa = series(sysp,syse);

sysb = series(sysa, sysg);

sys = feedback(sysb,[1]);

max_pilot_delay=pole(sys)

fast_pilot =

 -19.6267          
 -10.7712          
  -3.8885          
  -0.1697 + 2.7880i
  -0.1697 - 2.7880i
  -0.3742          

slow_pilot =

  -9.4526          
  -4.5228 + 2.2595i
  -4.5228 - 2.2595i
   0.2793 + 2.0314i
   0.2793 - 2.0314i
  -0.3937          

max_pilot_delay =

 -10.0433 + 2.2684i
 -10.0433 - 2.2684i
  -4.3153          
   0.0001 + 2.6040i
   0.0001 - 2.6040i
  -0.3783

FIGURE CP6.5
Closed-loop system poles for an aircraft with a pilot in-the-loop.

CP6.6 The closed-loop transfer function is

T (s) =
1

s3 + 5s2 + (K − 3)s +K + 1
.
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Utilizing the Routh-Hurwitz approach, for stability we determine that

K > 4 .

When K = 4, the roots of the characteristic equation are

s1 = −5 and s2,3 = ±j .

The m-file script which generates a plot of the roots of the characteristic
equation as a function of K is shown in Figure CP6.6.

K=[0:0.1:5];

n=length(K);

for i=1:n

 numg=[1]; deng=[1 5  K(i)-3 K(i)];

 sys_o = tf(numg,deng);

 sys_cl = feedback(sys_o,[1]);

 p(:,i)=pole(sys_cl);

end

plot(real(p),imag(p),'x'), grid

text(-0.9,0.95,'K=4 -->'); text(-0.2,1.3,'K=5'); text(0,0.2,'K=0')

% From a Routh-Hurwitz analysis we !nd that

% minimum K for stability is K=4

Kmax=4;

numg=[1]; deng=[1 5 Kmax-3 Kmax]; sysg = tf(numg,deng);

sys_cl = feedback(sysg,[1]); pole(sys_cl)

-6 -5 -4 -3 -2 -1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

K=4 -->

K=5

K=0

FIGURE CP6.6
Roots of the characteristic equation as a function of K, where 0 < K < 5.
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CP6.7 The characteristic equation is

p(s) = s3 + 10s2 + 14s + 12 .

A=[0 1 0;0 0 1;-12 -14 -10]; b=[0;0;12]; c=[1 1 0]; d=[0];

sys = ss(A,b,c,d);

%

% Part (a)

%

p=poly(A)

%

% Part (b)

%

roots(p)

%

% Part (c)

%

step(sys)

p =

    1.0000   10.0000   14.0000   12.0000

ans =

  -8.5225          

  -0.7387 + 0.9286i

  -0.7387 - 0.9286i

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

FIGURE CP6.7
Characteristic equation from the state-space representation using the poly function.

The roots of the characteristic equation are

s1 = −8.5225 and s2,3 = −0.7387 ± 0.9286j .
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The system is stable since all roots of the characteristic equation are in
the left half-plane. The unit step response and associated m-file script are
shown in Figure CP6.7.

CP6.8 The characteristic equation is

s3 + 10s2 + 10s + 5K1 = 0 .

(a) The Routh array is

s3 1 10

s2 10 5K1

s1 100−5K1
10

so 5K1

From the Routh-Hurwitz criterion, we obtain the limits 0 < K1 < 20
for stability.

(b) The plot of the pole locations is 0 < K1 < 30 is shown in Fig-
ure CP6.8. As seen in Figure CP6.8, when K1 > 20, the pole locations
move into the right half-plane.

?-12 ?-10 ?-8 ?-6 ?-4 ?-2 0 2
?-4
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?-2

?-1

0

1

2

3

4

Root Locus

Real Axi s

Im
a

g
in

a
ry

 A
xi

s

k=20

FIGURE CP6.8
Pole locations for 0 < K1 < 30.

CP6.9 (a) The characteristic equation is

s3 + 2s2 + s+ k − 4 = 0 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



276 CHAPTER 6 The Stability of Linear Feedback Systems

The Routh array is

s3 1 1

s2 2 k − 4

s1 6−k
2

so k − 4

For stability, we obtain 4 < k < 6.

(b) The pole locations for 0 < k < 10 are shown in Figure CP6.9. We see
that for 0 < k < 4 the system is unstable. Similarly, for 6 < k < 10,
the system is unstable.
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FIGURE CP6.9
Pole locations for 0 < k < 10.
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The Root Locus Method

Exercises

E7.1 (a) For the characteristic equation

1 +K
s(s+ 4)

s2 + 2s+ 2
= 0 ,

the root locus is shown in Figure E7.1.
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x
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FIGURE E7.1
Root locus for 1 +K

s(s+4)
s2+2s+2

= 0.

277
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278 CHAPTER 7 The Root Locus Method

(b) The system characteristic equation can be written as

(1 +K)s2 + (2 + 4K)s+ 2 = 0 .

Solving for s yields

s =
−(1 + 2K)

(1 +K)
±
√

(2 + 4K)2 − 8(1 +K)

2(1 +K)
.

When

(2 + 4K)2 − 8(1 +K) = 0 ,

then we have two roots at s1,2 = − (1+2K)
1+K . Solving for K yields K =

0.31.

(c) When K = 0.31, the roots are

s1,2 =
−(1 + 0.62)

(1.31)
= −1.24 .

(d) When K = 0.31, the characterisitc equation is

s2 + 2.472s + 1.528 = (s+ 1.24)2 = 0 .

Thus, ωn = 1.24 and ζ = 1, the system is critically damped. The
settling time is Ts ≈ 4 sec.

E7.2 (a) The root locus is shown in Figure E7.2. When K = 6.5, the roots of
the characteristic equation are

s1,2 = −2.65 ± j1.23 and s3,4 = −0.35 ± j0.8 .

The real part of the dominant root is 8 times smaller than the other
two roots.

(b) The dominant roots are

(s+ 0.35 + j0.8)(s + 0.35 − j0.8) = s2 + 0.7s + 0.7625 .

From this we determine that

ωn = 0.873 and ζ =
0.7

2(0.873)
= 0.40 .

Thus, the settling time is

Ts =
4

ζωn
=

4

0.35
= 11.43 sec .

The percent overshoot is P.O. = e−πζ/
√

1−ζ2 = 25.4%.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Exercises 279
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FIGURE E7.2
Root locus for 1 +K 1

s(s+2)(s2+4s+5)
= 0.

E7.3 The root locus is shown in Figure E7.3. The roots are s1 = −8.7, s2,3 =
−1.3± j2.2 when K = 7.35 and ζ = 0.5.
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FIGURE E7.3
Root locus for 1 +K s2+4s+8

s2(s+4)
= 0.
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E7.4 The root locus is shown in Figure E7.4.
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FIGURE E7.4
Root locus for 1 +K s+1

s2+4s+5 = 0.

The departure angles and entry points are

θd = 225o , −225o

and

σb = −2.4 .

E7.5 (a) The root locus is in Figure E7.5. The breakaway points are

σb1 = −13.0 , σb2 = −5.89 .

(b) The asymptote centroid is

σcent = −18 ,

and

φasym = ±90o .

(c) The gains are K1 = 1.57 and K2 = 2.14 at the breakaway points.
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FIGURE E7.5
Root locus for 1 +K s2+2s+10

(s4+38s3+515s2+2950s+6000)
= 0.

E7.6 The system is unstable for K > 75.
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Pole: −0.000981 + 8.66i
Damping: 0.000113
Overshoot (%): 100
Frequency (rad/sec): 8.66

FIGURE E7.6
Root locus for 1 +K 15K

s(s2+15s+75)
= 0.
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E7.7 The root locus is shown in Figure E7.7. The characteristic equation has
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System: sys
Gain: 27.3
Pole: −1.44 + 1.11i
Damping: 0.792
Overshoot (%): 1.7
Frequency (rad/sec): 1.81

FIGURE E7.7
Root locus for 1 +K s+8

s(s+4)(s+6)(s+9) = 0.

4 poles and 1 zero. The asymptote angles are φ = +60o,−60o,−180o

centered at σcent = −3.7. When K = 27.35 then ζ = 0.8 for the complex
roots.

E7.8 The characteristic equation is

1 +K
(s+ 1)

s2(s+ 9)
= 0 ,

or

s3 + 9s2 +Ks+K = 0 .

For all the roots to be equal and real, we require

(s + r)3 = s3 + 3rs2 + 3r2s+ r3 = 0 .

Equating terms and solving for K yields K = 27. All three roots are equal
at s = −3, when K = 27. The root locus is shown in Figure E7.8.
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FIGURE E7.8
Root locus for 1 +K s+1

s2(s+9) = 0.

E7.9 The characteristic equation is

1 +K
1

s(s2 + 2s + 5)
= 0

or

s3 + 2s2 + 5s +K = 0 .

(a) The system has three poles at s = 0 and −1 ± j2. The number of
asymptotes is np − nz = 3 centered at σcent = −2/3, and the angles
are φasymp at ±60o, 180o.

(b) The angle of departure, θd, is 90
o+θd+116.6o = 180o , so θd = −26.6o.

(c) The Routh array is

s3 1 5

s2 2 K

s1 b

so K

where b = 5−K/2. So, when K = 10 the roots lie on the imaginary
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axis. The auxilary equation is

2s2 + 10 = 0 which implies s1,2 = ±j
√
5 .

(d) The root locus is shown in Figure E7.9.
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FIGURE E7.9
Root locus for 1 +K 1

s(s2+2s+5)
= 0.

E7.10 (a) The characteristic equation is

1 +
K(s+ 2)

s(s+ 1)
= 0 .

Therefore,

K = −(s2 + s)

(s+ 2)
,

and

dK

ds
= −s2 + 4s + 2

(s+ 2)2
= 0 .

Solving s2+4s+2 = 0 yields s = −0.586 and −3.414. Thus, the system
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breakaway and entry points are at s = −0.586 and s = −3.414.

(b) The desired characteristic polynomial is

(s+ 2 + aj)(s + 2− aj) = s2 + 4s+ 4 + a2 = 0 ,

where a is not specified. The actual characteristic polynomial is

s2 + (1 +K)s+ 2K = 0 .

Equating coefficients and solving for K yields K = 3 and a =
√
2.

Thus, when K = 3, the roots are s1,2 = −2±
√
2j.

(c) The root locus is shown in Figure E7.10.
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FIGURE E7.10
Root locus for 1 +K s+2

s(s+1)
= 0.

E7.11 The root locus is shown in Figure E7.11 for the characteristic equation

1 +
K(s+ 2.5)

(s2 + 2s+ 2)(s2 + 4s+ 5)
= 0 .

From the root locus we see that we can only achieve ζ = 0.707 when
K = 0.
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FIGURE E7.11
Root locus for 1 +

K(s+2.5)
(s2+2s+2)(s2+4s+5) = 0.

E7.12 (a) The root locus is shown in Figure E7.12 for the characteristic equation

1 +
K(s+ 1)

s(s2 + 6s+ 18)
= 0 .

(b) The roots of the characteristic equation are

(i) K = 10: s1,2 = −2.8064 ± 4.2368j and s3 = −0.3872

(ii) K = 20: s1,2 = −2.7134 ± 5.2466j and s3 = −0.5732

(c) The step response performance of the system is summarized in Ta-
ble E7.12.

K 10 20

Ts (sec) 9.0 5.5

P.O. 0 0

Tr (sec) 4.8 2.6

TABLE E7.12 System performance when K = 10 and K = 20.
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FIGURE E7.12
Root locus for 1 +

K(s+1)
s(s2+6s+18)

= 0.

E7.13 (a) The characteristic equation is

s(s+ 1)(s + 3) + 4s+ 4z = 0 .

Rewriting with z as the parameter of interest yields

1 + z
4

s(s+ 1)(s + 3) + 4s
= 0 .

The root locus is shown in Figure E7.13a.

(b) The root locations for

z = 0.6 , 2.0 , and 4.0

are shown in Figure E7.13a. When z = 0.6, we have ζ = 0.76 and
ωn = 2.33. Therefore, the predicted step response is

P.O. = 2.4% and Ts = 2.3 sec (ζ = 0.6) .

When z = 2.0, we have ζ = 0.42 and ωn = 1.79. Therefore, the
predicted step response is

P.O. = 23% and Ts = 5.3 sec (ζ = 2.0) .
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FIGURE E7.13
(a) Root locus for 1 + z 4

s(s+1)(s+3)+4s
= 0.

Finally, when z = 4.0, we have ζ = 0.15 and ωn = 2.19. Therefore,
the predicted step response is P.O. = 62% and Ts = 12 sec.

(c) The actual step responses are shown in Figure E7.13b.
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FIGURE E7.13
CONTINUED: (b) Step Responses for z = 0.6, 2.0, and 4.0.
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E7.14 (a) The root locus is shown in Figure E7.14 for the characteristic equation

1 +
K(s+ 10)

s(s+ 5)
= 0 .

The breakaway point is sb = −2.93; the entry point is se = −17.1.
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FIGURE E7.14
Root locus for 1 +

K(s+10)
s(s+5)

= 0.

(b) We desire ζ = 1/
√
2 = 0.707. So, the desired characteristic polyno-

mial is

s2 + 2

(

1√
2

)

ωns+ ω2
n = 0 .

Comparing the desired characteristic polynomial to the actual we find
the relationships

ω2
n = 10K and

√
2ωn = 5 +K .

Solving for K and ωn yields K = 5 and ωn = 7.07. The roots are
s1,2 = −5± j5 when K = 5.
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E7.15 (a) The characteristic equation

1 +K
(s+ 10)(s + 2)

s3
= 0

has the root locus in Figure E7.15.
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FIGURE E7.15
Root locus for 1 +

K(s+10)(s+2)
s3

= 0.

(b) The Routh array is

s3 1 12K

s2 K 20K

s1 b

so 20K

when b = 12K − 20. For stability, we require all elements in the first
column to be positive. Therefore,

K > 1.67 .

(c) When K > 3/4, we have

ess = lim
s→0

sE(s) = lim
s→0

s
1

1 +GH(s)
· 1
s2

= lim
s→0

s2

s3 +K(s+ 1)(s + 3)
= 0 .
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E7.16 The expansion for e−Ts is

e−Ts = 1− Ts+
(Ts)2

2!
− ...

If (Ts) << 1, then

e−Ts ≈ 1− Ts =
a+ bs

c+ ds
,

where a, b, c and d are constants to be determined. Using long division,
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FIGURE E7.16
Root locus for 1 +

K(20−s)
(s+1)(20+s)

= 0.

we expand (a+bs)/(c+ds) and match as many coefficients as possible. In
this case, we determine that a = c = (2/T ) and also that b = −d = −1.
In this case, with T = 0.1, we have

e−Ts =
20− s

20 + s
=

−(s− 20)

(s + 20)
.

So, the characteristic equation is

1 +
−K(s− 20)

(s+ 1)(s + 20)
,

and the root locus is shown in Figure E7.16. Using a Routh-Hurwitz
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analysis with the characteristic polynomial

s2 + (21 −K)s+ 20 + 20K = 0 ,

we determine that the system is stable for −1 < K < 21.

E7.17 (a) The root locus is in Figure E7.17a.
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FIGURE E7.17
(a) Root locus for 1 + K

s(s−1) = 0.

The root locus is always in the right half-plane; the system is unstable
for K > 0.

(b) The characteristic equation is

1 +
K(s+ 2)

s(s− 1)(s + 20)
= 0 ,

and the root locus is shown in Figure E7.17b. The system is stable
for K > 22.3 and when K = 22.3, the roots are

s1,2 = ±j1.53 and s3 = −19 .
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FIGURE E7.17
CONTINUED: (b) Root locus for 1 +

K(s+2)
s(s+20)(s−1)

= 0.

E7.18 The root locus is shown in Figure E7.18.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

x

x

x

x

Real Axis

Im
a

g
 A

xi
s K=8.15

+

+

+

+

FIGURE E7.18
Root locus for 1 + K

s(s+3)(s2+2s+2)
= 0.

When K = 8.15, the roots are s1,2 = ±j1.095 and s3,4 = −2.5± j0.74.
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E7.19 The characteristic equation is

1 +
K

s(s+ 3)(s2 + 6s+ 64)
= 0 ,

and the root locus is shown in Figure E7.19. When K = 1292.5, the roots
are

s1,2 = ±j4.62 and s3,4 = −4.49 ± j6.36 .
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FIGURE E7.19
Root locus for 1 + K

s(s+3)(s2+6s+64)
= 0.

E7.20 The characteristic equation is

1 +
K(s+ 1)

s(s− 2)(s + 6)
= 0 ,

and the root locus is shown in Figure E7.20. The system is stable for

K > 16 .

The maximum damping ratio of the stable complex roots is

ζ = 0.25 .
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FIGURE E7.20
Root locus for 1 +

K(s+1)
s(s−2)(s+6)

= 0.

E7.21 The gain is K = 10.8 when the complex roots have ζ = 0.66.

-10

-5

0

5

10

-10 -5 0 5 10

x

x

x

o

Real Axis

Im
a

g
 A

xi
s

K=10.8

+

+

+

FIGURE E7.21
Root locus for 1 + Ks

s3+5s2+10 = 0.
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E7.22 The root locus is shown in Figure E7.22. The characteristic equation is

1 +
K(s2 + 18)(s + 2)

(s2 − 2)(s + 12)
= 0 .
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FIGURE E7.22
Root locus for 1 +

K(s2+18)(s+2)
(s2−2)(s+12)

= 0.

E7.23 The characteristic equation is

5s2 + as+ 4 = 0 ,

which can rewritten as

1 +
as

5s2 + 4
= 0 .

The roots locus (with a as the parameter) is shown in Figure E7.23.
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FIGURE E7.23
Root locus for 1 + as

5s2+4 = 0.

E7.24 The transfer function is

G(s) = C(sI−A)−1B+D

= [ 1 0 ]





s −1

4 s+ k





−1 



0

1





=
1

s2 + ks+ 4
.

Therefore, the characteristic equation is

s2 + ks+ 4 = 0 ,

or

1 + k
s

s2 + 4
= 0 .

The root locus for 0 < k < ∞ is shown in Figure E7.24. The closed-loop
system is stable for all 0 < k < ∞.
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FIGURE E7.24
Root locus for 1 + k s

s2+4
= 0.

E7.25 The characteristic equation is

1 +K
10

s(s+ 25)
= 0 .

The root locus shown in Figure E7.25 is stable for all 0 < K < ∞.
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FIGURE E7.25
Root locus for 1 +K 10

s(s+25)
= 0.
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E7.26 The characteristic polynomial is

det





s −1

s+K − 3 s+K + 2



 = 0

or

1 +K
s+ 1

s2 + 2s− 3
= 0 .

The root locus shown in Figure E7.26 is stable for all 0 < K < 3.
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FIGURE E7.26
Root locus for 1 +K s+1

s2+2s−3
= 0.

E7.27 The characteristic equation is

1 + p
s

s2 + 4s + 40
= 0 .

The root locus shown in Figure E7.27 is stable for all 0 < p < ∞.
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FIGURE E7.27
Root locus for 1 + p s

s2+4s+40
= 0.

E7.28 The characteristic equation is

1 +K
s− 1

s(s2 + 2s+ 2)
= 0 .

The system is stable for −1.33 < K < 0.
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FIGURE E7.28
Root locus for 1 +K s−1

s(s2+2s+2)
= 0.
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FIGURE P7.1
(a) Root locus for 1 + K

s(s+10)(s+8)
= 0, and (b) 1 + K

(s2+2s+2)(s+1)
= 0.
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FIGURE P7.1
CONTINUED: (c) Root locus for 1 +

K(s+5)
s(s+2)(s+7)

= 0, and (d)1 +
K(s2+4s+8)

s2(s+7)
= 0.

P7.2 The root locus is shown in Figure P7.2 for the characteristic equation

1 +
10Kv(s+ 10)

s(s+ 1)(s + 100)
= 0 .

The damping ratio is ζ = 0.6 when Kv = 0.8, 135 and 648. The roots of
the characteristic equation are:

(a) Kv = 0.8 : s1 = −99.9, s2,3 = −0.54± j0.71
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(b) Kv = 135 : s1 = −85.9, s2,3 = −7.5± j10

(c) Kv = 648 : s1 = −11.7, s2,3 = −44.6± j59.5
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FIGURE P7.2
Root locus for 1 +

10Kv(s+10)
s(s+1)(s+100)

= 0.

P7.3 (a) The breakaway point is s = −0.88 at K = 4.06.

(b) The characteristic equation can be written as

s(s+ 2)(s + 5) +K = 0 .

The Routh array is

s3 1 10

s2 7 K

s1 b 0

so K

where

b =
70−K

7
.
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When K = 70, the system has roots on jω-axis at s = ±j
√
10.

(c) When K = 6, the roots are s1,2 = −0.83 ± j0.66, s3 = −5.34.

(d) The characteristic equation

1 +
K

s(s+ 2)(s + 5)
= 0

has the root locus shown in Figure P7.3.
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FIGURE P7.3
Root locus for 1 + K

s(s+2)(s+5) = 0.

P7.4 The characteristic equation for the large antenna is

1 +G1G(s) = 1 +
100ka

(0.1s + 1)(s2 + 14.4s + 100)
= 0 ,

or

1 +
1000ka

(s+ 10)(s2 + 14.4s + 100)
= 0 .

The root locus is shown in Figure P7.4. Using Routh’s criteria, we find
that the system is stable for

−1 < ka < 4.83 .
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FIGURE P7.4
Root locus for 1 + 1000ka

(s2+14.14s+100)(s+10) = 0.

When ka = 4.83, we have s1,2 = ±j15.53.

P7.5 (a) The characteristic equation for hands-off control is

1 +
25K2(s+ 0.03)(s + 1)

(s+ 0.4)(s2 − 0.36s + 0.16)(s + 9)
= 0 .

The root locus is shown in Figure P7.5a. The damping ratio is ζ =
0.707 when K2 = 1.6 or K2 = 0.74.

(b) The transfer function from Td(s) to Y (s) is

Y (s) =
G2(s)Td(s)

1 +G2(s)Gf (s)
,

where

Gf (s) =
K2(s+ 1)

s+ 9
.

Using the final value theorem, we determine that

yss = lim
s→0

s
G2(s)

1 +G2(s)Gf (s)

1

s
=

11.7

1 + 11.7
(

K2
9

) = 3.8 ,
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FIGURE P7.5
(a) Root locus for 1 +

25K2(s+0.03)(s+1)
(s+9)(s2−0.36s+0.16)(s+0.4)

= 0.
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FIGURE P7.5
CONTINUED: (b) Root locus for 1 +

25K1(s+0.03)(s+9)
(s+0.045)(s2+12s+1)(s+1.33)(s2+7.66s+29.78)

= 0.

where we have selected K2 = 1.6. For K2 = 0.74, we find that yss =
5.96.
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(c) The closed-loop characteristic equation with the pilot loop added is

1 +
25K1(s+ 0.03)(s + 9)

(s+ 0.045)(s + 1.33)(s2 + 7.66s + 29.78)(s2 + 12s + 1)
= 0 .

The root locus is shown in Figure P7.5b.

(d) Using K1 = 2, we determine that

ess = 0.44 .

P7.6 (a) The characteristic equation is

1 +
K(s+ 0.20)(s2 + 4s+ 6.25)

(s+ 0.9)(s − 0.6)(s − 0.1)(s + 4)
= 0 .

The root locus is shown in Figure P7.6.
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FIGURE P7.6
Root locus for 1 +

K(s+0.2)(s2+4s+6.25)
(s+0.9)(s−0.6)(s−0.1)(s+4)

= 0.

(b) For Ts < 12 sec, we require ζωn > 1/3. Also, we want ζ > 0.5. So,
we seek roots for a stable system with ζωn > 1/3 and ζ > 0.5. This
occurs when K > 4.
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P7.7 (a) The characteristic equation for the speed control system is

1 +
K

(s+ 4)2(s+ δ)
= 0 ,

where

K =
0.004

R
and δ =

0.75

4000
= 0.0001875 .

The root locus is shown in Figure P7.7. At ζ = 0.6, we have K = 19.1,
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FIGURE P7.7
Root locus for 1 + K

(s+4)2(s+1.875e−04)
= 0.

therefore

R = 0.00021 .

When K = 19.1 the roots are

s1,2 = −1.1± j1.43 and s3 = −5.80 .

(b) The steady-state error is

lim
s→0

s∆ω(s) = lim
s→0

s
(0.25s + 1)2

(0.25s + 1)2(Js+ b) + 1/R
∆L(s)
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=
1

b+ 1/R
∆L ≈ ∆LR ,

when R < 0.1.

P7.8 (a) The characteristic equation for the speed control system with the
hydroturbine is

1 +
K(−s+ 1)

(s+ 4)(s + 2)(s + δ)
= 0 ,

where

K =
0.002

R
and δ =

0.75

4000
= 0.0001875 .

The root locus is shown in Figure P7.8. At ζ = 0.6, we have K = 2.85,

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x x x o

Real Axis

Im
a

g
 A

xi
s

K=2.85 -->

FIGURE P7.8
Root locus for 1 +

K(−s+1)
(s+4)(s+2)(s+δ)

= 0.

therefore

R = 0.0007 .

When K = 2.85 the roots are −0.45± j0.60, and -5.1.
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310 CHAPTER 7 The Root Locus Method

(b) The steady-state error is

lim
s→0

s∆ω(s) = lim
s→0

s
(0.25s + 1)(0.5s + 1)

(0.25s + 1)(0.5s + 1)(Js + f) + (−s+ 1)/R
∆L(s)

=
1

f + 1/R
∆L ≈ ∆LR ,

when R < 0.1.

P7.9 The characteristic equation is

1 +K
(s+ 0.5)(s + 0.1)(s2 + 2s + 289)

s(s+ 30)2(s− 0.4)(s + 0.8)(s2 + 1.45s + 361)
= 0

where K = K1K2. The root locus is shown in Figure P7.9. When

K = 4000 ,

the roots are

s1,2 = −0.82 ± j19.4
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FIGURE P7.9
Root locus for 1 +

K(s+0.5)(s+0.1)(s2+2s+289)
s(s+30)2(s−0.4)(s+0.8)(s2+1.45s+361)

= 0.
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s3 = −39.8

s4 = −14.9

s5 = −5.0

s6 = −0.38

s7 = −0.14 .

P7.10 (a) The characteristic equation is

1 +
K1K2(s+ 2)2

(s+ 10)(s + 100)(s2 + 1.5s + 6.25)
= 0 .

The root locus is shown in Figure P7.10.
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FIGURE P7.10
Root locus for 1 +

K1K2(s+2)2

(s+10)(s+100)(s2+1.5s+6.25)
= 0.

(b) The gain

K1K2 = 1620

when ζ = 0.707. Therefore,

K2 = 81000 ,
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since K1 = 0.02 at medium weight cruise condition.

(c) At lightweight cruise condition

K1 = 0.2 .

Using K2 = 81000, we find the roots are

s1,2 = −54± j119

s3,4 = −2± j0.6 .

The roots s3,4 become negligible and the roots at s1,2 become highly
oscillatory. Hence, in this case

ζ = 0.41 .

P7.11 (a) The closed-loop characteristic equation is

1 +
20Ka(s

2 + s+ 0.02)

s(s+ 1)2(s2 + 2s+ 0.8)
= 0 ,

where

K2 = 10 .

Then, the root locus is shown in Figure P7.11a.
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FIGURE P7.11
(a) Root locus for 1 +Ka

20s2+20s+0.4
s(s+1)2(s2+2s+0.8)

= 0, where K2 = 10.
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(b) When

Ka < 0.035 ,

all the roots have a damping greater than or equal to 0.60.

(c) Select

Ka = 0.035 .

Then, the characteristic equation with K2 as the parameter is

1 +K2
0.07(s2 + s)

s5 + 4s4 + 5.8s3 + 3.6s2 + 0.8s + 0.014
= 0 .

The root locus is shown in Figure P7.11b.
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FIGURE P7.11
CONTINUED: (b) Root locus for 1+K2

0.07s(s+1)
s(s+1)2(s2+2s+0.8)+0.014

= 0, where Ka = 0.035.

P7.12 (a) The closed-loop transfer function is

T (s) =
KaKm(s+ 25)(s + 15)

1.8s2(s+ 2) +KaKm(s+ 25)(s + 15) + 1.6Kms(s+ 2)
.

So, with E(s) = R(s)− Y (s), we have E(s) = (1− T (s))R(s) and

ess = lim
s→0

sE(s) = 1− T (0) = 0 .
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Therefore, when the system is stable, it has zero steady-state error.

(b) The characteristic equation is

s3 + (3.6 +Ka)s
2 + (3.2 + 40Ka)s+ 375Ka .

The Routh array is

s3 1 3.2 + 40Ka

s2 3.6 +Ka 375Ka

s1 b

so 375K

Solving for b > 0 leads to 0 < Ka < 0.05 or Ka > 5.64 for stability.

(c) The characteristic equation can be written as

1 +
Ka(s+ 25)(s + 15)

s(s+ 2)(s + 1.6)
= 0 .

The root locus is shown in Figure P7.12.

(d) When

K > 40 ,
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FIGURE P7.12
Root locus for 1 +Ka

(s+25)(s+15)
s(s+2)(s+1.6)

= 0, where Km = 1.8.
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the roots are

s1 = −123 and s2,3 = −15.6 ± j31.2 .

From the step response we find

P.O. = 5%

Tp = 0.67 sec

Ts = 0.25 sec .

P7.13 (a) The characteristic equation is

1 +
K

s(s+ 3)(s2 + 4s + 7.84)
= 0 .

The root locus is shown in Figure P7.13. The breakaway point is
s = −1.09 at K = 9.72.

(b) When K = 13.5, the roots are

s1,2 = −0.84 ± j0.84

s3,4 = −2.66 ± j1.55 .
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FIGURE P7.13
Root locus for 1 + K

s(s+3)(s2+4s+7.84)
= 0.
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(c) The roots

s = −0.84± j0.84

are dominant roots.

(d) For the dominant roots, we determine that ζ = 0.7 and ωn = 1.19.
Therefore, the settling time is

Ts =
4

ζωn
= 4.8 sec .

P7.14 The characteristic equation is

1 +
K(s+ 2.5)(s + 3.2)

s2(s+ 1)(s + 10)(s + 30)
= 0 .

The root locus is shown in Figure P7.14. When K = 559.3, the roots are

s1 = −30.75 s2 = −8.48 s3 = −1.78 s4,5 = ±j3.11 .

When K = 4321, the roots are

s1 = −34.45 s2 = −4.35 s3 = −2.21 s4,5 = ±j10.23 .

The crossover points are

s = ±j3.11 and s = ±j10.23 .
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FIGURE P7.14
Root locus for 1 +K

(s+2.5)(s+3.5)
s2(s+1)(s+10)(s+30)

= 0.
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Therefore, the system is stable for

559.3 < K < 4321 .

P7.15 The characteristic equation is

1 +
K(s2 + 30s + 625)

s(s+ 20)(s2 + 20s + 200)(s2 + 60s + 3400)
.

The root locus is shown in Figure P7.15. When K = 30000, the roots are

s1 = −18.5 s2 = −1.69 s3,4 = −9.8±j8.9 s5,6 = −30.1±j49.9.

The real root near the origin dominates, and the step response is over-
damped.
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FIGURE P7.15
Root locus for 1 +K s2+30s+625

s(s+20)(s2+20s+200)(s2+60s+3400) = 0.
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P7.16 (a) Let τ = 0. Then, first reduce the motor and rolls to an equivalent
G(s) as follows:

G(s) =

0.25
s(s+1)

1 + 0.25
s(s+1)

=
0.25

s(s+ 1) + 0.25
=

0.25

(s+ 0.5)2
.

The loop transfer function is then

L(s) =
2(s + 0.5)Ka(0.25)

s(s+ 1)2(s + 0.5)2
=

0.5Ka

s(s+ 1)2(s+ 0.5)
.

The characteristic equation is

1 +Ka
0.5

s(s+ 1)2(s+ 0.5)
= 0 .

The root locus is shown in Figure P7.16.
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FIGURE P7.16
Root locus for 1 + 0.5Ka

s(s+1)2(s+0.5)
= 0.

(b) When K = 0.123, the roots of the characteristic equation are

s1,2 = −1.1± j0.27

s3,4 = −0.15 ± j0.15 .
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The roots at s = −0.15 ± j0.15 have a damping ratio of ζ = 0.707.

(c) When τ becomes nonnegligible, the root locus will have an additional
pole, and the root locus will change accordingly.

P7.17 The characteristic equation is

(M1s
2 + bs+ k1 + k12)(M2s

2 + k12)− k212 = 0 .

If we let M1 = k1 = b = 1, and assume k12 < 1 so that k212 is negligible
and k1 + k12 ≈ k1, then the characteristic equation is

(s2 + s+ 1)(M2s
2 + k12) = 0 or 1 +

k

s2
= 0 ,

where

k =
k12
M2

.

The root locus is shown in Figure P7.17. All the roots lie on the jω axis.
If we select

√

k12
M2

= ωo ,

then we cancel the vibration.
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FIGURE P7.17
Root locus for 1 + k

s2 = 0.
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P7.18 The characteristic equation is

βs3 + (1 + 2β)s2 + (2 + 4α)s + 4 = 0 .

When β = 0 we have

1 +
4αs

s2 + 2s+ 4
= 0 .

The root locus for β = 0 is shown in Figure P7.18.
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FIGURE P7.18
Root locus for 1 + α 4s

s2+2s+4
= 0, where β = 0.

For α = 0.3, the poles are

s = −1.6± j1.2 .

Then, we have

1 +
β(s + 2)s2

s2 + (2 + 4α)s + 4
= 0 .

When β = 0.121

s1,2 = −1.51 ± j1.51

s3 = −7.24 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 321

Thus,

ζ = 0.707 and ζωn = 1.5 .

So, the performance specs are met. Also,

Gc(s) =
0.3s + 1

0.121s + 1
=

2.48(s + 3.33)

(s+ 8.26)
.

P7.19 The characteristic equation is

1 +
Ka(s

2 + 4s + 100)

s(s+ 2)(s + 6)
= 0 .

The root locus is shown in Figure P7.19.
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FIGURE P7.19
Root locus for 1 +Ka

s2+4s+100
s(s+2)(s+6)

= 0.

When Ka = 0.094;, the roots are

s1,2 = −0.85 ± j0.85

s3 = −6.38 .

Thus, the complex roots have a damping ratio of ζ = 0.707.

P7.20 The characteristic equation is

s3 + (2 +
1

β
)s2 + (

2

β
+K)s+

4

β
= 0 ,
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where

K =
4α

β
α = 0.3 β = 0.121 .

The root sensitivity to changes in K is found to be

Sr1
K

∼= ∆r1
∆K/K

= 1.186 −149.75o .

The root sensitivity to changes in the pole at s = −2 is found to be

Sr1
∆

∼= ∆r1
∆/2

= 1.656 −137o , where the pole is s+ 2 +∆.

P7.21 (a) Let the pole be (s+ 4 +∆) and neglect ∆2 terms. Then, the charac-
teristic equation is

1 + ∆
2s2 + (8 + 2δ)s + 8δ

s3 + (8 + δ)s2 + (16 + 8δ)s + 16δ +K
= 0

where δ = 0.000788 and K = 19.1.
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FIGURE P7.21
Root locus for 1 + ∆

2s2+(8+2δ)s+8δ
s3+(8+δ)s2+(16+8δ)s+16δ+K

= 0, (δ = 0.000788 and K = 19.1).

The root sensitivity is determined to be

Sr1
∆

∼= ∆r1
∆/4

= 3.3146 −132o .
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(b) Let R = Ro +∆R, where R = 0.00021. Then,

Sr1
R

∼= ∆r1
∆R/R

= 1.31 6 −107o .

P7.22 The characteristic equation is

s3 + 2s2 + s+K ,

where K = 0.24 for ζ = 0.707. The root sensitivity to changes in the pole
at s = −1 is found to be

Sr1
∆

∼= ∆r1
∆

= 0.956 −126o ,

where the pole is s+ 1 +∆.

P7.23 The characteristic equation is

s3 + 5s2 + (6 +K)s+K ,

where K = 6.3 for ζ = 0.707. The root sensitivity to changes in the pole
at s = −2 is found to be

Sr1
∆

∼= ∆r1
∆/2

= 1.256 −169.4o ,

where the pole is s+2+∆. The root sensitivity to changes in the zero at
s = −1 is found to be

Sr1
∆

∼= ∆r1
∆

= 0.556 34.4o ,

where the zero is s+ 1 +∆.

P7.24 The root locus for each of the four cases shown is shown in Figure P7.24.
The four open-loop transfer functions are

(a) KF (s) =
s2 + 7s+ 8.25

s3 + 6s2 + 5s

(b) KF (s) =
s+ 8

s5 + 30s4 + 296s3 + 1170s2 + 1575s

(c) KF (s) =
1

s6 + 2s5 + s4
(d) KF (s) =

s2 + 6s+ 6.75

s3 + 5s2 + 4s
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FIGURE P7.24
Root locus for the four cases.

P7.25 The characteristic equation is

1 +KGc(s)G(s) = 0 ,

therefore,

KGc(s)G(s) = −1 .

Squaring both sides yields K2G2
c(s)G

2(s) = 1 and

1−K2G2
c(s)G

2(s) = 0 .

The root locus with 0 < K2 < ∞ is shown in Figure P7.25. The value of
K2 for which the locus crosses the imaginary axis is

K2 = 2/3 ,

therefore K =
√

2/3 = 0.8165 corresponds to the jω-axis crossing (at
s = 0). You can check that 1 + KGc(s)G(s) = 0 for K = 0.8165 and
s = 0.
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FIGURE P7.25
Root locus for the equation 1−K2G2

c(s)G
2(s) = 0.

P7.26 (a) The characteristic equation is

1 +
K(s+ 2)2

s(s2 + 1)(s + 8)
= 0 .

The root locus is shown in Figure P7.26.

(b) Using Routh’s criteria, we determine that

K > 14

for stability.

(c) From the Routh array, we determine that for K = 14, we have two
purely imaginary poles at

s = ±j
√
8 .

(d) When K > 50, the real part of the complex roots is approximately
equal to the real part of the two real roots and therefore the complex
roots are not dominant roots.
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FIGURE P7.26
Root locus for 1 +K

(s+2)2

s(s2+1)(s+8) = 0.

P7.27 The characteristic equation is

1 +
K(s2 + 0.1)

s(s2 + 2)
= 0 .

The root locus is shown in Figure P7.27a. The locus enters the axis at

s = −1.26

and leaves the axis at

s = −0.36 .

Define

p(s) = K =
−(s3 + 2s)

s2 + 0.1
.

Then, a plot of p(s) vs s is shown in Figure P7.27b, where it can be seen
that p(s) has two inflection points at

s = −1.28 and s = −0.36 .
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FIGURE P7.27
(a) Root locus for 1 +K s2+0.1

s(s2+2) = 0. (b) Plot of p(s) = −
s3+2s
s2+0.1 versus s.

P7.28 The characteristic equation is

1 + L(s) = 1 +
K(s2 + 12s + 20)

s3 + 10s2 + 25s
= 0 .

The root locus is shown in Figure P7.28. The breakaway point is s = −5.0
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FIGURE P7.28
Root locus for 1 +K

(s2+12s+20)
s3+10s2+25s

= 0.

and the entry point is s = −15.6. When K = 2, the roots are

s1 = −1.07

s2,3 = −5.46± j2.75 .

When K = 2, the roots are

s1 = −1.07

s2,3 = −4.36± j1.68 .

The predicted step response when K = 2 is Ts = 9 sec and PO ≈ 0%.

P7.29 The characteristic equation is

1 +K
s2 + 10s + 30

s2(s + 10)
= 0 .

The root locus is shown in Figure P7.29. When ζ = 0.707, the necessary
gain is K = 16. The corresponding roots are s1 = −18.87 and s2,3 =
−3.56± j3.56.
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FIGURE P7.29
Root locus for 1 +K s2+10s+30

s2(s+10)
= 0.

P7.30 The transfer function is

Z(s) =
LCRs2 + Ls

LCs2 + CRs+ 1
=

Rs2 + s

s2 +Rs+ 1
.

So,

r1 = −R

2
+

(

R2

4
− 1

) 1
2

.

Thus, the nominal r1o = −1
2 . Simultaneously,

r2 = −R

2
−
(

R2

4
− 1

)
1
2

.

Thus, the nominal r2o = −2. We see that there is a difference by a factor
of 4. Also,

Sri
R =

∂r1
∂R

∣

∣

∣

∣

Ro

·Ro = −Ro

2
+

R2
o

4

(

R2
o

4
− 1

)− 1
2

=
5

6
,

where Ro = 2.5. And

Sr2
R =

∂r2
∂R

∣

∣

∣

∣

Ro

Ro = −Ro

2
− R2

o

4

(

R2
o

4
− 1

)− 1
2

=
−10

3
.
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So, the magnitude of |Sr2
R | = 4|Sr1

R |.
P7.31 The characteristic equation is

1 +K
s+ 4

s(s+ 0.16)(s2 + 14.6s + 148.999)
= 0 .

The root locus is shown in Figure P7.31. When K = 1350, the roots are
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FIGURE P7.31
Root locus for 1 +K s+4

s(s+0.16)(s2+14.6s+148.999)
= 0.

s1,2 = ±j9.6

s3,4 = −7.4± j1.9 .

When K = 326, the roots are

s1,2 = −6.5± j8.7 s3,4 = −0.9± j3.2 .

P7.32 The characteristic equation is

1 +
K(s+ 1)(s + 5)

s(s+ 1.5)(s + 2)
= 0 .
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FIGURE P7.32
Root locus for 1 +K

(s+1)(s+5)
s(s+1.5)(s+2)

= 0.

K ζ Ts (sec) P.O. (%)

1.57 0.707 0.98 1.4

3.48 0.707 1.1 5.8

2.35 0.69 1.3 4.0

TABLE P7.32 Step Response Results for K = 1.57, K = 3.48, and K = 2.35.

(a) The breakaway point is s = −1.73; the entry point is s = −8.62.

(b) The damping ratio ζ = 0.707 when K = 1.57 and again when K =
3.46.

(c) The minimum damping ratio ζ = 0.69 is achieved when K = 2.35.

(d) The results are summarized in Table P7.32.The best choice of gain is
K = 1.57.

P7.33 (a) The root locus for the V-22 is shown in Figure P7.33a. The system is
stable when 0 < K < 0.48 and K > 136.5.

(b) The unit step input response (forK = 280) is shown in Figure P7.33b.
The step response has a P.O. = 90% and Ts ≈ 50 sec.

(c) The plot of y(t) for a unit step disturbance is shown in Figure P7.33b.
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FIGURE P7.33
(a) Root locus for 1+K s2+1.5s+0.5

s(20s+1)(10s+1)(0.5s+1)
= 0. (b) (i) Unit step input response with

and without prefilter; (ii) Unit step disturbance response.

The response to the disturbance is oscillatory, but the maximum value
of oscillation is about 0.003; so it is negligible.

(d) The effect of adding a prefilter can be seen in Figure P7.33b. With
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the prefilter we find PO = 7% and Ts ≈ 40 sec.

P7.34 The characteristic equation is

1 +
K(s+ 2)

(s+ 1)(s + 2.5)(s + 4)(s + 10)
= 0 .

The root locus is shown in Figure P7.34a. The roots, predicted and ac-
tual percent overshoot for K = 400, 500, and 600 are summarized in
Table P7.34. The actual unit step input responses are shown in Fig-
ure P7.34b.

K roots ζ predicted P.O. (%) actual P.O. (%)

400 -13.5,-1.00 ± 5.71j,-1.98 0.173 57.6 51.6

500 -14.0,-0.75 ± 6.24j,-1.98 0.120 68.4 61.2

600 -14.4,-0.53 ± 6.71j,-1.98 0.079 77.9 69.6

TABLE P7.34 Summary for K = 400, 500, 600.
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FIGURE P7.34
(a) Root locus for 1 +K s+2

(s+1)(s+2.5)(s+4)(s+10) = 0.
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FIGURE P7.34
CONTINUED (b) Unit step input responses for K = 400, 500, 600.

P7.35 (a) The root locus is shown in Figure P7.35 for the characteristic equation

1 +
K(s+ 1)2

s(s2 + 1)
= 0 .
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FIGURE P7.35
Root locus for 1 +K

(s+1)2

s(s2+1)
= 0.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 335

(b) When K = 4.52, the roots are

s1 = −0.58

s2,3 = −1.96 ± j1.96 .

The complex roots have ζ = 0.707.

(c) The entry point is s = −3.38 when K = 7.41.

(d) The predicted P.O. = 4.5% (ζ = 0.707) and the actual P.O. = 17%.

P7.36 The characteristic equation is

1 +
K(s+ 1)(s + 2)(s + 3)

s3(s− 1)
= 0 .

(a) The root locus is shown in Figure P7.36.
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FIGURE P7.36
Root locus for 1 +K

(s+1)(s+2)(s+3)
s3(s−1)

= 0.

(b) When K = 2.96, the roots are

s1,2 = ±j4.08

s3,4 = −0.98 ± j0.33 .
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(c) When K = 20, the roots are

s1 = −1.46

s2 = −1.07

s3,4 = −8.23 ± j2.99 .

When K = 100, the roots are

s1 = −92.65

s2 = −3.51

s3 = −1.82

s4 = −1.01 .

(d) WhenK = 20, the damping ratio is ζ = 0.94. Therefore, the predicted
P.O. = 0.02%. The actual overshoot is P.O. = 23%.

P7.37 Since we know that ess = 0 for a step input, we know that a = 0 or b = 0.
Select a = 0. Also, ωn = 2π/T = 20 rad/sec. The desired characteristic
polynomial is

(s+ r1)(s+ j20)(s − j20) = s3 + r1s
2 + 400s + 400r1 = 0 .

The actual characteristic polynomial is

1 +
2K

s(s+ b)(s+ 40)
= 0 , or s3 + (40 + b)s2 + 40bs+ 2K = 0 .

Comparing the coefficients in the desired and actual characteristic poly-
nomials, we determine that b = 10, r1 = 50, and K = 10000.

P7.38 (a) The characteristic equation is

1 +
K(s+ 1)

s(s− 3)
= 0 .

The system is stable forK > 3. WhenK = 3, the roots are s = ±j
√
3.

(b) The root locus is shown in Figure P7.38a.

(c) When K = 10 , the roots are

s1 = −2

s2 = −5 .

Since both roots are real and stable, we expect that there will be
zero overshoot. The actual response has a 40% overshoot, as seen in
Figure P7.38b.
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FIGURE P7.38
(a) Root locus for 1 +K s+1

s(s−3)
= 0. (b) Unit step response.

P7.39 The loop transfer function is

Gc(s)G(s) =
22K

(s+ 1)(s2 + 8s + 22)
.

When K = 0.529, the closed-loop poles are s1,2 = −3.34 ± 1.83j and
s3 = −2.32 and have the maximum damping ζ = 0.877. The root locus is
shown in Figure P7.39a. The step response is shown in Figure P7.39b.
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(a) Root locus for 22K

(s+1)(s2+8s+22)
= 0. (b) Unit step response.
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Advanced Problems

AP7.1 The characteristic equation is

1 +K
s+ 6

s(s+ 4)(s2 + 4s + 8)
= 0 .

The root locus is shown in Figure AP7.1. The gain at maximum ζ is
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FIGURE AP7.1
Root locus for 1 +K

s(s+4)
s2+2s+2

= 0.

K = 3.7 .

The roots at K = 3.7 are

s1 = −3.6424 s2,3 = −1.3395 ±+1.3553j s4 = −1.6786 .

Using Figure 5.13 in Dorf & Bishop, the predicted percent overshoot and
settling time are

P.O. = 5% and Ts = 3 sec ,
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since ζ = 0.7 and

a

ωnζ
=

6

1.9(0.7)
= 4.5 .

The actual percent overshoot and settling time are P.O. = 1% and Ts =
2.8 sec.

AP7.2 The characteristic equation is

1 +K
(s+ 1)(s + 4)

s(s− 1)(s + 5)(s + 10)
= 0 .

The root locus is shown in Figure AP7.2a. The selected gain is K = 43.7.
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FIGURE AP7.2
(a) Root locus for 1 +K

(s+1)(s+4)
s(s−1)(s+5)(s+10)

= 0; (b) Step response for K = 43.7.
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The actual percent overshoot (see Figure AP7.2b) is P.O. = 48.3%.

AP7.3 The characteristic equation (with p as the parameter) is

1 + p
s(s+ 1)

s3 + s2 + 10
= 0 .

The root locus is shown in Figure AP7.3.
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FIGURE AP7.3
Root locus for 1 + p

s(s+1)
s3+s2+10

= 0.

When p = 21 the dominant roots have a damping ratio of ζ = 0.707.

AP7.4 The characteristic equation (with α as the parameter) is

1 + α
s(s+ 1)

s3 + s2 + 1
= 0 .

The root locus is shown in Figure AP7.4a. The steady-state error is

ess = lim
s→0

sE(s) = lim
s→0

1

1 +G(s)
= 1− α .

To meet the steady-state error specification, we require

0.9 < α < 1.1 .

The step responses for α = 0.9, 1 and 1.1 are shown in Figure AP7.4b.
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FIGURE AP7.4
(a) Root locus for 1 + p

s(s+1)
s3+s2+10 = 0. (b) Step responses for α = 0.9, 1 and 1.1.

AP7.5 The root locus is shown in Figure AP7.5. WhenK = 20.45, ζ = 0.707. The
root sensitivity is Sr1

K
∼= ∆r1/(∆K/20.45) = 3.156 87.76o. When K = 88,

the complex roots lie on the jω-axis—a 330% increase in the gain.
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FIGURE AP7.5
Root locus for 1 +K 1

s3+10s2+7s−18 = 0.

AP7.6 A gain of K = 13 provides an acceptable response of Ts < 1 and P.O. <
7.5%. The root locus is shown in Figure AP7.6.
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FIGURE AP7.6
Root locus for 1 +K s2+3s+6

s3+2s2+3s+1 = 0.
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AP7.7 The root locus for the positive feedback system is shown in Figure AP7.7.
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FIGURE AP7.7
Root locus for 1 +K −1

s2+12s+32
= 0.

AP7.8 The root locus is shown in Figure AP7.8a. When k = 0.448, all the roots
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FIGURE AP7.8
(a) Root locus for 1 + k 120s

s3+19s2+34s+120
= 0.
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of the characteristic equation are real—the step response is shown in
Figure AP7.8b.
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FIGURE AP7.8
CONTINUED (b) Step response with k = 0.448.

AP7.9 The root locus for each controller is shown in Figure AP7.9.
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FIGURE AP7.9
Root locus for the various controllers.
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AP7.10 The characteristic equation (with K as the parameter) is

1 +K
s2 + 7s+ 20

s(s2 + 7s+ 10)
= 0 .

The root locus is shown in Figure AP7.10. The steady-state value of the
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FIGURE AP7.10
Root locus for 1 +K s2+7s+20

s(s2+7s+10)
= 0.

step response for any K is 0.5. With K = 15 the closed-loop transfer
function is

T (s) =
10s + 150

s3 + 22s2 + 115s + 300
.

The step response has the following characteristics:

P.O. = 4.8% and Ts = 2 seconds .

AP7.11 The root locus is shown in Figure AP7.11a. A suitable gain is

K = 500.

The step response is shown in Figure AP7.11b.
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FIGURE AP7.11
(a) Root locus for 1 +K

(s+2)2

s(s+10)(s+20)(s2+3s+3.5)
= 0.
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FIGURE AP7.11
CONTINUED: (b) Step response with K = 500.

AP7.12 The root locus is shown in Figure AP7.12a. The PI controller can be
written as

Gc(s) =
Kps+KI

s
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FIGURE AP7.12
(a) Root locus for 1 +Kp

(s+0.2)
s(s2+7s+10)

= 0. (b) Step response with Kp = 5.54.

and setting KI = 0.2Kp, the characteristic equation can be written as

1 +Kp
(s+ 0.2)

s(s2 + 7s + 10)
= 0

A suitable gain isKp = 5.55. The step response is shown in Figure AP7.12b.
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AP7.13 The characteristic equation is

1 +K1K2
1

(s+ 5)(s − 1)
= 0.

The root locus is shown in Figure AP7.12a. The fastest expected settling
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FIGURE AP7.13
Root locus for 1 +K1K2

1
(s+5)(s−1)

= 0.

time is Ts = 4/ωnζ = 2 seconds since maximum |ωnζ| = 2.

AP7.14 The root locus of the uncompensated transfer function is shown in Fig-
ure AP7.14a. It can be seen that the system is unstable for Ku = 131.25
with a period of Tu = 0.72, as illustrated in FigureAP7.14b. Using the
Ziegler-Nichols design formulas yieldsKP = 0.6Ku = 78.75,KI = 1.2Ku/Tu =
218.75, and KD = 0.6KuTu = 7.0875 where
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FIGURE AP7.14
(a) Root locus for 1 +Ku
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FIGURE AP7.14
CONTIUED: (b) Step response at the ultimate gain Ku = 131.
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CONTINUED: (c) Step response with the Ziegler-Nichols tuned PID controller.
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FIGURE AP7.14
CONTINUED: (d) Disturbance response with the Ziegler-Nichols tuned PID controller.
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Design Problems
The closed-loop transfer function from the input to the output isCDP7.1

θ(s)

R(s)
=

26.035Ka

s2 + (33.1415 + 26.035KaK1)s+ 26.035Ka
,

where we consider for the first time the tachometer feedback (see Figure
CDP4.1 in Dorf and Bishop). The characteristic equation is

1 +K1
26.035Kas

s2 + 33.1415s + 26.035Ka
= 0 .

The root locus is shown below. In accordance with the discussion in Chap-
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ter 5, we continue to use Ka = 22. This allows us to meet the overshoot
specification (P.O. < 5%) without the tachometer feedback and to pro-
vides good steady-state tracking errors to a step input. To meet the design
specifications of both P.O. and Ts we want the closed-loop poles to the
left of −ζω = −4/0.3 = −13.33 and ζ > 0.69. A reasonable selection is
K1 = 0.012. This places the closed-loop poles at s = −20± j13.

DP7.1 (a) The characteristic equation is

1 +
18K(s + 0.015)(s + 0.45)

(s2 + 1.2s + 12)(s2 + 0.01s + 0.0025)
= 0 .
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Since we want a negative feedback system, we have Gc(s) = −K.
When ωn > 2 and ζ = 0.15, the gain K = 0.12. The root locus is
shown in Figure DP7.1a.
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FIGURE DP7.1
(a) Root locus for 1 +K

18(s+0.015)(s+0.45)
(s2+1.2s+12)(s2+0.01s+0.0025)

= 0.

(b) The unit step response is shown in Figure DP7.1b. The percent over-
shoot is

P.O. = 100% .

(c) The characteristic equation with the anticipatory controller is

1 +
18K(s + 2)(s + 0.015)(s + 0.45)

(s2 + 1.2s + 12)(s2 + 0.01s + 0.002s)
= 0 .

The root locus is shown in Figure DP7.1c. If we select

K = 9.2/18 ,

then the complex roots have a damping ζ = 0.90. The roots are at

s1 = −0.253

s2 = −0.019

s3,4 = −5.07 ± j2.50 .
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FIGURE DP7.1
CONTINUED: (b) Unit step response for gain controller.
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FIGURE DP7.1
CONTINUED: (c) Root locus for 1 +K

18(s+2)(s+0.015)(s+0.45)
(s2+1.2s+12)(s2+0.01s+0.0025)

= 0.

(d) The unit step response for the system with the anticipatory controller
is shown in Figure DP7.1d.
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FIGURE DP7.1
CONTINUED: (d) Unit step response for anticipatory controller.

DP7.2 The characteristic equation is

1 +
10K(s + 1)

s(s2 + 4.5s + 9)
= 0 .

(a) The root locus is shown in Figure DP7.2a. When K = 0.435, we have
ζ = 0.6 and the roots are

s1 = −0.368

s2,3 = −2.1± j2.75 .

(b) The response to a step input is shown in Figure DP7.2b. The per-
formance results are

P.O. = 0%

Tss = 10 sec

ess = 0 .

(c) We have ζ = 0.41 when K = 1.51. The step response is shown in
Figure DP7.2b. The performance results to the step input are

P.O. = 0%

Ts = 4 sec

ess = 0 .
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FIGURE DP7.2
(a) Root locus for 1 +K

10(s+1)
s(s2+4.5s+9)

= 0.
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FIGURE DP7.2
CONTINUED: (b) Unit step responses for K = 0.425, 1.51.

DP7.3 The characteristic equation is

1 +
K(s2 + 6.5s + 12)

s(s+ 1)(s + 2)
= 0 .
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(a) The root locus is shown in Figure DP7.3.
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FIGURE DP7.3
Root locus for 1 +K s2+6.5s+12

s(s+1)(s+2)
= 0.

When K = 41, the roots are s1 = −37.12 and s2,3 = −3.44± j1.19 .

(b) The percent overshoot is P.O. ≈ 1% when ζ = 0.82 at K = 0.062.

(c) Select K > 300.

DP7.4 The characteristic equation is

1 +K
10(0.01s + 1)

s(s2 + 10s+ 10K1)
= 0 .

If we choose K1 = 2.5, then the root locus will start at s = 0,−5 and
-5. This is shown in Figure DP7.4. The root locus then has a nice shape
so that we can select K to place the complex poles where desired and
the one real root will be farther in the left half-plane; thus the notion
of dominant poles will be valid. So, if we desire a P.O. < 5%, we want
ζ > 0.69. This occurs when K ≈ 3. Thus, our design is

K1 = 2.5 and K = 3 .

The unit step response is shown in Figure DP7.4. The settling time is less
than 3.5 sec and the PO < 4%. The response to a unit step disturbance
is also shown in Figure DP7.4. The steady-state error magnitude to the
disturbance is 0.33.
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FIGURE DP7.4
(a) Root locus for 1 +K

10(0.01s+1)
s(s2+10s+25)

= 0. (b) System response to step input and distur-

bance.

DP7.5 The characteristic equation is

1 +K
s+ 1

s(s− 0.1)(s2 + 10s+ 41)
= 0 .

The root locus is shown in Figure DP7.5a.
The system is stable for 5 < K < 300. The step response with K =
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FIGURE DP7.5
(a) Root locus for 1 +K s+1

s(s−0.1)(s2+10s+41)
= 0. (b) Step response with K = 875.

90.5 is shown in Figure DP7.5b. We choose K = 90.5 to minimize the
settling time. The damping of the dominant poles is ζ = 0.54, so that the
estimated percent overshoot is P.O. = 13%. The actual percent overshoot
and settling time are P.O. = 57% and Ts = 3.4 seconds. The match
between the actual and predicted percent overshoot can be improved by
selecting a much higher gain K, but then the step response becomes
overy oscillatory and the settling time increases too much for a typical
high-performance aircraft.
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DP7.6 The characteristic equation is

1 +K
s+ 2

s(s+ 10)(s − 1)
= 0 .

The maximum damping is ζ = 0.46 at K = 55. The root locus is shown in
Figure DP7.6a; the step response is shown in Figure DP7.6b. The percent
overshoot and settling time are P.O. = 61.3% and Ts = 2 seconds.
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FIGURE DP7.6
(a) Root locus for 1 +K s+2

s(s+10)(s−1)
= 0. (b) Step response with K = 55.
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DP7.7 The loop transfer function is

Gc(s)G(s) =
KP s+KI

s(s+ 1)(0.5s + 1)
.

One possible set of PI controller gains are KP = 0.82 and KI = 0.9. The
step response is shown in Figure DP7.7.
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FIGURE DP7.7
Step response for with PI controller Gc(s) = (0.82s + 0.9)/s.

DP7.8 The closed-loop transfer function is

T (s) =
Vo(s)

V (s)
=

G(s)

1 +KG(s)
.

The dc gain is

T (0) =
G(0)

1 +KG(0)
≈ 1

K
.

The root locus is shown in Figure DP7.8. The maximum value of K for
stability is

K = 0.062 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



362 CHAPTER 7 The Root Locus Method

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x107

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x107

xx x

Real Axis

Im
a

g
 A

xi
s

+

+

+

FIGURE DP7.8
Root locus for 1 +K 3.142K1×1017

(s+3142)(s+107)2 = 0.

Therefore, the minimum dc gain is about 1/0.062=16. Selecting

K = 0.05 and R1 = 10 K

yields

R2 = 19R1 = 190 K .

DP7.9 The closed-loop transfer function (with Gp(s) = 1 and K = 1) is

T (s) =
2s3 + 6s2 + 14s + 10

s4 + 6s3 + 13s2 + 26s + 6
.

So, if we select Gp(s) = 1/T (0) = 0.6, the step response (with K = 1)
will have a zero steady-state tracking error. The root locus is shown in
Figure DP7.9a. The step responses for K = 1, 1.5 and 2.85 are shown in
Figure DP7.9b. For K = 1, we have P.O. = 0%, Tr = 7.8 and Ts = 13.9;
forK = 1.5, we have P.O. = 0%, Tr = 5.4 and Ts = 9.6; and for K = 2.85,
we have P.O. = 5.2%, Tr = 0.5 and Ts = 7.3. The best gain selection is
K = 2.85.
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FIGURE DP7.9
(a) Root locus for 1 +K

6(s+1)
s(s+4)(s2+2s+5)

= 0. (b) Step responses with K = 1, 1.5, 2.85.

DP7.10 A suitable selection of the various parameters is

ζ = 0.5 and q = 3/5 .

With q = 3/5, the open-loop zeros are real and equal. Then, it follows
that

λ =
2q

1− q
= 3 .
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The root locus is shown in Figure DP7.10. A reasonable choice of gain is

K = 30 .

The resulting step response is extremely fast with no overshoot. The
closed-loop transfer function is approximately given by

T (s) ≈ 1923

s+ 1923
.
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FIGURE DP7.10
Root locus for 1 +K 4s2+4s+1

0.0625s3+0.25s2+s
= 0.

DP7.11 The characteristic equation (with K as the parameter) is

1 +K
10(s2 + 10)

s3 + 20s
= 0 .

The root locus is shown in Figure DP7.11a. To maximize the closed-loop
system damping we choose

K = 0.513.

The step response is shown in Figure DP7.11b.
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FIGURE DP7.11
(a) Root locus for 1 +K

10(s2+10)
s3+20s = 0. (b) Step response with K = 0.513.

DP7.12 The characteristic equation is

1 +K
s+ 1.5

(s + 1)(s+ 2)(s + 4)(s + 10)
= 0 .

The root locus is shown in Figure DP7.12a.
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FIGURE DP7.12
(a) Root locus for 1 + K s+1.5

(s+1)(s+2)(s+4)(s+10)
= 0. (b) Step response with K =

100, 300, 600.

The closed-loop system roots are:

K = 100 : s1 = −11.38 s2,3 = −2.09 ± 3.10j s4 = −1.45

K = 300 : s1 = −12.94 s2,3 = −1.29 ± 5.10j s4 = −1.48

K = 600 : s1 = −14.44 s2,3 = −0.53 ± 6.72j s4 = −1.49

The step responses are shown in Figure DP7.12b.
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DP7.13 The closed-loop transfer function is

T (s) =
Ka

s3 + s2 +KaK2s+Ka
.

A suitable choice of gains is

Ka = 0.52 and K2 = 3 .

The step response is shown in Figure DP7.13.
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FIGURE DP7.13
Step response with Ka = 0.52 and K2 = 3.

DP7.14 The characteristic equation is

s2 + 10KDs+ 10(KP + 1) = 0 .

In the Evans form we have

1 +KD
10(s + τ)

s2 + 10
= 0 .

The root locus is shown in Figure DP7.14 for τ = 6. As τ → 0, the
dominant closed-loop pole approaches s = 0 as KD → ∞. As τ →

√
10,

the dominant closed-loop pole approaches s = −
√
10 as KD → ∞. A

viable controller is KP = 72 and KD = 12 when τ = 6.
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FIGURE DP7.14
Root locus when τ = 6.
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Computer Problems

CP7.1 The root locus for parts (a)-(d) are shown in Figures CP7.1a - CP7.1d.
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FIGURE CP7.1
(a) Root locus for 1 + k 30

s3+14s2+43s+30
= 0. (b) Root locus for 1 + k s+20

s2+4s+20
= 0.
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FIGURE CP7.1
CONTINUED: (c) Root locus for 1 + k s2+s+2

s(s2+6s+10)
= 0. (d) Root locus for 1 +

k s5+4s4+6s3+10s2+6s+4
s6+4s5+4s4+s3+s2+10s+1 = 0.
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CP7.2 The maximum value of the gain for stability is k = 0.791. The m-file
script and root locus is shown in Figure CP7.2.

num=[1 -2 2]; den=[1 3 2 0]; sys = tf(num,den);

rlocus(sys)

rloc�nd(sys)

Select a point in the graphics window

selected_point =

  -0.0025 + 0.6550i

ans =

    0.8008
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FIGURE CP7.2
Using the rlocfind function.

The value of k = 0.8008 selected by the rlocfind function is not exact
since you cannot select the jω-axis crossing precisely. The actual value is
determined using Routh-Hurwitz analysis.

CP7.3 The partial fraction expansion of Y (s) is

Y (s) =
s+ 6

s(s2 + 5s + 4)
=

0.1667

s+ 4
− 1.6667

s+ 1
+

1.5

s
.

The m-file script and output is shown in Figure CP7.3.
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num=[1 6]; den=[1 5 4 0]; 

[r,p,k]=residue(num,den)

r =

    0.1667

   -1.6667

    1.5000

p =

    -4

    -1

     0

k =

     []

FIGURE CP7.3
Using the residue function.

CP7.4 The characteristic equation is

1 + p
s− 1

s2 + 5s+ 10
= 0 .

The root locus is shown in Figure CP7.4. The closed-loop system is stable
for

0 < p < 10 .
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FIGURE CP7.4
Root locus for 1 + p s−1

s2+5s+10
= 0.
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CP7.5 The characteristic equation is

1 + k
s+ 1

s2
= 0 .

The root locus is shown in Figure CP7.5. For k = 2 we obtain s1,2 =
−1± j, that is, we have ζ = 0.707.

num=[1 1]; den=[1 0 0]; sys = tf(num,den);
hold o�, clf

rlocus(sys);

hold on

plot([0 -2],[0 2*tan(acos(0.707))],'--')

plot([0 -2],[0 -2*tan(acos(0.707))],'--')

plot([-1 -1],[1 -1],'*')
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FIGURE CP7.5
Root locus for 1 + k s+1

s2
= 0.

CP7.6 We choose a controller with two real poles and two real zeros selected to
meet the steady-state specification. The characteristic equation is

1 +K
(s+ 5.5)(s + 0.01)

(s+ 6.5)(s + 0.0001)

10

s3 + 15s2 + 50s
= 0 .

The m-file and root locus is shown in Figure CP7.4a. From the root lo-
cus we can select the value of the gain K that results in an estimated
P.O. ≤ 5% and a ζωn ≤ −2 to meet the settling time specification. We
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select K = 8.58. The step response is shown in Figure CP7.6b showing
the percent overshoot and settling time specifications are satisfied. The
velocity constant is kv = 145.2 which implies a steady-state error to a
ramp input of ess = 1/kv = 0.0069.
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ng=10; dg=conv([1 10 0],[1 5]); s

ysg=tf(ng,dg);

nh=conv([1 0.01],[1 5.5]);

dh=conv([1 6.5],[1 0.0001]); 

sysh=tf(nh,dh);

�gure(1)

rlocus(sysg*sysh)

K=8.58; sysh=tf(K*nh,dh);

sys=series(sysg,sysh);syscl=feedback(sys,1)

�gure(2)

subplot(121)

step(syscl);

Kv=10*8.58*0.01*5.5/10/6.5/0.0001/5

systd=feedback(sysg,sysh);

subplot(122)

step(systd)
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Settling Time (sec): 1.51

FIGURE CP7.6
(a) Root locus. (b) Step response and disturbance response.

CP7.7 The m-file script to generate the root locus for each controller in parts
(a)-(c) is shown in Figure CP7.7. The performance region is indicated on
each root locus in Figures CP7.7b - CP7.7d. For part (a), the controller
gain is found to be Gc(s) = 11.3920. The integral controller in part (b)
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ÈSelect a point in the graphics window

selected_point =

  -2.5030 + 3.3380i

ans =

   11.3920

Select a point in the graphics window

selected_point =

  -0.6690 + 0.8210i

ans =

    4.0930

Select a point in the graphics window

selected_point =

 -2.0695+ 2.7387i

ans =

 9.2516

on graph.Plot performance region boundaries

numg=[1]; deng=[1 5 6]; sysg = tf(numg,deng);
t=[0:0.1:15];
%
% Part (a)
%
sys1 = sysg;
rlocus(sys1), grid
hold on
plot([-0.4 -0.4],[-6 6],'--',...
[0 -6*tan(36.2*pi/180)],[0 6],'--',...
[0 -6*tan(36.2*pi/180)],[0 -6],'--')
hold o�

[kp,poles] = rloc�nd(sys1)

%

% Part (b)

%

numc=[1]; denc=[1 0]; sysc = tf(numc,denc);

sys2 = series(sysc,sysg); 

�gure

rlocus(sys2), grid

hold on

plot([-0.4 -0.4],[-6 6],'--',...

[0 -6*tan(36.2*pi/180)],[0 6],'--',...

[0 -6*tan(36.2*pi/180)],[0 -6],'--')

hold o�

[ki,poles] = rloc�nd(sys2)

%

% Part (c)

%

�gure

numc=[1 1]; denc=[1 0]; sysc = tf(numc,denc);

sys3 = series(sysc,sysg); 

rlocus(sys3), grid

hold on

plot([-0.4 -0.4],[-6 6],'--',...

[0 -6*tan(36.2*pi/180)],[0 6],'--',...

[0 -6*tan(36.2*pi/180)],[0 -6],'--')

hold o�

[kpi,poles] = rloc�nd(sys3)

%

% Part (d)

%

�gure

sys1_o = kp*sys1; sys1_cl = feedback(sys1_o,[1]);

sys2_o = ki*sys2; sys2_cl = feedback(sys2_o,[1]);

sys3_o = kpi*sys3; sys3_cl = feedback(sys3_o,[1]);

[y1,t]=step(sys1_cl,t);

[y2,t]=step(sys2_cl,t);

[y3,t]=step(sys3_cl,t);

plot(t,y1,t,y2,'--',t,y3,':'),grid

xlabel('time [sec]'),ylabel('y(t)')

title('Gc(s): proportional (solid), integral (dashed) & PI (dotted)')

 

FIGURE CP7.7
(a) Script to generate the root locus for each controller.

is determined to be

Gc(s) =
4.093

s
.
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FIGURE CP7.7
CONTINUED: (b) Root locus for proportional controller with selected K = 11.3920.

The proportional integral (PI) controller in part (c) is
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FIGURE CP7.7
CONTINUED: (c) Root locus for integral controller with selected K = 4.0930.
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Gc(s) =
9.2516(s + 1)

s
.

The proportional controller is stable for allK > 0 but has a significant
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FIGURE CP7.7
CONTINUED: (d) Root locus for PI controller with selected K = 9.2516.

steady-state error. The integral controller has no steady-state error,
but is stable only for K < 30. The PI controller has zero steady-state
error and is stable for all K > 0. Additionally, the PI controller has a
fast transient response. The step responses for each controller is shown in
Figure CP7.7e.
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Gc(s): proportional (solid), integral (dashed) & PI (dotted)

FIGURE CP7.7
CONTINUED: (e) Step responses for each controller.

CP7.8 The loop transfer function can be written as

Gc(s)G(s) =
K1 +K2s

Js2
= K̄2

s+ 5

s2

where

K̄2 = K2/J .

The parameter of interest for the root locus is K̄2. The root locus is shown
in Figure CP7.8. The selected value of

K̄2 = 7.1075 .

Therefore,

K2

J
= 7.1075 and

K1

J
= 35.5375 .
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num=[1 5]; den=[1 0 0]; sys=tf(num,den); rlocus(sys); rloc!nd(sys)

+

+

FIGURE CP7.8
Root locus to determine K̄2.

CP7.9 The value of K that results in a damping ratio of ζ = 0.707 is K = 5.2.
The root locus is shown in Figure CP7.9.
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FIGURE CP7.9
Root locus for 1 +K 1

s3+8s2+10s+1
= 0.
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CP7.10 (a) The characteristic equation is

s3 + (2 + k)s2 + 5s + 1 = 0 .

(b) The Routh array is

s3 1 5

s2 2 + k 1

s1 5k+9
2+k

so 1

?-2.5 ?-2 ?-1.5 ?-1 ?-0.5 0
?-2
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?-0.5

0

0.5

1

1.5

2

Root Locus

Real Axi s

Im
ag

in
ar

y 
A
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FIGURE CP7.10
Root locus for 1 + k s2

s3+2s2+5s+1 = 0.

For stability we require

2 + k > 0 or k > −2

and

5k + 9 > 0 or k > −9/5 .

Therefore, the stability region is defined by

k > −1.8 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Computer Problems 381

(c) Rearranging the characteristic equation yields

1 + k
s2

s3 + 2s2 + 5s+ 1 = 0 .

The root locus is shown in Figure CP7.10. We see that the system is
stable for all k > 0.
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Frequency Response Methods

Exercises

E8.1 Given the loop transfer function

L(s) =
4

(s+ 2)2
,

we determine that

|L(jω)| = 4

4 + ω2
and φ(ω) = −2 tan−1 ω/2 .

The frequency response is shown in Figure E8.1.
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FIGURE E8.1
Frequency response for L(s) = 4

(s+2)2
.

382
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The magnitude and phase angle for ω = 0, 0.5, 1, 2, 4,∞ are summarized
in Table E8.1.

ω 0 0.5 1 2 4 ∞

|L(jω)| 1 0.94 0.80 0.50 0.20 0

φ (deg) 0 -28.07 -53.13 -90 –126.87 -180

TABLE E8.1 Magnitude and phase for L(s) = 4
(s+2)2

.

E8.2 The transfer function is

G(s) =
5000

(s+ 70)(s + 500)
.

The frequency response plot is shown in Figure E8.2. The phase angle is
computed from

φ = − tan−1 ω

70
− tan−1 ω

500
.

The phase angles for ω = 10, 100 and 700 are summarized in Table E8.2.

ω 10 200 700

|G(jω)| -16.99 -27.17 -41.66

φ (deg) -9.28 -92.51 -138.75

TABLE E8.2 Magnitude and phase for G(s) = 5000
(s+70)(s+500)

.
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FIGURE E8.2
Frequency response for G(s) = 5000

(s+70)(s+500) .

E8.3 The loop transfer function is

L(s) =
300(s + 100)

s(s+ 10)(s + 40)
.

The phase angle is computed via

φ(ω) = −90o − tan−1 ω

10
− tan−1 ω

40
+ tan−1 ω

100
.

At ω = 28.3, we determine that

φ = −90o − 70.5o − 35.3o + 15.8o = 180o .

Computing the magnitude yields

|L(jω)| = 300(100)(1 + ( ω
100 )

2)
1
2

ω10(1 + ( ω
10 )

2)
1
240(1 + ( ω

40 )
2)

1
2

= 0.75 ,

when ω = 28.3. We can also rewrite L(s) as

L(s) =
75( s

100 + 1)

s( s
10 + 1)( s

40 + 1)
.
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Then, the magnitude in dB is

20 log10 |L| = 20 log10(75) + 10 log10(1 + (
ω

100
)2)− 10 log10(1 + (

ω

10
)2)

− 10 log10(1 + (
ω

40
)2)− 20 log10 ω = −2.5 dB ,

at ω = 28.3.

E8.4 The transfer function is

G(s) =
Ks

(s+ a)(s+ 10)2
.

Note that φ = 0o at ω = 3, and that

φ = +90o − tan−1 ω

a
− 2 tan−1 ω

10
.

Substituting ω = 3 and solving for a yields

a = 2 .

Similarly, from the magnitude relationship we determine that

K = 400 .

E8.5 The lower portion for ω < 2 is

20 log
K

ω
= 0 dB ,

at ω = 8. Therefore,

20 log
K

8
= 0 dB

which occurs when

K = 8 .

We have a zero at ω = 2 and another zero at ω = 4. The zero at ω = 4
yields

a = 0.25 .

We also have a pole at ω = 8, and a second pole at ω = 24. The pole at
ω = 24 yields

b = 1/24 .
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Therefore,

G(s) =
8(1 + s/2)(1 + s/4)

s(1 + s/8)(1 + s/24)(1 + s/36)
.

E8.6 The loop transfer function is

L(s) =
10

s(s/5 + 1)(s/100 + 1)
.

The Bode diagram is shown in Figure E8.6. When 20 log10 |L(jω)| = 0 dB,
we have

ω = 9.4 rad/sec .
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FIGURE E8.6
Bode Diagram for L(s) = 10

s(s/5+1)(s/100+1)
.

E8.7 The transfer function is

T (s) =
4

(s2 + s+ 1)(s2 + 0.4s + 4)
.

(a) The frequency response magnitude is shown in Figure E8.7.
The frequency response has two resonant peaks at

ωr1 = 0.8 rad/sec and ωr2 = 1.9 rad/sec .
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FIGURE E8.7
(a) Bode Diagram for T (s) = 4

(s2+s+1)(s2+0.4s+4) . (b) Unit step response.

(b) The percent overshoot is

P.O. = 35% ,

and the settling time is

Ts ≈ 16 sec .

(c) The step response is shown in Figure E8.7.

E8.8 (a) The break frequencies are

ω1 = 1 rad/sec, ω2 = 5 rad/sec, and ω3 = 20 rad/sec .

(b) The slope of the asymptotic plot at low frequencies is 0 dB/decade.
And at high frequencies the slope of the asymptotic plot is -20 dB/decade.

(c) The Bode plot is shown in Figure E8.8.
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FIGURE E8.8
Bode Diagram for Gc(s)G(s) =

100(s−1)
s2+25s+100

.

E8.9 The Bode diagram for G(s) is shown in Figure E8.9.
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FIGURE E8.9
Bode Diagram for G(s) =

(s/5+1)(s/20+1)
(s+1)(s/80+1)

.
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E8.10 The frequency response has two peaks; the first peak at f ≈ 1.8 and the
second peak at f ≈ 3.1. One possible G(jω) is

G(jω) =
1

(jωτ + 1)

(

1 +
(

2ζ1
ωn1

)

jω +
(

jω
ωn1

)2
)(

1 +
(

2ζ2
ωn2

)

jω +
(

jω
ωn2

)2
) ,

where

τ =
1

2π(0.2)
,

ζ1 = 0.15; ωn1 = 2π(1.8 × 103) ζ2 = 0.15; ωn2 = 2π(3.1 × 103) .

The damping ratios are estimated using Figure 8.10 in Dorf & Bishop.

E8.11 The Bode plot is shown in Figure E8.11. The frequency when 20 log10 |GCG(ω)| =
0 is ω = 9.9 rad/sec.
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FIGURE E8.11
Bode Diagram for Gc(s)G(s) = 1000

(s2+10s+100)(s+2)
.

E8.12 (a) The transfer function is

G(s) = C(sI−A)−1B+D =
−5(s− 1)

s2 + 3s+ 2
.

(b) The Bode plot is shown in Figure E8.12.
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FIGURE E8.12
Bode Diagram for G(s) =

−5(s−‘1)
s2+3s+2

.

E8.13 The closed-loop transfer function is

T (s) =
100

s3 + 11s2 + 20s+ 110
.

The Bode plot of T (s) is shown in Figure E8.13, where ωB = 4.9 rad/sec.
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FIGURE E8.13
Bode Diagram for T (s) = 100

s3+11s2+20s+110 .
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E8.14 The loop transfer function is

L(s) =
20

(s2 + 1.4s + 1)(s + 10)
.

The Bode plot of L(s) is shown in Figure E8.14. The frequency when
20 log10 |L(ω)| = 0 is ω = 1.32 rad/sec.
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FIGURE E8.14
Bode Diagram for L(s) = 20

(s2+1.4s+1)(s+10)
.

E8.15 The closed-loop transfer function is

T (s) =
3s+ 5

s2 + s+K + 6
.

The bandwidth as a function of K is shown in Figure E8.15. The band-
width as a function of K is:

(a) K = 1 and ωb = 7.0 rad/sec.

(b) K = 2 and ωb = 7.9 rad/sec.

(c) K = 10 and ωb = 14.7 rad/sec.

The bandwidth increases as K increases.
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FIGURE E8.15
Bandwith of T (s) = 3s+5

s2+s+K+6 .
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Problems

P8.1 (a) The transfer function is

Gc(s)G(s) =
1

(1 + 0.25s)(1 + 3s)
,

and

Gc(jω)G(jω) =
1

(1− 0.75ω2) + j3.25ω
.

The polar plot is shown in Figure P8.1a. A summary of the magni-
tude and phase angles for ω = 0, 0.5, 1, 2, 5 and ∞ can be found in
Table P8.1a.
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FIGURE P8.1
(a) Polar plot for Gc(s)G(s) = 1

(1+0.25s)(1+3s)
.

ω 0 0.5 1 2 5 ∞
|Gc(jω)G(jω)| (dB) 1.00 0.55 0.31 0.15 0.04 0

φ (deg) 0 -63.4 -85.6 -107.1 -137.51 -180

TABLE P8.1 (a) Magnitudes and phase angles for Gc(s)G(s) = 1
(1+0.25s)(1+3s)

.
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(b) The transfer function is

Gc(s)G(s) =
5(s2 + 1.4s + 1)

(s− 1)2

and

Gc(jω)G(jω) =
5
(

(1− ω2) + 1.4jω
)

(1− ω2)− 2jω
.

The polar plot is shown in Figure P8.1b. A summary of the magnitude
and phase angles for ω = 0, 0.25, 0.5, 1, 2, 8, 16 and ∞ can be found in
Table P8.1b.
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FIGURE P8.1
CONTINUED: (b) Polar plot for Gc(s)G(s) =

5(s2+1.4s+1)
(s−1)2 .

ω 0 0.25 0.5 1 2 8 16 ∞
|Gc(jω)G(jω)| (dB) 5.00 4.71 4.10 3.50 4.10 4.92 4.98 5.00

φ (deg) 0 48.5 96.1 180.0 -96.2 -24.3 -12.2 0

TABLE P8.1 CONTINUED: (b) Magnitudes and phase angles for Gc(s)G(s) =
5(s2+1.4s+1)

(s−1)2
.
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(c) The transfer function is

Gc(s)G(s) =
(s − 8

(s2 + 6s+ 8)
.

The polar plot is shown in Figure P8.1c. A summary of the magnitude
and phase angles for

ω = 0, 1, 2, 3, 4, 5, 6, ∞

can be found in Table P8.1c.
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FIGURE P8.1
CONTINUED: (c) Polar plot for Gc(s)G(s) = s−8

s2+6s+8
.

ω 0 1 2 3 4 5 6 ∞
|Gc(jω)G(jω)| (dB) 1.00 0.87 0.65 0.47 0.35 0.27 0.22 0.00

φ (deg) 180.0 132.3 94.4 66.3 45.0 28.5 15.3 -90.0

TABLE P8.1 CONTINUED: (c) Magnitudes and phase angles for Gc(s)G(s) = s−8
s2+6s+8

.
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(d) The transfer function is

Gc(s)G(s) =
20(s + 8)

s(s+ 2)(s + 4)
.

The polar plot is shown in Figure P8.1d. A summary of the magnitude
and phase angles for

ω = 1, 0.1, 0.8, 1.6, 3.2, 12.8, ∞

can be found in Table P8.1d.
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FIGURE P8.1
CONTINUED: (d) Polar plot for Gc(s)G(s) =

20(s+8)
s(s+2)(s+4)

.

ω 0 0.1 0.8 1.6 3.2 12.8 ∞
|Gc(jω)G(jω)| (dB) ∞ 199.70 22.87 9.24 2.79 0.14 0.00

φ (deg) 0 -93.6 -117.4 -139.1 -164.8 174.3 180.0

TABLE P8.1 CONTINUED: (d) Magnitudes and phase angles for Gc(s)G(s) =
20(s+8)

s(s+2)(s+4)
.
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P8.2 (a) The Bode plot is shown in Figure P8.2a. A summary of the magnitude
and phase angles for

ω = 0.25, 0.5, 1, 2, 4, 8, 16

can be found in Table P8.2a.
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FIGURE P8.2
(a) Bode plot for Gc(s)G(s) = 1

(1+0.25s)(1+3s)
.

ω 0.25 0.5 1.0 2.0 4.0 8.0 16.0

|Gc(jω)G(jω)| (dB) -1.95 -5.19 -10.26 -16.65 -24.62 -34.60 -45.93

φ (deg) -40.5 -63.4 -85.6 -107.1 -130.2 -151.0 -164.8

TABLE P8.2 (a) Magnitudes and phase angles for Gc(s)G(s) = 1
(1+0.25s)(1+3s)

.

(b) The transfer function is

Gc(s)G(s) =
5(s2 + 1.4s + 1)

(s− 1)2

The Bode plot is shown in Figure P8.2b. A summary of the magnitude
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and phase angles for

ω = 0.25, 0.5, 1, 2, 4, 8, 16

can be found in Table P8.2b.
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FIGURE P8.2
CONTINUED: (b) Bode plot for Gc(s)G(s) =

5(s2+1.4s+1)
(s−1)2

.

ω 0.25 0.5 1.0 2.0 4.0 8.0 16.0

|Gc(jω)G(jω)| (dB) 13.46 12.26 10.88 12.26 13.46 13.84 13.95

φ (deg) 48.5 96.2 180.0 -96.2 -48.5 -24.3 -12.2

TABLE P8.2 CONTINUED: (b) Magnitudes and phase angles for Gc(s)G(s) =
5(s2+1.4s+1)

(s−1)2
.

(c) The transfer function is

Gc(s)G(s) =
(s− 8)

(s2 + 6s+ 8)
.

The Bode plot is shown in Figure P8.2c. A summary of the magnitude
and phase angles for ω = 0.6, 1, 2, 3, 4, 5, 6, ∞ can be found in
Table P8.2c.
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FIGURE P8.2
CONTINUED: (c) Bode plot for Gc(s)G(s) = s−8

s2+6s+8 .

ω 0.6 1 2 3 4 5 6 ∞
|Gc(jω)G(jω)| (dB) -0.45 -1.17 -3.72 -6.49 -9.03 -11.26 -13.18 -120.00

φ (deg) 150.5 132.3 94.4 66.3 45.0 28.5 15.3 -90.0

TABLE P8.2 CONTINUED: (c) Magnitudes and phase angles for Gc(s)G(s) = s−8
s2+6s+8 .

(d) A summary of the magnitude and phase angles for

ω = 0.2, 0.8, 3.2, 6.4, 12.8, 25.6, 51.2

can be found in Table P8.2d. The Bode plot is shown in Figure P8.2d.

ω 0.2 0.8 3.2 6.4 12.8 25.6 51.2

|Gc(jω)G(jω)| (dB) 39.95 27.19 8.90 -3.98 -17.35 -30.0355 -42.28

φ (deg) -97.1 -117.4 -164.8 178.0 174.2 176.0 177.8

TABLE P8.2 CONTINUED: (d) Magnitudes and phase angles for Gc(s)G(s) =
20(s+8)

s(s+2)(s+4)
.
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FIGURE P8.2
CONTINUED: (d) Bode plot for Gc(s)G(s) =

20(s+8)
s(s+2)(s+4)

.

P8.3 (a) The bridged-T network we found has zeros at

s = ±jωn

and poles at

s = −ωn

Q
± ωn

√

1/Q2 − 1 .

The frequency response is shown in Figure P8.3 for Q = 10.

(b) For the twin-T network, we evaluate the magnitude at

ω = 1.1ωn

or 10% from the center frequency (see Example 8.4 in Dorf & Bishop).
This yields

|G| ≈ 2.1×
(

0.1

3.9

)

× 1.1 = 0.05 .

Similarly, for the bridged-T network

|G| = 2.1 ×
(

0.1

2.1

)

× 0.14 = 0.707 .

The bridged-T network possesses a narrower band than the twin-T
network.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 401

-40

-30

-20

-10

0

10-1 100 101

w/wn

G
ai

n
 d

B

-100

-50

0

50

100

10-1 100 101

w/wn

P
h

as
e

 d
e

g

FIGURE P8.3
Bode plot for G(s) =

s2+ω2

n

s2+(2ωn/Q)s+ω2
n

, where ζ = 1/Q = 0.1.

P8.4 The transfer function is

G(s) = GcG1H(s)

[

1

s

]

=
30000(2s + 1)

s(s+ 10)(s + 20)(s2 + 15s + 150)
.

A summary of the magnitude and phase angles can be found in Table P8.4.
The Bode plot is shown in Figure P8.4.

ω 1 3 5 8 10 15 24

|G(jω| dB 6.95 5.78 5.08 3.38 1.59 -5.01 -17.56

φ(deg) −40.89o −52.39o −77.28o −118.41o −145.99o −203.52o −258.57o

TABLE P8.4 Magnitudes and phase angles for GH(s) =
30000(2s+1)

s(s+10)(s+20)(s2+15s+150)
.
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FIGURE P8.4
Bode plot for GH(s) =

30000(2s+1)
s(s+10)(s+20)(s2+15s+150)

.

P8.5 The Bode plot is shown in Figure P8.5.
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FIGURE P8.5
Bode plot for G(s) = 10

(s/4+1)(s+1)(s/20+1)(s/80+1)
.
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P8.6 (a) The transfer function is

GH(s) =
3.98(1 + s/1)

s(1 + s/10)2
.

We have a zero at ω = 1 and two poles at ω = 10.0. The low frequency
approximation is K/s and at ω = 1 we have

20 log

(

K

ω

)

= 12dB .

Therefore,

K = 3.98

at ω = 1 (an approximation). The phase plot is shown in Figure P8.6a.
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FIGURE P8.6
Phase plots for (a) G(s) =

3.98(s/1+1)
s(s/10+1)2

. (b) G(s) = s
(s/10+1)(s/50+1)

.

(b) The transfer function is

GH(s) =
s

(1 + s/10)(1 + s/50)
.

The poles are located by noting that the slope is ±20 dB/dec. The
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low frequency approximation is Ks, so

20 logKω = 0dB .

At ω = 1 we determine that

K = 1 .

The phase plot is shown in Figure P8.6b.

P8.7 The loop transfer function is

L(s) =
Kv

s(s/π + 1)2
.

(a) Set Kv = 2π. The Bode plot is shown in Figure P8.7a.
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FIGURE P8.7
(a) Bode plot for L(s) = Kv

s(s/π+1)
, where Kv = 2π.

(b) The logarithmic magnitude versus the phase angle is shown in Fig-
ure P8.7b.
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FIGURE P8.7
CONTINUED: (b) Log-magnitude-phase curve for L(jω).

P8.8 The transfer function is

T (s) =
K

s2 + 10s+K
.

(a) When P.O. = 15%, we determine that ζ = 0.517 by solving

15 = 100e−πζ/
√

1−ζ2 .

So, 2ζωn = 10 implies that ωn = 9.67, hence K = ω2
n = 93.53. Also,

Mpω = (2ζ
√

1− ζ2)−1 = 1.13 .

(b) For second-order systems we have

ωr = ωn

√

1− 2ζ2 = 6.59

when ζ = 0.517 and ωn = 9.67.

(c) We estimate ωB to be

ωB ≈ (−1.19ζ + 1.85)ωn = 11.94 rad/s .

P8.9 The log-magnitude phase curves are shown in Figure P8.9.
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FIGURE P8.9
Log-magnitude-phase curve for (a) Gc(s)G(s) = 1

(1+0.5s)(1+2s) and (b) Gc(s)G(s) =
1+0.5s

s2
.

P8.10 The governing equations of motion are

F (s) = KfIf (s) and If (s) =
Vf (s)

Rf + Lfs
.

Without loss of generality we can let Kf = 1.0. Also, we have

F (s) = (Ms2 + bs+K)Y (s) .

Therefore, the transfer function is

GH(s) =
KKf

(Rf + Lfs)(Ms2 + bs+K)
=

50K

(s+ 0.5)(s2 + 2s+ 4)
.

This is a type 0 system, therefore Kp = 25K.

(a) If we allow a 1% error , we have ess = |R|/(1 +Kp) = 0.01|R|. Thus
Kp = 25K = 99. Select

K = 4 .

(b) The Bode plot is shown in Figure P8.10a.

(c) The log-magnitude phase curve is shown in Figure P8.10b.
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FIGURE P8.10
(a) Bode plot for GH(s) = 200

(s2+2s+4)(s+0.5)
.
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FIGURE P8.10
CONTINUED: (b) Log-magnitude-phase curve for GH(s) = 200

(s2+2s+4)(s+0.5)
.

(d) The closed-loop transfer function Bode plot is shown in Figure P8.10c.
We determine from the plot that Mpω = 1.6, ωr = 4.4 and ωB = 6.8.
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FIGURE P8.10
CONTINUED: (c) Bode plot for closed-loop T (s) = Y (s)/R(s).

P8.11 The Bode plot is shown in Figure P8.11.
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FIGURE P8.11
Bode plot for G(s) =

0.164(s+0.2)(−s+0.32)
s2(s+0.25)(s−0.009)

.
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P8.12 The three transfer functions are

G1(s) = 10 G2(s) =
1

s(s/0.6 + 1)
G3(s) = 3s .

(a) When G3(s) is out of the loop, the characteristic equation is

1 +G1G2(s) = 1 +
10

s(s/0.6 + 1)
= 0

or s2 + 0.6s + 6 = 0. Thus, ζ = 0.6/(2
√
6) = 0.12.

(b) With G3(s), the characteristic equation is

1 +G1G2(s) +G2G3(s) = 1 +
6

s(s+ 0.6)
+

1.85

s(s+ 0.6)
= 0 ,

or

s2 + 2.4s+ 6 = 0 .

Thus, ζ = 2.4/(2
√
6) = 0.49.

P8.13 By inspection of the frequency response, we determine

L(s) = Gc(s)G(s)H(s) =
K

s(s/100 + 1)(s/1000 + 1)2
.

For small ω, we have 20 logK/ω = 40 dB at ω = 10. So, K = 1000.

P8.14 The data we have are R1 = R2 = 1000Ω, c1 = 10−7 farad and c2 = 10−6

farad. The governing equations are

V2(s)

V1(s)
=

1
C1s

R1 +
1

C1s

,

and

Vo(s)

V2(s)
=

KR2

R2 +
1

C2s

.

So

Vo(s)

V1(s)
=

KR2C2s

(R1C1s+ 1)(R2C2s+ 1)
=

109s

(s + 107)(s+ 1000)
.

(a) The Bode plot is shown in Figure P8.14.

(b) The mid-band gain is = 40 dB.

(c) The -3 dB points are (rad/sec): ωlow ≈ 7 and ωhigh ≈ 1.5 × 109 .
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FIGURE P8.14
Bode plot for G(s) = 109s

(s+107)(s+103)
.

P8.15 The data are plotted in Figure P8.15, denoted by an asterisk (*).
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FIGURE P8.15
Bode plot for G(s) = 809.7

s(s2+6.35s+161.3)
; tabular data is indicated by an asterick (*).

The low frequency slope is -20 dB/dec and the initial low frequency φ is
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−90o, so we have an integrator of the form K/s. The initial phase is −90o

and the final phase −270o, so we have a minimum phase G(s). Now, |G|
is 0.97 at ω = 8 and ω = 10 indicating two complex poles. We postulate
a transfer function of the form

G(s) =
K

s
(

s2

ω2
n
+ 2ζs

ωn
+ 1

) .

The phase angle φ = −180o at ω = ωn. Then, from Figure 8.10 in Dorf &
Bishop, we determine that ωn = 12.7. At ω = 8, ω

ωn
= 0.63 and φ, due to

the complex poles is −30o (subtract −90o due to the integrator). Again,
from Figure 8.10 in Dorf & Bishop, we estimate ζ = 0.25. To determine
K, note that when ω

ωn
≤ 0.1, the effect of the complex poles on magnitude

is negligible, so at ω = 1 we have

|G| = 5.02 ∼=
∣

∣

∣

∣

K

j1

∣

∣

∣

∣

.

So K = 5.02. Therefore,

G(s) =
5.02

s
(

s2

161.3 + 0.5s
12.7 + 1

) =
809.7

s(s2 + 6.35s + 161.3)
.

P8.16 (a) The unit step input response is shown in Figure P8.16. The step
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FIGURE P8.16
Unit step input response for T (s) = 60.2

s2+12.1s+60.2 .
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response is given by

y(t) = 1− e−6.05t (cos 4.85t+ 1.25 sin 4.85t) .

(b) The system bandwidth is ωB = 4.95 rad/sec.

P8.17 The transfer function is

Gc(s)G(s) =
4(0.5s + 1)

s(2s+ 1)(s2/64 + s/20 + 1)
.

(a) The Bode plot is shown in Figure P8.17.
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FIGURE P8.17
Bode plot for Gs(s)G(s) =

4(0.5s+1)
s(2s+1)(s2/64+s/20+1)

.

(b) When the magnitude is 0 dB, we have

ω1 = 1.6 rad/sec

and when φ = −180o, we have

ω2 = 7.7 rad/sec .

P8.18 The transfer function is

Gc(s)G(s) =
12(s + 0.5)

(s + 3)(s + 10)
=

0.2(2s + 1)

(s/3 + 1)(s/10 + 1)
.

The Bode plot is shown in Figure P8.18. Near 0 dB, the frequency is
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ω = 5.4 rad/sec.
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FIGURE P8.18
Bode plot for Gc(s)G(s) =

12(s+0.5)
s2+13s+30 .

P8.19 Examining the frequency response, we postulate a second-order transfer
function

θ(s)

I(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

.

From the data we see that φ = −90o at ω = 2. Using Figure 8.10 in Dorf
& Bishop, we determine that ωn = ω = 2. We also estimate ζ = 0.4 from
Figure 8.10. Thus,

θ(s)

I(s)
=

4

s2 + 1.6s + 4
.

P8.20 The transfer function is

Gc(s)G(s) =
823(s + 9.8)

s2 + 22s + 471
.

The Bode plot is shown in Figure P8.20. The maximum value of

20 log10 |Gc(jω)G(jω)| = 32.3 dB

occurs at ω = 20.6 rad/sec and the corresponding phase is φ = −19.6o.
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FIGURE P8.20
Bode plot for Gc(s)G(s) =

832(s+9.8)
s2+22s+471 .

P8.21 The Bode plot is shown in Figure P8.21. The gain is 24 dB when φ =
−180o
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FIGURE P8.21
Bode plot for Gc(s)G(s) = −200s2

s3+14s2+44s+40
.
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P8.22 The transfer function is

G(s) =
10000(s + 1)(s + 80)

s(s+ 300)(s + 9000)
.

P8.23 The transfer function is

G(s) =
100(s + 20)(s + 8000)

(s+ 1)(s + 80)(s + 500)
.

The system is type 0 and the steady-state error to a unit step input is

ess =
1

1 +Kp
= 0.0025

since

Kp = lim
s→0

G(s) = 400 .

P8.24 (a) From the Bode plot we see that

20 log10 Mpω = 12

or Mpω = 3.981. For a second-order system we know that

Mpω = (2ζ
√

1− ζ2)−1 .

Solving for ζ (with Mpω = 3.981) yields ζ = 0.12. Also, from the Bode
plot,

ωr = 0.9rad/sec .

So,

ωn =
ωr

√

1− 2ζ2
= 0.91 .

Therefore, the second-order approximate transfer function is

T (s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
0.83

s2 + 0.22s + 0.83
.

(b) The predicted overshoot and settling time are P.O. = 68% and Ts =
37 sec.

P8.25 The transfer function is

G(s) =
100(s + 10)

s2(s+ 100)
.
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P8.26 The transfer function is

T (s) =
Vo(s)

V (s)
=

1 +R1/R2

1 +RCs
.

Substituting R = 10kΩ, C = 1µF , R1 = 9kΩ, and R2 = 1kΩ yields

T (s) =
10

1 + 0.01s
.

The frequency response is shown in Figure P8.26.
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FIGURE P8.26
Bode plot for T (s) =

1+R1/R2

1+RCs

P8.27 The frequency response is shown in Figure P8.27.

K 0.75 1 10

|L(jω)|jω=0 , dB 3.52 12.04 26.02

ωb, rad/s 8.3 14.0 33.4

ωc, rad/s 3.5 8.7 22.9

TABLE P8.27 System performance as K varies.
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Bode plot for K = 1
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Advanced Problems

AP8.1 The spring-mass-damper system is described by

mẍ+ bẋ+ kx = p .

Taking the Laplace transform (with zero initial conditions) yields

X(s)

P (s)
=

1

ms2 + bs+ k
.

From Figure AP8.1(b) in Dorf & Bishop, we determine that

20 log

∣

∣

∣

∣

X(j0)

P (j0)

∣

∣

∣

∣

= 20 log

∣

∣

∣

∣

1

k

∣

∣

∣

∣

= −26dB .

Solving for k yields

k = 19.96 N/m .

Also, ω2
n = k/m implies m = k/ω2

n, where ωn = corner frequency = 3.2
rad/sec. So,

m = 1.949 kg .

Comparing Figure AP8.1(b) in Dorf & Bishop to the known standard
Bode plot of a second-order system, we estimate ζ ≈ 0.32. Therefore,

b = 2mζωn = 2(1.949)(0.32)(3.2) = 3.992 N− s/m .

AP8.2 The closed-loop transfer function is

T (s) =
Y (s)

R(s)
=

Kb

s+ 1 + 0.2Kb
.

WIth K = 5, we have

T (s) =
5b

s+ 1 + b
.

The sensitivity is

ST
b =

∂T

∂b

b

T
=

s+ 1

s+ 1 + b
.

With the nominal value of b = 4, we have

ST
b =

s+ 1

s+ 5
.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Advanced Problems 419

The sensitivity plot is shown in Figure AP8.2.
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FIGURE AP8.2
Bode plot for ST

b (s) = s+1
s+5 .

AP8.3 The equation of motion is

mẍ+ bẋ+Kx = bṙ +Kr .

Taking Laplace transforms yields

X(s)

R(s)
=

bs+K

ms2 + bs+K
.

Then, given the various system parametersm = 1 kg, b = 4 Ns/m,K = 18
N/m, we obtain the transfer function:

X(s)

R(s)
=

4s+ 18

s2 + 4s+ 18
.

Also, ωn = corner frequency =
√

K/m =
√
18 = 4.243 rad/s and

ζ = damping ratio =
b/m

2ωn
=

4

2(4.243)
= 0.471 .
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The Bode plot is shown in Figure AP8.3.
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FIGURE AP8.3
Bode plot for G(s) = 4s+18

s2+4s+18
.

AP8.4 The Bode plot is shown in Figure AP8.4.
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FIGURE AP8.4
Bode plot for L(s) = 1

(0.4s+1)(s2+3.9s+15)
.
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AP8.5 The closed-loop transfer function with unity feedback is given by

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

10(s + 1)

s2 + 9s+ 10
.

(a) Solving for Gc(s)G(s) yields

Gc(s)G(s) =
10(s + 1)

s(s− 1)
.

(b) A summary of the plot data (see Figure AP8.5) is presented in Ta-
ble AP8.5.

(c) The open-loop system is unstable; the closed-loop system is stable.
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FIGURE AP8.5
Log-magnitude-phase curve for GcG(jω).

ω 1 10 50 110 500

20 log |GcG| 40 4.85 -13.33 -20.61 -33.94

phase (deg) 101.42 250.17 267.53 268.93 269.77

TABLE AP8.5 Summary of magnitude and phase for ω = 1, 10, 50, 110, 500.
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AP8.6 The transfer function is given by

T (s) =
1/m

s2 + (b/m)s+ (k/m)
.

Selecting k = 1 and b = 2 results in the Bode plot magnitude always
less than 0 dB. Choosing b =

√
2/2 leads to a peak response with a sinu-

soidal input at ω = 0.66 rad/s. Figure AP8.6a shows the Bode plot and
Figure AP8.6b shows the response to a sinusiodal input with frequency
ω = 1 rad/s is less than 1 in the steady-state, as desired.
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FIGURE AP8.6
(a) Bode plot for b/m = 1 and k/m = 1. (b) Response to a sinusiodal input.
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AP8.7 The transfer function is

G(s) =
Vo(s)

Vi(s)
=

1 +R2C2s

1 +R1C1s
.

Substituting C1 = 0.1 µF ,C2 = 1 mF , R1 = 10 kΩ, and R2 = 10 Ω yields

G(s) =
0.01s + 1

0.001s + 1
.

The frequency response is shown in Figure AP8.7.
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FIGURE AP8.7
Bode plot for G(s) = 0.01s+1

0.001s+1
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Design Problems
With the PI controller in the loop, the closed-loop transfer function fromCDP8.1

the input to the output is

θ(s)

R(s)
=

26.035K(s + 2)

s2 + (33.1415 + 26.035K)s + 52.07K
,

where we switch off the tachometer feedback (see Figure CDP4.1 in Dorf
and Bishop). The Bode plot is shown below for K = 40. From the step
response we determine that P.O. = 0 and Ts = 0.19. With K = 40, the
closed-loop poles are both real roots with values of s1 = −1072.6 and
s2 = −1.9.

10
-1

10
0

10
1

10
2

0

20

40

60

Frequency (rad/sec)

G
ai

n
 d

B

10
-1

10
0

10
1

10
2

-30

-60

-90

0

Frequency (rad/sec)

P
h

as
e

 d
e

g

DP8.1 The loop transfer function is

L(s) = Gc(s)G(s) =
K(s+ 2)

s2(s+ 12)
.

(a,b) Let K = 1. The Bode plot of the loop transfer function and the
closed-loop transfer functions are shown in Figure DP8.1a and Fig-
ure DP8.1b, respectively.

(c) Let K = 50. The Bode plot of the loop transfer function and the
closed-loop transfer functions are shown in Figure DP8.1c and Fig-
ure DP8.1d, respectively.
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FIGURE DP8.1
(a) Bode plot for the loop transfer function Gc(s)G(s) =

(s+2)
s2(s+12)
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FIGURE DP8.1
CONTINUED: (b) Bode plot for the closed-loop T (s) =

(s+2)
s3+12s2+s+2

.
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FIGURE DP8.1
CONTINUED: (c) Bode plot for the loop transfer function Gc(s)G(s) =

50(s+2)
s2(s+12)
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FIGURE DP8.1
CONTINUED: (d) Bode plot for the closed-loop T (s) =

50(s+2)
s3+12s2+50s+100

.
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(d) The peak value of Mp ≤ 2 occurs for 14 ≤ K ≤ 350. The maximum
bandwidth is achieved for the largest gain K. Thus, we select K = 350
and the corresponding bandwidth is ωB = 29 rad/sec.

(e) The system is type 2—the steady-state error is zero for a ramp input.

DP8.2 The open-loop transfer function is

Gc(s)G(s) =
20(s + 1)

s(s+ 4)(s2 + 2s + 8)
.

(a) The phase angle is φ = −180o when ω = 3.54 rad/sec. The magnitude
is 0 dB when ω = 0.87 rad/sec.

(b) The closed-loop transfer function is

T (s) =
20(s + 1)

s4 + 6s3 + 16s2 + 52s + 20
.

The closed-loop Bode plot is shown in Figure DP8.2.
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FIGURE DP8.2
Bode plot for closed-loop T (s) =

20(s+1)
s4+6s3+16s2+52s+20

.

(c) When K = 22, we have

Mpω = 4.84dB , ωr = 3.11 , and ωB = 3.78 rad/sec .

When K = 25, we have

Mpω = 7.18 dB , ωr = 3.18 rad/sec , and ωB = 3.94 rad/sec .
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(d) Select K = 22.

DP8.3 The closed-loop transfer function is

T (s) =
K(s+ 5)

s3 + 7s2 + 12s + 10 + 5K
.

When K = 4.2, we have 10 log10 Mpω = 3 dB. The system bandwidth is
ωb = 3.7178 rad/sec. The steady-state tracking error to a unit step input
is

ess = lim
s→0

sE(s) = lim
s→0

1− T (s) .

So,

ess = 1− 5K

10 + 5K
= 0.322 ,

when K = 4.2. Since the system is unstable when K > 14.8, the steady-
state error does not exist after K = 14.8. The Bode plot is shown in
Figure DP8.3.
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FIGURE DP8.3
Bode plot for closed-loop T (s) =

K(s+5)
s3+7s2+12s+10+5K

, where K = 4.2.

DP8.4 We have a second-order loop transfer function

Gc(s)G(s) =
K

(0.3s + 1)(0.6s + 1)
.
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With Mpω = 1.5, we determine that

Mpω = (2ζ
√

1− ζ2)−1 or ζ = 0.3568 .

Now the characteristic equation is

s2 + 5s + 5.56(1 +K) = 0 .

So, solving 2ζωn = 5 yields ωn = 7. Therefore,

K = 0.18ω2
n − 1 = 7.82 .

The closed-loop transfer function is

T (s) =
K

K + 1

5.56(K + 1)

s2 + 5s+ 5.56(K + 1)
.

So, the overall gain of the standard second-order system will be attenuated
by the factor K/(K +1). To compensate, we amplify the gain by a small
factor. Thus we choose K = 10. The bandwidth is ωb = 11.25 rad/sec and
the peak magnitude is Mpω=1.5.

DP8.5 From the Bode plot of G(s) we find that there exists two pnoles, at ap-
proximately ω = 1 rad/sec and ω = 10 rad/sec. Then, by examining the
Bode plot we estimate

G(s) =
10

(s+ 1)(s + 10)
.

We use a scale factor of 10 because at low frequency the Bode plot has
magnitude 0 dB (or a DC gain of 1). With G(s) as above, we can utilize
the controller

Gc(s) =
500

s+ 20

yielding a crossover

ωc = 12.9 rad/sec

and a magnitude of at least 25 dB for ω < 0.1 rad/sec. Figure DP8.5
shows the compensator Bode plot of Gc(s)G(s).
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FIGURE DP8.5
Bode Diagram for G(s)Gc(s) =

5000
(s+1)(s+10)(s+20)

.

DP8.6 Let K = −1 to meet the steady-state tracking error requirement and
p = 2ζ, where ζ = 0.69 to obtain a 5% overshoot. The system is given by

ẋ = Ax+Bu

where

A =





0 1

−1 −1.38



 , B =





−1

0



 , and C =
(

0 1
)

.

The characteristic polynomial is

s2 + 1.38s + 1 = 0 .

The associated damping ratio is ζ = 0.69 and the natural frequency is
ωn = 1 rad/s. Using the approximation

ωb = (−1.19ζ + 1.85)ωn

we obtain ωb ≈ 1.028 rad/s. The Bode plot is shown in Figure DP8.6.
The bandwidth is ωb = 1.023 rad/s.
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FIGURE DP8.6
Bode diagram for K = −1 and p = 1.38.

DP8.7 A viable controler is

Gc(s) = KP +
KI

s
+KDs = 5.5 +

3.33

s
+ 3.5s.

The loop transfer function is

Gc(s)G(s) =
10.5s2 + 16.5s + 10

s2(s2 + 4s+ 5)

and computing Ka yields

Ka = lim
s→0

s2Gc(s)G(s) =
10

5
= 2,

as desired. The phase margin is P.O. = 44.35◦ and the bandwidth is
ωb = 4.5 rad/sec. The step response is shown in Figure DP8.7.
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Step Response
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FIGURE DP8.7
Step response for KP = 5.5, KI = 3.33, and KD = 3.5.
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Computer Problems

CP8.1 The m-file script and Bode plot are shown in Figure CP8.1. The script
automatically computes Mpω and ωr.

mp =
   14.0228

wr =
    4.9458

num=[25]; den=[1 1 25];
sys = tf(num,den);
w=logspace(0,1,400);
[mag,phase]=bode(sys,w); 
[y,l]=max(mag);
mp=20*log10(y), wr=w(l)
bode(sys,w); 

Frequency (rad/sec)

P
h
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e

 (d
e

g
); 

M
ag
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d

e
 (d

B
)

Bode Diagrams

- 10
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From: U(1)
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- 150

- 100

- 50

0

To
: Y

(1
)

FIGURE CP8.1
Generating a Bode plot with the bode function.

CP8.2 The m-file script to generate the Bode plots is shown in Figure CP8.2a.
The Bode plots are presented in Figures CP8.2b-CP8.2e. The transfer
functions are

(a) : G(s) =
1000

(s+ 10)(s + 100)
; (b) : G(s) =

s+ 100

(s+ 2)(s + 25)
;
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(c) : G(s) =
100

s2 + 2s+ 50
; (d) : G(s) =

s− 6

(s+ 3)(s2 + 12s + 50)
.

% Part (a)

num=[1000]; den=conv([1 10],[1 100]); sys1=tf(num,den);

sys = tf(num,den);

figure(1), bode(sys1), grid

% Part (b)

num=[1 100]; den=conv([1 2],[1 25]); sys2=tf(num,den);

sys = tf(num,den);

figure(2), bode(sys2), grid

% Part (c)

num=[100]; den=[1 2 50]; sys3=tf(num,den);

sys = tf(num,den);

figure(3), bode(sys3), grid

% Part (d)

num=[1 -6]; den=conv([1 3],[1 12 50]); sys4=tf(num,den);

sys = tf(sys);

figure(4), bode(sys4), grid

FIGURE CP8.2
(a) Script to generate the four Bode plots.
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FIGURE CP8.2
CONTINUED: (b) Bode plot for G(s) = 1000

(s+10)(s+100)
.
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FIGURE CP8.2
CONTINUED: (c) Bode plot for G(s) = s+100

(s+2)(s+25)
.
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FIGURE CP8.2
CONTINUED: (d) Bode plot for G(s) = 100

s2+2s+50 .
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FIGURE CP8.2
CONTINUED: (e) Bode plot for G(s) = s−6

(s+3)(s2+12s+50)
.

CP8.3 The Bode plots are shown in Figure CP8.3(a-d) with the transfer functions
listed in the caption. The crossover frequency for (a) is 17 rad/sec.
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FIGURE CP8.3
(a) Bode plot for G(s) = 2000

(s+10)(s+100)
.
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The crossover frequency for (b) is 0.99 rad/sec.

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−270

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

FIGURE CP8.3
CONTINUED: (b) Bode plot for G(s) = 100

(s+1)(s2+10s+2)
.

The crossover frequency for (c) is 70.7 rad/sec.
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FIGURE CP8.3
CONTINUED: (c) Bode plot for G(s) =

50(s+100)
(s+1)(s+50)

.

The crossover frequency for (d) is 3.1 rad/sec.
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FIGURE CP8.3
CONTINUED: (d) Bode plot for G(s) =

100(s2+14s+50)
(s+1)(s+2)(s+500)

.

CP8.4 The m-file script and Bode plot are shown in Figure CP8.4a and b. The
bandwidth is ωb = 10 rad/sec.

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bandwidth=10.0394 rad/sec

Frequency  (rad/sec)

FIGURE CP8.4
(a) Bode plot for T (s) = 54

s2+6s+54 .
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numg=[54]; deng=[1 6 0];

sys_o = tf(numg,deng);

sys_cl = feedback(sys_o,[1])

wb=bandwidth(sys_cl)

bode(sys_cl), grid

titlename=strcat('Bandwidth=  ', num2str(wb), ' rad/sec')

title(titlename)

FIGURE CP8.4
CONTINUED: (b) M-file script to obtain the closed-loop Bode plot.

CP8.5 The Bode plot of the closed-loop system is shown in Figure CP8.5. The
closed-loop transfer function is

T (s) =
100

s2 + 6s+ 100
.

(a) From the Bode plot we determine that

Mpω ≈ 5 dB and ωr ≈ 9 rad/sec .

Frequency (rad/sec)

P
h

as
e

 (d
e

g
); 

M
ag

n
it

u
d

e
 (d

B
)

Bode Diagrams

- 80

- 60

- 40

- 20

0

20
From: U(1)

10
- 1

10
0

10
1

10
2

10
3

- 200

- 150

- 100

- 50

0

To
: Y

(1
)

FIGURE CP8.5
Closed-loop system Bode plot.
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(b) From Equations (8.36) and (8.37) in Dorf & Bishop, we find that

ζ ≈ 0.28 and ωr/ωn ≈ 0.92

which implies that

ωn = ωr/0.92 = 9.8 rad/sec .

(c) From T (s) we find that

ωn = 10 rad/sec and ζ = 0.3 .

The actual values and the estimated values compare very well.

CP8.6 The open-loop and closed-loop Bode plots are shown in Figure CP8.6a
and b. The open-loop and closed-loop transfers functions are

Gc(s)G(s) =
25

s3 + 3s2 + 27s + 25

and

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

25

s3 + 3s2 + 27s+ 50
.
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FIGURE CP8.6
(a) Open-loop system Bode plot for Gc(s)G(s) = 25

s3+3s2+27s+25
.
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FIGURE CP8.6
CONTINUED: (b) Closed-loop system Bode plot T (s) = 25

s3+3s2+27s+50
.

CP8.7 The m-file script and plot of ωb versus p are shown in Figure CP8.7a and
b.

p=[0:0.001:1];
w=logspace(-1,1,1000);
n=length(p);
for i=1:n
   num=[1]; den=[1 2*p(i) 0];
   sys = tf(num,den);
   sys_cl = feedback(sys,[1]);
   [mag,phase,w]=bode(sys_cl,w);
  a=�nd(mag<0.707); wb(i)=w(a(1));
end
plot(p,wb)
xlabel('p'), ylabel('Bandwidth (rad/sec)')

FIGURE CP8.7
(a) M-file script to generate plot of ωb versus p.
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FIGURE CP8.7
CONTINUED: (b) Plot of ωb versus p.

CP8.8 The transfer function from Td(s) to θ(s) is

θ(s)/Td(s) =
−0.01(s + 10)

s3 + 10s2 + (0.01K − 10.791)s − 107.91 + 0.05K
.

Using the final value theorem and Td(s) = 1/s, we determine that

lim
s→0

sθ(s) =
−0.1

−107.91 + 0.05K
.

The design specifications require that

|ess| < 0.1o .

So, solving for K yields

K > 3300 .

We can select

K = 3300

as the initial value of K for the design. The m-file script is shown in
Figure CP8.8a. For the design shown, the final selection for the gain is
K = 6000. The disturbance response is shown in Figure CP8.8b.
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MpDb =
    4.0003

wr =
   4.7226

ts =
    2.23

po =
   32.75

meets specs

Mb=100; Ms=10; L=1; g=9.81; a=5; b=10; 
%
K=6000; % Final design value of K
%
numg=[-1/Mb/L]; deng=[1 0 -(Mb+Ms)*g/Mb/L];
sysg = tf(numg,deng);
numc=-K*[1 a]; denc=[1 b];
sysc = tf(numc,denc);
%
% Part (a)
%
sys = feedback(sysg,sysc);
w=logspace(0,1,400);
bode(sys,w)
[mag,phase]=bode(sys,w);
[M,l]=max(mag); 
MpDb=20*log10(M)-20*log10(mag(1)) % Mpw in decibels
wr=w(l) % Mpw and peak frequency 
%
% Part (b)
%
% From Eqs. (8.35) and (8.37)
Mpw=10^(MpDb/20);zeta=sqrt((1-sqrt(1-(1/Mpw^2)))/2); 
wn=wr/sqrt(1-2*zeta^2);
ts=4/zeta/wn
po=100*exp(-zeta*pi/sqrt(1-zeta^2))
%
% Part (c)
%
t=[0:0.1:10];
[y,x]=step(sys,t);
plot(t,y*180/pi)
xlabel('time [sec]')
ylabel('theta [deg]')
grid
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FIGURE CP8.8
(a) Design script. (b) Disturbance response - meets all specs!
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CP8.9 A viable filter is

G(s) = 0.7
(s + 1000)(s + 1)

(s + 100)(s + 10)
.

The Bode plot is shown in Figure CP8.9
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FIGURE CP8.9
Bode plot for G(s) = 0.7

(s+1000)(s+1)
(s+100)(s+10)

.
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Stability in the Frequency Domain

Exercises

E9.1 The Bode plot for the transfer function Gc(s)G(s) is shown in Figure E9.1,
where

Gc(s)G(s) =
2(1 + s/10)

s(1 + 5s)(1 + s/9 + s2/81)
.

The gain and phase margins are

G.M. = 26.2 dB and P.M. = 17.5o .
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FIGURE E9.1
Bode Diagram for Gc(s)G(s) =

2(1+s/10)
s(1+5s)(1+s/9+s2/81)

.

445
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E9.2 The loop transfer function is

Gc(s)G(s) =
10.5(1 + s/5)

s(1 + s/2)(1 + s/10)
.

The Bode plot is shown in Figure E9.2. The phase margin is

P.M. = 40.4o

at ωc = 4.96 rad/sec.
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FIGURE E9.2
Bode Diagram for Gc(s)G(s) =

10.5(1+s/5)
s(1+s/2)(1+s/10)

.

E9.3 The phase margin P.M. ≈ 75o at 200 kHz. We estimate the −180o phase
angle at 2 MHz, so the gain margin is G.M. ≈ 25 dB.

E9.4 The loop transfer function is

Gc(s)G(s) =
100

s(s+ 10)
.

The Nichols diagram is shown in Figure E9.4. When the gain is raised by
4.6 dB, Mpω = 3 and the resonant frequency is ωR = 11 rad/sec.
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FIGURE E9.4
Nichols Diagram for Gc(s)G(s) =

K)
s(s+10)

, where K = 100 and K = 171.

E9.5 (a) The G.M. ≈ 5 dB and the P.M. ≈ 10o. (b) Lower the gain by 10 dB
to obtain P.M. ≈ 60o.

E9.6 The Bode plot of the closed-loop transfer function is shown in Figure E9.6.
The value of Mpω = 3 dB. The phase margin is P.M. = 40o when K = 50.
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FIGURE E9.6
Closed-loop Bode Diagram for T (s) =

50(s+100)
s3+50s2+450s+5000 .
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E9.7 The Nyquist plot is shown in Figure E9.7 for K = 5; the plot is a circle
with diameter= K/5. For K > 5, we have P = 1 and N = −1 (ccw as
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FIGURE E9.7
Nyquist Diagram for Gc(s)G(s) = K

s−5 , where K = 5.

shown). So Z = N +P = −1 + 1 = 0 and the system is stable for K > 5.

E9.8 (a) When K = 4, the G.M. = 3.5 dB. This is illustrated in Figure E9.8.

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram
Gm = 3.52 dB (at 1.41 rad/sec) ,  Pm = 11.4 deg (at 1.14 rad/sec)

Frequency  (rad/sec)

FIGURE E9.8
Bode Diagram for Gc(s)G(s) = K

s(s+1)(s+2)
, where K = 4.
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(b) The new gain should be K = 1 for a gain margin G.M. = 16 dB.

E9.9 For K = 5, the phase margin P.M. = 5o as shown in Figure E9.9.
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FIGURE E9.9
Bode Diagram for Gc(s)G(s) = K

s(s+1)(s+2)
, where K = 5.

E9.10 The Bode plot is shown in Figure E9.10a. The closed-loop frequency
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CONTINUED: (b) Closed-loop frequency response: ωB = 6 rad/sec.

response is shown in Figure E9.10b. The bandwidth is ωB = 6 rad/sec.

E9.11 The Bode plot is shown in Figure E9.11. The system is stable.
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E9.12 We select the gain K = 10 to meet the 10% steady-state tracking error
specification for a ramp input. The Bode plot and Nichols chart are shown
in Figures E9.12a and E9.12b, respectively.
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FIGURE E9.12
(a) Bode Diagram for Gc(s)G(s) = 10

s(0.02s+1)(0.2s+1)
. (b) Nichols chart for Gc(s)G(s) =

10
s(0.02s+1)(0.2s+1)

.

E9.13 (a) The Nichols diagram is shown in Figure E9.13a and Mpω = 7.97 dB.

(b) The closed-loop Bode plot is shown in Figure E9.13b. The bandwidth
ωB = 18.65 rad/sec and the resonant frequency is ωr = 11.69 rad/sec.
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FIGURE E9.13
(a) Nichols Diagram for Gc(s)G(s) = 150

s(s+5)
. (b) Closed-loop Bode Diagram for T (s) =

150
s2+5s+150

.

(c) From Mpω = 8 dB, we estimate ζ = 0.2, so the expected P.O. = 52%.

E9.14 (a) The peak resonance Mpω = 6 dB.

(b) The resonant frequency is ωr = ω2 = 3 rad/sec.

(c) The bandwidth is ωB = ω4 = 10 rad/sec.

(d) The phase margin is P.M. = 30o.
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E9.15 The loop transfer function is

Gc(s)G(s) =
100

s(s+ 20)
,

and the closed-loop transfer function is

T (s) =
100

s2 + 20s + 100
.

The magnitude plot for the closed-loop system is shown in Figure E9.15.
With bandwidth defined as frequency at which the magnitude is reduced
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FIGURE E9.15
Magnitude plot for the closed-loop T (s) = 100

s2+20s+100
.

-3 dB from the dc value, we determine that ωB = 6.4 rad/sec.

E9.16 The transfer function of the approximation is

G(jω) =
1− jω/10

1 + jω/10
,

and the magnitude is

|G(jω)| =
∣

∣

∣

∣

1− jω/10

1 + jω/10

∣

∣

∣

∣

= 1 ,

which is equivalent to the actual time delay magnitude. The phase ap-
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proximation is

φ = − tan−1 ω/10 + tan−1(−ω/10) = −2 tan−1 ω/10

and the actual phase is

φ = −0.2ω .

The phase plots are shown in Figure E9.16. The approximation is accurate
for ω < 3 rad/sec.
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FIGURE E9.16
Phase plots for time delay actual vs approximation.

E9.17 (a,b) The phase angle for P.M. = 30 is

φ = −90o + tan−1 ω

2
− tan−1 2ω

15− ω2
= −150o .

Solving for ω yields ω = 4.7. Then, at ω = 4.7, we have K = 10.82
when

|GcG(jω)| = K(ω2 + 4)
1
2

ω((2ω2)2 + (15− ω2)2)
1
2

= 1 .

The Bode plot is shown in Figure E9.17.
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FIGURE E9.17
Bode Diagram for Gc(s)G(s) =

K(s+2)
s3+2s2+15s

, where K = 10.82.

(c) The steady-state error for a ramp is

ess =
A

Kv
=

A
10K
15

= 0.60A ,

where R(s) = A/s2.

E9.18 (a) The gain crossover is at ωc = 486 Hz, and the phase margin P.O. =
36.2o. So, ζ ≈ 0.36. Then, the expected percent overshoot to a step
input is

P.O. = 100e−ζπ/
√

1−ζ2 = 30% , where ζ = 0.36 .

(b) The estimated bandwidth is ωB ≈ 2π(600).

(c) Approximate

ωn ≈ ωr = 2π(480) .

Then,

Ts =
4

ζωn
=

4

(0.36)2π(480)
≈ 4 ms .
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E9.19 The Bode plot is shown in Figure E9.19 for K = 16.75. The phase and
gain margins are PM = 50.0o and GM = 2.72 dB.
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FIGURE E9.19
Bode Diagram for Gc(s)G(s) = K e−0.1s

s+10 , where K = 16.75.

E9.20 The system response for both drivers is shown in Figure E9.20.
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FIGURE E9.20
Change in automobile velocity due to braking for two drivers.
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E9.21 The Bode plot is shown in Figure E9.21.
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FIGURE E9.21
Bode Diagram for Gc(s)G(s) = 1300

s(s+2)(s+50)
.

E9.22 When K = 10, the P.M. = 36.9o; the system is stable. Decreasing the
gain to K = 4 results in a P.M. = 60o.

E9.23 The Nichols chart is shown in Figure E9.23.
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FIGURE E9.23
Nichols chart for Gc(s)G(s) = 438

s(s+2)(s+50)
.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



458 CHAPTER 9 Stability in the Frequency Domain

The actual values are

Mpω = 1.6598 (4.4 dB) ωr = 2.4228 rad/sec ωB = 4.5834 rad/sec .

E9.24 Using the Nyquist criterion, we have

P = 1 and N = 0

which implies

Z = N + P = 1 .

Therefore, the system has one root in the right half-plane.

E9.25 The Bode plot is shown in Figure E9.25.
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FIGURE E9.25
Bode plot for Gc(s)G(s) = 11.7

s(0.05s+1)(0.1s+1)
.

E9.26 The Nichols chart for

Gc(s)G(s) =
11.7

s(0.05s + 1)(0.1s + 1)

is shown in Figure E9.26, where we find that

Mpω = 6.76 dB ωr = 8.96 rad/sec ωB = 13.73 rad/sec .
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FIGURE E9.26
Nichols chart for Gc(s)G(s) = 11.7

s(0.05s+1)(0.1s+1)
.

E9.27 The Bode plot for G(s) with K = 122.62 is shown in Figure E9.27.
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FIGURE E9.27
Bode plot for Gc(s)G(s) = K

s(s+6)2
, with K = 122.62.
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The phase margin is

P.M. = 40.0o

and the gain margin is

G.M. = 10.94 dB .

E9.28 The phase margin is P.M. = 28o. The estimated damping is

ζ =
P.M.

100
= 0.28 .

The estimated percent overshoot is

P.O. = 100e−πζ/
√

1−ζ2 = 40% .

The actual overshoot is P.O. = 44.43%.

E9.29 The F (s)-plane contour is shown in Figure E9.29, where

F (s) = 1 +Gc(s)G(s) =
s+ 3

s+ 2
.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

*

*

*

*

*

*

*

*

Re

Im

F(s)-plane

FIGURE E9.29
F (s)-plane contour, where F (s) = 1 +Gc(s)G(s) = s+3

s+2 .

E9.30 The Bode plot is shown in Figure E9.30.
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Bode plot for G(s) = C [sI−A]−1
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.

E9.31 The Bode plot is shown in Figure E9.31. The phase margin is P.M. = 50.6
deg.
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FIGURE E9.31
Bode plot for L(s) = G(s)H(s) = 2s+1

10s2+s .
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E9.32 The Bode plot is shown in Figure E9.32. The phase margin is P.M. = 29◦.
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FIGURE E9.32
Bode plot for G(s) = C [sI−A]−1

B+D = 6.4
s2+s+4 .

E9.33 The Bode plot is shown in Figure E9.33. The phase margin is P.M. =
17.7◦ and the gain margin is G.M. = 5.45 dB.
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Problems

P9.1 (a) The loop transfer function is

Gc(s)G(s) =
1

(1 + 0.5s)(1 + 2s)
.

P = 0, N = 0; therefore Z = N+P = 0. The system is stable. (Note:
See P8.1 for the polar plots.)

(b) The loop transfer function is

1 + 0.5s

s2
.

P = 0, N = 0, therefore Z = N + P = 0. The system is stable.

(c) The loop transfer function is

s+ 4

s2 + 5s + 25
.

P = 0, N = 0, Z = N + P = 0. Therefore, the system is stable.

(d) The loop transfer function is

30(s + 8)

s(s+ 2)(s + 4)
.

P = 0, N = 2 therefore Z = P + N = 2. Therefore, the system has
two roots in the right half-plane, and is unstable.

P9.2 (a) The loop transfer function is

Gc(s)G(s) =
K

s(s2 + s+ 6)
,

and

Gc(jω)G(jω) =
K

jω(−ω2 + jω + 6)
==

K[−ω2 − jω(6 − ω2)]

[(6− ω2)2ω2 + ω4]
.

To determine the real axis crossing, we let

Im{Gc(jω)G(jω)} = 0 = −Kω(6− ω2)

or

ω =
√
6 .
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Then,

Re{Gc(jω)G(jω)}ω=√
6 =

−Kω2

ω4

∣

∣

∣

∣

∣

ω=
√
6

=
−K

6
.

So, −K/6 > −1 for stability. Thus K < 6 for a stable system.

(b) The loop transfer function is

Gc(s)G(s) =
K(s+ 1)

s2(s+ 6)
.

The polar plot never encircles the -1 point, so the system is stable for
all gains K (See Figure 10 in Table 9.6 in Dorf & Bishop).

P9.3 (a,b) The suitable contours are shown in Figure P9.3.
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G
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(a)
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(b)

-s 1

r approaches
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FIGURE P9.3
Suitable contours Γs for (a) and (b).

(c) Rewrite the characteristic equation as

1 +
96

s(s2 + 11s + 56)
= 0 .

In this case, −σ1 = −1. Therefore, we have one pole inside the contour
at s = 0, so P = 1. The polar plot yields N = −1, so Z = N +P = 0.
Therefore, all three roots have real parts less than -1. In fact, the
roots are s1 = −3, and s2,3 = −4± j4.

P9.4 (a) P = 0, N = 2, therefore Z = 2. The system has two roots in the right
hand s-plane.

(b) In this case, N = +1 − 1 = 0, so Z = 0. Therefore the system is
stable.
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P9.5 (a) The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
K

(s + 1)(3s + 1)(0.4s + 1)
.

The steady-state error is

ess =
|R|

1 +K
.

We require ess = 0.1|R|, so K > 9.

(b) Use K = 9. The Nyquist plot is shown in Figure P9.5. We determine
that P = 0 and N = 0. Therefore, Z = 0 and the system is stable.

-8

-6

-4

-2

0

2

4

6

8

-2 0 2 4 6 8 10

Real Axis

Im
ag

 A
xi

s

FIGURE P9.5
Nyquist Diagram for L(s) = Gc(s)G(s)H(s) = 9

(s+1)(3s+1)(0.4s+1)
.

(c) The phase and gain margins are P.M. = 18o and G.M. = 5 dB.

P9.6 The rotational velocity transfer function is

ω(s)

R(s)
= G(s) =

K
(

1 + s
3.7(2π)

) (

s
68(2π)+1

) .

At low frequency, we have the magnitude near 35 dB, so 20 logK = 35 dB
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and K = 56. Since the frequency response plot is for rotational velocity
ω(s), and we are interested in position control, we add an integrator. The
characteristic equation is

1 +G(s)
1

s
= 1 +

56(23)(427)

s(s+ 23)(s + 427)
= 0 .

The roots are

s1 = −430 and s2,3 = −10± j35 .

Thus, ωn = 36 and ζ = 0.28. The time constant of the closed-loop system
is

τ =
1

ζωn
= 99.6 msec .

P9.7 The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
10K1s(s+ 7)

(s+ 3)(s2 + 0.36)
.

(a) The Bode plot is shown in Figure P9.7 for K1 = 2.
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Bode Diagram for Gc(s)G(s)H(s) =

10K1s(s+7)
(s+3)(s2+0.36)

, where K1 = 2.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 467

(b) The phase margin P.M. = 80o and the gain margin G.M. = ∞, since
φ never crosses = −180o.

(c) The transfer function from Td(s) to θ(s) is

θ(s) =
G(s)

1 +Gc(s)G(s)H(s)
Td(s) .

Then, for a step disturbance θ(∞) = lims→0 sθ(s) = G(0) = 10/0.36 =
27.8, since H(0) = 0.

(d) The system is so highly damped, there is very little resonant peak.

(e) The estimated ζ = P.M./100 = 0.80. The actual ζ = 0.97.

P9.8 (a) The loop transfer function is

Gc(s)G(s)H(s) =

(

s2

ω2
1
+ 2ζ1s

ω1
+ 1

)

(0.02s + 1)
(

s2

ω2
2
+ 2ζ2s

ω2
+ 1

) ,

where ω1 = 20π = 62.8, ω2 = 14π = 43.9, ζ1 = 0.05 and ζ2 = 0.05.
The Bode plot is shown in Figure P9.8a. The phase margin is P.M. =
−9o. Therefore, the system is unstable.
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FIGURE P9.8
(a) Bode Diagram for Gc(s)G(s)H(s) =

s2/ω2

1
+(0.1/ω1)s+1

(0.02s+1)(s2/ω2

2
+(0.1/ω2)s+1)

, where ω1 = 20π

and ω2 = 14π.

(b) In this case ζ2 = 0.25, with all other parameters the same as before.
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FIGURE P9.8
CONTINUED: (b) Bode Diagram for Gc(s)G(s)H(s) =

s2/ω2

1
+(0.1/ω1)s+1

(0.02s+1)(s2/ω2

2
+(0.5/ω2)s+1)

,

where ω1 = 20π and ω2 = 14π.

The Bode plot is shown in Figure P9.8b. The phase margin is P.M. =
86o. Therefore, the system is now stable.

P9.9 (a) The Bode plot is shown in Figure P9.9a
The phase margin is P.M. = 83o and the gain margin is G.M. = ∞.

(b) With the compensator, the loop transfer function is

Gc(s)G(s)H(s) = K1
0.30(s + 0.05)(s2 + 1600)(s + 0.5)

s(s2 + 0.05s + 16)(s + 70)
,

where

K2/K1 = 0.5 .

Let K1 = 1. The Bode plot is shown in Figure P9.9b. The phase
margin is P.M. = 80o and the gain margin is G.M. = ∞, essentially
the same as in (a). But the system in (b) is a type one, so that ess = 0
to a step input or disturbance. We cannot achieve a G.M. = 10 dB
by increasing or decreasing K1.
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FIGURE P9.9
(a) Bode Diagram for Gc(s)G(s)H(s) =

0.3(s+0.05)(s2+1600)
(s+70)(s2+0.05s+16)

.
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FIGURE P9.9
CONTINUED: (b) Bode Diagram for Gs(s)G(s)H(s) =

0.15K1(s+0.05)(s2+1600)(s+0.5)
(s+70)(s2+0.05s+16)

,

K1 = 1.
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P9.10 The equations of motion are

F (s) = 3I(s) and I(s) =
Eo(s)

R+ Ls
=

Eo(s)

0.1 + 0.2s
.

So,

F (s) =
30

(2s + 1)
Eo(s) .

The actuator without the spring (see Table 2.7, Number 9 in Dorf &
Bishop) is modeled via

X(s)

Y (s)
=

1

Ms2 +Bs
=

Ka

τas2 + s
.

With the spring, we have

X(s)

Y (s)
=

Ka

τas2 + s+Ks
or GA(s) =

1

0.4s2 + s+ 1.5
.

Then, the loop transfer function is

L(s) =
30K1

(2s + 1)(0.4s2 + s+ 1.5)
.

(a) The Bode plot for K1 = 0.2 in Fig. P9.10 shows the P.M. = 30o.
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FIGURE P9.10
Bode Diagram for L(s) = 30K1

(2s+1)(0.4s2+s+1.5)
, where K1 = 0.2.
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(b) For K1 = 0.2, we determine that Mpω = 7.8 dB, ωr = 1.9 rad/sec,
and ωB = 2.8 rad/sec.

(c) The estimated percent overshoot is P.O. = 51% and the estimated
settling time is Ts = 10 sec. This is based on ζ = 0.21 and ωn ≈ ωr =
1.9 rad/sec.

P9.11 The loop transfer function is

Gc(s)G(s) =
5(K1s+K2)e

−1.5s

s(5s+ 1)
.

(a) Let K1 = K2 = 1. Then

Gc(s)G(s) =
5(s + 1)

s(5s+ 1)
e−1.5s .

The Bode plot is shown in Figure P9.11a. The phase margin is P.M. =
−48o. The system is unstable.

(b) Let K1 = 0.1 and K2 = 0.04. Then, the loop transfer function is

Gc(s)G(s) =
5(0.1s + 0.04)e−1.5s

s(5s+ 1)
.

The Bode plot shown in Figure P9.11b shows P.M. = 45o. Thus, the
system is stable.
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FIGURE P9.11
(a) Bode Diagram for Gc(s)G(s) =

5(s+1)e−sT

s(5s+1)
, where T = 1.5.
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FIGURE P9.11
CONTINUED: (b) Bode Diagram for Gc(s)G(s) =

5(0.1s+0.04)e−sT

s(5s+1) , where T = 1.5.

(c) When K2 = 0.1394, the phase margin is P.M. = 0o and G.M. = 0
dB. So, for stability we require K2 ≤ 0.1394 when K1 = 0.

P9.12 (a) The Bode plot is shown in Figure P9.12.
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.
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The loop transfer function (without the time delay) is

Gc(s)G(s) =
2

(0.5s + 1)3
.

The phase margin is P.M. = 67.6o.

(b) With the delay, the loop transfer function is

Gc(s)G(s)H(s) =
2e−0.5s

(0.5s + 1)3
.

The phase margin is now P.M. = 23.7o. So the 0.5 sec time delay has
reduced the phase margin by 43.9◦.

P9.13 The loop transfer function is

Gc(s)G(s) =
Ka(Ks+ 1)

s
e−1.2s .

(a) Let Ka = K = 1. Without the time delay, the system has infinite
phase and gain margin. However, with the time delay, the system has
a negative gain margin, hence it is unstable.

(b) A plot of phase margin versus Ka is shown in Figure P9.13.
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FIGURE P9.13
Phase margin as a function of Ka for Gc(s)G(s) =

Ka(s+1)e−1.2s

s .
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474 CHAPTER 9 Stability in the Frequency Domain

Let K = 1, and find Ka for a stable system. Then,

Gc(s)G(s) =
Ka(s+ 1)e−1.2s

s
.

If Ka = 0.8, then the phase margin is P.M. = 50o.

P9.14 The loop transfer function is

Gc(s)G(s) =
Ke−0.2s

s(0.1s + 1)
.

(a) The Nichols diagram is shown in Figure P9.14 for K = 2.5.
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FIGURE P9.14
Nichols diagram for Gc(s)G(s) = Ke−0.2s

s(0.1s+1)
, for K = 2.5.

It can be seen that

Mpω = 2.0 dB .

The phase and gain margins are P.M. = 48.5o and G.M. = 7.77 dB.

(b) We determine that ζ = 0.43 (based on Mpω = 2 dB) and ζ = 0.48
(based on the phase margin P.M. = 48.5o).

(c) The bandwidth is

ωB = 5.4 rad/sec .
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P9.15 (a) The ship transfer function is

G(s) =
−0.164(s + 0.2)(s − 0.32)

s2(s+ 0.25)(s − 0.009)
.

The closed-loop system is unstable; the roots are

s1 = −0.5467

s2,3 = 0.2503 ± 0.1893j

s4 = −0.1949

Therefore the ship will not track the straight track.

(b) The system cannot be stabilized by lowering the gain; this is verified
in the root locus in Figure P9.15, where it is seen that the locus has
a branch in the right half-plane for all K > 0.

(c) Yes, the system can be stabilized.

(d) When the switch is closed, we have a derivative feedback, which adds
90o phase lead. This is not enough to stabilize the system. Additional
lead networks are necessary.
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FIGURE P9.15
Root locus for 1 +GH(s) = 1 +K

−0.164(s+0.2)(s−0.32)
s2(s+0.25)(s−0.009)

= 0.
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P9.16 The loop transfer function is

Gc(s)G(s) =
K

(s/10 + 1)(s2 + s+ 2)
.

When K = 3.2, the phase margin is P.M. ≈ 30o. The Bode plot is shown
in Figure P9.16.
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FIGURE P9.16
Bode plot for Gc(s)G(s) = K

(s/10+1)(s2+s+2)
, where K = 3.2.

P9.17 (a) We require ess ≤ 0.05A, and we have

ess =
A

1 +Kp
< 0.05A

or Kp > 19. But

Kp = lim
s→0

G1(s)G2(s)G3(s)G4(s) = lim
s→0

20K1

(0.5s + 1)

(

0.1

1 + 4s

)2

= 0.2K1 .

So, Kp = 0.2K1 > 19, or K1 > 95.
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(b) Given

G1(s) = K1(1 +
1

s
) = K1

(

s+ 1

s

)

,

we require 1.05 < MPt < 1.30, or 0.70 > ζ > 0.36, or 70o > P.M. >
36o. Then,

G1(s)G2(s)G3(s)G4(s) =
0.2K1(s + 1)

s(0.5s + 1)(4s + 1)2
.

When K1 = 0.8, the P.M. = 40o. The Bode plot is shown in Fig-
ure P9.17a.
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FIGURE P9.17
(a) Bode plot for G1(s)G2(s)G3(s)G4(s) =

0.2K1(s+1)
s(0.5s+1)(4s+1)2

, where K1 = 0.8 and

P.M. = 40o.

(c) For part (a), we had

G1(s)G2(s)G3(s)G4(s) =
2.375

(s + 2)(s + 0.25)2
.

The characteristic equation is

s3 + 2.5s2 + 1.06s + 2.50 = (s+ 2.48)(s2 + 0.02s + 1.013) .

The dominant complex roots are lightly damped since ζ = 0.01 and
ζωn = 0.01.
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Thus,

Ts =
4

ζωn
= 400 sec .

For part (b), we had

G1(s)G2(s)G3(s)G4(s) =
(0.2)(0.8)(s + 1)

s(0.5s + 1)(4s + 1)2
.

The characteristic equation is

8s4 + 20s3 + 8.5s2 + 1.16s + 0.16 = 0 .

The roots are s1 = −2, s2 = −0.4 and s3,4 = −0.05 ± j0.15. Thus
ζ = 0.16 and ζωn = 0.05. So,

Ts =
4

ζωn
=

4

0.05
= 75 sec .

(d) Let U(s) be a unit step disturbance and R(s) = 0. Then

Y (s)

U(s)
=

G3(s)G4(s)

1 +G1(s)G2(s)G3(s)G4(s)
=

(

0.1
1+4s

)2

1 + 20K1(s+1)
s(0.5s+1)(4s+1)2

.

The disturbance response is shown in Figure P9.17b.

-2

-1

0

1

2

3

4

5

6
x10-3

0 10 20 30 40 50 60 70 80 90 100

Time (secs)

A
m

p
lit

u
d

e

FIGURE P9.17
CONTINUED: (b) System response to a unit disturbance U(s).
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P9.18 The transfer function is

Gc(s)G(s)H(s) =
5.3(s2 + 0.8s+ 0.32)e−Ts

s3
.

The Bode plot is shown in Figure P9.18.
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FIGURE P9.18
Bode diagram for Gc(s)G(s)H(s) =

K(s2+0.8s+0.32)e−sT

s3
, where T = 0 (solid line),

T = 0.1 (dashed line), and T = 0.2674 (dotted line).

The following results are verified in the figure.

(a) The phase margin is P.M. = 81o at ω = 5.3 when T = 0.

(b) For T = 0.1, the added phase is φ = −Tω (in radians). The phase
margin is P.M. = 51o at ω = 5.3 when T = 0.1.

(c) The system is borderline stable when T = 0.2674 sec. The phase
margin is P.M. = 0o at ω = 5.3.

P9.19 The transfer function is

Gc(s)G(s) =
0.5

s(1 + 2s)(4 + s)
.

(a) The Nichols diagram is shown in Figure P9.19. The gain margin is
G.M. = 31.4 dB.

(b) The phase margin is P.M. = 75o and Mpω = 0 dB. The bandwidth is
0.17 rad/sec.
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Nichols Chart
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FIGURE P9.19
Nichols diagram for Gc(s)G(s) = 0.5

s(2s+1)(s+4)
.

P9.20 (a) Let K = 100. The Bode plot is shown in Figure P9.20a. The loop
transfer function is

Gc(s)G(s) =
K(s2 + 1.5s + 0.5)

s(20s+ 1)(10s + 1)(0.5s + 1)
.
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FIGURE P9.20
(a) Bode diagram for Gc(s)G(s) =

K(s2+1.5s+0.5)
s(20s+1)(10s+1)(0.5s+1)

, where K = 100.
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(b) The phase margin is P.M. = −3.5o and the gain margin is G.M. = 2.7
dB.

(c) You must decreaseK below 100 to achieve a P.M. = 40o. ForK = 0.1,
the phase margin P.M. = 37.9o.

(d) The step response is shown in Figure P9.20b for K = 0.1.
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FIGURE P9.20
CONTINUED: (b) Unit step response K = 0.1.

P9.21 The loop transfer function is

Gc(s)G(s) =
K

s(s+ 1)(s + 4)
.

(a) The Bode plot is shown in Figure P9.21 for K = 4.

(b) The gain margin is

G.M. = 14 dB .

(c) When K = 5, the gain margin is

G.M. = 12 dB .

(d) We require Kv > 3, but Kv = K
4 . So, we need K > 12. This gain can

be utilized since K < 20 is required for stability.
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FIGURE P9.21
Bode diagram for Gc(s)G(s) = K

s(s+1)(s+4)
, where K = 4.

P9.22 (a) The resonant frequency ωr = 5.2 rad/sec is point 6 on the Nichol’s
chart.

(b) The bandwidth is between points 8 and 9. We estimate the bandwidth
to be ωB = 7.5 rad/sec.

(c) The phase margin P.M. = 30o.

(d) The gain margin G.M. = 8 dB.

(e) Since we have P.M. = 30o, then we estimate ζ = 0.3. We can also
approximate

ωn ≈ ωr = 5.2 .ap9.1

Thus,

Ts =
4

ζωn
=

4

1.56
= 2.5sec .

P9.23 The phase margin is P.M. = 60 deg when K = 266. The gain margin is

G.M. = 17.2 dB .

The Bode plot is shown in Figure P9.23.
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FIGURE P9.23
Bode diagram for Gc(s)G(s) = K

s(s+8)(s+12)
, where K = 266.

P9.24 When K = 14.1, then P.M. = 45 deg, G.M. = ∞ dB and ωB = 29.3
rad/sec.
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FIGURE P9.24
Bode diagram for G(s) =

K(s+20)
s2

, where K = 14.1.

P9.25 The phase margin is P.M. = 60 deg when K = 2.61 and T = 0.2 second.
The Bode plot is shown in Figure P9.25.
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FIGURE P9.25
Bode diagram for Gc(s)G(s) = Ke−0.2s

s , where K = 2.61.

P9.26 The loop transfer function is

Gc(s)G(s) =
K

s(0.25s + 1)(0.1s + 1)
.

The Bode plot is shown in Figure P9.26a for K = 10. The Nichols chart
is shown in Figure P9.26b. The phase and gain margins are

P.M. = 9o and G.M. = 3 dB .

The system bandwidth is ωB = 8 rad/sec. From the P.M. = 9o, we
estimate ζ = 0.09. Therefore, the predicted overshoot is

P.O. = 100e−πζ/
√

1−ζ2 = 75% , where ζ = 0.09 .

The resonant peak occurs at ωr = 5.5 rad/sec. If we estimate ωn ≈ ωr =
5.5 rad/sec, then the settling time is

Ts =
4

ζωn
= 8 sec .
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FIGURE P9.26
(a) Bode diagram for Gc(s)G(s) = K

s(0.25s+1)(0.1s+1)
, where K = 10. (b) Nichols chart

for Gc(s)G(s) = K
s(0.25s+1)(0.1s+1)

, where K = 10.

P9.27 The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
4K

(s2 + 2s+ 4)(s + 1)
.

The plot of the phase margin versus the gain K is shown in Figure P9.27.
As the gain increases towards Kmax = 3.5, the phase margin decreases
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towards zero.
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FIGURE P9.27
Phase margin versus the gain K.

P9.28 The loop transfer function is

Gc(s)G(s) =
KP

s(s+ 1)
.

When KP = 1.414, we have P.M. ≈ 45◦. Using the approximation that
ζ ≈ P.M./100 we estimate that ζ = 0.45. Then using the design formula

P.O. = 100e−πζ/
√

1−ζ2 = 20.5% .

The actual overshoot is 23.4%. The step input response is shown in Fig-
ure P9.28. The actual damping ratio is ζ = 0.42. This shows that the
approximation ζ ≈ P.M./100 is quite applicable and useful in predicting
the percent overshoot.
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Step Response
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FIGURE P9.28
Step response showing a 23.3% overshoot.
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Advanced Problems

AP9.1 The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
236607.5(s + 10)(s + 5)

s(s+ 2)(s2 + 100s + ω2
n)(s + 1)

.

(a) The Bode plot for

ω2
n = 15267

is shown in Figure AP9.1a.
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FIGURE AP9.1
(a) Bode Diagram for L(s) =

236607.5(s+10)(s+5)
s(s+2)(s2+100s+ω2

n
)(s+1)

, where ω2
n = 15267.

The phase and gain margins are

P.M. = 48.6o and G.M. = 15.5 dB .

(b) The Bode plot for ω2
n = 9500 is shown in Figure AP9.1b. The gain

and phase margins are

P.M. = 48.5o and G.M. = 10.9 dB .

Reducing the natural frequency by 38% has the effect of reducing the
gain margin by 30%.
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FIGURE AP9.1
CONTINUED: (b) Bode Diagram for L(s) =

236607.5(s+10)(s+5)
s(s+2)(s2+100s+ω2

n
)(s+1)

, where ω2
n = 9500.

AP9.2 (a) The Bode plot with T = 0.05 sec is shown in Figure AP9.2a. The
phase margin is P.M. = 47.7o and the gain margin is G.M. = 11.2
dB.
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FIGURE AP9.2
(a) Bode Diagram for Gc(s)G(s)H(s) = 8

(s+5)
s(s+2)

e−sT , where T = 0.05s.
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(b) The Bode plot with T = 0.1 sec is shown in Figure AP9.2b. The
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FIGURE AP9.2
CONTINUED: (b) Bode Diagram for Gc(s)G(s)H(s) = 8

(s+5)
s(s+2)

e−sT , where T = 0.1s.

phase margin is P.M. = 22.1o and the gain margin is G.M. = 4.18
dB. A 100% increase in time delay T leads to a 50% decrease in phase
and gain margins.

(c) The damping ratio ζ ≈ P.M./100 and

P.O. ≈ 100e−πζ/
√

1−ζ2 .

So, for T = 0.05 sec, ζ ≈ 0.47 and P.O. ≈ 18.7%. Also, for T = 0.1
sec, ζ ≈ 0.22 and P.O. ≈ 49.2%.

AP9.3 The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
66K(1 + 0.1s)

(1 + 0.01s)(1 + 0.01s)(1 + 1.5s)(1 + 0.2s)
.

(a) When K = 1, the gain and phase margins are

G.M. = 18.4 dB and P.M. = 55o .

(b) When K = 1.5, the gain and phase margins are

G.M. = 14.9 dB and P.M. = 47.8o .
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(c,d) The bandwidth and settling time with K = 1 are ωB = 233.6
rad/sec and Ts = 0.4 second. When K = 1.5, we determine that
ωB = 294.20 rad/sec and Ts = 0.33 second.

AP9.4 The loop transfer function is

L(s) = Gc(s)G(s) =
K(s+ 40)

s(s+ 15)(s + 10)
.

The gain K = 28.8 satisfies the specifications. The actual gain and phase
margins are

G.M. = 18.8 dB and P.M. = 45o .

The system bandwidth is ωB = 10.3 rad/sec. The step response is shown
in Figure AP9.4.

Step Response
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Overshoot (%): 23.4
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Settling Time (sec): 1.1

FIGURE AP9.4
Closed-loop system step response.

AP9.5 The loop transfer function is

L(s) = Gc(s)G(s) = K
s+ 0.4

s4 + 9s3 + 18s2
.

The Bode plot for K = 1 is shown in Figure AP9.5. From the phase
response, we determine that the maximum P.M. ≈ 41o. From the mag-
nitude response (for K = 1), we find that the gain needs to be raised to
K = 14 to achieve maximum phase margin at ω = 0.826 rad/sec. The
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gain and phase margin with K = 14 are

G.M. = 19.3 dB and P.M. = 40.9o .

Also, the overshoot is P.O. = 38.3%.

−150

−100

−50

0

50
M

ag
ni

tu
de

 (
dB

)

10
−2

10
−1

10
0

10
1

10
2

−270

−225

−180

−135

System: sys
Frequency (rad/sec): 0.865
Phase (deg): −139

P
ha

se
 (

de
g)

Bode Diagram
Gm = 42.3 dB (at 3.79 rad/sec) ,  Pm = 16.7 deg (at 0.154 rad/sec)

Frequency  (rad/sec)

FIGURE AP9.5
Bode plot for L(s) = K s+0.4

s4+9s3+18s2
with K = 1.

AP9.6 With D > 2m, the gain can be increased up to K = 100, while still
retaining stability.

AP9.7 The loop transfer function is

L(s) = Gc(s)G(s) =
K(s+ 4)

s2
.

We select

K = 2
√
2

for P.M. = 45o. The system bandwidth is

ωB = 5.88 rad/sec .

The disturbance response is shown in Figure AP9.7. The maximum output
due to a disturbance is y(t) = 0.11.
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FIGURE AP9.7
Closed-loop system disturbance response.

AP9.8 A reasonable choice for the gain is K = 2680. The phase margin is P.M. =
42.8◦ and the percent overshoot is P.O. = 18.9%. The Nichols chart is
shown in Figure AP9.8.
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FIGURE AP9.8
Nichols chart.
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AP9.9 The loop transfer function is

L(s) = Gc(s)G(s) =
Kp(s + 0.2)

s2(s2 + 7s+ 10)
.

At the maximum phase margin, Kp = 4.9 for P.M. = 48.6o. The Bode
diagram is shown in Figure AP9.9.
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Phase and gain margin.

AP9.10 The closed-loop transfer function is

T (s) =
K

s2 + 3s+ 1
.

We require K = 1 a zero steady-state tracking error to a unit step. The
step response is shown in Figure AP9.10. Computing T (jω) = 0.707 it
follows that

∣

∣

∣

∣

1

(jω)2 + 3jω + 1

∣

∣

∣

∣

= 0.707 or ω4 + 7ω2 − 1 = 0 .

Solving for ω yields ω = 0.37 rad/s. This is the bandwidth of the system.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Advanced Problems 495

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

A
m

pl
itu

de

FIGURE AP9.10
Unit step response.

AP9.11 The phase margin versus time delay is shown in Figure AP9.11a.
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FIGURE AP9.11
Phase margin versus time delay.
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The maximum time delay is T = 3.04 s for stability. The step response is
shown in Figure AP9.11b. The percent overshoot is P.O. = 7.6%.
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FIGURE AP9.11
Unit step response.
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP9.1

Bishop is given by:

θ(s)

Va(s)
=

26.035

s(s+ 33.142)
,

where we neglect the motor inductance Lm and where we switch off the
tachometer feedback (see Figure CDP4.1 in Dorf and Bishop). The closed-
loop system characteristic equation is

1 +
26.035Ka

s(s+ 33.142)
= 0 .

The phase margin is P.M. = 70.4◦ when Ka = 16. The step response with
K = 16 is shown below.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

Time (secs)

A
m

p
lit

u
d

e

DP9.1 (a) The gain and phase margins are G.M. = 7 dB and P.M. = 60o.

(b) The resonant peak and frequency areMpω = 2 dB and ωr = 5 rad/sec.

(c) We have ωB = 20 rad/sec. From Mpω = 2 dB we estimate ζ = 0.45
(Figure 8.11 in Dorf & Bishop). Also, ωr/ωn = 0.8, so ωn = 6.25.
Thus, Ts = 1.4.

(d) We need P.O. = 30o or ζ = 0.3 or P.M. ≈ 30o. So, we need to raise
the gain by 10 dB or K = 3.2.
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DP9.2 The loop transfer function is

L(s) = Gc(s)G(s) =
K(s+ 0.5)

s2(s2 + 7.5s + 9)
.

When K = 6.25, we have the maximum phase margin. The phase mar-
gin maximum is P.M. = 23o. The plot of P.M. versus K is shown in
Figure DP9.2a.
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FIGURE DP9.2
(a) Phase margin versus K for L(s) =

K(s+0.5)
s2(s2+7.5s+9)

.

The predicted damping is ζ = 0.23. It then follows that the predicted
percent overshoot is

P.O. = 100e−πζ/
√

1−ζ2 = 48% .

The actual overshoot is 65%. The step input response is shown in Fig-
ure DP9.2b. The resonant peak occurs at ωr = 0.75 rad/sec. Approxi-
mating ωn ≈ ωr = 0.75 rad/sec, we can estimate the settling time as

Ts =
4

ζωn
= 23 sec .

The actual settling time is 20 sec.
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FIGURE DP9.2
CONTINUE: (b) Closed-loop unit step response.

DP9.3 We want to select the gainK as large as possible to reduce the steady-state
error, but we want a minimum phase margin of P.M. = 45o to achieve
good dynamic response. A suitable gain is K = 4.2, see Figure DP9.3.
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FIGURE DP9.3
Bode plot for G(s) = Ke−10s

40s+1 .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



500 CHAPTER 9 Stability in the Frequency Domain

DP9.4 We are given the loop transfer function

L(s) = Gc(s)G(s) =
K

s(s+ 1)(s + 4)

which can be written as

Gc(s)G(s) =
Kv

s(s+ 1)(0.25s + 1)
.

The performance results are summarized in Table DP9.4.

Kv G.M. P.M. ωB P.O. Ts

(dB) (deg) (rad/sec) (%) (sec)

0.40 21.9 64.2 0.62 4.4 9.8

0.75 16.5 49.0 1.09 19.0 10.1

TABLE DP9.4 Summary for Kv = 0.40 and Kv = 0.75.

When Kv = 0.40, we have

ess
A

=
1

0.40
= 2.5 ,

or 2 1/2 times the magnitude of the ramp. This system would be accept-
able for step inputs, but unacceptable for ramp inputs.

DP9.5 (a) With a time delay of T = 0.8 second, we determine that the propor-
tional controller

Gc(s) = K = 7

provides a suitable response with

P.O. = 8.3 % ess = 12.5 % Ts = 4.38 sec .

(b) A suitable proportional, integral controller is

Gc(s) = K1 +K2/s = 6 + 0.6/s .
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The response to a unit step is

P.O. = 5.14 % ess = 0 % Ts = 6.37 sec .

The Nichols chart is shown in Figure DP9.5.
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FIGURE DP9.5
Nichols chart for Gc(s)G(s) =

(K1s+K2)e
−0.8s

s(10s+1)
, where K1 = 6 and K2 = 0.6.

DP9.6 With K = 170, at the two extreme values of b, we have

b = 80 P.M. = 91.62o G.M. = 13.66 dB

b = 300 P.M. = 75.23o G.M. = 25.67 dB .

Since reducing the value of K only increases the P.M. and G.M., a value
of

K = 170

is suitable to meet P.M. = 40o and G.M. = 8 dB for the range of b.

DP9.7 A suitable gain is

K = 0.22 .

This results in P.M. = 60.17o and G.M. = 13.39 dB. The step reponse is
shown in Figure DP9.7.
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FIGURE DP9.7
Lunar vehicle step response.

DP9.8 A gain of K = 315000 will satisfy the P.O. specification, while giving the
fastest response. The step response is shown in Figure DP9.8.
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FIGURE DP9.8
Steel rolling mill step response.
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DP9.9 The closed-loop transfer function is

Ts(2) =
G1(s)

1 +Gc(s)G2(s)
To(s) +

Gc(s)G2(s)

1 +Gc(s)G2(s)
T2d(s) .

where

G1(s) =
1

(10s + 1)(50s + 1)

and

G2(s) =
0.01

(10s + 1)(50s + 1)
.

The steady-state error (with Gc(s) = 500) to a unit step 2A (and after
the system has settled out subsequent to a step of magnitude A) is

ess = 2(0.167) = 0.33 .

The step response is shown in Figure DP9.9.
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FIGURE DP9.9
Two tank temperature control step response.

A suitable integral controller is

Gc(s) =
1

s
.
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In this case, the steady-state tracking error is zero , since the system is a
type 1. The system response is shown in Figure DP9.9. With the integral
controller, the settling time is about Ts = 438 seconds and the P.O. = 7%.
A suitable PI controller is

Gc(s) = 600 +
6

s
.

With the PI controller, the settling time is about Ts = 150 seconds and
the P.O. = 10%.

DP9.10 The system is given by

ẋ = Ax+Br

y = Cx

where

A =





0 1

2−K1 3−K2



 , B =





0

1



 , and C =
(

1 0
)

.

The associated transfer function is

T (s) =
1

s2 + (K2 − 3)s+K1 − 2
.

The characteristic polynomial is

s2 + (K2 − 3)s +K1 − 2 = 0 .

If we select K1 = 3, then we have a zero-steady error to a unit step
response R(s) = 1/s, since

lim
s→0

s [1− T (s)]R(s) = lim
s→0

s2 + (K2 − 3)s

s2 + (K2 − 3)s+K1 − 2
= 0 .

Let

K =
(

3 4.3
)

.

The step response is shown in Figure DP9.10a. The bandwidth is ωb =
1.08 rad/s, as seen in Figure DP9.10b.
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FIGURE DP9.10
Step response with K = [3 4.3] and closed-loop Bode plot.

DP9.11 A time domain step response specification P.O. > 10% requires the dom-
inant poles to have a damping ration of ζ = 0.6. This time domain spec-
ification can be transformed to a frequency response specification using
the approximation P.M. ≈ 100ζ = 60◦. To keep the problem tractable,
we consider the controller with the form

Gc(s) = KP +
KI

s
= KP +

1

s
,

where we let KI = 1. The plot of the P.M. as a function of KP is shown
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in Figure DP9.11a. If we select KP = 0.07 we expect a phase margin
of approximately 60◦, hence a percent overshoot P.O. ≤ 10%. The step
response is shown in Figure DP9.11b. The actual phase margin is P.M. =
60.2◦, the percent overshoot is P.O. = 5.9% and the settling time is
Ts = 3.4 sec.
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FIGURE DP9.11
(a) Phase margin versus controller gain KP andKI = 1. (b) Step response withKP = 0.07
and KI = 1.
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Computer Problems

CP9.1 The m-file script to generate the Bode plot (from which the gain and
phase margin can be determined) is shown in Figure CP9.1. The transfer
function is

G(s) =
141

s2 + 2s+ 12
.

The gain margin is

G.M. = ∞

and the phase margin is

P.M. = 10o .

num=141; den=[1 2 12];

sys = tf(num,den);

margin(sys); 
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FIGURE CP9.1
Gain and phase margin with the margin function.
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CP9.2 The Nyquist plots are shown in Figures CP9.2a-c.
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FIGURE CP9.2
(a) Nyquist plot for G(s) = 5

s+5 .
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FIGURE CP9.2
CONTINUED: (b) Nyquist plot for G(s) = 50

s2+10s+25 .
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FIGURE CP9.2
CONTINUED: (c) Nyquist plot for G(s) = 15

s3+3s2+3s+1 .

CP9.3 The m-file script to generate the Nichols chart for part (a) is shown in
Figure CP9.3a. The Nichols charts for (b) and (c) are similiarly generated;
all plots are in Figure CP9.3a-c.

num = [1]; den = [1 0.2]; 
sys = tf(num,den);
nichols(sys)
ngrid

−360 −315 −270 −225 −180 −135 −90 −45 0
−20

−10

0

10

20

30

40

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

Nichols Chart

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

FIGURE CP9.3
(a) M-file script and Nichols chart for G(s) = 1

s+0.1 .
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510 CHAPTER 9 Stability in the Frequency Domain

The gain and phase margin for each transfer function are as follows:

(a) G.M. = ∞ and P.M. = 102o

(b) G.M. = ∞ and P.M. = ∞
(c) G.M. = 20 dB and P.M. = ∞
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FIGURE CP9.3
CONTINUED: (b) Nichols chart for G(s) = 1

s2+2s+1 .
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FIGURE CP9.3
CONTINUED: (c) Nichols chart for G(s) = 24

s3+9s2+26s+24 .
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CP9.4 To obtain a phase margin P.M. = 40◦ we select

K = 15

when T = 0.2 second. The variation in the phase margin for 0 ≤ T ≤ 0.3
is shown in Figure CP9.4.

T=[0:0.01:0.3]; K=15;

num=K;den=[1 12]; sys = tf(num,den);

% w=logspace(-2,1,400);

for i=1:length(T)

   [mag,phase,w]=bode(sys);

   ph(1:length(phase))=phase(1,1,:); ph=ph';

   ph2=ph-w*T(i)*180/pi;

   [Gm,Pm,Wcg,Wcp]=margin(mag,ph2,w);

   clear ph ph2

   PMo(i)=Pm;

end

plot(T,PMo), grid

xlabel('Time delay (sec)')

ylabel('Phase margin (deg)')
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FIGURE CP9.4
Variation in the phase margin for 0 ≤ T ≤ 0.3 with K = 15.

CP9.5 The loop transfer function is

L(s) = Gc(s)G(s) =
K(s+ 50)

s(s+ 20)(s + 10)
.
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512 CHAPTER 9 Stability in the Frequency Domain

The plot of system bandwidth versus the gainK is shown in Figure CP9.7.

K=[0.1:1:50]; 
w=logspace(-2,3,2000);
den=[1 30 200 0]; 
for i=1:length(K)
   num=K(i)*[1 50]; sys = tf(num,den);
   sys_cl = feedback(sys,[1]);
   [mag,phase,w]=bode(sys_cl,w);
   L=�nd(mag<0.707); wb(i)=w(L(1));
end
plot(K,wb), grid
xlabel('Gain K')
ylabel('Bandwidth (rad/sec)')
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FIGURE CP9.5
Variation in the system bandwidth for 0 ≤ K ≤ 50.

CP9.6 The m-file script and Bode plot are shown in Figure CP9.6. The gain and
phase margin and ωc are determined to be G.M. = 2.23, P.M. = 26o and
ωc = 12.6 rad/sec. So, the maximum value of bo is found to be

bomax = 2.13bo = 1.11 .

In this problem, there is also a minimum value of bo. Using the Routh-
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numg = -0.5*[1 0 -2500]; deng = [1 47 850 -3000]; 
sysg = tf(numg,deng);
numc = 10*[1 3]; denc = [1 0]; sysc = tf(numc,denc);
sys_o = series(sysc,sysg);
bode(sys_o)
[mag,phase,w] = bode(sys_o);
[gm,pm,wg,wc] = margin(mag,phase,w)

gm =
  2.2238

pm =
  26.3187

wg =
 26.1155

wc =
  12.6487
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FIGURE CP9.6
Using the margin function to compute stability margins.

Hurwitz method, we determine that (for stability) the range of bo is

0.14 < bo < 1.11 .

CP9.7 The m-file script is shown in Figure CP9.7a. Since we do not have a value
for J , we write the loop transfer function as

Gc(s)G(s) =
K̄1 + K̄2s

s2

where K̄1 = K1/J and K̄2 = K2/J . We work with K̄1 and K̄2, then we
can always compute K1 and K2 whenever J is specified. A PD controller
which meets the specs is given by

Gc(s) = 0.04 + 0.3s .

The step response is shown in Figure CP9.7b. The Bode plot is shown in
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%
% Part (a)
%
numc = [0.3 0.04]; denc = [1]; sysc = tf(numc,denc);
numg = [1]; deng = [1 0 0]; sysg = tf(numg,deng);
sys_o = series(sysc,sysg);
sys_cl = feedback(sys_o,[1]);
step(sys_cl), pause
%
% Part (b)
%
w = logspace(-1,1,400);
[mag,phase] = bode(sys_o,w);
[gm,pm,w1,w2] = margin(mag,phase,w);
margin(mag,phase,w), pause
%
% Part (c)
%
T = [1:0.1:5];
for i = 1:length(T)
   [numd,dend] = pade(T(i),2); sysd = tf(numd,dend);
   sys_o1 = series(sysd,sys_o);
   sys_cl1 = feedback(sys_o1,sysd);
   p(:,i) = pole(sys_cl1);
end
plot(real(p),imag(p),'*');grid
xlabel('Real Axis');
ylabel('Imag Axis')

FIGURE CP9.7
Script to assist in all three parts of the problem.

Figure CP9.7c. The phase margin is P.M. = 67.7o at ω = 0.32 rad/sec.
The loop transfer function is

Gc(s)G(s)H(s) =
K̄1 + K̄2s

s2
e−2Ts

where T is the one-way time delay. If the phase lag introduced by the
delay is greater than 67.7o at ω = 0.32 rad/sec, then the system will
become unstable. So, since the phase lag due to the time delay T̃ is

φ(ω) = ωT̃

we have 67.7oπ/180 = 0.32(2T ) where T̃ = 2T . Solving for T yields
T = 1.82 seconds. This is the maximum allowable one-way time delay.
Executing the third part of the m-file script in Figure CP9.7a generates
the plot illustrating the movement of the closed-loop system roots as the
time delay is varied. The plot is shown in Figure CP9.7d. Examining
the root locations, we find that when T = 1.9, the closed-loop roots
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FIGURE CP9.7
CONTINUED: (b) Step response without time delays meets specs.
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FIGURE CP9.7
CONTINUED: (c) System Bode plot shows P.M. = 67.7o.

are s1 = −4.56, s2,3 = −0.94 ± 2.02j, s4 = −0.19, and s5,6 = ±0.32j.
Therefore, the system is marginally stable when T = 1.9, and is unstable
as the time delay increases.
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FIGURE CP9.7
CONTINUED: (d) Closed-loop root locations as the time delay varies.

CP9.8 The Nyquist plot and associated m-file code are shown in Figure CP9.8.

a=[0 1;-1 -15]; b=[0;30]; c=[8 0]; d=[0];

sys=ss(a,b,c,d);

nyquist(sys)
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FIGURE CP9.8
Using the Nyquist function to obtain a Nyquist plot.
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CP9.9 The Nichols chart is shown in Figure CP9.9. The phase and gain margins
are 37.1 degrees and ∞ dB, respectively.
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a=[0 1;-1 -10]; b=[0;22]; c=[10 0]; d=[0];
sys=ss(a,b,c,d);
nichols(sys)
ngrid

FIGURE CP9.9
The Nichols chart for the system in CP9.8.

CP9.10 (a) The Nyquist plot is shown in Figure CP9.10. The phase margin is
P.M. = 18o.

(b) When the time delay is T = 0.05 seconds, the phase margin is P.M. =
9o.

(c) When the time delay is T = 0.1 seconds, the system is marginally
stable. So, for T > 0.1 seconds, the system is unstable.
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FIGURE CP9.10
Nyquist plot for G(s)H(s) = 10

s(s+1)
.
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C H A P T E R 1 0

The Design of Feedback Control

Systems

Exercises

E10.1 From the design specifications, we determine that our desired ζ = 0.69
and ωn = 5.79. The characteristic equation is

1 +Gc(s)G(s) = 1 +
K(s+ a)

s(s+ 2)
= 0 ,

or

s2 + (2 +K)s+Ka = 0 .

Our desired characteristic polynomial is

s2 + 2ζωns+ ω2
n = s2 + 8s+ 33.6 = 0 .

Thus, K + 2 = 8, or

K = 6

and Ka = 33.6, so a = 5.6. The actual percent overshoot and settling
time will be different from the predicted values due to the presence of the
closed-loop system zero at s = −a. In fact, the actual percent overshoot
and settling time are P.O. = 12.6% and Ts = 0.87s, respectively.

E10.2 The characteristic equation is

1 +Gc(s)G(s) = 1 +
400

s(s+ 40)

(

K1 +
1

s

)

= 1 +
400(K1s+ 1)

s2(s+ 40)
= 0 ,

or

1 +K1
400s

s3 + 40s2 + 400
= 0 .

519

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



520 CHAPTER 10 The Design of Feedback Control Systems

We desire ζ = 0.45 for an overshoot of 20%. The root locus is shown
in Figure E10.2. We select a point slightly inside the performance region
(defined by ζ = 0.45 ) to account for the zero. Thus,

K1 = 0.5

and the closed-loop poles are

s1 = −35

s2,3 = −2.7± j2 .

The actual

P.O. = 20.7% .
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FIGURE E10.2
Root locus for 1 +K1

400s
s3+40s2+400 = 0.

E10.3 The step response is shown in Figure E10.3 for τ = 1 and K = 0.5. It can
be seen that the

P.O. = 4% ,

so this is a valid solution.
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FIGURE E10.3
Step response for K = 0.5 and τ = 1.

E10.4 The Bode plot is shown in Figure E10.4. The phase and gain margins
are marked on the plot, where it can be seen that P.M. = 75.4o and
G.M. = 28.6 dB.
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FIGURE E10.4
Bode plot for Gc(s)G(s) =
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s(s+5)(s+10)(s+0.015)(s+7)

.
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E10.5 We require that Kv ≥ 2.7, ζ = 0.5 and ωn = 3 for the dominant roots.
We want to place a zero to left of the pole at -2, so the complex roots will
dominate. Set the zero at s = −2.2. Then for the desired roots find the
location of pole p in compensator

Gc(s) =
K1(s + 2.2)

(s + p)

to satisfy 180o phase at the desired roots. This yields p = 16.4. Using
root locus methods, we find that KK1 = 165.7, so with K1 = 7.53, we
determine that K = 22, and

Gc(s) =
7.46(s + 2.2)

(s+ 16.4)
.

Then

Kv = 2.78 .

E10.6 The closed-loop transfer function is

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

326(s + 4)

s4 + 14.76s3 + 151.3s2 + 349.8s + 1304
.

The roots are

s1,2 = −0.87 ± j3.2

s3,4 = −6.5± j8.7 .

Assuming s1,2 dominates, then we expect overshoot

P.O. = 43% and Ts = 4.6 sec .

The discrepencies with the actual P.O. and Ts are due to the poles s3,4
and the zero at s = −4.

E10.7 The loop transfer function is

L(s) =
Ke−0.6s

s(s+ 20)
.

A plot of P.M. as a function of K is shown in Figure E10.7. It can be
seen that

P.M. = 40o

when K = 26.93.
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FIGURE E10.7
Plot of phase margin versus K.

E10.8 The open-loop transfer function is

G(s) =
2257

s(0.0028s + 1)
=

806071.4

s(s+ 357.14)
,

and the compensator is

Gc(s) =
K1(s + z)

s
,

where z = K2/K1. The characteristic equation is

s3 + 357.14s2 +K1s+K2 = 0 .

Using Routh-Hurwitz methods, the system is stable for

0 < K2 < 357.14 K1

or K2/K1 < 357.14. Select the zero z at s = −10, then using root locus
methods we determine that K1 = 0.08 and K2 = 0.8. The roots of the
characteristic equation are

s1 = −10.6 and s2,3 = −175± j175 ,

and ζ = 0.707, as desired. The step response is shown in Figure E10.8.
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FIGURE E10.8
Step response with K1 = 0.08 and K2 = 0.8.

E10.9 The loop transfer function is

L(s) = Gc(s)G(s) =
K1(s+K2/K1)

s(s+ 1)
,

and

Kv = lim
s→0

sGc(s)G(s) = K2 .

Select K2 = 5. The characteristic equation is

s2 + (K1 + 1) +K2 = 0 ,

and we want

s2 + 2ζωns+ ω2
n = 0 .

Equating coefficients yields ωn =
√
K2 =

√
5. Also, since we want P.O. =

5%, we require ζ = 0.69. Thus,

2ζωn = K1 + 1 implies K1 = 2.08 .

The step response with K1 = 2.08 and K2 =
√
5 yields a P.O. > 5%. This
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is due to the zero at

s = −1.08 .

So, we raise the gain K1 = 3 and then the P.O. = 5%. The step response
is shown in Figure E10.9.
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FIGURE E10.9
Step response with K1 = 3 and K2 = 5.

E10.10 The loop transfer function is

L(s) = Gc(s)G(s) =
(KP s+KI)

s(s+ 1)(s + 2)
.

Let KI = 2. Then, the plot of the phase margin as a function of KP is
shown in Figure E10.10, where it can be seen that

P.M. = 71.6o

is the maximum achievable phase margin. When KP = 1.54 and KI = 2
we have P.M. = 60o, as desired, and P.O. = 9% and Tp = 3.4 sec.
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FIGURE E10.10
Phase margin versus KP with KI = 2.

E10.11 The Nichols diagram and the closed-loop Bode plot are shown in Fig-
ures E10.11a and E10.11b, respectively.
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FIGURE E10.11
(a) Nichols diagram for Gc(s)G(s) =

1350(1+0.25s)
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.
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FIGURE E10.11
CONTINUED: (b) Closed-loop Bode plot.

E10.12 The loop transfer function is

L(s) = Gc(s)G(s) =
KK1

(

s+ 1
2

)

s2(s+ 5)
.

When KK1 = 5.12, the roots are

s1,2 = −0.58 ± j0.58

s3 = −3.84 .

The complex poles have ζ = 0.707 and the predicted settling time is

Ts = 4/0.58 = 6.89 sec .

The actual settling time is Ts = 6.22 s.

E10.13 For the cascade compensator, we have

T1(s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

8.1(s + 1)

(s + r1)(s+ r̂1)(s+ r2)
,

where r1 = −1 + j2 and r2 = −1.67. For the feedback compensator, we
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have

T2(s) =
G(s)

1 +Gc(s)G(s)
=

8.1(s + 3.6)

(s+ r1)(s + r̂1)(s+ r2)
,

where

G(s) =
8.1

s2

and

Gc(s) =
s+ 1

s+ 3.6
.

The response of the two systems differ due to different value of the zero of
T1 and T2, however, both systems have the same characteristic equation.

E10.14 The Bode plot (with the lag network) is shown in Figure E10.14; the
phase margin is P.M. = 46o.
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FIGURE E10.14
Bode plot for Gc(s)G(s) =

5(7.5s+1)
s(s+1)(0.25s+1)(110s+1)

= 0.

E10.15 At the desired crossover frequency ωc = 10 rad/sec, we have

20 log |Gc(j10)G(j10)| = −8.1 dB and 6 Gc(j10)G(j10) = −169o .
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Therefore, the phase margin is P.M. = 11o. So,

φ = 30o − 11o = 19o and M = 8.1 dB .

Since φ > 0 and M > 0, a lead compensator is required.

E10.16 At the desired crossover frequency ωc = 2 rad/sec, we have

20 log |Gc(j2)G(j2)| = 17 dB and 6 Gc(j2)G(j2) = −134o .

Therefore, the phase margin is P.M. = 46o. So,

φ = 30o − 46o = −16o

M = −17 dB .

Since φ < 0 and M < 0, a lag compensator is required.

E10.17 Using a prefilter

Gp(s) =
KI

KP s+KI

the closed-loop transfer function is

T (s) =
KI

s2 + (KP + 1)s +KI
.

The required coefficients for a deadbeat system are α = 1.82 and Ts =
4.82. Therefore,

KI = ω2
n

KP = αωn − 1 .

Since we desired a settling time less than 2 seconds, we determine that

ωn = Ts/2 = 4.82/2 = 2.41 .

Then, the gains are

KP = 3.39

KI = 5.81 .

The step response (with the prefilter) is shown in Figure E10.17. The
percent overshoot is P.O. = 0.098% and the settling time is Ts = 1.99
seconds.
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FIGURE E10.17
Step response for the deadbeat system.

E10.18 Consider the PI controller

Gc(s) = Kp +
KI

s
=

Kps+KI

s
=

30s+ 300

s

and the prefilter

Gp(s) = 10 .

Then, the closed-loop system is

T (s) =
300s + 3000

s2 + 280s + 3000
.

The percent overshoot is P.O. = 9.2% and the settling time Ts = 0.16
seconds. The steady-state tracking error to a unit step is zero, as desired.

E10.19 Consider the PID controller

Gc(s) = 29
s2 + 10s + 100

s
.
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The closed-loop transfer function is

T (s) =
29(s2 + 10s + 100)

s3 + 24s2 + 290s + 2900
.

The settling time to a unit step is Ts = 0.94 seconds.

E10.20 Consider the PD controller

Gc(s) = KDs+Kp = 3s+ 1 .

The loop transfer function is

L(s) = Gc(s)G(s) =
3s+ 1

s(s− 2)
.

The Bode plot is shown in Figure E10.20. The phase margin is P.M. =
40.4◦. This is a situation where decreasing the gain leads to instability. The
Bode plot shows a negative gain margin indicating that the system gain
can be decreased up to -3.5 dB before the closed-loop becomes unstable.
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FIGURE E10.20
Bode plot for the loop transfer function L(s) = 3s+1

s(s−2)
.

E10.21 The transfer function from Td(s) to Y (s) is

T (s) =
1

s2 + 4.4s +K
.
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The tracking error is E(s) = R(s)− Y (s). When R(s) = 0, then E(s) =
−Y (s). The final value of the output to a unit step disturbance is ess =
1/K. If we want the tracking error to be less than 0.1, then we require
K > 10. When K = 10, we have the disturbance response shown in
Figure E10.21.
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FIGURE E10.21
Disturbance response for K = 10.
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Problems

P10.1 (a) The loop transfer function is

L(s) = Gc(s)G(s)H(s) =
(1 + ατs)K1K2

α(1 + τs)(Js2)
.

We desire ζ = 0.6, Ts ≤ 2.5 or ζωn ≥ 1.6. The uncompensated closed-
loop system is

T (s) =
K

s2 +K
,

where K = K1K2/J and K = ω2
n. We can select K = 20, and then

ζωn > 1.6. First, plot the Bode diagram for

G(s)H(s) =
20

s2

where K1K2/αJ = 20. The phase margin of the uncompensated sys-
tem is 0o. We need to add phase at ωc. After several iterations, we
choose to add 40o phase at ωc, so

sin 40o =
α− 1

α+ 1
= 0.64 .

Therefore, α = 4.6. Then,

10 log α = 10 log 4.6 = 6.63dB .

We determine the frequency where magnitude is -6.63 dB to be ωm =
6.6 rad/sec. Then,

p = ωn
√
α = 14.1 and z = p/α = 3.07 .

The compensated loop transfer function (see Figure P10.1a) is

Gc(s)G(s)H(s) =
20
( s
3.07 + 1

)

s2
( s
14.1 + 1

) .

(b) Since we desire ζωn ≥ 1.6, we place the compensator zero at z = 1.6.
Then, we place the compensator pole far in the left half-plane; in this
case, we selected p = 20. Thus, the compensator is

Gc(s) =
s+ 1.6

s+ 20
.

The root locus is shown in Figure P10.1b. To satisfy the ζ = 0.6
requirement, we find K = 250, and the compensated loop transfer
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FIGURE P10.1
(a) Compensated Bode plot for Gc(s)G(s)H(s) =

20(s/3.07+1)
s2(s/14.1+1)

.

function is

Gc(s)G(s)H(s) =
250(s + 1.6)

s2(s + 20)
=

20
(

s
1.6 + 1

)

s2
(

s
20 + 1

) .
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FIGURE P10.1
CONTINUED: (b) Root locus for Gc(s)G(s)H(s) = 1 +K s+1.6

s2(s+20)
.
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P10.2 The transfer function of the system is

G(s) =
1.0e + 14

s3 + 2000s2 + 1e+ 11s
,

where we use the system parameters given in P7.11 with the following
modifications: τ1 = τ1 = 0 and K1 = 1. Also we have scaled the transfer
function so that the time units are seconds. The parameters in P7.11 are
given for time in milliseconds. A suitable compensator is

Gc(s) =
s+ 500

s+ 1
.

The closed-loop system response is shown in Figure P10.2. The percent
overshoot is P.O. ≈ 20% and the time to settle is Ts < 0.01 second.
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FIGURE P10.2
Step response.

P10.3 The loop transfer function is

Gc(s)G(s) =
16(s + 1)

s(s2 + 2s+ 16)

K(s+ z)

(s+ p)
.

We desire dominant roots with Ts < 5 sec and P.O. < 5%, so use ζ = 0.69
and ζωn = 0.8. One solution is to select z = 1.1 (i.e. to the left of the
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existing zero at s = −1) and determine the pole p and gainK for dominant
roots with ζ = 0.69. After iteration, we can select p = 100, so that the
root locus has the form shown in Figure P10.3. Then, we select K = 320,
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FIGURE P10.3
Root locus for 1 +K

16(s+1)(s+1.1)
s(s2+2s+16)(s+100)

= 0.

so that ζ = 0.69. The final compensator is

Gc(s) =
320(s + 1.1)

s+ 100
.

The design specifications are satisfied with this compensator.

P10.4 The uncompensated loop transfer function is

G(s) =
1

s2( 1
40s+ 1)

=
40

s2(s + 40)
.

We desire 10% < P.O. < 20%, so 0.58 < ζ < 0.65, and Ts < 2 implies
ζωn < 2. We will utilize a PD compensator Ka(s + a). We select a = 2,
to obtain the root locus shown in Figure P10.4. Then with Ka = 23.5, we
have the desired root location, and

Gc(s) = 23.5(s + 2) .

The design specifications are satisfied with the PD compensator.
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FIGURE P10.4
Root locus for 1 +Ka

40(s+2)
s2(s+40) = 0.

P10.5 We desire P.O. < 10% and Ts < 1.5 sec. The compensator is a PI-type,
given by

Gc(s) = K2 +
K3

s
=

K2s+K3

s
=

K2(s+ a)

s

where a = K3/K2. So, ess = 0 for a step input and

G(s) =
3.75Ka

(s+ 0.15)(0.15s + 1)
=

25Ka

(s + 0.15)(s + 6.67)
.

The loop transfer function is

Gc(s)G(s) =
25KaK2(s+ a)

s(s+ 0.15)(s + 6.67)
.

Using root locus methods, we select a = 0.2 (after several iterations) and
determine KaK2 to yield ζ = 0.65. This results in KaK2 = 1. The root
locus is shown in Figure P10.5. The design specifications are met. The
actual percent overshoot and settling time are P.O. = 7.4% and Ts = 1.3
s. The controller is

Gc(s) = 1 +
0.2

s
.
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FIGURE P10.5
Root locus for 1 +KaK2

25(s+0.2)
s(s+0.15)(s+6.67)

= 0.

P10.6 As in P10.5, using root locus we find that placing z = 15 and p = 30 yields
a root locus shape (see Figure P10.6) where the loop transfer function is
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FIGURE P10.6
Root locus for 1 +Ka
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= 0.
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Gc(s)G(s) =
25Ka(s + z)

(s+ p)(s+ 0.15)(s + 6.67)
.

and where z, p and Ka are the parameters to be determined. Properly
choosing the parameter values allows us to increase ζωn of the dominant
roots (compared to the PI compensator of P10.5). Then, with Ka = 3.7,
the dominant roots have ζ = 0.65. The design specifications are met with
the compensator.

P10.7 The plant transfer function is

G(s) =
e−50s

(40s + 1)2
.

The steady-state error is

ess =
A

1 +Kp
< 0.1A .

Therefore, Kp > 9. Insert an amplifier with the compensator with a dc
gain = 9, as follows

Gc(s)G(s) =
9e−50s(s+ 2)

(40s + 1)2(s+ p)
.

The system is unstable without compensation, and it is very difficult to
compensate such a time delay system with a lead compensator. Consider
a lag network

Gc(s) =
s+ z

s+ p

where z > p. Let

z = 10p.

Then, a plot of the P.M. versus p is shown in Figure P10.8a. Suitable
system performance can be obtained with P.M. > 45o, so choose

p = 0.0001.

The Bode plot of the compensated and uncompensated systems is shown
in Figure P10.7c, where we have selected z = 0.001 and p = 0.0001. The
compensated system has

P.M. = 62o and Ts = 9 minutes .

The step response is shown in Figure P10.7b.
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FIGURE P10.7
(a) Phase margin versus p. (b) Step response with p = 0.0001 and z = 0.001.
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FIGURE P10.7
CONTINUED: (c) Bode plot for the compensated system (solid lines) and the uncompen-
sated system (dashed line).

P10.8 The transfer function is

G(s) =
5000

s(s+ 10)2
.

To meet the steady-state accuracy, we need Kv > 40. The uncompensated
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Kv = 50, so the steady-state accuracy can be met.

(a) Using the Bode method, we need P.M. = 70% (to meet P.O. < 5%
specification). Let

Gc(s) =
bs+ 1

as+ 1
.

The plot of P.M. versus b is shown in Figure P10.8a, where we set
a = 50b. Choosing b = 20 should satisfy the P.O. specification. The
Bode plot is shown in Figure P10.8c. Thus,
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FIGURE P10.8
(a) Phase margin versus b; (b) Step response for lag compensator designed with Bode where
a = 1000 and b = 20.

Gc(s)G(s) =
5000(20s + 1)

s(s+ 10)2(1000s + 1)
.

The step response is shown in Figure P10.8b.

(b) We require that ζ = 0.7 to meet the P.O. specifications. Let

Gc(s) =
K(bs+ 1)

(as + 1)
.

Using root locus methods, we fix a and b, and then determine K for
ζ = 0.7. Let a = 50b and select b = 10 (other values will work). The
root locus is shown in Figure P10.8d. We find K = 2.5 when ζ = 0.7.
Now, Kv = 125, so the steady-state accuracy requirement is satisfied
for the step response as shown in Figure P10.8e.
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FIGURE P10.8
CONTINUED: (c) Bode plot for the compensated system with Gc(s) =

20s+1
1000s+1 .

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

xxx xo

Real Axis

Im
ag

 A
xi

s

*

*

*

*

FIGURE P10.8
CONTINUED: (d) Root locus for 1 +K

5000(10s+1)
s(s+10)2(500s+1)

.
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FIGURE P10.8
CONTINUED: (e) Step response for lag compensator designed with root locus methods,
where K = 2.5.

P10.9 We desire a small response for a disturbance at 6 rad/sec. The Bode plot
of Gc(s)G(s) is shown in Figure P10.9a where we consider a compensator
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FIGURE P10.9
(a) Bode plot for the compensated system with Gc(s) =

10(s2+4s+10)
s2+36 .
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of the form

Gc(s) =
K(s2 + as+ b)

s2 + 36
.

Notice that the magnitude is large at ω = 6, as desired. We select

a = 4, b = 10 and K = 10 .

The response to a sinusoidal disturbance at 6 rad/sec is shown in Fig-
ure P10.9b. Notice that the effect of the disturbance is virtually eliminated
in steady-state.
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FIGURE P10.9
CONTINUED: (b) Disturbance response for a sinusoidal disturbance at 6 rad/sec.

P10.10 The step response with Gc(s) = 1 is shown in Figure P10.10. A suitable
lag compensator is

Gc(s) =
s+ 0.05

s+ 0.005
.

The step response of the compensated system is also shown in Figure P10.10.
The settling time of the compensated system is

Ts = 28 seconds .
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FIGURE P10.10
Step response of uncompensated and compensated systems.

P10.11 The root locus is shown in Figure P10.11 where a suitable lead-lag com-
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FIGURE P10.11
Root locus for 1 +K

160(s+17)(s+10)
s2(s+170)(s+1)

= 0.
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pensator is

Gc(s) = K
s+ 10

s+ 1

s+ 17

s+ 170
.

The selected gain is K = 57, so that the damping of the complex roots
is about ζ = 0.7. For this particular design, the closed-loop system zeros
will affect the system response and the percent overshoot specification
may not be satisfied. Some design iteration may be necessary or aprefilter
can be utilized. A suitable prefilter is

Gp(s) =
17

s+ 17
.

The acceleration constant is Ka = 9120.

P10.12 We choose K = 10. This yields a velocity constant Kv = 20K = 200, as
desired. A suitable two-stage lead compensaator is

Gc(s) =
(0.05s + 1)(0.05s + 1)

(0.0008s + 1)(0.0008s + 1)
.

The Bode plot is shown in Figure P10.12. The phase margin is P.M. =
75.06o.
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FIGURE P10.12
Bode plot for

200(0.05s+1)2

s(0.1s+1)(0.05s+1)(0.0008s+1)2 .
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P10.13 (a) When

Gc(s) = K = 0.288 ,

the phase margin is P.M. = 49.3o and the bandwidth is ωB = 0.95
rad/sec.

(b) A suitable lag compensator is

Gc(s) =
25s + 1

113.6s + 1
.

The compensated system phase margin is P.M. = 52.21o and Kv = 2,
as desired.

P10.14 A suitable lead compensator is

Gc(s) =
1.155s + 1

0.032s + 1
.

The compensated system phase margin is P.M. = 50o and Kv = 2, as
desired. The settling time is Ts = 3.82 seconds.

P10.15 One possible solution is

Gc(s) = K
(s+ 12)(s + 15)

(s+ 120)(s + 150)
,

where K = 900. The disturbance response is shown in Figure P10.15.
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FIGURE P10.15
Compensated system disturbance response.
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P10.16 The PI controller is given by

Gc(s) =
K(s+ b)

s
,

where K and b are to be determined. To meet the design specifications,
we need

ζ = 0.6 and ωn = 6.67 rad/sec .

The closed-loop transfer function is

T (s) =
K(s+ b)

s2 +Ks+ bK
.

Solving for the gains yields K = 2ζωn = 8 and b = ω2
n/K = 5.55. A

suitable prefilter is

Gp(s) =
5.55

s+ 5.55
.

The step response, with and without the prefilter, is shown in Figure P10.16.
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FIGURE P10.16
Compensated system response with and without a prefilter.
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P10.17 The plant transfer function is

G(s) =
K

s(s+ 10)(s + 50)
.

We desire ζωn > 10 to meet Ts < 0.4 sec and ζ = 0.65 to meet P.O. <
7.5%. Try a pole at s = −120. The root locus is shown in Figure P10.17.
The gain K = 6000 for ζ = 0.65. Thus,

Gc(s)G(s) =
6000(s/15 + 1)

s(s+ 10)(s + 50)(s/120 + 1)
and Kv =

6000

500
= 12 .
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FIGURE P10.17
Root locus for 1 +K

s/15+1
s(s+10)(s+50)(s/120+1)

.

P10.18 (a) The loop transfer function is

L(s) =
K1e

−2Ts

0.25s + 1

where T = 1.28. The phase angle is

φ = −2.56ω − tan 0.25ω .

So, ω = 1.12 rad/sec when φ = −180o. However, the break frequency
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is 4 rad/sec. Therefore, you cannot achieve P.M. = 30o and have the
system be stable for K1 < 1. The steady-state error is

ess =
A

1 +Kp
=

A

1 +K1

since K1 = Kp.

(b) Set K1 = 20, then Kp = 20 and this yields a 5% steady-state error.
Without compensation, the system is now unstable. Let

Gc(s) =
s/b+ 1

s/a+ 1

where b = 5 and a = 0.01. Then, the system is stable with

P.M. = 63o .

The system response is shown in Figure P10.18.
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FIGURE P10.18
Unit step response with Gc(s) =

20(s/5+1)
s/0.01+1 .
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P10.19 (a) The open-loop transfer function is

G(s) =
Ke−sT

(s+ 1)(s + 3)
,

where T = 0.5 sec. We desire P.O. < 30%, thus ζ > 0.36. We will
design for ζ = 0.4, which implies P.M. = 40o. Then

φ = − tan−1 ω − tan−1 ω

3
− 0.5ω(57.3o) .

At ωc = 1.75, the phase margin is P.M. = 40o, and solving

|G(jω)| = K

[(3− ω2)2 + (4ω)2]
1
2

= 1

at ω = 1.75 yields K = 7. Then ess = 0.3.

(b) We want ess < 0.12, so use ess = 0.10 as the goal. Then

Gc(s)G(s) =
Ke−0.5s(s+ 2)

(s+ 1)(s + 3)(s + b)
,

and

ess =
1

1 +Kp

where Kp =
2K
3b . If b = 0.1 then Kp = 6.7K and

ess =
1

1 + 6.7K
.

So, we need 6.7K = 9, or K = 1.35. We need a lag compensator (i.e.
b < 2) to meet ess < 12% and have stability.

P10.20 We desireKv = 20, P.M. = 45o and ωB > 4 rad/sec. Thus, we setK = 20,
and

G(s) =
20

s
(

s
2 + 1

) (

s
6 + 1

) .

Then, the Bode plot yields P.M. = −21o uncompensated at ωc = 5.2
rad/sec. The phase lead compensator must add 66 o plus phase lead to
account for the shift of the crossover to a higher frequency with the phase
lead compensator. Consider

Gc(s) =

(

1 + ατs

1 + τs

)2

.
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One solution is to use

α = 10

τ = 1/67 .

Then

Gc(s) =
100(s + 6.7)2

(s+ 67)2
.

The compensator has two zeros at ω = 6.7, two poles at ω = 67 yielding
P.M. = 47o, ωc = 7.3 and ωB = 12 rad/sec.

P10.21 We desire Kv = 20, P.M. = 45o and ωB ≥ 2. The lag compensator is

Gc(jω) =
1 + jωτ

1 + jωατ

where α > 1. From the Bode plot, φ = −135o at ω ∼= 1.3. So, at ω = 1.3,
we need to lower the magnitude by 22 dB to cause ω = 1.3 to be ω′

c, the
new crossover frequency. Thus, solving

22 = 20 log α

yields α = 14. We select the zero one decade below ω′
c or 1

τ = 0.13.
Therefore,

1

ατ
=

0.13

14
= 0.0093 .

Then, the lag compensator is given by

Gc(s) =
1 + s

0.13

1 + s
0.0093

=
s+ 0.13

14(s + 0.0093)
.

The new crossover is ω′
c = 1.3, and ωB = 2.14 rad/sec.

P10.22 We desire P.M. = 45o, Kv = 20 and 2 ≤ ωB ≤ 10. The lead-lag compen-
sator is

Gc(s) =
1 + s

b

1 + s
10b

· 1 +
s

10a

1 + s
a

.

Since ωB
∼= 1.5ωc , we design for a new crossover frequency ω′

c so that

1.4 < ω′
c < 7 .

Try for ω′
c = 4. The phase φ = −190o at ω = 4, so we need to add phase

lead of 55o plus phase to account for lag part of network at ω′
c. Use α = 10

and bracket ω = 4 with the lead network. Put the zero at ω = 0.8 = b
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and the pole at ω = 8. For the lag compensator, put the zero at a lower
frequency than ω′

c/10. So try a zero at ω = 0.2 = 10a and a pole at
ω = 0.02 = a. Then, the lead-lag compensator is

Gc(s) =

(

1 + s
0.8

) (

1 + s
0.2

)

(

1 + s
8

) (

1 + s
0.02

) .

The compensated Bode plot yields

ω′
c = 3.5 rad/sec, P.M. = 50o and ωB = 6.2 rad/sec .

P10.23 The steady-state error is

ess =
1

1 +Kp
=

1

1 +K/25
= 0.05 .

So, we need K/25 ≥ 19 or K ≥ 475. One possible solution is

Gc(s) =
4s + 1

12s+ 1
and K = 475 .

The compensated Bode plot is shown in Figure P10.23. The phase margin
is P.M. = 46o.
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P10.24 The arm-rotating dynamics are represented by

G(s) =
80

s
(

s2

4900 + s
70 + 1

) .

We desire Kv = 20, and P.O. < 10%. One possible solution is the lead-lag
compensator

Gc(s) =
(s+ 50)(s + 0.48)

4(s+ 400)(s + 0.06)
.

With this compensator, we have

P.O. = 9.5% and Kv = 20 .

P10.25 Neglect the pole of the airgap feedback loop at s = 200. The characteristic
equation is

1 + K̄
(s+ 20)(s + c)

s3
= 0 ,

where

K̄ =
K

K1 +K2

c =
K2b

K1 +K2
.

Choose

c = 10

to attain the root locus structure shown in Figure P10.25. The gain

K̄ = 38.87

insures the damping ratio of ζ = 0.5. Then, solving for K1 and b yields

K1 =
K

38.87
−K2

and

b =
0.1K

38.87K2
.

For given values of K and K2 (unspecified in the problem), we can com-
pute K1 and b.
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FIGURE P10.25
Root locus for 1 + K̄

(s+20)(s+10)
s3 = 0.

P10.26 The loop transfer function is

Gc(s)G(s) =
0.15K(10as + 1)

s(s+ 1)(5s + 1)(as + 1)
,

where K and a are to be selected to meet the design specifications. Suit-
able values are

K = 6.25 and a = 0.15 .

Then, the phase margin is P.M. = 30.79o and the bandwidth is ωB =
0.746 rad/sec. The lead compensator is

Gc(s) = 6.25
1.5s + 1

0.15s + 1
.

P10.27 (a) Let Gc(s) = K = 11. Then the phase margin is P.M. = 50o and the
performance summary is shown in Table P10.27.

(b) Let

Gc(s) =
K(s+ 12)

(s+ 20)
,

where K = 32. Then, the phase margin is P.M. = 50o and the per-
formance summary is given in Table P10.27.
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compensator P.M. P.O. Tp Ts Mpω
ωB

Gc(s) = K = 11 50o 18% 0.34 sec 0.78 sec 1.5 dB 13.9 rad/sec

Gc(s) =
32(s+12)

s+20 50o 18% 0.20 sec 0.47 sec 1.5 dB 26.3 rad/sec

TABLE P10.27 Performance Summary.

P10.28 The loop transfer function is

Gc(s)G(s) =
K(as+ 1)

s(s+ 10)(s + 14)(10as + 1)
,

where K and a are to be selected to meet the design specifications, and
we have set α = 10. The root locus is shown in Figure P10.28a. To satisfy
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FIGURE P10.28
(a) Root locus for 1 +K

1400(s+1)
s(s+10)(s+14)(10s+1)

= 0.
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the steady-state tracking error we must select

K > 1400 .

Suitable values for the lag compensator are

K = 4060 and a = 1 .

Then, the percent overshoot is P.O. = 31% and the settling time is Ts =
2.34 sec. The lag compensator is

Gc(s) =
s+ 1

10s + 1
.

The step response is shown in Figure P10.28b.
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FIGURE P10.28
CONTINUED: (b) Step response.

P10.29 The plant transfer function is

G(s) =
10e−0.05s

s2(s + 10)
.

The lead network

Gc(s) =
16(s + 0.7)

(s + 9)
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provides Mpω = 3.4 dB and ωr = 1.39 rad/sec. The step response is shown
in Figure P10.29. The overshoot is P.O. = 37% and Ts = 3.5 sec.
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FIGURE P10.29
Unit step response with Gc(s) =

16(s+0.7)
s+9 .

P10.30 The vehicle is represented by

G(s) =
K

s(0.04s + 1)(0.001s + 1)
≈ K

s(0.04s + 1)
.

For a ramp input, we want

ess
A

= 0.01 =
1

Kv
.

So, let

G(s) =
100

s(0.04s + 1)
.

The uncompensated P.M. = 28o at ωc = 47 rad/sec. We need to add 17o.

Case (1) Phase lead compensation:

Gc(s) =
1 + 0.021s

1 + 0.01s
.

The phase margin is P.M. = 45o.
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Case (2) Phase lead compensation:

Gc(s) =
1 + 0.04s

1 + 0.005s
.

The phase margin is P.M. = 65o.

For Case 1, we have

P.O. = 25% , Ts = 0.13 sec and Tp = 0.05 sec .

For Case 2, we have

P.O. = 4% , Ts = 0.04 sec and Tp = 0.03 sec .

P10.31 As in P10.30, the plant is given by

G(s) =
100

s(0.04s + 1)
.

The uncompensated P.M. = 28o. We need P.M. = 50o. The phase lag
compensator

Gc(s) =
1 + 0.5s

1 + 2.5s

results in P.M. = 50o. The P.O. = 21%, Ts = 0.72 sec and Tp = 0.17 sec.

P10.32 (a) To obtain Kv = 100, we have

Gc(s)G(s) =
43.33(s + 500)

s(s+ 0.0325)(s2 + 2.57s + 6667)
.

With K = 43.33, we have

P.M. = 1.2o , Mpω = 26 dB , ωr = 1.8 rad/sec and ωB = 3.7 rad/sec .

The Bode plot is shown in Figure P10.32.

(b) Let

Gc(s) =
0.35s + 1

0.001s + 1
,

and K = 43.33 (as before). Then,

P.M. = 36o , Mpω = 5.4 dB , ωr = 1.7 rad/sec and ωB = 3.0 rad/sec .
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FIGURE P10.32
Bode plot with Gc(s) = K = 43.33.

P10.33 The step response is shown in Figure P10.33, where

Gc(s) =
10(s + 0.71)(s + 0.02)

(s+ 0.0017)(s + 10)
.
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FIGURE P10.33
Step response with the lead-lag compensator Gc(s) =

10(s+0.71)(s+0.02)
(s+0.0017)(s+10)

.
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Then,

Kv = 80

and P.O. = 17%, Ts = 1.8 sec, and ζ = 0.54.

P10.34 The process model is

G(s) =
1

s2(s + 10)
,

and we consider the lead compensator

Gc(s) = K
1 + sατ

1 + sτ
,

where α = 100, τ = 0.4 and K = 0.5. Then, P.M. = 46.4o. The step
response is shown in Figure P10.34. The system performance is

P.O. = 22.7%

Ts = 5.2 sec

Tp = 1.72 sec .
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FIGURE P10.34
Step response with the lead compensator Gc(s) = 0.5 40s+1

0.4s+1 .
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P10.35 The phase margin is shown in Figure P10.35. As the time delay increases,
the phase margin decreases. The system is unstable when T > 2.1843 s.
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FIGURE P10.35
Step response with Gc(s)G(s) = 2s+0.54

s(s+1.76)
e−Ts, where 0 ≤ T ≤ 2.5.

P10.36 One possible solution is the integral controller Gc(s) = 2/s. The step
response is shown in Figure P10.36. The steady-state tracking error to a
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FIGURE P10.36
Step response with the integral controller Gc(s) = 2/s.
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step input is zero since the system is type-1. The phase margin is P.M. =
32.8◦ and the bandwidth is ωB = 4.3 rad/s .

P10.37 One possible solution is

Gc(s) =
1600(s + 1)

25s + 1
.

The overshoot to a unit step is P.O. = 4.75% and the steady-state error
to a step input is ess = 1%. The system bandwidth is ωB = 9.7 rad/sec.

P10.38 The lead compensator is

Gc(s) =
2.88(s + 2.04)

s+ 5.88
.

The Bode plot is shown in Figure P10.38. The phase margin is P.M. =
30.4o at ωc = 9.95 rad/sec and the bandwidth is ωB = 17.43 rad/sec.
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FIGURE P10.38
Bode plot for Gc(s)G(s) =

115.29(s+2.04)
s(s+2)(s+5.88)

.

P10.39 The lag compensator is

Gc(s) =
1 + 1.48s

1 + 11.08s
.

The Bode plot is shown in Figure P10.39. The steady-state error specifi-
cation is satisfied since Kv = 20. The phase margin is P.M. = 28.85o at
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FIGURE P10.39
Bode plot for Gc(s)G(s) =

40(1+1.48s)
s(s+2)(1+11.08s)

.

ωc = 2 rad/sec and the bandwidth is ωB = 3.57 rad/sec.

P10.40 The lag compensator is

Gc(s) =
2.5(1 + 1.64s)

1 + 30.5s
.

The Bode plot is shown in Figure P10.40. The steady-state error specifi-
cation is satisfied since

Kv = 50 .

The phase margin is

P.M. = 28.93o

at ωc = 1.98 rad/sec and the bandwidth is

ωB = 3.59 rad/sec.
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FIGURE P10.40
Bode plot for Gc(s)G(s) =

100(1+1.64s)
s(s+2)(1+30.5s)

.

P10.41 We use Table 10.2 in Dorf & Bishop to determine the required coefficients

α = 1.9 and β = 2.2 .

Also,

ωnTr = 4.32 implies ωn = 4.32,

since we require

Tr = 1 second.

The characteristic equation is

s3 + 8.21s2 + 41.06s + 80.62 = s3 + (1 + p)s2 + (K + p)s+Kz = 0 .

Equating coefficients and solving yields

p = 7.21 K = 33.85 z = 2.38 .

P10.42 From Example 10.4 in Dorf & Bishop, we have the closed-loop transfer
function

T (s) =
96.5(s + 4)

(s2 + 8s+ 80)(s + 4.83)
.
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A suitable prefilter is

Gp(s) =
4

s+ 4
.

The step response (with and without the prefilter) is shown in Figure P10.42.
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FIGURE P10.42
Step response with and without the prefilter.

P10.43 Let

K = 100.

The Bode plot is shown in Figure P10.43a and the response to a simusoidal
noise input with

ω = 100 rad/s

is shown in Figure P10.43b.
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Bode Diagram
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FIGURE P10.43
(a) Bode magnitude plot. (b) Response to a noise input.

P10.44 For 0.129 < K ≤ 69.87, the system is unstable. The percent overshoot is
shown in Figure P10.44 .
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Percent overshoot.
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Advanced Problems

AP10.1 (a) With

Gc(s) = K ,

the closed-loop transfer function is

T (s) =
K

s3 + 5s2 + 4s+K
.

When K = 2.05, the characteristic equation is

s3 + 5s2 + 4s+ 2.05 = 0

with poles at s = −4.1563 and s = −0.4219 ± j0.5615. Therefore
ζ = 0.6, and the predicted overshoot is

P.O. = 100e−π0.6/
√
1−0.62 = 9.5% < 13% .

The actual overshoot is P.O. = 9.3% and Ts = 8.7 seconds.

(b) When

Gc(s) =
82.3(s + 1.114)

s+ 11.46

the closed-loop transfer function is

T (s) =
82.3(s + 1.114)

s4 + 16.46s3 + 61.3s2 + 128.14s + 91.6822

=
82.3(s + 1.114)

(s+ 1.196)(s + 12.26)(s + 1.5± j2)
.

Therefore ζ = 0.6 and the predicted overshoot is P.O. = 9.5% < 13%.
The actual overshoot is P.O. = 12% and Ts = 2.5 seconds.

AP10.2 The lag network is given by

Gc =
K(s+ a1)

s+ a2
.

The closed-loop transfer function is

T (s) = K
s+ a1

s4 + (5 + a2)s3 + (4 + 5a2)s2 + (4a2 +K)s+Ka1
.
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Computing the steady-state tracking error yields

ess = lim
s→0

s4 + (5 + a2)s
3 + (4 + 5a2)s

2 + 4a2s

s5 + (5 + a2)s4 + (4 + 5a2)s3 + (4a2 +K)s2 +Ka1s

=
4a2
a1K

< 0.125 .

If we select K = 2.05 (as in AP10.1), then

a1 > 15.61a2 .

So, take a2 = a1/16. The lag compensator can now be written as

Gc(s) = 2.05
s+ a1

s + a1/16
.

Select a1 = 0.018. Then, the closed-loop transfer function is

T (s) =
2.05(s + 0.018)

s4 + 5.0011s3 + 4.0056s2 + 2.0545s + 0.0369
.

The performance results are P.O. = 13% and Ts = 29.6 seconds for a step
input, and ess = 0.12 for a ramp input.

AP10.3 The plant transfer function is

G(s) =
1

s(s+ 1)(s + 4)

and the PI controller is given by

Gc(s) =
Kps+KI

s
.

The closed-loop transfer function is

T (s) =
Kps+KI

s4 + 5s3 + 4s2 +Kps+KI
.

For a unit ramp, the steady-state tracking error is

ess = lim
s→0

s4 + 5s3 + 4s2

s5 + 5s4 + 4s3 +Kps2 +KIs
= 0 .

Any KI > 0 and Kp > 0 (such that the system is stable) is suitable and
will track a ramp with zero steady-state error. Since we want P.O. <
13%, the damping of the dominant roots should be ζ ≈ 0.6. One suitable
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solution is to place the zero at s = −0.01 and select the PI controller

Gc(s) =
2.05(s + 0.01)

s
.

Therefore, Kp = 2.05 and KI = 0.0205. The closed-loop transfer function
is

T (s) =
2.05(s + 0.01)

s4 + 5s3 + 4s2 + 2.05s + 0.0205
.

The performance results are P.O. = 11.5% and Ts = 9.8 seconds for a
step input, and ess = 0 for a unit ramp.

AP10.4 The closed-loop transfer function is

T (s) =
10K1

s2 + 10(1 +K1K2)s+ 10K1
.

From the performance specifications, we determine that the natural fre-
quency and damping of the dominant poles should be ωn = 5.79 and
ζ = 0.69. So,

s2 + 8(1 +K1K2)s + 8K1 = s2 + 2ζωns+ ω2
n = s2 + 7.99s + 33.52 .

Solving for the gains yields K1 = 4.19 and K2 = 0. The closed-loop
transfer function is

T (s) =
33.52

s2 + 8s+ 33.52
.

The performance results are P.O. = 5% and Ts = 1 second.

AP10.5 (a) From the overshoot specification P.O. = 10%. The plant transfer
function is

G(s) =
1

s(s+ 1)(s + 10)
.

Let Gp = 1. A suitable compensator is

Gc = K
s+ 0.5

s+ 10
.

Using root locus methods, we determine that K = 45 yields P.O. ≈
10%. The closed-loop poles are s1,2 = −2.5 ± j5.1, s3 = −15.48, and
s4 = −0.45.

(b) The closed-loop transfer function is

T (s) =
450(s + 0.5)

s4 + 21s3 + 120s2 + 550s + 225
.
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The step response is shown in Figure AP10.5. The overshoot and
settling time are P.O. = 9.5% and Ts = 3.4 seconds.

(c) A suitable prefilter is

Gp(s) =
0.5

s+ 0.5
.

The closed-loop transfer function is

T (s) =
225

s4 + 21s3 + 120s2 + 550s + 225
.

The step response is shown in Figure AP10.5. The overshoot and
settling time are P.O. = 0% and Ts = 6.85 seconds.
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FIGURE AP10.5
Step response with prefilter (dashed line) and without prefilter (solid line).

AP10.6 From Example 10.12 in Dorf & Bishop, we have the relationship

ωnTs = 4.04 .

Thereore, minimizing Ts implies maximizing ωn. Using Table 10.2 in Dorf
& Bishop, we equate the desired and actual characteristic polynomials

q(s) = s3 + 1.9ωns
2 + 2.2ω2

ns+ ω3
n = s3 + (1 + p)s2 + (K + p)s+Kz .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Advanced Problems 573

Comparing coefficients yields

(1 + p) = 1.9ωn , K + p = 2.2

(

1 + p

1.9

)2

, Kz = ω3
n .

So, from the first relationship we see that maximizing ωn implies maxi-
mizing p. Solving for p while maintaining K < 52

K =
2.2

3.61
(p2 + 2p+ 1)− p < 52

we determine that

−9.3643 < p < 9.005 .

The largest p = 9. Therefore, K = 51.94 and z = 2.81. The step response
is shown in Figure AP10.6. The settling time is Ts = 0.77 second.
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FIGURE AP10.6
Step response with minimum settling time.

AP10.7 Let Gp = 1. The closed-loop transfer function is

T (s) =
K(s+ 3)

s4 + 38s3 + 296s2 + (K + 448)s + 3K
.

When K = 311, the characteristic equation

s4 + 38s3 + 296s2 + 759s + 933 = 0
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has poles at s = −1.619± j1.617 (ζ = 1/
√
2), s = −6.25, and s = −28.51.

(a) When Gp(s) = 1 and K = 311, the closed-loop transfer function is

T (s) =
311(s + 3)

s4 + 38s3 + 296s2 + 759s + 933
.

The step input performance is P.O. = 6.5%, Ts = 2.5 seconds, and
Tr = 1.6 seconds. With the prefilter

Gp(s) =
3

s+ 3

and K = 311, the closed-loop transfer function is

T (s) =
933

s4 + 38s3 + 296s2 + 759s + 933
.

In this case, the step response is P.O. = 3.9%, Ts = 2.8 seconds, and
Tr = 1.3 seconds.

(b) Now, consider the prefilter

Gp(s) =
1.8

s+ 1.8

and K = 311. The closed-loop transfer function is

(s) =
559.8(s + 3)

s5 + 39.8s4 + 364.4s3 + 1291.8s2 + 2299.2s + 1679.4
.

The step input response is P.O. = 0.7%, Ts = 2.14 seconds and
Tr = 1.3 seconds.

AP10.8 The plant transfer function is

G(s) =
250

s(s+ 2)(s + 40)(s + 45)
.

The performance specifications are P.O. < 20%, Tr < 0.5 second, Ts < 1.2
seconds and Kv ≥ 10. A suitable lead compensator is

Gc = 1483.7
s+ 3.5

s + 33.75
.

The closed-loop transfer function is

T (s) =
250(1483.7)(s + 35)

s(s+ 2)(s + 40)(s + 45)(s + 33.75) + 250(1483.7)(s + 3.5)

The actual step input performance (see Figure AP10.8) is P.O. = 18%,
Ts = 0.88 second, Tr = 0.18 second, and Kv = 10.7.
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FIGURE AP10.8
Step response with lead compensator.

AP10.9 The frequency response is shown in Figure AP10.9.
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FIGURE AP10.9
Bode plot with Gc(s) =

(s+2.5)(s+0.9871)
(s+36.54)(s+0.0675)
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One lead-lag compensator that satisfies the specifications is

Gc(s) =
(s+ 2.5)(s + 0.9871)

(s + 36.54)(s + 0.0675)
.

The gain and phase margins are Gm = 12.35 dB and Pm = 41.8◦, re-
spectively. The velocity error constant is Kv = 100. Therefore, all speci-
fications are satisfied.
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP10.1

Bishop is given by:

θ(s)

Va(s)
=

26.035

s(s+ 33.142)
,

where we neglect the motor inductance Lm and where we switch off the
tachometer feedback (see Figure CDP4.1 in Dorf and Bishop). With a PD
controller the closed-loop system characteristic equation is

s2 + (33.142 + 26.035KD)s+ 26.035Kp = 0 .

Using Table 10.2 in Dorf and Bishop we determine that for a second-order
system with a deadbeat response we have α = 1.82 and ωnTs = 4.82. Since
we desire Ts < 0.25 seconds, we choose ωn = 19.28. Equating the actual
characteristic equation with the desired characteristic equation we obtain

s2 + ωnαs+ ω2
n = s2 + (33.142 + 26.035KD)s+ 26.035Kp .

Solving for Kp and KD yields the PD controller:

Gc(s) = 14.28 + 0.075s .

The step response is shown below. The settling time is Ts = 0.24 second.
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DP10.1 The plant is given as

G(s) =
20

s (s+ 2)
.

One possible lead compensator is

Gclead(s) =
50(s + 1)

s+ 20
.

Similarly, a suitable lag compensator is

Gclag(s) =
s+ 0.1

s+ 0.022
.

The loop transfer function with the lead-lag compensator is

Gc(s)G(s) =
1000(s + 1)(s + 0.1)

s (s+ 2) (s+ 0.022)(s + 20)
.

The step response and ramp response are shown in Figure DP10.1. The
velocity constant is Kv = 50, so the steady-state error specification is
satisfied.
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FIGURE DP10.1
Step response and ramp response.
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DP10.2 (a) When Gc(s) = K, we require K > 20 to meet the steady-state track-
ing specification of less than 5%.

(b) The system is unstable for K > 20.

(c) A single stage lead compensator is

Gc1(s) =
1 + 0.49s

1 + 0.0035s
.

With this compensator, the bandwidth is

ωB = 68.9 rad/sec

and the phase margin is P.M. = 28.57o.

(d) A two stage lead compensator is

Gc2(s) =
(1 + 0.0185s)(1 + 0.49s)

(1 + 0.00263s)(1 + 0.0035s)
.

With the two stage compensator, the bandwidth is

ωB = 83.6 rad/sec

and the phase margin is P.M. = 56.79o. The step response for the
two compensators is shown in Figure DP10.2.
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FIGURE DP10.2
Step response for one- and two-stage lead compensators.
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DP10.3 The mast flight system is modeled as

G(s) =
6

s(s+ 1.5)(s + 3.9)
.

Consider the proportional controller

Gc(s) = K = 0.85 .

The system step response is shown in Figure DP10.3. The percent over-
shoot is

P.O. = 15.9%,

the rise time is

Tr = 3.63 seconds,

and the phase margin is

P.M. = 52o.
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FIGURE DP10.3
Step response for the mast flight system.
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DP10.4 One possible compensator is

Gc(s) = 5682
s + 12.6

s + 87.3
.

The step response is shown in Figure DP10.4. The performance results
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FIGURE DP10.4
Step response for the high speed train system.

are

P.O. = 4.44% Ts = 0.36 sec Kv = 14.1 .

DP10.5 The design specifications areKv > 200; Ts < 12 ms and percent overshoot
P.O. < 10%. The step response is shown in Figure DP10.5. A suitable
compensator is

Gc(s) = K
s+ 403

s+ 2336
,

where

K = 1.9476e + 13.

Then,

P.O. = 9.5% Ts = 10 ms Kv = 560 .
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FIGURE DP10.5
Step response for the tape transport system.

DP10.6 A solution to the problem is the PI controller

Gc(s) =
4.21s + 1.2

s
.

The step response is shown in Figure DP10.6.
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FIGURE DP10.6
Step response for the engine control system.
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The performance results are

P.O. = 8.8% and Ts = 2.14 .

The system is a type-1, so the steady-state error for a step input is zero,
as desired.

DP10.7 The jet aircraft roll angle motion is represented by the transfer function

G(s) =
10

(s + 10)(s2 + 2s + 20)
.

A good controls solution is obtained with a PID controller

Gc(s) =
10s2 + 20s + 150

s
.

The system is type-1, so the steady-state tracking error is zero for a step
input. The performance results are

P.O. = 9.13% and Ts = 1.56 .
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FIGURE DP10.7
Step response for the jet aircraft roll control system.
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DP10.8 One good solution is obtained with the following PI controller

Gc(s) =
27.35(s + 2)

s
.

The system is type-1, so the steady-state tracking error is zero for a step
input. The step response is shown in Figure DP10.8.
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FIGURE DP10.8
Step response for the windmill radiometer.

DP10.9 Consider the PID controller

Gc(s) = Kp +KDs+
KI

s
=

1.554s2 + 1.08s + 1

s

and the lead-lag controller

Gc(s) = K

(

s+ a

s+ b

)(

s+ c

s+ d

)

= 6.04
(s + 10)(s + 2)

(s+ 1)(s + 5)
.

Both are stabilizing in the presence of a T = 0.1 second time delay. For the
PID controller the phase margin is P.M. = 40o. For the lead-lag controller
the phase margin is P.M. = 45o. We find (for these particular designs)
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that the lead-lag controller is more able to remain stable in the process
of increasing time delay. For a time-delay of T = 0.2 seconds, the lead-lag
compensator has a phase margin of P.M. = 22o, while the PID controller
is unstable.

DP10.10 One solution is

Gc(s) =
50(s + 0.01)

s+ 2
.

The Bode magnitude is shown in Figure DP10.10. You want high gain at

Bode Diagram
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FIGURE DP10.10
Step response for the windmill radiometer.

low frequency to improve disturbance rejection and decrease sensitivity to
plant changes and low gain at high frequency to attenuate measurement
noise.

DP10.11 One solution is the PD controller

Gc(s) = 0008(s + 10) .

The step response is shown in Figure DP10.11. The closed-loop transfer
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function is

T (s) =
4

s2 + 3.4s + 4
,

where we use the prefilter

Gp(s) =
4

0.36s + 3.6
.
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FIGURE DP10.11
Step response for the polymerase chain reaction system.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Computer Problems 587

Computer Problems

CP10.1 The m-file script and step response is shown in Figure CP10.1. The phase
margin and percent overshoot are

P.M. = 50o

P.O. ≈ 18% ,

respectively.

  

nnumc=[110]; denc=[1 0]; sysc = tf(numc,denc);

numg=[1]; deng=[1 10]; sysg = tf(numg,deng);

syss = series(sysc,sysg);

[Gm,Pm]=margin(syss);

Pm

%

sys_cl = feedback(syss,1);

[y,t]=step(sys_cl);

step(sys_cl); grid

S=stepinfo(y,t);

PO=S.Overshoot

Pm =

   49.9158

PO =

   17.5724
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FIGURE CP10.1
Phase margin and step response for the closed-loop system.
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CP10.2 Using a proportional controller the closed-loop characteristic equation is

1 +K
24.2

s2 + 8s+ 24.2
.

A simple m-file script which computes the P.M. as a function of the gain
K yields the proportional controller gain K = 6. Checking the phase
margin of the system reveals that P.M. ≈ 40◦, as desired.

n=24.2; d=[1 8 24.2]; sys = tf(n,d);

K=6;

margin(K*sys), grid
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FIGURE CP10.2
Bode plot with a proportional controller K = 6 in the loop.

CP10.3 The uncompensated system is type-1. To realize a zero steady-state error
to a ramp input we need to increase the system type by one. One controller
that does this is the PI controller:

Gc(s) =
KP s+KD

s
.

The step response is shown in Figure CP10.3 where it can be seen in the
tracking error plot that the settling time is Ts < 5 seconds. The actual
settling time is

Ts = 3.6 seconds .
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KP=20; KD=10;
nc=[KP KD];  dc=[1 0] ;  sysc = tf(nc,dc) ;
n=1;  d=[1 2 0] ;  sys = tf(n,d) ;
sys_o = series(sysc,sys) ;
sys_cl  = feedback(sys_o,[1]) ;
t=[0:0.001:10];
sys1 = tf([1] , [1 0]) ;  sys_cl1 = series(sys_cl,sys1);
subplot(121)
y=step(sys_cl1,t) ;
plot(t ,y,t ,t ,' - - ' ) ,  gr id
xlabel( 'Time (sec) ' ) ,  ylabel( 'Ramp response')
e=y-t ' ;  L=�nd(abs(e)>0.02);
Ts=t(L(length(L)))
subplot(122)
plot(t ,e,[0 10],[0.02 0.02],' : ', [0 10], [-0.02 -0.02],' : ' )
xlabel( 'Time (sec) ' ) ,  ylabel( 'Track ing error' )
grid
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FIGURE CP10.3
Ramp response with a PI controller Gc(s) =

20s+10
s in the loop.

CP10.4 From the percent overshoot spec we determine that P.O. < 10% implies
ζ > 0.6. So, we target a phase margin P.M. = 100ζ = 60o. The m-file
script which generates the uncompensated Bode plot is shown in Fig-
ure CP10.4a.
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È

Phi =

   56.2111

Pm =

    3.7889

alpha =

   10.8408

numg = 100*conv([1 1] , [1 0.01]) ;
deng = conv([1 10],conv([1 2 2] , [1 0.02 0.0101])) ;
sysg = tf(numg,deng)
w=logspace(-1,2,200);
[mag,phase,w]=bode(sysg,w);
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w);
%
Phi=60-Pm 
Pm
Phi=(60-Pm)*pi/180;  
alpha=(1+sin(Phi))/(1-sin(Phi))
M=-10*log10(alpha)*ones(length(w),1) ;
[mag,phase,w]=bode(sysg,w);  
for i  = 1: length(w),
   magdB(i)  = 20*log10(mag(1,1, i ) ) ;
end   
semilogx(w,magdB,w,M),  grid
xlabel( 'Frequency (rad/sec) ' ) ,  ylabel( 'mag [dB]' )
t it le( 'Uncompensated Bode Plot' )
hold on 
semilogx([ .56072 5.6072 56.072 560.72],[20 0 -20 -40],' -- ' )
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Uncompensated Bode Plot

FIGURE CP10.4
(a) Uncompensated Bode plot.

We assume that K = 1 and raise the gain at a later step to meet settling
time requirement. The uncompensated phase margin is P.M. = 3.7o, so
that the lead compensator needs to add φ = 56.2o. The script also cal-
culates α = 10.84. Following the design procedure outlined in Dorf &
Bishop, we locate the compensator zero at ω = 2 rad/sec (see dashed line
in Figure CP10.4a). Then, p = αz implies p = 21.68. After several iter-
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ations, we converge on K = 4 as a “good” value. The lead compensator
is

Gc(s) = 4
s+ 2

s + 22
.

The step response is shown in Figure CP10.4b. The compensated Bode is
shown in Figure CP10.4c.

K=4; 
numg = 100*conv([1 1] , [1 0.01]) ;
deng = conv([1 10],conv([1 2 2] , [1 0.02 0.0101])) ;
sysg = tf(numg,deng)
numc=K*[1 2] ;  denc=[1 22];  sysc = tf(numc,denc);
sys_o = series(sysc,sysg);
sys_cl  = feedback(sys_o,[1]) ;
t=[0:0.01:5] ;
f=10*pi/180;
[y,t ,x]=step(f*sys_cl,t) ;
plot(t ,y*180/pi) ,  gr id
xlabel( 'Time (sec) ' )
ylabel( 'Attitude rate (deg/sec) ' ) ,  pause
w=logspace(-1,2,200);
[mag,phase,w]=bode(sys_o,w);
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w);
bode(sys_o)
tit le([ 'Gain Margin = ',num2str(Gm),'   Phase Margin = ',num2str(Pm)])
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FIGURE CP10.4
CONTINUED: (b) Step response.
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FIGURE CP10.4
CONTINUED: (c) Bode plot with lead compensator.

CP10.5 The closed-loop transfer function is

θ(s)/θd(s) =
K̄1 + K̄2s

s2 + K̄2s+ K̄1

where K̄1 = K1/J and K̄2 = K2/J . A percent overshoot P.O. ≤ 20%
requires ζ > 0.45. Select as the initial damping

ζ = 0.7 (initial selection) .

For a second-order system with ζ = 0.7, we find that ω/ωn ≈ 0.9 when
|θ(s)/θd(s)| = 0.7. So, we select

ωn = ωB/0.9

as a starting choice. Therefore, since ωB = 10, we have

ωn = 11 .

The m-file script is shown in Figure CP10.5a. After several iterations, we
find a set of “good” values for

ζ = 0.8 and ωn = 4.5 (final selection) .

The step response and closed-loop Bode plot are shown in Figures CP10.5b
and CP10.5c.
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% Par t (a)
wn=4.5;  zeta=0.8;  K2=2*zeta*wn; K1=wn^2;
% Par t (b)
num=[K2 K1];  den=[1 0 0] ;  sys = tf(num,den);
sys_cl  = feedback(sys,[1]) ;
f=10*pi/180;  % set-up for 10 deg step input
t=[0: .05:3] ;
[y,t ,x]=step(f*sys_cl,t) ;
plot(t ,y*180/pi) ,  xlabel( ' t ime [sec] ' ) ,  ylabel( ' theta [deg]') ,  
gr id,  pause
% Par t (c)
w=logspace(-1,2,400);
[mag,phase,w]=bode(sys_cl,w);
for i  = 1: length(w),
   magdB(i)  = 20*log10(mag(1,1, i ) ) ;
end   
semilogx(w,magdB,[w(1) w(length(w))] , [-3 -3]) ,  gr id
xlabel( 'Frequency (rad/sec) ' )
ylabel( 'Gain dB')

FIGURE CP10.5
(a) Script to generate the step response and the closed-loop Bode plot.
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FIGURE CP10.5
CONTINUED: (b) Step response.
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FIGURE CP10.5
CONTINUED: (c) Closed-loop Bode plot.

CP10.6 The settling time and phase margin specifications require that the dom-
inant closed-loop poles have natural frequency and damping of ζ ≥ 0.45
and ωn ≥ 1.78. The uncompensated roots locus is shown in Figure CP10.6a.

numg=[1 10];  deng=[1 2 20];  
sysg = tf(numg,deng);
axis([-15,1,-10,10]) ;
r locus(sysg);   hold on
%
zeta=0.45;  wn=1.7778;
x=[-10:0.1:-zeta*wn];  
y=-(sqr t(1-zeta^2)/zeta)*x;
xc=[-10:0.1:-zeta*wn];
c=sqr t(wn^2-xc.^2);
plot(x,y,' : ',x ,-y,' : ',xc,c,' : ',xc,-c,' : ' )
r loc�nd(sysg),
hold o�

-10

-8

-6

-4

-2

0

2

4

6

8

10

-14 -12 -10 -8 -6 -4 -2 0

x

x

o

Real Axis

Im
ag

 A
xi

s

+

+

K=10

FIGURE CP10.6
(a) Uncompensated root locus.
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From the final value theorem, we determine that

lim
s→0

= sE(s) ≤ 0.1A implies
A

1 +GGc(s)
= 0.1A .

Therefore, the compensated Kpcomp ≥ 9. With the compensator

Gc(s) = K
s+ z

s+ p

we find that

Kpcomp =
Kz

p
Kpuncomp .

But Kpuncomp = 0.5 and (from the uncompensated root locus) a gain of
K = 10 results in roots of the characteristic equation in the desired region.
Solving for

z

p
=

1

K

Kpcomp

Kpuncomp

≈ 2 .

Select z = 0.5 to minimize changing the root locus. Then, p = 0.25, and
the compensator is

Gc(s) = 10
s+ 0.5

s + 0.25
.

The compensated root locus is shown in Figure CP10.6b and the step re-
sponse is shown in Figure CP10.6c. The phase margin of the compensated

numg=[1 10];  deng=[1 2 20];  
sysg = tf(numg,deng);
numc=[1 0.5] ;  denc=[1 0.25];  
sysc = tf(numc,denc);
sys_o = series(sysc,sysg);
axis([-15,1,-10,10]) ;
r locus(sys_o);  hold on
%
zeta=0.45;  wn=1.7778;
x=[-10:0.1:-zeta*wn];  
y=-(sqr t(1-zeta^2)/zeta)*x;
xc=[-10:0.1:-zeta*wn];
c=sqr t(wn^2-xc.^2);
plot(x,y,' : ',x ,-y,' : ',xc,c,' : ',xc,-c,' : ' )
r loc�nd(sys_o) 
hold o�
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FIGURE CP10.6
CONTINUED: (b) Compensated root locus.
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system is P.M. = 62.3o and the settling time Ts < 5 seconds.

>>

pm =

   62.3201

numg=[1 10];  deng=[1 2 20];  
sysg = tf(numg,deng);
numgc=10*[1 0.5] ;  dengc=[1 0.25];  
sysc = tf(numgc,dengc);
sys_o = series(sysc,sysg);
sys_cl  = feedback(sys_o,[1]) ;
t=[0:0.1:5] ;  step(sys_cl,t)
[mag,phase,w]=bode(sys_o);
[gm,pm,w1,w2]=margin(mag,phase,w);  pm
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FIGURE CP10.6
CONTINUED: (c) Step response and phase margin verification.

CP10.7 Both design specifications can be satisfied with an integral controller

Gc(s) = K1 +
K2

s
=

10

s
.

The simulation results and m-file script are shown in Figures CP10.7a
and b.
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FIGURE CP10.7
(a) Simulation results.

K1=0; K2=10;
numc=[K1 K2];  denc=[1 0] ;  sysc = tf(numc,denc);
numg=[23];  deng=[1 23];  sysg = tf(numg,deng);
sys_o = series(sysc,sysg);
sys_cl  = feedback(sys_o,[1]) ;
t=[0:0.01:1] ;
ys=step(sys_cl,t) ;
subplot(211)
plot(t ,ys) ,  xlabel( 'Time (sec) ' ) ,  ylabel( 'Phi  dot')
t it le( 'Unit  Step Response') ,  gr id 
u=t;
yr=lsim(sys_cl,u,t) ;
subplot(212)
plot(t ,yr-u',' - - ' )
xlabel( 'Time (sec) ' ) ,  ylabel( 'Track ing error' )
t it le( 'Unit  Ramp Response') ,  gr id 

FIGURE CP10.7
CONTINUED: (b) M-file design script.

CP10.8 From Example 10.3, we have that the loop transfer function is

Gc(s)G(s) =
8.1(s + z)

s2(s+ 3.6)
,
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where z = 1. We want to determine a value of z so the the percent
overshoot is reduced from 46% to less than 32%. A valid design is

Gc(s)G(s) =
8.1(s + 0.45)

s2(s+ 3.6)
.

The m-file script and step response are shown in Figure CP10.8. The
percent overshoot is P.O.=27.7 %.

K1 = 8.1;
numg = [K1];  deng = [1 0 0] ;  
sysg = tf(numg,deng);
numc = [1 0.45];  denc = [1 3.6] ;  
sysc = tf(numc,denc);
sys_o = series(sysc,sysg);
sys_cl  = feedback(sys_o,[1]) ;
step(sys_cl)
y=step(sys_cl) ;
po=100*(max(y)-1)
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FIGURE CP10.8
Response of system with new lead compensator design.

CP10.9 From AP10.10, we have the transfer function is

T (s) =
Vo(s)

Vi(s)

=
1 +R2C2s

1 +R1C1s
.

Substituting C1 = 0.1 µF ,C2 = 1 mF , R1 = 10 kΩ, and R2 = 10 Ω yields

T (s) =
1 + 0.01s

1 + 0.001s
.

The frequency response is shown in Figure CP10.9.
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c1=0.0000001;  c2=0.001;  
r1=10000;  r2=10;
n=[c2*r2 1] ;  d=[c1*r1 1] ;
sys=tf(n,d)
bode(sys)
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FIGURE CP10.9
Op-amp circuit frequency response.

CP10.10 The plot of K versus phase margin is shown in Figure CP10.10. The value
of K that maximizes the phase margin is K = 4.15.

K=[0.1:0.01:10];
T=0.2;
[np,dp]=pade(T,6); sysp=tf(np,dp);
for i=1:length(K)
    ng=K(i)*[1 0.2]; dg=[1 6 0 0]; sysg=tf(ng,dg);
    [gm,pm]=margin(sysg*sysp);
    PM(i)=pm;
end
plot(K,PM), grid
[P,n]=max(PM); K(n)
xlabel('K'), ylabel('P.M.')
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FIGURE CP10.10
Plot of K versus phase margin.
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C H A P T E R 1 1

The Design of State Variable

Feedback Systems

Exercises

E11.1 The system is given by

ẋ = Ax+Bu

u = Kx

where

A =





0 1

−1 0



 B =





1 0

0 1



 and K =





−k 0

0 −2k



 .

Then, with u = Kx, we have

ẋ =





−k 1

−1 −2k



x .

The characteristic equation is

det[sI−A] = det





s+ k −1

1 s+ 2k



 = s2 + 3ks+ 2k2 + 1

= s2 + 2ζωns+ ω2
n = 0 .

Solving for k where ω2
n = 2k2 + 1 and ζ = 1 (critical damping) yields

k = 2.

600
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E11.2 Let

u = −k1x1 − k2x2 + r .

Then,

ẋ =





0 1

9− k1 −k2



x+





0

1



 r ,

and

det(sI−A) = s2 + k2s+ k1 − 9 = 0 .

We want ζ = 1, so the desired characteristic equation is

pd(s) = (s+ co)
2 ,

where co is to be determined to meet Ts = 4 and where k2 = 2co and
k1 = c2o + 9. Solving for the state response of x1(t) to a unit step input
we find

x1(t) = 1− e−cot − cote
−cot .

When t ≥ Ts = 4 sec we want x1(t) ≥ 0.98. Solving for co at t = Ts yields

co = 1.459, k1 = 11.13, and k2 = 2.92 .

E11.3 The controllability matrix is

Pc =
[

B AB

]

=





0 1

1 −3



 ,

and detPc 6= 0, therefore the system is controllable. The observability
matrix is

Po =





C

CA



 =





0 2

0 −6



 ,

and detPo = 0; therefore the system is unobservable.

E11.4 The controllability matrix is

Pc =
[

B AB

]

=





0 0

2 −4



 ,
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and the detPc = 0; therefore the system is uncontrollable. The observ-
ability matrix is

Po =





C

CA



 =





1 0

−10 0



 ,

and detPo = 0; therefore the system is also unobservable.

E11.5 The controllability matrix is

Pc =
[

B AB

]

=





1 −2

−2 3



 ,

and detPc = −1 6= 0; therefore the system is controllable. The observ-
ability matrix is

Po =





C

CA



 =





1 0

0 1



 ,

and detPo = 1 6= 0; therefore the system is observable.

E11.6 The controllability matrix is

Pc =
[

B AB

]

=





0 1

1 −2



 ,

and detPc 6= 0; therefore the system is controllable. The observability
matrix is

Po =





C

CA



 =





1 0

0 1



 ,

and detPo 6= 0; therefore the system is observable.
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E11.7 The block diagram is shown in Fig. E11.7.

U(s) Y(s)
s
1

s
1

5

3

--

+
12

2

2
+

-

FIGURE E11.7
The block diagram for E11.7.

E11.8 The block diagram is shown in Fig. E11.8.

U(s) Y(s)
s
1

s
1

s
1

1

3

-
--

+

9

10

8

2 +
++

4

-
+

FIGURE E11.8
The block diagram for E11.8.
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604 CHAPTER 11 The Design of State Variable Feedback Systems

E11.9 The controllability matrix is

Pc =
[

B AB

]

=





k1 k1 − k2

k2 −k1 + k2



 ,

and detPc = −k21 + k22 . So, the condition for complete controllability is
k21 6= k22 .

E11.10 A matrix differential equation representation is

ẋ =













0 1 0

0 0 1

−10 −6 −3













x+













0

0

1













u

y = [−3 4 2]x+ [0]u .

E11.11 The system is given by

ẋ = Ax+Bu

y = Cx+Du

where

A =













0 1 0

0 0 1

−2 0 −7













, B =













0

0

1













, C =
[

1 2 0
]

, and D = [1] .

The controllability matrix is

Pc =
[

B AB A2B

]

=













0 0 1

0 1 −7

1 −7 49













,

and detPc = −1 6= 0; therefore the system is controllable. The observ-
ability matrix is

Po =













C

CA

CA2













=













1 2 0

0 1 2

−4 0 −13













,
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and detPo = −29 6= 0; therefore the system is observable.

E11.12 The transfer function is

G(s) =
6

s2 + 5s + 6
.

The response of the system to a unit step is

y(t) = 1− 3e−2t + 2e−3t .

The step response is shown in Figure E11.12
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FIGURE E11.12
Unit step response.
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Problems

P11.1 Consider the system

ẋ = x+ u

u = −kx .

So,

ẋ = x− kx = (1− k)x

and

x(t) = e(1−k)tx(0) .

The system is stable if k > 1. Computing the value of J (assuming k > 1)
yields

J =

∫ ∞

0
e2(1−k)tx2(0)dt =

1

k − 1
.

Thus, J is minimum when k → ∞. This is not physically realizable. Select
k = 35. Then, the value of the performance index J is

J =
1

34
.

The system is not stable without feedback.

P11.2 (a) The performance index is given

J =

∫ ∞

0
(x2 + λu2)dt .

The system is

ẋ = x+ u

u = −kx .

So,

J =

∫ ∞

0
(x2 + λk2x2)dt =

∫ ∞

0
(1 + λk2)x2dt = (1 + λk2)

∫ ∞

0
x2dt .

Carrying out the integration (assuming k > 1) yields

J = (1 + λk2)
1

k − 1
.

We want to determine k that minimizes J . Taking the partial of J
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with respect to k and setting the result to zero yields

∂J

∂k
=

λk2 − 2λk − 1

(k − 1)2
= 0 ,

or

λk2 − 2λk − 1 = 0 .

Solving for k yields

k = 1 +

√

1 +
1

λ
,

where we reject the solution k = 1−
√

1 + 1
λ , since we require k > 1.

(b) For λ = 2, we determine that k = 2.2 and Jmin = 8.9.

P11.3 The system is given by

ẋ =





1 0

−1 2



x+





1

1



u

u = −k(x1 + x2) = −k[1 1]x .

Then, with feedback applied, the system is

ẋ =





(1− k) −k

−(1 + k) (2− k)



x .

Solving

HTP+PH = −I

yields

2p11(1− k)− 2p12(k + 1) = −1

p12(3− 2k)− p11k − p22(k + 1) = 0

−2kp12 + 2p22(2− k) = −1 .

Solving for p11, p12 and p22 yields

p11 =
−(2k2 − 6k + 7)

4(4k2 − 8k + 3)

p12 =
2k2 − 2k − 1

4(4k2 − 8k + 3)
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608 CHAPTER 11 The Design of State Variable Feedback Systems

p22 =
−(2k2 − 6k + 3)

4(4k2 − 8k + 3)
.

The performance index is computed to be

J = xT (0)Px(0) = p11 + 2p12 + p22 =
1

2k − 1
,

when x(0) = [1 1]T . So as k → ∞, J → 0. The system is unstable without
feedback.

P11.4 The performance index is

J = xT (0)Px(0) = p11 − 2p12 + p22 .

From Example 11.12 in Dorf and Bishop, we determine that

J =
2k2 + 1

2k2
.

So, when k → ∞, the performance index J → 1. The plot of J versus k
is shown in Figure P11.4.
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FIGURE P11.4
The performance index J versus k.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 609

P11.5 The system is given by

ẋ =





0 1

0 0



x+





0 0

1 1



u

u = −kx .

The performance index is

J =

∫ ∞

0
(xTx+ uTu)dt =

∫ ∞

0
(1 + k2)(xTx)dt .

First, we solve

HTP+PH = −(1 + k2)I ,

yielding,

p12 =
(1 + k2)

2k

p22 =
k3 + k2 + k + 1

2k2

p11 =
2k3 + k2 + 2k + 1

2k
.

The performance index is then given by

J = p11 + 2p12 + p22 =
2k4 + 4k3 + 3k2 + 4k + 1

2k2
.

Taking the partial of J with respect to k, setting the result to zero and
solving for k yields

∂J

∂k
=

2k4 + 2k3 − 2k − 1

k3
= 0

or

2k4 + 2k3 − 2k − 1 = 0 .

Solving for k yields k = 0.90. The plot of J versus k is shown in Fig-
ure P11.5. The value of the performance index is

J = 6.95

when k = 0.90.
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FIGURE P11.5
The performance index J versus k.

P11.6 (a) For P11.3, we have

J =
1

2k − 1
.

So, as k → ∞, then J → 0. But k = ∞ is not a practical solution, so
select k = 10. Then, J = 1/19, and

ẋ =





−9 −10

−11 −8



x = Ax .

The closed-loop system roots are determined by solving

det[sI−A] = s2 + 17s − 38 = 0 ,

which yields s = −19 and s2 = 2. The system is unstable. The original
system was unstable, and it remains unstable with the feedback. In
general,

ẋ =





(1− k) −k

−(1 + k) (2− k)



x = Ax

and det[sI −A] = s2 + s(2k − 3) + (2 − 4k) = 0. A Routh-Hurwitz
analysis reveals that the system is unstable for all k.
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(b) For P11.4, we have

ẋ =





0 1

−k −k



x = Ax ,

and

det[sI−A] = s2 + ks+ k = 0 .

The performance index was found to be

J = 1 +
4k + 1

2k2
.

As k → ∞, we have J → 0. But k = ∞ is not a practical choice for
k. Select k = 10. Then,

det[sI−A] = s2 + 10s + 10 = (s+ 1.13)(s + 8.87) .

The closed-loop system is stable.

(c) In P11.5, we found that k = 0.90 for Jmin. We are given

ẋ =





0 1

−k −k



x

and

det[sI−A] = s2 + ks+ k = s2 + 0.9s + 0.9

= (s+ 0.45 + j0.835)(s + 0.45 − j0.835) .

P11.7 The closed-loop system is

ẋ =





0 1

−k1 −k2



x = Hx ,

and

det[sI−H] = s2 + k2s+ k1 = s2 + 2ζωns+ ω2
n = 0 .

We desire ωn = 2, so set k1 = 4. With xT (0) = [1, 0], we have J = p11,
and solving

HTP+PH = −I
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yields





0 −4

1 −k2









p11 p12

p12 p22



 +





p11 p12

p12 p22









0 1

−4 −k2





=





−1 0

0 −1



 ,

and

p11 =
k2
8

+
20

8k2
=

k22 + 20

8k2
.

Select

k2 =
√
20

for Jmin, where Jmin =
√
5
2 . Then

det[sI−H] = s2 +
√
20s+ 4 = 0 ,

and ωn = 2 and ζ = 1.12. The system is overdamped.

P11.8 From Example 11.11 in Dorf and Bishop, we have

P =





k22+2
2k2

1
2

1
2

1
k2



 .

So,

J = xT (0)Px(0) =
k22 + 2

2k2

when xT (0) = [1 0]. Taking the partial of J with respect to k2 and setting
the result to zero yields

∂J

∂k2
= 1− k22 + 2

2k22
= 0 .

Solving for the optimum value of k2 yields

k2 =
√
2 .

P11.9 Let x1 = φ and x2 = ω. We have that

ω =
dφ

dt
.
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The state equations are

ẋ1 = x2

ẋ2 = Ku .

Select a feedback such that

u = −x1 −K1x2 + r

when r(t) is the reference input. Then,

ẋ =





0 1

−K −KK1



x+





0

K



 r ,

and

det[sI −A] = s2 +K1Ks+K .

We desire ζ = 1√
2
, so that the overshoot is 4%. Since Ts = 1 = 4

ζωn
, we

require ζωn = 4 or ωn = 4
√
2. Then, s2 + 8s + 32 = s2 +K1Ks +K, or

K = 32 and K1 =
8
32 = 1

4 .

P11.10 The system with feedback is given by

ẋ = Ax =





−10 −25

1 0



x ,

where x1(0) = 1, and x2(0) = −1. The characteristic equation is

det[sI−A] = det





s+ 10 25

−1 s



 = s(s+ 10) + 25 = s2 + 10s + 25 = 0 .

The roots are s1,2 = −5. The solution is

x(t) =





φ11 φ12

φ21 φ22



x(0) =





φ11 − φ12

φ21 − φ22





since x1(0) = 1 and x2(0) = −1. We compute the elements of the state
transition matrix as follows:

φ22(t) = (1 + 5t)e−5t and φ21(t) = te−5t ,

therefore

x2(t) = −(1 + 4t)e−5t .
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Similarly,

φ11(t) = (1− 5t)e−5t and φ12 = −25e−5t .

Therefore,

x1(t) = (1 + 20t)e−5t .

P11.11 Let

u = −k1x1 − k2x2 + αr

where r(t) is the command input. A state variable representation of the
plant is

ẋ =





−5 −2

2 0



x+





0.5

0



u

y =
[

0 1
]

x+
[

0
]

u .

The closed-loop transfer function is

T (s) =
α

s2 + (k1/2 + 5)s + 4 + k2
.

To meet the performance specifications we need ωn = 4.8 and ζ = 0.826.
Therefore, the desired characteristic polynomial is

q(s) = s2 + 2(0.826)4.8s + 23 = s2 + 8s + 23 .

Equating coefficients and solving for k1 and k2 yields k2 = 19 and k1 = 6.
Select α = 23 to obtain zero steady-state error to a step input.

P11.12 A state variable representation of the dc motor is

ẋ =

























−3 −2 −0.75 0 0

3 0 0 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 2 0

























x+

























1

0

0

0

0

























u

y = [0 0 0 0 2.75]x .
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The controllability matrix is

Pc =

























1 −3 3 4.5 −18

0 3 −9 9 13.5

0 0 6 −18 18

0 0 0 6 −18

0 0 0 0 12

























and the detPc 6= 0, so the system is controllable. The observability matrix
is

Po =

























0 0 0 0 2.75

0 0 0 5.5 0

0 0 5.5 0 0

0 11 0 0 0

33 0 0 0 0

























,

and the detPo 6= 0, so the system is observable.

P11.13 To meet the Kv = 35 specification, we need K = 2450. A state variable
representation is

ẋ =





0 1

0 −70



x+





0

2450



u

y = [1 0]x .

Let

u = −k1x1 − k2x2 .

Then, the closed-loop characteristic equation is

q(s) = s2 + (2450k2 + 70)s + 2450k1 = 0 .

The desired characteristic polynomial is

s2 + 72.73s + 2644.63 = 0

where we select ζ = 0.707 and ωn = 51.42 to meet the performance
specifications. Equating coefficients and solving for the gains yields k1 =
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1.08 and k2 = 0.0011.

P11.14 Let

u = −k1x1 − k2x2 − k3r

where r(t) is the command input. Then, the closed-loop system in state
variable form is

ẋ =





−10− k1 −k2

1 0



x+





1

0



 r

y = [0 1]x .

To meet the performance specifications, we want the closed-loop charac-
teristic polynomial to be

q(s) = s2 + 8s + 45.96 = 0

where ζ = 0.59 and ωn = 6.78. The actual characteristic polynomial is

det(sI−A) = s2 + (10 + k1)s+ k2 = 0 .

Equating coefficients and solving for the gains yields k2 = 45.96 and
k1 = −2. Select k3 = k2 = 45.96 to obtain a zero steady-state error to a
step input. This results in a settling time of Ts = 0.87 s and a percent
overshoot of P.O. = 10%.

P11.15 The transfer function is

G(s) = C(sI−A)−1B =
1

s+ 1
.

The system is not controllable and not observable.

P11.16 Let

u = −Kx .

Then, Ackermann’s formula is

K = [0, 0, ..., 1]P−1
c q(A)

where q(s) is the desired characteristic polynomial, which in this case is

q(s) = s2 + 2s+ 10 .
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A state-space representation of the limb motion dynamics is

ẋ =





−4 0

1 −1



x+





1

0



 u .

The controllability matrix is

Pc = [B AB] =





1 −4

0 1





and

P−1
c =





1 4

0 1



 .

Also, we have

q(A) = A2 + 2A+ 10I =





18 0

−3 9



 .

Using Ackermann’s formula, we have

K = [−3 9] .

P11.17 The system is either uncontrollable or unobservable if a = 5 or a = 8.
Both of these values correspond to system real poles. So, if a takes on
either value, a pole-zero cancellation occurs in the transfer function.

P11.18 A matrix differential equation representation is

ẋ =





0 1

−1 −2



x+





0

1



u

y = [1 0]x .

Let u(t) = −k1x1 − k2x2. Then, the closed-loop characteristic equation is

q(s) = s2 + (2 + k2)s+ 1 + k1 = 0 .

We desire the characteristic equation

s2 + 2
√
2s+ 2 = 0 .
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Equating coefficients and solving for the gains yields k1 = 1 and k2 =
2
√
2− 2 = 0.828.

P11.19 A state space representation is

ẋ =





0 1

3 −2



x+





0

1



 r

y = [3 1]x .

The controllability matrix is

Pc =





0 1

1 −2



 ,

and detPc 6= 0, so the system is controllable. The observability matrix is

Po =





3 1

3 1



 ,

and the detPo = 0, so the system is not observable.

P11.20 The characteristic equation associated with A is

s2(s2 + 0.2s + 0.0015) = 0 .

There are two roots at the origin, so the system is unstable. The system
can be stabilized with

δ = −k1x1 − k3x3 = 20x1 − 10x3 .

P11.21 (a) Let x1 = i1, x2 = i2 and u = v. Then, the state equation is

ẋ =





−(R1+R3)
L1

R3
L1

R3
L2

−(R3+R2)
L2



x+





1
L1

0



u .

Also,

y = vo ,

but

y = [R3 −R3]x .
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(b) The observability matrix is

Po =





C

CA



 =





R3 −R3

−R1R3
L1

−R2
3

(

1
L1

+ 1
L2

)

R2R3
L2

+R2
3

(

1
L1

+ 1
L2

)





and

detPo =

(

R2

L2
− R1

L1

)

R2
3 .

So, when

R1

L1
=

R2

L2
,

detPo = 0 and the system is not observable.

(c) Let

a =
R1 +R3

L1
,

and

b =
R3 +R2

L2
.

Then

det[sI−A] = det





(s+ a) −R3
L1

−R3
L2

(s+ b)





=

[

(s+ a)(s+ b) +
R2

3

L1L2

]

= (s+ r)2

= s2 + (a+ b)s+ ab+
R2

3

L1L2
.

The system has two equal roots when

(a+ b)2 − 4

(

ab+
R2

3

L1L2

)

or

(

R1 +R3

L1
+

R3 +R2

L2

)2

− 4
(R1 +R3)(R3 +R2) +R2

3

L1L2
= 0 .
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P11.22 (a) Without state feedback the state differential equation is given by

ẋ =





−0.4 −1

1 0



x+





1

0



u

y =
[

0 1
]

x .

The step response is shown in Figure P11.22a.
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FIGURE P11.22
Step response (a) without state feedback, and (b) with state feedback.

(b) Consider state feedback

u = −K(ax2 + bx1) + cr

where r is the reference input and K,a, b and c are to be determined.
Then, the state differential equation is

ẋ =





−0.4−Kb −1−Ka

1 0



x+





c

0



 r

y =
[

0 1
]

x ,

and det(sI−A) = s2+(0.4+Kb)s+(1+Ka) = 0. Our specifications
are P.O. = 5% and Ts = 1.35 sec. So, ζ = 0.69 and ωn = 4

ζ1.35 = 4.3.
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Solving for K,a and b yields

Ka = ω2
n − 1

and

Kb = 2ζωn − 0.4 .

Select K = 1. Then, a = 17.49 and b = 5.53. Select c = 1 + Ka to
achieve a zero steady-state tracking error.

(c) The step response is shown in Figure P11.22b for the system with
state feedback.

P11.23 Using the internal model design method for step inputs, we have





ė

ż



 =













0 1 0

0 0 1

0 0 0

















e

z



+













0

0

1













w ,

where we choose

w = −K1e−K2z .

To place the poles at s = −10 and s = −2±j we use Ackermann’s formula
to compute

K1 = 50

K2 = [45 14] .

The compensator has the form shown in Figure 11.14 in Dorf and Bishop.

P11.24 Using the internal model design method for ramp inputs, we have













ė

ë

ż













=



















0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0































e

ė

z













+



















0

0

0

1



















w

where we choose

w = −K1e−K2ė−K3z .

To place the poles at s = −20 and s = −2± 2j we can use Ackermann’s
formula. We also need an additional pole (must be a stable pole); select
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s = −20 as the fourth pole. Then,

K1 = 3200

K2 = 1920

K3 = [568 44] .

The compensator has the form shown in Figure 11.16 in Dorf and Bishop.

P11.25 The observability matrix is

Po =





C

CA



 =





1 −4

21 −36



 ,

and detPo = 48 6= 0; therefore the system is completely observable. The
desired poles of the observer are s1,2 = −1. This implies that the desired
characteristic polynomial is

pd(s) = s2 + 2s+ 1 .

The actual characteristic polynomial is

det |λI− (A− LC)| = det

∣

∣

∣

∣

∣

∣

λ− 1 + L1 −4− 4L1

5 + L2 λ− 10− 4L2

∣

∣

∣

∣

∣

∣

= λ2 + (L1 − 4L2 − 11)λ + 10L1 + 8L2 + 30 = 0 .

Solving for L1 and L2 yields

L =





L1

L2



 =





−0.25

−3.3125



 .

Checking we find that det(λI− (A− LC)) = s2+2s+1. The response of

the estimation error is shown in Figure P11.25, where e(0) = [ 1 1 ]T .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Problems 623

0

0.5

1

1.5

2

2.5

To
: O

u
t(

1
)

0 1 2 3 4 5 6
 -1.5

?-1

 -0.5

0

0.5

1
To

: O
u

t(
2

)

Response to Initial Conditions

Time  (sec )

A
m

p
lit

u
d

e

FIGURE P11.25
Estimation error response to an initial condition.

P11.26 The observability matrix is

Po =













C

CA

CA2













=













2 −4 0

0 2 −4

32 20 14













.

The detPo = 728 6= 0, hence the system is observable. The gain matrix

L =













0.14

−0.93

0.79













results in the observer poles at s1,2 = −1± j and s3 = −5, as desired.

P11.27 The observability matrix is

Po =





C

CA



 =





1 0

1 0



 .

The detPo = 0, hence the system is not completely observable. So, we
cannot find an observer gain matrix that places the observer poles at the
desired locations.
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P11.28 Selecting K = 16 yields a zero steady-state error to a unit step input.
The step response is shown in Figure P11.28.
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FIGURE P11.28
Estimation error response to an initial condition.

P11.29 The system transfer function is

Y (s) =
2

s+ 3
U(s) .

The associated state variable model is

ẋ = −3x+ 2u

y = x .
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Advanced Problems

AP11.1 The closed loop system in state-space form is given by













ẋ1

ẋ2

ẋ3













=













0 1 0

0 −1 2

−2KK1 −2KK2 −4− 2KK3

























x1

x2

x3













+













0

0

2K













u

y =
[

1 0 0
]













x1

x2

x3













.

The closed-loop transfer function is

T (s) =
4K

s3 + (2KK3 + 5)s2 + (4KK2 + 2KK3 + 4)s + 4KK1
.

Setting the steady-state error to zero, we determine that

ess = 1− T (0) = 1− 1

K1
.

Solving for K1 yields

K1 = 0.5 .

Choosing

K2 = 0.5 and K3 = 1.5

results in a percent overshoot of P.O. = 2.82%.

AP11.2 A state variable representation is given by

ẋ = Ax+Bu

where

A =













−3 −1 −1

4 0 0

0 1 0













, B =













3

0

0













.
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Let

u = −Kx .

Then, with

K =
[

4.00 24.33 39.67
]

,

the closed-loop system poles are s = −4,−5, and −6.

AP11.3 Given

A =





0 1

−1 −2



 , and B =





b1

b2



 ,

we compute the determinant of the controllability matrix as

detPc = det[B AB] = − (b1 + b2) .

The system is controllable if and only if the determinant is non-zero. So,
for the system to be controllable, we require that b2 6= −b1.

AP11.4 Consider the state variable feedback law

u = −Kx .

Using Ackermann’s formula, we determine that

K = [−14.2045 − 17.0455 − 94.0045 − 31.0455]

results in the closed-loop system characteristic roots at s = −2±j, s = −5
and s = −5.

AP11.5 The closed-loop transfer function for the system is

T (s) =
2Kp

s3 + (9 + 2K3)s2 + (26 + 2K2 + 10K3)s+ (26 + 6K2 + 12K3)
.

Setting the steady-state error for a step input to zero yields

ess = 1− 2Kp

26 + 6K2 + 12K3
= 0 .

Solving for Kp in terms of K2 and K3 yields

Kp = 13 + 3K2 + 12K3 .

Now, choosing

K2 = 5
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K3 = 2

results in the closed-loop characteristic roots at

s1 = −4 s2 = −4 s3 = −5 .

Also, the prefilter gain is

Kp = 52 .

AP11.6 (a) A state variable representation is given by

A =





0 1

−1 −2



 , B =





0

1



 ,

C =
[

1 0
]

.

Since the determinant of the controllability matrix det[B AB] 6= 0,
the system is controllable.

(b) The state variable representation is

ẋ = Ax+Bu ,

or




ẋ1

ẋ2



 =





0 1

−1 −2









x1

x2



+





1

−1



u .

The determinant of the controllability matrix

detPc = det[B AB] = 0 .

Therefore, the system is uncontrollable.

AP11.7 The closed-loop transfer function is

T (s) =
120

s3 + (10 + 60K3)s2 + (16 + 120(K3 +K2))s+ 120
.

The state feedback gains

K2 = 0.283 and K3 = 0.15

place the poles at the desired locations. The plot of the roll output for a
unit step disturbance is shown in Figure AP11.7.
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FIGURE AP11.7
Roll angle response to a step disturbance.

AP11.8 The state equations are (using the parameters of P3.36 in Dorf and
Bishop)

ḣ = ẋ1 =
1

50
[80θ − 50h] = −x1 +

8

5
x2

θ̇ = ẋ2 = ω = x3

ω̇ = ẋ3 =
Km

J
ia = −KmKb

JRa
ω +

KmKa

JRa
vi = −353

30
x3 +

25000

3
vi .

In state variable form we have (without feedback)

ẋ =













−1 8
5 0

0 0 1

0 0 −353
30













x+













0

0

25000
3













vi .

(a) In this case we have vi = −kh+ ar = −kx1 + ar, where k and a are
the parameters to be determined and r is the reference input. With
the feedback of h(t) we have

ẋ =













−1 8
5 0

0 0 1

−25000
3 k 0 −353

30













x+













0

0

a25000
3













r .
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Since we only have one parameter to adjust, namely k, we will proba-
bly not be able to simultaneously meet both design specifications, In
fact with

k = 0.00056

we obtain the percent overshoot P.O. = 9.89%. The settling time cri-
terion cannot simultaneously be met—the best that can be obtained
is Ts ≈ 7.5 seconds. In this case, we choose a = 0.00056 to make the
steady-state value of h(t) = 1.

(b) In this case we have vi = −k1h − k2θ + ar = −k1x1 − k2x2 + ar,
where k1, k2, and a are the parameters to be determined and r is the
reference input. Since we have two parameter to adjust, namely k1
and k2 we will probably be able to simultaneously meet both design
specifications. In fact with

k1 = 0.00056 and k2 = 0.001

we obtain the percent overshoot P.O. = 4.35%. The settling time
criterion is easily met— Ts ≈ 5 seconds. In this case, we choose a =
0.0012 to make the steady-state value of h(t) = 1.

AP11.9 (a) The state vector differential equation is

ẋ =



















0 1 0 0

−2 0 1 0

0 0 0 1

1 0 −1 0



















x+



















0

0

0

1



















u ,

where x1 = z, x2 = ż, x3 = y and x4 = ẏ.

(b) The characteristic equation is

s4 + 3s2 + 1 = (s+ j0.618)(s − j0.618)(s + j1.618)(s − j1.618) = 0 .

So, the system is oscillatory.

(c) Let u = −kx4. Then characteristic equation is

s4 + ks3 + 3s2 + 2ks+ 1 = 0

which is stable if k > 0.

(d) Rewrite the characteristic equation as

1 +
ks(s2 + 2)

s4 + 3s2 + 1
= 0 .
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The root locus is shown in Figure AP11.9. A reasonable solution for
k is k = 1.35.
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FIGURE AP11.9
Root locus for 1 + k

s(s2+2)
s4+3s2+1

= 0.

AP11.10 The state differential equation is

ÿ = ky + αu

where k and α depend on the system parameters, such as mass and length.
The transfer function is

y

u
=

α

s2 − k

which is unstable at the top of the arc. Since we can only use ẏ for
feedback, we have

ẏ

u
=

sα

s2 − k
.

Let

Gc(s) =
K1s+K2

s
.
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Then

GGc(s) =
α(K1s+K2)

(s2 − k)

and the closed-loop characteristic equation is

αK1s+ αK2 + s2 − k = 0

or

s2 + αK1s+ αK2 − k = 0 .

Select αK2 − k > 0 and αK1 > 0 for stability.

AP11.11 The state-space representation of the plant is

ẋ = Ax+Bu

y = Cx

where

A =





0 1

−2 −3



 , B =





0

1



 , and C =
[

1 0
]

.

With the intermediate variables defined as

z = ẋ and w = u̇

we have





ė

ż



 =













0 1 0

0 0 1

0 −2 −3

















e

z



+













0

0

1













w

where

e = y − r .

To meet the design specifications, we require the closed-loop poles to lie
to the left of the line in the complex plane defined by s = −0.8. We choose

K2 = [10 3]

and

Gc(s) =
8

s
.
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This places the closed-loop poles at s = −2,−2 and −2. The closed-loop
transfer function with the internal model controller is

T (s) =
8

s3 + 6s2 + 12s + 8
.

The step response is shown on Figure AP11.11.
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FIGURE AP11.11
Internal model controller step response.

AP11.12 The state-space representation of the plant is

ẋ = Ax+Bu

y = Cx

where

A =





0 1

−2 −3



 , B =





0

1



 , and C =
[

1 0
]

.

With the intermediate variables defined as

z = ẍ and w = ü
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we have













ė

ë

ż













=



















0 1 0 0

0 0 1 0

0 0 0 1

0 0 −2 −3































e

ė

z













+



















0

0

0

1



















w

where e = y − r.
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FIGURE AP11.12
Internal model controller ramp response.

To meet the design specifications, we require the closed-loop poles to lie
to the left of the line in the complex plane defined by s = −0.67. We
choose

w = −[K1 K2 K3]













e

ė

z













= −[16 32 22 5]













e

ė

z













.

Then,

Gc(s) =
K1 +K2s

s2
=

16 + 32s

s2
.
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The closed-loop transfer function with the internal model controller is

T (s) =
32s+ 16

s4 + 8s3 + 24s2 + 32s+ 16
.

This places the closed-loop poles at s = −2,−2,−2 and −2. The ramp
response is shown in Figure AP11.12.

AP11.13 The controllability matrix is

Pc =





−5 −3

1 18





and the observability matrix is

Po =





4 −3

22 44



 .

Computing the determinants yields

detPc = −87 6= 0 and detP0 = 242 6= 0 ,

hence the system is controllable and observable. The controller gain ma-
trix

K =
[

3.02 6.11
]

places the closed-loop poles at the desired locations. Similarly, the ob-
server gain matrix

L =





2.38

−1.16





places the observer poles at the desired locations.

AP11.14 The controllability matrix is

Pc =













0 0 4

0 4 −12

4 −12 24
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and the observability matrix is

Po =













2 −9 2

−16 −4 −15

120 29 41













.

Computing the determinants yields

detPc = −64 6= 0 and detP0 = 10870 6= 0 ,

hence the system is controllable and observable. The controller gain ma-
trix

K =
[

−0.5 1.25 0.5
]

and the observer gain matrix

L =













57.43

−16.11

−104.43













yields the desired closed-loop system poles and observer poles, respec-
tively.

AP11.15 The state-variable representation of the system is

ẋ =





0 1

−7 −2



x+





0

1



u

y = [ 1 4 ]x+ [0]u .

The observability matrix is

P0 =





1 4

−28 −7



 ,

and detP0 = 105 6= 0, hence the system is observable. The observer gain
matrix

L =





−7.18

6.29





places the observer poles at s1,2 = −10± 10, as desired.
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Design Problems
A state variable representation isCDP11.1

ẋ =





0 1

0 −33.14



x+





0

0.827



 va

y =
[

1 0
]

x

where x1 = x and x2 = ẋ. Note that we are neglecting the motor induc-
tance and assuming that the position x(t) is the output. Assume that we
have available for feedback the angle θ and angle rate θ̇ (see CDP4.1), so
that

va = −k1
r
x1 −

k2
r
x2 + au

where u(t) is the reference input (that is, the desired position x(t)), the
gains k1 and k2 and the scaling parameter a are to be determined. Recall
that

x = rθ = 0.03175θ .

With the feedback in the loop we have

ẋ =





0 1

−26.03k1 −33.14 − 26.03k2



x+





0

0.827a



 u

y =
[

1 0
]

x

Choosing k1 = 50, k2 = 1 and a = 1574.1 results in

P.O. = 1.1% and Ts = 0.11 second .

The closed-loop poles are s1,2 = −29.59 ± 20.65j.

DP11.1 The governing differential equation is

ÿ − 2000y = −20i .

In state variable form, the system is described by

ẋ =





0 1

2000 0



x+





0

−20



 i .
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Consider the state feedback

i = −k1x1 − k2x2 + βr

where r(t) is the reference input and k1, k2 and β are to be determined.
Then, the closed-loop system is

ẋ =





0 1

2000 − 20k1 −20k2



x+





0

−20β



 r .

The characteristic equation is

s2 + 20k2s− 2000 + 20k1 = 0 .

For stability, let 20k1 − 2000 > 0. Select k1 = 125. Then, ωn = 22.36
rad/sec, and

k2 =
2ζωn

20
.

Let ζ = 0.59 to meet 10% overshoot specification. Thus,

k2 =
2(0.59)(22.36)

20
= 1.32 .

The closed-loop transfer function is

T (s) =
−20β

s2 + 26.4s + 500
.

Choose β = −25 so that

T (s) =
500

s2 + 26.4s + 500
.

The feedback law is

i = 125x1 + 1.32x2 − 25r .

DP11.2 The automobile engine control system (see DP10.8 in Dorf and Bishop)
is modeled as

G(s) =
2e−sT

(0.21s + 1)(4s + 1)
.

In this case, we will assume the delay is negligible. Therefore, T = 0. A
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state variable representation of the system is

ẋ =





0 1

−1.19 −5.01



x+





0

1.19



 r

y = [1 0]x .

Let

r(t) = −k1x1 − k2x2 + k3u

where u(t) is the command input. Using ITAE methods, our desired char-
acteristic polynomial is

q(s) = s2 + 1.4ωns+ ω2
n = 0 .

Select ωn = 11.315 to obtain a settling time Ts < 0.5 seconds. The char-
acteristic polynomial of the closed-loop system is

s2 + (5.01 + 1.19k2)s + (1.19 + 1.19k1) = 0 .

Equating coefficients and solving for the gains yields

k1 = 106.59 and k2 = 9.235 .

Select k3 = 107.59 to yield a zero steady-state error to a step input.
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FIGURE DP11.2
The step response of the engine control system.
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DP11.3 The compensator is

˙̂x = [A−BK− LC] x̂+ Ly +Mr

ũ = −Kx̂

where

A−BK− LC =





−28.7 1

−365.19 −20



 , M =





0

200



 ,

N = 363.64 , K =
[

344.55 15.82
]

, and L =





28.7

165.19



 .

We selected the desired eigenvalues of A−BK at p = −10± 10j and the
desired eigenvalues of A−LC at q = −20± 10j. For initial conditions we
let x(0) = [1 1] and x̂(0) = [0 0].
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FIGURE DP11.3
The step response showing the actual and estimated states.

DP11.4 The design specifications are

(a) Percent overshoot < 20%

(b) Ts < 1.5s, and
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(c) steady-state error less than 20% of the input magnitude.

The state differential equation is

ẋ = Ax+Bu

y = Cx

where

A =













0 1 0

0 −σ1 −α1

g −α2 −σ2













=













0 1 0

0 −0.415 −0.0111

9.8 −1.43 −0.0198













,

B =













0

n

g













=













0

6.27

9.8













and C =
[

1 0 0
]

.

The transfer function is

θ(s)

δ(s)
=

ns+ nσ2 − α1g

s3 + (σ1 + σ2)s2 + (σ1σ2 − α1α2)s+ α1g

=
6.27s + 0.0154

s3 + 0.435s2 − 0.0077 + 0.109
.

Let u = −K1x1 −K2x2 −K3x3. Then the closed-loop system matrix is

A−BK =













0 1 0

−nK1 −σ1 − nK2 −α1 − nK3

g − gK1 −α2 − gK2 −σ2 − gK3













,

where K = [K1 K2 K3]. From the design specifications, we have the
desired roots at

s3+a2s
2+a1s+ao = s3+36s2+225s+1350 = (s+30)(s+3+j6)(s+3−j6) = 0 .

The actual characteristic equation is

s3 + (gK3 +K2n+ σ1 + σ2)s
2 + (−α1α2 − α1gK2 +K1n− α2nK3

+ gK3σ1 +K2nσ2 + σ1σ2)s

+ α1g − α1gK1 + gK3n+ σ2nK1 = 0 .
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Comparing coefficients yields












0 n g

n nσ2 − α1g −α2n+ gσ1

−α1g + σ2n 0 gn

























K1

K2

K3













=













a2 − σ1 − σ2

a1 + α1α2 − σ1σ2

a0 − α1g













where

a2 = 36

a1 = 225

a0 = 1350 .

The solution for K is

K = [53.11 − 28.64 21.96] .

DP11.5 The controllability and observability matrices are

Pc =





0.05 −0.04

0.001 −0.001



 and

P0 =





1 0

−0.8 0.02



 , respectively.

Computing the determinants yields

detPc = −1.002e − 05 6= 0 and Po = 0.02 6= 0 ,

hence the system is controllable and observable. The feedback gain matrix

K = [ 3820 −179620 ]

yields the desired closed-loop poles. The observer gain matrix

L =





120

180000





yields the desired observer poles. The integrated system is shown in Fig-
ure DP11.5.
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+

-

System Model

x=Ax+Bu
. C

x
y

Observer
Control Law

-K x=Ax+Bu+Ly

.
^ ^ ~

y=y-Cx̂~

C

x̂

u

A=
  -0.8    0.02

-0.02      0
B=

   0.05 

 0.001 

C=  1    0

K=  3820    -179620

L=
   120 

 180000 

FIGURE DP11.5
Integrated controller and observer.

DP11.6 (a) The characteristic equation associated with the system matrix is

q(s) = s2 + (12 +K2)s + (36 +K1) = 0 ,

where we have assumed state feedback of the form

u = −K1x1 −K2x2 .

The deadbeat control characteristic equation is

s2 + αωns+ ω2
n = 0 ,

where α = 1.82 and we use ωn = 9.64 to meet the settling time
specification. Then, equating coefficients and solving for the gains
yields

K1 = 56.93 and K2 = 5.54 .

(b) Since the closed-loop poles are located at s1,2 = −8.77 ± 4, we can
select the observer poles to be about ten times farther in the left-half
plane, or

s1,2 = −88,−88 .
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Then the observer gains are

L =





164

5740



 .

(c) The block diagram is shown in Figure DP11.6.

+

-

System Model

x=Ax+Bu
. C

x
y

Observer
Control Law

-K x=Ax+Bu+Ly

.
^ ^ ~

y=y-Cx̂~

C

x̂

u

A=
  0      1

-36   -12
B=

0

 1 

C=  1    0

K=  56.93   5.54

L=
164

5740 

FIGURE DP11.6
Block diagram for integrated controller and observer.

DP11.7 The compensator is

˙̂x = [A− LC] x̂+ Ly +Bu

u = −Kx̂

where

A− LC =













−60 1 0

−1095 0 1

−3750 −5 −10













,
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N = 4000 , K =
[

3998 595 30
]

, and L =













60

1095

3748













.

We selected the desired eigenvalues of A − BK at p1,2 = −10 ± 10j,
p3 = −20 and the desired eigenvalues of A − LC at q1,2 = −20 ± 10j,
q3 = −30. For initial conditions we let x(0) = [1 1 1] and x̂(0) = [0 0 0].
The transfer function from r to y is

T (s) =
4000s3 + 2.8e05s2 + 6.8e06s + 6e07

s6 + 110s5 + 5100s4 + 1.29e05s3 + 1.9e06s2 + 1.58e07s + 6e07
.

The bandwidth is 11.7 rad/s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−100

0

100

200

FIGURE DP11.7
The step response showing the actual and estimated states.
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Computer Problems

CP11.1 The controllability and observablity matrices have nonzero determinants,
as shown in Figure CP11.1. Therefore, the system is observable and con-
trollable.

>>
A=[-6 2 0;4 0 7;-10 1 11]; b=[5;0;1]; c=[ 1 2 1]; d=[0];

sys = ss(A,b,c,d);

Co=ctrb(sys);   dt_Co=det(Co)

Ob=obsv(sys); dt_Ob=det(Ob)

dt_Co =

      -84933

dt_Ob =

  -3.6030e+03

FIGURE CP11.1
Determining controllability and observability.

CP11.2 The system is controllable since the determinant of the controllability
matrix is nonzero , as shown in Figure CP11.2.

a=[0 1;-6 -5]; b=[0;6]; c=[1 0]; d=[0];

sys_ss = ss(a,b,c,d);

Pc=ctrb(sys_ss);

dt_Pc=det(Pc)

Ob=obsv(sys_ss); 

dt_Ob=det(Ob)

sys_tf=tf(sys_ss)

dt_Pc =

   -36

dt_Ob =

     1

 

Transfer function:

      6

-------------

s^2 + 5 s + 6

FIGURE CP11.2
M-file script to determine controllability and to compute equivalent transfer function model.

CP11.3 The gain matrix (computed as shown in Figure CP11.3) isK =
[

0.5 0.5
]

.

a=[0 1;-1 -2] ;  b=[1;1] ;  c=[1 -1] ;  d=[0];

p=[-1;-2];

K=acker(a,b,p) K =

    0.5000    0.5000

FIGURE CP11.3
M-file script to place the closed-loop system poles using state feedback.
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CP11.4 The constant velocity guided missile is not controllable since the control-
lablity matrix, Co, has a zero determinant, as shown in Figure CP11.4.
Using the tf function (see Figure CP11.4), we determine that the transfer
function is

G(s) =
5s

s5 + 0.5s4 + 0.1s3
.

Cancelling common terms in the transfer function yields

G(s) =
5

s4 + 0.5s3 + 0.1s2
.

Then, using the ss function, we determine a state-space representation of
G(s). As shown in Figure CP11.4, the state-space representation is

ẋ = Ax+Bu

y = Cx

A=[0 1 0 0 0;-0.1 -0.5 0 0 0;0.5 0 0 0 0;0 0 10 0 0;0.5 1 0 0 0];
b=[0;1;0;0;0];
c=[0 0 0 1 0];
d=[0];
sys_ss = ss(A,b,c,d);
% Part (a)
Co=ctrb(sys_ss); dt_Co=det(Co)
% Part (b)
sys_tf = tf(sys_ss)
sys_new = minreal(sys_tf );
sys_new_ss=ss(sys_new)
% Part (c)
Co_new=ctrb(sys_new_ss); dt_Co_new=det(Co_new)
% Part (d)
evalues=eig(sys_new_ss)

dt_Co_new =
    32

evalues =
        0          
        0          
  -0.2500 + 0.1936i
  -0.2500 - 0.1936i

a = 
                        x1              x2              x3             x4
           x1     -0.50000     -0.10000          0              0
           x2      1.00000            0               0              0
           x3            0           1.00000          0              0
           x4            0                0            2.00000       0
b =   
                        u1
           x1      2.00000
           x2            0
           x3            0
           x4            0
c = 
                        x1           x2           x3           x4
           y1            0            0            0      1.25000
d = 
                        u1
           y1            0
 
Continuous-time system.

Transfer function:
          5 s
-----------------------
s^5 + 0.5 s^4 + 0.1 s^3

dt_Co =
     0

FIGURE CP11.4
Analysis of the constant velocity guided missile state-space model.
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where

A =



















−0.5 −0.1 0 0

1 0 0 0

0 1 0 0

0 0 2 0



















B =



















2

0

0

0



















and C =
[

0 0 0 1.25
]

.

The reduced system is controllable but not stable, since there are two poles
at the origin. Systems that are not controllable have too many states.
After eliminating unnecessary states, a controllable system of minimal
complexity (i.e. states) is obtained. In this case, the number of states is
reduced from five to four.

CP11.5 The eigenvalues of A are

e1 = −2.0727

e2 = −0.2354

e3,4 = 0.2761 ± 0.2593j

The system is unstable since there are two eigenvalues in the right half-
plane, see Figure CP11.5. The characteristic polynomial is

A = [-0.0389 0.0271 0.0188 -0.4555; 0.0482 -1.0100 0.0019 -4.0208; 
   0.1024 0.3681 -0.7070 1.4200; 0 0 1 0];
b1 = [0.4422;3.5446;-6.0214;0];
b2 = [0.1291;-7.5922;4.4900;0];
% Part (a)
evalues = eig(A)
%part (b)
p = poly(A)
r = roots(p)
% Part (c)
Co1 = ctrb(A,b1); dt1 = det(Co1)
Co2 = ctrb(A,b2); dt2 = det(Co2)

>>
evalues =

   0.2761 + 0.2593i

   0.2761 - 0.2593i

  -0.2354          

  -2.0727  

   

p =

    

r =

1.0000    1.7559   -0.6431    0.0618    0.0700   -2.0727          

   0.2761 + 0.2593i

   0.2761 - 0.2593i

  -0.2354 
dt1 =

  -1.8451e+03

dt2 =

  -90.6354

FIGURE CP11.5
Analysis of the VTOL aircraft model.

p(s) = s4 + 1.7559s3 − 0.6431s2 + 0.0618s + 0.0700 .

The roots of the characteristic equation are the same as the eigenvalues.
Also, the system is controllable from either u1 or u2. If the aircraft should
lose the control of the vertical motion through u1, then the control u2 can
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be used to control both vertical and horizontal motion, and vice versa.

CP11.6 The m-file script to analyze the translunar halo orbit problem is shown
in Figure CP11.6. The translunar equilibrium point is not a stable point

dt1 =

     0

dt2 =

     0

dt3 =

     0

A=[0 0 0 1 0 0;0 0 0 0 1 0; 0 0 0 0 0 1;7.3809 0 0 0 2 0;
   0 -2.1904 0 -2 0 0; 0 0 -3.1904 0 0 0];
c=[0 1 0 0 0 0];d=[0];
b1=[0;0;0;1;0;0];
b2=[0;0;0;0;1;0];
b3=[0;0;0;0;0;1];
sys_ss_1 = ss(A,b1,c,d);
sys_ss_2 = ss(A,b2,c,d);
sys_ss_3 = ss(A,b3,c,d);
% Part (a)
evalues=eig(A)
% Part (b)
Cb1=ctrb(sys_ss_1); dt1=det(Cb1)
% Part (c)
Cb2=ctrb(sys_ss_2); dt2=det(Cb2)
% Part (d)
Cb3=ctrb(sys_ss_3); dt3=det(Cb3)
% Part (e)
sys_tf = tf(sys_ss_2);
sys_tf=minreal(sys_tf )
% Part (f )
sys_ss=ss(sys_tf );
Co=ctrb(sys_ss); dt_Co=det(Co)
if dt_Co ~= 0
   disp('System is completelly Controllable')
else
   disp('System in uncontrollable')
end
% Part (g)
P = [-1+i; -1-i;-10;-10];
[A,B]=ssdata(sys_ss);
K = acker(A,B,P)

evalues =
   2.1587          
  -2.1587          
        0 + 1.8626i
        0 - 1.8626i
        0 + 1.7862i
        0 - 1.7862i

Transfer function:
        s^2 - 7.381
----------------------------
s^4  - 1.19 s^2 - 16.17

dt_Co =

    64

System is completelly Controllable

a = 
                        x1           x2           x3           x4
           x1            0      0.59525        0      2.02089
           x2      2.00000       0             0            0
           x3            0      2.00000        0            0
           x4            0            0      2.00000        0
b = 
                        u1
           x1      1.00000
           x2            0
           x3            0
           x4            0
c = 
                        x1           x2           x3           x4
           y1            0      0.50000        0     -0.92261
d = 
                        u1
           y1            0

FIGURE CP11.6
Analysis of the translunar satellite halo orbit.

as evidenced by the eigenvalues of A in the right half-plane; the system is
not completely controllable from any ui individually. The transfer function
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from u2 to η is

T (s) =
s4 − 4.191s2 − 23.55

s6 + 2s4 − 19.97s2 − 51.58
.

A careful analysis reveals that T (s) can be reduced by eliminating com-
mon factors. The common factors are s2 + 3.1834. The reduced transfer
function is

T (s) =
s2 − 7.3815

s4 − 1.1837s2 − 16.2030
.

Using state feedback

u2 = −Kx

the gain matrix K which places the desired poles (using Ackermann’s
formula) is

K =
[

22 71.56 60 27.02
]

.

CP11.7 The m-file script to determine the initial state is shown in Figure CP11.7a.
Given three data points at t = 0, 2, 4, we construct the three equations

A=[0 1 0;0 0 1;-2 -4 -6];
b=[0;0;0]; c=[1 0 0]; d=[0];
sys=ss(A,b,c,d);
%
% Part (b)
v1=c*expm(0*A); v2=c*expm(2*A); v3=c*expm(4*A);
V=[v1;v2;v3]; Vi=inv( V );
n=[1;-0.0256;-0.2522];
x0=Vi*n
%
% Part (c)
t=[0:0.1:4]; u=0.0*t;
[y,x]=lsim(sys,u,t,x0');
plot(t,y,[0 2 4],[1;-0.0256;-0.2522],'*'), grid
xlabel('Time (sec)'), ylabel('y(t)')
title('Data points denoted by *')

FIGURE CP11.7
(a) Script to determine the initial state from three observations.

y(0) = 1 = Ce0Ax0

y(2) = −0.0256 = Ce2Ax0
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y(4) = −0.2522 = Ce4Ax0

or, in matrix form












Ce0A

Ce2A

Ce4A













x0 =













1

−0.0256

−0.2522













.

The problem is solvable if the matrix












Ce0A

Ce2A

Ce4A













is invertible. In this case, the inverse does exist and the solution is

x0 =













1

−1

1.9998













.

The simulation is shown in Figure CP11.7b.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

*

*

*

Time (sec)

y(
t)

Data points denoted by *

FIGURE CP11.7
CONTINUED: (b) System simulation using computed initial state.
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CP11.8 Suppose we are given

A =





0 1

−1 0



 B =





0

1





and the feedback

u = −Kx = −[K1 K2]x .

Solving HTP+PH = −I for P yields

p11 =
K2

2 +K2
1 + 3K1 + 2

2(K1 + 1)K2

p12 =
1

2(K1 + 1)

p22 =
K1 + 2

2(K1 + 1)K2

Then, with xo
T = [1, 0] we find that

J = xo
TPxo = p11 .

Computing the partial of J with respect to K2 yields

∂J

∂K2
=

1

2

[

1

K1 + 1
− K1 + 2

K2
2

]

.

Setting

∂J

∂K2
= 0

and solving for K2, we find that

K2 =
√

(K1 + 2)(K1 + 1) .

For a given value ofK1, the value ofK2 that minimizes J can be computed
via the above equation. With K2 given as above, we can compute J to be

J =

√

K1 + 2

K1 + 1
.

A plot of J versus K1 (with K2 equal to the minimizing value) is shown
in Figure CP11.8. As K1 increases, the performance index J decreases.
However, we see that the rate of decrease slows considerably after K1 >
20. Also, K2 increases as K1 increases. We want to keep both gains as
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small as possible, while still having a small J . A reasonable selection is

K1 = 20 and K2 = 21.5 .

1

1.1

1.2

1.3

1.4

1.5

0 5 10 15 20 25 30 35 40 45 50

K1

J

Performance index J versus K1

0

20

40

60

0 5 10 15 20 25 30 35 40 45 50

K1

K
2

K2 versus K1

FIGURE CP11.8
Performance index as a function of K1 and K2.

CP11.9 In this problem, A = −1 and B = 1. Computing Q yields

Q = (1 + λ(−k)2) = 1 + λk2 .

Define

H = A−Bk = −1− k .

Solving

HTP + PH = −Q

yields

p =
1 + λk2

2(k + 1)
.
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FIGURE CP11.9
Plot of J/x20 versus k and the minimizing k versus λ.

The performance index is

J = x20p which implies J/x20 =
1 + λk2

2(k + 1)
.

The plot of J/x20 versus k is shown in Figure CP11.9. The minimum value
is achieved when k = 0.41. To arrive at this result analytically, take the
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partial of J/x20 with respect to k, set the result to zero and solve for k:

∂J/x20
∂k

= 0 when k2 + 2K − 1/λ = 0 .

Solving for k yields k = −1 ±
√

1 + 1/λ. So, when λ = 1, k = 0.41. The
plot of kmin versus λ is shown in Figure CP11.9.

CP11.10 The m-file is shown in Figure CP11.10.

A=[0 1;-18.7 -10.4]; B=[10.1; 24.6]; C=[1 0]; D=[0];

% Controller Gains 

p=[-2;-2 ];

K=acker(A,B,p)

% Observer Gains

q=[-20+4*j;-20-4*j];

L = acker(A',C',q); L=L

>> 

K =

   -0.3081   -0.1337

L =

   29.6000

   89.4600

FIGURE CP11.10
Using the acker function to compute the controller gains and the observer gains.

CP11.11 The m-file is shown in Figure CP11.11(a). The compensator can be rep-

A=[0 1 0;0 0 1;-4.3 -1.7 -6.7]; B=[0;0;0.35]; C=[0 1 0]; D=[0];

% Controller Gains 
p=[-1.4+1.4*j;-1.4-1.4*j;-2];
K=acker(A,B,p)

% Observer Gains
q=[-18+5*j;-18-5*j;-20];
L = acker(A',C',q); L=L'

% Simulation of closed-loop system with the observer
Ac=[A -B*K;L*C A-B*K-L*C]; 
Bc=[zeros(6,1)];
Cc=eye(6); 
Dc=zeros(6,1);
sys=ss(Ac,Bc,Cc,Dc); 
x0=[1;0;0;0.5;0.1;0.1]; t=[0:0.001:3.5];
[y,t]=initial(sys,x0,t);
subplot(311)
plot(t,y(:,1),t,y(:,4),'--'), grid
subplot(312)
plot(t,y(:,2),t,y(:,5),'--'), grid
subplot(313)
plot(t,y(:,3),t,y(:,6),'--'), grid

>> 

K =

                                                10.1143   22.3429   -5.4286

L =

                  1.0e+003 *

                   -1.6223

                     0.0493

                    0.7370

FIGURE CP11.11
(a) M-file.
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resented as

˙̂x = (A−BK− LC)x̂+ Ly and u = −Kx̂ .

Since y = Cx, we can write

˙̂x = (A−BK− LC)x̂+ LCx .

Similarly, with

ẋ = Ax+Bu and u = −Kx̂

we obtain

ẋ = Ax−BKx̂ .

In matrix form, we have





ẋ

˙̂x



 =





A −BK

LC A−BK− LC









x

x̂



 ,

with initial conditions

[

x(0)T x̂(0)T
]T

=
[

1 0 0 0.5 0.1 0.1
]T

.

The response of the system is shown in Figure CP11.11(b).

0 1 2 3 4
 5

0

5

0 1 2 3 4
 1

0

1

0 1 2 3 4
 2

0

2

Estimated state (dashed line)

True state

(solid line)

x1

x2

x3

Time (sec)

FIGURE CP11.11
CONTINUED: (b) Response of system to an initial condition.
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CP11.12 The Simulink block diagram is shown in Figure CP11.12.

FIGURE CP11.12
Simulink block diagram.

CP11.13 The m-file to design the compensator is shown in Figure CP11.13(a). The
Simulink simulation is shown in Figure CP11.13(b). The output shown
on the x-y graph depicts the state x of the system. The initial conditions
selected for the simulation are

x(0) =



















1

0

0

0



















and x̂(0) =



















0.5

0.1

0.1

0.1



















.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Computer Problems 657

0 2 4 6 8 10
?100

0

100

0 2 4 6 8 10
?2

0

2

0 2 4 6 8 10
?10

0

10

A=[0 1 0 0;0 0 1 0;0 0 0 1;-2 -5 -1 -13]; B=[0;0;0;1]; C=[1 0 0 0]; D=[0];

% Controller Gains 

p=[-1.4+1.4*j;-1.4-1.4*j;-2+j;-2-j];

K=acker(A,B,p)

% Observer Gains

q=[-18+5*j;-18-5*j;-20;-20];

L = acker(A',C',q); L=L'

% Simulation of closed-loop system with the observer

Ac=[A -B*K;L*C A-B*K-L*C]; 

Bc=[zeros(8,1)];

Cc=eye(8); 

Dc=zeros(8,1);

sys=ss(Ac,Bc,Cc,Dc); 

x0=[1;0;0;0;0.5;0.1;0.1;0.1]; t=[0:0.001:10];

[y,t]=initial(sys,x0,t);

subplot(311)

plot(t,y(:,1),t,y(:,4),'--'), grid

subplot(312)

plot(t,y(:,2),t,y(:,5),'--'), grid

subplot(313)

plot(t,y(:,3),t,y(:,6),'--'), grid

>> 

K =

   17.6000   24.6800   19.1200   -6.2000

L =

          63

        1369

       10495

        1479

FIGURE CP11.13
(a) M-file to design the compensator, including the observer.
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x=[A-BK-LC]x+Ly

.
^ ^

u=-Kx̂

FIGURE CP11.13
CONTINUED (b) The Simulink simulation.
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C H A P T E R 1 2

Robust Control Systems

Exercises

E12.1 The plant transfer function is

G(s) =
3

s+ 3
.

Try a PI controller, given by

Gc = K1 +
K2

s
.

The ITAE characteristic equation is

s2 + 1.4ωns+ ω2
n ,

where ωn = 30. Then

K1 = 13 and K2 = 300 .

Without a prefilter, the closed-loop system is

Y (s)

R(s)
=

39s + 900

s2 + 42s + 900
,

and with a prefilter, the closed-loop system is

Y (s)

R(s)
=

900

s2 + 42s + 900
,

where

Gp(s) =
23.07

s+ 23.07
.

The step response, with and without the prefilter, is shown in Figure E12.1.

659
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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0.4

0.6
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1

1.2

1.4

Time (sec)

y(
t)

 

 
Without prefilter
With prefilter

FIGURE E12.1
Step response: (a) w/o prefilter (solid line), and (b) w/prefilter (dashed line).

E12.2 The disturbance response is shown in Figure E12.2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.01
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Time (sec)

y(
t)

FIGURE E12.2
Disturbance response for system in E12.1.
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E12.3 The closed-loop transfer function is

T (s) =
25

s2 + bs+ 25
,

and the sensitivity function is

S(s) =
s2 + bs

s2 + bs+ 25
,

where b = 8, nominally. The sensitivity of T to changes in b is determined
to be

ST
b =

∂T

∂b

b

T
=

−bs

s2 + bs+ 25
.

The plot of T (s) and S(s) is shown in Figure E12.3, where b = 8.

10
−1

10
0

10
1

10
2

−60

−50

−40

−30

−20

−10

0

10

Frequency (rad/sec)

G
ai

n 
dB

20log|T|

20log|S|

FIGURE E12.3
Plot of T (s) and the sensitivity function S(s).

E12.4 The plant transfer function is

G(s) =
1

(s+ 20)(s + 36)
,
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and the PID controller is given by

Gc(s) =
K3(s+ a)(s + b)

s
.

Let a=20, b=500, and K3 = 200. Then, the closed-loop system is

T (s) =
200s2 + 4000s + 100000

s3 + 256s2 + 4720s + 100000
.

The closed-loop poles are s1=-237.93 and s2,3 = −9.04 ± j18.5 and the
zeros are s1,2 = −10±j20. Therefore, there is an approximate cancellation
of the complex poles and zeros and the approximate system is

T̂ (s) =
238

s+ 238
.

The actual response and approximation are shown in Figure E12.4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

y(
t)

approximation

actual

FIGURE E12.4
Step response for closed-loop actual and approximate transfer functions.

E12.5 The loop transfer function is

L(s) = Gc(s)G(s) =
10KD (s+KP /KD)

s(s+ 3)(s + 10)
.
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Select KP /KD = 10. Then

L(s) = Gc(s)G(s) =
10KD

s(s+ 3)
,

and the closed-loop transfer function is

T (s) =
10KD

s2 + 3s+ 10KD
.

Let ζ = 0.69, which implies P.O. < 5%. Also, 2ζωn = 3, so ωn = 2.17.
Thus,

10KD = ω2
n = 4.72 .

Thus, the controller is Gc(s) = 0.47(s+10). The settling time is Ts = 2.8
s and the percent overshoot is P.O. = 4.6%. As K increases, the per-
cent overshoot increases from 0% to 16% and the settling time generally
decreases from 3.8 sec to 2.6 sec.

E12.6 The loop transfer function with the PID controller is

Gc(s)Gs(s) =
KDs

2 +KP s+KI

s

1

(s+ 5)2
.

The ITAE step response requires

s3 + 1.75ωns
2 + 2.15ω2

ns+ ω3
n = s3 + (10 +KD)s

2 + (25 +KP )s+KI .

For n = 3 we estimate the normalized settling time to be

ωnTs ≈ 8 seconds.

Thus, ωn ≈ 6, and

KD = 0.5, KP = 52.4, and KI = 216.

The step response is shown in Figure E12.6. The transfer function from
the disturbance to the output is

Y (s)

Td(s)
=

G(s)

1 +Gc(s)G(s)
=

s

s3 + 10.5s2 + 77.4s + 216
.

The disturbance response is shown in Figure E12.6. The system is effective
in reducing the effects of the disturbance, and the maximum output is
reduced by 1/100 for a step disturbance.
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0 0.5 1 1.5 2
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(a) Step response

y(
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(b) Disturbance response

y(
t)

FIGURE E12.6
(a) Step response: w/o prefilter (solid line) and w/prefilter (dashed line); and (b) distur-
bance response.

E12.7 The plant transfer function is

G(s) =
1

(s+ 4)2
,

and the PID controller is

Gc(s) =
K1s+K2 +K3s

2

s
.

Using the ITAE criteria and selecting ωn = 10 yields

K3 = 9.5 K2 = 1000 and K1 = 199 .

The step response is shown in Figure E12.7. The disturbance response is
also shown in Figure E12.7. The maximum y(t) = 0.0041, so the system
is effective in rejecting the step disturbance.
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(a) step response
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(b) disturbance

FIGURE E12.7
(a) Step response: w/o prefilter (solid line) and w/prefilter (dashed line); and (b) distur-
bance response.

E12.8 The maximum ωn = 60. ThenK1 = 3600 and K2 = 80. The maximum
control input is max |u(t)| ≈ 80. The plot of the step response and the
control input u(t) is shown in Figure E12.8.
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FIGURE E12.8
Step response w/o prefilter; and (b) control input u(t).
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E12.9 One possible PD controller is

Gc(s) = 27.6s + 8.25s .

When

K = 1 ,

the system roots are

s1,2 = −3.2± j4.3

s3 = −9.5 .

The step response is shown in Figure E12.9 for K = 0.5, 1, and 1.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

y(
t)

K=1 (solid); K=0.5 (dashed); and K=1.5 (dotted)

FIGURE E12.9
Step response for K = 0.5, 1, and 1.5.

E12.10 One possible PI controller is

Gc(s) =
2.2s + 22

s
.

When K = 1, the system roots are s1,2 = −1.31± j1.31, and s3 = −6.37.
The step response is shown in Figure E12.10.
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K=1 (solid); K=0.5 (dashed); and K=1.5 (dotted)

FIGURE E12.10
Step response for K = 0.5, 1, and 1.5.

E12.11 The plot is shown in Figure E12.11.
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FIGURE E12.11
Percent overshoot as a function of k in the interval 0.1 ≤ k ≤ 4.
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E12.12 The controllability matrix is

Pc =





c1 c2

c2 −ac1 − bc2





and

detPc = c22 + [bc1]c2 + ac21 .

For controllability we require detPc 6= 0, hence

c22 + [bc1]c2 + ac21 6= 0

implies

c2
c1

6= − b

2
±
√

(b/2)2 − a

where (b/2)2 − a ≥ 0. For real-valued c1 and c2, if (b/2)
2 − a < 0, all real

values of c1 and c2 are valid. Valid values of the constants are c1 = 0,
c2 = 10, a = 10, and b = 3. The step response is shown in Figure E12.12.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

FIGURE E12.12
Step response with c1 = 0, c2 = 10, a = 10, and b = 3.
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Problems

P12.1 The closed-loop transfer function is

T (s) =
4(s + 2)

s2 + 4s + 8

and the sensitivity function is

S(s) =
s2

s2 + 4s+ 8
.

The plot of 20 log |T | and 20 log |S| is shown in Figure P12.1. The band-
width is

ωB = 6.31 rad/sec .

Then

|ST
K |ωB

= 0.98

|ST
K |ωB

2
= 0.78

|ST
K |ωB

4
= 0.30 .

20log|T|
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FIGURE P12.1
Plot of T (s) and the sensitivity function S(s).
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P12.2 (a) The loop transfer function is given by

Gc(s)G(s) =
K

s(0.02s + 1)(0.002s + 1)
.

When

K = 100 ,

the peak magnitude is

Mpω = 1.84 .

(b) The plot of 20 log |T | and 20 log |S| is shown in Figure P12.2a.

-120

-100

-80

-60

-40

-20

0

20

101 102 103 104

20log|T|

20log|S|

Frequency (rad/sec)

G
ai

n
 d

B

FIGURE P12.2
(a) Plot of T (s) and the sensitivity function S(s).

(c) The bandwidth is

ωB = 117 rad/sec ,

and

|ST
K |ωB

= 1.47

|ST
K |ωB

4
= 0.39

|ST
K |ωB

2
= 1.62 .
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(c) The disturbance response is shown in Figure P12.2b.
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FIGURE P12.2
CONTINUED: (b) Disturbance response for K = 100.

P12.3 (a) The loop transfer function is

L(s) = Gc(s)G(s) =
K(s− 4)(s − 1)

(s+ 0.02)(s + 2)2
.

The characteristic equation is

1 +Gc(s)G(s) = 1 +K
(s− 4)(s − 1)

(s+ 0.02)(s + 2)2
= 0

or

s3 + (4.02 +K)s2 + (4.08 − 5K)s + 0.08 + 4K = 0 .

Using Routh-Hurwitz we find that the system is stable for

−4.6987 < K < 0.6947 .

(b) The steady-state error is

ess =
1

1 + 50K
.

Select K = 0.18 to obtain a steady-state error to a unit step of 0.1.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



672 CHAPTER 12 Robust Control Systems

(c,d) The plots of y(t) for

K = 0.18 (nominal)

K = 0.21 (+15%)

K = 0.15 (−15%)

are shown in Figure P12.3.
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t)

K=0.18 (solid) & K=0.21 (dashed) & K=0.15 (dotted)

FIGURE P12.3
Step input response for K = 0.18, K = 0.21 and K = 0.15.

P12.4 (a) The plant is given by

G =
1

s
( s
25 + 1

) .

We desire P.O. < 10% and Ts < 100 ms. Using a PD controller

Gc(s) = 100 + 2.2s ,

we determine that P.O. = 7%, Ts < 100 ms and ess =
A
100 for a ramp

input. The plot of y(t) is shown in Figure P12.4.
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(b) The sensitivity is

|Sr
K1

| = 27.95

when K1 = 1.

(c) The plot of y(t) when K1 = 2 (the compensator Gc(s) is unchanged)
is shown in Figure P12.4.

(d) The disturbance response is shown in Figure P12.4.
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FIGURE P12.4
(a) Step response: K1 = 1 (solid line) and K1 = 2 (dashed line); and (b) disturbance
response.

P12.5 (a) The plant is given by

G(s) =
1

s(s+ p)

where p = 2, nominally. One solution is

Gc(s) =
18.7(s + 2.9)

(s+ 5.4)
.

Then,

T (s) =
18.7(s + 2.9)

(s+ 3.41)(s + 2 + 2
√
3j)(s + 2− 2

√
3j)

.
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(b,d) The step responses are shown in Figure P12.5 for p = 2 and p = 1.

(c,d) The disturbance responses are shown in Figure P12.5 for p = 2 and
p = 1.
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FIGURE P12.5
(a) Step response: p = 2 (solid line) and p = 1 (dashed line); and (b) disturbance response:
p = 2 (solid line) and p = 1 (dashed line).

P12.6 (a) The plant is given by

G(s) =
1

s(s2 + 4s+ 5)
,

and the PID controller is

Gc(s) =
K(s+ z)2

s
.

When

z = 1.25

and

K = 4 ,

all roots are

s = −1± j1.22 .
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Then, the closed-loop transfer function is

T (s) =
4(s+ 1.25)2

s4 + 4s3 + 9s2 + 10s + 6.25
.

(b,c) The step responses with and without a prefilter are shown in Fig-
ure P12.6.

(d) The disturbance response is shown in Figure P12.6.
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FIGURE P12.6
(a) Step response: w/o prefilter (solid line) and w/prefilter (dashed line); and (b) distur-
bance response.

P12.7 (a) The loop transfer function is

Gc(s)G(s) =
10Ka(5s+ 500 + 0.0475s2)

s3
.

When

Ka = 374.5 ,

the phase margin is

P.M. = 40o .

(b) The root locus is shown in Figure P12.7a.
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FIGURE P12.7
(a) Root locus for 1 +Ka

10(0.0475s2+5s+500)
s3 = 0.

When

Ka = 374.5 ,

the roots are

s1 = −139.8

s2,3 = −19.1± j114.2 .

(c) The transfer function from Td(s) to Y (s) is

Y (s)

Td(s)
=

−s

s3 + 182s2 + 19150s + 1915000
.

The maximum is

max |y(t)| = 0.0000389 .

(d) The step responses, with and without a prefilter, are shown in Fig-
ure P12.7b.

P12.8 The polynomial under investigation is

s3 + 3s2 + 3s+ 4 = 0 .
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FIGURE P12.7
CONTINUED: (b) Step response: w/o prefilter (solid line) and w/prefilter (dashed line).

From the uncertainty bounds on the coefficients, we define

α0 = 4 β0 = 5

α1 = 1 β1 = 4

α2 = 2 β2 = 4

Then, we must examine the four polynomials:

s3 + 2s2 + 4s+ 5 = 0

s3 + 4s2 + s+ 4 = 0

s3 + 4s2 + 4s+ 4 = 0

s3 + 2s2 + s+ 5 = 0

The fourth polynomial is not stable—therefore, the system is not stable
for the uncertain parameters.

P12.9 One possible PID controller is

Gc(s) =
0.058s2 + 2.17s + 16.95

s
.

A first-order Pade approximation was used in the design to account for
the delay system. The step input response is shown in Figure P12.9. A
prefilter should also be used with the PID controller. A suitable prefilter
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is

Gp(s) =
K2

K3s2 +K1s+K2
.
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FIGURE P12.9
Step response with the PID controller and prefilter.

P12.10 The PID controller is given by

Gc(s) =
KDs

2 +KP s+KI

s
.

Using the ITAE method, we desire the characteristic polynomial to be

q(s) = s3 + 1.75ωns
2 + 2.15ω2

ns+ ω3
n = 0 ,

where we select ωn = 4 to obtain a peak time of Tp = 1 second. Here we
use the approximation for ITAE third-order systems that ωnTp ≈ 4 from
Figure 5.30(c) in Dorf and Bishop. The actual characteristic equation is

s3 + 25KDs
2 + 25KP s+ 25KI = 0 .

Equating coefficients and solving for the gains yields

KP = 1.376 , KD = 0.28 , and KI = 2.56 .
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The step response is shown in Figure P12.10, with the prefilter

Gp(s) =
KI

KDs2 +KP s+KI
.
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FIGURE P12.10
Step response with the PID controller and prefilter.

P12.11 We will design for the case where K = 1 and p = 1. The design plant is

G(s) =
1

s(s+ 1)(s + 4)
.

The nominal plant is given by

G(s) =
2.5

s(s+ 2)(s + 4)
,

and the PID controller is

Gc(s) =
KDs

2 +KP s+KI

s
.

Using the ITAE method, we desire the characteristic polynomial to be

q(s) = s4 + 2.1ωns
3 + 3.4ω2

ns
2 + 2.7ω3

ns+ ω4
n = 0 ,
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where we select ωn = 2.38 to obtain a peak time around Tp = 3 seconds.
The actual characteristic equation (with the worst-case plant) is

s4 + 5s3 + (4 +KD)s
2 +KP s+KI = 0 .

Equating coefficients and solving for the gains yields KP = 36.40, KI =
32.08, and KD = 15.26. The step response is shown in Figure P12.11,
with the prefilter

Gp(s) =
KI

KDs2 +KP s+KI
.
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Worst−case plant
Nominal plant

FIGURE P12.11
Step response with the prefilter: nominal plant (dashed line) & worst-case plant (solid line).

P12.12 The transfer function is

G(s) = C(sI−A)−1B =
[

2 0
]





s −3

5 s+K









0

1



 =
−6

s2 +Ks+ 5
.

The sensitivity is

SG
K =

∂G

∂K

K

G
=

−Ks

s2 +Ks+ 5
.
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Advanced Problems

AP12.1 Let Gp(s) = 1. A viable PID controller is

Gc(s) = KP +
KI

s
+KDs =

1000s2 + 3000s + 100

s
.

The loop transfer function is

Gc(s)G(s) =
1000s2 + 3000s + 100)

s(50s2 + 1)
.

We can check that Kv = 100, as desired. The step response is shown in
Figure AP12.1.

Step Response
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A
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0 0.2 0.4 0.6 0.8 1 1.2
0
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0.4
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1.4
System: syscl
Peak amplitude: 1.1
Overshoot (%): 9.5
At time (sec): 0.234

FIGURE AP12.1
Step response with PID controller.

AP12.2 For all three controllers, choose K = 1 as the design value. Also, use
as the nominal points a = 2 and b = 5 for each design. ITAE methods
were employed in all designs, although this did not work well for the PI
controller.

(a) PI controller: Let

Gp(s) = 1 .

Not all specifications could be met simultaneously with a PI con-
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troller. The best over-all results are achieved when using a = 3 and
b = 4.5 as the design values. An acceptable PI controller is

Gc(s) = 1.2 +
3.96

s
.

Controller P.O. Ts Tp |u(t)|max

PI 0% 2.29s n.a. 4.43

PD 4.6% 1.72s 1.26s 12.25

PID 1.97% 0.65s 0.47s 37.25

TABLE AP12.2 PI, PD, and PID controller performance summary.

The final design is based on root locus methods since the ITAE meth-
ods did not produce an effective controller. The closed-loop transfer
function is

T (s) =
1.2s+ 3.96

s3 + 3s2 + 5.7s + 3.96
.

(b) PD controller: Let

Gp(s) =
12.25

7.25 + 2.9s
.

The closed-loop transfer function is

T (s) =
7.25 + 2.9s

s2 + 4.9s + 12.25
,

where the PD controller (based on ITAE methods) is

Gc(s) = 7.25 + 2.9s .
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(c) PID controller: Let

Gp(s) =
1000

15.5s2 + 210s + 1000
.

The closed-loop transfer function is

T (s) =
15.5s2 + 210s + 1000

s3 + 17.5s2 + 215s + 1000
.

And the PID controller (based on ITAE methods) is

Gc(s) =
15.5s2 + 210s + 1000

s
.

The performance of each controller is summarized in Table AP12.2.

AP12.3 (a) The PID controller is

Gc(s) =
KD

(

s2 + KP

KD
s+ KI

KD

)

s
.

Since we want P.O. < 4% and Ts < 1s, we choose the dominant
closed-loop poles to have ωn = 6 and ζ = 0.8. Therefore, we place the
zeros at

s2 +
KP

KD
s+

KI

KD
= s2 + 10s + 36 .

Solving for the constants yields,

KP

KI
= 10 ,

KI

KD
= 36 .

Then, using root locus methods, we choose KD = 91 to place the
roots near the zeros. The PID controller gains are computed to be
KP = 910, KI = 3276 and KD = 91.

(b) The loop transfer function is

Gc(s)G(s) =
KDs

2 +KP s+KI

s2(s2 + 5s+ 4)
.

The closed-loop system characteristic equation is

s3 + 5s2 + 4s +KDs
2 +KP s+KI = 0 .

Solving for the PID gains yields KP = 73.4, KI = 216 and KD = 5.5.
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Therefore, the controller is

Gc(s) =
5.5(s2 + 13.35s + 39.3)

s
.

Using the prefilter

Gp(s) =
39.3

s2 + 13.35s + 39.3
,

we obtain the closed-loop transfer function

T (s) =
216

s3 + 10.5s2 + 77.4s + 216
.

The percent overshoot is P.O. ≈ 3.5% and the settling time is Ts ≈
1.67 sec.

AP12.4 The PID controller is

Gc(s) =
KD

(

s2 + KP

KD
s+ KI

KD

)

s
.

The bounds 1 ≤ a ≤ 2 and 4 ≤ b ≤ 12 imply that 2 ≤ ωn ≤ 3.46
and 0.5 ≤ ζωn ≤ 1. One solution is to place the PID controller zeros at
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FIGURE AP12.4
Family of step response with PID controller with nominal case (a, b) = (1.5, 9) denoted by
the solid line.
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s = −1± j
√
8 (i.e. ζωn = 1 and ωn = 3). So,

s2 +
KP

KD
s+

KI

KD
= s2 + 2ζωns+ ω2

n = s2 + 4s+ 9 .

The nominal case for design is chosen to be a = 1.5 and b = 9. Using
root locus, we select KD = 2.1 to place the closed-loop characteristic
roots near the zeros. Then, the PID controller gains are computed to be
KP = 8.4, KI = 18.9, and KD = 2.1. The plot of the response to a step
input is shown in Figure AP12.4. The off-nominal cases shown in the
simulations are (a, b) = (1.2, 4), (1.4, 6), (1.6, 10), and (1.8, 12).

AP12.5 To obtain a phase margin of P.M. = 49.77o, select K = 1.5, b = 36 and
choose Gp(s) = 1. The PID controller is

Gc(s) =
1.5(s2 + 20s + 36)

s
.

When K1 = 0.75, the phase margin is reduced to P.M. = 45.45o; and
when K1 = 1.25, the phase margin is increased to P.M. = 52.75o.

AP12.6 With the settling time Ts = 1 and percent overshoot P.O. < 10% specifi-
cations, we target for dominant closed-loop poles with ωn = 10. Here we
estimate ωnTs ≈ 10 associated with the ITAE performance. The closed-
loop transfer function is

T (s) = Gp(s)
1.5(KDs

2 +KP s+KI)

(1 + 1.5KD)s2 + 1.5KP s+ 1.5KI
,

where we have neglected τ . Using the ITAE method, the desired charac-
teristic polynomial is

s2 +
√
2ωns+ ω2

n = s2 +
1.5Kp

1 + 1.5KD
s+

1.5KI

1 + 1.5KD
.

Let KD = 0.25. Then solving for the remaining PID gains yields KP =
12.96 and KI = 91.67. The pre-filter is

Gp(s) =
137.5

0.375s2 + 19.45s + 137.5
.

Then the closed-loop transfer function (with τ = 0.001) is

T (s) =
137.5

0.001s3 + 1.375s2 + 19.45s + 137.5
.

The transfer function from the disturbance to the output is

Y (s)/Td(s) =
1.5s

0.001s3 + 1.375s2 + 19.45s + 137.5
.
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The step input response and disturbance response are shown in Fig-
ure AP12.6.
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FIGURE AP12.6
(a) Input response; (b) Disturbance response.

AP12.7 The PI controller is given by

Gc(s) =
KP s+KI

s
.

We will also use the prefilter

Gp(s) =
KI

KP s+KI
.

Using the ITAE method, we determine that

KP =
√
2ωn and KI = ω2

n.

Let ωn = 2.2. Then KP = 3.11 and KI = 4.8. The step response and
control u(t) are shown in Figure AP12.7.
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FIGURE AP12.7
(a) Input response; (b) Control history u(t).

AP12.8 (a) A suitable PD controller is given by

Gc(s) = 0.6 + 0.4s .

The percent overshoot is P.O. = 18.8% and the peak time is Tp = 2.4
sec.

(b) A suitable PI controller is given by

Gc(s) = 0.15 +
0.01

s
.

The percent overshoot is P.O. = 23.7% and the peak time is Tp = 7.8
sec.

(c) A suitable PID controller is given by

Gc(s) = 0.6 +
0.01

s
+ 0.4s .

The percent overshoot is P.O. = 19.9% and the peak time is Tp = 2.5
sec.

(d) The PD or PID controllers are the best choices.

AP12.9 A robust PID controller designed with ITAE methods will be a suitable
controller. From the settling time specification we select ωn = 10, where
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we have used ζ = 0.8. The worst case is

a = 1 and K = 2 .

The desired closed-loop transfer function is

T (s) =
ω3
n

s3 + 1.75ωns2 + 2.15ω2
ns+ ω3

n

and the actual characteristic equation is

q(s) = s3 + (2a+KKD)s
2 + (a2 +KKP )s+KKI .

Equating like terms, we find that

KP = 107 KI = 500 KD = 7.75 .

AP12.10 We use as the design plant

G(s) =
s+ 2

s(s+ 3)
.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time(sec)

A
m

p
lit

u
d

e

FIGURE AP12.10
Family of step responses with the design plant (p, q, r) = (3, 0, 2) denoted by the solid line.

Select

p1 = 2 and z1 = 3
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to cancel a design plant pole and zero. Then, choose p2 = 0 to have
zero steady-state error to a unit step. The remaining variables K and
z2 are selected based on ITAE methods, where ωn = 100. A suitable
compensator is

Gc(s) =
141.42(s + 3)(s + 70.71)

s(s+ 2)
.

A plot of the step responses for various values of p, q and r is shown in
Figure AP12.10.

AP12.11 A suitable compensator is

Gc(s) =
1000(s + 1.8)(s + 3.5)(s + 5.5)

s(s+ 600)
.
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FIGURE AP12.11
Step responses with nominal plant (solid line) and off-nominal plant with all poles reduced
by 50% (dashed line).
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP12.1

Bishop is given by:

θ(s)

Va(s)
=

26.035

s(s+ 33.142)
,

where we neglect the motor inductance Lm and where we switch off the
tachometer feedback (see Figure CDP4.1 in Dorf and Bishop). With a
PID controller ,the closed-loop system characteristic equation is

s3 + (33.142 + 26.035KD)s2 + 26.035KP s+ 26.035KI = 0 .

A suitable PID controller is

Gc(s) = 50 + s+
0.1

s
.

This PID controller places the closed-loop system poles to the left of
the −ζωn line necessary to meet the settling time requirement. The step
response is shown below. The settling time is Ts = 0.12 second. In the
steady-state the error due to a step disturbance is zero.
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DP12.1 The closed-loop transfer function is

Y (s)

R(s)
=

KmGc(s)

s2 + (2 +KmK1)s +Gc(s)Km
.

(a) When Gc = K, we have

T (s) =
15K

s2 + (2 + 15K1)s+ 15K
,

where Km = 15. Using ITAE criteria and ωn = 10, we determine that
K1 = 0.81 and K = 6.67. For the disturbance, we have

Y (s)

TL(s)
=

−1

s2 + 14.14s + 100
.

The input and disturbance responses are shown in Figure DP12.1,
without prefilters.
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FIGURE DP12.1
(a) Step response: Gc(s) = K (solid line) and Gc(s) = KP +KDs (dashed line); and (b)
disturbance response (same for both compensators).

(b) When Gc = KP +KDs, we have

Y (s)

R(s)
=

15(KP +KDs)

s2 + (2 + 15K1 + 15KD)s+ 15KP
.

For ωn = 10 and with the ITAE criteria, we determine that (with
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KD = 0.1)

Y (s)

R(s)
=

15(6.67 + 0.1s)

s2 + 14.14s + 100
.

DP12.2 The nominal plant is given by

G(s) =
1

s(s+ 5)
.

The closed-loop transfer function is

T (s) =
K(KDs

2 +KP s+KI)

s3 + (5 +KKD)s2 +KKP s+KKI
.

Let

KP = 450 , KI = 750 , and KD = 150 .

A family of responses is shown in Figure DP12.2 a for various values of
K. The percent overshoot for 0.1 ≤ K ≤ 2 is shown in Figure DP12.2b.
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FIGURE DP12.2
(a) Family of step responses for various values of K.
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FIGURE DP12.2
CONTINUED: (b) Percent overshoot for various values of K.

DP12.3 (a) The dexterous hand model is given by

G(s) =
Km

s(s+ 5)(s + 10)
,

where Km = 1, nominally. The PID controller is

Gc(s) =
KD(s

2 + 6s + 18)

s
.

The root locus is shown in Figure DP12.3a. If we select

KD = 90 ,

the roots are

s1,2 = −5.47 ± j6.6

s3,4 = −2.03 ± j4.23 .

Thus, all roots have

ζωn > 4/3
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to meet the design specification

Ts < 3 sec .

(b) The step responses for

Km = 1

and

Km = 1/2

are shown in Figure DP12.3b. When

K = 1/2 ,

an off-nominal value, the settling time specification is no longer sat-
isfied.
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FIGURE DP12.3
(a) Root locus for 1 +KD

s2+6s+18
s2(s+5)(s+10)

= 0.
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FIGURE DP12.3
CONTINUED: (b) Step response (without prefilters): PID with K3 = 90 and Km = 1
(solid line) and PID with K3 = 90 and Km = 0.5 (dashed line).

DP12.4 The nominal plant is

G(s) =
17640

s(s2 + 59.4s + 1764)
,

and the PID controller is

Gc(s) =
KI(τ1s+ 1)(τ2s+ 1)

s
.

(a) Using ITAE methods, we determine that ωn = 28.29, KI = 36.28,
τ1 + τ2 = 0.0954 and τ1τ2 = 0.00149. So,

Gc(s) =
36.28(0.00149s2 + 0.0954s + 1)

s
.

(b) The step response for the nominal plant and the PID controller is
shown in Figure DP12.4a, with and without a prefilter.

(c) The disturbance response is shown in Figure DP12.4b.

(d) The off-nominal plant is

G(s) =
16000

s(s2 + 40s+ 1600)
.

The step response for the off-nominal plant is shown in Figure DP12.4a.
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FIGURE DP12.4
(a) Step response for (i) nominal plant: w/o prefilter (solid line) and w/prefilter (dashed
line); and (ii) for off-nominal plant: w/o prefilter (solid line) and w/prefilter (dashed line).
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FIGURE DP12.4
CONTINUED: (b) Disturbance response for the nominal plant.
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DP12.5 One possible solution is

Gc(s) = 0.08
(0.01s + 1)(0.99s + 1)

s
.

The phase margin with this controller is

P.M. = 45.5o .

The step response is shown in Figure DP12.5 for the nominal plant (with
and without a prefilter); the step response for the off-nominal plant is also
shown in Figure DP12.5. The prefilter is

Gp(s) =
1411

13.97s2 + 1411s + 1411
.
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FIGURE DP12.5
(a) Step response for nominal plant: w/o prefilter (solid line) and w/prefilter (dashed line);
and (b) for off-nominal plant: w/o prefilter (solid line) and w/prefilter (dashed line).

DP12.6 Using ITAE methods, three controllers are designed for the nominal plant:

(i) PID controller:

Gc(s) =
0.225s2 + 0.535s + 34.3

s
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(ii) PI controller:

Gc(s) =
0.9s+ 22.5

s

(iii) PD controller:

Gc(s) = 0.9s+ 22.5

The step responses for each controller is shown in Figure DP12.6. The
responses for the PID and PI controller are the same since the gains were
selected to obtain the same ITAE characteristic equation. An appropriate
prefilter is used in all cases.
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FIGURE DP12.6
(a) Step response for nominal plant: PID (solid line); PI (dashed line); and PD (dotted
line); (b) for off-nominal plant: PID (solid line); PI (dashed line); and PD (dotted line).

DP12.7 The loop transfer function is

G(s) =
KaKm

(0.5s + 1)(τfs+ 1)s(s+ 1)
=

K

s(s+ 2)(s + 1)

since τf is negligible. A suitable PID controller is

Gc(s) =
KKD(s

2 + as+ b)

s
=

300(s2 + 2.236s + 2.5)

s
.

The step response is shown in Figure DP12.7. The percent overshoot is
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P.O. = 4.6% and the settling time is Ts = 3.74 seconds.
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FIGURE DP12.7
Step response for the elevator position control.

DP12.8 The system transfer function is

Y (s) =

[

G(s)Gc(s)Gp(s)

1 +G(s)Gc(s)

]

R(s) .

We are given

G(s) = e−sT where T = 1 second .

Using a second-order Pade approximation yields

G(s) ≈ s2 − 6s+ 12

s2 + 6s+ 12
.

Three controllers that meet the specifications are

Gc1(s) =
0.5

s
(Integral controller)

Gc2(s) =
0.04s + 0.4

s
(PI controller)

Gc3(s) =
0.01s2 + 0.04s + 0.4

s
(PID controller) .
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In all cases, the steady-state error is zero.

Integral PI PID

P.O.(%) 4.05 0 0

Ts (sec) 6.03 6.12 6.02

Tp (sec) 4.75 N/A N/A

|V (t)|max (volts) 1.04 1 1

The prefilter Gp(s) = 1 is used in all designs. To compute the voltage,
the transfer function is

V (s) =
Gp(s)Gc(s)

1 +Gc(s)G(s)
R(s) .

DP12.9 The space robot transfer function is

G(s) =
1

s(s+ 10)
.

(a) Consider Gc(s) = K. Then

T (s) =
Gc(s)G(s)

1 +Gc(s)G(s)
=

K

s2 + 10s+K
.

We determine that K = 50.73 for ζ = 0.702. Thus, we expect P.O. <
4.5%. So,

Gc(s) = 50.73 .

(b) Consider the PD controller

Gc(s) = KP +KDs .

Then

T (s) =
KP +KDs

s2 + (10 +KD)s+KP
.

Using the ITAE method, we compute

KP = 100 and KD = 4 .

Thus,

Gc(s) = 4s+ 100 ,
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and the prefilter is

Gp(s) =
100

4s+ 100
.

(c) Consider the PI controller

Gc(s) = KP +
KI

s
=

KP s+KI

s
.

Then,

T (s) =
KP s+KI

s3 + 10s2 +KP s+KI
.

Using the ITAE method, we have

ωn = 5.7 KP = 70.2 and KI = 186.59 .

Thus,

Gc(s) = 70.2 + 186.59/s ,

and the prefilter is

Gp(s) =
186.59

70.2s + 186.59
.

(d) Consider the PID controller

Gc(s) =
KDs

2 +KP s+KI

s
.

Then,

T (s) =
KDs

2 +KP s+KI

s3 + 10s2 +KDs2 +KP s+KI
.

Using the ITAE method with ωn = 10, we have

KD = 7.5 KP = 215 and KI = 1000 .

Thus,

Gc(s) =
7.5s2 + 215s + 1000

s
,

and the prefilter is

Gp(s) =
1000

7.5s2 + 215s + 1000
.
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A summary of the performance is given in Table DP12.9.

Gc(s) P.O. tp ts yss max|y(t)|

K 4.5% 0.62 s 0.84 s 0 0.026

PD 5.2% 0.39 s 0.56s 0 0.010

PI 1.98% 0.81 s 1.32s 0 0.013

PID 1.98% 0.46 s 0.75 s 0 0.004

TABLE DP12.9 A summary of performance to a disturbance input.
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Computer Problems

CP12.1 The closed-loop transfer function is

T (s) =
8K

s2 + 2s+ 8K
,

and the sensitivity function, ST
K , is

S(s) =
s2 + s

s2 + 2s + 8K
.

The plot of T (s) and S(s) is shown in Figure CP12.1, where K = 10.

nt=[80]; dt=[1 2 80]; syst = tf(nt,dt);
ns=[1 2 0];ds=[1 2 80]; syss = tf(ns,ds);
w=logspace(-1,2,400);
[magt,phaset]=bode(syst,w);magtdB(1,:) = 20*log10(magt(1,1,:));
[mags,phases]=bode(syss,w); magsdB(1,:) = 20*log10(mags(1,1,:));
semilogx(w,magtdB,w,magsdB,'--')
legend('20log|T|','20log|S|')
xlabel('Frequency (rad/sec)')
ylabel('Gain dB')
grid
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FIGURE CP12.1
Plot of T (s) and the sensitivity function S(s).
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CP12.2 A reasonable value of the gain K = 4. The family of step responses is
shown in Figure CP12.2.

p=[0.5:0.5:20]; K=4; 

t=[0:0.01:1];

for i=1:length(p)

    n=[K*p(i)]; d=[1 p(i)]; sys = tf(n,d);

    sys_cl = feedback(sys,[1]);

    y=step(sys_cl,t); Y(:,i)=y;

    [y2,t2]=step(sys_cl);

   S=stepinfo(y2,t2); Ts(i)=S.SettlingTime;

end

plot(t,Y) , xlabel('Time (sec)'), ylabel('Step response')
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FIGURE CP12.2
Family of step responses for 0.5 < p < 20.

CP12.3 The closed-loop characteristic equation is

1 +KD
s2 + as+ b

Js3
= 0

where

a = KP /KD

b = KI/KD .
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We select

a = 1 and b = 2

to move the root locus into the left hand-plane (see Figure CP12.3a).
Then, we choose

KD = 71

from the root locus using the rlocfind function. The closed-loop Bode
plot in Figure CP12.3b verifies that the bandwidth

ωB < 5 rad/sec.

Also, the phase margin is

P.M. = 45.7o ,

which meets the design specification. The plot of phase margin versus J
is shown in Figure CP12.3c. We see that as J increases, the phase margin
decreases.

J=25; a=1; b=2;

ng=[1];dg=[J 0 0]; sysg=tf(ng,dg);

nc=[1 a b]; dc=[1 0]; sysc=tf(nc,dc);

sys=series(sysc,sysg); rlocus(sys)
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FIGURE CP12.3
(a) Root locus for 1 +KD

s2+s+2
10s3 = 0.
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PM =

   45.7093

J=25; a=1; b=2; KD=71; KP=a*KD; KI=b*KD;

ng=[1]; dg=[J 0 0]; sysg=tf(ng,dg);

nc=[KD KP KI]; dc=[1 0]; sysc = tf(nc,dc);

sys=series(sysc,sysg); sys_cl = feedback(sys,[1]);

bode(sys_cl);

[GM,PM]=margin(sys); PM
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CONTINUED: (b) Closed-loop Bode plot with ωB < 5 rad/sec.

Ji=[10:1:40];

for i=1:length(Ji)

 numc=[KD KP KI]; denc=[Ji(i) 0 0 0]; sysc = tf(numc,denc); 

 [gm,pm]=margin(sysc);

 Pm(i)=pm;

end

plot(Ji,Pm), grid

xlabel('J'), ylabel('Phase Margin (deg)')
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FIGURE CP12.3
CONTINUED: (c) Phase margin versus J .
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CP12.4 The closed-loop characteristic equation is

1 +K
1

s2 + bs+ a
= 0

where a = 8 and the nominal value of b = 4. The root locus is shown in
Figure CP12.4a.

ÈSelect a point in the graphics window

selected_point =

  -2.0165 + 2.5426i

ans =

    2.4659

K

clf, hold o�

a=8; b=4;

num=[1]; den=[1 b a]; sys = tf(num,den);

rlocus(sys), hold on

zeta=0.59; wn=1.35;

x=[-10:0.1:-zeta*wn]; y=-(sqrt(1-zeta^2)/zeta)*x;

xc=[-10:0.1:-zeta*wn];c=sqrt(wn^2-xc.^2);

plot(x,y,':',x,-y,':',xc,c,':',xc,-c,':')

rloc�nd(sys)
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FIGURE CP12.4
(a) Root locus for 1 +K 1

s2+4s+8 .

The performance region is specified by

ζ = 0.59 and ωn = 1.35 ,

which derives from the design specifications

Ts < 5 sec and P.O. < 10% .

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



708 CHAPTER 12 Robust Control Systems

Using an m-file, the value of

K = 2.5

is selected with the rlocfind function. The step responses for b = 0, 1, 4
and b = 40 are shown in Figure CP12.4b. When b = 0, the system is
marginally stable; b = 1 results in a stable system with unsatisfactory
performance. The nominal case b = 4 is stable and all performance specs
are satisfied. When b = 40, the system is heavily damped: the percent
overshoot specification is satisfied, but the settling time is too long.
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FIGURE CP12.4
CONTINUED: (b) Step responses for b = 0, 1, 4 and 40.

CP12.5 (a) An acceptable lead compensator (designed with root locus methods)
is

Gc(s) = K
s+ a

s+ b
= 5

s+ 0.3

s+ 2
.

The compensated root locus is shown in Figure CP12.5a, where

K = 5

is selected to place the closed-loop poles in the performance region.

(b) The step responses for ζ = 0, 0.005, 0.1 and 1 are shown in Fig-
ure CP12.5b.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



Computer Problems 709

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

xxx

x

x

o

o

o

Real Axis

Im
ag

 A
xi

s

+

+

+

+

+

FIGURE CP12.5
(a) Compensated root locus.

(c) You would like the actual structural damping to be greater than the
design value, if it must be different at all.
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FIGURE CP12.5
CONTINUED: (b) Step responses for ζ = 0, 0.005, 0.1 and 1.
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CP12.6 The m-file script which computes the phase margin as a function of the
time delay (using the pade function) is shown in Figure CP12.6. The
maximum time delay (for stability) is td = 4.3 seconds.

time delay vector

K=5;
numg=K*[1]; deng=[1 10 2]; sysg = tf(numg,deng);
td=[0:0.1:5];
for i=1:length(td)
[ndelay,ddelay]=pade(td(i),2); sysd = tf(ndelay,ddelay);
sys = series(sysg,sysd);
[mag,phase,w]=bode(sys);
[gm,pm,w1,w2]=margin(mag,phase,w);
pmv(i)=pm; 
end 
plot(td,pmv), grid
xlabel('time delay [sec]')
ylabel('phase margin [deg]')
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FIGURE CP12.6
Phase margin versus time delay.

CP12.7 The m-file script is shown in Figure CP12.7a. The steady-state error
(shown in Figure CP12.7b) is zero when

a = 0.5

and increases rapidly as a increases past a = 0.5. The maximum initial
undershoot is shown in Figure CP12.7c. As a increases, the initial under-
shoot increases linearly. The gain margin is shown in Figure CP12.7d. It
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can be seen that as a increases, the gain margin decreases very rapidly.

gain margin

negative unit step input

max initial undershoot

steady-state tracking error

a=[0.01:0.01:0.99];
t=[0:0.1:30];
for i=1:length(a)
  num=a(i)*[1 -0.5]; den=[1 2 1]; sys_o = tf(num,den);
  [mag,phase,w]=bode(sys_o);
  [gm,pm,w1,w2]=margin(mag,phase,w);
  gmv(i)=gm; 
 sys_cl = feedback(sys_o,[1]);
 [y,x]=step(-sys_cl,t);
  yf(i)=1-y(length(t));
  ym(i)=-min(y)*100;
end
�gure(1), plot(a,gmv), grid, xlabel('a'), ylabel('gm')
�gure(2), plot(a,yf ), grid, xlabel('a'), ylabel('steady-state error')
�gure(3), plot(a,ym), grid, xlabel('a'), ylabel('maximum initial undershoot [%]') 

FIGURE CP12.7
Script to generate all the plots.
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FIGURE CP12.7
CONTINUED: (b) Steady-state tracking error.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



712 CHAPTER 12 Robust Control Systems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

a

m
ax

im
um

 in
iti

al
 u

nd
er

sh
oo

t [
%

]

FIGURE CP12.7
CONTINUED: (c) Maximum initial undershoot.
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CONTINUED: (d) Gain margin.
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CP12.8 The plant (balloon and canister dynamics plus motor) is given by

G(s) =
1

(s+ 2)(s + 4)(s + 10)
,

and the PID controller is

Gc(s) =
KD(s

2 + as+ b)

s
.

Let a = 6. Then using the root locus methods, we determine that with

KD = 12.5 and b = 10

we have the roots

s1 = −8.4

s2 = −4.7

s3,4 = −1.43 ± j1.05 .

Thus, ζ = 0.8. The plot of y(t) is shown in Figure CP12.8. The percent
overshoot is less that 3%, as desired.
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FIGURE CP12.8
Simulation of the GRID device.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



C H A P T E R 1 3

Digital Control Systems

Exercises

E13.1 (a) Elevation contours on a map are discrete signals. (b) Temperature in
a room is a continuous signal. (c) A digital clock display is a discrete

signal. (d) The score of a basketball game is a discrete signal. (e) The
output of a loudspeaker is a continuous signal.

E13.2 (a) Using long-division we determine that

Y (z) = z−1 + 3z−2 + 7z−3 + 15z−4 + · · ·

Therefore, with

Y (z) =
∞
∑

k=0

y(kT )z−k

we have

y(0) = 0 y(T ) = 1 y(2T ) = 3 y(3T ) = 7 y(4T ) = 15 .

(b) The exact solution is

y(kT ) = ek ln 2 − 1 .

E13.3 For the system response

y(kT ) = kT

where k ≥ 0, we have

Y (z) =
Tz

(z − 1)2
.

E13.4 The partial fraction expansion of Y (s) is

Y (s) =
5

s(s+ 2)(s + 10)
=

0.25

s
+

0.0625

s+ 10
− 0.3125

s+ 2
.

714
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Then, using Table 13.1 in Dorf and Bishop, we determine that

Y (z) = 0.25
z

z − 1
+ 0.0625

z

z − e−10T
− 0.3125

z

z − e−2T

= 0.25
z

z − 1
+ 0.0625

z

z − 0.135
− 0.3125

z

z − 0.670
,

where T = 0.1.

E13.5 The Space Shuttle and robot arm control block diagram is shown in Fig-
ure E13.5. The human operator uses information from the computer gen-
erated data display and visual sensory data from the TV monitor and by
looking out the window. He/she commands the robot arm via a joystick
command to the computer.

-
+

Computer D/A
Robot arm
& motors/gears

TV monitor
& window view

measurement

joint angle &
rate sensors

measurement

A/D

human
operator

data
display

digital analog

analogdigital

digital

ref.

joystick
command tip

position

FIGURE E13.5
The Space Shuttle/robot arm control block diagram.

E13.6 From Section 10.8 in Dorf and Bishop, we find that the design resulted
in the compensator

Gc(s) =
6.66s + 1

66.6s + 1
= 0.1

s+ 0.15

s + 0.015
.

Using the relationships

A = e−aT , B = e−bT , and C
1−A

1−B
= K

a

b
,

we compute

A = e−0.15(0.001) = 0.99985 , B = e−0.015(0.001) = 0.999985 , and C = 0.1 .
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Therefore,

D(z) = C
z −A

z −B
= 0.1

z − 0.99985

z − 0.999985
.

E13.7 Using long-division, we determine that

Y (z) = 1 + 3.5z−1 + 5.75z−2 + 6.875z−3 + · · ·

Therefore, with

Y (z) =
∞
∑

k=0

y(kT )z−k

we have

y(0) = 1 y(T ) = 3.5 y(2T ) = 5.75 y(3T ) = 6.875 .

E13.8 The closed-loop system with

T (z) =
z

z2 + 0.2z − 1.0

is unstable since one of the poles of the transfer function (z = −1.1 and
z = 0.90) lies outside the unit circle in the z-plane.

E13.9 (a) Using long-division we determine that

Y (z) = z−1 + z−2 + z−3 + z−4 + · · ·

Therefore, with

Y (z) =
∞
∑

k=0

y(kT )z−k

we have

y(0) = 0 y(T ) = 1 y(2T ) = 1 y(3T ) = 1 y(4T ) = 1 .

(b) The exact solution is

y(kT ) = 1− δ(k)

where δ(k) = 1 when k = 0 and δ(k) = 0 when k 6= 0.

E13.10 We compute T/τ = 1.25.

(a) Using Figure 13.19 in Dorf and Bishop, we determine that Kτ = 0.8
which implies K = 100.

(b) Using Figure 13.21 in Dorf and Bishop, we determine that ess = 0.75.
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(c) Using Figure 13.20 in Dorf and Bishop, we determine that Kτ = 0.7
which implies K = 88.

E13.11 (a) The transfer function (including the zero-order hold) is

Go(s)Gp(s) =
100(1 − e−sT )

s(s2 + 100)
.

Expanding into partial fractions yields

G(z) = (1− z−1)Z
{

1

s
− s

s2 + 100

}

= (1− z−1)

(

z

z − 1
− z(z − cos 10T )

z2 − 2 cos 10Tz + 1

)

.

When T = 0.05 we ha,ve

G(z) =
0.1224(z + 1)

z2 − 1.7552z + 1
.

(b) The system ismarginally stable since the system poles, z = −0.8776±
0.4794j, are on the unit circle.

(c) The impulse response and sinusoidal input response are shown in
Figure E13.11.
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FIGURE E13.11
Impulse and sinusoidal (natural frequency) input response.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



718 CHAPTER 13 Digital Control Systems

E13.12 The partial fraction expansion of X(s) is

X(s) =
s+ 1

s2 + 5s+ 6
=

2

s+ 3
− 1

s+ 2
.

Then, with T = 1, we have

X(z) =
2z

z − e−3
− z

z − e−2
=

2z

z − 0.0498
− z

z − 1353
.

E13.13 The root locus is shown in Figure E13.13. For stability: 2.2 < K < 5.8.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

K=5.8

K=2.2

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

FIGURE E13.13
Root locus with unit circle (dashed curve).

E13.14 Given Gp(s), we determine that (with K = 5)

G(z) =
5(1 − e−1)z

z(z − e−1)
.

The closed-loop characteristic equation is

z2 + 1.792z + 0.368 = 0

and the system is unstable, since there is a pole at z = −1.55. The
system is stable for

0 < K < 4.32 .
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E13.15 The transfer function G(z) is

G(z) =
0.1289z + 0.02624

z2 − 0.3862z + 0.006738
.

The sampling time is T = 1 s.

E13.16 The transfer function G(z) is

G(z) =
0.2759z + 0.1982

z2 − 1.368z + 0.3679
.

The sampling time is T = 0.5 s.
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Problems

P13.1 The plot of the input to the sampler and the output r∗(t) is shown in
Figure P13.1.
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FIGURE P13.1
Plot of r(t) = sin(ωt) and r∗(t).

P13.2 The plot of the input and the output is shown in Figure P13.2.
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FIGURE P13.2
Plot of r(t) = sin(ωt) and output of sample and hold.
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P13.3 The transfer function

Y (z)/R∗(z) = G(z) =
z

z − e−T
.

The ramp input is represented by

R(z) =
Tz

(z − 1)2
.

The output Y (z) = G(z)R(z) is obtained by long division:

Y (z) = Tz−1 + T (2 + e−T )z−2 − T
[

(1 + 2e−T )− (2 + e−T )2
]

z−3

+ T
[

e−T + (1 + 2e−T )(2 + e−T )

− (2 + e−T )
(

(1 + 2e−T )− (2 + e−T )2
)]

z−4 + · · ·

P13.4 The transfer function

Y (s)/R∗(s) =
1− e−sT

s(s+ 2)
.

The partial fraction expansion (with T = 1) yields

G(z) = (1− z−1)Z
{

0.5

s
− 0.5

s+ 2

}

= (1− z−1)

{

0.5z

z − 1
− 0.5z

z − 0.1353

}

=
0.4323

z − 0.1353
.

P13.5 The step input is

R(z) =
z

z − 1
.

Also,

T (z) =
G(z)

1 +G(z)
=

0.6321

z + 0.2643
.

So,

Y (z) = T (z)R(z) =
0.6321

z + 0.2643

z

z − 1
=

0.6321z

z2 − 0.7357z − 0.2643
.

Using long-division we determine that

Y (z) = 0.6321z−1 +0.4650z−2 +0.5092z−3 +0.4975z−4 +0.5006z−5 + · · ·

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



722 CHAPTER 13 Digital Control Systems

Therefore, with

Y (z) =
∞
∑

k=0

y(kT )z−k

we have y(0) = 0, y(T ) = 0.6321, y(2T ) = 0.4650, y(3T ) = 0.5092,
y(4T ) = 0.4975, and y(5T ) = 0.5006.

P13.6 Using the final value theorem (see Table 13.1 in Dorf and Bishop), we
determine that (for a step input)

Yss = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)
0.6321

z + 0.2643

z

z − 1
=

0.6321

1.2643
= 0.5 .

And using the initial value theorem, we compute

Yo = lim
z→∞

Y (z) = lim
z→∞

0.6321

z + 0.2643

z

z − 1
= 0 .

P13.7 Using Figures 13.19 and 13.21 in Dorf and Bishop, we determine that
the performance specifications are satisfied when Kτ = 0.5 and T

τ = 2.
Computing K and T (with τ = 0.5) yields K = 1 and T = 1.

P13.8 We can select K = 1 and r = 0.2. The step responses for the compensated
and uncompensated systems are shown in Figure P13.8.
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FIGURE P13.8
Plot of compensated and uncompensated systems.
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P13.9 Consider the compensator

Gc(s) = K
s+ a

s+ b
.

Then, using Bode methods we can select a = 1, b = 4, and K = 1. The
compensated system phase margin is P.M. = 50o and the gain margin is
G.M. = 15dB. The crossover frequency is ωc = 2.15 rad/sec. Utilizing the
Gc(s)-to-D(z) method and selecting T = 0.01 second, we determine

D(z) = C
z −A

z −B
=

z − 0.99

z − 0.96
.

We use the relationships

A = e−aT , B = e−bT , and C
1−A

1−B
= K

a

b
,

to compute A = e−0.01 = 0.99, B = e−0.04 = 0.96, and C = 1.

P13.10 (a) The transfer function G(z)D(z) is

G(z)D(z) = K
0.0037z + 0.0026

z2 − 1.368z + 0.3679
.

(b) The closed-loop system characteristic equation is

1 +K
0.0037z + 0.0026

z2 − 1.368z + 0.3679
= 0 .

(c) Using root locus methods, the maximum value of K is found to be
Kmax = 239.

(d) Using Figure 13.19 in Dorf and Bishop for T/τ = 1 and a maximum
overshoot of 0.3, we find that K = 75. (e) The closed-loop transfer
function (with K = 75) is

T (z) =
0.2759z + 0.1982

z2 − 1.092z + 0.5661
.

The step response is shown in Figure P13.10.

(f) The closed-loop poles with K = 119.5 are z = 0.4641 ± 0.6843j. The
overshoot is 0.55.

(g) The step response is shown in Figure P13.10 (for K = 119.5).
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FIGURE P13.10
Step response for K = 75 and K = 119.5.

P13.11 (a) Consider the compensator

Gc(s) = K
s+ a

s+ b
.

Then, using Bode methods we can select a = 0.7, b = 0.1, and K =
150. The compensated system overshoot and steady-state tracking
error (for a ramp input) are P.O. = 30% and ess < 0.01.

(b) Utilizing the Gc(s)-to-D(z) method (with T = 0.1 second), we deter-
mine

D(z) = C
z −A

z −B
= 155.3

z − 0.9324

z − 0.99
.

We use the relationships

A = e−aT , B = e−bT , and C
1−A

1−B
= K

a

b
,

to compute

A = e−0.007 = 0.9324 , B = e−0.01 = 0.99 , and C = 155.3 .

(c) The step response for the continuous system with Gc(s) in part(a)
and for the discrete system with D(z) in part (b) is shown in Fig-
ure P13.11a.

(d) Utilizing the Gc(s)-to-D(z) method (with T = 0.01 second), we de-
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FIGURE P13.11
(a) Step response for continuous and discrete systems (T=0.1s) in Parts (a) and (b).

termine

D(z) = C
z −A

z −B
= 150

z − 0.993

z − 0.999
.

We use the relationships

A = e−aT

B = e−bT

C
1−A

1−B
= K

a

b

to compute

A = e−0.07 = 0.993

B = e−0.001 = 0.999

C = 150 .

The step response for the continuous system with Gc(s) in part(a)
and for the discrete system with D(z) in part (d) is shown in Fig-
ure P13.11b.

(e) The ramp response for the continuous system with Gc(s) in part(a)
and for the discrete system with D(z) in part (b) is shown in Fig-
ure P13.11c.
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FIGURE P13.11
CONTINUED: (b) Step response for continuous and discrete systems (T=0.01s) in Parts
(a) and (d).
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FIGURE P13.11
CONTINUED: (c) Ramp response for continuous and discrete systems (T=0.1s) in Parts
(a) and (b).
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P13.12 The root locus is shown in Figure P13.12. For stability: 0 < K < 2.
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FIGURE P13.12
Root locus for 1 +K z+0.5

z(z−1)
= 0.

P13.13 The root locus is shown in Figure P13.13. When K = 0.027, the char-
acteristic equation has two equal roots: z1,2 = 0.7247 and z3 = 0.2593.
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FIGURE P13.13
Root locus for 1 +K z2+1.1206z−0.0364

z3
−1.7358z2+0.8711z−0.1353 = 0.
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P13.14 The root locus is shown in Figure P13.14. When K = 9.5655× 10−5, the
two real roots break away from the real axis at z = 0.99. For stability:
K < 9.7 × 10−5.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

x

x

xo o

Real Axis

Im
ag

 A
x

is

Unit circle (dashed line)

FIGURE P13.14
Root locus for 1 +K z3+10.3614z2+9.758z+0.8353

z4
−3.7123z3+5.1644z2

−3.195z+0.7408 = 0.

P13.15 Given

Gp(s) =
20

s− 5

and the sample and hold (T=0.1s) as shown in Figure 13.18 in Dorf and
Bishop, we determine that

G(z) =
2.595

z − 1.649
.

Then, with R(z) = z/(z − 1), we have

Y (z) =
2.595z

(z − 1)(z + 0.9462)
.

Therefore, Y (z) = 2.59z−1 + 0.14z−2 + 2.46z−3 + 0.26z−4 + · · ·.
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P13.16 Given Gp(s) and the sample and hold (T=1s) as shown in Figure 13.18
in Dorf and Bishop, we determine that

G(z) =
0.22775z + 0.088984

z2 − 1.0498z + 0.049787
.

Then, with R(z) = z/(z − 1), we have

Y (z) =
0.22775z + 0.088984

z2 − 0.82203z + 0.13877

z

z − 1
.

The plot of y(kT ) is shown in Figure P13.16.
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FIGURE P13.16
Plot of y(kT ) for a step input.

P13.17 The root locus is shown in Figure P13.17 for

1 +K
0.39532z + 0.30819

z2 − 1.4724z + 0.47237
= 0 .

The limiting value of the gain for stability is K = 1.71.
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FIGURE P13.17
Root locus for 1 +K 0.39532z+0.30819

z2
−1.4724z+0.47237

= 0.

P13.18 The plot of the step responses for 0 ≤ T ≤ 1.2 is shown in Figure P13.18.
The overshoot and settling time summary is given in Table P13.18.

T 0 0.2 0.4 0.6 0.8 1.0 1.2

P.O. 16.3% 20.6% 25.6% 31.3% 36.9% 40.0% 51.0%

Ts 8.1 8.4 8.8 11.4 14.4 16.0 19.2

TABLE P13.18 Performance summary.
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FIGURE P13.18
Step responses for 0 ≤ T ≤ 1.2.
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Advanced Problems

AP13.1 Given the sample and hold with Gp(s), we determine that

G(z) =
10.5K(z − 0.9048)

(z − 1)2
.

The root locus is shown in Figure AP13.1. For stability: 0 < K < 0.2.
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FIGURE AP13.1
Root locus for 1 +K

10.5(z−0.9048)
(z−1)2

= 0 with unit circle (dashed line).

AP13.2 The root locus is shown in Figure AP13.2a. The loop transfer function is
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FIGURE AP13.2
(a) Root locus for 1 +K 0.0379z

(z−1)(z−0.368)
= 0.
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G(z)D(z) = K
0.0379z

(z − 1)(z − 0.368)
.

For stability: Kmax = 72. We select K = 8.2. The step response is shown
in Figure AP13.2b.
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FIGURE AP13.2
CONTINUED: (b) Step response with K = 8.2.

AP13.3 The root locus is shown in Figure AP13.3a. The maximum gain for
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FIGURE AP13.3
(a) Root locus for 1 +K 0.07441z+0.06095

z2
−1.474z+0.6098 = 0.
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stability is Kmax = 44.3. We select K = 6. The step response is shown in
Figure AP13.3b.
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FIGURE AP13.3
CONTINUED: (b) Step response with K = 6.

AP13.4 The loop transfer function is

G(z) =
10(1 − e−T )

z − e−T
,

and the closed-loop transfer function is

T (z) =
10(1 − e−T )

z − (11e−T − 10)
.

For stability, we require

|11e−T − 10| < 1 .

Solving for T yields

0 < T < 0.2 .

Selecting T = 0.1s provides a stable system with rapid response; the
settling time is Ts = 0.2s. The step response is shown in Figure AP13.4.
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FIGURE AP13.4
Step response with T = 0.1s.

AP13.5 The maximum gain for stability is Kmax = 63.15.

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

System: sysz
Gain: 63.2
Pole: 0.725 − 0.686i
Damping: 0.00308
Overshoot (%): 99
Frequency (rad/sec): 7.58

Unit circle (dashed line)

FIGURE AP13.5
Root locus for 1 +K 0.004535z+0.004104

z2
−1.741z+0.7408 = 0.
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Design Problems
The plant model with parameters given in Table CDP2.1 in Dorf andCDP13.1

Bishop is given by:

Gp(s) =
26.035

s(s+ 33.142)
,

where we neglect the motor inductance Lm and where we switch off the
tachometer feedback (see Figure CDP4.1 in Dorf and Bishop). Letting

G(z) = Z
{

G≀(∫)G√(∫)
}

we obtain

G(z) =
1.2875e − 05(z + 0.989)

(z − 1)(z − 0.9674)
.

A suitable controller is

D(z) =
20(z − 0.5)

z + 0.25
.

The step response is shown below. The settling time is under 250 samples.
With each sample being 1 ms this means that Ts < 250 ms, as desired.
Also, the percent overshoot is P.O. < 5%.
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DP13.1 (a) Given the sample and hold with Gp(s), we determine that

KG(z) = K
0.1228

z − 0.8465
.

The root locus is shown in Figure DP13.1a. For stablity: 0 ≤ K < 15.
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FIGURE DP13.1
(a) Root locus for 1 +K 0.1228

z−0.8465 = 0 with unit circle (dashed line).

(b) A suitable compensator is

Gc(s) =
15(s + 0.5)

s+ 5
.

Utilizing the Gc(s)-to-D(z) method (with T = 0.5 second), we deter-
mine

D(z) = C
z −A

z −B
= 6.22

z − 0.7788

z − 0.0821
.

We use the relationships

A = e−aT , B = e−bT , and C
1−A

1−B
= K

a

b
,

to compute

A = e−0.5(0.5) = 0.7788 , B = e−0.5(5) = 0.0821 , and C = 6.22 .
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(c) The step response is shown in Figure DP13.1b.
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FIGURE DP13.1
CONTINUED: (b) Closed-loop system step response.

DP13.2 With the sample and hold (T=10ms), we have

G(z) =
0.00044579z + 0.00044453

z2 − 1.9136z + 0.99154
.

A suitable compensator is

D(z) = K
z − 0.75

z + 0.5
,

where K is determined so that ζ of the system is 1/
√
2. The root locus is

shown in Figure DP13.2. We choose K = 1400.
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FIGURE DP13.2
Root locus for 1 +K z−0.75

z+0.5
0.00044579z+0.00044453
z2

−1.9136z+0.99154
= 0.

DP13.3 The root locus is shown in Figure DP13.3a.
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FIGURE DP13.3
(a) Root locus for 1 +K z+1

(z−1)(z−0.5)
= 0.

The gain for ζ = 0.707 is K = 0.0627. The step response is shown in
Figure DP13.3b. The settling time is Ts = 14T = 1.4s and P.O. = 5%.

UPLOADED BY AHMAD JUNDI                                                  © 2011 Pearson    Education, Inc., Upper Saddle River, NJ. .



740 CHAPTER 13 Digital Control Systems

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

No. of Samples

A
m

p
li

tu
d

e

FIGURE DP13.3
CONTINUED: (b) Step response with K = 0.0627.

DP13.4 With the sample and hold (T=1s), we have

G(z) =
0.484(z + 0.9672)

(z − 1)(z − 0.9048)
.
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FIGURE DP13.4
(a) Root locus for 1 +K z−0.88

z+0.5
0.484(z+0.9672)
(z−1)(z−0.9048)

= 0.
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FIGURE DP13.4
CONTINUED: (b) Step response for K = 12.5.

A suitable compensator is

D(z) = K
z − 0.88

z + 0.5
,

where K is determined so that ζ of the system is 0.5. The root locus
is shown in Figure DP13.4a. We choose K = 12.5. The step response
is shown in Figure DP13.4b. Also, Kv = 1, so the steady-state error
specification is satisfied.

DP13.5 Select T = 1 second. With the sample and hold, we have

G(z) =
0.2838z + 0.1485

z2 − 1.135z + 0.1353
.

The root locus is shown in Figure DP13.5. To meet the percent overshoot
specification, we choose K so that ζ of the system is 0.7. This results in
K = 1. The step response has an overshoot of P.O. = 4.6%. Also, from
Figure 13.21 in Dorf and Bishop, we determine that the steady-state error
to a ramp input is ess = 2 (since T/τ = 2, and Kτ = 0.3).
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FIGURE DP13.5
Root locus for 1 +K 0.2838z+0.1485

z2
−1.135z+0.1353 = 0.

DP13.6 With the sample and hold at T = 1 , we have

G(z) =
0.298z + 0.296

z2 − 1.98z + 0.9802
.

Consider the digital controller

Dz) = K
z − 0.9

z + 0.6
.

The root locus is shown in Figure DP13.6. To meet the percent overshoot
specification, we choose K so that ζ of the system is greater than 0.52.
We select K = 2. The step response has an overshoot of P.O. = 11.9%
and the settling time is Ts = 17.8s.
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FIGURE DP13.6
Root locus for 1 +K z−0.9
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FIGURE DP13.6
CONTINUED: (b) Step response for K = 2.
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Computer Problems

CP13.1 The m-file script and unit step response are shown in Figure CP13.1.

num=[0.2145 0.1609]; den=[1 -0.75 0.125];

sysd = tf(num,den,1);

step(sysd,0:1:50)
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FIGURE CP13.1
Step response.

CP13.2 The m-file script utilizing the c2d function is shown in Figure CP13.2.

% Part (a)
num = [1]; den = [1 0]; T = 1;
sys = tf(num,den);
sys_d = c2d(sys,T,'zoh')
% 
% Part (b)
num = [1 0]; den = [1 0 2]; T = 1;
sys = tf(num,den);
sys_d=c2d(sys,T,'zoh')

Transfer function:

  1

-----

z - 1

 

Transfer function:

0.6985 z - 0.6985

------------------

z^2 - 0.3119 z + 1

 

FIGURE CP13.2
Script utilizing the c2d function for (a) and (b).
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% Part (c)
num = [1 4]; den = [1 3]; T = 1;
sys = tf(num,den);
sys_d = c2d(sys,T,'zoh')
% 
% Part (d)
num = [1]; den = [1 8 0]; T = 1;
sys = tf(num,den);
sys_d = c2d(sys,T,'zoh')

Transfer function:

 z + 0.267

-----------

z - 0.04979

 

Transfer function:

0.1094 z + 0.01558

-------------------

z^2 - z + 0.0003355

FIGURE CP13.2
CONTINUED: Script utilizing the c2d function for (c) and (d).

CP13.3 The continuous system transfer function (with T = 0.1 sec) is

T (s) =
13.37s + 563.1

s2 + 6.931s + 567.2
.

The step response using the dstep function is shown in Figure CP13.3a.
The contrinuous system step response is shown in Figure CP13.3b.
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FIGURE CP13.3
(a) Unit step response using the dstep function.
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FIGURE CP13.3
CONTINUED: (b) Continuous system step response (* denote sampled-data step response).

CP13.4 The root locus in shown in Figure CP13.4. For stability: 0 < K < 2.45.
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FIGURE CP13.4
Root locus for 1 +K z

z2
−z+0.45

= 0.
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CP13.5 The root locus in shown in Figure CP13.5. For stability: 0 < K < ∞.
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FIGURE CP13.5
Root locus for 1 +K
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(z−0.08)(z−1)

= 0

CP13.6 The root locus is shown in Figure CP13.6.
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FIGURE CP13.6
Root locus.
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We determine the range of K for stability is 0.4 < K < 1.06.

ÈSelect a point in the graphics window

selected_point =
  -0.8278 + 0.5202i

ans =
    0.7444

Select a point in the graphics window

selected_point =
  -0.9745 - 0.0072i

ans =
    0.3481 Kmin

Kmax

% Part (a)

num=[1 4 4.25 ]; den=[1 -0.1 -1.5];

sys = tf(num,den);

rlocus(sys), hold on

xc=[-1:0.1:1];c=sqrt(1-xc.^2);

plot(xc,c,':',xc,-c,':')

hold off

%

% Part (b)

rlocfind(sys)

rlocfind(sys)

FIGURE CP13.6
CONTINUED: Using the rlocus and rlocfind functions.

CP13.7 Using root locus methods, we determine that an acceptable compensator
is

Gc(s) = 11.7
s+ 6

s + 20
.

With a zero-order hold and T = 0.02 sec, we find that
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FIGURE CP13.7
System step response (* denotes sampled-data response).
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D(z) =
11.7z − 10.54

z − 0.6703
.

The closed-loop step response is shown in Figure CP13.7.
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