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O  N  E 
 
Introduction 

 

ANSWERS TO REVIEW QUESTIONS  
1. Guided missiles, automatic gain control in radio receivers, satellite tracking antenna 

2. Yes - power gain, remote control, parameter conversion; No - Expense, complexity 

3. Motor, low pass filter, inertia supported between two bearings 

4. Closed-loop systems compensate for disturbances by measuring the response, comparing it to 

the input response (the desired output), and then correcting the output response. 

5. Under the condition that the feedback element is other than unity 

6. Actuating signal 

7. Multiple subsystems can time share the controller. Any adjustments to the controller can be 

implemented with simply software changes. 

8. Stability, transient response, and steady-state error 

9. Steady-state, transient 

10. It follows a growing transient response until the steady-state response is no longer visible. The 

system will either destroy itself, reach an equilibrium state because of saturation in driving 

amplifiers, or hit limit stops. 

11. Natural response 

12. Determine the transient response performance of the system. 

13. Determine system parameters to meet the transient response specifications for the system. 

14. True 

15. Transfer function, state-space, differential equations 

16. Transfer function - the Laplace transform of the differential equation 

State-space - representation of an nth order differential equation as n simultaneous first-order 

differential equations 

Differential equation - Modeling a system with its differential equation 

 
SOLUTIONS TO PROBLEMS  

1. Five turns yields 50 v. Therefore K = 
50 volts

5 x 2π rad
= 1.59 
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2. 

  

Thermostat
Amplifier and 

valves
Heater

Temperature 
difference

Voltage 
difference

Fuel 
flow

Actual 
temperature

Desired 
temperature

+

-

 

 3. 

 
Desired 

roll 
angle

Input 
voltage

+

-

Pilot 
controls

Aileron 
position 
control

Error 
voltage

Aileron 
position

Aircraft 
dynamics

Roll 
rate

Integrate

Roll 
angle

Gyro
Gyro voltage  

4. 

 

 
Speed 
Error 

voltage

Desired 
speed

Input 
voltage

+

-

transducer Amplifier

Motor 
and 

drive 
system

Actual 
speed

Voltage 
proportional 

to actual speed

Dancer 
position 
sensor

Dancer 
dynamics
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5. 

Desired 
power

 
Power 
Error 

voltage

Input 
voltage

+

-

Transducer Amplifier

Motor 
and 
drive 

system

Voltage 
proportional 

to actual power

Rod 
position

Reactor

Actual 
power

Sensor & 
transducer

 

 

 

6. 

Desired 
student 

population +

-

Administration

Population 
error

Desired 
student 

rate

Admissions

Actual 
student 

rate +
-

Graduating 
and 

drop-out 
rate

Net rate 
of influx

Integrate

Actual 
student 
population

 

7. 

Desired 
volume +

-
Transducer

Volume 
control circuit

Voltage 
proportional 

to desired 
volume

Volume 
error

Radio

Voltage 
representing 
actual volume Actual  

volume

-

+

Transducer
-

Speed

Voltage 
proportional 
to speed

Effective 
volume
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8.  

a. 

R
+V

-V

Differential 
amplifier

Desired 
level

+-

Power 
amplifier

Actuator

Valve

Float

Fluid input

Drain
Tank

R
+V

-V

 

b. 

Desired 
level

Amplifiers Actuator 
and valve

Flow 
rate in

Integrate

Actual 
level

Flow 
rate out

Potentiometer
+

-

+

Drain

FloatPotentiometer

-

voltage 
in

voltage 
out

Displacement
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9. 

 
Desired 
force

Transducer Amplifier Valve Actuator 
and load

Tire

Load cell

Actual 
force+

-

Current Displacement Displacement

 

10. 

Commanded 
blood pressure

Vaporizer Patient

Actual 
blood 
pressure+

-

Isoflurane 
concentration

 

11. 

  
+

-

Controller  
&  

motor
Grinder

Force Feed rate
Integrator

Desired  
depth Depth

 

12. 

 
+

-

Coil 
circuit

Solenoid coil  
&  actuator

Coil 
current Force Armature  

&  
spool dynamics

Desired  
position DepthTransducer

Coil 
voltage

LVDT
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13. 

a. 
 
 
 
 
 
 
 
 
 

 
 
 
b. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

If the narrow light beam is modulated sinusoidally the pupil’s diameter will also 
vary sinusoidally (with a delay see part c) in problem) 
 

c. If the pupil responded with no time delay the pupil would contract only to the point 
where a small amount of light goes in. Then the pupil would stop contracting and 
would remain with a fixed diameter. 

+
Desired 
Light 
Intensity 

Brain Internal eye 
muscles 

Retina + Optical 

Retina’s 
Light 
Intensity 

Nervous 
system 
electrical 
impulses 

Nervous 
system 
electrical 
impulses 

+

Desired 
Light 
Intensity 

Brain Internal eye 
muscles 

Retina + Optical 
Nerves 

Retina’s 
Light 
Intensity 

External 
Light 
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14. 

 
 
 
 
 
 
 
 
 
 
 
 

15. 
 

 
 
 
16. 

 
 
 
17.  

a. L
di
dt

+ Ri = u(t) 

 

b. Assume a steady-state solution iss = B. Substituting this into the differential equation yields RB = 

1,  

from which B = 
1
R

. The characteristic equation is LM + R = 0, from which M = -
R
L

. Thus, the total 

+Desired Amplifier 

Gyroscopic 

Actual 
HT’s 
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solution is i(t)  =  Ae-(R/L)t +
1
R

. Solving for the arbitrary constants, i(0) = A + 
1
R

 =  0. Thus, A  =  

- 
1
R

. The final solution is i(t) = 
1
R

 -- 
1
R

e-(R/L)t = 
1
R

(1 − e−( R / L) t ) . 

 

 c. 

 

18. 

a. Writing the loop equation, Ri + L
di
dt

+
1
C

idt + vC (0)∫ = v(t)  

b. Differentiating and substituting values, 
2

2 2 25 0d i di i
dt dt

+ + =  

Writing the characteristic equation and factoring, 
2 2 25 ( 1 24 )( 1 24 )M M M i M i+ + = + + + − . 

The general form of the solution and its derivative is  

cos( 24 ) sin( 24 )t ti Ae t Be t− −= +  

( 24 ) cos( 24 ) ( 24 ) sin( 24 )t tdi A B e t A B e t
dt

− −= − + − +  

Using 
(0) 1(0) 0; (0) 1Ldi vi

dt L L
= = = =  

i 0 A= =0 

(0) 24di A B
dt

= − + =1 

Thus, A = 0 and 
1
24

B = .  

The solution is 
1 sin( 24 )
24

ti e t−=  
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c. 

 

19.  
a. Assume a particular solution of  

 

Substitute into the differential equation and obtain 

 

Equating like coefficients,  

  

 
From which, C =  

35
53    and D = 

10
53  . 

The characteristic polynomial is  

 

Thus, the total solution is  

                               
Solving for the arbitrary constants, x(0) = A +

35
53   = 0. Therefore, A = - 

35
53  . The final solution is 

 

b. Assume a particular solution of  
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xp = Asin3t + Bcos3t 

Substitute into the differential equation and obtain 

(18A − B)cos(3t) − (A + 18B)sin(3t) = 5sin(3t)  

Therefore, 18A – B = 0 and –(A + 18B) = 5. Solving for A and B we obtain 

xp = (-1/65)sin3t + (-18/65)cos3t 

The characteristic polynomial is  

 M2 + 6 M + 8 = M + 4 M + 2  

Thus, the total solution is  
 x = C e- 4 t + D e- 2 t + -

18
65

cos 3 t -
1

65
sin 3 t

 

Solving for the arbitrary constants, x(0) = C + D −
18
65

= 0 .  

Also,  the derivative of the solution is 
 

= -
3

65
cos 3 t +

54
65

sin 3 t - 4 C e- 4 t - 2 D e- 2 tdx 
dt  

 

Solving for the arbitrary constants, x
.
(0)  −

3
65

− 4C − 2D = 0 , or  C = −
3

10
and D = 

15
26

. 

The final solution is 
 x = -

18
65

cos 3 t -
1

65
sin 3 t -

3
10

e- 4 t +
15
26

e- 2 t

 

c. Assume a particular solution of  

xp = A 

Substitute into the differential equation and obtain 25A = 10, or A = 2/5. 

The characteristic polynomial is  

 M2 + 8 M + 25 = M + 4 + 3 i M + 4 - 3 i  

Thus, the total solution is  
 x =

2
5

+ e- 4 t B sin 3 t + C cos 3 t
 

Solving for the arbitrary constants, x(0) = C + 2/5 = 0. Therefore, C = -2/5. Also, the derivative of the 

solution is 



1-11   Solutions to Problems 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

= 3 B -4 C cos 3 t - 4 B + 3 C sin 3 t e- 4 tdx 
dt  

Solving for the arbitrary constants, x
.
(0)  = 3B – 4C = 0. Therefore, B = -8/15. The final solution is 

 

x(t) =
2
5

− e−4t 8
15

sin(3t) +
2
5

cos(3t )⎛ 
⎝ 

⎞ 
⎠  

20.  

a. Assume a particular solution of  

 

Substitute into the differential equation and obtain 

 

Equating like coefficients,  

  

 
From which, C = - 

1
5    and D = - 

1
10  . 

The characteristic polynomial is  

 

Thus, the total solution is  

 

Solving for the arbitrary constants, x(0) = A - 
1
5   = 2. Therefore, A = 

11
5

. Also, the derivative of the 

solution is 
dx 
dt  

Solving for the arbitrary constants, x
.
(0)  = - A  + B - 0.2 = -3. Therefore, B = −

3
5

. The final solution 

is 
 

x(t) = −
1
5

cos(2t) −
1

10
sin(2t) + e−t 11

5
cos(t) −

3
5

sin(t)⎛ 
⎝ 

⎞ 
⎠  

b. Assume a particular solution of  

xp = Ce-2t + Dt + E 

Substitute into the differential equation and obtain 
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Equating like coefficients, C = 5, D = 1, and 2D + E = 0. 

From which, C = 5, D = 1, and E = - 2. 

The characteristic polynomial is  

 

Thus, the total solution is  

  

Solving for the arbitrary constants, x(0) = A + 5 - 2 = 2 Therefore, A = -1. Also,  the derivative of the 

solution is 
dx
dt

= (−A + B)e− t − Bte−t −10e−2t +1 

Solving for the arbitrary constants, x
.
(0)  = B - 8 = 1. Therefore, B = 9. The final solution is 

 

c. Assume a particular solution of  

xp = Ct2 + Dt + E 

Substitute into the differential equation and obtain 

 
Equating like coefficients, C = 

1
4  , D = 0, and 2C + 4E = 0. 

From which, C = 
1
4  , D = 0, and E = - 

1
8 . 

The characteristic polynomial is  

 

Thus, the total solution is  

 
Solving for the arbitrary constants, x(0) = A - 

1
8   = 1 Therefore, A = 

9
8 . Also,  the derivative of the 

solution is 

dx 
dt  

Solving for the arbitrary constants, x
.
(0)  = 2B = 2. Therefore, B = 1. The final solution is 
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21. 

+

-

Input 
transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics Spring

Fup

Spring 
displacement

Fout

Sensor

 

22. 

 

 

 

 

Amount of  
HIV viruses RTI

PI 

Desired 
Amount of  
HIV viruses 

Controller      Patient 
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23. 

a. 

 

  

 

 

 

 

 

 

 

 

Speed 
Actual 

Motive 
Force ECU Vehicle 

Electric
Motor 

Aerodynamic 

Climbing & 
Rolling 

Resistances 

Aerodynamic 

Speed 

+ +

Inverter 
Control 

Command 

Controlled 
Voltage 

Inverter 
Desired 
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b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Desired Speed Actual Motive 
ECU 

Accelerator 
Displacement 

Vehicle Accelerator, 

Aerodynamic 

Climbing & 
Rolling 

Resistances 

Aerodynamic 

Speed 

+ 
+_ 
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c. 

 

 
 

 

Speed 
Error 

Actual 

Total 
Motive 
Force 

ECU Vehicle 

Aerodynamic 

Climbing & 
Rolling 

Resistances 

Aerodynamic 

Speed 

+

+

Power Planetary 
Gear 
Control 

Inverter 
Control 

Command 

 
Inverter 

& 
Electric

Motor 

Motor  

Accelerator 

Accelerator 

ICE  

Desired 
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T  W  O 

 
Modeling in the  
Frequency Domain 

 

SOLUTIONS TO CASE STUDIES CHALLENGES  
 
        Antenna Control: Transfer Functions 

   Finding each transfer function: 

   Pot: 
Vi(s)
θi(s)   = 

10
π

   ;  

   Pre-Amp: 
Vp(s)
Vi(s)   = K;  

   Power Amp: 
Ea(s)
Vp(s)  = 

150
s+150  

    Motor: Jm = 0.05 + 5( 50
250 )

2
 = 0.25 

              Dm =0.01 + 3( 50
250 )

2
 = 0.13 

             
Kt
Ra

   = 
1
5  

             
KtKb

Ra
  = 

1
5   

    Therefore:  
θm(s)
Ea(s)    = 

Kt
RaJm

s(s+
1

Jm
(Dm+

KtKb
Ra

))
   = 

0.8
s(s+1.32)   

     And: 
θo(s)
Ea(s)   = 

1
5 

θm(s)
Ea(s)    = 

0.16
s(s+1.32)    

 

            Transfer Function of a Nonlinear Electrical Network 
 

             Writing the differential equation, 
d(i0 + δi)

dt
+ 2(i0 +δi)2 − 5 = v(t) . Linearizing i2 about i0, 

              

(i
0

+δi)
2

- i
0
2

= 2i ⎮
i=i

0

δi = 2i
0
δi.. Thus, (i

0
+δi)

2
= i

0
2

+ 2i
0
δi.
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Substituting into the differential equation yields, 
dδi
dt   + 2i02 + 4i0δi - 5 = v(t). But, the  

resistor voltage equals the battery voltage at equilibrium when the supply voltage is zero since    

the voltage across the inductor is zero at dc. Hence, 2i02 = 5, or i0 = 1.58. Substituting into the linearized 

differential equation, 
dδi
dt   + 6.32δi  = v(t). Converting to a transfer function, 

δi(s)
V(s)  = 

1
s+6.32   . Using the 

linearized i about i0, and the fact that vr(t) is 5 volts at equilibrium, the linearized vr(t) is vr(t) = 2i2 = 

2(i0+δi)2 = 2(i02+2i0δi) = 5+6.32δi. For excursions away from equilibrium, vr(t) - 5 = 6.32δi = δvr(t). 

Therefore, multiplying the transfer function by 6.32, yields, 
δVr(s)
V(s)   = 

6.32
s+6.32   as the transfer function 

about v(t) = 0.  

 

ANSWERS TO REVIEW QUESTIONS 
 

1. Transfer function 

2. Linear time-invariant 

3. Laplace 

4. G(s) = C(s)/R(s), where c(t) is the output and r(t) is the input. 

5. Initial conditions are zero 

6. Equations of motion 

7. Free body diagram 

8. There are direct analogies between the electrical variables and components and the mechanical variables 

and components. 

9. Mechanical advantage for rotating systems 

10. Armature inertia, armature damping, load inertia, load damping 

11. Multiply the transfer function by the gear ratio relating armature position to load position. 

12. (1) Recognize the nonlinear component, (2) Write the nonlinear differential equation, (3) Select the 

equilibrium solution, (4) Linearize the nonlinear differential equation, (5) Take the Laplace transform of 

the linearized differential equation, (6) Find the transfer function. 

 

SOLUTIONS TO PROBLEMS 
 

1. 

a. F(s) = e− stdt
0

∞

∫ = −
1
s

e−st

0

∞

=
1
s

 

 

b. F(s) = te− stdt
0

∞

∫ =
e−st

s2 (−st −1) 0
∞ =

−(st +1)
s2est

0

∞
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Using L'Hopital's Rule 

 

F(s) t → ∞ =
−s

s 3est
t →∞

= 0. Therefore,  F(s) =
1
s2 .  

c. F(s) = sinωt e− stdt
0

∞

∫ =
e− st

s2 + ω 2 (−ssinωt − ω cosωt)
0

∞

=
ω

s2 +ω 2  

d. F(s) = cosωt e− stdt
0

∞

∫ =
e− st

s2 + ω 2 (−scosωt + ω sinωt)
0

∞

=
s

s2 +ω 2  

2.  

a. Using the frequency shift theorem and the Laplace transform of sin ωt, F(s) = 
ω

(s+a)2+ω2  . 

b. Using the frequency shift theorem and the Laplace transform of cos ωt, F(s) = 
(s+a)

(s+a)2+ω2  . 

c. Using the integration theorem, and successively integrating u(t) three times, ⌡⌠dt  = t; ⌡⌠tdt  = 
t2
2   ; 

⌡
⌠t2

2dt  = 
t3
6   , the Laplace transform of t3u(t), F(s) = 

6
s4  . 

3. 
a. The Laplace transform of the differential equation, assuming zero initial conditions,   

is, (s+7)X(s) = 
5s

s2+22  . Solving for X(s) and expanding by partial fractions,  

 
Or,  

 

  

Taking the inverse Laplace transform, x(t) = - 
35
53  e-7t + (

35
53  cos 2t + 

10
53  sin 2t). 

b. The Laplace transform of the differential equation, assuming zero initial conditions, is,  
 

(s2+6s+8)X(s) = 
15

s2 + 9
. 

Solving for X(s)  

X(s) =
15

(s2 + 9)(s2 + 6s + 8)
 

and expanding by partial fractions, 
 

X(s) = −
3
65

6s +
1
9

9

s2 + 9
−

3
10

1
s + 4

+
15
26

1
s + 2
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Taking the inverse Laplace transform, 
 

x(t) = −
18
65

cos(3t) −
1
65

sin(3t) −
3

10
e−4t +

15
26

e−2t  

c. The Laplace transform of the differential equation is, assuming zero initial conditions, 

(s2+8s+25)x(s) = 
10
s

. Solving for X(s)  

X s = 10
s s 2 + 8 s + 25  

and expanding by partial fractions, 

X s = 2
5

1
s - 2

5

1 s + 4 + 4
9

9

s + 42 + 9  
Taking the inverse Laplace transform, 
 

x(t) =
2
5

− e−4t 8
15

sin(3t) +
2
5

cos(3t )⎛ 
⎝ 

⎞ 
⎠  

4.  

a. Taking the Laplace transform with initial conditions, s2X(s)-4s+4+2sX(s)-8+2X(s) = 
2

s2+22  . 

Solving for X(s),  

X(s) = 
3 2

2 2

4 4 16 18
( 4)( 2 2)

s s s
s s s

+ + +
+ + +

. 

Expanding by partial fractions 
 

2 2 2

1s 21 1 21(s 1) 22X(s)
5 s 2 5 (s 1) 1

+ + +⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
 

Therefore, 
1 2 1( ) 21 cos sin sin 2 cos 2
5 21 2

t tx t e t e t t t− −⎡ ⎤= + − −⎢ ⎥⎣ ⎦
 

 

b. Taking the Laplace transform with initial conditions, s2X(s)-4s-1+2sX(s)-8+X(s) = 
5

s+2   + 
1
s2  . 

Solving for X(s),  
4 3 2

2 2

4 17 23 2( )
( 1) ( 2)

s s s sX s
s s s
+ + + +

=
+ +

 

 

2 2

1 2 11 1 5( )
( 1) ( 1) ( 2)

X s
s s s s s

= − + + +
+ + +

 

Therefore 2( ) 2 11 5t t tx t t te e e− − −= − + + + . 

c. Taking the Laplace transform with initial conditions, s2X(s)-s-2+4X(s) =  
2
s3  . Solving for X(s),  
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4 3

3 2

2 3 2( )
( 4)

s sX s
s s

+ +
=

+
 

2 3

17 3 *2 1/ 2 1/ 88 2( )
4

s
X s

s s s

+
= + −

+
 

 

Therefore 217 3 1 1( ) cos 2 sin 2
8 2 4 8

x t t t t= + + − . 

5.  
Program: 
syms t 
'a' 
theta=45*pi/180 
f=8*t^2*cos(3*t+theta); 
pretty(f) 
F=laplace(f); 
F=simple(F); 
pretty(F) 
'b' 
theta=60*pi/180 
f=3*t*exp(-2*t)*sin(4*t+theta); 
pretty(f) 
F=laplace(f); 
F=simple(F); 
pretty(F) 
 
Computer response: 

 
ans = 
 
a 
 
 
theta = 
 
    0.7854 
 
 
     2    / PI       \ 
  8 t  cos| -- + 3 t | 
          \  4       / 
 
     1/2           2 
  8 2    (s + 3) (s  - 12 s + 9) 
  ------------------------------ 
               2     3 
             (s  + 9) 
 
ans = 
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b 
 
 
theta = 
 
    1.0472 
 
 
         / PI       \ 
  
 3 t sin| -- + 4 t | exp(-2 t) 
         \  3       / 
 
                                 1/2  2 
            1/2         1/2   3 3    s 
  12 s + 6 3    s - 18 3    + --------- + 24 
                                  2 
  ------------------------------------------ 
                 2            2 
               (s  + 4 s + 20) 
 
6.  

Program: 
syms s 
'a' 
G=(s^2+3*s+10)*(s+5)/[(s+3)*(s+4)*(s^2+2*s+100)]; 
pretty(G) 
g=ilaplace(G); 
pretty(g) 
'b' 
G=(s^3+4*s^2+2*s+6)/[(s+8)*(s^2+8*s+3)*(s^2+5*s+7)]; 
pretty(G) 
g=ilaplace(G); 
pretty(g) 
 
Computer response: 

ans = 
 
a 
 
 
                 2 
       (s + 5) (s  + 3 s + 10) 
  -------------------------------- 
                    2 
  (s + 3) (s + 4) (s  + 2 s + 100) 
 
                                            /                    1/2         1/2    \ 
                                            |         1/2      11    sin(3 11    t) | 
                               5203 exp(-t) | cos(3 11    t) - -------------------- | 
  20 exp(-3 t)   7 exp(-4 t)                \                          57233        / 
  ------------ - ----------- + ------------------------------------------------------ 
       103            54                                5562 
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ans = 
 
b 
 
 
            3      2 
           s  + 4 s  + 2 s + 6 
  ------------------------------------- 
            2              2 
  (s + 8) (s  + 8 s + 3) (s  + 5 s + 7) 
 
               /                        1/2        1/2    \ 
               |        1/2      4262 13    sinh(13    t) | 
1199 exp(-4 t) | cosh(13    t) - ------------------------ | 
               \                           15587          / 
----------------------------------------------------------- - 
                            417 
 
                   /                             /  1/2   \ \ 
                   |                      1/2    | 3    t | | 
                   |    /  1/2   \   131 3    sin| ------ | | 
         /   5 t \ |    | 3    t |               \    2   / | 
   65 exp| - --- | | cos| ------ | + ---------------------- | 
         \    2  / \    \    2   /             15           /   266 exp(-8 t) 
   ---------------------------------------------------------- - ------------- 
                              4309                                    93 
 
 
7.  

The Laplace transform of the differential equation, assuming zero initial conditions, is,  
 
(s3+3s2+5s+1)Y(s) = (s3+4s2+6s+8)X(s). 

Solving for the transfer function,  
Y(s)
X(s)

= 
s3 + 4s2 + 6s + 8
s3 +3s 2 + 5s +1

. 

8.  
a. Cross multiplying, (s2+5s+10)X(s) = 7F(s). 

 Taking the inverse Laplace transform, 
d 2 x
dt2 + 5

dx
dt

+ 10x = 7f. 

b. Cross multiplying after expanding the denominator, (s2+21s+110)X(s) = 15F(s). 

 Taking the inverse Laplace transform, 
d 2 x
dt2 + 21

dx
dt

+ 110x =15f. 

c. Cross multiplying, (s3+11s2+12s+18)X(s) = (s+3)F(s). 

Taking the inverse Laplace transform, 
d3 x
dt3 + 11

d 2 x
dt2 + 12

dx
dt

+ 18x = dft/dt + 3f. 

9.   

The transfer function is 
C(s)
R(s)

= 
5 4 3 2

6 5 4 3 2

2 4 4
7 3 2 5

s s s s
s s s s s

+ + + +
+ + + + +

. 

Cross multiplying, (s6+7s5+3s4+2s3+s2+5)C(s) = (s5+2s4+4s3+s2+4)R(s). 

Taking the inverse Laplace transform assuming zero initial conditions,  
d6c
dt6 + 7

d5c
dt5 + 3

d 4c
dt4 + 2

d3c
dt3 + 

d2c
dt2 + 5c =  

d5r
dt5 + 2

d 4r
dt4 + 4

d3r
dt3 + 

d2r
dt2 + 4r. 

10.  

The transfer function is 
C(s)
R(s)

= 
s4 + 2s3 + 5s2 + s +1

s5 + 3s 4 + 2s3 + 4s2 + 5s + 2
. 



 
Chapter 2:  Modeling in the Frequency Domain    2-8 

Copyright ©   2011 by John Wiley & Sons, Inc. 

Cross multiplying, (s5+3s4+2s3+4s2+5s+2)C(s) = (s4+2s3+5s2+s+1)R(s). 

Taking the inverse Laplace transform assuming zero initial conditions,  
 
d5c
dc5 + 3

d 4c
dt4 + 2

d3c
dt3 + 4

d2c
dt2 + 5

dc
dt

+ 2c =  
d 4r
dt4 + 2

d3r
dt3 + 5

d2r
dt2 + 

dr
dt

+ r. 

 

Substituting r(t) = t3, 
d5c
dc5 + 3

d 4c
dt4 + 2

d3c
dt3 + 4

d2c
dt2 + 5

dc
dt

+ 2c  

 
= 18δ(t) + (36 + 90t + 9t2 + 3t3) u(t). 

11.   
Taking the Laplace transform of the differential equation, s2X(s)-s+1+2sX(s)-2+3x(s)=R(s). 

Collecting terms,  (s2+2s+3)X(s) = R(s)+s+1.  

Solving for X(s), X(s) = 
R(s)

s 2 + 2s +3
+ 

s +1
s 2 + 2s +3

. 

The block diagram is shown below, where R(s) = 1/s. 
 

 
12. 

Program: 
'Factored' 
Gzpk=zpk([-15 -26 -72],[0 -55 roots([1 5 30])' roots([1 27 52])'],5) 
'Polynomial' 
Gp=tf(Gzpk) 

      
Computer response: 
ans = 
 
Factored 
 
Zero/pole/gain: 
           5 (s+15) (s+26) (s+72) 
-------------------------------------------- 
s (s+55) (s+24.91) (s+2.087) (s^2 + 5s + 30) 
  
ans = 
 
Polynomial 
 
Transfer function: 
                 5 s^3 + 565 s^2 + 16710 s + 140400 
-------------------------------------------------------------------- 
s^6 + 87 s^5 + 1977 s^4 + 1.301e004 s^3 + 6.041e004 s^2 + 8.58e004 s 
 

13. 
Program: 
'Polynomial' 
Gtf=tf([1 25 20 15 42],[1 13 9 37 35 50]) 
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'Factored' 
Gzpk=zpk(Gtf) 
 
Computer response: 
ans = 
 
Polynomial 
 
Transfer function: 
    s^4 + 25 s^3 + 20 s^2 + 15 s + 42 
----------------------------------------- 
s^5 + 13 s^4 + 9 s^3 + 37 s^2 + 35 s + 50 
  
ans = 
 
Factored 
 
Zero/pole/gain: 
      (s+24.2) (s+1.35) (s^2 - 0.5462s + 1.286) 
------------------------------------------------------ 
(s+12.5) (s^2 + 1.463s + 1.493) (s^2 - 0.964s + 2.679) 

14. 
Program: 
numg=[-5 -70]; 
deng=[0 -45 -55 (roots([1 7 110]))' (roots([1 6 95]))']; 
[numg,deng]=zp2tf(numg',deng',1e4); 
Gtf=tf(numg,deng) 
G=zpk(Gtf) 
[r,p,k]=residue(numg,deng) 
 
Computer response: 

 
Transfer function: 
                        10000 s^2 + 750000 s + 3.5e006 
------------------------------------------------------------------------------- 
s^7 + 113 s^6 + 4022 s^5 + 58200 s^4 + 754275 s^3 + 4.324e006 s^2 + 2.586e007 s 
  
  
Zero/pole/gain: 
               10000 (s+70) (s+5) 
------------------------------------------------ 
s (s+55) (s+45) (s^2 + 6s + 95) (s^2 + 7s + 110) 
  
 
r = 
 
  -0.0018           
   0.0066           
   0.9513 + 0.0896i 
   0.9513 - 0.0896i 
  -1.0213 - 0.1349i 
  -1.0213 + 0.1349i 
   0.1353           
p = 
 
 -55.0000           
 -45.0000           
  -3.5000 + 9.8869i 
  -3.5000 - 9.8869i 
  -3.0000 + 9.2736i 
  -3.0000 - 9.2736i 
        0           
k = 
 
     [] 
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15. 
Program: 
syms s 
'(a)' 
Ga=45*[(s^2+37*s+74)*(s^3+28*s^2+32*s+16)]... 
/[(s+39)*(s+47)*(s^2+2*s+100)*(s^3+27*s^2+18*s+15)]; 
'Ga symbolic' 
pretty(Ga) 
[numga,denga]=numden(Ga); 
numga=sym2poly(numga); 
denga=sym2poly(denga); 
'Ga polynimial' 
Ga=tf(numga,denga) 
'Ga factored' 
Ga=zpk(Ga) 
'(b)' 
Ga=56*[(s+14)*(s^3+49*s^2+62*s+53)]... 
/[(s^2+88*s+33)*(s^2+56*s+77)*(s^3+81*s^2+76*s+65)]; 
'Ga symbolic' 
pretty(Ga) 
[numga,denga]=numden(Ga); 
numga=sym2poly(numga); 
denga=sym2poly(denga); 
'Ga polynimial' 
Ga=tf(numga,denga) 
'Ga factored' 
Ga=zpk(Ga) 
 
 
 
Computer response: 

ans = 
 
(a) 
 
ans = 
 
Ga symbolic 
 
                      2                3       2 
                    (s  + 37 s + 74) (s  + 28 s  + 32 s + 16) 
        45 ----------------------------------------------------------- 
                               2                3       2 
           (s + 39) (s + 47) (s  + 2 s + 100) (s  + 27 s  + 18 s + 15) 
 
ans = 
 
Ga polynimial 
 
Transfer function: 
  
         45 s^5 + 2925 s^4 + 51390 s^3 + 147240 s^2 + 133200 s + 53280 
-------------------------------------------------------------------------------- 
s^7 + 115 s^6 + 4499 s^5 + 70700 s^4 + 553692 s^3 + 5.201e006 s^2 + 3.483e006 s  
                                                                                 
                                                                      + 2.75e006 
                                                                                  
ans = 
 
Ga factored 
 
Zero/pole/gain: 
     45 (s+34.88) (s+26.83) (s+2.122) (s^2 + 1.17s + 0.5964) 
----------------------------------------------------------------- 
(s+47) (s+39) (s+26.34) (s^2 + 0.6618s + 0.5695) (s^2 + 2s + 100) 
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ans = 
 
(b) 
 
ans = 
 
Ga symbolic 
 
                                   3       2 
                        (s + 14) (s  + 49 s  + 62 s + 53) 
         56 ---------------------------------------------------------- 
              2                2                3       2 
            (s  + 88 s + 33) (s  + 56 s + 77) (s  + 81 s  + 76 s + 65) 
 
ans = 
 
Ga polynimial 
 
Transfer function: 
 
  
                56 s^4 + 3528 s^3 + 41888 s^2 + 51576 s + 41552 
-------------------------------------------------------------------------------- 
s^7 + 225 s^6 + 16778 s^5 + 427711 s^4 + 1.093e006 s^3 + 1.189e006 s^2           
                                                                                 
                                                             + 753676 s + 165165 
                                                                                 
ans = 
 
Ga factored 
 
Zero/pole/gain: 
                56 (s+47.72) (s+14) (s^2 + 1.276s + 1.111) 
--------------------------------------------------------------------------- 
(s+87.62) (s+80.06) (s+54.59) (s+1.411) (s+0.3766) (s^2 + 0.9391s + 0.8119) 

16.  

a. Writing the node equations, 
Vo − Vi

s
+

Vo

s
+ Vo = 0. Solve for 

Vo

Vi

=
1

s + 2
. 

 

 

 

b. Thevenizing,  

 

 

 

 

Using voltage division, Vo (s) =
Vi (s)

2

1
s

1
2

+ s + 1
s

. Thus, 
Vo (s)
Vi(s)

=
1

2s2 + s + 2
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17. 
a. 

 

 

 

 

 

Writing mesh equations 

(2s+2)I1(s) –2 I2(s) = Vi(s) 

-2I1(s) + (2s+4)I2(s) = 0 

But from the second equation, I1(s) = (s+2)I2(s). Substituting this in the first equation yields, 

(2s+2)(s+2)I2(s) –2 I2(s) = Vi(s) 
or 

I2(s)/Vi(s) = 1/(2s2 + 4s + 2) 
 

But, VL(s) = sI2(s). Therefore, VL(s)/Vi(s) = s/(2s2 + 4s + 2). 

 

 

 

 

 

 

 

b.  

i1(t) i2(t)

 

2

2

2

2

2

2 2
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1 2

1

2 1(4 ) ( ) (2 ) ( ) ( )

1 1(2 ) ( ) (4 2 ) 0

I s I s V s
s s

I s s
s s

+ − + =

− + + + + =
 

Solving for I2(s):  

2 2

2

4 2 ( )

(2 1) 0 ( )( )
4 2 (2 1) 4 6 1

(2 1) (2 4 1)

s V s
s
s

sV ssI s
s s s s
s s
s s s
s s

+

− +

= =
+ − + + +

− + + +

 

 

Therefore, 
2

2
2

( ) 2 ( ) 2
( ) ( ) 4 6 1

LV s sI s s
V s V s s s

= =
+ +

 

 
 
 
 
 
 
 
 
 
18.  

a.  

 

 

 

 

Writing mesh equations, 

(2s + 1)I1(s) – I2(s) = Vi(s) 

-I1(s) + (3s + 1 + 2/s)I2(s) = 0 

Solving for I2(s), 
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I2 (s) =

2s +1 Vi(s)
−1 0

2s + 1 −1

−1
3s2 + s + 2

s

 

Solving for I2(s)/Vi(s), 
I2 (s)
Vi(s)

=
s

6s3 + 5s2 + 4s + 2
 

But Vo(s) = I2(s)3s. Therefore , G(s) = 3s2/(6s3 + 5s2 +4s + 2). 

b. Transforming  the network yields,  

 

 

 

 

 

 

 

Writing the loop equations,  
 

(s +
s

s2 +1
)I1(s) −

s
s2 +1

I2 (s) − sI3(s) = Vi(s)  

−
s

s2 +1
I1(s) + (

s
s2 +1

+1 +
1
s
)I2 (s) − I3 (s) = 0   

 − sI1(s) − I2 (s) + (2s +1)I3 (s) = 0 
Solving for I2(s),  

I2 (s) =
s(s2 + 2s + 2)

s 4 + 2s 3 + 3s2 + 3s + 2
Vi(s)  

 

But, Vo(s) = 
I2(s)

s   = 
(s 2 + 2s + 2)

s 4 + 2s3 + 3s2 + 3s + 2
Vi(s) . Therefore,  

 
Vo (s)
Vi(s)

=
s2 + 2s + 2

s4 + 2s3 + 3s2 + 3s + 2
 

 
19.  

a. Writing the nodal equations yields,  
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VR(s) −Vi(s)

2s
+ VR(s)

1
+ VR (s) − VC (s)

3s
= 0

−
1

3s
VR(s) +

1
2

s +
1

3s
⎛ 
⎝ 

⎞ 
⎠ VC (s) = 0

 

Rewriting and simplifying, 

 
6s + 5

6s
VR(s) − 1

3s
VC (s) = 1

2s
Vi(s)

−
1

3s
VR(s) +

3s2 + 2
6s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
VC (s) = 0

 

Solving for VR(s) and VC(s), 
 

VR(s) =

1
2s

Vi (s) −
1

3s

0
3s2 + 2

6s
6s + 5

6s
− 1

3s
− 1

3s
3s2 + 2

6s

; VC (s) =

6s + 5
6s

1
2s

Vi(s)

−
1
3s

0

6s + 5
6s

− 1
3s

− 1
3s

3s 2 + 2
6s

 

Solving for Vo(s)/Vi(s) 
 
Vo (s)
Vi(s)

=
VR(s) − VC (s)

Vi(s)
=

3s2

6s3 + 5s2 + 4s + 2   

 
 
b. Writing the nodal equations yields,  

 
(V1(s) − Vi (s))

s
+ (s 2 +1)

s
V1(s) + (V1(s) − Vo (s)) = 0

(Vo (s) − V1(s)) + sVo(s) +
(Vo (s) − Vi (s))

s
= 0

 

Rewriting and simplifying, 

 

(s + 2
s

+1)V1(s) − Vo (s) = 1
s
Vi(s)

V1(s) + (s +
1
s

+ 1)Vo (s) =
1
s

Vi (s)
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Solving for Vo(s) 
 

Vo(s) = 
(s 2 + 2s + 2)

s 4 + 2s3 + 3s2 + 3s + 2
Vi(s). 

Hence,  
 
Vo (s)
Vi(s)

=
(s2 + 2s + 2)

s4 + 2s3 + 3s2 + 3s + 2
 

 
 
20. 

a. 

 

 

 

 

 

 

 

 
Mesh:  
(4+4s)I1(s) - (2+4s)I2(s) - 2I3(s) = V(s) 

- (2+4s)I1(s) + (14+10s)I2(s) - (4+6s)I3(s) = 0 
-2I1(s) - (4+6s)I2(s) + (6+6s+ 9

s
)I3(s)  = 0 

Nodal:   
 

11 1 ( ( ) ( ))( ( ) ( )) ( ) 0
2 2 4 4 6

oV s V sV s V s V s
s s

−−
+ + =

+ +
 

1( ( ) ( )) ( ) ( ( ) ( )) 0
4 6 8 9 /

o o oV s V s V s V s V s
s s

− −
+ + =

+
 

 
or 
 

1/9 

2 4 6

2

4
8
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2

12

6s  + 12s + 5 1 1( ) ( ) ( )
12s 14 4 6 4 2oV s V s V s

s s
⎡ ⎤ ⎡ ⎤− =⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦⎣ ⎦

 

2

1
1 24s  + 43s + 54( ) ( ) ( )

6 4 216 144 9o
sV s V s V s

s s
⎡ ⎤⎡ ⎤− + =⎢ ⎥⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

b. 
 
Program: 

syms s V                      %Construct symbolic object for frequency 
                              %variable 's' and V. 
'Mesh Equations' 
A2=[(4+4*s) V -2 
-(2+4*s) 0 -(4+6*s) 
-2 0 (6+6*s+(9/s))]           %Form Ak = A2. 
A=[(4+4*s) -(2+4*s) -2 
-(2+4*s) (14+10*s) -(4+6*s) 
-2 -(4+6*s) (6+6*s+(9/s))]    %Form A. 
I2=det(A2)/det(A);            %Use Cramer's Rule to solve for I2. 
Gi=I2/V;                      %Form transfer function, Gi(s) = I2(s)/V(s). 
G=8*Gi;                       %Form transfer function, G(s) = 8*I2(s)/V(s). 
G=collect(G);                 %Simplify G(s). 
'G(s) via Mesh Equations'     %Display label. 
pretty(G)                     %Pretty print G(s) 
                               
'Nodal Equations' 
A2=[(6*s^2+12*s+5)/(12*s^2+14*s+4) V/2 
-1/(6*s+4) s*(V/9)]           %Form Ak = A2. 
A=[(6*s^2+12*s+5)/(12*s^2+14*s+4) -1/(6*s+4) 
-1/(6*s+4) (24*s^2+43*s+54)/(216*s+144)]     
                              %Form A. 
Vo=simple(det(A2))/simple(det(A));             
                              %Use Cramer's Rule to solve for Vo. 
G1=Vo/V;                      %Form transfer function, G1(s) = Vo(s)/V(s). 
G1=collect(G1);               %Simplify G1(s). 
'G(s) via Nodal Equations'    %Display label. 
pretty(G1)                    %Pretty print G1(s) 
 

 
Computer response: 
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ans = 
 
Mesh Equations 
 
  
A2 = 
  
[   4*s + 4, V,            -2] 
[ - 4*s - 2, 0,     - 6*s - 4] 
[        -2, 0, 6*s + 9/s + 6] 
  
  
A = 
  
[   4*s + 4, - 4*s - 2,            -2] 
[ - 4*s - 2, 10*s + 14,     - 6*s - 4] 
[        -2, - 6*s - 4, 6*s + 9/s + 6] 
  
 
ans = 
 
G(s) via Mesh Equations 
 
 
       3       2 
   48 s  + 96 s  + 112 s + 36 
  ---------------------------- 
      3        2 
  48 s  + 150 s  + 220 s + 117 
 
ans = 
 
Nodal Equations 
 
  
A2 = 
  
[ (6*s^2 + 12*s + 5)/(12*s^2 + 14*s + 4),     V/2] 
[                           -1/(6*s + 4), (V*s)/9] 
  
  
A = 
  
[ (6*s^2 + 12*s + 5)/(12*s^2 + 14*s + 4),                       -1/(6*s + 4)] 
[                           -1/(6*s + 4), (24*s^2 + 43*s + 54)/(216*s + 144)] 
  
 
ans = 
 
G(s) via Nodal Equations 
 
 
       3       2 
   48 s  + 96 s  + 112 s + 36 
  ---------------------------- 
      3        2 
  48 s  + 150 s  + 220 s + 117 
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21. 
a. 
 

5
1 6

5
2 6

1( ) 5 10
2 10
1( ) 10

2 10

Z s x
x s

Z s
x s

−

−

= +

= +
 

Therefore,  
 

( )
( )

2

1

5( ) 1
( ) 5 1

sZ s
Z s s

+
− = −

+
 

b.  

5 5
1

5 ( 5)( ) 10 1 10 sZ s
s s

+⎛ ⎞= + =⎜ ⎟
⎝ ⎠

  

( )
5 5

2
5 ( 10)( ) 10 1 10

5 5
sZ s

s s
+⎛ ⎞= + =⎜ ⎟+ +⎝ ⎠

   

 Therefore,  
 

( )
( )

2
2

1

10( )
( ) 5

s sZ s
Z s s

+
− = −

+
 

22. 
a. 

5
1 6

5
2 6

1( ) 4 10
4 10

1( ) 1.1 10
4 10

Z s x
x s

Z s x
x s

−

−

= +

= +
 

Therefore,  

1 2

1

( ) ( ) ( 0.98)( ) 1.275
( ) ( 0.625)

Z s Z s sG s
Z s s

+ +
= =

+
 

b. 
11

5
1 6

5

9

5
2 6

3

10

( ) 4 10
0.25 104 10

1027.5
( ) 6 10

0.25 10110 10

sZ s x
xx
s

sZ s x
xx
s

= +
+

= +
+

 

Therefore, 
 

2
1 2

2
1

( ) ( ) 2640 8420 4275
( ) 1056 3500 2500

Z s Z s s s
Z s s s

+ + +
=

+ +
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23.  

Writing the equations of motion, where x2(t) is the displacement of the right member of springr,  

(5s2+4s+5)X1(s)  -5X2(s) = 0 

          -5X1(s) +5X2(s) = F(s) 

Adding the equations,  

(5s2+4s)X1(s)  = F(s) 

 

From which,  1X (s) 1 1/ 5
F(s) s(5s 4) s(s 4 / 5)

= =
+ +

. 

24.  
Writing the equations of motion,  

(s 2 + s +1)X1 (s) − (s +1)X2 (s) = F(s)

−(s +1)X1(s) + (s2 + s +1)X2(s) = 0
 

Solving for X2(s),  

X2 (s) =

(s 2 + s + 1) F(s)
−(s +1) 0

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(s2 + s +1) −(s +1)
−(s +1) (s2 + s +1)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
(s +1)F(s)

s2(s2 + 2s + 2)
 

From which,  

 
X2 (s)
F(s)

=
(s +1)

s2 (s2 + 2s + 2)
. 

25.  
Let X1(s) be the displacement of the left member of the spring and X3(s) be the displacement  of the 
mass.  
 
Writing the equations  of motion 
 

2x1(s) − 2x2 (s) = F(s)
−2X1(s) + (5s + 2)X2(s) − 5sX3(s) = 0

−5sX2 (s) + (10s2 + 7s)X3(s) = 0

 

 
Solving for X2(s),  

 X2(s) = 
 ⎪
⎪
⎪

5s2+10 -10

-10 5
1 s+10

 ⎪
⎪
⎪

 ⎪
⎪
⎪

5s2+10 F(s)

-10 0

 ⎪
⎪
⎪

 = 
s(s2+50s+2)

10F(s)
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Thus,  
X2 (s)
F(s)

=
1
10

(10s + 7)
s(5s +1)

 

26. 
2

1 2
2

1 2

( 6 9) ( ) (3 5) ( ) 0
(3 5) ( ) (2 5 5) ( ) ( )
s s X s s X s

s X s s s X s F s
+ + − + =

− + + + + =
 

 

Solving for X1(s); 
2

1 4 3 22

2

0 (3 5)
( ) (2 5 5) (3 5) ( )( )

2 17 44 45 20( 6 9) (3 5)
(3 5) (2 5 5)

s
F s s s s F sX s

s s s ss s s
s s s

− +⎡ ⎤
⎢ ⎥+ + +⎣ ⎦= =

+ + + +⎡ ⎤+ + − +
⎢ ⎥− + + +⎣ ⎦

 

Thus G(s) = X1(s)/F(s) = 4 3 2

(3 5)
2 17 44 45 20

s
s s s s

+
+ + + +

 

27.  
Writing the equations of motion,  
 

2
1 2

2
1 2 3

2
2 3

(4 2 6) ( ) 2 ( ) 0
2 ( ) (4 4 6) ( ) 6 ( ) ( )

6 ( ) (4 2 6) ( ) 0

s s X s sX s
sX s s s X s X s F s

X s s s X s

+ + − =

− + + + − =

− + + + =

 

Solving for X3(s),  

 
2

2

3 3 22

2

2

(4 2 6) 2 0
2 (4 4 6) ( )
0 6 0 3 ( )( )

(8 12 26 18)(4 2 6) 2 0
2 (4 4 6) 6
0 6 (4 2 6)

s s s
s s s F s

F sX s
s s s ss s s

s s s
s s

+ + −
− + +

−
= =

+ + ++ + −
− + + −

− + +

 

 

From which, 3
3 2

( ) 3
( ) (8 12 26 18)

X s
F s s s s s

=
+ + +

. 

28.  
a. 
 

2
1 2 3
2

1 2 3

1 2 3

(4s 8s 5)X (s) 8sX (s) 5X (s) F(s)

8sX (s) (4s 16s)X (s) 4sX (s) 0
5X (s) 4sX (s) (4s 5)X (s) 0

+ + − − =

− + + − =
− − + + =  

 
Solving for X3(s), 
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2

2 2

3

(4s 8s 5) -8s F(s)
8s (4s 16s) 0 8s (4s 16s)

F(s)
5 -4s 0 5 4

X (s)
s

+ +
− + − +
− − −

= =
Δ Δ  

or, 
 

3
3 2

X (s) 13s 20
F(s) 4s(4s 25s 43s 15)

+
=

+ + +  
 
b. 
 

2
1 2 3

2
1 2 3

1 2 3

(8s 4s 16) X (s) (4s 1) X (s) 15X (s) 0

(4s 1) X (s) (3s 20s 1) X (s) 16sX (s) F(s)
15X (s) 16sX (s) (16s 15) X (s) 0

+ + − + − =

− + + + + − =
− − + + =

 

Solving for X3(s),  

 
2

2 2

3

(8s 4s 16) -(4s+1) 0
(4s+1) (3s 20s+1) F(s) (8s 4s 16) -(4s+1)

-F(s)
15 -16s 0 15 16

X (s)
s

+ +
− + + +

− − −
= =

Δ Δ

 

or 
 

X3(s)
F(s)   =

3 2

5 4 3 2

128 64 316 15
384 1064 3476 165

s s s
s s s s

+ + +
+ + +

 

 
 
 

29. 
 Writing the equations of motion,  
 

2
1 2 3

2
1 2 3

2
1 2

(4 4 8) ( ) 4 ( ) 2 ( ) 0

4 ( ) (5 3 4) ( ) 3 ( ) ( )

2 ( ) 3 ( ) (5 5 5) 0

s s X s X s sX s

X s s s X s sX s F s

sX s sX s s s

+ + − − =

− + + + − =

− − + + + =
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30.  
a. 

 Writing the equations of motion,  

 

 
2

1 2
2

1 2

(5 9 9) ( ) ( 9) ( ) 0
( 9) ( ) (3 12) ( ) ( )
s s s s s
s s s s s T s

θ θ

θ θ

+ + − + =

− + + + + =
 

 
 
b. 
 
Defining 

 

θ1(s) =  rotation of J1

θ2 (s) =  rotation between K1 and D1

θ3(s) =  rotation of J3

θ4 (s) =  rotation of right - hand side of K2

 

the equations of motion are 

 
(J1s

2 + K1)θ1(s) − K1θ2 (s) = T (s)
−K1θ1(s) + (D1s + K1 )θ2 (s) − D1sθ3(s) = 0

−D1sθ2 (s) + (J2s
2 + D1s + K2 )θ3(s) − K2θ4(s) = 0

−K2θ3(s) + (D2s + (K2 + K3))θ4 (s) = 0

 

 
31.  

Writing the equations of motion, 
 

(s 2 + 2s +1)θ1 (s) − (s +1)θ2 (s) = T (s)
−(s +1)θ1(s) + (2s +1)θ2(s) = 0

 

 
Solving for θ2 (s)  
 

θ2 (s) =

(s2 + 2s +1) T (s)
−(s +1) 0

(s2 + 2s +1) −(s +1)
−(s +1) (2s +1)

=
T (s)

2s(s +1)
 

Hence,  
 

θ2 (s)
T(s)

=
1

2s(s + 1)
 

32.  

Reflecting impedances to θ3, 
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(Jeqs2+Deqs)θ3(s) = T(s) (
N4 N2

N3N1

) 

Thus,  
 

θ3(s)
T (s)

= 

N4N2

N3 N1

Jeq s2 + Deqs
 

where 

Jeq = J4+J5+(J2+J3) 
N4

N3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
 + J1

N4 N2

N3 N1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
, and 

Deq = (D4 + D5 ) + (D2 + D3)(
N4

N3

)2 + D1(
N4N 2

N 3N1

)2   

33.  
Reflecting all impedances to θ2(s),  

 
{[J2+J1(N2

N1
 )2

+J3 (N3
N4 )

2]s2 + [f2+f1(N2
N1

 )2
+f3(N3

N4 
 )

2]s + [K(N3
N4

 )2]}θ2(s) = T(s)
N2
N1

  

Substituting values,  

{[1+2(3)2+16(1
4 )2]s2 + [2+1(3)2+32(1

4 )2]s + 64(1
4 )2}θ2(s) = T(s)(3) 

 
Thus,  

θ2(s)
T(s)   = 

3
20s2+13s+4

    

34.  
Reflecting impedances to θ2,  

200 + 3
50
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

+ 200
5
25

x
50
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
s 2 + 1000

5
25

x
50
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
s + 250 + 3

50
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
50
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ T (s)

 
Thus, 

θ2 (s)
T(s)

=
10

1300s2 + 4000s + 550
 

35.  
Reflecting impedances and applied torque to respective sides of the spring yields the following  
 
equivalent circuit: 
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Writing the equations of motion,  

2θ2(s) -2 θ3(s) = 4.231T(s) 

-2θ2(s) + (0.955s+2)θ3(s) = 0 

Solving for θ3(s), 

( )

3

2 4.231 ( )
2 0 8.462 ( ) 4.43 ( )( )

2 2 1.91
2 0.955 2

T s
T s T ss
s s

s

θ
−

= = =
−

− +

 

 

Hence, 3 ( ) 4.43
( )
s

T s s
θ

= . But, 4 3( ) 0.192 ( )s sθ θ= . Thus, 4 ( ) 0.851
( )
s

T s s
θ

= . 

36.  
Reflecting impedances and applied torque to respective sides of the viscous damper yields the 
following  

equivalent circuit: 
 

 
 

 
 
Writing the equations of motion,  
 

2
2 3

2 3 4

3 4

( 2 ) ( ) 2 ( ) 3 ( )
2 ( ) (2 3) ( ) 3 ( ) 0
3 ( ) ( 3) ( ) 0

s s s s s T s
s s s s s

s s s

θ θ
θ θ θ

θ θ

+ − =
− + + − =
− + + =

 

Solving for θ4 (s) , 

 

2 0.955 
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4 2

( 2) 2 3 ( )
2 (2 3) 0
0 3 0 18 ( )( )

( 2) 2 0 (2 9 6)
2 (2 3) 3
0 3 ( 3)

s s s T s
s s

T ss
s s s s s s

s s
s

θ

+ −
− +

−
= =

+ − + +
− + −

− +

 

But, θ L(s) = 5θ4 (s) . Hence, 
 

4
2

( ) 90
( ) (2 9 6)

s
T s s s s
θ

=
+ +

 

37. 
Reflect all impedances on the right to the viscous damper and reflect all impedances and torques on the  

left to   the spring and obtain the following equivalent circuit: 

 

 

Writing the equations of motion, 
 

(J1eqs2+K)θ2(s) -Kθ3(s) = Teq(s) 

-Kθ2(s)+(Ds+K)θ3(s) -Dsθ4(s) = 0 

-Dsθ3(s) +[J2eqs2 +(D+Deq)s]θ4(s) = 0 

where: J1eq = J2+(Ja+J1)(N2
N1

 )2 
; J2eq = J3+(JL+J4)(N3

N4
 )2 

; Deq = DL(N3
N4

 )2 
 ; θ2(s) = θ1(s) 

N1
N2

   . 
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 38.  
Reflect impedances to the left of J5 to J5 and obtain the following equivalent circuit: 

 

 

Writing the equations of motion,  

 [Jeqs2+(Deq+D)s+(K2+Keq)]θ5(s)            -[Ds+K2]θ6(s) = 0 

                          -[K2+Ds]θ5(s) + [J6s2+2Ds+K2]θ6(s) = T(s) 

 

From the first equation, 
θ6(s)
θ5(s)

  = 
Jeqs2+(Deq+D)s+ (K2+Keq)

Ds+K2
   . But, 

θ5(s)
θ1(s)

   = 
N1N3
N2N4

   . Therefore, 

  
θ6(s)
θ1(s)

  = 
N1N3
N2N4

 ⎝⎜
⎛

⎠⎟
⎞

 
Jeqs2+(Deq+D)s+ (K2+Keq)

Ds+K2
    , 

 

where Jeq = [J1(N4N2
N3N1

 )2
 + (J2+J3)(N4

N3
 )2

  + (J4+J5)], Keq = K1(N4
N3

 )2
 , and  

 

Deq = D[(N4N2
N3N1

 )2
  + (N4

N3
 )2

 + 1]. 

39.  
Draw the freebody diagrams,  
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Write the equations of motion from the translational and rotational freebody diagrams,  

(Ms2+2fv s+K2)X(s)          -fvrsθ(s) = F(s) 

                -fvrsX(s) +(Js2+fvr2s)θ(s) = 0 

Solve for θ(s),  

θ(s) = 

Ms2+2fvs+K
2

F(s)

-fvrs 0

Ms2+2fvs+K
2

-fvrs

-fvrs Js
2
+fvr2s

 = 
fvrF(s)

JMs
3
+(2Jfv+Mfvr2)s2+(JK

2
+fv

2
r2)s+K

2
fvr2

 

 

From which, 
θ(s)
F(s)   = 

fvr
JMs3+(2Jfv+Mfvr2)s2+(JK2+fv2r2)s+K2fvr2

   . 

40.  
Draw a freebody diagram of the translational system and the rotating member connected to the 

translational system. 

 

 
 

From the freebody diagram of the mass, F(s) = (2s2+2s+3)X(s). Summing torques on the rotating 

member, 

(Jeqs2 +Deqs)θ(s) + F(s)2 = Teq(s). Substituting F(s) above, (Jeqs2 +Deqs)θ(s) + (4s2+4s+6)X(s) = 

Teq(s). However, θ(s) = 
X(s)

2   . Substituting and simplifying, 

Teq = [(Jeq
2   +4)s2 +(Deq

2   +4)s+6]X(s)  

But, Jeq = 3+3(4)2 = 51, Deq = 1(2)2 +1 = 5, and Teq(s) = 4T(s).  Therefore, 

2 2 3 
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 [ 59
2

 s2 +
13
2

s+6]X(s) = 4T(s). Finally,  
X(s)
T(s)   = 2

8
59 13 12s s+ +

. 

41.  
Writing the equations of motion,  
 

(J1s2+K1)θ1(s)                   - K1θ2(s)                            = T(s) 
         -K1θ1(s) + (J2s2+D3s+K1)θ2(s) +F(s)r    -D3sθ3(s) = 0 
                                         -D3sθ2(s) + (J2s2+D3s)θ3(s) = 0 

where F(s) is the opposing force on J2 due to the translational member and r is the radius of J2. But, 

for the translational member,  

F(s) = (Ms2+fvs+K2)X(s) = (Ms2+fvs+K2)rθ(s) 

Substituting F(s) back into the second equation of motion,  

(J1s2+K1)θ1(s)                                                      - K1θ2(s)                            = T(s) 

         -K1θ1(s) + [(J2 + Mr2)s2+(D3 + fvr2)s+(K1 + K2r2)]θ2(s)             -D3sθ3(s) = 0 

                                                                            -D3sθ2(s) + (J2s2+D3s)θ3(s) = 0 
 
Notice that the translational components were reflected as equivalent rotational components by the  
 

square of the radius. Solving for θ2(s), θ2 (s) =
K1(J3s

2 + D3s)T(s)
Δ

, where Δ is the  

 
determinant formed from the coefficients of the three equations of motion. Hence,  

 
θ2 (s)
T(s)

=
K1(J3s

2 + D3s)
Δ

  

Since  

X(s) = rθ2 (s),  
X(s)
T (s)

=
rK1(J3s

2 + D3s)
Δ

 

42. 
Kt

Ra

= 
Tstall

Ea

= 
100
50

= 2 ; Kb = 
Ea

ωno− load

= 
50

150
= 

1
3

 

Also,  

Jm = 5+18( 1
3
)2 

= 7; Dm = 8+36( 1
3
)2

= 12.  

Thus, 
θm (s)
Ea (s)

 = 
2 / 7
1 2( (12 ))
7 3

s s + +
 = 

2 / 7
38( )
21

s s +
 

 Since θL(s) = 
1
3

θm(s),  
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θL(s)
Ea (s)

= 

2
21

38( )
21

s s +
. 

43.  
The parameters are: 

 
Kt

Ra

= 
Ts

Ea

= 
5
5

= 1; Kb = 
Ea

ω
= 

5
600
π

2π 1
60

= 

1
4

;  Jm =16
1
4

⎛ 
⎝ 

⎞ 
⎠ 

2

+ 4
1
2

⎛ 
⎝ 

⎞ 
⎠ 

2

+1 = 3;  Dm = 32
1
4

⎛ 
⎝ 

⎞ 
⎠ 

2

= 2  

 
Thus,  

θm (s)
Ea (s)

= 

1
3

s(s + 1
3

(2 + (1)(1
4

)))
= 

1
3

s(s + 0.75)
 

 Since θ2(s) = 
1
4

θm(s),  

θ2 (s)
Ea (s)

= 

1
12

s(s + 0.75)
. 

44.  
The following torque-speed curve can be drawn from the data given: 
 

v

T

100

50

500 1000  

 

Therefore, 
Kt

Ra

= 
Tstall

Ea

= 
100
12

 ; Kb = 
Ea

ωno− load

= 
12

1333.33
. Also, Jm = 7+105( 1

6
)2 

= 9.92; Dm = 

3. Thus,  

 

θm (s)
Ea (s)

= 

100 1
12 9.92

1( (3.075))
9.92

s s

⎛ ⎞
⎜ ⎟
⎝ ⎠

+
= 

0.84
( 0.31)s s +

. Since θL(s) = 
1
6

θm(s), 
θL(s)
Ea (s)

 = 
0.14

( 0.31)s s +
. 

 55 

600 1333.33 
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45. 

From Eqs. (2.45) and (2.46),  

RaIa(s) + Kbsθ(s) = Ea(s)                                                     (1) 

Also,  

Tm(s) = KtIa(s) = (Jms2+Dms)θ(s). Solving for θ(s) and substituting into Eq. (1), and simplifying 

yields 

Ia (s)
Ea (s)

= 
1
Ra

(s +
Dm

Jm

)

s + Ra Dm + KbKt

RaJm

                                             (2) 

Using Tm(s) = KtIa(s) in Eq. (2),  

Tm(s)
Ea (s)

= 
Kt

Ra

(s +
Dm

Jm

)

s + Ra Dm + KbKt

RaJm

 

46.  
For the rotating load, assuming all inertia and damping has been reflected to the load,  

 (JeqLs2+DeqLs)θL(s) + F(s)r = Teq(s), where F(s) is the force from the translational system, r=2 is 

the radius of the rotational member, JeqL is the equivalent inertia at the load of the rotational load and 

the armature, and DeqL is the equivalent damping at the load of the rotational load and the armature. 

Since JeqL = 1(2)2 +1 = 5, and DeqL = 1(2)2 +1 = 5, the equation of motion becomes, (5s2+5s)θL(s) 

+ F(s)r = Teq(s). For the translational system, (s2+s)X(s) = F(s). Since X(s) = 2θL(s), F(s) = 

(s2+s)2θL(s). Substituting F(s) into the rotational equation, (9s2+9s) θL(s)  = Teq(s). Thus, the 

equivalent inertia at the load is 9, and the equivalent damping at the load is 9. Reflecting these back 

to the armature, yields an equivalent inertia of  
9
4  and an equivalent damping of 

9
4  . Finally, 

Kt
Ra

  = 1; 

Kb = 1. Hence, 
θm(s)
Ea(s)   = 

4
9

s(s+
4
9(

9
4+1))

   = 

4
9

s(s+
13
9 )

   . Since θL(s) = 
1
2  θm(s), 

θL(s)
Ea(s)   = 

2
9

s(s+
13
9 )

   . But 

X(s) = rθL(s) = 2θL(s). therefore, 
X(s)

Ea (s)
= 

4
9

s(s+
13
9 )

   . 
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47. 
The equations of motion in terms of velocity are: 
 

[M1s + ( fv1 + fv 3) + K1

s
+ K2

s
]V1(s) − K2

s
V2(s) − fv 3V3(s) = 0

−
K2

s
V1(s) + [M2s + ( fv 2 + fv 4) +

K2

s
]V2 (s) − fv4V3 (s) = F(s)

− fv3V1 (s) − fv4V2 (s) + [M3s + fV3 + fv4]V3(S) = 0

 

 
For the series analogy, treating the equations of motion as mesh equations yields 
 

 

 

 

 

 

 

 

 
 

 
 
In the circuit, resistors are in ohms, capacitors are in farads, and inductors are in henries. 
 
For the parallel analogy, treating the equations of motion as nodal equations yields 
 

 
 
 
 
 
 
 

 

In the circuit, resistors are in ohms, capacitors are in farads, and inductors are in henries. 

48. 
Writing the equations of motion in terms of angular velocity, Ω(s) yields 
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(J1s + D1 + K1

s
)Ω1(s) − (D1 + K1

s
)Ω2 (s) = T(s)

−(D1 + K1

s
)Ω1(s) + (J2s + D1 + (K1 + K2 )

s
)Ω2 (s) = 0

−
K2

s
Ω2(s) − D2Ω3(s) + (D2 +

K2

s
)Ω4 (s) = 0

(J3s + D2 +
K3

s
)Ω3(s) − D2Ω4 (s) = 0

 

 
For the series analogy, treating the equations of motion as mesh equations yields 
 
 
 

 
 
 
 
 
 
 
 
 
In the circuit, resistors are in ohms, capacitors are in farads, and inductors are in henries. 
 
For the parallel analogy, treating the equations of motion as nodal equations yields 

 

 

 

 

 

 

 

 
In the circuit, resistors are in ohms, capacitors are in farads, and inductors are in henries. 

 
49.  

An input r1 yields c1 = 5r1+7. An input r2 yields c2 = 5r2 +7. An input r1 +r2 yields, 5(r1+r2)+7 = 

5r1+7+5r2 = c1+c2-7. Therefore, not additive. What about homogeneity? An input of Kr1 yields c = 

5Kr1+7 ≠ Kc1. Therefore, not homogeneous. The system is not linear. 
50.  

a. Let x = δx+0. Therefore,  
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    δx
. .

+3δx
.

+ 2δx =sin (0+ δx) 

But,  sin (0+δx) = sin 0 +  
d sinx

dx ⎮
x =0

δx = 0+ cosx ⎮
x =0

δx = δx

Therefore,  δx
. .

+ 3δx
.

+ 2δx = δx.  C ollecting term s,  δx
. .

+ 3δx
.

+δx = 0 . 

b. Let x = δx+π. Therefore,  
δx
..

+3δx
.

+2δx =sin (π+δx) 

But, sin (π+δx) = sin π + 
d sinx

dx ⎮
x=π

δx = 0+cosx ⎮
x=π

δx = −δx

Therefore, δx
..

+3δx
.

+2δx = -δx. Collecting terms, δx
..

+3δx
.

+3δx = 0 . 
51.  

If x = 0 + δx,  

δx
...

 + 10δx
..

 + 31δx
.

 + 30δx = e
-(δx)

But  e
-(δx)

 = e-0 + de
-x

dx ⎮
x=0

δx = 1 - e-x
⎮

x=0
δx = 1 - δx

Therefore, δx
...

 + 10δx
..

 + 31δx
.

 + 30δx =1 - δx, or,   δx
...

 + 10δx
..

 + 31δx
.

 + 31δx =1.  
52.  

The given curve can be described as follows: 

f(x) = -6 ; -∞<x<-3;  

f(x) = 2x; -3<x<3; 

f(x) = 6; 3<x<+∞ 

Thus,  
 
a . 17 50 6
b. 17 50 2  or 17 48 0
c. 17 50 6

x x x
x x x x x x x
x x x

+ + = −
+ + = + + =
+ + =

&& &

&& & && &

&& &

 

53.  
The relationship between the nonlinear spring’s displacement, xs(t) and its force, fs(t) is 

xs ( t) = 1 − e− fs ( t)  

Solving for the force, 

fs (t) = − ln(1 − xs (t))                                                            (1) 

Writing the differential equation for the system by summing forces, 
 

d2 x(t)
dt2 +

dx(t)
dt

− ln(1− x(t)) = f (t)                                       (2) 
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Letting x(t) = x0 + δx and f(t) = 1 + δf, linearize ln(1 – x(t)). 

ln(1− x) − ln(1 − x0 ) =
d ln(1 − x)

dx x =x 0

δx  

Solving for ln(1 – x), 

ln(1− x) = ln(1 − x0 ) −
1

1 − x x= x0

δx = ln(1− x0) −
1

1− x0

δx                  (3) 

When f = 1, δx = 0. Thus from Eq. (1), 1 = -ln(1 – x0 ). Solving for x0, 
 
1 – x0 = e-1 , or x0 = 0.6321. 

Substituting x0 = 0.6321 into Eq. (3), 

ln(1- x) =  ln(1 –  0.6321) -  
1

1- 0.6321
 δx = -1 - 2.718δx  

Placing this value into Eq. (2) along with x(t) = x0 + δx and f(t) = 1 + δf, yields the linearized 

differential equation, 

d2δx
dt2 +

dδx
dt

+ 1+ 2.718δx = 1 +δf  

or  

d2δx
dt2 +

dδx
dt

+ 2.718δx = δf  

Taking the Laplace transform and rearranging yields the transfer function, 

δx(s)
δf (s)

=
1

s2 + s + 2.718
 

54.  
First assume there are n plates without the top plate positioned at a displacement of y2(t) where  

y2(t) = 0 is the position of the unstretched spring. Assume the system consists of mass M, where M is 

the mass of the dispensing system and the n plates, viscous friction, fv, where the viscous friction 

originates where the piston meets the sides of the cylinder, and of course the spring with spring 

constant, K. Now, draw the freebody diagram shown in Figure (b) where Wn is the total weight of the 

n dishes and the piston. If we now consider the current position, y2(0),  
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Restaurant Plate Dispenser 

 

the equilibrium point and define a new displacement, y1(t), which is measured from equilibrium, we 

can write the force in the spring as Ky2(t) = Ky2(0) + Ky1(t). Changing variables from y2(t) to y1(t), 

we sum forces and get,  

M
d2y1
dt2

  + fv
dy1
dt   + Ky1 + Ky2(0) + Wn = 0                                     (1) 

where 
d2y2
dt2

  = 
d2y1
dt2

    and 
dy2
dt    = 

dy1
dt   . But, Ky2(0) =  -Wn , since it is the component of the spring 

force that balances the weight at equilibrium when y1 = 0. Thus, the differential equation becomes,  
 

 M
d2y1
dt2

  + fv
dy1
dt   + Ky1 = 0                                                    (2) 

When the top plate is added, the spring is further compressed by an amount, 
WD
K   ,  where WD is the 

weight of the single dish, and K is the spring constant. We can think of this displacement as an initial 

condition. Thus, y1(0-) = - 
WD
K    and 

dy1
dt  (0-)  =0, and y1(t) = 0 is the equilibrium position of the 

spring with n plates rather than the unstretched position. Taking the Laplace transform of equation 

(2), using the initial conditions,  
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M(s2Y1(s) + s
WD
K  ) + fv(sY1(s) + 

WD
K  ) + KY1(s) = 0                                 (3) 

or 

(Ms2 + fvs + K)Y1(s) = -
WD

K
(Ms + fv )                                        (4) 

Now define a new position reference, Y(s),  which is zero when the spring is compressed with the 

initial condition,  

Y(s) = Y1(s) + 
WD
Ks                                                              (5) 

or 

Y1(s) = Y(s) - 
WD
Ks                                                                (6) 

Substituting Y1(s) in Equation (4),  we obtain, 

(Ms2 + fvs + K)Y(s) = 
WD

s   = F(s)                                              (7) 

a differential equation that has an input and zero initial conditions. The schematic is shown in Figure 

(c). Forming the transfer function, 
Y(s)
F(s) ,  we show the final result in Figure (d), where for the 

removal of the top plate, F(s) is always a step, F(s) = 
WD

s   . 

55. 

We have ψφφφ &&&&& )(aJkbJ =++  

Assuming zero initial conditions and obtaining Laplace transform on both sides of the equation we 

obtain: 

)()()()()(2 saJsksbssJs Ψ=Φ+Φ+Φ &&  

From which we get: 

kbsJs
aJ

s
s

++
=

Ψ
Φ

2)(
)(

&&
 

56.  

a.  We choose Laplace transforms to obtain a solution. After substitution of numerical values the 

equations become: 

 

 )(7.0)(9.0)( tNtC
dt

tdC
+−=  

)()(02.0)(1.0)( tItNtC
dt

tdN
+−−=  
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Obtaining Laplace transforms and substituting initial values we obtain: 

)(7.0)(9.047000500)( sNsCssC +−=−  

)()(02.0)(1.061100500)( sIsNsCssN +−−=−  

Both equations are manipulated as follows: 

9.0
47000500

9.0
)(7.0)(

+
+

+
=

ss
sNsC  

02.0
)(

02.0
61100500

02.0
)(1.0)(

+
+

+
+

+
−

=
s

sI
ss

sCsN  

Substituting the first equation into the second one gets: 

 

)9.0)(02.0(
088.092.0

02.0
)(

02.0
61100500

)9.0)(02.0(
4700050

)9.0)(02.0(
07.01

02.0
)(

02.0
61100500

)9.0)(02.0(
4700050

)( 2

++
++

+
+

+
+

++
−

=

++
+

+
+

+
+

++
−

=

ss
ss

s
sI

sss

ss

s
sI

ssssN

 

088.092.0
4700050

088.092.0
)9.0(61100500)(

088.092.0
9.0

222 ++
−

++
+

+
++

+
=

ssss
ssI

ss
s

 

 

From which we get the block diagram: 

 

088.092.0
)9.0(

2 ++
+

ss
s

9.0
4700050

+s  

 

b.  Letting 
s

sI
6106)( ×

=  and after algebraic manipulations one gets: 

)1084.0)(8116.0(
10545629040061100500

)088.092.0(
10545629040061100500)(

52

2

52

++
×++

=
++

×++
=

sss
ss

sss
sssN  

1084.0
103.19

8116.0
107101354.6

1084.08116.0

447

+
×

−
+

×
−

×
=

+
+

+
+=

ssss
C

s
B

s
A
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Obtaining the inverse Laplace transform: 
tt eetN 1084.048116.047 103.19107101364.6)( −− ×−×−×=  

57. 

a.  

‘Exact’: 

From Figure (a) 

 

 
( ) ( )0.0050.005

1 1 3 13 18 8 8( ) ( )1 1 1
8 8 8

ss

o in

ee
V s V s

ss s s s

−− −−
= = =

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

 

Using Partial fraction expansions note that 
1

11
)1(

1
+

−=
+ ssss

. Thus, applying partial fraction 

expansion to Vo(s) and taking the inverse Laplace transform yields, 

 

So 
1 1( 0.005)
8 8( ) 3(1 ) ( ) 3(1 ) ( 0.005)

t t

ov t e u t e u t
− − −

= − − − −  

 ‘Impulse’: 
1 1

0.0018758 8( ) ( ) 0.0151 1 0.125
8 8

o inV s V s
ss s

= = =
++ +

 

In this case 0.125( ) 0.001875 t
ov t e−=  

b. 

The following M-File will simulate both inputs: 
syms s 
s = tf('s'); 
G=(1/8)/(s+(1/8)); 
t=0:1e-4:10; 
for i=1:max(size(t)), 
    if(i*1e-4 <= 5e-3) 
        vinexact(i) = 3; 
    else 
        vinexact(i) = 0; 
    end 
end 
yexact = lsim(G,vinexact,t); 
yimpulse = 0.001875*exp(-(1/8)*t); 
plot(t,yexact,t,yimpulse) 
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Resulting in the following figure: 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10-3

 

 

Both outputs are indistinguishable at this scale. However zooming closer to t=0 will show 

differences. 

58.  
a. At equilibrium 

02

2

=
dt

Hd
. From which we get that 2

2

H
Ikmg = or 

mg
kIH 00 =  

b. Following the ‘hint’ procedure: 

I
HH

HHII
kH

HH
HHII

k
dt

Hdm IHIH δ
δ

δδ
δ

δ
δδδ

δδδδ 0,04
0

2
00

0,04
0

0
2

0
2

2

)(
)()(2

)(
)()(2

==== +
++

−
+

++
=

After some algebraic manipulations this becomes: 

I
mH

kI
H

mH
kI

dt
Hdm δδδ

2
0

0
3
0

2
0

2

2 22
−=  

Obtaining Laplace transform on both sides of the equation one obtains the transfer function: 



Solutions to Problems   2-41 

Copyright ©   2011 by John Wiley & Sons, Inc. 

3
0

2
02

2
0

0

2

2

)(
)(

mH
kI

s

mH
kI

sI
sH

−
−=

δ
δ

 

59. 

The two differential equations for this system are: 

0)()( =−+−+ wsawsasb xxCxxKxM &&&&  

0)()()( =−+−+−+ rxKxxCxxKxM wtswaswawus &&&&  

Obtaining Laplace transform on both sides gives 

0)()( 2 =+−++ waasaab XsCKXKsCsM  

tsaawtaaus RKXsCKXKKsCsM =+−+++ )())(( 2  

Solving the first equation for sX and substituting into the second one gets 

( ) 222

2

)()()(
)()(

sCKKsCsMKKsCsM
KsCsMKs

R
X

aaaabtaaus

aabtw

+−+++++
++

=  

60. 
a.   The three equations are transformed into the Laplace domain: 

SkCKkSSs S ψψ −=− ~
0  

)~( CKSkCs M−= ψ  

CkPs 2=  

The three equations are algebraically manipulated to give: 

 

C
ks

Kk
ks

S
S S

ψ

ψ

ψ +
+

+
=

~
0  

 

MKks
Sk

C ~
ψ

ψ

+
=  

C
s

kP 2=  

By direct substitutions it is obtained that: 
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022 )~~()~1(
)~(

S
KKksKks

Kks
S

SMM

M

−+++

+
=

ψψ

ψ  

022 ))~~()~1((
S

KKksKks
k

C
SMM −+++

=
ψψ

ψ  

022
2

))~~()~1((
S

KKksKkss
kk

P
SMM −+++

=
ψψ

ψ  

b.     
  0)()(

0
==∞

→
ssSLimS

s
 

0)()(
0

==∞
→

ssCLimC
s

 

0
2

02
2

02

0
)~~()~~(

)()( S
K

k
kKk

Sk
KKk

Skk
ssPLimP

SS
SM

s
=

−+
=

−
==∞

→

ψ
ψ

ψ

ψ  

61. 

Eliminate balT  by direct substitution. This results in 

)()()()(
0

2

2

tTdttJtJtkJ
dt
dJ d

t

+−−−= ∫θρθηθθ &  

Obtaining Laplace transform on both sides of this equation and eliminating terms one gets that: 

ρη +++
=

Θ
ksss

s
Js

Td
23

1

)(  

62.  

a.  

We have that 

φgmxm LLaL =&&  

LTLa xxx −=  

φLxL =  

 

From the second equation 

φφ gLvxxx TLTLa =−=−= &&&&&&&&&  
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Obtaining Laplace transforms on both sides of the previous equation 

Φ=Φ− gLssVT  from which )( 2LsgsVT +Φ=  

so that 

2
0

2
2

2

11)(
ω+

=
+

=
+

=
Φ

s
s

L
L
gs

s
LLsg

ss
VT

 

 

b. Under constant velocity 
s

V
sVT

0)( = so the angle is 

2
0

2
0 1)(

ω+
=Φ

sL
V

s  

Obtaining inverse Laplace transform 

)sin()( 0
0

0 t
L
V

t ω
ω

φ = , the load will sway with a frequency 0ω  . 

 
c.  From φgmfxm LTTT −−&&  and Laplace transformation we get 

TLTTLTLTTT X
s

s
L

gmFV
s

s
L

gmFsgmFsXsm 2
0

2

2

2
0

2
2 11)()(

ωω +
−=

+
−=Φ−=  

From which 

)(
1

))(()1(

1
2
0

22

2
0

2

2
0

2
0

22

2
0

2

2
0

2
2 ω

ω
ωω

ω

ω
ass

s
mmsms

s

sL
gm

msF
X

TLTL
T

T

T

+
+

=
++

+
=

+
+

=  

Where 
T

L

m
ma += 1  

d.  From part c 

)(
1

2
0

2

2
0

2

ω
ω
ass

s
mF

sX
F
V

TT

T

T

T

+
+

==  

Let 
s

F
FT

0= then 

2
0

222
0

22

2
0

2
0

)(
)(

ωω
ω

as
DCs

s
B

s
A

ass
s

m
F

sV
T

T +
+

++=
+
+

=  

After partial fraction expansions, so 

)cos('')( 0 θω +++= taCBtAtvT  

From which it is clear that ∞⎯⎯⎯ →⎯ ∞⎯→⎯t
Tv  
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63. 

a.  Obtaining Laplace transforms on both sides of the equation  

)()( 0 sKNNssN =−  or 
Ks

N
sN

−
= 0)(  

By inverse Laplace transformation 
KteNtN 0)( =  

 
b. Want to find the time at which 

00 2NeN Kt =  

Obtaining ln on both sides of the equation 

K
t 2ln

=  

 

64.  

 

 
a. Converting each one of the impedances to its Laplace transform equivalent and applying the 
voltage divider rule one gets 

ZC
s

C

sC
Z

sC
Z

SC
Z

1

1

1
1

+
=

+
=  

 

)1()1(

1

1

1

1

1

)(
2

CLZCL
Rs

ZCL
Rs

LC

ZC
s

CsLR

ZC
s

C

s
Pi
Po

++++
=

+
++

+
=  
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Since 
Z
P

Q o=0 , 

9.73550125.33
0236.0

)1()1(

1

)( 2
2 ++

=
++++

=
ss

CLZCL
Rs

ZCL
Rs

LCZs
P
Q

i

o
 

  b.  The steady state circuit becomes 

 

 

So that 6
0 102.3

3081634176
1 −=

+
=

+
= X

ZR
P

Q i  

 
c. Applying the final value theorem 

      
6

2
0

102.31
9.73550125.33

0236.0)( −

⎯→⎯

=
++

=∞ X
sss

sq Lim
s

o  

65.    The laplace transform of the systems output is 

 

2 2 2 2 2 2

2 2{ ( )} ( )
4 ( ) 4

ref ref refT T Ta f a fT t T s
s s s f s s s f

λπ π
λ π λ π

= = − + = +
+ + + +

£  

Dividing by the input one gets 

 

2 2 2

2( )
4ref

T a f ss
U s T s f

λ π
λ π

= +
+ +

 

 

66. 

a.  By direct differentiation )()()( )1(

0 tVeeeV
dt

tdV tet
at

αα
λ

α λα
α
λ −−− ==

−

 

b.  α
λ

α
λ α

eVeVLimtVLimV
te

tt
0

)1(

0)()( ===∞
−−

∞⎯→⎯∞⎯→⎯
 

c.   
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Lambda = 2.5; 

alpha = 0.1; 

V0=50; 

t=linspace(0,100); 

V=V0.*exp(Lambda.*(1-exp(-alpha.*t))/alpha); 

plot(t,V) 

grid 

xlabel('t (days)') 

ylabel('mm^3 X 10^-3') 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
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3
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4
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12

t (days)

m
m

3  X
 1

0- 3

 

 

d.  From the figure 12105.3)( XV ≈∞  mm3
 X 10-3

 

From part c 121.0
5.2

0 106.350)( XeeVV ===∞ α
λ

 mm3
 X 10-3 

 
67. 

Writing the equations of motion, 
 
 (17.2s2 + 160s + 7000)Yf(s)                – (130s + 7000)Yh(s)                      – 0Ycat(s) = Fup(s) 

              - (130s+7000)Yf(s)   + (9.1ss + 130s + 89300)Yh(s)                 - 82300Ycat(s) = 0 



Solutions to Problems   2-47 

Copyright ©   2011 by John Wiley & Sons, Inc. 

                             - 0Yf(s)                           - 82300Yh(s)       + 1.6173 x106 Ycat(s) = 0 
 
These equations are in the form AY=F, where det(A) =  2.5314 x 108  (s2  + 15.47 s + 9283) (s2  + 

8.119 s + 376.3) 

Using Cramer’s rule: 

 
Ycat (s)
Fup(s)

=
0.04227(s + 53.85)

(s2 +15.47s + 9283)(s 2 + 8.119s + 376.3)
 

 
Yh(s)
Fup(s)

=
0.8306(s + 53.85)

(s2 +15.47s + 9283)(s2 + 8.119s + 376.3)
 

 
Yh(s) − Ycat (s)

Fup(s)
=

0.7883(s + 53.85)
(s2 + 15.47s + 9283)(s2 +8.119s + 376.3)

 

68. 
a. The first two equations are nonlinear because of the Tv  products on their right hand side. 
Otherwise the equations are linear. 

b. To find the equilibria let 0
*

===
dt
dv

dt
dT

dt
dT

 

Leading to 

0=−− νβTdTs  

0* =− TTv μβ  

0* =− cvkT  

The first equilibrium is found by direct substitution. For the second equilibrium, solve the last two 

equations for T* 

 

μ
βTvT =*

 and 
k
cvT =* . Equating we get that 

k
cT
β
μ

=  

Substituting the latter into the first equation after some algebraic manipulations we get that 

βμ
d

c
ksv −= . It follows that 

βμ k
cds

k
cvT −==* . 

69.     

a. From 
mk
FFa

m

w

•

−
= , we have: amkFFFamkFF mStLRmw O •••• ++++=+=  (1) 
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Substituting for the motive force, F, and the resistances FRo, FL, and Fst using the equations given 

in the problem, yields the equation: 

 

amkvvACgmgmf
v

PF mhwwtot
••⎟

⎠
⎞⎜

⎝
⎛•••••••••

•
++++== 25.0sincos ρααη

 (2) 

 
b. Noting that constant acceleration is assumed, the average values for speed and acceleration are: 

aav = 20 (km/h)/ 4 s = 5 km/h.s = 5x1000/3600 m/s2 = 1.389 m/s2 

vav = 50 km/h = 50,000/3,600 m/s = 13.89 m/s 

The motive force, F (in N), and power, P (in kW) can be found from eq. 2: 

Fav = 0.011 x 1590 x 9.8 + 0.5 x 1.2 x 0.3 x 2 x 13.892 + 1.2 x 1590 x 1.389 = 2891 N 

Pav = Fav. v / η tot = 2891 x 13.89 / 0.9 = 44, 617 N.m/s = 44.62 kW 

To maintain a speed of 60 km/h while climbing a hill with a gradient α = 5o, the car engine or 

motor needs to overcome the climbing resistance: 

13585sin8.91590sin == ••••= oαgmFSt N 

Thus, the additional power, Padd, the car needs after reaching 60 km/h to maintain its speed while 

climbing a hill with a gradient α = 5o is: 

η/vStFaddP •=  = 1358 x 60 x 1000/(3,600 x 0.9) = 25, 149 W = 25.15 kW 

 

c. Substituting for the car parameters into equation 2 yields: 

 

dtdvvF / 1590 x 1.2 2 x 0.3 x 1.2 x 0.5 9.8 x 1590 x 0.011 2 ++=  

 

or  dtdvvtF / 1908 0.364.171)( 2 ++=   (3) 

To linearize this equation about vo = 50 km/h = 13.89 m/s, we use the truncated taylor series: 
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)2)
2

22 (()(
ooo

vv

o vvvvv
dv
vdvv

o

−−≈− •=

=

 (4), from which we obtain:  

 

2222 89.1378.27 −=− ••= vvvvv oo  (5) 

Substituting from equation (5) into (3) yields: 

dtdvvtF / 190846.69 014.171)( +−+=  or 

dtdvvtFFFtFtF oRoe / 1908 0146.694.171)()()( +=+−=+−=  (6) 

Equation (6) may be represented by the following block-diagram: 

 
d. Taking the Laplace transform of the left and right-hand sides of equation (6) gives, 

(s) 1908(s) 01)( sVVsFe +=   (7) 

Thus the transfer function, Gv(s), relating car speed, V(s) to the excess motive force, Fe(s), when the 

car travels on a level road at speeds around vo = 50 km/h = 13.89 m/s under windless conditions is: 

sF
VsGv  1908 01

1
(s)
(s))(

e +
==   (8) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Car Speed, 
v(t) 

 
Gv 

 

+ 

Fo = 69.46 N

+ 
Motive 
Force, 

F (t)  

Excess 
Motive 
Force, 
Fe(t)  

FRo = 171.4 N 
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  Modeling  

      in the Time Domain 
 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: State-Space Representation 

For the power amplifier, 
Ea(s)
Vp(s)  = 

150
s+150  . Taking the inverse Laplace transform, ea

.
 +150ea =  

150vp.     Thus, the state equation is  

ea

•
= −150ea +150vp  

For the motor and load, define the state variables as x1 = θm and x2 = θ
.
 m. Therefore,  

x
.
 1 = x2                                                                                                      (1) 

Using the transfer function of the motor, cross multiplying, taking the inverse Laplace transform,  

and using the definitions for the state variables,  
 

x
.
 2 = - 

1
Jm

 (Dm+
KtKa

Ra
 ) x2 + 

Kt
RaJm

  ea                                                                     (2) 

Using the gear ratio, the output equation is 
 

y = 0.2x1                                                                                               (3) 

Also, Jm = Ja+5(
1
5 )2 = 0.05+0.2 = 0.25, Dm = Da+3(

1
5 )2 = 0.01+0.12 = 0.13,  

Kt
RaJm

   = 
1

(5)(0.25)    

= 0.8, and  
1

Jm
 (Dm+

KtKa
Ra

 )  = 1.32. Using Eqs. (1), (2), and (3) along with the previous values, the  

state and output equations are,  

x.  = 
0 1
0 -1.32

 x  + 
0

0.8
 ea ; y = 0.2 0  x
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Aquifer: State-Space Representation 

C1
dh1
dt   = qi1-qo1+q2-q1+q21 = qi1-0+G2(h2-h1)-G1h1+G21(H1-h1) =  

                                                                                 -(G2+G1+G21)h1+G2h2+qi1+G21H1 

C2
dh2
dt   = qi2-q02+q3-q2+q32 = qi2-qo2+G3(h3-h2)-G2(h2-h1)+0 = G2h1-[G2+G3]h2+G3h3+qi2-qo2 

C3
dh3
dt   = qi3-qo3+q4-q3+q43 = qi3-qo3+0-G3(h3-h2)+0 = G3h2-G3h3+qi3-qo3 

Dividing each equation by Ci and defining the state vector as x = [h1  h2  h3]T 

 

x
.

=

−(G1 + G2 + G3 )
C1

G2

C1

0

G2

C2

−(G2 + G3)
C2

G3

C2

0
G3

C3

−G3

C3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

x +

qi1 + G21H1

C1
qi 2 − qo2

C2
qi3 − qo3

C3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

u(t)

y =
1 0 0
0 1 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x

 

where u(t) = unit step function. 

 
ANSWERS TO REVIEW QUESTIONS 

1. (1) Can model systems other than linear, constant coefficients; (2) Used for digital simulation  

2. Yields qualitative insight  

3. That smallest set of variables that completely describe the system 

4. The value of the state variables 

5. The vector whose components are the state variables 

6. The n-dimensional space whose bases are the state variables 

7. State equations, an output equation, and an initial state vector (initial conditions) 

8. Eight 

9. Forms linear combinations of the state variables and the input to form the desired output 

10. No variable in the set can be written as a linear sum of the other variables in the set. 

11. (1) They must be linearly independent; (2) The number of state variables must agree with the order of 

the differential equation describing the system; (3) The degree of difficulty in obtaining the state equations 

for a given set of state variables. 

12. The variables that are being differentiated in each of the linearly independent energy storage elements  
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13. Yes, depending upon the choice of circuit variables and technique used to write the system equations. 

For example, a three -loop problem with three energy storage elements could yield three simultaneous 

second-order differential equations which would then be described by six, first-order differential equations. 

This exact situation arose when we wrote the differential equations for mechanical systems and then 

proceeded to find the state equations. 

14. The state variables are successive derivatives. 

 

SOLUTIONS TO PROBLEMS  

1.   
Add the branch currents and node voltages to the network. 

 

 

Write the differential equation for each energy storage element. 

 

 
di2

dt
= v1  

 
di4

dt
= v2    

 
dvo

dt
= i5   

 

Therefore, the state vector is x =
i2

i4

vo

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

Now obtain v1, v2, and i5 in terms of the state variables. First find i1 in terms of the state variables. 

 
−vi + i1 + i3 + i5 + vo = 0
But i3 = i1 − i2 and i5 = i3 − i4.  Thus,
−vi + i1 + (i1 − i2 ) + (i3 − i4 ) + vo = 0
Making the substitution for i3 yields
−vi + i1 + (i1 − i2 ) + ((i1 − i2 ) − i4 ) + vo = 0
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 Solving for i1  

i1 =
2
3

i2 +
1
3

i4 −
1
3

vo +
1
3

vi  

Thus,  

v1 = vi − i1 = −
2
3

i2 −
1
3

i4 +
1
3

vo +
2
3

vi  

Also,  

i3 = i1 − i2 = − 1
3

i2 + 1
3

i4 − 1
3

vo + 1
3

vi

and

i5 = i3 − i4 = −
1
3

i2 −
2
3

i4 −
1
3

vo +
1
3

vi

Finally,  

v2 = i5 + vo = −
1
3

i2 −
2
3

i4 +
2
3

vo +
1
3

vi

 

Using v1, v2, and i5, the state equation is 

 

x
•

=

− 2
3

− 1
3

1
3

−1
3

− 2
3

2
3

−1
3

− 2
3

−1
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

x +

2
3
1
3
1
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

vi

y = 0 0 1[ ]x

 

2.  
Add branch currents and node voltages to the schematic and obtain,  

 

 

 

Write the differential equation for each energy storage element. 

 

3 
2

33 
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1
2

3

1
3
1
2 L

dv i
dt
di v
dt

=

=  

Therefore the state vector is x =
v1

i3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

Now obtain vL  and i2 , in terms of the state variables,  

1 2 1 1 3 1 1 33 3( 4 ) 11 3L Rv v v v i v i v v i= − = − = − + = − −  
 

2 1 3 1 3 1 3
1 1 1( )
3 3 3i ii i i v v i v i v= − = − − = − − +  

 
Also, the output is  

y = iR = 4v1 + i3  
  
Hence, 

[ ]

1 1 1
9 3 9
11 3
2 2

4 1

iv

y

•

⎡ ⎤− − ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
=

x x
0

x

 

3.  
Let C1 be the grounded capacitor and C 2 be the other. Now, writing the equations for the energy 
storage components yields,  

 
diL

dt
= vi − vC1

dvC1

dt
= i1 − i2

dvC2

dt
= i2 − i3

                                           (1) 

Thus the state vector is x =
iL

vC1

vC2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

. Now, find the three loop currents in terms of the state variables 

and the input. 

Writing KVL around Loop 2 yields vC1
= vC2

+ i2  .Or,  

i2 = vC1
− vC2
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Writing KVL around the outer loop yields i3 + i2 = vi  Or,  

i3 = vi − i2 = vi − vC1
+ vC2

 

Also, i1 − i3 = iL . Hence,  

i1 = iL + i3 = iL + vi − vC1
+ vC2

 

Substituting the loop currents in equations (1) yields the results in vector-matrix form,  

 
diL

dt
dvC1

dt
dvC2

dt

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=
0 −1 0
1 −2 2
0 2 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

iL

vC1

vC2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+
1
1
−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
vi  

Since vo = i2 = vC1
− vC2

, the output equation is 

y = 0 1 1[ ]
iL

vC1

vC2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

4.  
Equations of motion in Laplace: 
 

 

2
1 2 3

2
1 2 3

2
1 2 3

(2 3 2) ( ) ( 2) ( ) ( ) 0

( 2) ( ) ( 2 2) ( ) ( ) ( )

( ) ( ) ( 3 ) ( ) 0

s s X s s X s sX s

s X s s s X s sX s F s

sX s sX s s s X s

+ + − + − =

− + + + + − =

− − + + =

 

Equations of motion in the time domain: 
2

31 1 2
1 22

2
31 2 2

1 22

2
3 31 2

2

2 3 2 2 0

2 2 2 ( )

3 0

dxd x dx dxx x
dt dt dt dt

dxdx d x dxx x f t
dt dt dt dt

d x dxdx dx
dt dt dt dt

+ + − − − =

− − + + + − =

− − + + =

 

Define state variables: 
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1 1 1 1

1 1
2 2

3 2 2 3

      or                                                       (1)

   or                                                   (2)

      or                               

z x x z
dx dxz z
dt dt

z x x z

= =

= =

= =

2 2
4 4

5 3 3 5

3 3
6 6

                       (3)

   or                                                  (4)

      or                                                      (5)

   or    

dx dxz z
dt dt

z x x z
dx dxz z
dt dt

= =

= =

= =                                               (6)

 

 
Substituting Eq. (1) in (2), (3) in (4), and (5) in (6), we obtain, respectively:  
 

dz1

dt
= z2                                                              (7)

dz3

dt
= z4                                                             (8)

dz5

dt
= z6                                                              (9)

 

 
Substituting Eqs. (1) through (6) into the equations of motion in the time domain and solving for the 

derivatives of the state variables and using Eqs. (7) through (9) yields the state equations: 

 

 

1
2

2
1 2 3 4 6

3
4

4
1 2 3 4 6

5
6

6
2 4 6

3 1 1
2 2 2

2 2 2 ( )

3

dz z
dt
dz z z z z z
dt
dz z
dt
dz z z z z z f t
dt
dz z
dt
dz z z z
dt

=

= − − + + +

=

= + − − + +

=

= + −

 

The output is x3 = z5. 
 
In vector-matrix form: 
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[ ]

0 1 0 0 0 0 0
1 1.5 1 0.5 0 0.5 0

0 0 0 1 0 0 0
( )

2 1 2 2 0 1 1
0 0 0 0 0 1 0
0 1 0 1 0 3 0

0 0 0 0 1 0

f t
•

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

Z Z

y Z

 

5. 
Writing the equations of motion, 
 

2
1 2 3

2
1 2 3

2
1 2 3

(2 2 1) ( ) ( ) ( 1) ( ) 0

( ) ( 2 1) ( ) ( 1) ( ) 0

( 1) ( ) ( 1) ( ) ( 2 2) ( ) ( )

s s X s sX s s X s

sX s s s X s s X s

s X s s X s s s X s F s

+ + − − + =

− + + + − + =

− + − + + + + =

 

Taking the inverse Laplace transform, 
 

•• • • •

1 1 1 2 3 3

• •• • •

1 2 2 2 3 3

• • •• •

1 1 2 2 3 3 3

2 2 0

2 0

2 2 ( )

x x x x x x

x x x x x x

x x x x x x x f t

+ + − − − =

− + + + − − =

− − − − + + + =

 

Simplifying, 
 

•• • • •

1 1 1 2 3 3

•• • • •

2 1 2 2 3 3

•• • • •

3 1 1 2 2 3 3

1 1 1 1
2 2 2 2

2

2 2 ( )

x x x x x x

x x x x x x

x x x x x x x f t

= − − + + +

= − − + +

= + + + − − +

 

 
Defining the state variables, 
 

z1 = x1; z2 = x1

•
; z3 = x2 ; z4 = x2

•
; z5 = x3; z6 = x3

•
 

 
Writing the state equations using the simplified equations above yields, 
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• •

1 1 2

• ••

2 1 2 1 4 6 5

• •

3 2 4

• ••

4 2 2 4 3 6 5
• •

5 3 6
• ••

6 3 2 1 4 3 6 5

1 1 1 1
2 2 2 2

2

2 2 ( )

z x z

z x z z z z z

z x z

z x z z z z z

z x z

z x z z z z z z f t

= =

= = − − + + +

= =

= = − − + +

= =

= = + + + − − +

 

 
Converting to vector-matrix form, 
 

[ ]

•

0 1 0 0 0 0 0
1 1 1 1 01 0
2 2 2 2

00 0 0 1 0 0 ( )
00 1 1 2 1 1
00 0 0 0 0 1
11 1 1 1 2 2

1 0 0 0 0 0

f t

y

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− −⎢ ⎥⎣ ⎦
=

z z

z

 

 
6.  

Drawing the equivalent network,  

 

 

 

Writing the equations of motion,  

 
2

2 3
2

2 3

(555.56 100) 100 3.33

100 (100 100 100) 0

s T

s s

θ θ

θ θ

+ − =

− + + + =
 

Taking the inverse Laplace transform and simplifying,  
 

555.56 

3.33 T 
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2 2 3

2 3 3 3

0.18 0.18 0.006

0

Tθ θ θ

θ θ θ θ

••

•• •

+ − =

− + + + =
 

Defining the state variables as 
 

x1 = θ2 ,  x2 =θ2

•
,  x3 = θ3,  x4 = θ3

•
 

Writing the state equations using the equations of motion and the definitions of the state variables 

 

 

1 2

2 2 2 3 1 3

3 4

4 3 2 3 3 1 3 4

2 1

0.18 0.18 0.006 0.18 0.18 0.006

3.33 3.33

x x

x T x x T

x x

x x x x
y x

θ θ θ

θ θ θ θ
θ

•

• ••

•

• •• •

=

= = − + + = − + +

=

= = − − = − −
= =

,  

In vector-matrix form,  

 

[ ]

0 1 0 0 0
0.18 0 0.18 0 0.006
0 0 0 1 0
1 0 1 1 0

3.33 0 0 0

T

y

•

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=

x x

x

 

7.  
Drawing the equivalent circuit, 
 

 
Writing the equations of motion, 
 

10T 

(1/10)(102 ) = 10 N-m/rad 200(1/10)2 =2 N-m/rad 
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2 3

2 3 4

3 4

12 ( ) 2 ( ) 10 ( )
2 ( ) (3 2) ( ) 3 ( ) 0
3 ( ) 5 ( ) 0

s s T s
s s s s s

s s s s

θ θ
θ θ θ
θ θ

− =
− + + − =
− + =

 

 
Taking the inverse Laplace transform, 

 

2 312 ( ) 2 ( ) 10 ( )t t T tθ θ− =                                               (1) 

−2θ2 (t) + 3θ3

•
(t) + 2θ3 −3θ4

•
(t) = 0                                                       (2) 

−3θ3

•
(t) + 5θ4

•
(t) = 0                                                      (3) 

From (3),  

θ3

•
(t) =

5
3

θ4

•
(t)  and θ3(t) =

5
3

θ4 (t)                                            (4)  

assuming zero initial conditions.          

From (1)  

2 3 4
1 5 5 5( ) ( ) ( ) ( ) ( )
6 6 18 6

t t T t t T tθ θ θ= + = +                                 (5) 

 
Substituting (4) and (5) into (2) yields the state equation (notice there is only one equation), 
 

•

4 4
25 5( ) ( ) ( )
18 6

t t T tθ θ= − +  

The output equation is given by, 
 

θL(t) =
1

10
θ4 (t)  

8. 

Solving Eqs. (3.44) and (3.45) in the text for the transfer functions 
X1(s)
F(s)

 and 
X2 (s)
F(s)

: 

X 1 s

0 K−
F M 2 s2 K+

M 1 s2 D s K+ + K−
K− M 2 s2 K+

=   and   X 2 s

M 1 s2 D s K+ + 0
K− F

M 1 s2 D s K+ + K−
K− M 2 s2 K+

=  

Thus,  
  X 1 s

F s
K

M 2 M 1 s 4 D M 2 s 3 K M 2 s 2 K M 1 s 2 D K s+ + + +
=  

and 

  X 2 s
F s

M 1 s 2 D s K+ +
M 2 M 1 s 4 D M 2 s 3 K M 2 s 2 K M 1 s 2 D K s+ + + +

=  

 
Multiplying each of the above transfer functions by s to find velocity yields pole/zero cancellation at 

the origin and a resulting transfer function that is third order. 



3-12   Chapter 3:   Modeling in the Time Domain  

Copyright ©   2011 by John Wiley & Sons, Inc. 

9. 
a. . Using the standard form derived in the textbook, 
 

x
•

=

0 1 0 0
0 0 1 0
0 0 0 1

−100 −7 −10 −20

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
0
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

r(t)

c = 100 0 0 0[ ]x

 

 
b. Using the standard form derived in the textbook, 
 

x
•

=

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−30 −1 −6 −9 −8

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

x +

0
0
0
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

r(t)

c = 30 0 0 0 0[ ]x

 

10.  
Program: 
'a' 
num=100; 
den=[1 20 10 7 100]; 
G=tf(num,den) 
[Acc,Bcc,Ccc,Dcc]=tf2ss(num,den); 
Af=flipud(Acc); 
A=fliplr(Af) 
B=flipud(Bcc) 
C=fliplr(Ccc) 
'b' 
num=30; 
den=[1 8 9 6 1 30]; 
G=tf(num,den) 
[Acc,Bcc,Ccc,Dcc]=tf2ss(num,den); 
Af=flipud(Acc); 
A=fliplr(Af) 
B=flipud(Bcc) 
C=fliplr(Ccc) 
 
Computer response: 
ans = 
 
a 
 
Transfer function: 
               100 
--------------------------------- 
s^4 + 20 s^3 + 10 s^2 + 7 s + 100 
  
 
 
A = 
 
     0     1     0     0 
     0     0     1     0 
     0     0     0     1 
  -100    -7   -10   -20 
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B = 
 
     0 
     0 
     0 
     1 
 
C = 
 
   100     0     0     0 
 
ans = 
 
b 
 
Transfer function: 
                 30 
------------------------------------ 
s^5 + 8 s^4 + 9 s^3 + 6 s^2 + s + 30 
  
A = 
 
     0     1     0     0     0 
     0     0     1     0     0 
     0     0     0     1     0 
     0     0     0     0     1 
   -30    -1    -6    -9    -8 
 
B = 
 
     0 
     0 
     0 
     0 
     1 
 
C = 
 
    30     0     0     0     0 

 
11.  

a. Using the standard form derived in the textbook,  

 

[ ]

•

0 1 0 0 0
0 0 1 0 0

( )
0 0 0 1 0
13 5 1 5 1

10 8 0 0 0

r t

c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

=

x x

x
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b. Using the standard form derived in the textbook,  

 

[ ]

•

0 1 0 0 0 0
0 0 1 0 0 0

( )0 0 0 1 0 0
0 0 0 0 1 0
0 0 8 13 9 1

6 7 12 2 1

r t

c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

=

x x

x

 

 
12.  

Program: 
'a' 
num=[8 10]; 
den=[1 5 1 5 13] 
G=tf(num,den) 
[Acc,Bcc,Ccc,Dcc]=tf2ss(num,den); 
Af=flipud(Acc); 
A=fliplr(Af) 
B=flipud(Bcc) 
C=fliplr(Ccc) 
'b' 
num=[1 2 12 7 6]; 
den=[1 9 13 8 0 0] 
G=tf(num,den) 
[Acc,Bcc,Ccc,Dcc]=tf2ss(num,den); 
Af=flipud(Acc); 
A=fliplr(Af) 
B=flipud(Bcc) 
C=fliplr(Ccc) 

 
 
Computer response: 
ans = 
 
ans = 
 
a 
 
 
den = 
 
     1     5     1     5    13 
 
  
Transfer function: 
          8 s + 10 
---------------------------- 
s^4 + 5 s^3 + s^2 + 5 s + 13 
  
 
A = 
 
     0     1     0     0 
     0     0     1     0 
     0     0     0     1 
   -13    -5    -1    -5 
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           B = 

 
     0 
     0 
     0 
     1 
 

           C = 
 
    10     8     0     0 
 
 
ans = 
 
b 
 
den = 
 
     1     9    13     8     0     0 
 
  
Transfer function: 
s^4 + 2 s^3 + 12 s^2 + 7 s + 6 
------------------------------ 
 s^5 + 9 s^4 + 13 s^3 + 8 s^2 
  
 
A = 
 
     0     1     0     0     0 
     0     0     1     0     0 
     0     0     0     1     0 
     0     0     0     0     1 

3 2

1
6 10 5s s s+ + +

     0     0    -8   -13    -9 

 
 
B = 
 
     0 
     0 
     0 
     0 
     1 
 
 
C = 
 
     6     7    12     2     1 
 

13. 

The transfer function can be represented as a block diagram as follows: 

 

 

 

 

 

1
s3 +6s2 +9s +4

R(s)         X(s) Y(s)
s2 +3s+73 2

1

6 10 5s s s+ + +
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Writing the differential equation for the first box: 

6 10 5 ( )x x x x r t
••• •• •

+ + + =  

Defining the state variables: 

1

2

3

x x

x x

x x

•

••

=

=

=

 

Thus,  

1 2

2 3

3 1 2 35 10 6 ( ) 5 10 6 ( )

x x

x x

x x x x r t x x x r t

•

•

• • ••

=

=

= − − − + = − − − +

 

 
From the second box,  

1 2 33 8 8 3y x x x x x x
•• •

= + + = + +  
In vector-matrix form: 

[ ]

0 1 0 0
0 0 1 0 ( )
5 10 6 1

8 3 1

r t

y

•
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

=

x x

x

 

 
14.  

a. G(s)=C(sI-A)-1B 

 

A = 
0 1 0
0 0 1
-3 -2 -5

 ; B = 
0
0
10

 ; C = 1 0 0  

 
 

(sI - A)
-1

 = 1

s3 + 5s
2
 + 2s +3

 
s2+5s+2 s+5 1

-3 s(s+5) s

-3s -2s-3 s2  
 

Therefore, G(s) = 
10

s3+5s2+2s+3
  . 

b. G(s)=C(sI-A)-1B 

A
2 3 8−
0 5 3
3− 5− 4−

=  ; B
1
4
6

=  ; C 1 3 6, ,=
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s I A− 1− 1
s3 3 s2− 27 s− 157+

s2 s− 5− 3 s 52+ 8 s− 49+
9− s2 2 s 32−+ 3 s 6−

3 s− 15+ 5 s− 1+ s2 7 s− 10+
=

 
 

Therefore, G s 49 s2 349 s− 452+
s3 3 s2− 27 s− 157+

=  . 

c. G(s)=C(sI-A)-1B 
 

A =
3 −5 2
1 −8 7

−3 −6 2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;  B =

5
−3
2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; C = 1 −4 3[ ] 

 

(sI − A)−1 =
1

s3 + 3s2 +19s −133

(s2 + 6s + 26) −(5s + 2) (2s −19)
(s − 23) (s2 − 5s +12) (7s −19)

−(3s + 30) −(6s − 33) (s2 + 5s −19)

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

 

Therefore, G(s) = 
23s2 − 48s − 7

s3 + 3s2 +19s −133
. 

 
15. 

Program: 
 
'a' 
A=[0 1 5 0;0 0 1 0;0 0 0 1;-7 -9 -2 -3]; 
B=[0;5;8;2]; 
C=[1 3 6 6]; 
D=0; 
statespace=ss(A,B,C,D) 
[num,den]=ss2tf(A,B,C,D); 
G=tf(num,den) 
'b' 
A=[3 1 0 4 -2;-3 5 -5 2 -1;0 1 -1 2 8;-7 6 -3 -4 0;-6 0 4 -3 1]; 
B=[2;7;8;5;4]; 
C=[1 -2 -9 7 6]; 
D=0; 
statespace=ss(A,B,C,D) 
[num,den]=ss2tf(A,B,C,D); 
G=tf(num,den) 

 
 
Computer response: 
 
ans = 
 
a 
 
a =  
       x1  x2  x3  x4 
   x1   0   1   5   0 
   x2   0   0   1   0 
   x3   0   0   0   1 
   x4  -7  -9  -2  -3 
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b =  
       u1 
   x1   0 
   x2   5 
   x3   8 
   x4   2 
  
c =  
       x1  x2  x3  x4 
   y1   1   3   6   6 
  
d =  
       u1 
   y1   0 
  
Continuous-time model. 
  
Transfer function: 
75 s^3 - 96 s^2 - 2331 s - 210 
------------------------------ 
s^4 + 3 s^3 + 2 s^2 + 44 s + 7 
  
 
ans = 
 
b 
 
  
a =  
       x1  x2  x3  x4  x5 
   x1   3   1   0   4  -2 
   x2  -3   5  -5   2  -1 
   x3   0   1  -1   2   8 
   x4  -7   6  -3  -4   0 
   x5  -6   0   4  -3   1 
  
b =  
       u1 
   x1   2 
   x2   7 
   x3   8 
   x4   5 
   x5   4 
  
c =  
       x1  x2  x3  x4  x5 
   y1   1  -2  -9   7   6 
  
d =  
       u1 
   y1   0 
  
Continuous-time model. 
  
Transfer function: 
-25 s^4 - 292 s^3 + 1680 s^2 + 1.628e004 s + 3.188e004 
------------------------------------------------------ 
    s^5 - 4 s^4 - 32 s^3 + 148 s^2 - 1153 s - 4480 
 
 
16. 
Program: 
syms s                         
'a' 
A=[0 1 3 0 
0 0 1 0 
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0 0 0 1 
-7 -9 -2 -3];               
B=[0;5;8;2];                  
C=[1 3 4 6];                   
D=0;                           
I=[1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1];                      
'T(s)'                         
T=C*((s*I-A)^-1)*B+D;          
T=simple(T); 
pretty(T)                      
'b' 
A=[3 1 0 4 -2 
-3 5 -5 2 -1 
0 1 -1 2 8 
-7 6 -3 -4 0 
-6 0 4 -3 1];                  
B=[2;7;6;5;4];                 
C=[1 -2 -9 7 6];               
D=0;                           
I=[1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1];                    
'T(s)'                       
T=C*((s*I-A)^-1)*B+D;         
T=simple(T); 
pretty(T)                    
 
Computer response: 
ans = 
 
a 
 
ans = 
 
T(s) 
  
                              2                      3 
                        -164 s  - 1621 s - 260 + 59 s 
                        ------------------------------ 
                          4      3      2 
                         s  + 3 s  + 2 s  + 30 s + 7 
 
ans = 
 
b 
 
ans = 
T(s) 
  
                                  2        3      4 
                  14582 s + 1708 s  - 408 s  - 7 s  + 27665 
                  ------------------------------------------ 
                   5      4       3        2 
                  s  - 4 s  - 32 s  + 148 s  - 1153 s - 4480 

17.  

Let the input be 
dθz
dt   =ωz,  x1=θx , x2=θ

.
 x . Therefore,  

x
.
 1 = x2 
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x
.
 2 = - 

Kx
Jx

  x1 - 
Dx
Jx

  x2 + Jωωz 

 The output is θx. 

 In vector-matrix form, θx = x1 . Therefore, y = x1. 
 

x.  = 

0 1

- 
K x
Jx

- 
D x
Jx

 x  +  
0

Jω
 ω z

y  = 1 0  x   

18.  

The equivalent cascade transfer function is as shown below.  

 

Ka
K

3

s3+ 
K

2
K

3
 s2+ 

K
1

K
3

 s+ 
K

0
K

3

s+ 
K

b
Ka

d (s) X(s) F (s)

 

 

For the first box, x
...

+
K

2
K

3
 x..+ 

K
1

K
3

 x. + 
K

0
K

3
 x = 

Ka
K

3
δ(t). 

 
Selecting the phase variables as the state variables: x

1
=x, x

2
=x. , x

3
=x... 

 

Writing the state  and output equations: 

x
.
 1 = x2 

x
.
 2 = x3 

x
.
 3 = - 

K0
K3

  x1- 
K1
K3

  x2- 
K2
K3

  x3+ 
Ka
K3

  δ(t) 

y = φ(t) = x
.
 + 

Kb
Ka

  x = 
Kb
Ka

  x1+x2 

In vector-matrix form,  

x.  = 

0 1 0
0 0 1

- 
K

0
K

3
- 

K
1

K
3

- 
K

2
K

3

x+

0
0

Ka
K

3

δ(t) ; y = 
K

b
Ka

1 0 x
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19.  

Since Tm = Jeq 
dωm

dt   + Deqωm, and Tm = Kt ia,  

Jeq 
dωm

dt   + Deqωm = Kt ia                                                                            (1) 

Or, 
dωm

dt    = - 
Deq
Jeq

  ωm + 
 Kt
Jeq

  ia 

But, ωm  = 
N2
N1

   ωL. 

Substituting in (1) and simplifying yields the first state equation,  

 
dωL
dt    =  - 

Deq
Jeq

  ωL + 
 Kt
Jeq

  
N1
N2

  ia 

The second state equation is:  
dθL
dt    = ωL 

Since  

ea = Raia+La 
dia
dt   +Kbωm  = Raia+La 

dia
dt   +Kb

N2
N1

   ωL,  

the third state equation is found by solving for   
dia
dt   .  Hence,  

 

 
dia
dt    = - 

Kb
La

 
N2
N1

  ωL - 
Ra
La

  ia+ 
1

La
  ea 

Thus the state variables are:   x1 = ωL, x2 = θL , and x3 = ia.  
 

Finally, the output is y = θm = 
N2
N1

  θL .  

In vector-matrix form,  

 

x.  = 

- 
Deq
Jeq

0  
Kt
Jeq

 
N

1
N

2

1 0 0

- 
K

b
La

 
N

2
N

1
0 - 

Ra
La

x +

0
0
1
La

ea ; y = 0
N

2
N

1
0 x

 
where,  

x  = 

ω
L

θ
L

ia  
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20.  
Writing the differential equations,  

d2x1
dt2

  + 
dx1
dt   + 2x12 - 

dx2
dt   = 0 

d2x2
dt2

  + 
dx2
dt    - 

dx1
dt   = f(t) 

Defining the state variables to be x1, v1, x2, v2, where v's are velocity,  

x
.
 1 = v1 

x
.
 2 = v2 

v
.
 1 = -v1-2x12+v2 

v
.
 2 = v1-v2+f(t) 

Around x1 = 1, x1 = 1+δx1, and  x
.
 1 = δ x

.
 1 . Also,  

 

x
1
2  = x

1
2

⎮
x =1

+
dx

1
dt ⎮

x =1
δx

1
 = 1+2x

1 ⎮
x =1

δx
1

 = 1+2δx
1

 
 

Therefore, the state and output equations are,  

δx
.
 1  = v1 

x
.
 2 = v2 

v
.
 1 = -v1-2(1+2δx1)+v2 

v
.
 2 = v1-v2+f(t) 

y = x2 
In vector-matrix form, 
  

δx
1

.

x.
2

v.
1

v.
2

 = 

0 0 1 0
0 0 0 1
-4 0 -1 1
0 0 1 -1

δx
1

x
2

v
1

v
2

 + 

0 0
0 0
-2 0
0 1

1
f(t)

 ; y = 0 1 0 0

δx
1

x
2

v
1

v
2

 

 

where f(t) = 2 + δf(t), since force in nonlinear spring is 2 N and must be balanced by 2 N force on 

damper. 
21. 

Controller: 

The transfer function can be represented as a block diagram as follows: 



3-23   Chapter 3:   Modeling in the Time Domain 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

Rc(s)         Xc(s) Yc(s)
K1

s + b
s+ a

 

 
Writing the differential equation for the first box,  
 

K1

s + b
 

and solving for cx
•

,  

1 ( )c c cx bx K r t
•

= − +  
From the second box,  

1

1

( )
( ) ( )

c c c c c c

c c

y x ax bx K r t ax
a b x K r t

•

= + = − + +
= − +

 

Wheels: 

The transfer function can be represented as a block diagram as follows: 

 

Rw(s)         Xw(s)c
s + c

 

Writing the differential equation for the block of the form,  
c

s + c
 

and solving for wx
•

 ,  

( )w w wx cx cr t
•

= − +  
The output equation is,  

yw = xw 
Vehicle: 

The transfer function can be represented as a block diagram as follows: 

 

Rv(s)         Xv(s)1
s

 
 

Writing the differential equation for the block,  
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1
s

 

and solving for vx
•

, 

( )v vx r t
•

=  
The output equation is  

     yv = xv 
22. 

A
1.702− 50.72 263.38
0.22 1.418− 31.99−

0 0 14−
=  ; B

272.06−
0
14

=  

For G1(s), C 1 1 0 0, ,= , and  

G1(s) =  C1(sI-A)-1B 

Thus,  
 

G 1 C 1 1
s 3 17.12 s 2 34.935 s 122.43−+ +

s 2 15.418 s 19.852+ + 50.72 s 710.08+ 263.38 s 1249.1−

0.22 s 3.08+ s 2 15.702 s 23.828+ + 31.99 s− 3.4966+

0 0 s 2 3.12 s 8.745−+

B=s

 

Or 

G 1 s 272.06 s 2− 507.3 s− 22888−

s 3 17.12 s 2 34.935 s 122.43−+ +
=  = 272.06 s 2 1.8647 s 84.128+ +−

s 14+ s 1.7834− s 4.9034+  
 

For G2(s), C2 = (0,1,0), and  

G2(s) =  C2(sI-A)-1B 

Thus,  

G 2 s C 2 1
s 3 17.12 s 2 34.935 s 122.43−+ +

s 2 15.418 s 19.852+ + 50.72 s 710.08+ 263.38 s 1249.1−

0.22 s 3.08+ s 2 15.702 s 23.828+ + 31.99 s− 3.4966+

0 0 s 2 3.12 s 8.745−+

B=

 

 Or 
G 2 s 507.71 s− 788.99−

s 3 17.12 s 2 34.935 s 122.43−+ +
=  = 507.71 s 1.554+−

s 14+ s 1.7834− s 4.9034+
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23. 
Adding displacements to the figure, 
 

xe

z

xsxr

 

Writing the differential equations for noncontact, 
 

d2 xr

dt2 + 2
dxr

dt
+ 2xr − xs −

dxs

dt
= u(t)

−
dxr

dt
− xr +

d2 xs

dt2 +
dxs

dt
+ xs = 0

 

Define the state variables as, 

x1 = xr ; x2 = xr

•
; x3 = xs ; x4 = xs

•
 

Writing the state equations, using the differential equations and the definition of the state variables, 

we get, 
 

x1

•
= xr

•
= x2

x2

•
= xr

••
= −2x1 − 2x2 + x3 + x4 + u(t)

x3

•
= xs

•
= x4

x4

•
= xs

••
= x1 + x2 − x3 − x4

 

Assuming the output to be xs, the output equation is, 

y = x3  
In vector-matrix form, 
 



3-26   Chapter 3:   Modeling in the Time Domain  

Copyright ©   2011 by John Wiley & Sons, Inc. 

x
•

=

0 1 0 0
−2 −2 1 1
0 0 0 1
1 1 −1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
1
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

u(t)

y = 0 0 1 0[ ]x

 

Writing the differential equations for contact, 
 

d2 xr

dt2 + 2 dxr

dt
+ 2xr − xs − dxs

dt
= u(t)

− dxr

dt
− xr + d2 xs

dt2 + dxs

dt
+ xs − z − xe = 0

−xs +
dz
dt

+ z −
dxe

dt
= 0

−xs −
dz
dt

+
d2 xe

dt 2 + 2
dxe

dt
+ 2xe = 0

 

Defining the state variables, 

x1 = xr ; x2 = xr

•
; x3 = xs ; x4 = xs

•
; x5 = z; x6 = z

•
;  x7 = xe;  x8 = xe

•
 

Using the differential equations and the definitions of the state variables, we write the state equations. 

x1

•
= x2

x2

•
= −x1 − 2x2 + x3 + x4 +u(t)

x3

•
= x4

x4

•
= x1 + x2 − x3 − x4 + x5 + x7

x5

•
= x6

 

Differentiating the third differential equation and solving for d2z/dt2 we obtain, 
 

x6

•
=

d2z
dt 2 =

dxs

dt
−

dz
dt

+
d2 xe

dt2  

But, from the fourth differential equation, 
 

d2 xe

dt2 = xs +
dz
dt

− 2
dxe

dt
− 2xe = x3 + x6 − 2x8 − 2x7  

Substituting this expression back into x6

•
along with the other definitions and then simplifying yields, 

x6

•
= x4 + x3 − 2x8 − 2x7  

Continuing, 
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x7

•
= x8

x8

•
= x3 + x6 − 2x7 − 2x8

 

Assuming the output is xs,  

y = xs  
Hence, the solution in vector-matrix form is 

 

x
•

=

0 1 0 0 0 0 0 0
−1 −2 1 1 0 0 0 0
0 0 0 1 0 0 0 0
1 1 −1 −1 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 1 0 0 −2 −2
0 0 0 0 0 0 0 1
0 0 1 0 0 1 −2 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

x +

0
1
0
0
0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

u(t)

y = 0 0 1 0 0 0 0 0[ ]x

 

 
24.  

 
 a.  We begin by calculating 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−
+−

−−+
=−

02.00227.0
0394.0268.0

02.0209.0435.0

s
s

s
AsI  

and 

 

 

0227.0
394.0268.0

02.0
02.0227.0

0268.0
209.0

02.00
0394.0

)435.0()det(
−

+−
−

+−
−

+
+

+
+=−

s
ss

s
sAsI

 

)394.0)(227.0(02.0)02.0)(268.0(209.0)02.0)(394.0)(435.0( +−+−++++= sssss

 

00179.000454.000112.0056.00034.0188.0849.0 23 −−−−+++= sssss  

)004.0)(19.0)(66.0(00049.01278.0849.0 23 +++=+++= ssssss  
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=−

332313

322212

312111

)(
ccc
ccc
ccc

Adj AsI  

where 

 

)02.0)(394.0(
02.00

0394.0
11 ++=

+
+

= ss
s

s
c  

)02.0(268.0
02.0227.0

0268.0
12 +−=

+−
−

= s
s

c  

)394.0(227.0
0227.0

394.0268.0
13 +−=

−
+−

= s
s

c  

)02.0(209.0
02.00

02.0209.0
21 +−=

+
−−

= s
s

c  

00416.0455.000454.0)02.0)(435.0(
02.0227.0

02.0435.0 2
22 ++=−++=

+−
−+

= ssss
s

s
c  

047443.0
0227.0
209.0435.0

23 −=
−

−+
=

s
c  

)394.0(02.0
0394.0
02.0209.0

31 +=
+

−−
= s

s
c  

00536.0
0268.0
02.0435.0

32 −=
−

−+
=

s
c  

1154.0829.0)209.0(268.0)394.0)(435.0(
394.0268.0

209.0435.0 2
33 ++=−++=

+−
−+

= ssss
s

s
c

 

 

)66.0)(19.0)(004.0(
1154.0829.00474.0)394.0(227.0

0054.00042.0455.0)02.0(268.0
)394.0(02.0)02.0(209.0)02.0)(394.0(

)det(
)()(

2

2

+++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−+−
−+++−

++−++

=
−
−

=− −

sss
sss

sss
ssss

Adj
AsI
AsIAsI 1  

 
[ ]

)66.0)(19.0)(004.0(33.3333
)394.0(02.0)02.0(209.0)02.0)(394.0()(

+++
++−++

=− −

sss
ssss1AsIC  

)66.0)(19.0)(004.0(33.3333
)394.0)(02.0()(

)(
)(

+++
++

=−= −

sss
ss

sU
sY BAsIC 1  
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b.  

>> A=[-0.435 0.209 0.02; 0.268 -0.394 0; 0.227 0 -0.02] 

 

A = 

 

   -0.4350    0.2090    0.0200 

    0.2680   -0.3940         0 

    0.2270         0   -0.0200 

 

>> B = [1;0;0] 

 

B = 

 

     1 

     0 

     0 

 

>> C = [0.0003 0 0] 

 

C = 

 

  1.0e-003 * 

 

    0.3000         0         0 

 

>> [n,d]=ss2tf(A,B,C,0) 
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n = 

 

  1.0e-003 * 

 

         0    0.3000    0.1242    0.0024 

 

 

d = 

 

    1.0000    0.8490    0.1274    0.0005 

 

>> roots(n) 

 

ans = 

 

   -0.3940 

   -0.0200 

 

>> roots(d) 

 

ans = 

 

   -0.6560 

   -0.1889 

   -0.0042 
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25. By direct observation 

 

0
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0
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⎥
⎥
⎥
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⎥
⎥
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⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

&

&
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&
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26.  

a.  

>> A=[-0.038 0.896 0 0.0015; 0.0017 -0.092 0 -0.0056; 1 0 0 -3.086; 0 1 0 0] 

A = 

 

   -0.0380    0.8960         0    0.0015 

    0.0017   -0.0920         0   -0.0056 

    1.0000         0         0   -3.0860 

         0    1.0000         0         0 

 

>> B = [-0.0075 -0.023; 0.0017 -0.0022; 0 0; 0 0] 

B = 

 

   -0.0075   -0.0230 

    0.0017   -0.0022 

         0         0 

         0         0 

 

>> C = [0 0 1 0; 0 0 0 1] 
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C = 

 

     0     0     1     0 

     0     0     0     1 

 

>> [num,den] = ss2tf(A,B,C,zeros(2),1) 

 

num = 

 

         0    0.0000   -0.0075   -0.0044   -0.0002 

         0         0    0.0017    0.0001         0 

 

 

den = 

 

    1.0000    0.1300    0.0076    0.0002         0 

 

>> [num,den] = ss2tf(A,B,C,zeros(2),2) 

 

num = 

 

         0   -0.0000   -0.0230    0.0027    0.0002 

         0   -0.0000   -0.0022   -0.0001         0 

 

den = 

 

    1.0000    0.1300    0.0076    0.0002         0 
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b. 

 From the MATLAB results 

)0002.00076.013.0(
)0002.00044.00075.0()( 23

2

+++
++−

=
ssss
sssz

Bδ
 

0002.00076.013.0
0001.00017.0)( 23 +++

+
=

sss
ss

Bδ
θ

 

)0002.00076.013.0(
0002.00027.0023.0)( 23

2

+++
++−

=
ssss

sssz

Sδ
 

0002.00076.013.0
)0001.00022.0()( 23 +++

+−
=

sss
ss

Sδ
θ

 

 

27. 

The transfer function is divided into two parts: 

 

bdsadbsdas +++++ )()(
1

23
cs +

 

So we have 

bdsadbsdassR
sW

+++++
=

)()(
1

)(
)(

23  and cs
sW
sY

+=
)(
)(

 

 

In time domain 

 

rbdwwadbwdaw =+++++ &&&&&& )()(  and ycww =+&  
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Define the state variables as 

 

23

12

1

xwx
xwx

wx

&&&

&&

==
==

=
 

 

So we can write 

 

3213 )()( xdaxadbbdxrxw +−+−−== &&&&  and 21 xcxy +=  

 

In matrix form these equations are: 

 

r
x
x
x

daadbbdx
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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⎥
⎥

⎦
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⎢
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⎣

⎡

⎥
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⎥

⎦
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⎢
⎢
⎢
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⎡
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

)()(
100
010

3

2

1

3

2

1

&

&

&

 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

01
x
x
x

cy  

28.  

a.  

)5(
213)5(7)( 1

+
=+=−= −−

s
ssG BA)C(sI 1  

b. 

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
=−=

−

−

1
3

1
10

0
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1

07
1
3

10
05

07)(
1

s

s
s

s
sG BA)C(sI 1  

5
21

1
3

0
5

7
+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

+
=

ss
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c) [ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+
=−=

−

−

0
3

1
10

0
5

1

37
0
3

10
05

37)(
1

s

s
s

s
sG BA)C(sI 1  

[ ]
5

21

0
5

3
07

+
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+=

ss  

29.   
a. 
 

1 2 3 4( ) ( ) ( ) ( )SO
O A O O SO O IDO

dm k m t k k m t k m t
dt

= − + +  

3 4( ) ( )IDO
O SO O IDO

dm k m t k m t
dt

= −  

1 2 3( ) ( ) ( )V
L A L L V

dm k m t k k m t
dt

= − +  

3 4( ) ( )S
L V L S

dm k m t k m t
dt

= −  

 
 
 
 
 
 
 
 
 
 
 
 
b. 
 

01 1 02 2 4

02 02 03 04

02 04

1 2 3

2 4

( ) 0 1
( ) 0 0 0

( )0 0 0 0
0 0 ( ) 0 0

0 0 0 0

A
AL L L

SO SO

EIDOIDO

VL L L
V

SL L

S

m
mk k k k k

m mk k k k
u tmk km

mk k k
m mk k
m

•

•

•

•

•

⎡ ⎤
⎢ ⎥ − + ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦
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[ ]1 0 0 0 0

A

SO

IDO

V

S

m
m
m
m
m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

y  

 

30. 
Writing the equations of motion, 
 

Mf
d2y f

dt 2 + ( fvf + fvh )
dyf

dt
+ Kh yf − fvh

dyh

dt
− Kh yh = fup(t)

− fvh

dyf

dt
− Khy f + Mh

d 2yh

dt2 + fvh
dyh

dt
+ (Kh + Ks )yh − Ks ycat = 0

−Ks yh + (Ks + Kave )ycat = 0

 

The last equation says that 

ycat =
Ks

(Ks + Kave )
yh  

 
Defining state variables for the first two equations of motion, 

x1 = yh ; x2 = yh

•
;  x3 = yf ;  x4 = y f

•
  

Solving for the highest derivative terms in the first two equations of motion yields, 
 

d2 yf

dt2 = −
( fvf + fvh )

M f

dyf

dt
−

Kh

M f

yf +
f vh

Mf

dyh

dt
+

Kh

Mf

yh +
1

Mf

f up(t)

d2 yh

dt2 = f vh

Mh

dy f

dt
+ Kh

Mh

yf − f vh

Mh

dyh

dt
− (Kh + Ks )

Mh

yh + Ks

Mh

ycat

 

Writing the state equations, 
 

x1

•
= x2

x2

•
= f vh

Mh

x4 + Kh

Mh

x3 − f vh

Mh

x2 − (Kh + Ks )
Mh

x1 + Ks

Mh

Ks

(Ks + Kave )
x1

x3

•
= x4

x4

•
= −

( f vf + f vh )
Mf

x4 −
Kh

Mf

x3 +
fvh

M f

x2 +
Kh

Mf

x1 +
1

Mf

fup (t)

 

The output is yh - ycat. Therefore, 
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y = yh − ycat = yh −
Ks

(Ks + Kave )
yh =

Kave

(Ks + Kave )
x1 

Simplifying, rearranging, and putting the state equations in vector-matrix form yields, 
 

x
•

=

0 1 0 0
1

Mh

Ks
2

(Ks + Kave )
− (Kh + Ks )

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ − fvh

Mh

Kh

Mh

fvh

Mh

0 0 0 1
Kh

M f

f vh

Mf

−
Kh

Mf

−
( f vf + fvh )

Mf

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

x +

0
0
0
1

Mf

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

fup (t)  

 

y =
Kave

(Ks + Kave )
0 0 0

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ x  

Substituting numerical values, 
 

x
•

=

0 1 0 0
−9353 −14.29 769.2 14.29

0 0 0 1
406 7.558 −406 −9.302

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
0
0

0.0581

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

fup(t)

y = 0.9491 0 0 0[ ]x

 

 

 

 

31. 

a. 

TvudTsf β)1( 11 −−−=  

*
12 )1( TTvuf μβ −−=  

cvkTuf −−= *
23 )1(  

 

01001
0

1 )1(|)1( vudvud
T
f

ββ −−−=−−−=
∂
∂
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∂
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∂
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3 kT
u
f

−=
∂
∂

 

 

Then just by direct substitution. 
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b.  

Substituting values one gets: 

 

⎥
⎦
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⎥
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u
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T
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v
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

v
T
T

y *100   

32.     
a. The following basic equations characterize the relationships between the state, input, and output 

variables for the HEV common forward path of the figure: 

)()( tuKtu cAa ⋅=  

)()()()()( tktuKtetutIRIL bcAbaaaaA ω⋅−=−=⋅+⋅ &  (1) 

)()()( tTtTtTJ cftot −−=⋅ω& , where tot m veh wJ J J J= + + , 

)()( tIktT at ⋅= , )()( tktT ff ω⋅=  

b. Given that the state variables are the motor armature current, Ia(t), and angular speed, ω (t), we re-
write the above equations as: 

 

)()()( tu
L
Kt

L
ktI

L
RI c

a

A

a

b
a

a

a
a +⋅−⋅−= ω&  (2)  

                   

)(1)()( tT
J

t
J
k

tI
J
k

c
tottot

f
a

tot

t −−= ωω&   (3)  

In matrix form, the resulting state-space equations are:  
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a
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ωω&
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 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
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⎣

⎡
ωω
aa II

10
01

 (5) 
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F  O  U  R  
 
  Time Response  

 

SOLUTIONS TO CASE STUDIES CHALLENGES  
 

Antenna Control: Open-Loop Response 
The forward transfer function for angular velocity is,  
 

G(s) = 
ω0(s)
VP(s)   = 

24
(s+150)(s+1.32)  

a. ω0(t) = A + Be-150t + Ce-1.32t 

b. G(s) = 
24

s2+151.32s+198
   . Therefore, 2ζωn =151.32, ωn = 14.07, and ζ = 5.38.  

c. ω0(s) =  
24

s(s2+151.32s+198)
   =  

 

Therefore, ω0(t) = 0.12121 + .0010761 e-150t - 0.12229e-1.32t. 

d. Using G(s),  

ω0

••
+151.32ω0

•
+198ω 0 = 24vp (t)  

Defining,  
x1 = ω0

x2 = ω0

•  

Thus, the state equations are,  
 

x1

•
= x2

x2

•
= −198x1 −151.32x2 + 24vp(t)

y = x1

 

In vector-matrix form,  

 

x
•

=
0 1

−198 −151.32
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ x +

0
24

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ vp (t); y = 1 0[ ]x  
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e. 
Program: 
'Case Study 1 Challenge (e)' 
num=24; 
den=poly([-150  -1.32]); 
G=tf(num,den) 
step(G) 
 
Computer response: 
ans = 
 
Case Study 1 Challenge (e) 
 
  
Transfer function: 
        24 
------------------- 
s^2 + 151.3 s + 198 

 

 

 
 

Ship at Sea: Open-Loop Response 

a. Assuming a second-order approximation: ωn2 = 2.25, 2ζωn = 0.5. Therefore ζ = 0.167, ωn = 1.5. 

Ts = 
4

ζωn
   = 16; TP = 

π
ωn 1-ζ2 

  = 2.12 ;  

%OS = e-ζπ  / 1 - ζ2  x 100 = 58.8%; ωnTr = 1.169 therefore, Tr = 0.77. 

b. θ s 2.25
s s 2 0.5 s 2.25+ +

=  = 1
s

s 0.5+

s 2 0.5 s 2.25+ +
−  

 = 1
s

s 0.25+ 0.25
2.1875

2.1875+

s 0.25+ 2 2.1875+
−  
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 = 1
s

s 0.25+ 0.16903 1.479+

s 0.25+ 2 2.1875+
−  

Taking the inverse Laplace transform,  

θ(t) = 1  - e-0.25t ( cos1.479t +0.16903 sin1.479t) 

c. 
Program: 
'Case Study 2 Challenge (C)'     
'(a)'       
numg=2.25;    
deng=[1 0.5 2.25];      
G=tf(numg,deng)  
omegan=sqrt(deng(3))  
zeta=deng(2)/(2*omegan)  
Ts=4/(zeta*omegan) 
Tp=pi/(omegan*sqrt(1-zeta^2)) 
pos=exp(-zeta*pi/sqrt(1-zeta^2))*100   
t=0:.1:2;  
[y,t]=step(G,t);  
Tlow=interp1(y,t,.1);      
Thi=interp1(y,t,.9);  
Tr=Thi-Tlow  
'(b)'  
numc=2.25*[1 2];  
denc=conv(poly([0 -3.57]),[1 2 2.25]); 
[K,p,k]=residue(numc,denc) 
'(c)'  
[y,t]=step(G);  
plot(t,y)  
title('Roll Angle Response')  
xlabel('Time(seconds)')  
ylabel('Roll Angle(radians)') 
 
Computer response: 
ans = 
 
Case Study 2 Challenge (C) 
 
 
ans = 
 
(a) 

 
  

Transfer function: 
       2.25 
------------------ 
s^2 + 0.5 s + 2.25 
  
 
omegan = 
 
    1.5000 
 
 
zeta = 
 
    0.1667 
 
 
Ts = 
 
    16 



4-4    Chapter 4: Time Response    
  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
Tp = 
 
    2.1241 
 
 
pos = 
 
   58.8001 
 
 
Tr = 
 
    0.7801 
 
 
ans = 
 
(b) 
 
 
K = 
 
   0.1260           
  -0.3431 + 0.1058i 
  -0.3431 - 0.1058i 
   0.5602           
 
 
p = 
 
  -3.5700           
  -1.0000 + 1.1180i 
  -1.0000 - 1.1180i 
        0           
 
 
k = 
 
     [] 
 
 
ans = 
 
(c) 
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ANSWERS TO REVIEW QUESTIONS 
 

1.Time constant 

2. The time for the step response to reach 63% of its final value 

3. The input pole 

4. The system poles 

5. The radian frequency of a sinusoidal response 

6. The time constant of an exponential response 

7. Natural frequency is the frequency of the system with all damping removed; the damped frequency of  

oscillation is the frequency of oscillation with damping in the system. 

8. Their damped frequency of oscillation will be the same. 

9. They will all exist under the same exponential decay envelop. 

10. They will all have the same percent overshoot and the same shape although differently scaled in time. 

11. ζ, ωn, TP, %OS, Ts 

12. Only two since a second-order system is completely defined by two component parameters 

13. (1) Complex, (2) Real, (3) Multiple real 

14. Pole's real part is large compared to the dominant poles, (2) Pole is near a zero 

15. If the residue at that pole is much smaller than the residues at other poles 

16. No; one must then use the output equation 

17. The Laplace transform of the state transition matrix is (sI -A)-1  

18. Computer simulation 

19. Pole-zero concepts give one an intuitive feel for the problem. 

20. State equations, output equations, and initial value for the state-vector 

21. Det(sI-A) = 0 

 

SOLUTIONS TO PROBLEMS  

1.  
a. Overdamped Case: 

C(s) = 
9

s(s2 + 9s + 9)
  

 
Expanding into partial fractions,  
 

9 1 0.171 1.171(s) -
s(s 7.854)(s 1.146) s (s 7.854) (s 1.146)

C = = +
+ + + +

 

Taking the inverse Laplace transform, 

c(t) = 1 + 0.171 e-7.854t - 1.171 e-1.146t  
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b. Underdamped Case: 

 
 

 K2 and K3 can be found by clearing fractions with K1 replaced by its value. Thus, 

 9 = (s2 + 3s + 9) + (K2s + K3)s 
 or                          

 9 = s2 + 3s +9 + K2s2 + K3s                               
 Hence K2 = -1 and K3 = -3. Thus, 

 

 

   

 

 

 

               

 

c(t) = 1 - 
2
3

  e-3t/2 cos(
27
4   t - φ) 

                   = 1 - 1.155 e -1.5t cos (2.598t - φ)    

 where 

φ = arctan (
3
27

  ) = 30o 
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c. Oscillatory Case: 

 

 The evaluation of the constants in the numerator are found the same way as they were for the 

underdamped case. The results are K2 = -1 and K3 = 0.  Hence,  
 

 Therefore, 

c(t) = 1 - cos 3t 
 d. Critically Damped 

 

 

 The constants are then evaluated as 

 

 
 

 Now, the transform of the response is 
 

 
  

c(t) = 1 - 3t e-3t - e-3t 
2.  

a. C(s) = 
5

s(s+5)  = 
1
s  - 

1
s+5  . Therefore, c(t) = 1 - e-5t.  

Also, T = 
1
5  , Tr = 

2.2
a   = 

2.2
5   = 0.44, Ts = 

4
a   = 

4
5  = 0.8. 

 b. C(s) = 
20

s(s+20)  = 
1
s   - 

1
s+20  . Therefore, c(t) = 1 - e-20t. Also, T = 

1
20  ,  

Tr = 
2.2
a   = 

2.2
20   = 0.11, Ts = 

4
a   = 

4
20  = 0.2. 
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3. 

Program: 
'(a)' 
num=5; 
den=[1 5]; 
Ga=tf(num,den) 
subplot(1,2,1) 
step(Ga) 
title('(a)') 
'(b)' 
num=20; 
den=[1 20]; 
Gb=tf(num,den) 
subplot(1,2,2) 
step(Gb) 
title('(b)') 
 
Computer response: 
ans = 
 
(a) 
  
Transfer function: 
  5 
----- 
s + 5 
  
ans = 
 
(b) 
 
Transfer function: 
  20 
------ 
s + 20 
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4.  

Using voltage division, 
VC(s)
Vi(s)   = 

1/ 0.703
1 0.703

RC
sS

RC

=
++

. Since Vi(s) = 
5
s  

5 0.703 5 5( )
0.703 0.703cV s

s s s s
⎛ ⎞= = −⎜ ⎟+ +⎝ ⎠

.  

Therefore 0.703( ) 5 5 t
cv t e−= − . Also,  

 

s
1 2.2 41.422;   = 3.129;  T 5.69

0.703 0.703 0.703rT T= = = = = . 

5.  

 
Program: 
clf 
num=0.703; 
den=[1 0.703]; 
G=tf(num,den) 
step(5*G) 
 
Computer response: 
 
Transfer function: 
  0.703 
--------- 
s + 0.703 
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6. 

Writing the equation of motion, 
2( 6 ) ( ) ( )Ms s X s F s+ =  

Thus, the transfer function is, 

2

( ) 1
( ) 6

X s
F s Ms s

=
+

 

 
Differentiating to yield the transfer function in terms of velocity, 
 

( ) 1 1/
6( ) 6

sX s M
F s Ms s

M

= =
+ +

 

  
 Thus, the settling time, Ts, and the rise time, Tr, are given by 
 

 
4 2 2.2 1.10.667 ;   0.367

6 / 3 6 / 3s rT M M T M M
M M

= = = = = =  

 

Tc = 1.4 
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7. 
Program: 
Clf 
M=1 
num=1/M; 
den=[1 6/M]; 
G=tf(num,den) 
step(G) 
pause 
M=2 
num=1/M; 
den=[1 6/M]; 
G=tf(num,den) 
step(G) 
 
Computer response: 
 
M = 
 
     1 
 
  
Transfer function: 
  1 
----- 
s + 6 
  
 
M = 
 
     2 
 
  
Transfer function: 
 0.5 
----- 
s + 3 
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From plot, time constant =.0.16 s. 
 
 

Tc
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From plot, time constant = 0.33 s. 

8. 
a. Pole: -2; c(t) = A + Be-2t ; first-order response. 

b. Poles: -3, -6; c(t) = A + Be-3t + Ce-6t; overdamped response. 

c. Poles: -10, -20; Zero: -7; c(t) = A + Be-10t + Ce-20t; overdamped response. 

d. Poles: (-3+j3 15 ), (-3-j3 15 ) ; c(t) = A + Be-3t cos (3 15  t + φ); underdamped. 

e. Poles: j3, -j3; Zero: -2; c(t) = A + B cos (3t + φ); undamped. 

f. Poles: -10, -10; Zero: -5; c(t) = A + Be-10t + Cte-10t; critically damped. 
 

9. 
Program: 
p=roots([1 6 4 7 2]) 
 
Computer response: 
p = 
 

Tc 
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  -5.4917           
  -0.0955 + 1.0671i 
  -0.0955 - 1.0671i 
  -0.3173 
  
              

 
 
 
10.  

G(s) = C (sI-A)-1 B 
 

[ ]
8 4 1 4
3 2 0 ;  3 ;  2 8 3

5 7 9 4

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A B C  

 

1 2
3 2

2

( 2)( 9) (4 29) ( 2)
1( ) (3 27) ( 77) 3
91 67

5 31 7 76 ( 10 4)

s s s s
s s s s

s s s
s s s s

−

− + − + −⎡ ⎤
⎢ ⎥− = − + + − −⎢ ⎥− − +
⎢ ⎥− − − +⎣ ⎦

I A  

 

 Therefore, G(s ) = 
2

3 2

44 291 1814
91 67

s s
s s s

− + +
− − +

.  

Factoring the denominator, or using det(sI-A), we find the poles to be 9.683, 0.7347, -9.4179. 
 

11. 
Program: 
A=[8 -4 1;-3 2 0;5 7 -9] 
B=[-4;-3;4] 
C=[2 8 -3] 
D=0 
[numg,deng]=ss2tf(A,B,C,D,1); 
G=tf(numg,deng) 
poles=roots(deng) 
 
Computer response: 

A = 

     8    -4     1 

    -3     2     0 

     5     7    -9 

B = 

    -4 

    -3 

     4 
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C = 

     2     8    -3 

D = 

     0 

Transfer function: 

-44 s^2 + 291 s + 1814 

---------------------- 

s^3 - s^2 - 91 s + 67 

poles = 

   -9.4179 

    9.6832 

    0.7347 

12.  

Writing the node equation at the capacitor, VC(s) (
1

R2
  + 

1
Ls  + Cs)  + 

VC(s) - V(s)
R1

  = 0.  

Hence, 
VC(s)
V(s)   = 

1
R1

1
R1

 + 
1

R2
 + 

1
Ls + Cs

    = 
10s

s2+20s+500
  . The step response is  

10
s2+20s+500

  .The poles 

are at  

-10 ± j20. Therefore, vC(t) = Ae-10t cos (20t + φ). 
13. 

Program: 
num=[10 0]; 
den=[1 20 500]; 
G=tf(num,den) 
step(G) 
 
Computer response: 

 
Transfer function: 
      10 s 
---------------- 
s^2 + 20 s + 500 
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14.  

The equation of motion is: (Ms2+fvs+Ks)X(s) = F(s). Hence, 
X(s)
F(s)  = 

1
Ms2+fvs+Ks

  =  
1

s2+s+5 
  .  

The step response is now evaluated: X(s) =   
1

s(s2+s+5)
   = 

1/5
s   - 

1
5 s + 

1
5

(s+
1
2)2+

19
4

    =   

1
5(s+

1
2) + 

1
5 19

 
19
2

(s+
1
2)2 + 

19
4

   . 

Taking the inverse Laplace transform, x(t) = 
1
5  - 

1
5  e-0.5t ( cos 

19
2   t + 

1
19

  sin  
19
2   t )  

= 
1
5 ⎣

⎡
⎦
⎤1 - 2

5
19  e-0.5t cos (

19
2  t - 12.92o)  .  

 15.   

 C(s) = 
ωn2

s(s2+2ζωns+ωn2)
   = 

1
s  - 

s + 2ζωn
s2+2ζωns+ωn2    =   

1
s  - 

s + 2ζωn
(s+ζωn)2 + ωn2 - ζ2ωn2     

=  
1
s  - 

(s + ζωn) + ζωn

(s+ζωn)2 + (ωn 1 - ζ2)2
   =  

1
s   -  

(s+ζωn) + 
ζωn

ωn 1 - ζ2 ωn 1 - ζ2

 (s+ζωn)2 + (ωn 1 - ζ2)2
  

 Hence, c(t) =  1 -  e-ζω nt cos ωn 1 -  ζ 2 t +  
ζ

1 -  ζ 2
sin ω n 1 -  ζ 2 t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  
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 = 1 -   e-ζωnt 1 + 
ζ2

1-ζ2   cos (ωn 1 - ζ2  t - φ) = 1 -   e-ζωnt 1
1-ζ2   cos (ωn 1 - ζ2  t - φ),  

where φ = tan-1 
ζ

1 - ζ2   

16.  

%OS = e-ζπ  / 1 - ζ2  x 100. Dividing by 100 and taking the natural log of both sides,  

ln (
%OS
100   ) = - 

ζπ 
 1 - ζ2  . Squaring both sides and solving for ζ2, ζ2 = 

ln2 (
%OS
100 ) 

π2 + ln2 (
%OS
100 )

  . Taking the 

negative square root, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

  . 

17.  
 a. 

  

  

  

 b. 

  

  

  

 c. 

  

  

  

 d. 
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 e. 

  

  

  

  

 f. 

  

  

   

18.  
  a. N/A 

 b. s2+9s+18, ωn2 = 18, 2ζωn = 9, Therefore ζ = 1.06, ωn = 4.24, overdamped. 

 c. s2+30s+200, ωn2 = 200, 2ζωn = 30, Therefore ζ = 1.06, ωn = 14.14, overdamped. 

 d. s2+6s+144, ωn2 = 144, 2ζωn = 6, Therefore ζ = 0.25, ωn = 12, underdamped. 

 e. s2+9, ωn2 = 9, 2ζωn = 0, Therefore ζ = 0, ωn = 3, undamped. 

 f. s2+20s+100, ωn2 = 100, 2ζωn = 20, Therefore ζ = 1, ωn = 10, critically damped. 

19.  

 X(s) = 
1002

s(s2 +100s+1002)
  = 

1
s  - 

s+100
(s+50)2+7500

   = 
1
s  - 

(s+50) + 50
(s+50)2+7500

  =  
1
s  - 

(s+50) + 
50
7500

 7500

(s+50)2+7500
   

 Therefore, x(t) = 1 - e-50t (cos 7500  t + 
50
7500

   sin 7500  t)  

= 1 - 
2
3

  e-50t cos (50 3  t - tan-1 1
 3 

  ) 

20.  

 a. ωn2 = 16 r/s, 2ζωn = 3. Therefore ζ = 0.375, ωn = 4. Ts = 
4

ζωn
   = 2.667 s; TP = 

π
ωn 1-ζ2 

  = 

0.8472 s; %OS = e-ζπ  / 1 - ζ2  x 100 = 28.06 %; ωnTr = (1.76ζ3 - 0.417ζ2 + 1.039ζ + 1) = 1.4238; 

therefore, Tr = 0.356 s. 
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 b. ωn2 = 0.04 r/s, 2ζωn = 0.02. Therefore ζ = 0.05, ωn = 0.2. Ts = 
4

ζωn
   = 400 s; TP = 

π
ωn 1-ζ2 

   = 

15.73 s; %OS = e-ζπ  / 1 - ζ2  x 100 = 85.45 %; ωnTr = (1.76ζ3 - 0.417ζ2 + 1.039ζ + 1); therefore, 

Tr = 5.26 s. 

 c. ωn2 = 1.05 x 107 r/s, 2ζωn = 1.6 x 103. Therefore ζ = 0.247, ωn = 3240. Ts = 
4

ζωn
   = 0.005 s; TP = 

π
ωn 1-ζ2 

   = 0.001 s; %OS = e-ζπ  / 1 - ζ2  x 100 = 44.92 %; ωnTr = (1.76ζ3 - 0.417ζ2 + 1.039ζ + 

1); therefore, Tr = 3.88x10-4  s.  
 
 
21. 

Program: 
'(a)' 
clf 
numa=16; 
dena=[1 3 16]; 
Ta=tf(numa,dena) 
omegana=sqrt(dena(3)) 
zetaa=dena(2)/(2*omegana) 
Tsa=4/(zetaa*omegana) 
Tpa=pi/(omegana*sqrt(1-zetaa^2)) 
Tra=(1.76*zetaa^3 - 0.417*zetaa^2 + 1.039*zetaa + 1)/omegana 
percenta=exp(-zetaa*pi/sqrt(1-zetaa^2))*100 
subplot(221) 
step(Ta) 
title('(a)') 
'(b)' 
numb=0.04; 
denb=[1 0.02 0.04]; 
Tb=tf(numb,denb) 
omeganb=sqrt(denb(3)) 
zetab=denb(2)/(2*omeganb) 
Tsb=4/(zetab*omeganb) 
Tpb=pi/(omeganb*sqrt(1-zetab^2)) 
Trb=(1.76*zetab^3 - 0.417*zetab^2 + 1.039*zetab + 1)/omeganb 
percentb=exp(-zetab*pi/sqrt(1-zetab^2))*100 
subplot(222) 
step(Tb) 
title('(b)') 
'(c)' 
numc=1.05E7; 
denc=[1 1.6E3 1.05E7]; 
Tc=tf(numc,denc) 
omeganc=sqrt(denc(3)) 
zetac=denc(2)/(2*omeganc) 
Tsc=4/(zetac*omeganc) 
Tpc=pi/(omeganc*sqrt(1-zetac^2)) 
Trc=(1.76*zetac^3 - 0.417*zetac^2 + 1.039*zetac + 1)/omeganc 
percentc=exp(-zetac*pi/sqrt(1-zetac^2))*100 
subplot(223) 
step(Tc) 
title('(c)') 
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Computer response: 
ans = 
 
(a) 
 
Transfer function: 
      16 
-------------- 
s^2 + 3 s + 16 
  
 
omegana = 
 
     4 
 
 
zetaa = 
 
    0.3750 
 
 
Tsa = 
 
    2.6667 
 
 
Tpa = 
 
    0.8472 
 
 
Tra = 
 
    0.3559 
 
 
percenta = 
 
   28.0597 
 
 
ans = 
 
(b) 
 
  
Transfer function: 
       0.04 
------------------- 
s^2 + 0.02 s + 0.04 
  
 
omeganb = 
 
    0.2000 
 
zetab = 
 
    0.0500 
 
Tsb = 
   400 
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Tpb = 
 
   15.7276 
 
 
Trb = 
 
    5.2556 
 
 
percentb = 
 
   85.4468 
 
 
ans = 
 
(c) 
 
  
Transfer function: 
       1.05e007 
----------------------- 
s^2 + 1600 s + 1.05e007 
  
 
omeganc = 
 
  3.2404e+003 
 
 
zetac = 
 
    0.2469 
 
 
Tsc = 
 
    0.0050 
 
 
Tpc = 
 
    0.0010 
 
 
Trc = 
 
  3.8810e-004 
 
 
percentc = 
 
   44.9154 
 
 
 
 
 
 
 
 
 
 



4-22    Chapter 4: Time Response    
  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
22. 

Program: 
T1=tf(16,[1 3 16]) 
T2=tf(0.04,[1 0.02 0.04]) 
T3=tf(1.05e7,[1 1.6e3 1.05e7]) 
ltiview 
 
Computer response: 
Transfer function: 
      16 
-------------- 
s^2 + 3 s + 16  
  
Transfer function: 
       0.04 
------------------- 
s^2 + 0.02 s + 0.04 
  
  
Transfer function: 
       1.05e007 
----------------------- 
s^2 + 1600 s + 1.05e007 
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23. 

  a. ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.56, ωn = 
4

ζTs
  = 11.92. Therefore, poles = -ζωn  ± jωn 1-ζ2  

 = -6.67 ± j9.88. 

 b. ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.591, ωn = 
π

TP 1-ζ2  = 0.779.  

 Therefore, poles = -ζωn  ± jωn 1-ζ2  = -0.4605 ± j0.6283. 

 c. ζωn = 
4
Ts

  = 0.571, ωn 1-ζ2  = 
π
Tp

  = 1.047. Therefore, poles = -0.571 ± j1.047. 

24. 

 
Re =

4
Ts

= 4;  ζ =
-ln(12.3/100)

π 2 + ln2 (12.3/100)
= 0.5549

Re =ζωn = 0.5549ωn = 4; ∴ωn = 7.21
 

 Im = ωn 1 −ζ 2 = 6  

 ∴G(s) =
ωn

2

s2 + 2ζωns + ωn
2 =

51.96
s2 + 8s + 51.96
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25. 
a. Writing the equation of motion yields, 2(5 5 28) ( ) ( )s s X s F s+ + =  

  
 Solving for the transfer function, 
  

2

( ) 1/ 5
28( )
5

X s
F s s s

=
+ +

 

 b. ωn2 = 28/5 r/s, 2ζωn = 1. Therefore ζ = 0.211, ωn = 2.37. Ts = 
4

ζωn
   = 8.01 s; TP = 

π
ωn 1-ζ2 

  = 

1.36 s; %OS = e-ζπ  / 1 - ζ2  x 100 = 50.7 %; ωnTr = (1.76ζ3 - 0.417ζ2 + 1.039ζ + 1); therefore, Tr 
= 0.514 s. 

26. 
Writing the loop equations,  

2
1 2

1 2

(1.07 1.53 ) ( ) 1.53 ( ) ( )
1.53 ( ) (1.53 1.92) ( ) 0

s s s s T s
s s s s

θ θ
θ θ
+ − =

− + + =
 

Solving for θ2(s),  
2

2 22

(1.07 1.53 ) ( )
1.53 0 0.935 ( )( )

1.25 1.79(1.07 1.53 ) 1.53
1.53 (1.53 1.92)

s s T s
s T ss

s ss s s
s s

θ

+
−

= =
+ ++ −

− +

  

Forming the transfer function,  

2
2

( ) 0.935
( ) 1.25 1.79

s
T s s s
θ

=
+ +

 

Thus ωn = 1.34, 2ζωn = 1.25. Thus, ζ = 0.467. From Eq. (4.38), %OS = 19.0%. From Eq. (4.42), Ts 

= 6.4 seconds. From Eq. (4.34), Tp = 2.66 seconds. 

27.  

 a. 
24.542

s(s2 + 4s + 24.542)
= 

1
s

- 
s + 4

(s + 2)2 + 20.542
=  

1
s

- 
(s + 2) +  

2
4.532

4.532

(s + 2)2 + 20.542
.  

Thus c(t) = 1 - e-2t (cos4.532t+0.441 sin 4.532t) = 1-1.09e-2t cos(4.532t -23.80). 

 b.  
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 Therefore, c(t) = 1 - 0.29e-10t - e-2t(0.71 cos 4.532t + 0.954 sin 4.532t) 

= 1 - 0.29e-10t - 1.189 cos(4.532t - 53.34o). 

 c. 

   

  

  

 Therefore, c(t) = 1 - 1.14e-3t + e-2t (0.14 cos 4.532t - 0.69 sin 4.532t) 

= 1 - 1.14e-3t + 0.704 cos(4.532t +78.53o). 

28.  
 Since the third pole is more than five times the real part of the dominant pole, s2+0.842s+2.829 

determines the transient response. Since 2ζωn = 0.842, and ωn = 2.829  = ωn = 1.682, ζ = 0.25, 

2/ 1%OS x100 44.4%e ζπ ζ− −= = , Ts = 
4

ζωn
   = 9.50 sec, Tp = 

π
ωn 1-ζ2   = 1.93 sec; ωnTr = 

(1.76ζ3 - 0.417ζ2 + 1.039ζ + 1) = 1.26, therefore, Tr = 0.75.  
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29. 
a. Measuring the time constant from the graph, T = 0.0244 seconds. 

 

0

1

2

3

0 0.05 0.1 0.15 0.2 0.25
Time(seconds)

T = 0.0244 seconds

R
es

po
ns

e

 

 

Estimating a first-order system, G(s) = 
K

s+a . But, a  = 1/T = 40.984, and 
K
a   = 2. Hence, K = 81.967. 

Thus,  

G(s) = 
81.967

s+40.984  

b. Measuring the percent overshoot and settling time from the graph: %OS = (13.82-11.03)/11.03 = 

25.3%,  
 

0

5

10

15

20

25

0 1 2 3 4 5

R
es

po
ns

e

Ts = 2.62 seconds 

cmax = 13.82 

cfinal = 11.03 

Time(seconds)
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and Ts =  2.62 seconds. Estimating a second-order system, we use Eq. (4.39) to find ζ = 0.4 , and Eq. 

(4.42) to find ωn = 3.82. Thus, G(s) = 
K

s2+2ζωns +ωn2   . Since Cfinal  = 11.03, 
K

ωn2   = 11.03. Hence, 

K = 160.95. Substituting all values,  

G(s) = 
160.95

s2+3.056s+14.59
  

c. From the graph, %OS = 40%. Using Eq. (4.39), ζ = 0.28. Also from the graph, 

Tp =
π

ωn 1 −ζ 2
= 4. Substituting ζ = 0.28, we find ωn = 0.818.  

Thus,  

G(s) = 
K

s2+2ζωns +ωn2   =
0.669

s2 + 0.458s + 0.669
. 

 
 
 
 
30.  
 a.  

  

  

 Since the amplitude of the sinusoids are of the same order of magnitude as the residue of the pole at -

2, pole-zero cancellation cannot be assumed. 

 b. 

  

  

 Since the amplitude of the sinusoids are of the same order of magnitude as the residue of the pole at -

2, pole-zero cancellation cannot be assumed. 

 c.  
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 Since the amplitude of the sinusoids are of two orders of magnitude larger than the residue of the pole 

at -2, pole-zero cancellation can be assumed. Since 2ζωn = 1, and ωn = 5  = 2.236, ζ = 0.224, 

%OS = e−ζπ / 1−ζ 2

x100 = 48.64%, Ts = 
4

ζωn
   = 8 sec, Tp = 

π
ωn 1-ζ2   = 1.44 sec; ωnTr = 1.23, 

therefore, Tr = 0.55. 

 d. 

  
 

 

 Since the amplitude of the sinusoids are of two orders of magnitude larger than the residue of the pole 

at -2, pole-zero cancellation can be assumed. Since 2ζωn = 5, and ωn = 20  = 4.472, ζ = 0.559, 

%OS = e−ζπ / 1−ζ 2

x100 = 12.03%, Ts = 
4

ζωn
   = 1.6 sec, Tp = 

π
ωn 1-ζ2   = 0.847 sec; ωnTr = 

1.852, therefore, Tr = 0.414. 
 

31. 
Program: 
%Form sC(s) to get transfer function 
clf 
num=[1 3]; 
den=conv([1 3 10],[1 2]); 
T=tf(num,den) 
step(T) 
 
Computer response: 
Transfer function: 
         s + 3 
----------------------- 
s^3 + 5 s^2 + 16 s + 20 
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%OS = 
(0.163 - 0.15)

0.15   = 8.67% 

 32. 
Part c can be approximated as a second-order system. From the exponentially decaying cosine, the 
poles are located at s1,2 = −2 ± j9.796 . Thus,  

Ts =
4

Re
=

4
2

= 2 s; Tp =
π
Im

=
π

9.796
= 0.3207 s  

Also, ωn = 22 + 9.7962 = 10 and ζωn = Re = 2. Hence, ζ = 0.2 , yielding 52.66 percent 
overshoot.  
 
Part d can be approximated as a second-order system. From the exponentially decaying cosine, the 
poles are located at S1,2 = −2 ± j9.951. Thus, 

4 4 2 s; 0.3157s
Re 2 Im 9.951s pT T π π

= = = = = =  

Also, 2 22 9.951 10.15nω = + =  and Re 2nζω = = . Hence, 0.197ζ = , yielding 53.19 
percent overshoot. 
 

33. 
a.  

(1)     C a 1 s 1
s 2 3 s 36+ +

=  = 

1
33.75

33.75

s 1.5+ 2 33.75+
 = 0.17213 33.75

s 1.5+ 2 33.75+
 = 0.17213 5.8095

s 1.5+ 2 33.75+
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Taking the inverse Laplace transform 

Ca1(t) = 0.17213 e-1.5t sin 5.8095t 

(2)                         C a 2 s s 2
s s 2 3 s 36+ +

=  = 1
18

1
s

1
18

s 1
6

+

s 2 3 s 36+ +
−  = 

 

1
18

1
s

1
18

s 3
2

+ 0.083333
33.75

33.75+

s 3
2

+ 2 33.75+
−

 
 

= 0.055556 1
s

0.055556 s 3
2

+ 0.014344 33.75+

s 3
2

+ 2 33.75+
−  

Taking the inverse Laplace transform 

Ca2(t) = 0.055556 - e-1.5t (0.055556 cos 5.809t + 0.014344 sin 5.809t) 

The total response is found as follows: 

Cat(t) = Ca1(t) + Ca2(t) = 0.055556 - e-1.5t (0.055556 cos 5.809t - 0.157786 sin 5.809t) 

Plotting the total response: 
  

 
b. 

(1) Same as (1) from part (a), or Cb1(t) = Ca1(t) 

(2) Same as the negative of (2) of part (a), or Cb2 (t) =  - Ca2(t) 

The total response is  

Cbt(t) = Cb1(t) + Cb2(t) = Ca1(t)- Ca2(t) = -0.055556 + e-1.5t (0.055556 cos 5.809t + 0.186474 sin 

5.809t) 
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Notice the nonminimum phase behavior for Cbt(t). 
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34. 
 

Unit Step2

Unit Step1

Unit Step

1
s   +3s+102

Transfer Fcn2

1
s   +3s+102

Transfer Fcn1

1
s   +3s+102

Transfer Fcn

Scope2

Scope1

Scope

Saturation 2
0.25 volts

Saturation 1
0.25 volts

10

Gain2

10

Gain1

10

Gain

Backlash
Deadzone 0.02
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35. 

sI − A = s
1 0
0 1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −

−2 −1
−3 −5

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

(s + 2) 1
3 (s + 5)

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

sI − A = s2 + 7s + 7 

  Factoring yields poles at –5.7913 and –1.2087. 
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36. 
  a. 

sI − A = s
1 0 0
0 1 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−
0 2 3
0 6 5
1 4 2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

=
s −2 −3
0 (s − 6) −5
−1 −4 (s − 2)

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

  
sI − A = s3 −8s2 −11s + 8 

 b. Factoring yields poles at 9.111, 0.5338, and –1.6448. 

37. 

  x = (sI - A )  -1 (x0  + B u ) 
1

2

3 2

2 2

3 2

2 2

3 2

2 2

1 0 1 2 3 1 13
0 1 3 1 1 1 9

3 5 30 54
[ 5][ 9]

10 12 102
[ 5][ 9]

( ) [1 2]

5 15 54 150( )
[ 9][ 5]

s
s

s s s
s s

s s s
s s

Y s

s s sY s
s s

−
⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞+ + +
⎜ ⎟+ +⎜ ⎟=
⎜ ⎟− + −
⎜ ⎟⎜ ⎟+ +⎝ ⎠
=

⎛ ⎞− + −
= ⎜ ⎟+ +⎝ ⎠

X

X

X

 

38. 

x = (sI - A )  -1 (x0  + B u ) 

 

 

 

                                       ( ) [0 0 1]Y s = X  
2 4 2( )

[ 6][ 1][ 0.58579][ 3.4142]
s sY s

s s s s
+ +

=
+ + + +
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39.  

 x = (sI - A )  -1 (x0  + B u ) 

 

1
1 0 2 0 3 1 1
0 1 1 1 0 1

s
s

−
⎛ − ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
X  

 

3 1
[ 2]
1 2

[ 1][ 2]

s
s s

s
s s s

+⎛ ⎞
⎜ ⎟+⎜ ⎟=

−⎜ ⎟
⎜ ⎟+ +⎝ ⎠

X  

 ( ) [0 1]Y s = X  

 
1 2( )

[ 1][ 2]
sY s

s s s
⎛ ⎞−

= ⎜ ⎟+ +⎝ ⎠
 

Applying partial fraction decomposition, 

 
1 1 3 5 1( )
2 1 2 2

Y s
s s s

⎛ ⎞= − +⎜ ⎟+ +⎝ ⎠
 

 21 5( ) ( ) 3
2 2

t ty t u t e e− −= − +  

40.  
x = (sI − A)−1(x0 + Bu)

x = s
1 0 0
0 1 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−
−3 1 0
0 −6 1
0 0 −5

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

−1
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

+
0
1
1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1
s

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

x =

1
s(s + 3)(s + 5)

1
s(s + 5)

1
s(s + 5)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

x(t) =

1
15

−
1
6

e−3t +
1
10

e−5t

1
5

−
1
5

e−5t

1
5

− 1
5

e−5t

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
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y(t) = 0 1 1[ ]x =
2
5

−
2
5

e−5t  

41. 
Program: 
A=[-3 1 0;0 -6 1;0 0 -5];     
B=[0;1;1];                     
C=[0 1 1];                     
D=0; 
S=ss(A,B,C,D) 
step(S) 
 
Computer response: 
a =  
       x1  x2  x3 
   x1  -3   1   0 
   x2   0  -6   1 
   x3   0   0  -5 
  
  
 
 
 
b =  
       u1 
   x1   0 
   x2   1 
   x3   1 
  
  
c =  
       x1  x2  x3 
   y1   0   1   1 
  
  
d =  
       u1 
   y1   0 
  
Continuous-time model. 
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42. 
Program: 
syms s                      %Construct symbolic object for 
                            %frequency variable 's'. 
'a'                         %Display label 
A=[-3 1 0;0 -6 1;0 0 -5]    %Create matrix A. 
B=[0;1;1];                  %Create vector B. 
C=[0 1 1];                  %Create C vector 
X0=[1;1;0]                  %Create initial condition vector,X(0). 
U=1/s;                      %Create U(s). 
I=[1 0 0;0 1 0;0 0 1];      %Create identity matrix. 
X=((s*I-A)^-1)*(X0+B*U);    %Find Laplace transform of state vector. 
x1=ilaplace(X(1))           %Solve for X1(t). 
x2=ilaplace(X(2))           %Solve for X2(t). 
x3=ilaplace(X(3))           %Solve for X3(t). 
y=C*[x1;x2;x3]              %Solve for output, y(t). 
y=simplify(y)               %Simplify y(t). 
'y(t)'                      %Display label. 
pretty(y)                   %Pretty print y(t). 
 
Computer response: 
ans = 
 
a 
 
A = 
    -3     1     0 
     0    -6     1 
     0     0    -5 
 
X0 = 
     1 
     1 
     0 
x1 = 
 
7/6*exp(-3*t)-1/3*exp(-6*t)+1/15+1/10*exp(-5*t) 
 
x2 = 
 
exp(-6*t)+1/5-1/5*exp(-5*t) 
 
x3 = 
 
1/5-1/5*exp(-5*t) 
 
y = 
 
2/5+exp(-6*t)-2/5*exp(-5*t) 
 
y = 
 
2/5+exp(-6*t)-2/5*exp(-5*t) 
 
ans = 
 
y(t)  
                        2/5 + exp(-6 t) - 2/5 exp(-5 t) 
 

43. 
 |λI - A | = λ2 + 5λ +1 

 |λI - A | = (λ + 0.20871) (λ + 4.7913) 
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Therefore,  

  

  

Solving for Ai's two at a time, and substituting into the state-transition matrix 

 

  

To find x(t),  

  

 

 

  

  

To find the output,  

  

  

  
44. 

  

 |λI - A | = λ2 + 1 
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Solving for the Ai's and substituting into the  state-transition matrix,  
 

  
To find the state vector,  

  

  

  

  

  

  
(3, 4)

1 cos[ ]
(3,4)

sin[ ]
( 3cos[ ] 4sin[ ] 3)

y x
t

y
t

y t t

=

−⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
= − + +

 

 
45. 

 |λI - A | = (λ + 2) (λ + 0.5 - 2.3979i) (λ + 0.5 + 2.3979i) 

 Let the state-transition matrix be 
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 Since φ(0) = I, Φ
.

(0)  = A, and φ
..

(0)  = A2, we can evaluate the coefficients, Ai's. Thus,  

 

 

  

 

 

 

 Solving for the Ai's taking three equations at a time,  

 

 

 
U s i n g  x (t ) =  φ (t )x (0 ) +  ∫

0

t
φ (t -τ )B u (τ )dτ ,  an d y  =  1 0 0 x (t ),  

 

 
= 

1
2  - 

1
2   e-2t 

46. 
Program: 
syms s t tau                 %Construct symbolic object for  
                             %frequency variable 's', 't', and 'tau. 
'a'                          %Display label. 
A=[-2 1 0;0 0 1;0 -6 -1]     %Create matrix A. 
B=[1;0;0]                    %Create vector B. 
C=[1 0 0]                    %Create vector C. 
X0=[1;1;0]                   %Create initial condition vector,X(0). 
I=[1 0 0;0 1 0;0 0 1];       %Create identity matrix. 
'E=(s*I-A)^-1'               %Display label. 
E=((s*I-A)^-1)               %Find Laplace transform of state  
                             %transition matrix, (sI-A)^-1. 
Fi11=ilaplace(E(1,1));       %Take inverse Laplace transform  
Fi12=ilaplace(E(1,2));       %of each element  
Fi13=ilaplace(E(1,3)); 
Fi21=ilaplace(E(2,1));       
Fi22=ilaplace(E(2,2));        
Fi23=ilaplace(E(2,3)); 
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Fi31=ilaplace(E(3,1)); 
Fi32=ilaplace(E(3,2));       %to find state transition matrix.  
Fi33=ilaplace(E(3,3));       %of (sI-A)^-1. 
'Fi(t)'                      %Display label. 
Fi=[Fi11 Fi12 Fi13           %Form Fi(t). 
Fi21 Fi22 Fi23 
Fi31 Fi32 Fi33]; 
pretty(Fi)                   %Pretty print state transition matrix, Fi. 
Fitmtau=subs(Fi,t,t-tau);    %Form Fi(t-tau). 
'Fi(t-tau)'                  %Display label. 
pretty(Fitmtau)              %Pretty print Fi(t-tau). 
x=Fi*X0+int(Fitmtau*B*1,tau,0,t); 
                             %Solve for x(t). 
x=simple(x);                 %Collect terms. 
x=simplify(x);               %Simplify x(t). 
x=vpa(x,3); 
'x(t)'                       %Display label. 
pretty(x)                    %Pretty print x(t). 
y=C*x;                       %Find y(t) 
y=simplify(y); 
y=vpa(simple(y),3); 
y=collect(y); 
'y(t)' 
pretty(y)                    %Pretty print y(t). 
 
Computer response: 

ans = 
 
a 
 
 
 
 
A = 
 
    -2     1     0 
     0     0     1 
     0    -6    -1 
 
B = 
 
     1 
     0 
     0 
 
C = 
 
     1     0     0 
 
X0 = 
 
     1 
     1 
     0 
 
ans = 
 
E=(s*I-A)^-1 
 
E = 
  
[               1/(s+2), (s+1)/(s+2)/(s^2+s+6),     1/(s+2)/(s^2+s+6)] 
[                     0,       (s+1)/(s^2+s+6),           1/(s^2+s+6)] 
[                     0,          -6/(s^2+s+6),           s/(s^2+s+6)] 
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ans = 
 
Fi(t) 
  
        [                                       13 
        [exp(-2 t) , - 1/8 exp(-2 t) + 1/8 %1 + --- %2 , 
        [                                       184 
 
                                         ] 
        1/8 exp(-2 t) - 1/8 %1 + 3/184 %2] 
                                         ] 
 
        [ 
        [0 , 1/23 %2 + %1 , - 1/23 
 
             1/2                       1/2                            1/2 
        (-23)    (exp((-1/2 + 1/2 (-23)   ) t) - exp((-1/2 - 1/2 (-23)   ) t)) 
 
        ] 
        ] 
 
        [ 
        [0 , 6/23 
 
             1/2                       1/2                            1/2 
        (-23)    (exp((-1/2 + 1/2 (-23)   ) t) - exp((-1/2 - 1/2 (-23)   ) t)) 
 
                        ] 
        , - 1/23 %2 + %1] 
 
                               1/2 
  %1 := exp(- 1/2 t) cos(1/2 23    t) 
 
                       1/2           1/2 
  %2 := exp(- 1/2 t) 23    sin(1/2 23    t) 
 
ans = 
 
Fi(t-tau) 
 
  
        [ 
        [exp(-2 t + 2 tau) , 
        [ 
 
                                                   13       1/2 
        - 1/8 exp(-2 t + 2 tau) + 1/8 %2 cos(%1) + --- %2 23    sin(%1) , 
                                                   184 
 
                                                            1/2        ] 
        1/8 exp(-2 t + 2 tau) - 1/8 %2 cos(%1) + 3/184 %2 23    sin(%1)] 
                                                                       ] 
 
        [              1/2                                    1/2 
        [0 , 1/23 %2 23    sin(%1) + %2 cos(%1) , - 1/23 (-23)    ( 
 
                             1/2 
        exp((-1/2 + 1/2 (-23)   ) (t - tau)) 
 
                                1/2             ] 
         - exp((-1/2 - 1/2 (-23)   ) (t - tau)))] 
 
        [              1/2                       1/2 
        [0 , 6/23 (-23)    (exp((-1/2 + 1/2 (-23)   ) (t - tau)) 
 
                                1/2 
         - exp((-1/2 - 1/2 (-23)   ) (t - tau))) , 
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                    1/2                     ] 
        - 1/23 %2 23    sin(%1) + %2 cos(%1)] 
 
              1/2 
  %1 := 1/2 23    (t - tau) 
 
  %2 := exp(- 1/2 t + 1/2 tau) 
 
ans = 
 
x(t) 
  
        [.375 exp(-2. t) + .125 exp(-.500 t) cos(2.40 t) 
 
         + .339 exp(-.500 t) sin(2.40 t) + .500] 
 
        [.209 exp(-.500 t) sin(2.40 t) + exp(-.500 t) cos(2.40 t)] 
 
        [1.25 i (exp((-.500 + 2.40 i) t) - 1. exp((-.500 - 2.40 i) t))] 
 
ans = 
 
y(t) 
  
  .375 exp(-2. t) + .125 exp(-.500 t) cos(2.40 t) 
 
         + .339 exp(-.500 t) sin(2.40 t) + .500 

47.  
 The state-space representation used to obtain the plot is,  
  

 
x.  = 

0 1
-1 -0.8

 x  +  
0
1

 u(t);  y(t) = 1 0  x
 

 Using the Step Response software,  
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Calculating % overshoot, settling time, and peak time,  
 

2ζωn = 0.8, ωn = 1, ζ = 0.4. Therefore, %OS = e−ζπ / 1−ζ 2

x100 = 25.38%, Ts = 
4

ζωn
   = 10 sec, 

Tp = 
π

ωn 1-ζ2   = 3.43 sec. 

 
 
 
 
 
 
 
 
 
48.  
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49.  

 a. P(s) = 
s+0.5

s(s+2)(s+5)   = 
1/20

s    + 
1/4
s+2   - 

3/10
s+5   . Therefore, p(t) = 

1
20   + 

1
4  e-2t - 

3
10  e-5t. 

  b. To represent the system in state space, draw the following block diagram. 

 

 

 

1
s2+7s+10

s+0.5
V(s) Y(s) P(s)

 

 For the first block,  
 y. .  +  7y.  +10y = v(t)  

 Let x1 = y, and x2 = y
.
 . Therefore,  

x
.
 1 = x2 

x
.
 2 = -10x1 - 7x2 + v(t) 

 Also,  

        p(t) = 0.5y +  y
.
  = 0.5x1 + x2 

 Thus,  

 
x.  = 

0 1
-1 0 -7

 x  +
0
1

 1 ;  p (t ) = 0 . 5 1  x
 

 c. 
Program: 
A=[0 1;-10 -7];     
B=[0;1];                     
C=[.5 1];                     
D=0; 
S=ss(A,B,C,D) 
step(S) 
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Computer response: 
a =  
        x1   x2 
   x1    0    1 
   x2  -10   -7 
  
  
b =  
       u1 
   x1   0 
   x2   1 
  
  
c =  
        x1   x2 
   y1  0.5    1 
  
  
d =  
       u1 
   y1   0 
  
Continuous-time model. 
 
 

 
 
 
 

50. 

a. ωn = 10  = 3.16; 2ζωn = 4. Therefore ζ = 0.632. %OS = e− ξπ / 1−ξ2

*100 = 7.69%.  

Ts =
4

ξωn

 = 2 seconds. T p =
π

ω n 1− ξ 2
 = 1.28 seconds. From Figure 4.16, Trωn = 1.93. 

Thus, Tr = 0.611 second. To justify second-order assumption, we see that the dominant poles are at –

2 ± j2.449. The third pole is at -10, or 5 times further. The second-order approximation is valid. 
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b. Ge(s) = 
K

(s+10)(s2+4s+10)
  = 

K
s3+14s2+50s+100

  . Representing the system in phase-variable form: 

A =
0 1 0
0 0 1

−100 −50 −14

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;  B =

0
0
K

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; C = 1 0 0[ ] 

c. 
Program: 
numg=100; 
deng=conv([1 10],[1 4 10]); 
G=tf(numg,deng) 
step(G) 
 
 
 
 
 
Computer response: 
Transfer function: 
           100 
------------------------- 
s^3 + 14 s^2 + 50 s + 100 
 

 
 

%OS = 
(1.08-1)

1    * 100 = 8% 
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51. 

a. ωn = 0.28  = 0.529; 2ζωn = 1.15. Therefore ζ = 1.087.  

b. P(s) = U(s) 
7.63x10-2

s2+1.15s+0.28
  , where U(s) = 

2
s  . Expanding by partial fractions, P(s) = 

0.545
s   + 

natural response terms. Thus percent paralysis = 54.5%. 

c. P(s) =  
7.63x10-2

s(s2+1.15s+0.28)
  = 

0.2725
s    - 

0.48444
s+0.35    + 

0.21194
s+0.8   .  

Hence, p(t) = 0.2725 - 0.48444e-0.35t + 0.21194e-0.8t. Plotting,  

 

Fr
ac

tio
na

l p
ar

al
ys

is
 

fo
r 1

%
 is

of
lu

ra
ne

 

d. P(s) = 
K
s   * 

7.63x10-2

s2+1.15s+0.28
  = 

1
s   + natural response terms. Therefore, 

7.63x10-2 K
0.28    = 1. Solving 

for K, K = 3.67%. 

52. 
a. Writing the differential equation,  

dc(t)
dt    = -k10c(t) + 

i(t)
Vd

  

Taking the Laplace transform and rearranging, 

(s+k10)C(s) = 
I(s)
Vd

  

from which the transfer function is found to be 

C(s)
I(s)   = 

1
Vd

s+k10
  

For a step input, I(s) = 
I0
s   . Thus the response is  

C(s) = 

I0
Vd

s(s+k10)   = 
I0

k10Vd
 (

1
s - 

1
s+k10

 )  

Taking the inverse Laplace transform,  
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c(t) =
I0

k10Vd

(1− e−k10 t )  

where the steady-state value, CD, is 

CD = 
I0

k10Vd
   

Solving for IR = I0,  
IR = CDk10Vd 

b. Tr = 
2.2
k10

   ;  Ts = 
4

k10
   

c. IR = CDk10Vd  = 12 
μg
ml  x 0.07 hr-1 x 0.6 liters = 0.504 

mg
h    

d. Using the equations of part b, where k10  = 0.07,  Tr = 31.43 hrs, and Ts = 57.14 hrs.  

53.  Consider the un-shifted Laplace transform of the output 

 

2222 )20()286.14(
)125)(814.5(82.280

)05.01()07.01(
)008.01)(172.01(5.2)(

++
++

=
++
++

=
sss

ss
sss

sssY  

)20()20()286.14()286.14( 22 +
+

+
+

+
+

+
+=

s
E

s
D

s
C

s
B

s
A

 

5.2
)20()286.14(

)125)(814.5(82.280
022 =

++
++

= =sss
ssA  

7.564
)20(

)125)(814.5(82.280
286.142 =

+
++

= −=sss
ssB  

 

286.1423

2

286.142 40040
94.2040852.3673582.280

)20(
)125)(814.5(82.280

−=−= ++
++

=
+

++
= ss sss

ss
ds
d

ss
ss

ds
dC

 

223

2223

)40040(
)400803)(94.2040852.3673582.280()2.3673564.561)(40040(

−=++
++++−+++

= ssss
ssssssss

 

7.219−=  

 

57.640
)286.14(

)125)(814.5(82.280
202 =

+
++

= −=sss
ssD  

2023

2

202 09.204572.28
94.2040852.3673582.280

)286.14(
)125)(814.5(82.280

−=−= ++
++

=
+

++
= ss sss

ss
ds
d

ss
ss

ds
dE  
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20223

2223

)09.204572.28(
)09.204144.573)(94.2040852.3673582.280()2.3673564.561)(09.204572.28(

−=++
++++−+++

= ssss
ssssssss

18.217=  

 

thus 

 

)20(
18.217

)20(
57.640

)286.14(
7.219

)286.14(
7.5645.2)( 22 +

+
+

+
+

−
+

+=
sssss

sY  

Obtaining the inverse Laplace transform of the latter and delaying the equation in time domain we 

get 

 

)008.0(]18.217
)008.0(57.6407.219)008.0(7.5645.2[)(

)008.0(20

)008.0(20)008.0(286.14)008.0(286.14

−+

−+−−+=
−−

−−−−−−

tue
eteetty

t

ttt

 
54.  

a. The transfer function can be written as 

 

)44.172.0)(1(
)33.3(5056.2)( 2

1.0

+++
+

=
−

sss
ess

I

sθ
 

 

It has poles at s=-0.36±j1.145 and s=-1. A zero at s=-3.33 

The ‘far away’ pole at -1 is relatively close to the complex conjugate poles as 0.36*5>1 so a 

dominant pole approximation can’t be applied. 

 

b) In time domain the input can be expressed as: 

 

))15.0()((250)( −−= tutuAti μ  

 

Obtaining Laplace transforms this can be expressed as 
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s
esI

s15.01250)(
−−

= μ  

 

We first obtain the response to an unshifted unit step: 

 

44.172.01)44.172.0)(1(
)33.3(5056.2)( 22 ++

+
+

+
+=

+++
+

=
ss
DCs

s
B

s
A

ssss
ssθ  

 

 

8.5
)44.172.0)(1(

)33.3(5056.2
02 =

+++
+

= =ssss
sA  

4.3
)72.1)(1(

)33.2(5056.2
)44.172.0(

)33.3(5056.2
12 −=

−
=

++
+

= −=ssss
sB  

We will get C and D by equating coefficients. Substituting these two values and multiplying both 

sides by the denominator we get. 

 

)1()()44.172.0(4.3)44.172.0)(1(8.5)33.3(5056.2 22 +++++−+++=+ ssDCssssssss

 
3 2 3 2

3 2

2.5056( 3.33) 5.8( 1.72 2.16 1.44) 3.4( 0.72 1.44 )
( ( ) )

s s s s s s s
Cs C D s Ds

+ = + + + − + +

+ + + +
 

 

352.8)632.10()528.7()4.2()33.3(5056.2 23 +++++++=+ sDsDCsCs  

 

We immediately get C=-2.4 and D=-5.128 

 

So 

3104.1)36.0(
128.54.2

1
4.38.5

44.172.0
128.54.2

1
4.38.5)( 22 ++

+
−

+
−=

++
+

−
+

−=
s

s
ssss

s
ss

sθ  
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2 2

2

5.8 3.4 2.4( 0.15) 4.768 5.8 3.4 2.4( 0.15)
1 ( 0.36) 1.3104 1 ( 0.36) 1.3104

1.1454.164
( 0.36) 1.3104

s s
s s s s s s

s

+ + +
= − − = − −

+ + + + + +

−
+ +

 

Obtaining inverse Laplace transform we get 

 

)145.1sin(164.4)145.1cos(4.24.38.5)( 36.036.0 teteet ttt −−− −−−=θ  

)30145.1sin(4.24.38.5 36.0 o+−−= −− tee tt  

 

So the actual (shifted) unit step response is given by 

 

)1.0()]30)1.0(145.1sin(4.24.38.5[)( )1.0(36.0)1.0( −+−−−= −−−− tuteet tt oθ  

 

The response to the pulse is given by: 

 

−−+−−−= −−−− )1.0()]30)1.0(145.1sin(6.085.045.1[)( )1.0(36.0)1.0( tutmememt tt oθ  

)25.0()]30)25.0(145.1sin(6.085.045.1[ )25.0(36.0)25.0( −+−−− −−−− tutmemem tt o  

 

55. 

At steady state the input is ≈ 9V and the output is ≈ 6V Thus G(0)=6/9=0.667 

The maximum peak is achieved at ≈ 285μ with a %OS = (7.5/6-1)*100 = 25% 

This corresponds to a damping factor of  

4.0
9218.1

3863.1
)100/(%ln

)100/ln(%
222

≈
+

=
+

−
=

ππ
ζ

OS
OS

 

2.12027
)9165.0)(285(1 2

==
−

=
μ

π

ζ

πω
p

n
T

 

So the approximated transfer function is 
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72

6

22

2

22

2

10*5.149622
10*5.96

2.120272.12027*4.0*2
2.12027*667.0

2
)(

++
=

++
=

++
=

ssssss
K

sG
nn

n

ωζω
ω

 

56. 

The oscillation period is 
212 ζωπ

−= nT
 and from the figure sssT 0169.00506.00675.0

2
=−=  

Thus T=0.0338sec from which we get 8931.1851 2 =− ζωn  

The peaks of the response occur when the ‘cos’ term of the step response is ±1 thus from the figure 

we have: 

 

1492.1
1

1
2

)0506.0(

=
−

+
−

ζ

ζωne
 and 9215.0

1
1

2

)0675.0(

=
−

−
−

ζ

ζωne
 

From which we get 

9006.1
0785.0
1492.0

)0675.0(

)0506.0(

==−

−

n

n

e
e

ζω

ζω

 or 9006.1)0169.0( =− ne ζω  or 38=nζω  

Substituting this result we get 8931.1851381 22 =−=− ζ
ζ

ζωn  

or 2284.34556)1(1444 2
2 =− ζ

ζ
 or 0436.02 =ζ or 21.0=ζ  

Finally 9.18038
==

ζ
ωn  

57.  

The step input amplitude is the same for both responses so it will just be assumed to be unitary. 

For the ‘control’ response we have: 

018.0=finalc , 024.0=ptM from which we get 

%33.33%100
018.0

018.0024.0%100% max =×
−

=×
−

=
final

final

c
cc

OS  

33.0
)333.0(ln

)333.0ln(
)100/(%ln

)100/ln(%
2222

=
+

−
=

+

−
=

ππ
ζ

OS
OS

 

3.33
333.011.01 22

=
−

=
−

=
π

ζ

πω
p

n
T
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Leading a transfer function 

9.110822
9.1108)( 2 ++

=
ss

sGc  

Similarly for the ‘hot tail’: 

023.0=finalc , 029.0=ptM  

%1.26%100
023.0

023.0029.0% =×
−

=OS  

393.0
)261.0(ln

)261.0ln(
22

=
+

−
=

π
ζ  

17.34
261.011.01 22

=
−

=
−

=
π

ζ

πω
p

n
T

 

6.11679.26
6.1167)( 2 ++

=
ss

sGh  

Using MATLAB: 

>> syms s 

>> s=tf('s') 

  

Transfer function: 

s 

>> Gc = 1108.89/(s^2+22*s+1108.89); 

>> Gh = 1167.6/(s^2+26.9*s+1167.6); 

>> step(Gc,Gh) 
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Both responses are equivalent if error tolerances are considered. 

58.  

The original transfer function has zeros at 74007200 js ±−=  

And poles at 45001900 js ±−= ; 1520120 js ±−=  

With 1864.0)0( =G  

The dominant poles are those with real parts at -120, so a real pole is added at  

-1200 giving the following approximation: 

)1200)(108.2324240(
)106.10614400(

106.106
)108.2324)(1200(1864.0)( 32

62

6

3

+×++
×+−

×
×

≈
sss

sssG  

)1200)(108.2324240(
)106.10614400(8782.4

32

62

+×++
×+−

=
sss

ss
 

Using MATLAB: 

>> syms s 

>> s=tf('s'); 
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>>G=9.7e4*(s^2-14400*s+106.6e6)… 

/(s^2+3800*s+23.86e6)/(s^2+240*s+2324.8e3); 

>> Gdp=4.8782*(s^2-14400*s+106.6e6)/(s^2+240*s+2324.8e3)/(s+1200); 

 >> step(G,Gdp) 

 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.05

0.1
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0.2
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Both responses differ because the original non-dominant poles are very close to the complex pair of 

zeros. 

 

59. 

M(s) requires at least 4 ‘far away’ poles that are added a decade beyond all original poles and zeros. 

This gives 

4

22

48

22

)1.0)(0001.0(
)0001.0018.0()009.0(81.1028

)1.0/1)(0001.0(1072.9
)0001.0018.0()009.0()(

++
+++

=
++×
+++

= − ss
sss

ss
ssssM  
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60. 

36.0
)30.0(ln

)30.0ln(
)100/(%ln

)100/ln(%
2222

=
+

−
=

+

−
=

ππ
ζ

OS
OS

 

026.0
30.011271 22

=
−

=
−

=
π

ζ

πω
p

n
T

 

00067.00187.0
00067.0

2
)( 222

2

++
=

++
=

ssss
sG

nn

n

ωζω
ω

 

61. 

 a.   Let the impulse response of T(s) be h(t). We have that 

  
205)20)(5(

450)(
+

+
+

=
++

=
s

B
s

A
ss

sH  

  30
20

450
5 =

+
= −=ss

A ; 30
5

450
20 −=

+
= −=ss

B  

  
20

30
5

30)(
+

−
+

=
ss

sH . Obtaining the inverse Laplace transform we get 

  tt eeth 205 3030)( −− −=  

 
b. Let the step response of the system be g(t). We have that 

tttt
t t

tt
t

eedtedtedtthtg 0
20

0
5

0 0

205

0 20
30

5
303030)()( −−−−

−
−−=−== ∫ ∫∫  

tttt eeee 205205 5.165.4)1(5.1)1(6 −−−− +−=−+−−=  

 

c.  
205)20)(5(

450)(
+

+
+

+=
++

=
s

C
s

B
s
A

sss
sG  

5.4
)20)(5(

450
0 =

++
= =sss

A ; 6
)20(

450
5 −=

+
= −=sss

B ; 5.1
)5(

450
20 =

+
= −=sss

C  

Leading 
20
5.1

5
65.4)(

+
+

+
−=

sss
sG . After the inverse Laplace we get 

tt eetg 205 5.165.4)( −− +−=  

 

62. 
a. The poles given by 01097.31099.8 332 =×+×+ −− ss  have an sec/063.0 radn =ω and 

0714.0=ζ  
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The poles given by 023.1821.42 =++ ss  have an sec/27.4 radn =ω and 493.0=ζ  Thus 

the former represent the Phugoid and the latter the Short Period modes. 

 

b. In the original we have 85.4)0( −=
eδ

θ
 so the Phugoid approximation is given by: 

)1097.31099.8(
)0098.0(965.1

332 −− ×+×+
+

−≈
ss

s

eδ
θ

 

c. 

>> syms s 

>> s=tf('s'); 

>>G=-26.12*(s+0.0098)*(s+1.371)/(s^2+8.99e-3*s+3.97e-3)/(s^2+4.21*s+18.23); 

>> Gphug=-1.965*(s+0.0098)/(s^2+8.99e-3*s+3.97e-3); 

>> step(G,Gphug) 
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Both responses are indistinguishable. 
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63. 

 a. 

Program 
numg=[33 202 10061 24332 170704]; 
deng=[1 8 464 2411 52899 167829 913599 1076555]; 
G=tf(numg,deng) 
[K,p,k]=residue(numg,deng) 

 
 
Computer Response 
K = 
 
   0.0018 + 0.0020i 
   0.0018 - 0.0020i 
  -0.1155 - 0.0062i 
  -0.1155 + 0.0062i 
   0.0077 - 0.0108i 
   0.0077 + 0.0108i 
   0.2119           
 
 
p = 
 
  -1.6971 +16.4799i 
  -1.6971 -16.4799i 
  -0.5992 +12.1443i 
  -0.5992 -12.1443i 
  -1.0117 + 4.2600i 
  -1.0117 - 4.2600i 
  -1.3839           
 
 
k = 
 
     [] 
b. 
 
Therefore, an approximation to G(s)/ is: 
 

0.2119
1.3839

( )
s

G s
+

=  

 
c.   
 
Program 
numg=[33 202 10061 24332 170704]; 
deng=[1 8 464 2411 52899 167829 913599 1076555]; 
G=tf(numg,deng); 
numga=0.2119; 
denga=[1 1.3839]; 
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Ga=tf(numga,denga); 
step(G) 
hold on 
step(Ga) 
 
Computer Response 

 
 

 
 
Approximation does not show oscillations and is slightly off of final value. 
 

64. 
Computer Response 

Transfer function: 
  
 s^15 + 1775 s^14 + 1.104e006 s^13 + 2.756e008 s^12 + 2.272e010 s^11       
                                                                           
         + 7.933e011 s^10 + 1.182e013 s^9 + 6.046e013 s^8 + 1.322e014 s^7  
                                                                           
         + 1.238e014 s^6 + 3.977e013 s^5 + 5.448e012 s^4 + 3.165e011 s^3   
                                                                           
                              + 6.069e009 s^2 + 4.666e007 s + 1.259e005    
                                                                           
---------------------------------------------------------------------------- 
31.62 s^17 + 4.397e004 s^16 + 1.929e007 s^15 + 2.941e009 s^14                
                                                                             
        + 1.768e011 s^13 + 4.642e012 s^12 + 5.318e013 s^11 + 2.784e014 s^10  
                                                                             
        + 7.557e014 s^9 + 1.238e015 s^8 + 1.356e015 s^7 + 8.985e014 s^6      
                                                                             
        + 2.523e014 s^5 + 3.179e013 s^4 + 1.732e012 s^3 + 3.225e010 s^2      
                                                                             
                                             + 2.425e008 s + 6.414e005  
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65. 

a. To find the step responses for these two processes, ya(t) and yp(t), we consider first the un-shifted 
Laplace transform of their outputs for Xa(s) = Xp(s) = 1/s: 

)1077.6()1077.6(
108.9

)126.1478(
49.14)( 44

3
*

−−

−

×+
+=

×+
×

=
+

=
s

B
s
A

ssss
sYa  (1), 

where 49.14
01077.6

108.9
4

3

=
=×+

×
= −

−

ss
A  and 

49.14
1077.6

108.9
4

3

−=
×−=

×
=

−

−

ss
B  (2) 

Substituting the values of A and B into equation (1) gives: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+

−=
×+

+= −− )1076.6(
1149.14

)1076.6(
)( 44

*

sss
B

s
AsYa  (3) 

Taking the inverse Laplace transform of )(* sYa  and delaying the resulting response in the time 

domain by 4 seconds, we get: 

)4(])4(1076.61[49.14)(
4

−−×−−=
−

tutetya  (4) 
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Noting that the denominator of )(sG p  can be factored into 

)10814.6)(10174.0( 33 −− ×+×+ ss , we have: 

)10814.6()10174.0()10814.6)(10174.0(
10716.1)( 3333

5
*

−−−−

−

×+
+

×+
+=

×+×+

×
=

s
E

s
D

s
C

sss
sYp  (5), 

where: 48.14
0)10814.6)(10174.0(

10716.1
33

5
=

=×+×+
×

= −−

−

sss
C ; 

85.14
10174.0)10814.6(

10716.1
33

5
−=

×−=×+
×

=
−

−

−

sss
D ; 

37.0
10814.6)10174.0(

10716.1
33

5
=

×−=×+
×

=
−

−

−

sss
E . (6) 

Substituting the values of C, D and E into equation (5) and simplifying gives: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×+
+

×+
−=

×+
+

×+
−= −−−− )10814.6(

0256.0
)10174.0(

0256.1148.14
)10814.6(

37.0
)10174.0(

85.1448.14)( 3333
*

ssssss
sYp  (7) 

Taking the inverse Laplace transform of )(* sYp  and delaying the resulting response in the time 

domain by 30 seconds, we get: 

)30(])30(10814.60256.0)30(10174.00256.11[48.14)(
33

−−×−+−×−−=
−−

tutetety p  (8) 

 

b. Using Simulink to model the two processes described above, ya(t) and yp(t) were output to the 
“workspace.” Matlab plot commands were then utilized to plot ya(t) and yp(t) on a single graph, 
which is shown below. 
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XY GraphTransport
DelayTransfer Fcn

1478 .26 s+1

14 .49

To Workspace2

pH

To Workspace 1

time

Step

Clock

 

XY GraphTransport
Delay

Transfer Fcn

s  +6.989 E-3s+1.185 E-62

1.716 E-5

To Workspace2

pH2

To Workspace1

time

Step

Clock
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66. 

a. 

>> A=[-8.792e-3 0.56e-3 -1e-3 -13.79e-3; -0.347e-3 -11.7e-3 -0.347e-3 0; 0.261 -20.8e-3 -96.6e-3 

0; 0 0 1 0] 

A = 

   -0.0088    0.0006   -0.0010   -0.0138 

   -0.0003   -0.0117   -0.0003         0 

    0.2610   -0.0208   -0.0966         0 

         0         0    1.0000         0 

>> eig(A) 

ans = 

  -0.1947           

   0.0447 + 0.1284i 

   0.0447 - 0.1284i 

  -0.0117           

b. 

Given the eigenvalues, the state-transition matrix will be of the form 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

34333231

24232221

14131211

)(

KKKK
KKKK
KKKK
KKKK

tΦ                 with 

 

))1284.0cos()1284.0sin( 0447.0
4

0447.0
3

0117.0
2

1947.0
1 teKteKeKeKK t

ij
t

ij
t

ij
t

ijij
++−− +++=

 

Thus 64 constants have to be found. 
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67. 

a.   The equations are rewritten as 

sC
L E

L
u

L
d

dt
di 11

+
−

−=  

CL
C u

RC
i

C
d

dt
du 11

−
−

=  

from which we obtain 

 

s
C

L

C

L

ELu
i

RCC
d

L
d

dt
du
dt
di

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

1

11

10
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

C

L

i
i

y 10  

 
b. To obtain the transfer function we first calculate 

 

LC
d

RC
ss

s
C

d
L

d
RC

s

RC
s

C
d

L
ds

s 2

1

1

)1()1(

1

11

11

1

)(
−

++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−

−

−

=−

−

−AI  

So 

 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
−+

=−= −

0

1

)1()1(

1

11

10)()( 2
1

L

LC
d

RC
ss

s
C

d
L

d
RC

s

ssG BAIC  

LC
ds

RC
s

LC
d

L

LC
ds

RC
s

s
C

d

2
2

2
2 )1(1

1

0

1

)1(1

1

−
++

−

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
++

⎥⎦
⎤

⎢⎣
⎡ −

=  
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68. 

a. We have ⎥
⎦

⎤
⎢
⎣

⎡
−

+
=−

s
s

s
1

26.234.8
)( AI  and 

)06.8)(28.0(
34.81

26.2

26.234.8
34.81

26.2

)( 2
1

++

⎥
⎦

⎤
⎢
⎣

⎡
+

−

=
++

⎥
⎦

⎤
⎢
⎣

⎡
+

−

=− −

ss
s

s

ss
s

s

s AI  

We first find 
⎭
⎬
⎫

⎩
⎨
⎧

++ )06.8)(28.0(
1

ss
1-L  

 

 

06.828.0)06.8)(28.0(
1 21

+
+

+
=

++ s
K

s
K

ss
 

129.0
06.8

1
28.01 =

+
= −=ss

K ; 129.0
28.0

1
06.82 −=

+
= −=ss

K  so 

tt ee
).)(s.(s

06.828.0 129.0129.0
068280

1 −− −=
⎭
⎬
⎫

⎩
⎨
⎧

++
1-L  

Follows that 

 

tt ee
ss

.
ss

06.828.0 292.0292.0
)06.8)(28.0(

1262
)06.8)(28.0(

26.2 −− +−=
⎭
⎬
⎫

⎩
⎨
⎧

++
=

⎭
⎬
⎫

⎩
⎨
⎧

++
− 1-1- L-L

 

tt ee
ssdt

d
ss

s 06.828.0 04.1036.0
)06.8)(28.0(

1
)06.8)(28.0(

−− +−=
⎭
⎬
⎫

⎩
⎨
⎧

++
=

⎭
⎬
⎫

⎩
⎨
⎧

++
1-1- LL

 

And 

 

⎭
⎬
⎫

⎩
⎨
⎧

++
+

⎭
⎬
⎫

⎩
⎨
⎧

++
=

⎭
⎬
⎫

⎩
⎨
⎧

++
+

)06.8)(28.0(
1348

)06.8)(28.0()06.8)(28.0(
34.8

ss
.

ss
s

ss
s 1-1-1- LLL

tttttt eeeeee 06.828.006.828.006.828.0 036.004.1076.1076.104.1036.0 −−−−−− −=−++−=  

Finally the state transition matrix is given by: 

 

⎥
⎦

⎤
⎢
⎣

⎡

−−
+−+−

=
−−−−

−−−−

tttt

tttt

eeee
eeee

t 06.828.006.828.0

06.828.006.828.0

036.004.1129.0129.0
292.0292.004.1036.0

)(Φ  
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b. 

⎥
⎦

⎤
⎢
⎣

⎡

−
+−

=
−−

−−

tt

tt

ee
ee

t 06.828.0

06.828.0

129.0129.0
04.1036.0

)( BΦ  

 
tttttt eeeeeet 06.828.006.828.006.828.0 748.12159.0292.0292.004.13451.0)( −−−−−− +−=−++−=BCΦ

 

Since 1)( =tu  

∫∫ −−−− +−=−=
t

tt
t

deedtty
0

)(06.8)(28.0

0

]748.12159.0[)()( τττ ττBCΦ  

∫ ∫−− +−=
t t

tt deedee
0 0

06.806.828.028.0 748.12159.0 ττ ττ  

ttt eeee 0
06.806.828.028.0

06.8
748.12

28.0
159.0 ττ −− +

−
=  

tttt eeee 06.828.006.828.0 582.1568.0014.1]1[582.1]1[568.0 −−−− −+=−+−−=  

c. 

>> A=[-8.34 -2.26; 1 0]; 

>> B = [1; 0]; 

>> C = [12.54 2.26]; 

>> D = 0; 

>> t = linspace(0,15,1000); 

>> y1 = step(A,B,C,D,1,t); 

>> y2 = 1.014+0.568*exp(-0.28.*t)-1.582*exp(-8.06.*t); 

>> plot(t,y1,t,y2) 
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SOLUTIONS TO DESIGN PROBLEMS 

69. 
 Writing the equation of motion, ( fvs + 2)X(s) = F(s). Thus, the transfer function is 

X(s)
F(s)

=
1/ fv

s + 2
fv

. Hence, Ts =
4
a

=
4
2
fv

= 2 fv , or fv =
Ts

2
. 

70. 

  The transfer function is, F(s) =
1/ M

s2 + 1
M

s + K
M

. Now, 
4 44 81Re

2

sT M

M

= = = = . Thus, 

1
2

M = . Substituting the value of M in the denominator of the transfer function yields, 

2 2 2s s K+ + . Identify the roots 1,2 1 2 1s j K= − ± − . Using the imaginary part and substituting 

into the peak time equation yields 1
Im 2 1pT

K
π π

= = =
−

, from which 5.43K = . 
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71.  
 Writing the equation of motion, (Ms2 + fvs +1)X(s) = F(s) . Thus, the transfer function is  

 
X(s)
F(s)

=
1/ M

s2 + fv

M
s + 1

M

. Since Ts =10 =
4

ζωn

,  ζωn = 0.4 . But, 
fv

M
= 2ζωn = 0.8.Also, 

from Eq. (4.39) 17% overshoot implies ζ = 0.491. Hence, ωn = 0.815. Now, 1/M = ωn
2 = 0.664. 

Therefore, M 1.51. Since 2 0.8,  1.21v
n v

f f
M

ζω= = = . 

72.  
 Writing the equation of motion: (Js2+s+K)θ(s) = T(s). Therefore the transfer function is 
 

θ(s)
T(s)  = 

1
J

s2+
1
Js+

K
J

  . 

ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.358.  

 

Ts = 
4

ζωn
  = 

4
1
2J

   = 8J = 3.  

 

Therefore J = 
3
8

. Also, Ts = 3 = 
4

ζωn
  = 

4
(0.358)ωn

  . Hence, ωn = 3.724. Now, 
K
J   = ωn2 = 13.868. 

Finally, K = 5.2. 
 

 
73.  
 Writing the equation of motion 

[s2+D(5)2s+
1
4 (10) 2]θ(s) = T(s) 

The transfer function is 
θ (s)
T(s)  = 

1
s2+25Ds+25

   

 

Also, 

ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.358  

and 

2ζωn = 2(0.358)(5) = 25D 

Therefore D = 0.14. 
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 74.  
 The equivalent circuit is: 

 

 

 where Jeq = 1+(
N1
N2

 )2 ; Deq = (
N1
N2

 )2; Keq = (
N1
N2

 )2. Thus,  

 

 
θ1(s)
T(s)   = 

1
Jeqs2+Deqs+Keq

  . Letting 
N1
N2

  = n and substituting the above values into the transfer 

function,  
 

 
θ1(s)
T(s)    = 

1
1+n2

s2 + 
n2 

1+n2 s + 
n2 

1+n2

  . Therefore, ζωn = 
n2

2(1+n2)
  . Finally, Ts = 

4
ζωn

  = 
8(1+n2)

n2    = 16. Thus 

n = 1. 

75. 
 Let the rotation of the shaft with gear N2 be θL(s).  Assuming that all rotating load has been reflected 

to the N2 shaft, JeqLs 2 + DeqLs + K( )θ L(s) + F(s)r = Teq (s) , where F(s) is the force from the 

translational system, r = 2 is the radius of the rotational member, JeqL is the equivalent inertia at the 

N2 shaft, and DeqL is the equivalent damping at the N2 shaft. Since JeqL = 1(2)2 + 1 = 5 and DeqL = 

1(2)2 = 4, the equation of motion becomes, 5s2 + 4s + K( )θL(s) + 2F(s) = Teq (s). For the 

translational system (Ms2 + s)X(s) = F(s) . Substituting F(s) into the rotational equation of 

motion, 5s2 + 4s + K( )θL(s) + Ms2 + s( )2X(s) = Teq (s). 

But,θ L(s) =
X(s)

r
=

X(s)
2

 and Teq (s) = 2T (s).  Substituting these quantities in the equation 

above yields (5 + 4M)s 2 + 8s + K( )X(s)
4

= T (s). Thus, the transfer function is 

X(s)
T(s)

=
4 /(5 + 4M)

s2 + 8
(5 + 4M)

s + K
(5 + 4M)

. Now, 
4 415 (5 4 )8Re

2(5 4 )

sT M

M

= = = = +

+

. 

Hence, M = 5/2. For 10% overshoot, ζ = 0.5912 from Eq. (4.39). Hence, 
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82 0.5333
(5 4 )n M

ζω = =
+

. Solving for ωn yields ωn = 0.4510. But, 

0.4510.
(5 4 ) 15n

K K
M

ω = = =
+

Thus, K = 3.051.  

 76.  

The transfer function for the capacitor voltage is 
VC(s)
V(s)   = 

1
Cs

R+Ls+
1

Cs
  = 

106

s2+Rs+106  .  

   For 20% overshoot, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.456. Therefore, 2ζωn = R = 2(0.456)(103) = 

912Ω.  
77. 

Solving for the capacitor voltage using voltage division, VC (s) = Vi(s)
1/(CS)

R + LS + 1
CS

. Thus, the 

transfer function is 
VC (s)
Vi(s)

=
1/(LC)

s2 + R
L

s + 1
LC

. Since Ts =
4

Re
=10−3,  Re =

R
2L

= 4000. Thus 

R = 8 KΩ . Also, since 20% overshoot implies a damping ratio of 0.46 and 

2ζωn = 8000, ωn = 8695.65 =
1
LC

. Hence, C = 0.013 μF. 

78. 
 Using voltage division the transfer function is, 
 

VC (s)
Vi(s)

=

1
Cs

R + Ls + 1
Cs

=

1
LC

s2 + R
L

s + 1
LC

 

 Also, 3 4 4 87 10
Re

2

s
LT x R R

L

−= = = = . Thus, 1143R
L

= . Using Eq. (4.39) with 15% overshoot, ζ 

= 0.5169. But, 2ζωn = R/L. Thus, 5

1 11105.63
(10 )n LC L

ω −= = = . Therefore, L = 81.8 mH 

and R = 98.5 Ω. 
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79. 

 For the circuit shown below 

R1 = 

L = 

i1(t) i2(t)
o

 

write the loop equations as 

R 1 L s+ I 1 s R 1 I 2 s− V i s=  

R 1 I 1 s− R 1 R 2 1
C s

+ + I 2 s+ 0=  

Solving for I2(s) 

I 2 s

R 1 L s+ V i s
R 1− 0

R 1 L s+ R 1−

R 1− R 1 R 2 1
C s

+ +

=

( )

 

But, V o s 1
C s

I 2 s= . Thus,  

V o s
V i s

R 1

R 2 R 1+ C L s 2 C R 2 R 1 L+ s R 1+ +
=  

Substituting component values,  

Vo (s)
Vi(s)

= 1000000

1
(R2 + 1000000)C

s2 + (1000000CR2 +1)
(R2 +1000000)C

s +1000000 1
(R2 +1000000)C

 

 

For 8% overshoot, ζ = 0.6266. For Ts = 0.001, ζωn = 
4

0.001   = 4000. Hence, ωn = 6383.66. Thus,  

 
2

2

11000000 6383.66
( 1000000)R C

=
+

 

or,  

2

10.0245
1000000

C
R

=
+

                                                    (1) 

Also,  



Solutions to Design Problems   4-75 
  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 1000000 C R 2 1+
R 2 1000000+ C

8000=                                                     (2) 

Solving (1) and (2) simultaneously, 2 8023R =  Ω, and C = 2.4305 x 10-2 μF. 

 

 

80. 

sI − A =
s 0
0 s

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −

(3.45 −14000Kc) −0.255x10−9

0.499x1011 −3.68
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

         =
s − (3.45 −14000Kc) 0.255x10−9

−0.499x1011 s + 3.68
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

 

sI − A = s2 + (0.23 + 0.14x105 Kc )s + (51520Kc + 0.0285)

(2ζωn )2 = [2* 0.9]2 *(51520Kc + 0.0285) = (0.23 + 0.14x105 Kc)
2

 

or 
Kc

2 − 8.187x10−4 Kc − 2.0122x10−10 = 0  

Solving for Kc,  

Kc = 8.189x10−4  
 

81. 
a. The transfer function from Chapter 2 is, 
 

Yh(s) − Ycat (s)
Fup(s)

=
0.7883(s + 53.85)

(s2 + 15.47s + 9283)(s2 +8.119s + 376.3)
 

The dominant poles come from s 2 + 8.119s + 376.3. Using this polynomial, 

2ζωn = 8.119,  and ωn
2 = 376.3. Thus, ωn = 19.4 and ζ = 0.209. Using Eq. (4.38), %OS = 

51.05%. Also,Ts =
4

ζωn

= 0.985 s,  and Tp =
π

ωn 1− ζ 2
= 0.166 s . To find rise time, use 

Figure 4.16. Thus,ωnTr = 1.2136 or Tr = 0.0626 s.  

b. The other poles have a real part of 15.47/2 = 7.735. Dominant poles have a real part of 8.119/2 = 

4.06. Thus, 7.735/4.06 = 1.91. This is not at least 5 times. 

c.  
Program: 
syms s 
numg=0.7883*(s+53.85); 
deng=(s^2+15.47*s+9283)*(s^2+8.119*s+376.3); 
'G(s) transfer function' 
G=vpa(numg/deng,3); 
pretty(G) 
numg=sym2poly(numg); 
deng=sym2poly(deng); 
G=tf(numg,deng) 
step(G) 
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Computer response: 
ans = 
G(s) transfer function 
  
                                .788 s + 42.4 
                  ------------------------------------------ 
                    2                     2 
                  (s  + 15.5 s + 9280.) (s  + 8.12 s + 376.) 
  
Transfer function: 
                 0.7883 s + 42.45 
---------------------------------------------------- 
s^4 + 23.59 s^3 + 9785 s^2 + 8.119e004 s + 3.493e006 
 

 
The time response shows 58 percent overshoot, Ts = 0.86 s, Tp = 0.13 s, Tr = 0.05 s. 

82. 

 
a.  In Problem 3.30 we had 
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 When 02 =u the equations are equivalent to 
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Substituting parameter values one gets 
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b. 
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To obtain the adjoint matrix we calculate the cofactors: 
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c.   100% effectiveness means that 11 =u  or 
s

sU 1)(1 = , so by the final value theorem 

820.11681
)0048.00398.0)(6419.2(

)02.0(520)()( 200
−=

+++
+

−==∞
→→ ssss

ssLimssYLimy
ss

 

(virus copies per mL of plasma) 

The closest poles to the imaginary axis are 0661.00199.0 j±−  so the approximate settling time 

will be 210
0199.0
4

=≈sT days. 

83. 

a. 

Substituting 
s

2650 F(s) =Δ  into the transfer function and solving for ΔV(s) gives: 
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)101908()101908(
2650 

1908
F(s)  V(s)

+⋅
+=

+⋅
=

⋅
Δ

=Δ
s

B
s
A

sss
  

 

Here: 265
0)101908(

2650
=

=+⋅
=

ss
A  and 

2650 505,620
1
190.8

B
s s

= = −
= −

  

Substituting we have: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×+
−=

+⋅
−=Δ

− )1024.5(
11265

)101908(
505620265  V(s) 3ssss

  

Taking the inverse Laplace transform, we have:  

 m/sin),()1(265)(
31024.5 tutetv ⋅−=Δ

−×−   

b. 

>> s=tf('s'); 

>> G=1/(1908*s+10); 

>> t=0:0.1:1000; 

>> y1=2650*step(G,t); 

>> y2=265*(1-exp(-5.24e-3.*t)); 

>> plot(t,y1,t,y2) 

>> xlabel('sec') 

>> ylabel('m/s') 
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Both plots are identical. 
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F  I  V  E  
 
  Reduction of Multiple 

Subsystems  
 

SOLUTIONS TO CASE STUDIES CHALLENGES  
 

Antenna Control: Designing a Closed-Loop Response 
a. Drawing the block diagram of the system: 

 

            

+

-

10
Π   

iu 
K    150

s+150

u o0.16
s(s+1.32)

Pots Pre amp
Power 
amp

Motor, 
load and 
gears

 

 

Thus, T(s) = 76.39K
s3+151.32s2+198s+76.39K

  

b.  Drawing the signal flow-diagram for each subsystem and then interconnecting them yields: 
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Π
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u o

1
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 x
.
 1 = x2  

 x
.
 2 = - 1.32x2 + 0.8x3 

 x
.
 3 = -150x3 +150K(

10
π

(q i − 0.2x1)) = -95.49Kx1 - 150x3 + 477.46Kθi   

 θo = 0.2x1 

 In vector-matrix notation,  
 

x.  = 
0 1 0
0 -1.32 0.8

-95.49K 0 -150
 x  + 

0
0

477.46K
 θ

i

θo = 0.2 0 0  x  

  

 c. T1 =
10
π

⎛ 
⎝ 

⎞ 
⎠ (K)(150)

1
s

⎛ 
⎝ 

⎞ 
⎠ (0.8)

1
s

⎛ 
⎝ 

⎞ 
⎠ 

1
s

⎛ 
⎝ 

⎞ 
⎠ (0.2) =

76.39
s 3  

 

 GL1 =
−150

s
; GL 2 =

−1.32
s

; GL 3 = (K)(150)
1
s

⎛ 
⎝ 

⎞ 
⎠ (0.8)

1
s

⎛ 
⎝ 

⎞ 
⎠ 

1
s

⎛ 
⎝ 

⎞ 
⎠ (0.2)

−10
π

⎛ 
⎝ 

⎞ 
⎠ =

−76.39K
s3  

 Nontouching loops: 
 

 GL1GL2 = 
198
s2   

 

 Δ = 1 - [GL1 + GL2  + GL3] + [GL1GL2] = 1 +  
150

s    +  
1.32

s    +  
76.39K

s3     +  
198
s2   

 Δ1 = 1 
  

 T(s) = 
T1Δ1

Δ    = 
76.39K

s3+151.32s2 +198s+76.39K
  

 d. The equivalent forward path transfer function is G(s) = 

10
π

 0.16K

s(s+1.32)   . 

 Therefore,  

T(s) =  
2.55

s2+1.32s+2.55
  

  

 The poles are located at -0.66 ± j1.454. ωn = 2.55  = 1.597 rad/s; 2ζωn = 1.32, therefore, ζ = 0.413.  
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  %OS = e−ζπ / 1−ζ 2

x100 = 24%; Ts = 
4

ζωn
    = 

4
0.66  = 6.06 seconds; Tp = 

π
ωn 1-ζ2    = 

π
1.454   = 

2.16 seconds; Using Figure 4.16, the normalized rise time is 1.486. Dividing by the natural frequency, 

Tr = 
1.486

2.55
  = 0.93 seconds. 

 e. 

  

  

  

  
 

 f. Since G(s)  = 
0.51K

s(s+1.32)  , T(s) = 
0.51K

s2+1.32s+0.51K
   . Also, ζ = 

- ln (
%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.517 for 15% 

overshoot; ωn = 0.51K  ; and 2ζωn = 1.32. Therefore, ωn = 
1.32
2ζ   = 

1.32
2(0.5147)   = 1.277 =  0.51K  .  

Solving for K, K=3.2. 
 

UFSS Vehicle: Pitch-Angle Control Representation 

a. Use the observer canonical form for the vehicle dynamics so that the output yaw rate is a state 

variable. 

-2

2-1 -0.125
1
s 1

1
s

1

1

-1

u
1
s 1

y
x1

0.437
1
s

1

-0.24897

-1.483

x2x3x4
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b. Using the signal flow graph to write the state equations: 
 

1 2

2 2 3 4

3 2 4

4 1 2 4

1.483 0.125
0.24897 (0.125*0.437)

2 2 2 2

x x
x x x x
x x x
x x x x u

=
= − + −
= − −
= + − −

&

&

&

&

 

 In vector-matrix form: 
 

0 1 0 0 0
0 1.483 0 0.125 0
0 0.24897 0 0.054625 0
2 2 0 2 2

[1 0 0 0]y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=

x x

x

& =
 

c. 
Program: 
numg1=-0.25*[1 0.437]; 
deng1=poly([-2 -1.29 -0.193 0]); 
'G(s)' 
G=tf(numg1,deng1) 
numh1=[-1 0]; 
denh1=[0 1]; 
'H(s)' 
H=tf(numh1,denh1) 
'Ge(s)' 
Ge=feedback(G,H) 
'T(s)'
T=feedback(-1*Ge,1) 
[numt,dent]=tfdata(T,'V'); 
[Acc,Bcc,Ccc,Dcc]=tf2ss(numt,dent) 
 
Computer response: 
ans = 
 
G(s) 
 
Transfer function: 
           -0.25 s - 0.1093 
-------------------------------------- 
s^4 + 3.483 s^3 + 3.215 s^2 + 0.4979 s 
  
ans = 
 
H(s) 
 
Transfer function: 
-s 
  
ans = 
 
Ge(s) 
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Transfer function: 
           -0.25 s - 0.1093 
-------------------------------------- 
s^4 + 3.483 s^3 + 3.465 s^2 + 0.6072 s 
  
ans = 
 
T(s) 
 
Transfer function: 
                0.25 s + 0.1093 
----------------------------------------------- 
s^4 + 3.483 s^3 + 3.465 s^2 + 0.8572 s + 0.1093 
  
Acc = 
 
   -3.4830   -3.4650   -0.8572   -0.1093 
    1.0000         0         0         0 
         0    1.0000         0         0 
         0         0    1.0000         0 
 
Bcc = 
 
     1 
     0 
     0 
     0 
 
Ccc = 
 
         0         0    0.2500    0.1093 
 
Dcc = 
 
     0 
 
 

ANSWERS TO REVIEW QUESTIONS 
1. Signals, systems, summing junctions, pickoff points 

2. Cascade, parallel, feedback 

3. Product of individual transfer functions, sum of individual transfer functions, forward gain divided by 

one plus the product of the forward gain times the feedback gain 

4. Equivalent forms for moving blocks across summing junctions and pickoff points 

5. As K is varied from 0 to ∞, the system goes from overdamped to critically damped to underdamped. 

When the system is underdamped, the settling time remains constant. 

6. Since the real part remains constant and the imaginary part increases, the radial distance from the origin 

is increasing. Thus the angle θ is increasing. Since ζ= cos θ the damping ratio is decreasing. 

7. Nodes (signals), branches (systems) 

8. Signals flowing into a node are added together. Signals flowing out of a node are the sum of signals 

flowing into a node. 

9. One 

10. Phase-variable form, cascaded form, parallel form, Jordan canonical form, observer canonical form 
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11. The Jordan canonical form and the parallel form result from a partial fraction expansion. 

12. Parallel form 

13. The system poles, or eigenvalues 

14. The system poles including all repetitions of the repeated roots 

15. Solution of the state variables are achieved through decoupled equations. i.e. the equations are solvable 

individually and not simultaneously. 

16. State variables can be identified with physical parameters; ease of solution of some representations 

17. Systems with zeros 

18. State-vector transformations are the transformation of the state vector from one basis system to another. 

i.e. the same vector represented in another basis. 

19. A vector which under a matrix transformation is collinear with the original. In other words, the length 

of the vector has changed, but not its angle. 

20. An eigenvalue is that multiple of the original vector that is the transformed vector. 

21. Resulting system matrix is diagonal. 

 

SOLUTIONS TO PROBLEMS  

1.  
 a. Combine the inner feedback and the parallel pair. 

 

 

 
 Multiply the blocks in the forward path and apply the feedback formula to get,  
 

T(s) = 
50(s-2)

s3+s2+150s-100
   .

 b. 
Program: 
'G1(s)' 
G1=tf(1,[1 0 0]) 
'G2(s)' 
G2=tf(50,[1 1]) 
'G3(s)' 
G3=tf(2,[1 0]) 
'G4(s)' 
G4=tf([1 0],1) 
'G5(s)' 
G5=2 
'Ge1(s)=G2(s)/(1+G2(s)G3(s))' 
Ge1=G2/(1+G2*G3) 
'Ge2(s)=G4(s)-G5(s)' 
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Ge2=G4-G5 
'Ge3(s)=G1(s)Ge1(s)Ge2(s)' 
Ge3=G1*Ge1*Ge2 
'T(s)=Ge3(s)/(1+Ge3(s))' 
T=feedback(Ge3,1); 
T=minreal(T) 
 
Computer response: 
ans = 
 
G1(s) 
 
Transfer function: 
 1 
--- 
s^2 
  
ans = 
 
G2(s) 
 
Transfer function: 
 50 
----- 
s + 1 
  
ans = 
 
G3(s) 
 
Transfer function: 
2 
- 
s 
  
ans = 
 
G4(s) 
 
Transfer function: 
s 
  
ans = 
 
G5(s) 
 
G5 = 
 
     2 
 
ans = 
 
Ge1(s)=G2(s)/(1+G2(s)G3(s)) 
 
 
Transfer function: 
      50 s^2 + 50 s 
------------------------- 
s^3 + 2 s^2 + 101 s + 100 
  
ans = 
 
Ge2(s)=G4(s)-G5(s) 
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Transfer function: 
s - 2 
  
ans = 
 
Ge3(s)=G1(s)Ge1(s)Ge2(s) 
 
Transfer function: 
    50 s^3 - 50 s^2 - 100 s 
------------------------------- 
s^5 + 2 s^4 + 101 s^3 + 100 s^2 
  
ans = 
 
T(s)=Ge3(s)/(1+Ge3(s)) 
 
Transfer function: 
      50 s - 100 
----------------------- 
s^3 + s^2 + 150 s - 100 
 
 

2.  
Push G1(s) to the left past the pickoff point. 
 

+
-

+

+
G1

H1

G1
1

G2 G3

 
 

Thus, T (s) =
G1

1 + G1 H1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ G2 +

1
G1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ G3 =

G1G2 +1( )G3

1+ G1H1( )
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Solutions to Problems    5-9 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

3.  
 a. Split G3 and combine with G2 and G4. Also use feedback formula on G6 loop. 

 

 

 Push G2 +G3  to the left past the pickoff point. 

 

 

 Using the feedback formula and combining parallel blocks,  

 

  

  Multiplying the blocks of the forward path and applying the feedback formula,  
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4. 
 Push G2(s) to the left past the summing junction. 
 

 
 
 
Collapse the summing junctions and add the parallel transfer functions. 
 

 
 
Push G1(s)G2(s) + G5(s) to the right past the summing junction. 
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Collapse summing junctions and add feedback paths. 
 

 
 

  Applying the feedback formula, 
 
 

     

3 1 2

2 4
3 1 2

3 1 2

3 1 2

3 1 2 2 4

( ) ( ) ( )( )
( ) ( )1 [ ( ) ( ) ( )]

( ) ( ) ( )
( ) ( ) ( )       

1 [ ( ) ( ) ( )] ( ) ( )

G s G s G sT s
G s G sG s G s G s H

G s G s G s
G s G s G s

H G s G s G s G s G s

+
=

⎡ ⎤
+ + +⎢ ⎥+⎣ ⎦

+
=

+ + +
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5.  
 a. Push G7 to the left past the pickoff point. Add the parallel blocks, G3+G4. 

 

 

 Push G3+G4 to the right past the summing junction. 

 

 Collapse the minor loop feedback. 
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 Push 
G7(G3+G4)

1+G6G7
  to the left past the pickoff point.  

 

 

 
 Push G1 to the right past the summing junction. 
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Add the parallel feedback paths to get the single negative feedback,  
 

H(s) = 
G5
G7

   + 
G2(1+G6G7)
G7(G3+G4)    - 

G8
G1

  . Thus,  

 

  
T(s) =

  

   

b. 
Program: 
G1=tf([0 1],[1 7]);                %G1=1/s+7 input transducer 
G2=tf([0 0 1],[1 2 3]);            %G2=1/s^2+2s+3 
G3=tf([0 1],[1 4]);                %G3=1/s+4 
G4=tf([0 1],[1 0]);                %G4=1/s 
G5=tf([0 5],[1 7]);                %G5=5/s+7 
G6=tf([0 0 1],[1 5 10]);           %G6=1/s^2+5s+10 
G7=tf([0 3],[1 2]);                %G7=3/s+2 
G8=tf([0 1],[1 6]);                %G8=1/s+6 
G9=tf([1],[1]);                    %Add G9=1 transducer at the input 
T1=append(G1,G2,G3,G4,G5,G6,G7,G8,G9); 
Q=[1 -2 -5 9 
2 1 8 0 
3 1 8 0 
4 1 8 0 
5 3 4 -6 
6 7 0 0 
7 3 4 -6 
8 7 0 0]; 
inputs=9; 
outputs=7; 
Ts=connect(T1,Q,inputs,outputs); 
T=tf(Ts) 
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           Computer response: 
 

Transfer function: 
 
6 s^7 + 132 s^6 + 1176 s^5 + 5640 s^4 + 1.624e004 s^3       

                  + 2.857e004 s^2 + 2.988e004 s + 1.512e004 

----------------------------------------------------------- 

s^10 + 33 s^9 + 466 s^8 + 3720 s^7 + 1.867e004 s^6          

        + 6.182e004 s^5 + 1.369e005 s^4 + 1.981e005 s^3     

                  + 1.729e005 s^2 + 6.737e004 s - 1.044e004 

6.  
 Combine G6 and G7 yielding G6G7. Add G4 and obtain the following diagram: 
 

 

 Next combine G3 and G4+G6G7. 

  

 Push G5 to the left past the pickoff point. 
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Notice that the feedback is in parallel form. Thus the equivalent feedback, Heq(s) = 
G2
G5

   + 

G3(G4+G6G7) + G8. Since the forward path transfer function is G(s) = Geq(s) = G1G5, the closed-

loop transfer function is  
 

T(s) = 
Geq(s)

1+Geq(s)Heq(s)  . 

 Hence,  

  

7.  

Push 2s to the right past the pickoff point. 
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Combine summing junctions. 

 

 

Combine parallel 2s and s. Apply feedback formula to unity feedback with G(s) = s. 

 

 

Combine cascade pair and add feedback around 1/(s+1). 
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Combine parallel pair and feedback in forward path. 

 

 

Combine cascade pair and apply final feedback formula yielding T (s) =
5s2 + 2s

6s2 + 9s + 6
. 

8.  
 Push G3 to the left past the pickoff point. Push G6 to the left past the pickoff point. 
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 Hence,  

 

 

 
 Thus the transfer function is the product of the functions, or  
 

  
θ22(s)
θ11(s)   = 

G1G2G4G5G6G7
1 - G4G5 + G4G5G6 + G1G2G3 - G1G2G3G4G5 + G1G2G3G4G5G6

  

9.  
 Combine the feedback with G6 and combine the parallel G2 and G3. 

 

 

 Move G2+G3 to the left past the pickoff point. 
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 Combine feedback and parallel pair in the forward path yielding an equivalent forward-path transfer  
 
 function of  

 

 Ge(s) =⎝
⎛

⎠
⎞G2+G3

1+G1(G2+G3)  ⎝
⎛

⎠
⎞G5+

G4
G2+G3

 ⎝
⎛

⎠
⎞G6

1+G6
    

 But, T(s) = 
Ge(s)

1+Ge(s)G7(s)  . Thus,  

  

 

10. 
 Push G3(s) to the left past the pickoff point. 
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Push G2(s)G3(s) to the left past the pickoff point. 
 

 
 
Push G1(s) to the right past the summing junction. 
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Collapsing the summing junctions and adding the feedback transfer functions,  

 

T (s) = G1(s)G2(s)G3(s)
1 + G1(s)G2 (s)G3(s)Heq (s)  

where  
 

Heq (s) =
H3 (s)
G3(s)

+
H1(s)

G2 (s)G3(s)
+

H2(s)
G1(s)G3(s)

+
H4 (s)
G1(s)

+1 

11.  

2

225( )
15 225

T s
s s

=
+ +

. Therefore, 2ζωn  = 15, and ωn = 15. Hence, ζ = 0.5.  

 

%OS = e−ζπ / 1−ζ 2

x100 = 16.3%; Ts = 
4

ζωn
   =0.533; Tp = 

π
ωn 1-ζ2   =0.242.  

 
12. 

2 2

2 2

5( )
( 2 5) 2 5

1
5 2 5

1,  2

A Bs CC s
s s s s s s

A
s s Bs Cs

B C

+
= = +

+ + + +
=

= + + + +
∴ = − = −

2 2

2 2

1 2 1 2( )
2 5 ( 1) 4

1( 1) 21 ( 1) 1 1 2       
( 1) 4 ( 1) 4

s sC s
s s s s s

ss
s s s s

+ +
= − = −

+ + + +

+ ++ +
= − = −

+ + + +

  

 
1( ) 1 (cos 2 sin 2 )
2

tc t e t t−= − +  
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13. 
Push 2s to the left past the pickoff point and combine the parallel combination of 2 and 1/s. 

 

 

Push (2s+1)/s to the right past the summing junction and combine summing junctions. 
 

 

 

Hence, T (s) =
2(2s +1)

1 + 2(2s +1)Heq (s)
, where Heq (s) = 1 +

s
2s + 1

+
5
2s

. 

14. 

SinceG(s) =
K

s(s + 30)
, T (s) =

G(s)
1 + G(s)

=
K

s2 + 30s + K
. Therefore, 2ζωn = 30. Thus, ζ = 

15/ωn = 0.5912 (i.e. 10% overshoot). Hence, ωn = 25.37 = K  . Therefore K = 643.6.  

15.  

T (s) =
K

s2 + αs + K
; ζ =

− ln(
%OS
100

)

π 2 + ln2(
%OS
100

)
= 0.358 ;

4 0.15s
n

T
ζω

= = . Therefore, ωn = 

74.49. K = ωn2 = 5549. α = 2ζωn = 53.33. 
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16. 

The equivalent forward-path transfer function is G(s) =
10K1

s[s + (10K2 + 2)]
. Hence, 

T (s) =
G(s)

1 + G(s)
=

10K1

s2 + (10K2 + 2)s + 10K1

. Since 

p
4 3.2,  Re 1.25;  and T 1.5,  Im=2.09

Re ImsT π
= = ∴ = = = ∴ . The poles are thus at 

 –1.25+j2.09. Hence, 2 2
11.25 2.09 10n Kω = + =  . Thus, K1 = 0.593. Also, (10K2 + 2)/2 = Re 

= 1.25. Hence, K2 = 0.05. 
 

17. 

a. For the inner loop,  Ge(s) = 
20

s(s +12)
, and He(s) = 0.2s. Therefore, Te(s) = 

Ge(s)
1 + Ge(s)He(s)   = 

20
s(s+16)  . Combining with the equivalent transfer function of the parallel pair, Gp(s) = 20, the system 

is reduced to an equivalent unity feedback system with G(s) = Gp(s) Te(s) = 
400

s(s+16)  . Hence, T(s) = 

G(s)
1+G(s)  = 

400
s2+16s+400

  . 

b. ωn2 = 400; 2ζωn = 16. Therefore, ωn = 20, and ζ = 0.4. %OS = e−ζπ / 1−ζ 2

x100 = 25.38;  

Ts = 
4

ζωn
   =0.5; Tp = 

π
ωn 1-ζ2   =0.171. From Figure 4.16, ωnTr = 1.463. Hence, Tr = 0.0732.  

ωd = Im = ωn 1 - ζ2   = 18.33.   
18. 

2

38343( )
200 38343

T s
s s

=
+ +

; from which, 2ζωn = 200 and ωn = 38343 = 195.81. Hence,  

2- / 1-0.511. %OS=e 100 15.44%xζπ ζζ = = ; 
2

0.0187
1

p

n

T π
ω ζ

= =
−

 s.  

Also,Ts =
4

ζωn

= 0.04 s. 

19. 

 For the generator, Eg(s) = KfIf(s). But, If(s) = 
Ei(s)

Rf+Lfs
  . Therefore, 

Eg(s)
Ei(s)   = 

2
s+1  . For the motor, 

consider Ra = 2 Ω, the sum of both resistors. Also, Je = Ja+JL(
1
2 )2 = 0.75+4x

1
4  = 1.75; De = DL(

1
2 )2 

= 1. Therefore,  
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θm(s)
Eg(s)  = 1( ( ))

t

a e

t b
e

e a

K
R J

K Ks s D
J R

+ +
 = 

0.286
( 0.857)s s +

.  

  

 But, 
θo(s)
θm(s)   = 

1
2  . Thus, 

θo (s)
Eg(s)  =  

0.143
( 0.857)s s +

. Finally,  

 
θo(s)
Ei(s)  =  

Eg(s)
Ei(s)   

θo (s)
Eg(s)   = 

0.286
( 1)( 0.857)s s s+ +

. 

 
20. 

  For the mechanical system, J(N2
N1

 )2
s2θ2(s) = T(N2

N1
 ) . For the potentiometer, Ei (s)= 10 

θ2(s)
2π

  , or  

θ2(s) = 
π
5   Ei(s). For the network, Eo(s) = Ei(s) 

R

R+
1

Cs

   = Ei(s) 
s

s+
1

RC

    , or  Ei(s) = Eo(s) 
s+

1
RC
s   . 

Therefore, θ2 (s) =
π
5

Eo(s)
s +

1
RC
s

. Substitute into mechanical equation and obtain, 

Eo (s)
T(s)

=

5N1

JπN2

s s + 1
RC

⎛ 
⎝ 

⎞ 
⎠ 

. 

21.  
The equivalent mechanical system is found by reflecting mechanical impedances to the spring. 

 

 

Writing the equations of motion: 
4s2 + 2s + 5( )θ1(s) − 5θ2(s) = 4T(s)

−5θ1(s) + 2s 2 + 5( )θ2(s) = 0
 

Solving for θ2(s),  
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θ2 (s) =

4s2 + 2s + 5( ) 4T (s)
−5 0

4s2 + 2s + 5( ) −5
−5 2s2 + 5( )

=
20T (s)

8s4 + 4s3 + 30s 2 +10s
 

The angular rotation of the pot is 0.2 that of θ2, or 
 

θ p(s)
T (s)

=
2

s 4s3 + 2s 2 +15s + 5( ) 

For the pot: 
Ep (s)
θ p(s)

=
50

5(2π )
=

5
π

 

For the electrical network: Using voltage division,  

 
Eo (s)
Ep (s)

=
200,000

1
10−5 s

+ 200,000
=

s

s + 1
2

 

Substituting the previously obtained values,  
 

Eo(s)
T (s)

=
θp (s)
T(s)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Ep (s)
θp (s)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Eo (s)
Ep(s)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

10
π

s

s s + 1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 4s3 + 2s2 +15s + 5( )

 

 
 
 

22.  
a. 
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r x1x2x3x41
1
s 2

50
s +1 s

2
−

2
s

−1  

 

 

b. 

x
1x

2
x 3

x
4

x
5

x
5 x

4

x 3
x

2
x

1
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r x
5

x
4

x 3
x

2 x
1

1G3

G4

G6

1

1

G
1

5
G

G
7

--

-

1

G2

 
c. 

x
5

x4
x1

x3 x2

 

 

G6

5
G

G2

G3

G4

G
1 G

7
x

1
x

2
x 3x 4

x 5r 11

8G

-

-

-
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23. 
a. 

x1

•
= x2

x2

•
= x3

x3

•
= −2x1 − 4x2 − 6x3 + r

y = x1 + x2

 

 

-6

-4

-2

11
11

s
1
s

1
s x

1
x

3 x
2r y

 

b. 

 

x1

•
= x2

x2

•
= −3x2 + x3 + r

x3

•
= −3x1 − 4x2 − 5x3 + r

y = x1 + 2x2

 

1
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c. 

x1

•
= 7x1 + x2 + r

x2

•
= −3x1 + 2x2 − x3 + 2r

x3

•
= −x1 + 2x3 + r

y = x1 + 3x2 + 2x3

 

  

-3

2

 

 24.  

a. Since G(s) = 
10

s3 + 24s2 +191s + 504
= 

C(s)
R(s)  , 

 

c
•••

+ 24 c
••

+ 191c
•
+ 504c = 10r  

Let,  
c = x1

c
•

= x2

c
••

= x3

 

Therefore,  

x1

•
= x2

x2

•
= x3

x3

•
= −504x1 −191x2 − 24x3 +10r

y = x1
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1
s

1
s

1
s10 1

-24

-191

r x
1x

2
x3 y

-504
 

b. G(s) = (
10

s + 7
) (

1
s +8

) (
1

s + 9
) 

1
s

1
s

1
s10 1r x

1
x

2x
3 y1 1

-8 -9
-7

 

Therefore,  

x1

•
= −9x1 + x2

x2

•
= −8x2 + x3

x3

•
= −7x3 +10r

y = x1

 

25.  

a. Since G(s) = 
20

s 4 +15s3 + 66s 2 + 80s
= 

C(s)
R(s)  , 

 

c
••••

+15 c
•••

+ 66 c
••

+80 c
•

= 20r  

Let,  
c = x1

c
•

= x2

c
••

= x3

c
•••

= x4

 

Therefore,  
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x1

•
= x2

x2

•
= x3

x3

•
= x4

x4

•
= −80x2 − 66x3 −15x4 + 20r

y = x1

 

 
1
s

1
s

1
s20 1

-15

-66

r x
1

x
2x3 y

-80

1
s

x4

 
 

b. G(s) = (
20
s

) (
1

s + 2
) (

1
s + 5

) (
1

s +8
). Hence,  

 
1
s

1
s

1
s20 1r x

1
x
2x

3 y1 1

-2 -5

x
4

-8

1
1
s

 

From which,  

x1

•
= −8x1 + x2

x2

•
= −5x2 + x3

x3

•
= −2x3 + x4

x4

•
= 20r

y = x1

 

26.  

Δ = 1 + [G2G3G4 + G3G4 + G4 + 1] + [G3G4 + G4]; T1 = G1G2G3G4; Δ1 = 1. Therefore,  

 

T(s) = 
T1Δ1

Δ    = 
G1G2G3G4

2 + G2G3G4 + 2G3G4 + 2G4
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27.  
Closed-loop gains: G2G4G6G7H3; G2G5G6G7H3; G3G4G6G7H3; G3G5G6G7H3; G6H1; G7H2 

Forward-path gains: T1 = G1G2G4G6G7; T2 = G1G2G5G6G7; T3 = G1G3G4G6G7; T4 = 

G1G3G5G6G7 

Nontouching loops 2 at a time: G6H1G7H2 

Δ = 1 - [H3G6G7(G2G4 + G2G5 + G3G4 + G3G5) + G6H1 + G7H2] + [G6H1G7H2] 

Δ1 = Δ2 = Δ3 = Δ4 = 1 
 

T(s) =  
T1Δ1 + T2Δ2 + T3Δ3 + T4Δ4

Δ    

 

=  
G1G2G4G6G7 + G1G2G5G6G7 + G1G3G4G6G7 +  G1G3G5G6G7

1 - H3G6G7(G2G4 + G2G5 + G3G4 + G3G5) - G6H1 - G7H2 + G6H1G7H2
  

28.  

Closed-loop gains: -s2; - 
1
s  ;  - 

1
s  ; -s2 

 Forward-path gains: T1 = s; T2 = 
1
s2  

 Nontouching loops: None 

 Δ = 1 - (-s2 - 
1
s  - 

1
s  - s2) 

 Δ1 = Δ2 = 1 

 G(s) =  
T1Δ1 + T2Δ2 

Δ   = 
s + 

1
s2

1 + (s2 + 
1
s + 

1
s + s2)

   =  
s3+1

2s4+s2+2s
  

29.  

T(s) = 
G1⎝

⎛
⎠
⎞G2G3G4G5

(1-G2H1)(1-G4H2)

1 - 
G2G3G4G5G6G7G8

(1-G2H1)(1-G4H2)(1-G7H4)

  = 

 
G1G2G3G4G5(1-G7H4)

1-G2H1-G4H2+G2G4H1H2-G7H4+G2G7H1H4+G4G7H2H4-G2G4G7H1H2H4-G2G3G4G5G6G7G8
  

30. 

a. G(s) =
(s +1)(s + 2)

(s + 3)2 (s + 4)
=

2
(s + 3)2 −

5
s + 3

+
6

s + 4
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Writing the state and output equations,  
 

x
.
 1 = -3x1 + x2 

x
.
 2 = -3x2 + r 

x
.
 3  = -4x3 + r 

 
y = 2x1 - 5x2 + 6x3 

In vector-matrix form, 
 

x
•

=
−3 1 0
0 −3 0
0 0 −4

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

0
1
1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 2 −5 6[ ]

 

 

b. G(s) = G(s) =
(s + 2)

(s + 5)2 (s + 7)2 = −
3/ 4

(s + 5)2 +
1

s + 5
−

5 / 4
(s + 7)2 −

1
s + 7

 

 

1
s 1

s

1
s

1
s

1
1

1
-5 -5

- 3
4

- 5
4

-1

-7 -7

1

1

r

x
2 x

1

x
3

x
4

y

 
Writing the state and output equations,  

x
.
 1 = -5x1 + x2 
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x
.
 2 = -5x2 + r 

x
.
 3  = -7x3 + x4 

x
.
 4 = -7x4 + r 

y = - 
3
4  x1 + x2 - 

5
4  x3 - x4 

In vector matrix form,  

x.  = 

- 5 1 0 0
0 - 5 0 0
0 0 - 7 1
0 0 0 - 7

 x  + 

0
1
0
1

 r

y = - 3
4

1 - 5
4

- 1  x
 

c.  

  

 

Writing the state and output equations,  

x
.
 1 = - 2x1 + x2 

x
.
 2 = - 2x2 + r 

x
.
 3  = - 4x3 + r 

x
.
 4 = - 5x4 + r 

y = 
1
6  x1 + 

1
36  x2 - 

1
4  x3 + 

2
9  x4 

In vector-matrix form,  
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31.  
a. 

 
Writing the state equations, 
 

x
.
 1 = x2  

x
.
 2 = - 7x1 - 2x2 + r  

y = 3x1 + x2  
In vector matrix form,  
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b. 

 
 
 
 
 
 
 
 
 
Writing the state equations, 

x1

•
= x2

x2

•
= x3

x3

•
= −x1 − 2x2 − 5x3 + r

y = 6x1 + 2x2 + x3

 

In vector matrix form,  

x
•

=
0 1 0
0 0 1

−1 −2 −5

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
X +

0
0
1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 6 2 1[ ]x
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c. 

 

x
.
 1 = x2  

x
.
 2 = x3  

x
.
 3 = x4 

x
.
 4 = - 4x1 - 6x2 - 5x3 - 3x4 + r 

y = x1 + 7x2 + 2x3 + x4  

In vector matrix form,  
 

 
  
32.  

a. Controller canonical form: 

From the phase-variable form in Problem 5.31(a), reverse the order of the state variables and obtain, 
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x
.
 2 = x1  

x
.
 1 = - 7x2 - 2x1 + r  

y = 3x2 + x1 

Putting the equations in order,  

x
.
 1 = - 2x1 - 7x2 + r  

x
.
 2 = x1  

y =  x1 + 3x2  

In vector-matrix form, 

x
•

=
−2 −7
1 0

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ x +

1
0

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ r

y = 1 3[ ]x
 

Observer canonical form: 
 

G(s) = 
s+3

s2+2s+7  . Divide each term by 
1
s2   and get 

 

G(s)  = 

1
s  + 3

s
2

1 + 2
s  + 7

s 2

 = C(s)
R(s)

 
Cross multiplying,  

(
1
s  + 

3
s2  ) R(s) = (1 + 

2
s  + 

7
s2 

  ) C(s) 

Thus,  

 
1
s (R(s) - 2C(s))  + 

1
s2 (3R(s) - 7C(s))  = C(s) 

 
Drawing the signal-flow graph,  
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-7

-2

3

1R(s)

 
Writing the state and output equations,  

x
.
 1 = - 2x1 + x2 + r 

x
.
 2 = - 7x1 + 3r 

y = x1  
In vector matrix form,  
 

x
•

=
−2 1
−7 0

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ x +

1
3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ r

y = 1 0[ ]x
 

 
b. Controller canonical form: 

From the phase-variable form in Problem 5.31(b), reverse the order of the state variables and obtain, 

x3

•
= x2

x2

•
= x1

x1

•
= −x3 − 2x2 − 5x1

y = 6x3 + 2x2 + x1

 

Putting the equations in order, 

x1

•
= −5x1 − 2x2 − x3

x2

•
= x1

x3

•
= x2

y = x1 + 2x2 + 6x3

 

In vector-matrix form, 
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x
•

=
−5 −2 −1
1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

1
0
0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 1 2 6[ ]x

 

Observer canonical form: 
 

G(s) =
s2 + 2s + 6

s3 + 5s2 + 2s +1
. Divide each term by 

1
s3  and get 

 

G(s) =

1
s

+
2
s2 +

6
s3

1 + 5
s

+ 2
s2 + 1

s3

=
C(s)
R(s)

 

Cross-multiplying, 
1
s

+
2
s2 +

6
s3

⎛ 
⎝ 

⎞ 
⎠ R(s) = 1 +

5
s

+
2
s2 +

1
s3

⎛ 
⎝ 

⎞ 
⎠ C(s)  

Thus, 
1
s

(R(s)− 5c(s)) +
1
s2 (2R(s) − 2C(s)) +

1
s3 (6R(s) − C(s)) = C(s)  

Drawing the signal-flow graph, 
 

1
s

1
s

1
s6 1 1 1R(s) C(s)

X1(s)X2(s)X3(s)

2

1

-5

-2

-1  
Writing the state and output equations, 

x1

•
= −5x1 + x2 + r

x2

•
= −2x1 + x3 + 2r

x3

•
= − x1 + 6r

y = 1 0 0[ ]x
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In vector-matrix form, 

x
•

=
−5 1 0
−2 0 1
−1 0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

1
2
6

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 1 0 0[ ]x

 

c. Controller canonical form: 

From the phase-variable form in Problem 5.31(c), reverse the order of the state variables and obtain, 

x
.
 4 = x3  

x
.
 3 = x2  

x
.
 2 = x1 

x
.
 1 = - 4x4 - 6x3 - 5x2 - 3x1 + r 

y = x4 + 7x3 + 2x2 + x1  
Putting the equations in order,  

x
.
 1 = - 3x1 - 5x2 - 6x3 - 4x4 + r 

x
.
 2 = x1 

x
.
 3 = x2 

x
.
 4 = x3  

y = x1 + 2x2 +7x3 + x4  
In vector-matrix form, 

x
•

=

−3 −5 −6 −4
1 0 0 0
0 1 0 0
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

X +

1
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

r

y = 1 2 7 1[ ]x

 

Observer canonical form: 
 

G(s) = 
s3+2s2+7s+1

s4+3s3+5s2+6s+4  . Divide each term by 
1
s2   and get 

 

G( s )  =  

1
s  +  2

s
2

 +  7

s
3

 + 1

s
4

1  +  3
s  +  5

s 2
 + 6

s 3
 + 4

s 4

  =  C( s )
R( s )
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Cross multiplying,  

(
1
s  + 

2
s2  + 

7
s3  + 

1
s4  ) R(s) = (1 + 

3
s  + 

5
s2 

  + 
6
s3  + 

4
s4  ) C(s) 

Thus,  
1
s (R(s) - 3C(s))  + 

1
s2 (2R(s) - 5C(s))  + 

1
s3 (7R(s) - 6C(s))  + 

1
s4 (R(s) - 4C(s))  = C(s) 

Drawing the signal-flow graph,  

 

R(s)

-4

-6

-5

-3

1

2

7
1

 
 

Writing the state and output equations,  

x
.
 1 = - 3x1 + x2 + r 

x
.
 2 = - 5x1 + x3 + 2r 

x
.
 3 = - 6x1 + x4 +7r 

x
.
 4 = - 4x1 + r 

y = x1  
In vector matrix form,  
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33.  
a.  

1
s

1
s

1
s1 50 1 1

-5 -7

-1

r c= y
x12x

3x

-2

  
Writing the state equations,  
 

1 1 2

2 2 3

3 1 3

1

2

8

50 9 50

x x x

x x x

x x x r
y x

•

•

•

= − +

= − +

= − − +
=

 

 
In vector-matrix form,  

[ ]

2 1 0 0
0 8 1 0
50 0 9 50

1 0 0

r

y

•
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=

x x

x

 

b. 
 

x1
c= y

1
s

1
s2x

10

-8

-25

-1

r
1

1
s 3x

 

-2 -8 -9 

-6 

-24 
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Writing the state equations, 

1 2

2 1 2 3

3 1

1

24 6 10

x x

x x x x

x x r
y x

•

•

•

=

= − − +

= − +
=

 

 

In vector-matrix form,  

[ ]

0 1 0 0
24 6 10 0
1 0 0 1

1 0 0

r

y

•
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

=

x x

x

 

 c. 

r c= y
x12x 1

s
1
s1 100 1 1

-1

-1

-1

Tach feedback 
before integrator

  

  

x
.
 1 = x2 

x
.
 2 = -x2 - x2 + 160(r-x1) = -160x1 -2x2 +160r  

y = x1 
 

In vector-matrix form,  
 

                                                  
0 1 0
160 2 160

r⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

xx&  

y = 1 0 x  
  

 

160 
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d. Since 
1

(s+1)2
   = 

1
s2+2s+1

  , we draw the signal-flow as follows:  

r c= y
x12x

1
s

1
s1 210

-2

-1

-1

1

 
Writing the state equations,  

x
.
 1 = x2 

x
.
 2 = -x1 - 2x2 + 16(r-c) = -x1 - 2x2 + 16(r - (2x1+x2) = -33x1 - 18x2 + 16r    

y = 2x1 + x2 
 

In vector-matrix form,  

                                                
0 1 0

-33 -18 16
r⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

xx&  

                                                [2 1]y =& x  
34.  

a. Phase-variable form: 

T(s) = 
10

s3+3s2+2s+10
  

 

 

r= u c= y

x12x1
s

1
s10

-2

-3

-10

1
s3x

 
 Writing the state equations,  

 x
.
 1 = x2 

 x
.
 2 = x3 

 x
.
 3 = -10x1 -2x2 -3x3 + 10u  

 y = x1 
In vector-matrix form,  

16
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x  
0 1 0
0 0 1

-10 -2 -3
 x  + 

0
0

10
 u=

 

 y = 1 0 0 x  
b. Parallel form:  

 G(s) = 
5
s   + 

-10
s+1   + 

5
s+2  

 

 

2x

3x

x1

r=u c=y

5

-10

5

1

1

1

-1

-2

1
s

1
s

1
s

-1

1
r=u

 

 Writing the state equations,  

 x
.
 1 = 5(u - x1 - x2 - x3) = -5x1 -5x2 -5x3 +5u 

 x
.
 2 = -10(u - x1 - x2 - x3) - x2  = 10x1 + 9x2 + 10x3 - 10u 

 x
.
 3 = 5(u - x1 - x2 - x3) - 2x3 = -5x1 -5x2 -7x3 +5u  

 y = x1 + x2 + x3 

 In vector-matrix form,  

x
•

=
−5 −5 −5
10 9 10
−5 −5 −7

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

x +
5

−10
5

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 1 1 1[ ]x

 

 
35.  

a. T (s) =
10(s2 + 5s + 6)

s4 +16s3 + 99s2 + 244s +180
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Drawing the signal-flow diagram, 
 

3x4x

1
s

y
x 12x

10
1
s

1
s

1
s 6

r

1

5

16

99
244

180
 

 
Writing the state and output equations, 
 

x1

•
= x2

x2

•
= x3

x3

•
= x4

x1

•
= −180x1 − 244x2 − 99x3 −16x4 + 10r

y = 6x1 + 5x2 + x3

 

 
In vector-matrix form, 
 

x
•

=

0 1 0 0
0 0 1 0
0 0 0 1

−180 −244 −99 −16

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
0
0

10

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

r

y = 6 5 1 0[ ]x

 

 
 

b. G(s) =
10(s + 2)(s + 3)

(s +1)(s + 4)(s + 5)(s + 6)
=

1/ 3
s +1

−
10 / 3
s + 4

+
15

s + 5
−

12
s + 6

 

 
Drawing the signal-flow diagram and including the unity-feedback path, 
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3x

4x

x 1

2x

1
s1

− 10
3 1

r = u y

1
s

1
s

-1

-4

-5

-6

-1

-12

15

3
1 1

1

1

1

1
s

 
 
Writing the state and output equations, 
 

x1

•
= 1

3
(u − x1 − x2 − x3 − x4 ) − x1

x2

•
= −10

3
(u − x1 − x2 − x3 − x4 ) − 4x2

x3

•
=15(u − x1 − x2 − x3 − x4 ) − 5x3

x4

•
= −12(u − x1 − x2 − x3 − x4 ) − 12x4

y = x1 + x2 + x3 + x4

 

In vector-matrix form, 
 
 

x
•

=

−
4
3

−
1
3

−
1
3

−
1
3

10
3

− 2
3

10
3

10
3

−15 −15 −20 −15
12 12 12 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

x +

1
3

−10
3

15
−12

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

u

y = 1 1 1 1[ ]x

 

36. 
Program: 
'(a)' 
'G(s)' 
G=zpk([-2 -3],[-1 -4 -5 -6],10) 
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'T(s)' 
T=feedback(G,1,-1) 
[numt,dent]=tfdata(T,'v'); 
'Find controller canonical form' 
[Acc,Bcc,Ccc,Dcc]=tf2ss(numt,dent) 
A1=flipud(Acc); 
'Transform to phase-variable form' 
Apv=fliplr(A1) 
Bpv=flipud(Bcc) 
Cpv=fliplr(Ccc) 
'(b)' 
'G(s)' 
G=zpk([-2 -3],[-1 -4 -5 -6],10) 
'T(s)' 
T=feedback(G,1,-1) 
[numt,dent]=tfdata(T,'v'); 
'Find controller canonical form' 
[Acc,Bcc,Ccc,Dcc]=tf2ss(numt,dent) 
'Transform to modal form' 
[A,B,C,D]=canon(Acc,Bcc,Ccc,Dcc,'modal') 
 
Computer response: 
ans = 
 
(a) 
 
ans = 
 
G(s) 
 
Zero/pole/gain: 
    10 (s+2) (s+3) 
----------------------- 
(s+1) (s+4) (s+5) (s+6) 
  
ans = 
 
T(s) 
 
Zero/pole/gain: 
 
              10 (s+2) (s+3) 
------------------------------------------ 
(s+1.264) (s+3.412) (s^2 + 11.32s + 41.73) 
  
ans = 
 
Find controller canonical form 
 
Acc = 
 
  -16.0000  -99.0000 -244.0000 -180.0000 
    1.0000         0         0         0 
         0    1.0000         0         0 
         0         0    1.0000         0 
Bcc = 
 
     1 
     0 
     0 
     0 
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Ccc = 
 
         0   10.0000   50.0000   60.0000 
 
Dcc = 
 
     0 
 
ans = 
 
Transform to phase-variable form 
 
Apv = 
 
         0    1.0000         0         0 
         0         0    1.0000         0 
         0         0         0    1.0000 
 -180.0000 -244.0000  -99.0000  -16.0000 
 
Bpv = 
 
     0 
     0 
     0 
     1 
 
Cpv = 
 
   60.0000   50.0000   10.0000         0 
 
ans = 
 
(b) 
 
ans = 
 
G(s) 
 
Zero/pole/gain: 
    10 (s+2) (s+3) 
----------------------- 
(s+1) (s+4) (s+5) (s+6) 
  
ans = 
 
T(s) 
 
Zero/pole/gain: 
              10 (s+2) (s+3) 
------------------------------------------ 
(s+1.264) (s+3.412) (s^2 + 11.32s + 41.73) 
  
ans = 
 
Find controller canonical form 
 
Acc = 
 
  -16.0000  -99.0000 -244.0000 -180.0000 
    1.0000         0         0         0 
         0    1.0000         0         0 
         0         0    1.0000         0 
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Bcc = 
 
     1 
     0 
     0 
     0 
 
Ccc = 
 
         0   10.0000   50.0000   60.0000 
 
Dcc = 
 
     0 
 
ans = 
 
Transform to modal form 
 
A = 
 
   -5.6618    3.1109         0         0 
   -3.1109   -5.6618         0         0 
         0         0   -3.4124         0 
         0         0         0   -1.2639 
 
B = 
 
   -4.1108 
    1.0468 
    1.3125 
    0.0487 
C = 
 
    0.1827    0.6973   -0.1401    4.2067 
 
D = 
 
     0 

37.  

 

1
s

1
s 1

s
1
s1 1

-1

-1

-1

1

r c= y
4x 3x

2x 1x

 
Writing the state equations,  
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x
.
 1 = x2 

x
.
 2 = - x1 + x3  

x
.
 3 = x4 

x
.
 4 = x1 - x2 + r  

y = -x1 + x2 
In vector-matrix form,  
  

x  = 
0 1 0 0

 -1   0    1   0
  0   0    0   1
  1  -1    0   0

 x  + 
0
0
0
1

 r
 

y = c = [-1   1   0   0] x 

38. 
a.  

 θ
..

 1  + 5θ
.
 1 + 6θ1 - 3θ

.
 2 - 4θ2 =  0 

 -3θ
.

 1 - 4θ1 + θ
..

 2 + 5θ
.
 2  + 5θ2 = T 

or 

 θ
..

 1   =  - 5θ
.
 1 - 6θ1 + 3θ

.
 2 + 4θ2 

 θ
..

 2    =  3θ 
.

 1 + 4θ1 - 5θ
.
 2 - 5θ2   + T 

  

Letting, θ1 = x1 ;  θ
.
 1 = x2 ;  θ2 = x3 ; θ

.
 2 = x4 ,  

 

-5

1
s

1
s

-6

-5

1
s

1
s

-5

1

4
3

1x2x

T

34

3x4x
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 where x = θ. 

 b. Using the signal-flow diagram,  

x
.
 1 = x2  

x
.
 2 = -6x1 - 5x2 + 4x3 + 3x4 

x
.
 3 = x4 

x
.
 4 = 4x1 + 3x2 - 5x3 - 5x4 + T 

y = x3 
In vector-matrix form,  

x.  = 

0 1 0 0
-6 -5 4 3
0 0 0 1
4 3 -5 -5

 x + 

0
0
0
1

 T

y = 0 0 1 0  x  

39. 
Program: 
numg=7; 
deng=poly([0 -9 -12]); 
G=tf(numg,deng); 
T=feedback(G,1) 
[numt,dent]=tfdata(T,'v') 
[A,B,C,D]=tf2ss(numt,dent); %Obtain controller canonical form 
'(a)'                       %Display label 
A=flipud(A);                %Convert to phase-variable form 
A=fliplr(A)                 %Convert to phase-variable form 
B=flipud(B)                 %Convert to phase-variable form 
C=fliplr(C)                 %Convert to phase-variable form 
'(b)'                       %Display label 
[a,b,c,d]=canon(A,B,C,D)    %Convert to parallel form 
 
Computer response: 
Transfer function: 
           7 
------------------------ 
s^3 + 21 s^2 + 108 s + 7 
  
numt = 
 
     0     0     0     7 
 
dent = 
 
     1    21   108     7 
 
 
 
 
 



Solutions to Problems    5-55 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

ans = 
 
(a) 
 
A = 
 
     0     1     0 
     0     0     1 
    -7  -108   -21 
 
B = 
 
     0 
     0 
     1 
 
C = 
 
     7     0     0 
 
ans = 
 

(b) 
 
 
a = 
 
   -0.0657         0         0 
         0  -12.1807         0 
         0         0   -8.7537 
 
 
b = 
 
   -0.0095 
   -3.5857 
    2.5906 
 
 
c = 
 
   -6.9849   -0.0470   -0.0908 
 
 
d = 
 
     0 
 
40.  

 x
.
 1 = A1x1 + B1r                    (1) 

 y1 = C1x1                  (2) 

 x
.
 2 = A2x2 + B2y1                  (3) 

 y2 = C2x2                  (4) 

Substituting Eq. (2) into Eq. (3),  

 x
.
 1 = A1x1 + B1r  
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 x
.
 2 = B2C1x1 + A2x2   

 y2 = C2x2 
In vector-matrix notation,  

 

 

x1
x2

 = A 1
B2 C1

 - OA2
 x1
x 2

 + B1
O

 r 
 

 

 
y 2 = O C2  x1

x2  
41.   

 x
.
 1 = A1x1 + B1r                                                    (1) 

 y1 = C1x1                           (2) 

 x
.
 2 = A2x2 + B2r                           (3) 

 y2 = C2x2                           (4) 
In vector-matrix form,  
 

 =  A 1
B2

 - OA2
 x 1
x 2

 +  B1  r 
O

x1
x2  

y  = y1 + y2  = C1  C2  
x1
x 2  

42.  

x
.
 1 = A1x1 + B1e                                                            (1) 

y = C1x1                                (2) 

x
.
 2 = A2x2 + B2y                                (3) 

p = C2x2                                (4) 
Substituting e = r - p into Eq. (1) and substituting Eq. (2) into (3), we obtain,  

 

x
.
 1 = A1x1 + B1(r - p)  (5) 

y = C1x1 (6) 

x
.
 2 = A2x2 + B2C1x1 (7) 

p = C2x2 (8) 
 

Substituting Eq. (8) into Eq. (5),  
 

x
.
 1 = A1x1 - B1C2x2 + B1r   
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x
.
 2 = B2C1x1 + A2x2 

y = C1x1 
In vector-matrix form,  

 
x1

x2
 = A 1

B2 C1
  

B1 C2
A 2

 x1
x2

 + B1
0

 r-

 
x1
x2

y  = C1  0
 

43. 

z
•

= P−1APz + P−1Bu
y = CPz

 

 

1

4 9 3 -0.2085 -0.3029 -0.1661
0 4 7 ;   = 0.0228 -0.1075 -0.0912
1 4 9 0.0130 0.0814 -0.0521

−

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ∴⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

P P  

 

[ ]1 -1

18.5961 25.4756 5.6156 58
-12.9023 -28.8893 -8.3909 ;  63 ;  C = 1.5668 3.0423 2.7329
-0.5733 11.4169 5.2932 12

−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

P AP P B P

 
 
 
44. 

5 4 9 0.3469 -0.3878 0.2653
6 7 6 ;   P= 0.3673 -0.4694 0.1633
6 5 3 0.0816 0.0068 -0.0748=

-28.2857 40.8095 -40.9048
-18.3061 28.2245 -37.4694
 5.3878 -6.5510 -5.9388

u
y

= +
=

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢= ⎢
⎢⎣

•
-1 -1

-1

-1

z P APz P B
CPz

P

P AP [ ]
61

;   82 ;   -2.0816 2.6599 -1.2585
74

⎡ ⎤
⎥ ⎢ ⎥= =⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

-1P B CP

 
 

45. 
 Eigenvalues are -1, -2, and -3 since,  

|λΙ - A | = (λ + 3) (λ + 2) (λ + 1) 

Solving for the eigenvectors, Ax = λx 

 or,  
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 For λ = -1, x2 = 0, x1 = x3 . For λ = -2, x1 = x2 = 
x3
2   . For λ = -3, x1 = - 

x2 
2   , x2 = x3 . Thus,  

 z
.
  = P-1APz + P-1Bu ; y = CPz, where 

  

  
46. 

  Eigenvalues are 1, -2, and 3 since, 

 |λI - A | = (λ - 3) (λ + 2) (λ - 1) 

 Solving for the eigenvectors, Ax = λx 

 or,  

  

  

  
 

 For λ = 1, x1 = x2 = 
x3
2   . For λ = -2, x1 = 2x3, x2 = -3x3. For λ = 3, x1 = x3 , x2 = -2x3 . Thus,  

 z
.
  = P-1APz + P-1Bu ; y = CPz, where 

  

  
 
47. 

Program: 
A=[-10 -3 7;18.25 6.25 -11.75;-7.25 -2.25 5.75]; 
B=[1;3;2]; 
C=[1 -2 4]; 
[P,d]=eig(A); 
Ad=inv(P)*A*P 
Bd=inv(P)*B 
Cd=C*P 
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Computer response: 
Ad = 
 
   -2.0000    0.0000    0.0000 
   -0.0000    3.0000   -0.0000 
    0.0000    0.0000    1.0000 
 
 
Bd = 
 
    1.8708 
   -3.6742 
    3.6742 
 
 
Cd = 
 
    3.2071    3.6742    2.8577 

48.  
a. Combine G1(s) and G2(s). Then push K1 to the right past the summing junction: 

 

1

G (s)
2

G (s)
1

+

-

s

K
1

C(s)

s
2

+

- -

+R(s)
K

1
K

2

 

 Push K1K2 to the right past the summing junction: 
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1

G (s)
2

G (s)
1

K
1

K
2

+ +

-- -

s

K
1

+R(s) C(s)

s
2

K
1

K
2

 
 

 Hence, T(s) = 
K1K2G1(s)G2(s)

1 + K1K2G1(s)G2(s) ⎝⎜
⎛

⎠⎟
⎞1 + 

s
K1

 + 
s2

K1K2

  

 b. Rearranging the block diagram to show commanded pitch rate as the input and actual pitch rate as 

the output: 
  

Actual 
pitch 
rate

1

G (s)
2

G (s)
1

+

-

s

s
2

-

+

Commanded 
pitch 
rate

K
2

-

K
1

 

 
 Pushing K2 to the right past the summing junction; and pushing s  to the left past the pick-off point 

yields,  
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1

G (s)
2

G (s)
1

K
2

+ +

--

s

K
1

s

K
2

s

Actual 
pitch 
rate

Commanded 
pitch 
rate

-

 
 

 Finding the closed-loop transfer function: 

 

 T(s) = 
K2sG1(s)G2(s)

1 + K2sG1(s)G2(s)⎝
⎛

⎠
⎞1 + 

s
K2  + 

K1
s 

   = 
K2sG1(s)G2(s)

1 + G1(s)G2(s)(s2 + K2s + K1K2)
  

 c. Rearranging the block diagram to show commanded pitch acceleration as the input and actual pitch 

acceleration as the output: 

  

Actual 
pitch 
acceleration

1

G (s)
2

G (s)
1

+
s
2

K
2

-

+

Commanded 
pitch 
acceleration

-

K
1

K
2

s

-

 
 
 
Pushing s2 to the left past the pick-off point yields,  
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Actual 
pitch 
acceleration

1

G (s)
2

G (s)
1

+
s

2

K
2

-

+

Commanded 
pitch 
acceleration

-

K
1

K
2

s
-

s
2

 

 Finding the closed-loop transfer function: 

 

T(s) = 
s2G1(s)G2(s)

1 + s2G1(s)G2(s)
⎝⎜
⎛

⎠⎟
⎞1 + 

K1K2
s2  + 

K2
s 

   = 
s2G1(s)G2(s)

1 + G1(s)G2(s)(s2 + K2s + K1K2)
  

49.  

 Establish a sinusoidal model for the carrier: T(s) = 
K1

s2+a2   

 

x12x
1
s

1
s

-a

r 1 K1

 
 

 Establish a sinusoidal model for the message: T(s) = 
K2

s2+b2   

 

1
s

1
s 3x4xr 2 K2

-b  
  
 
Writing the state equations,  
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 x
.
 1 = x2  

 x
.
 2 = - a2x1 + K1r 

 x
.
 3 = x4  

 x
.
 4 = - b2x3 + K2r 

 y = x1x3 
50.  

The equivalent forward transfer function is G(s) = 
K1K2

s(s+a1)  . The equivalent feedback transfer function 

is  

H(s) = K3 + 
K4s
s+a2

  . Hence, the closed-loop transfer function  is  

T(s) = 
G(s)

1 + G(s)H(s)   = 
K1K2(s+a2)

s3 + (a1+a2)s2 + (a1a2+K1K2K3+K1K2K4)s + K1K2K3a2
   

51.  
a. The equivalent forward transfer function is  
 

G e s K

5
s s 2+

1 5
s s 2+

+
1

s s 3+
=  = 5 K

s s 3+ s 2 2 s 5+ +
 

T s
G e

1 G e+
=  = 5 K

s 4 5 s 3 11 s 2 15 s 5 K+ + + +
 

b.  Draw the signal-flow diagram: 

3x
4x

yu
x 12x

K 5
1
s

-2

1
s

-1

1
1
s

1
s

-3

-1

1 1

 

Writing the state and output equations from the signal-flow diagram: 
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x1

.
= x2

x2

.
= −3x2 + x3

x3

.
= x4

x4

.
= −5Kx1 − 5x3 − 2x4 +5Ku

y = x1

 

In vector-matrix form: 

x
.
=

0 1 0 0
0 −3 1 0
0 0 0 1

−5K 0 −5 −2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
0
0

5K

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

u

y = 1 0 0 0[ ]x

 

c. 
Program: 
for K=1:1:5 
numt=5*K; 
dent=[1 5 11 15 5*K]; 
T=tf(numt,dent); 
hold on; 
subplot(2,3,K); 
step(T,0:0.01:20) 
title(['K=',int2str(K)]) 
end 
 
 
 
 
 
 
 
Computer response: 



Solutions to Problems    5-65 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
52. 

a. Draw the signal-flow diagram: 

3x4x
yu

x12x

1
1
s1666.67 0.06

-720

15x10 6

-2x10 7

-4x10 6
-82

-1

1
s

1
s

1
s 1

 

Write state and output equations from the signal-flow diagram: 

x1

..
= x2

x2

.
= x3

x3

.
= −2*107 x1 − 4 *106 x2 − 82x3 +15*106 x4

x4

.
= −100x1 − 720x4 +100u

y = x1
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In vector-matrix form: 

x
.
=

0 1 0 0
0 0 1 0

−2*107 −4 *106 −82 15*106

−100 0 0 −720

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

x +

0
0
0

100

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

u

y = 1 0 0 0[ ]x

 

b. 
Program: 
numg=1666.67*0.06*15e6; 
deng=conv([1 720],[1 82 4e6 2e7]); 
'G(s)' 
G=tf(numg,deng) 
'T(s)' 
T=feedback(G,1) 
step(T) 
 
Computer response: 
ans = 
 
G(s) 
 
Transfer function: 
                      1.5e009 
---------------------------------------------------- 
s^4 + 802 s^3 + 4.059e006 s^2 + 2.9e009 s + 1.44e010 
  
ans = 
 
T(s) 
 
Transfer function: 
                      1.5e009 
---------------------------------------------------- 
s^4 + 802 s^3 + 4.059e006 s^2 + 2.9e009 s + 1.59e010 
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53.  

a. Phase-variable from: G(s) = 
-272(s2+1.9s+84)

s3+17.1s2+34.58s-123.48
  

Drawing the signal-flow diagram: 

84
y

3xu x 12x

1
s-272

123.48

-34.58
-17.1

1

1.9

1
s

1
s

 

Writing the state and output equations: 

x1

..
= x2

x2

.
= x3

x3

.
= 123.48x1 − 34.58x2 −17.1x3 − 272u

y = 84x1 +1.9x2 + x3

 

 

In vector-matrix form: 

x
.

=
0 1 0
0 0 1

123.48 −34.58 −17.1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

0
0

−272

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 84 1.9 1[ ]x

 

 

b. Controller canonical form: G(s) = 
-272(s2+1.9s+84)

s3+17.1s2+34.58s-123.48
  

 
Drawing the signal-flow diagram: 



5-68   Chapter 5:   Reduction of Multiple Subsystems 

  

Copyright ©   2011 by John Wiley & Sons, Inc. 

84
y

3xu x 1 2x

1
s-272

123.48

-34.58
-17.1

1

1.9

1
s

1
s

 
 

Writing the state and output equations: 

x1

.
= −17.1x1 −34.58x2 +123.48x3 − 272u

x2

.
= x1

..

x3

.
= x2

y = x1 +1.9x2 + 84x3

 

In vector-matrix form: 

x
.

=
−17.1 −34.58 123.48

1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

−272
0
0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 1 1.9 84[ ]x

 

c. Observer canonical form: Divide by highest power of s and obtain 
 

G(s) = 

-272
s  - 

516.8
s2  - 

22848
s3

1 + 
17.1

s  + 
34.58

s2  - 
123.48

s3

  

 
 
 
Cross multiplying,  
 

[ 
-272

s   - 
516.8

s2   - 
22848

s3   ]R(s) = [ 1 + 
17.1

s   + 
34.58

s2   - 
123.48

s3   ]C(s) 

Rearranging,  

C(s) = 
1
s  [ -272R(s) - 17.1C(s)] + 

1
s2  [ -516.8R(s) - 34.58C(s)] + 

1
s3  [ -22848R(s) + 123.48C(s)] 

Drawing the signal-flow diagram, where r = u and y = c: 
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y
u

1
s

1
s 1

s1

3x x 12x

1122848

-516.8

123.48

-34.58

-17.1

-272

 

d. Draw signal-flow ignoring the polynomial in the numerator: 
 

u
1
s

1
s 1

s1

3x x 12x

1-272

-14 1.8 -4.9  

Write the state equations: 

x1

.
= −4.9x1 + x2

x2

.
=1.8x2 + x3

..

x3

.
= −14x3 − 272u

 

The output equation is  

                                                y = x1

..
+1.9 x1

.
+ 84x1                                           (1) 

But,  

   x1

.
= −4.9x1 + x2                     (2) 

and  

                                   x1

..
= −4.9 x1

.
+ x2

.
= −4.9(−4.9x1 + x2 ) +1.8x2 + x3   (3)  
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Substituting Eqs. (2) and (3) into (1) yields,  

y = 98.7x1 − 1.2x2 + x3  
In vector-matrix form: 

x
.

=
−4.9 1 0

0 1.8 1
0 0 −14

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

0
0

−272

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 98.7 −1.2 1[ ]x

 

e. Expand as partial fractions: 
 

G s 479.38 1
s 14+

− 232.94 1
s 1.8−

− 440.32 1
s 4.9+

+=  

Draw signal-flow diagram: 

 -14

 1.8

 

1 1

1

1

3x

1
s

yu

x 1

2x

1
s

1
s

-479.38

-232.94

440.32

-4.9
 

Write state and output equations: 

x1

.
= −14x1 + −479.38u

x2

.
=1.8x2 − 232.94u

..

x3

.
= −4.9x3 + 440.32u

y = x1 + x2 + x3

 

In vector-matrix form: 

x
.
=

−14 0 0
0 1.8 0
0 0 −4.9

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

−479.38
−232.94
440.32

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 1 1 1[ ]x  
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54. 
Push Pitch Gain to the right past the pickoff point. 
 

 
Collapse the summing junctions and add the feedback transfer functions. 
 

 
Apply the feedback formula and obtain,  
 

T (s) =
G(s)

1 + G(s)H(s)
=

0.25(s + 0.435)
s4 + 3.4586s3 + 3.4569s2 + 0.9693s + 0.15032

 

55. 
Program: 
numg1=-0.125*[1 0.435] 
deng1=conv([1 1.23],[1 0.226 0.0169]) 
'G1' 
G1=tf(numg1,deng1) 
'G2' 
G2=tf(2,[1 2]) 
G3=-1 
'H1' 
H1=tf([-1 0],1) 
'Inner Loop' 
Ge=feedback(G1*G2,H1) 
'Closed-Loop' 
T=feedback(G3*Ge,1) 
 
Computer response: 
numg1 = 
 
   -0.1250   -0.0544 
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deng1 = 
 
    1.0000    1.4560    0.2949    0.0208 
 
 
ans = 
 
G1 
 
  
Transfer function: 
         -0.125 s - 0.05438 
------------------------------------ 
s^3 + 1.456 s^2 + 0.2949 s + 0.02079 
  
 
ans = 
 
G2 
 
  
Transfer function: 
  2 
----- 
s + 2 
  
 
G3 = 
 
    -1 
 
 
ans = 
 
H1 
 
  
Transfer function: 
-s 
  
 
ans = 
 
Inner Loop 
 
  
Transfer function: 
                -0.25 s - 0.1088 
------------------------------------------------ 
s^4 + 3.456 s^3 + 3.457 s^2 + 0.7193 s + 0.04157 
  
 
ans = 
 
Closed-Loop 
 
  
Transfer function: 
                0.25 s + 0.1088 
----------------------------------------------- 
s^4 + 3.456 s^3 + 3.457 s^2 + 0.9693 s + 0.1503 
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56. 
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57. 
a. Since VL(s) = Vg(s) – VR(s), the summing junction has Vg(s) as the positive input and VR(s) as the negative 

input, and VL(s) as the error. Since I(s) = VL(s) (1/(Ls)), G(s) = 1/(Ls). Also, since VR(s) = I(s)R, the feedback is 

H(s) = R. Summarizing, the circuit can be modeled as a negative feedback system, where G(s) = 1/(Ls), H(s) = 

R, input = Vg(s), output = I(s), and error = VL(s), where the negative input to the summing junction is VR(s). 

b. T (s) =
I(s)

Vg(s)
=

G(s)
1 + G(s)H (s)

=

1
Ls

1 + 1
Ls

R
=

1
Ls + R

. Hence, I(s) = Vg (s)
1

Ls + R
. 

c. Using circuit analysis, I(s) =
Vg (s)
Ls + R

. 

 

58.  

a.   

21 s
T αβ

= , 
s

L α
−=1 , 

s
L β

−=2 , No non-touching loops. 

ss
βα

++=Δ 1 , 11 =Δ  

Linear Deadzone

Linear 
Backlash 
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[ ])(1
)(

2
11

βα
αβ

βα

αβ

++
=

++
=

Δ
Δ

=
ss

ss

sT
s

H
H

r

m  

b.  

 
s

T α
=1 , 

s
L α

−=1 , 
s

L β
−=2 , No non-touching loops. 

ss
βα

++=Δ 1 , 11 =Δ  

)(1
)( 11

βα
α

βα

α

++
=

++
=

Δ
Δ

=
s

ss

sTs
H
H

r

f  

c.  

 α=1T , 
s

L α
−=1 , 

s
L β

−=2 , No non-touching loops. 

ss
βα

++=Δ 1 , 11 =Δ  

)(1
)( 11

βα
α

βα
α

++
=

++
=

Δ
Δ

=
s

s

ss

T
s

H
Q

r

i  

d.  

 
s

T αβ
=1 , 

s
L α

−=1 , 
s

L β
−=2 , No non-touching loops. 

ss
βα

++=Δ 1 , 11 =Δ  

)(1
)( 11

βα
αβ

βα

αβ

++
=

++
=

Δ
Δ

=
s

ss

sTs
H
Q

r

o  

e.  

 Let 
s
KsH r =)( . From part d) KsH

s
sLimssQLimq rsoso βα

αβ
βα

αβ
+

=
++

==∞
→→

)(
)(

)()(
00

= 

constant 

From (a) 
[ ] [ ]

t

rmm

eKKtK
s

K
s

K
s
K

ss
KsH

ss
sHth

)(
321

32
2
1

2

)(

)(
)(

)(
)}({)(

βα

βα

βα
αβ

βα
αβ

+−++=
⎭
⎬
⎫

⎩
⎨
⎧

++
++=

⎭
⎬
⎫

⎩
⎨
⎧

++
=

⎭
⎬
⎫

⎩
⎨
⎧

++
==

1-

1-1-1-

L

LLL
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So 21)( KtKthLim mt
+=

∞→
. It is clear that )(thm increases at constant speed. 

59.  

 
a.  

We start by finding 
1U

U
 and 

2U
U

using Mason’s Rule 

1U
U

 

pcGGT =1 ; Loops: vlGGALL 2
21 == , no non-touching loops. vlGGA221−=Δ , 11 =Δ Follows 

vl

pC

GGA
GG

U
U

2
1 21−

=  

2U
U

 

pcGGT −=1 ; Loops: vlGGALL 2
21 == , no non-touching loops. vlGGA221−=Δ , 11 =Δ Follows 

vl

pC

GGA
GG

U
U

2
2 21−

−
=  

By superposition )(
21 212 UU

GGA
GG

U
vl

pC −
−

=
 

 
b.  

Now we find 
extF

U
 

Two forward paths: vlGGATT 2
21 ==  Loops: vlGGALL 2

21 == , no non-touching loops. 

vlGGA221−=Δ . 121 =Δ=Δ  

vl

vl

ext GGA
GGA

F
U

2

2

21
2
−

=  

 
c. From (a) to get 0=u  it is required that 21 uu = . 

 

60.  
a. The first equation follows from the schematic. The second equation is obtained by applying the voltage 
divider rule at the op-amp’s inverting terminal, noting that since the op-amp considered is ideal, there is no 
current demand there. 

b. AT =1 ; 
fi

i

RR
R

AL
+

−= ; 
fi

i

RR
R

A
+

+=Δ 1 ; 11 =Δ  
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fi

ii

o

RR
R

A

AT
v
v

+
+

=
Δ
Δ

=
1

11  

c.  
i

f

fi

i

fi

iA
i

o

R
R

RR
R

RR
R

A

ALim
v
v

+=

+

=

+
+

=
∞→

11

1
 

61.  
a. Adding currents at the op-amp’s inverting terminal, under ideal condition we get 

f

o

i

i

R
vv

R
vv −

=
− 11  which after some algebraic manipulations gives o

if

i
i

if

f v
RR

R
v

RR
R

v
+

+
+

=1  

Also from the circuits diagram 1Avvo −=  

b. These equations can be represented by the following block diagram 

 

 

 

 

 

We have that 
if

f

RR
R

AT
+

−=1 ; 
fi
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+
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c.  
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=
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62.  
a. The three equations follow by direct observation from the small signal circuit. 
b. The block diagram is given by 

 
 

 

 

    - A 

if

i

RR
R
+

 

if

f
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R
+

 

+

+

vi Vo 

)||( osm rRg  
si

i

RR
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+

 
Vo Vi + 
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c. From the block diagram we get 
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i

osm

osm

i
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=
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63.  

a.  Using Mason’s rule 

2
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=
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a.  From part (a) 
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64.  

a. 

>> A=[-100.2 -20.7 -30.7 200.3; 40 -20.22 49.95 526.1;... 

0 10.22 -59.95 -526.1; 0 0 0 0]; 

>> B=[208; -208; -108.8; -1]; 

>> C = [0 1570 1570 59400]; 

>> D = -6240; 

>> [n,d]=ss2tf(A,B,C,D) 
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n = 

 

  1.0e+009 * 

 

  Columns 1 through 3  

 

  -0.00000624000000  -0.00168228480000  -0.14206098728000 

 

  Columns 4 through 5  

 

  -3.91955218234127  -9.08349454230472 

 

 

d = 

 

  1.0e+005 * 

 

  Columns 1 through 3  

 

   0.00001000000000   0.00180370000000   0.09562734000000 

 

  Columns 4 through 5  

 

   1.32499100000000                  0 
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>> roots(n) 

ans = 

 

  1.0e+002 * 

 

  -1.34317654991673 

  -0.78476212102923 

  -0.54257777928519 

  -0.02545278053809 

 

>> roots(d) 

 

ans = 

 

                  0 

 -92.38329312886714 

 -66.38046756013043 

 -21.60623931100260 

 

Note that 14.68555)0( =
U
Ys , follows that 

 

)4.92)(4.66)(6.21(
)3.134)(5.78)(3.54)(5.2(17.6348)(

+++
++++

−=
ssss

sssss
U
Y

 

 

b.  

>> [r,p,k]=residue(n,d) 
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r = 

 

  1.0e+005 * 

 

  -0.73309459854184 

  -0.51344619392820 

  -3.63566779304453 

  -0.68555141448543 

 

 

p = 

 

 -92.38329312886714 

 -66.38046756013043 

 -21.60623931100260 

                  0 

 

 

k = 

 

       -6240 

 

or 
4.92
14.68555

4.66
8.363566

6.21
6.5134446.733096240)(

+
−

+
−

+
−−−=

ssss
s

U
Y
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c. 

  

 
d.   The corresponding state space representation is: 

)(

14.68555
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⎥
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65.  

a.  

>> A = [0 1 0; 0 -68.3 -7.2; 0 3.2 -0.7] 
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A = 

 

         0    1.0000         0 

         0  -68.3000   -7.2000 

         0    3.2000   -0.7000 

 

>> [V,D]=eig(A) 

 

V = 

 

    1.0000    0.0147   -0.1016 

         0   -0.9988    0.1059 

         0    0.0475   -0.9892 

 

 

 

 

 

D = 

 

         0         0         0 

         0  -67.9574         0 

         0         0   -1.0426 

 

Matrix V is the sought similarity transformation. 



5-84   Chapter 5:   Reduction of Multiple Subsystems 

  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

 

b. 

>> Ad = inv(V)*A*V 

 

Ad = 

 

         0   -0.0000   -0.0000 

         0  -67.9574    0.0000 

         0   -0.0000   -1.0426 

 

>> B = [0;425.4;0] 

 

B = 

 

         0 

  425.4000 

         0 

 

>> Bd = inv(V)*B 

 

Bd = 

 

    4.2030 

 -428.1077 

  -20.5661 

The diagonalized system is: 
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me
z
z
z

z
z
z
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⎢
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66.  

a.  

 
b. There is only one forward path he HHT =1  

There are three loops: he HHL −=1 ; hi HHL −=2 and actri HHHL −=3  

1L  and 3L  are  non-touching loops so 

actriheactrihihe HHHHHHHHHHHHLLLLL ++++=+−−−=Δ 11 31321  

When 1T  is eliminated only 3L  is left so actir HHHL +=−=Δ 11 31  

Finally 
( )

actriheactrihihe

actirheh

HHHHHHHHHHHH
HHHHHTs

D
F

++++
+

=
Δ
Δ

=
1

1
)( 11  
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67. 

 

Block Diagram: 
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Case 

Structure Details: 
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68. 
a. There are two forwards paths: 

1 2

1
h hs sM K K C

s
=  and 2

1
h es es sM K T K C

s
= −  

The loops are: 

1 2

1
h hs s hsL K K C T

s
= −  

2
1

h es es s hsL K T K C T
s

= +  

3 j ej ejL C T K= −  

4 h j hjL K C T= −  

There are no non-touching loops. Therefore 

2

1 11 h hs s hs h es es s hs j ej ej h j hjK K C T K T K C T C T K K C T
s s

Δ = + − + +  

Also 1 2 1Δ = Δ =  

2
1 1 2 2

2

1 1

1 11

h hs s h es es s
s

h
h hs s hs h es es s hs j ej ej h j hj

K K C K T K CY M M s s
U K K C T K T K C T C T K K C T

s s

−Δ + Δ
= =

Δ + − + +
 

b. 

There is only one forward path 1 h jM K C=  

The loops and  are the same as in part a. Also 1 1Δ = . It follows that 

2

1 1
1 11

j h j

h h hs s hs h es es s hs j ej ej h j hjss

Y K CM
U K K C T K T K C T C T K K C T

Δ
= =

Δ + − + +
 

69. 
a. Assuming  0hZ =  there are two forward paths,  1

1 mM Z −=  and  1
2 6 mM C Z −=  

The loops are 

1 s sL G C= −  
1

2 m mL Z C−= −  
1

3 1 4m sL Z C G C−= −  
1

4 2m s s eL Z C G Z C−= −  
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There are two non‐touching loops   and  . 

 
1 1 1 1

1 4 21 s s m m m s m s s e s s m mG C Z C Z C G C Z C G Z C G C Z C− − − −Δ = + + + + −  
1 1 1

2 21 1 ( )s s m m m s s e s s m m s s eG C Z C Z C G Z C G C Z C C G Z C− − −= + + + = + + +  

We also have that by eliminating  1M  or  2M  

1 2 1 s sG CΔ = Δ = +  

1 1 1
6 21 1 2 2

1 1
2 2

( )(1 ) (1 )( )
1 ( ) 1 ( )

h m m s s m s s

h s s m m e s s s s m m e s s

X Z Z C G C Z C G CM MY s
F G C Z C C Z G C G C Z C C Z G C

− − −

− −

+ + +Δ + Δ
= = = =

Δ + + + + + +
 

 
b. The system can be described by means of the following diagram: 

Y(s)

Zh(s)

Fh Xh

+

-

 

It follows that  

  
( )

1 ( )
h

h h

X Y s
F Y s Z

=
+

 

70. 
a. There are three forward paths: 
 

1
1 2 1 3

1
ˆ

i
p p

f f f

KM K K
s L C C s

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

1
2 1 2

1i
p

f f

KM K
s L C s

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

( )3 2

1ˆ ˆ
f f

f f

M L s R
L C s

= +  

The loops are: 

1
1 2 1 2

1i
p p

f f

KL K K
s L C s

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

1
2 1

1i
p

f

KL K
s L s

⎛ ⎞= − +⎜ ⎟
⎝ ⎠
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3
f

f

R
L

L s
= −  

There are no non‐touching loops. 
 

1 1
2 1 12

1 11 fi i
p p p

f f f f

RK KK K K
s L C s s L s L s

⎛ ⎞ ⎛ ⎞Δ = + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and  1 2 3 1Δ = Δ = Δ =  

( ) ( ) ( )
( )

1 1
3 2 2

1 1 2 2 3 3

1 1
2

1 1 1
ˆ2 1 1

1 1
2 1 1

ˆ ˆ

1 ( )

i i

f f f f f f fLoad

Cf fi i

f ff f

K K
p p p f fs sL C C s L C s L C sV M M M

l RK K
p p ps s L s L sL C s

K K K L s R

K K K
Δ + Δ + Δ

Δ

+ + + + +
= =

+ + + + +
 

b. There are three forward paths: 

1
1 2 1 3

1
ˆ

i
p p

f f f

KM K K
s L C C s

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

1
2 1 2

1i
p

f f

KM K
s L C s

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

( )3 2

1ˆ ˆ
f f

f f

M L s R
L C s

= +  

The loops are: 

1
1 2 1 2

1i
p p

f f

KL K K
s L C s

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

1
2 1

1i
p

f

KL K
s L s

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

3
f

f

R
L

L s
= −  

There are no non‐touching loops. 

1 1
2 1 12

1 11 fi i
p p p

f f f f

RK KK K K
s L C s s L s L s

⎛ ⎞ ⎛ ⎞Δ = + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and  1 2 3 1Δ = Δ = Δ =  

( ) ( ) ( )
( )

1 1
3 2 2

1 1 2 2 3 3

1 1
2

1 1 1
ˆ2 1 1

1 1
2 1 1

ˆ ˆ

1 ( )

i i

f f f f f f fLoad

Cf fi i

f ff f

K K
p p p f fs sL C C s L C s L C sV M M M

l RK K
p p ps s L s L sL C s

K K K L s R

K K K
Δ + Δ + Δ

Δ

+ + + + +
= =

+ + + + +
 



Solutions to Problems    5-91 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

71. 
a. Substituting the values given above into the block diagram, when Δvp = 0, we have: 

 

 

 The Mould Level Block Diagram for Δvp = 0 

Thus, the closed-loop transfer function is: 

)()()()(1
)()()()( )(
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222
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ssssss
ss

 = 

= 
( )

2.251264.19326.10993.10
25.025.16.201
2345

2

+++++
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sssss
ss

 

 

b. Simulink was used to simulate the system. The model of that system is shown in  Figure P5.x-4*. The 
parameters of the PID controller were set to: Kp = 2, Kd = 1.6, and KI = 0.4. The reference step, r(t) = 5 u(t), 
and the casting speed step, vp (t) = 0.97 u(t) were set to start at t = 0. An adder was used to add the initial 
value,  
Hm (0—) = – 75 mm, at the output, to the change in mould level, ΔHm. 

s5.0
1 ΔHm(s)

10010
100

2 ++ ss

 

0.5 

( )
s

ss 25.025.16.1 2 ++

926.0
63.0

+s
 X(s)Y (s)E(s)R(s) 

GC(s) GV(s) GX(s) Gm(s)

β 
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The time and mould level (in array format) were output to “workspace ” sinks, each of which was given the 
respective variable name. After the simulation ended, Matlab plot commands were used to obtain and edit 
the graph of hm(t) from 0 to t = 80 seconds. 
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Simulink Model of the Mould Level Control System
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Response of the Mould Level to Simultaneous Step Changes in Reference Input, r(t) = 5 u(t), and Casting 

Speed, vp (t) = 0.97 u(t) at an Initial Level, Hm (0
—

) = – 75  

72. 

a. Following the procedure described in Chapter 3 we define 

h
gsbh

aVX

−
=

2

1 1
δ

  and 

)()( 1 sX
A
Vs +=ϕ . In time domain δ

bh
aVx

h
gx =− 11&&  . 11 x

a
Vx += &ϕ and we also define 

21 xx =& . These equations give 
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⎥
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11
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b. The eigenvalues can be obtained directly from the transfer function poles. Thus 
h
g

±=12λ  

Consider 
h
g

=1λ , the first eigenvector is found from the solution of 11 xAx 1λ=  or 

⎥
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x

h
g . This results in 12 x

h
gx = . Arbitrarily let 11 =x  so the first 

eigenvector is 
⎥
⎥

⎦
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⎢
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⎡
=

h
g

1
1v . 

Similarly for 
h
g

−=2λ ; 212 xAx λ=  or ⎥
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⎤
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h
g  resulting in 

12 x
h
gx −= . Letting arbitrarily 11 =x  the second eigenvector is 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

h
g

1
2v . 

c. The similarity transformation matrix is [ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣
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−==
h
g

h
g

11
21 vvP  
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The matrices for the diagonalized are calculated as follows: 
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d  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
== −

ghb
aV
ghb

aV

bh
aV

g
h

g
h

2
1

2
1

0

2
1

2
1

2
1

2
1

BPB 1
d  

⎥
⎦

⎤
⎢
⎣

⎡
−+=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−⎥⎦
⎤

⎢⎣
⎡==

h
g

a
V

h
g

a
V

h
g

h
g

a
V 11

1CPCd  

The diagonalized representation is: 

δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡

ghb
aV
ghb

aV

z
z

h
g

h
g

z
z

2
1

2
1

0

0

2

1

2

1

&

&
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−+=

2

1

z
z

h
g

a
V

h
g

a
Vϕ  

73.  

 

It can be easily verified that the closed loop transfer function for this system is identical to the original.
 

)(
1

sH

C(s) R(s) 
+ + 

- 

)(sH  )(sG
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SOLUTIONS TO DESIGN PROBLEMS 

 
74.  

Je = Ja+JL(
1

20 )2 = 2+2 = 4; De = Da+DL(
1

20 )2  = 2+DL(
1
20 )2. Therefore, the forward-path transfer 

function is,  

 

 G(s) = (1000) 

⎝
⎜
⎛

⎠
⎟
⎞1

4

s(s+
1
4(De+2))

 ⎝
⎛

⎠
⎞1

20  . Thus, T(s) = 
G

1+G   = 

25
2

s2+
1
4(De+2)s+

25
2

   .   

Hence, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.456; ωn = 
25
2    ; 2ζωn = 

De+2
4    . Therefore De = 10.9; from 

which DL = 3560. 
 

75. 

 a. T(s) = 
25

s2+s+25
  ; from which, 2ζωn = 1 and ωn = 5. Hence, ζ = 0.1. Therefore,  

 

%OS = e−ζπ / 1−ζ 2

x100 = 72.92% ; Ts = 
4

ζωn
   = 8. 

b. T(s) = 
25K1

s2+(1+25K2)s+25K1
  ; from which, 2ζωn = 1+25K2 and ωn = 5 K1 . Hence,  

ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.504. Also, Ts = 
4

ζωn
    = 0.2, Thus, ζωn = 20; from which K2 = 

39
25   and 

ωn = 39.68. Hence, K1 = 62.98. 

76.  

The equivalent forward path transfer function is Ge(s) = 
K

s(1+(1+K2))  . Thus, T(s) = 
Ge(s)

1+Ge(s)   = 

K
s2+(1+K2)s+K

  . Prior to tachometer compensation (K2 = 0), T(s) =  
K

s2+s+K
   . Therefore K = ωn2 = 
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100. Thus, after tachometer compensation, T(s) =  
100

s2+(1+K2)s+100
  . Hence, ωn = 10; 2ζωn = 1+K2. 

Therefore, K2 = 2ζωn - 1 = 2(0.69)(10) - 1 = 12.8. 

77. 
At the N2 shaft, with rotation,θ L(s)  
 

(Jeq s2 + Deqs)θL(s) + F(s)r = Teq (s)

F(s) = (Ms2 + fvs)X(s)
 

Thus, 

(Jeq s2 + Deqs)θL(s) + (Ms2 + fvs)X(s)r = Teq(s)  

But, X(s) = rθ L(s) . Hence, 

(Jeq + Mr2 )s 2 + (Deq + fvr
2 )s[ ]θL(s) = Teq(s)  

where 

Jeq = Ja (2)2 + J = 5

Deq = Da(2)2 + D = 4 + D
r = 2

 

Thus, the total load inertia and load damping is 

JL = Jeq + Mr2 = 5 + 4M

DL = Deq + fvr
2 = 4 + D + (1)(2)2 = 8 + D

 

Reflecting JL and DL to the motor yields, 

Jm =
(5 + 4M)

4
;  Dm =

(8 + D)
4

 

Thus, the motor transfer function is 

θm (s)
Ea (s)

Kt

RaJm

s(s + 1
Jm

(Dm + KtKa

Ra

))
=

1
Jm

s(s + 1
Jm

(Dm +1))
 

The gears are (10/20)(1) = 1/2. Thus, the forward-path transfer function is 

Ge (s) = (500)

1
Jm

s(s + 1
Jm

(Dm +1))

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
2

 

Finding the closed-loop transfer function yields, 
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T (s) =
Ge (s)

1 + Ge (s)
=

250/ Jm

s 2 + Dm +1
Jm

s + 250
Jm

 

For Ts = 2, 
Dm +1

Jm

= 4. For 20% overshoot, ζ = 0.456. Thus, 

2ζωn = 2(0.456)ωn =
Dm +1

Jm

= 4 

Or, ωn = 4.386 =
250
Jm

; from which Jm =13  and hence, Dm = 51. But, 

Jm =
(5 + 4M)

4
;  Dm =

(8 + D)
4

. Thus, M = 11.75 and D = 196. 

 

78. 

a.  The leftmost op-amp equation can be obtained by superposition. Let 0=ov , then the circuit is 

an inverting amplifier thus inin vv
k
kv −=−=

10
10

1 . Now let 0=inv , the circuit is a non-inverting 

amplifier with an equal resistor voltage divider at its input, thus 

oo vv
k
k

kk
kv =+

+
= )

10
101(

1010
10

1 . Adding both input components ino vvv −=1  

b.  The two equations representing the system are:  

ino vvv −=1  and 

R
s

R

s
R

s
v
v

in

o

μ

μ

μ

μ

1.0
1

1.0
1

1.0
1

1.0
1

+
−=

+
−=  

The block diagram is: 

 

 

   -1 
- 

1
0.1

1
0.1

R

s
R

μ

μ

−
+

 Vo Vi + 
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c. From the figure  

R
s

R

R
s

R

R
s

R

v
v

in

o

μ

μ

μ

μ

μ

μ

1.0
2

1.0
1

1.0
1

1.0
1

1

1.0
1

1.0
1

+
=

+
+

+
=  

d. The system is first order so sec12.0

1.0
2
4 mR

R

Ts === μ

μ

from which  

Ω== kmR 5
2.0

1
μ

 

e. 
4000

2000
+

=
sv

v

i

o For a unit step input the output will look as follows 

0 0.5 1 1.5

x 10
-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Step Response

Time (sec)

Am
pl

itu
de
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79. 

a.  

Sensor

+

-
Input 

transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
100 K 1

1000
0.7883( s + 53 .85 )

(s2 + 15.47s + 9283 )(s2 + 8.119 s + 376.3)
82300

1
100

 
 

b. G(s) = 
Yh(s) − Ycat (s)

Fup(s)
=

0.7883(s + 53.85)
(s2 + 15.47s + 9283)(s2 +8.119s + 376.3)

 

 
                                                                           648.7709 (s+53.85) 

             Ge(s) = (K/100)*(1/1000)*G(s)*82.3e3 =         
                                                                        (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
 

 
                                     648.7709 (s+53.85)                             
T(s) = Ge/(1+Ge) =        
                           (s^2 + 8.189s + 380.2) (s2 + 15.4s + 9279) 
 

                                                                      648.8 s + 3.494e04 
                                                            =        
                                                                s4 + 23.59 s3 + 9785 s2 + 8.184e04 s + 3.528e06 

c. 
For G(s) = (yh-ycat)/Fup 
 
Phase-variable form 
Ap = 
    
                  0                  1                  0                                0 
                  0                  0                  1                                0 
                  0                  0                  0                                1         
        -3.493e6           -81190           - 9785                         -23.59 
Bp = 
     0 
     0 
     0 
     1 
Cp = 
     42.45           0.7883              0                  0 
 
Using this result to draw the signal-flow diagram,  
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fdesired
1
s0.01

-0.01

-3.493x106

-81190

-9785

-23.59

vup
K

1000
1=

42.45 82300

0.7883

fout
1
s

1
s

1
s

3x4x x 12x

 
 

Writing the state and output equations 

x1

•
= x2

x2

•
= x3

x3

•
= x4

x4

•
= −23.59x4 − 9785x3 − 81190x2 − 3493000x1 + 0.01 fdesired − 0.01 fout

 

But, 
fout = 42.45* 82300 x1 + 0.7883 *82300 x2  

Substituting fout into the state equations yields 

x4

•
= −3527936.35x1 −81838.7709x2 − 9785x3 − 23.59x4 + 0.01fdesired  

Putting the state and output equations into vector-matrix form. 

x
•

=

0 1 0 0
0 0 1 0
0 0 0 1

−3.528x106 −81840 −9785 −23.59

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

+

0
0
0

0.01

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

fdesired

y = fout = 3494000 64880 0 0[ ]x
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80.  
 
a. The transfer function obtained in Problem 3.30 is 
 

0126.011.06817.2
3844.10520

23
1 +++

−−
=

sss
s

U
Y

 by inspection we write the phase-variable form 

 

1

3

2

1

3

2

1

1
0
0

6817.211.00126.0
100
010

u
x
x
x

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

&

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

3

2

1

05203844.10
x
x
x

y  

b. We renumber the phase-variable form state variables in reverse order 
 

1

1

2

3

1

2

3

1
0
0

6817.211.00126.0
100
010

u
x
x
x

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

&

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

1

2

3

05203844.10
x
x
x

y  

And we rearrange in ascending numerical order to obtain the controller canonical form: 

 

1

3

2

1

3

2

1

0
0
1

100
001
0126.011.06817.2

u
x
x
x

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

&

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

3

2

1

3844.105200
x
x
x

y  

c. To obtain the observer canonical form we rewrite the system’s transfer function as: 

 

32

32

1 0126.011.06817.21

3844.10520

sss

ss
U
Y

+++

−−
=  

We cross-multiply to obtain 
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⎥⎦
⎤

⎢⎣
⎡ +++=⎥⎦

⎤
⎢⎣
⎡ −− 32132

0126.011.06817.213844.10520
sss

YU
ss

  

Combining terms with like powers of integration: 

 

[ ] [ ] [ ]

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+−−+−=

−−+−−+−=

YR
s

YR
s

Y
s

YR
s

YR
s

Y
s

Y

0126.03844.10111.052016817.21

0126.03844.10111.052016817.21
32

 

We draw the signal flow graph: 

 

 

The following equations follow: 

211 6817.2 xxx +−=&  

rxxx 52011.0 312 −+−=&  

rxx 38.100126.0 13 −−=&  

1xy =  

Which lead to observer canonical form: 
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1

3

2

1

3

2

1

38.10
520
1

000126.0
1011.0
016817.2

u
x
x
x

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

&

; [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

001
x
x
x

y  

 

d. 

>> A=[-0.04167 0 -0.0058; 0.0217 -0.24 0.0058; 0 100 -2.4]; 

>> B=[5.2;-5.2;0]; 

>> C=[0 0 1]; 

>> [V,D]=eig(A); 

>> Bd=inv(V)*B 

 

Bd = 

 

  1.0e+002 * 

 

  -0.9936 + 0.0371i 

  -0.9936 - 0.0371i 

   1.9797           

 

>> Cd = C*V 

 

Cd = 

 

    0.9963    0.9963    1.0000 
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>> D 

 

D = 

 

  -0.0192 + 0.0658i        0                  0           

        0            -0.0192 - 0.0658i        0           

        0                  0            -2.6433           

So a diagonalized version of the system is 

 

1

3

2

1

3

2

1

97.197
71.336.99
71.336.99

6433.200
00658.00192.00
000658.00192.0

uj
j

x
x
x

j
j

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
+−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

+−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

&

&

&

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

19963.09963.0
x
x
x

y  

 
 

81.  
a. Substituting all values and transfer functions into the respective blocks of the system 

(Figure 4), we get: 
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Moving the last pick-off point to the left past the 06154.0
875.4

3.0
==

toti
r

 block and changing the position of the 

back-emf feedback pick-off point, so that it becomes an outer loop, we obtain the block-diagram shown below. In 

that diagram the 
s⋅226.7

1
 block (representing the total inertia) has two parallel feedback blocks. Reducing these two 

blocks into one, we have the following equivalent feedback transfer function: 

01908.0
1384.0

226.7
13787.01

226.7
1

)(
)()(

+
=

+
=

Ω
=

s
s

s
sT
ssGeq   

Vehicle 
Speed 

V(s) 

Torque 

Controller Ref. 

Signal

 
0.6154 

Motor 
Angular 
Speed 

Ω (s) 
_ 

_ 

0.1 

2  

Friction 

Torque 

Tf (s) 

UC(s) 

1.8 

Eb (s) 
Back emf 

875.4
3.0

Speed

Error

0.5 

s
s 40100 +

 
s

s 610 +

Feedback 

Speed Signal 

s⋅226.7
1

 

TL (s)

+

Feedback 
Current Signal 
KCS Ia(s) 

Speed 

Current Sensor 
Sensitivity 

Speed Sensor 
Sensitivity 

 

1
Ua(s) 

Armature 
Res. 

Ra(s) 

Armature 
Current 

Ia(s) 

Motive
Torque

T(s)

0.0443 
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Ω (s) 
_

_

0.1 

2  

Tf (s)

UC(s) 

1.8 

Ia(s)
V(s)Ev(s)

0.5

0.0443

s
s 40100 +

 
s

s 610 +

+  _ _ 

Rv(s) 

KSSΩ(s) 

s⋅226.7
1

 

TL (s)

KCS Ia(s) 

+

+
T(s)

0.06154
UA

0.03787 

Eb(s)

1 

Replacing that feedback loop with its equivalent transfer function, Geq(s), we have: 

 

Ω (s) 

2 

UC(s) 

1.8 
Ia(s) V(s)Ev(s)

0.5

0.0443 

s
s 40100 +

 
s

s 610 +

+  _ _ 

Rv(s) 

KSSΩ(s) 

01908.0
1384.0

+s

KCS Ia(s) 

+
T(s)

0.06154 
UA (s) 

Eb(s)

1 

Geq(s)

 

Moving the armature current pick-off point to the right past the 
)(
)(

sI
sT

a
 and Geq(s) blocks, the above block-diagram 

becomes as shown below.   
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Ω (s) 

2 

UC(s) 

1.8 
Ia(s) V(s)Ev(s)

0.5

0.0443 

s
s 40100 +

 
s

s 610 +

+  _ _

Rv(s) 

KSSΩ(s) 

01908.0
1384.0

+s

KCS Ia(s) 

+
T(s)

0.06154
U
A
 (s)

Eb(s)

1 

2491.0
01908.0+s

 

The latter, in turn, can be reduced to that shown next as the cascaded blocks in the feedback to the torque controller 

are replaced by the single block: 
4982.0
01908.0

)(
)( +

=
Ω

s
s

sIK aCS  and the inner feedback loop is replaced by its 

equivalent transfer function: 

 

 

 

 0.5173
2491.0

2
01908.0

2491.01

01908.0
2491.0

)(
)(

+
=

×
+

+

+=
Ω

s
s

s
sU
s

A
  

 

Ω (s) UC(s)  V(s)Ev(s)

0.0443 

s
s 40100 +

 
s

s 610 +

+  _ _ 

Rv(s) 

KSSΩ(s) 

5173.0
2491.0

+s

KCS Ia(s)

0.06154
U
A
 (s)

4982.0
01908.0+s

+ 
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Thus: 
0.01908)(s6)s(100.50.5173)(

)610(2491.0

4982.0
01908.0

5173.0
2491.06101

5173.0
2491.0610

)(
)(

++++
+

=
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛ +

+

⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛ +

=
Ω

ss
s

s
ss

s
ss

s

sU
s

C

  

Finally  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++

+
⎟
⎠
⎞

⎜
⎝
⎛ +

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++

+
⎟
⎠
⎞

⎜
⎝
⎛ +

=
Ω

0.01908)(s6)s0.5(100.5173)(
)610(2491.0401000443.01

0.01908)(s6)s(100.50.5173)(
)610(2491.040100

)(
)(

ss
s

s
s

ss
s

s
s

sR
s

v

 or 

 

( )

( )
2.65s11.09214.64436

)6.0(4.01.249

24.02035.110.05723.61326

)6.0(4.01.249
)(
)(

+++

++
=

⎟
⎠
⎞⎜

⎝
⎛ +++⎟

⎠
⎞⎜

⎝
⎛ ++

++
=

Ω

ss

ss

sssss

ss
svR
s

  

 

Hence: 
( )

2.65s11.0914.6446
)6.0(4.015.33

)(
)(0.06154

)(
)(

23 +++
++

=
Ω

=
ss

ss
sR
s

sR
sV

vv
  

 

b. Simulink was used to model the HEV cascade control system.  That model is shown below. The reference 
signal, rv (t), was set as a step input with a zero initial value, a step time = 0 seconds, and a final value 
equal to 4 volts [corresponding to the desired final car speed, v (∞ ) = 60 km/h, e.g. a desired final value of 
the change in car speed, Δv (∞ ) = 5.55 m/s]. The variables of interest [time, change in car speed, 
acceleration, and motor armature current] were output (in array format) to four “workspace” sinks, each of 
which was assigned the respective variable name. After the simulation ended, Matlab plot commands were 
utilized to obtain and edit the required three graphs. These graphs are shown below. 

The simulations show that in response to such a speed reference command, car acceleration would go 
initially to a maximum value of 10.22 m/s2 and the motor armature current would reach a maximum value 
of 666.7 A. That would require an electric motor drive rated around 80 kW or using both the electric motor 
and gas or diesel engine, when fast acceleration is required. Most practical HEV control systems, however, 
use current-limiting and acceleration-limiting devices or software programs.  
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1.8

Torque Const.
x Efficiency

 

PI(s)

Torque
Controller 
and Power
Amplifier

Current

To Workspace3

acceleration

To Workspace2

time

To Workspace1

Speed

To Workspace

Speed vs Time

0.0443

Speed Sensor
Sensitivity, Kss

PI(s)

Speed
Controller

Referece
Signal Motive

minus
Resistive 
Torques

 0.06154

Linear
Speed /
Angular 
Speed

7.226s

1

HEV Inertia
Referred to 
Motor Shaft

0.1

Friction
Coeff., D

du/dt

Derivative

0.5

Current Sensor
Sensitivity, Kcs

Clock

2

Back EMF
Const, Kb1

1

Armature
Res., Ra

Armature
Current vs Time

0.61543

Aerodynamic Drag

Acceleration
vs Time

Model of the HEV Cascade Control 

System  

Change in car speed in response to a speed reference signal step of 4 volts  



5-110   Chapter 5:   Reduction of Multiple Subsystems 

  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

Car acceleration reponse to a speed reference signal step of 4 volts  

 

Motor armature current reponse to a speed reference signal step of 4 volts  
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S  I  X  
 
  Stability  

 

SOLUTIONS TO CASE STUDIES CHALLENGES  
 

Antenna Control: Stability Design via Gain 
From the antenna control challenge of Chapter 5,  

 

T(s) = 
76.39K

s3+151.32s2+198s+76.39K
  

 Make a Routh table: 
 

s3 1 198 

s2 151.32 76.39K 

s1
29961.36-76.39K

151.32  0 

s0 76.39K 0 

 

From the s1 row, K<392.2. From the s0 row, 0<K. Therefore, 0<K<392.2. 

UFSS Vehicle: Stability Design via Gain 
 

                        

                        

                        

    G3 = −K1G2  

    G3 =
(0.25s + 0.10925)K1

s4 + 3.483s3 + 3.465s2 + 0.60719s
 

 

T (s) =
G3 (s)

1 + G3 (s)
=

(0.25s + 0.10925)K1

s4 + 3.483s3 + 3.465s2 + 0.25(K1 + 2.4288)s + 0.10925K1
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s4 1 3.465 0.10925K1 

s3 3.483 0.25(K1+2.4288) 0 

s2 - 
1
4 (K1 - 45.84)

3.483   

 

0.10925K1 0 

s1  

0.25 
(K1 + 4.2141)(K1 - 26.42)

K1 - 45.84   

 

0 0 

s0 0.10925K1 0 0 

For stability : 0 < K1 < 26.42 

 
ANSWERS TO REVIEW QUESTIONS  

1. Natural response 

2. It grows without bound 

3. It would destroy itself or hit limit stops 

4. Sinusoidal inputs of the same frequency as the natural response yield unbounded responses even though 

the sinusoidal input is bounded. 

5. Poles must be in the left-half-plane or on the jω axis, but not multiple. 

6. The number of poles of the closed-loop transfer function that are in the left-half-plane, the right-half-

plane, and on the jω axis. 

7. If there is an even polynomial of second order and the original polynomial is of fourth order, the original 

polynomial can be easily factored. 

8. Just the way the arithmetic works out 

9. The presence of an even polynomial that is a factor of the original polynomial 

10. For the ease of finding coefficients below that row 

11. It would affect the number of sign changes 

12. Seven 

13. No; it could have quadrantal poles. 

14. None; the even polynomial has 2 right-half-plane poles and two left-half-plane poles. 

15. Yes 

16. Det (sI-A) = 0 
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SOLUTIONS TO PROBLEMS  

 1. 

s5 1 5 1 

s4 3 4 3 

s3 3.667 0 0 

s2 4 3 0 

s1 -2.75 0 0 

s0 3 0 0 

2 rhp; 3 lhp 

 
2.  

The Routh array for 20856)( 235 ++++= sssssP  is: 
 

s5 1 6 8 

s4 0 ε 5 20 

s3 ε
5

−  
ε
20

−   

s2 5 20  

s 0  10   

1 20   

The auxiliary polynomial for row 4 is 205)( 2 += ssQ , with 10)( =′ sQ , so there are two roots on 

the ωj -axis. The first column shows two sign changes so there are two roors on the right half-plane. 

The balance, one root must be in the left half-plane. 
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 3. 

 

s5 1 4 3 

s4 -1 -4 -2 

s3 ε  1 0 

s2 
1 − 4ε

ε
 -2 0 

s1 
2ε 2 + 1 − 4ε

1− 4ε

 

0 0 

s0 -2 0 0 

3 rhp, 2 lhp 
4. 

s5         1 3 2 
      s4 -1 -3 -2 
      s3  -2 -3 ROZ 
      s2

 -3 -4  
      s1

 -1/3   
      s0

 -4   
 

 

Even (4): 4 jω; Rest(1): 1 rhp; Total (5): 1 rhp; 4 jω 
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 5. 

s4 1 8 15  

s3 4 20 0  

s2 3 15 0  

s1 6 0 0 ROZ 

s0 15 0 0  

Even (2): 2 jω; Rest (2): 2 lhp; Total: 2 jω; 2 lhp 
 
 
 
 
 
 
 6. 

 

s6 1 -6 1 -6 

s5 1 0 1  

s4 -6 0 -6  

s3 -24 0 0 ROZ 

s2 ε -6   

s1 -144/ε 0   

s0 -6    

Even (4): 2 rhp; 2 lhp; Rest (2): 1 rhp; 1 lhp; Total: 3 rhp; 3 lhp 
7.  

 
Program: 
den=[1 1 -6 0 1 1 -6] 
A=roots(den) 
 
Computer response: 

den = 
 
     1     1    -6     0     1     1    -6 
 
 
A = 
 
  -3.0000           
   2.0000           
  -0.7071 + 0.7071i 
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  -0.7071 - 0.7071i 
   0.7071 + 0.7071i 
   0.7071 - 0.7071i 
 
8.  

Program: 
%-det([si() si();sj() sj()])/sj() 
                              %Template for use in each cell. 
syms e                        %Construct a symbolic object for  
                              %epsilon. 
%%%%%%%%%%%%%%%%%%%%%%%%%%$$$$$$$$$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s5=[1  4   3   0   0]         %Create s^5 row of Routh table. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%$$$$$$$$$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s4=[-1   -4   -2   0   0]     %Create s^4 row of Routh table. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0 
 s3=[e... 
 -det([s5(1) s5(3);s4(1) s4(3)])/s4(1)   0   0]; 
                              %Create s^3 row of Routh table  
                              %if 1st element is 0. 
else 
    s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1) ... 
 -det([s5(1) s5(3);s4(1) s4(3)])/s4(1)   0   0]; 
                              %Create s^3 row of Routh table  
                              %if 1st element is not zero. 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0 
 s2=[e ...  
 -det([s4(1) s4(3);s3(1) s3(3)])/s3(1)   0   0]; 
                              %Create s^2 row of Routh table  
                              %if 1st element is 0. 
else  
    s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1) ...  
 -det([s4(1) s4(3);s3(1) s3(3)])/s3(1)   0   0]; 
                             %Create s^2 row of Routh table  
                             %if 1st element is not zero. 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0 
 s1=[e ...  
 -det([s3(1) s3(3);s2(1) s2(3)])/s2(1)   0   0]; 
                              %Create s^1 row of Routh table  
                              %if 1st element is 0. 
else 
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1) ...  
 -det([s3(1) s3(3);s2(1) s2(3)])/s2(1)   0   0]; 
                              %Create s^1 row of Routh table  
                              %if 1st element is not zero 
end     
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
        
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) ...  
 -det([s2(1) s2(3);s1(1) s1(3)])/s1(1)   0   0]; 
                              %Create s^0 row of Routh table. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
        
's3'                          %Display label.  
s3=simplify(s3);              %Simplify terms in s^3 row. 
pretty(s3)                    %Pretty print s^3 row. 
's2'                          %Display label. 
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s2=simplify(s2);              %Simplify terms in s^2 row. 
pretty(s2)                    %Pretty print s^2 row. 
's1'                          %Display label. 
s1=simplify(s1);              %Simplify terms in s^1 row. 
pretty(s1)                    %Pretty print s^1 row. 
's0'                          %Display label. 
s0=simplify(s0);              %Simplify terms in s^0 row. 
pretty(s0)                    %Pretty print s^0 row. 
 
 
 
 
Computer response: 
s5 = 
 
     1     4     3     0     0 
 
s4 = 
 
    -1    -4    -2     0     0 
 
ans = 
 
s3 
 
  
                              [e    1    0    0] 
ans = 
 
s2 
 
  
                         [  -1 + 4 e                ] 
                         [- --------    -2    0    0] 
                         [     e                    ] 
 
ans = 
 
s1 
 
  
                       [     2                         ] 
                       [  2 e  + 1 - 4 e               ] 
                       [- --------------    0    0    0] 
                       [     -1 + 4 e                  ] 
 
ans = 
 
s0 
 
  
                              [-2    0    0    0] 

 9.  

T(s) = 
240

s4 + 10s3 + 35s2 + 50s + 264
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2 rhp, 2 lhp 
10. 

Program: 
numg=240; 
deng=poly([-1 -2 -3 -4]); 
'G(s)' 
G=tf(numg,deng) 
'Poles of G(s)' 
pole(G) 
'T(s)' 
T=feedback(G,1) 
'Poles of T(s)' 
pole(T) 
 
 
Computer response: 
ans = 
 
G(s) 
 
Transfer function: 
               240 
--------------------------------- 
s^4 + 10 s^3 + 35 s^2 + 50 s + 24 
  
ans = 
 
Poles of G(s) 
 
ans = 
 
   -4.0000 
   -3.0000 
   -2.0000 
   -1.0000 
 
ans = 
 
T(s) 
 
Transfer function: 
               240 
---------------------------------- 
s^4 + 10 s^3 + 35 s^2 + 50 s + 264 
  
ans = 
 
Poles of T(s) 
 
ans = 
 
  -5.3948 + 2.6702i 
  -5.3948 - 2.6702i 
   0.3948 + 2.6702i 
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   0.3948 - 2.6702i 
 
System is unstable, since two closed-loop poles are in the right half-plane. 

 
11.  

T(s) = 
1

4s4 + 4s2 + 1
  

  

 

Even (4): 4 jω 

 

12.  

The characteristic equation is: 

0
)3)(1(

)2(1 =
+−

+
+

sss
sK  or 

0)2()3)(1( =+++− sKsss  or 

02)3(2 23 =+−+− KsKss  

 

 

 

The Routh array is: 

 

s3 1 3−K  

s2 2 K2  

s 3−   

1 K2  

The first column will always have a sign change regardless of the value of K . There is no value of 

K  that will stabilize this system. 
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13.  

T (s) =
84

s8 + 5s7 +12s6 + 25s5 + 45s 4 + 50s3 + 82s2 + 60s + 84
 

 

 

 

s8 1 12 45 82 84 

s7 1 5 10 12  

s6 1 5 10 12  

s5 3 10 10  ROZ 

s4 5 20 36   

s3 -5 -29    

s2 -1 4    

s1 -49     

s0 4     

 

Even (6): 2 rhp, 2 lhp, 2 jω; Rest (2): 0 rhp, 2 lhp, 0 jω ; Total: 2 rhp, 4 lhp, 2 jω 

14.  

T (s) =
1

2s4 + 5s 3 + s2 + 2s +1
 

 
 

s4 2 1 1 

s3 5 2 0 

s2 1 5  

s1 -23 0  

s0 5   
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Total: 2 lhp, 2 rhp 
System is unstable 

15.  

T (s) =
8

s7
− 2 s6

− s 5 + 2s4 + 4s3 − 8s2 − 4s + 8
 

 

 

s7 1 -1 4 -4  

s6 -2 2 -8 8  

s5 -12 8 -16 0 ROZ 

s4 0.6667 -5.333 8 0  

s3 -88 128 0 0  

s2 -4.364 8 0 0  

s1 -33.33 0 0 0  

s0 8 0 0 0  
 

Even (6): 3 rhp, 3 lhp; Rest (1): 1 rhp; Total: 4 rhp, 3 lhp 
16. 

Program: 
numg=8; 
deng=[1 -2 -1 2 4 -8 -4 0]; 
'G(s)' 
G=tf(numg,deng) 
'T(s)' 
T=feedback(G,1) 
'Poles of T(s)' 
pole(T) 
 
Computer response: 
ans = 
 
G(s) 
 
  
Transfer function: 
                       8 
----------------------------------------------- 
s^7 - 2 s^6 - s^5 + 2 s^4 + 4 s^3 - 8 s^2 - 4 s 
  
 
ans = 
 
T(s) 
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Transfer function: 
                         8 
--------------------------------------------------- 
s^7 - 2 s^6 - s^5 + 2 s^4 + 4 s^3 - 8 s^2 - 4 s + 8 
  
 
ans = 
 
Poles of T(s) 
 
 
ans = 
 
  -1.0000 + 1.0000i 
  -1.0000 - 1.0000i 
  -1.0000           
   2.0000           
   1.0000 + 1.0000i 
   1.0000 - 1.0000i 
   1.0000            
Thus, there are 4 rhp poles and 3 lhp poles.       

17.  
 Even (6): 1 rhp, 1 lhp, 4 jω; Rest (1): 1 lhp; Total: 1 rhp, 2 lhp, 4 jω 
18.  

 T (s) =
18

s5 + s4 − 7s3 − 7s2 − 18s −18
 

 

s5 1 -7 -18  

s4 1 -7 -18  

s3 4 -14 0 ROZ 

s2 -3.5 -18 0  

s1 -34.57 0 0  

s0 -18 0 0  

Even (4): 1 rhp, 1 lhp, 2 jω; Rest (1): 1 lhp; Total: 1 rhp, 2 lhp, 2 jω 
19. 
 

G s 507
s 4 3 s 3 10 s 2 30 s 169+ + + +

=  ; H s 1
s

= . Therefore,  

 
T s G

1 G H+
=   = 507 s

s 5 3 s 4 10 s 3 30 s 2 169 s 507+ + + + +
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s5 1 10 169  

s4 3 30 507  

s3 12 60 0 ROZ      

s2 15 507 0  

s1 -345.6 0 0  

s0 507 0 0  

           Even (4): 2 rhp, 2 lhp, 0 jω; Rest (1): 0 rhp, 1 lhp, 0 jω; Total (5): 2 rhp, 3 lhp, 0 jω  
20.  

T(s) = 
K(s2+1)

(1+K)s2 + 3s + (2+K)
  . For a second-order system, if all coefficients are positive, the roots 

will be in the lhp. Thus, K > -1. 
21.  

T(s) = 3 2

(s 6)
s 5s ( 4)s 6

K
K K

+
+ + + +  

 

s3 1 4 + K 

s2 5 6K 

s1 20 -K 0 

s0 6K 0 

            Stable for 0 < K < 20 

 

 
22.  

The characteristic equation for all cases is 0
)(
)(1 =

−
−

+
bss
asK

 or 0)(2 =−−+ KasbKs . The 

Routh array is 
 

2s  1 K−  

s  bK −   

1 Ka−   
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a) 00,0,0 >⇒>>⇒<< KKbKba  

b) bKKbKba >⇒>>⇒>< 0,0,0  

c) 00,0,0 <<⇒<>⇒<> KbKbKba  

d) ⇒<>⇒>> 0,0,0 KbKba No solution 

 

 
23.  

T (s) =
K(s + 3)(s + 5)

(1 + K)s2 + (8K − 6)s + (8 +15K)
 

 
  

   For 1st column negative For 1st column positive 

s2 1+K 8+15K K < -1 K > -1 

s1 8K-6 0 K < 6/8 K > 6/8  

s0 8+15K 0 K < -8/15 K > -8/15 

                  Stable for K > 6/8 
24. 

Program: 
K=[-6:0.00005:0]; 
for i=1:length(K); 
dent=[(1+K(i)) (8*K(i)-6) (8+15*K(i))]; 
R=roots(dent); 
A=real(R); 
B=max(A); 
if B>0 
R 
K=K(i) 
break 
end 
end 
K=[6:-0.00005:0]; 
for i=1:length(K); 
dent=[(1+K(i)) (8*K(i)-6) (8+15*K(i))]; 
R=roots(dent); 
A=real(R); 
B=max(A); 
if B>0 
R 
K=K(i) 
break 
end 
end 
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Computer response: 
R = 
 
  1.0e+005 * 
 
    2.7999 
   -0.0000 
 
 
K = 
 
   -1.0000 
 
 
R = 
 
   0.0001 + 3.3166i 
   0.0001 - 3.3166i 
 
 
K = 
 
    0.7500 

 
25. 

Program: 
%-det([si() si();sj() sj()])/sj() 
                              %Template for use in each cell. 
syms K                        %Construct a symbolic object for  
                              %gain, K. 
s2=[(1+K)   (8+15*K) 0];      %Create s^2 row of Routh table. 
s1=[(8*K-6)  0 0];            %Create s^1 row of Routh table. 
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1) ... 
 -det([s2(1) s2(3);s1(1) s1(3)])/s1(1)   0   0]; 
                              %Create s^0 row of Routh table. 
's2'                          %Display label.  
s2=simplify(s2);              %Simplify terms in s^2 row. 
pretty(s2)                    %Pretty print s^2 row. 
's1'                          %Display label.  
s1=simplify(s1);              %Simplify terms in s^1 row. 
pretty(s1)                    %Pretty print s^1 row. 
's0'                          %Display label. 
s0=simplify(s0);              %Simplify terms in s^0 row. 
pretty(s0)                    %Pretty print s^0 row. 
Computer response: 
ans = 
 
s2 
 
  
                           [1 + K    8 + 15 K    0] 
 
ans = 
 
s1 
 
  
                              [8 K - 6    0    0] 
 
ans = 
 
s0 
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                           [8 + 15 K    0    0    0] 

 
26.  

2

2

16( )
( 1) (3 16 )

Ks KT s
K s K

−
=

+ + −
. For positive coefficients in the denominator, 

31
16

K− < < . 

Hence marginal stability only for this range of K. 
 

27.  

 T(s) = 
K(s+1)

s5 + 2s4 + Ks + K
  . Always unstable since s3 and s2 terms are missing. 

 
28.  

3 2

3 2

7 2 40( )
(7 1) 2 (12 40 )
Ks Ks Ks KT s

Ks K s Ks K
+ + −

=
+ + + + −

 

 

s3 K 2K 

S2 7 1K +  12 40K−  

s1 
254 10

7 1
K K

K
−
+

 0 

S0 12-40K  

 

For stability, 
10 12
54 40

K< <  

29. 

 T(s) = 
K(s+2)

s4 + 3s3 - 3s2  + (K+3)s + (2K-4)
  

 

s4 1 - 3 2K - 4 

s3 3 K+ 3 0 

s2 
- (K+12)

3   2K - 4 0 

s1 
K(K+33)

K+12   0 0 

s0 2K - 4 0 0 
 

Conditions state that K < -12, K > 2, and K > -33. These conditions cannot be met simultaneously. 

System is not stable for any value of K. 
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30. 

  3 2( )
142 6031 ( 79002)

KT s
s s s K

=
+ + + +

 

 

s3 1 6031 

s2 142 K+79002 

s1 (777400-K)/142 0 

s0 K+79002 0 

There will be a row of zeros at s1 row if K = 777400. The previous row, s2, yields the auxiliary 

equation,  2142 (777400 79002) 0s + + = . Thus, s = ±j77.6595. Hence, K = 777400 yields an 

oscillation of 77.6595 rad/s. 
 31.  

T(s) = 
4 2

2

2 4 8
( 1) 2(1 ) (2 4)

Ks Ks Ks K
K s K s K

+ − +
+ + − + +

 

Since all coefficients must be positive for stability in a second-order polynomial, -1 < K < 1; 
- ∞< K < 1; -1 < 2K < ∞. Hence, -  

1
2   < K < 1. 

32.  

T (s) =
(s + 2)(s + 7)

s4 +11s3 + (K + 31)s2 + (8K + 21)s +12K
 

Making a Routh table, 
 
 

s4 1 K + 31 12 K

s3 11 8K + 21

 

0 

s2 
3K + 320

11
 12 K  0 

s1 
24K2 +1171K + 6720

3K + 320

 

0 0 

s0 12 K 0 0 
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s2 row says –106.7 < K. s1 row says K < -42.15 and –6.64 < K. s0 row says 0 < K. 
 
 
 
33. 

3 2

5 ( 4)( )
5 16 (12 5 ) 20

K sT s
s s K s K

+
=

+ + + +
 

 
Making a Routh table, 
 

s3 5 12+5K 

s2 16 20K 

s1 192 - 20K 0 

s0 20K 0 
 
a. For stability, 0 < K < 9.6. 

b. Oscillation for K = 9.6. 

c. From previous row with K =9. 6, 16s2 + 192 = 0. Thus 12s j= ± , or 12ω =  rad/s. 

34. 
 a. G s K s 1− s 2−

s 2+ s 2 2 s 2+ +
=  . Therefore, T s s 2− s 1− K

s 3 K 4+ s 2 6 3 K− s 2 K 2++ + +
= .  

Making a Routh table, 
 

s3 1 6-3K 

s2 4+K 4+2K 

s1 
- (3K2+8K-20)

K+4   0 

s0 4+2K 0 
 
From s1 row: K = 1.57, -4.24; From s2 row: - 4 < K; From s0 row: - 2 < K. Therefore,  

- 2 < K < 1.57. 

b. If K = 1.57, the previous row is 5.57s2 + 7.14. Thus, s = ± j1.13.  

c. From part b, ω = 1.13 rad/s. 

35. 
Applying the feedback formula on the inner loop and multiplying by K yields 
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2( 10 22)
KGe

s s s
=

+ +
  

Thus,  

3 210 22
KT

s s s K
=

+ + +
 

Making a Routh table: 
 
 
 
 
 
 

 

s3 1 22 

s2 10 K 

s1 220 K−  0 

s0 K 0 

For oscillation, the s1 row must be a row of zeros. Thus, K = 220 will make the system oscillate. The 

previous row now becomes, 10s2 + 220. Thus, s2 + 22 = 0, or s = ± j 22 22 . Hence, the 

frequency of oscillation is 22  rad/s.  
36.  

T(s) = 
Ks2 + 2Ks

s3 + (K-1)s2 + (2K-4)s + 24
  

 

s3 1 2K-4 

s2 K-1 24 

s1 
2K2 − 6K − 20

K − 1
 0 

s0 24 0 
  

For stability, K > 5; Row of zeros if K = 5. Therefore, 4s2 + 24 = 0. Hence, ω = 6   for  

oscillation.  

37. 
Program: 
K=[0:0.001:200]; 
for i=1:length(K); 
deng=conv([1 -4 8],[1 3]); 
numg=[0 K(i) 2*K(i) 0]; 
dent=numg+deng; 
R=roots(dent); 
A=real(R); 
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B=max(A); 
if B<0 
R 
K=K(i) 
break 
end 
end 
 
Computer response: 
R = 
 
  -4.0000           
  -0.0000 + 2.4495i 
  -0.0000 - 2.4495i 
 
 
 
K = 
 
     5 
 
a. From the computer response, (a) the range of K for stability is 0 < K < 5.  

b. The system oscillates at K = 5 at a frequency of 2.4494 rad/s as seen from R, the poles of the 

closed-loop system. 

38.  

T(s) = 
K(s+2)

s4 + 3s3 - 3s2  + (K+3)s + (2K-4)
  

 

s4 1 - 3 2K-4 

s3 3 K+3 0 

s2 - 
K+12

3   2K-4 0 

s1 
K(K+33) 

K+12   0 0 

s0 2K-4 0 0 
 

For K < -33: 1 sign change; For –33 < K < -12: 1 sign change; For –12 < K < 0: 1 sign change; For 

0 < K < 2: 3 sign changes; For K > 2: 2 sign changes. Therefore, K > 2 yields two right-half-plane 

poles. 

39.  

T(s) = 
K

s4 + 7s3 + 15s2 + 13s + (4+K)
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s4 1 15 K+4 

s3 7 13 0 

s2 
92
7   K+4 0 

s1 
1000-49K

92   0 0 

s0 K+4 0 0 

a. System is stable for - 4 < K < 20.41. 

b. Row of zeros when K = 20.41. Therefore, 
92
7   s2 + 24.41. Thus, s = ± j1.3628, or ω = 1.3628 rad/s. 

40.  

3 2( )
53 201 ( 245)

KT s
s s s K

=
+ + + +

 

 

s3 1 201 

s2 53 K+245 

s1 10408-K 0 

s0 K+245 0 

a.  System is stable for -245 < K < 10408. 

b. Row of zeros when K = 10408. Therefore, 53s2 + 10653. Thus, s = ± j 201 , or ω = 14.18 rad/s. 
41.  

T(s) = 
K

s4 + 8s3 + 17s2 + 10s + K
  

 

s4 1 17 K 

s3 8 10 0 

s2 
126
8   K 0 

s1 - 
32
63  K + 10 0 0 

s0 K 0 0 

a. For stability  0 < K < 19.69. 

b. Row of zeros when K = 19.69. Therefore, 
126
8   s2 + 19.69. Thus, s = ± j 1.25 , or  

ω = 1.118 rad/s. 



6-22   Chapter 6:   Stability 

 
 

Copyright ©   2011 by John Wiley & Sons, Inc. 

c. Denominator of closed-loop transfer function is s4 + 8s3 + 17s2 + 10s + K. Substituting K = 19.69 

and solving for the roots yield s = ± j1.118, -4.5, and -3.5. 

42.  

T(s) = 
K(s2 + 2s + 1)

s3 + 2s2  + (K+1)s - K
  

 

s3 1 K+1 

s2 2  - K 

s1 
3K+2

2   0 

s0 - K 0 
 

Stability if - 
2
3  < K < 0. 

 
 
 
 

43.  

T(s) = 
2s4 + (K+2)s3 + Ks2

s3 + s2 + 2s + K
  

 

s3 1 2 

s2 1  K 

s1 2 - K 0 

s0 K 0 

Row of zeros when K = 2. Therefore s2 + 2 and s = ± j 2 , or ω = 1.414 rad/s. Thus K = 2 will yield 

the even polynomial with 2 jω roots and no sign changes. 
44.  

 1 K2 1 

s3 K1 5 0 

s2 
K1K2 − 5

K1

 1 0 

s1 
K1

2 − 5K1K2 + 25
5 − K1K2

 0 0 

s0 1 0 0 
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For stability, K1K2 > 5; K12 + 25 < 5K1K2 ; and K1 > 0 . Thus 0 < K12 < 5K1K2 - 25,  

or 0 < K1 < 5K1K2 − 25 .  
45.  

s4 1 1 1 

s3 K1 K2 0 

s2 
K1-K2

K1
  1 0 

s1 
K12 - K1K2 + K22

K2 - K1
  0 0 

s0 1 0 0 
 

For two jω poles, K12 - K1K2 + K22 = 0. However, there are no real roots. Therefore, there is no 

relationship between K1 and K2 that will yield just two jω poles. 

 
 
46. 

  

s8 1 1.18E+03 2.15E+03 -1.06E+04 -415 

s7 103 4.04E+03 -8.96E+03 -1.55E+03 0 

s6 1140.7767 2236.99029 -10584.951 -415 0 

s5 3838.02357 -8004.2915 -1512.5299 0 0 

s4 4616.10784 -10135.382 -415 0 0 

s3 422.685462 -1167.4817 0 0 0 

s2 2614.57505 -415 0 0 0 

s1 -1100.3907 0 0 0 0 

s0 -415 0 0 0 0 
 
a. From the first column, 1 rhp, 7 lhp, 0 jω. 

b. G(s) is not stable because of 1 rhp. 

 

47. 
32

1 62)( ssssK +++=   
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s3 1 1 

s2 6 2 

s 3
2

  

 

1 

2  

No RHP roots 

 

 

 

 

 
32

2 622)( ssssK +++=  

s3 1 2 

s2 6 2 

s 3
5

  

1 2  

No RHP roots 

 
32

3 44)( ssssK +++=  

s3 1 1 

s2 4 4 

s 8  

1 4  

Auxiliary equation 44)( 2 += ssQ  , no roots in RHP, but two roots in ωj  axis. 
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32
4 424)( ssssK +++=  

s3 1 2 

s2 4 4 

s 1  

1 4  

No RHP roots 

The interval polynomial has no roots in the RHP. 
 

 

 

 

 

 

 

 
 

48. 

The characteristic equation for this system is: 

0
)(

1 2
0

22

2
0

2

=
+
+

+
ω

ω
ass

s
m
K

T

 or 0)(
2
022

0
4 =+++

TT m
K

s
m
Kas

ω
ω  

The Routh array is: 

4s  1 )( 2
0

Tm
Ka +ω  

Tm
K 2

0ω
 

3s  0    4 0     2 )( 2
0

Tm
Ka +ω   

2s  -2 )( 2
0

Tm
Ka +ω  

Tm
K 2

0ω
  

s  

22
0

22
0

2
0

)(

)(44

T

TT

m
Ka

m
Ka

m
K

+

++

ω

ω
ω

 
  

1 
Tm

K 2
0ω
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The second row of zeros was substituted with the coefficients resulting from differentiating the 

characteristic equation: 
TT

a m
K

s
m
KassQ

2
022

0
4 )()(

ω
ω +++=  and 

)(24)(' 2
0

3

T
a m

KassQ ++= ω . 

Since all the plant parameters are positive, there are two sign changes in the first column of the 

Routh array. So there are two poles in the RHP, two must be in the LHP. 

 

49. 

 The characteristic equation for the system is 01 2 =+
sI

K

b

 or 02 =+
bI

Ks . The system has two 

complex conjugate poles at 
bI

Kjs ±= . The arm will oscillate at a frequency 
bI

K
rad/sec. 

 

 

50. 
Eigenvalues are the roots of the following equation: 
 

 sI − A =
s 0 0
0 s 0
0 0 s

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

−
0 1 3
2 2 −4
1 −4 3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
s −1 −3
−2 s − 2 4
−1 4 s − 3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= s3 − 5s 2 −15s + 40  

Hence, eigenvalues are -3.2824, 1.9133, 6.3691. Therefore, 1 rhp, 2 lhp, 0 jω. 
51. 

Program: 
A=[0 1 0;0 1 -4;-1 1 8]; 
eig(A) 
 
Computer response: 
ans = 
 
    7.4641 
    0.5359 
    1.0000 

 
52. 

Writing the open-loop state and output equations we get, 
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x1

•
= x2

x2

•
= x2 + 3x3

x3

•
= −3x1 − 4x2 − 5x3 + u

y = x2 + x3

 

 
Drawing the signal-flow diagram and including the unity feedback path yields, 
 

3x x 12x

1 1

1
s 3

1
s

1
s 1

-5 1

-3

-1

r c = y

1

1

-4

 
 
Writing the closed-loop state and output equations from the signal-flow diagram, 
 

x1

•
= x2

x2

•
= x2 + 3x3

x3

•
= −3x1 − 4x2 − 5x3 + r − c

    = −3x1 − 4x2 − 5x3 + r − (x2 + x3 )
    = −3x1 − 5x2 − 6x3 + r
y = x2 + x3

 

 
In vector-matrix form, 

x
•

=
0 1 0
0 1 3
−3 −5 −6

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
X +

0
0
1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 0 1 1[ ]x

 

 
Now, find the characteristic equation. 
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sI − A =
s 0 0
0 s 0
0 0 s

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−
0 1 0
0 1 3
−3 −5 −6

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

=
s −1 0
0 (s −1) −3
3 5` (s + 6)

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

           = s3 + 5s2 + 9s + 9

 

 
Forming a Routh table to determine stability 
 
 
 
 
 

s3 1 9 
s2 5 9 
s1 36

5
 

0 

s0 9 0 
 
Since there are no sign changes, the closed-loop system is stable. 

53. 
Program: 
A=[0,1,0;0,1,3;-3,-4,-5]; 
B=[0;0;1]; 
C=[0,1,1]; 
D=0; 
'G' 
G=ss(A,B,C,D) 
'T' 
T=feedback(G,1) 
'Eigenvalues of T' 
ssdata(T); 
eig(T) 
 
Computer response: 
ans = 
 
G 
 
  
a =  
       x1  x2  x3 
   x1   0   1   0 
   x2   0   1   3 
   x3  -3  -4  -5 
  
  
b =  
       u1 
   x1   0 
   x2   0 
   x3   1 
  
  
c =  
       x1  x2  x3 
   y1   0   1   1 
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d =  
       u1 
   y1   0 
  
Continuous-time model. 
 
ans = 
 
T 
 
  
a =  
       x1  x2  x3 
   x1   0   1   0 
   x2   0   1   3 
   x3  -3  -5  -6 
  
  
b =  
       u1 
   x1   0 
   x2   0 
   x3   1 
  
  
c =  
       x1  x2  x3 
   y1   0   1   1 
  
  
d =  
       u1 
   y1   0 
  
Continuous-time model. 
 
ans = 
 
Eigenvalues of T 
 
 
ans = 
 
  -1.0000 + 1.4142i 
  -1.0000 - 1.4142i 
  -3.0000           
           

54.  

a. For 1=n , 01)( 2

2

1 =−=
c

ssB
ω

 or 022 =+− cs ω . The Routh array is 

2s  -1 
2
cω  

s  0  -2  

1 
2
cω   
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The auxiliary polynomial used in the second row is 22)( ca ssQ ω+−= , that row is replaced 

with the coefficients of ssQ a 2)(' −= . 

The first column has one sign change, so there is one root I the RHP, one in the LHP. 

 

b. For 2=n , 01)( 4

4

2 =−=
c

ssB
ω

 or 044 =+ cs ω . The Routh array is 

4s  1 0 
4
cω  

3s  0  4 0 0 

2s  0  ε 
4
cω   

s  
ε
ω 44 c−

   

1 
4
cω    

The second row was originally a row of zeros, the auxiliary equation used was 24)( ca ssQ ω+= , 

so its coefficients were substituted with the coefficients of  34)(' ssQ a = .  

The first column in the array has two sign changes, so the polynomial has two roots in the RHP and 

two must be in the LHP. 
 

SOLUTIONS TO DESIGN PROBLEMS  
 

 55.  

T(s) = 
K(s+1)(s+10)

s3 + (5.45+K)s2 + (11.91+11K)s + (43.65+10K)
  

 

s3 1 11.91+11K 

s2 5.45+K 43.65+10K 

s1 0 

s0 43.65+10K 0 

For stability, - 0.36772 < K < ∞. Stable for all positive K. 
56.  

T(s) = 
0.7K(s+0.1)

s4 + 2.2s3  + 1.14s2 + 0.193s + (0.07K+0.01)
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s4 1 1.14 0.07K+0.01 

s3 2.2 0.193 0 

s2 1.0523 0.07K+0.01 0 

s1 0.17209 - 0.14635K 0 0 

s0 0.07K+0.01 0 0 

For stability, - 0.1429 < K < 1.1759 
57. 

T s 0.6 K 10 K s 2 60.1 K s+ +

s 5 130 s 4 3229 s 3 10 K 2348+ s 2 60.1 K 58000+ s 0.6 K+ + + + +
=  

 

s5 1 3229 60.1K+58000 

s4 130 10K+23480 0.6K 

s3 -10K+396290 7812.4K+7540000 0 

s2 
-100K2+2712488K+8.3247E9

-10K+396290   0.6K 0 

s1 
7813E3K4-5.1401E11K3+7.2469E15K2+3.3213E19K+2.4874E22

1000K3-66753880K2+9.9168E11K+3.299E15
 0 0 

s0 0.6K 0 0 
 

Note: s3 row was multiplied by 130 

From s1 row after canceling common roots:  

 
7813000 K 39629− K 967.31586571671+ K 2776.9294183336+ K 29908.070615165−

1000 K 39629− K 2783.405672635+ K 29908.285672635−
 

From s0 row:  K > 0 

From s3 row: K < 39629 

From s2 row:  K < 29908.29; 39629 < K  

From s1 row:  29908.29 < K, or K < 29908.07;  

Therefore, for stability, 0 < K < 29908.07 
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58. 
 

s5 1 1311.2 1000(100K+1) 

s4 112.1 10130 60000K 

s3 1220.8 99465K+1000 0 

s2 10038-9133.4K 60000K 0 

s1 99465 
(K+0.010841)(K-1.0192)

(K-1.0991)   

0 0 

s0 60000K 0 0 
 

From s2 row: K < 1.099 

From s1 row: -0.010841 < K < 1.0192; K > 1.0991 

From s0 row: 0 < K 

Therefore, 0 < K < 1.0192 

59. 
Find the closed-loop transfer function. 
 

G(s) =
63x106 K

(s + 30)(s +140)(s + 2.5)

T (s) =
G(s)

1 + G(s)H(s)
=

63x106 K
s3 +172.5s2 + 4625s + (10500 + 63x106 K)

 

Make a Routh table. 

 

 

 
 

s3 1 4625 

s2 172.5 10500+63x106K 

s1 4564.13-365217.39K 0 

s0 10500+63x106K 0 

The s1 line says K < 1.25x10-2 for stability. The s0 line says K > -1.67x10-4 for stability.  
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Hence, -1.67x10-4 < K < 1.25x10-2 for stability.  
60. 

Find the closed-loop transfer function. 
 

G(s) = 7570Kp(s +103)(s + 0.8)
s(s + 62.61)(s − 62.61)

T (s) =
G(s)

1+ G(s)H(s)
=

7570Kp(s +103)(s + 0.8)
s3 + 7570Kps

2 + (785766Kp −3918.76)s + 623768Kp

 

Make a Routh table. 
 

s3 1 785766Kp – 3918.76 

s2 7570 623768Kp 

s1 785766Kp – 4001.16 0 

s0 623768Kp 0 
 
The s1 line says Kp > 5.09x10-3 for stability. The s0 line says Kp > 0 for stability.  

Hence, Kp > 5.09x10-3 for stability.  

 

61.  

The characteristic equation is given by: 

0
10538.310272.500163.0

1066.210314.11011 11723

13926

=
×+×++

×+×+×
+ −−

−−−

sss
ssK  

 Or 

0)1066.210538.3()10314.110272.5()10100163.0( 131197263 =×+×+×+×+×++ −−−−− KsKsKs

 

The corresponding Routh array is: 

 

3s  1 K97 10314.110272.5 −− ×+×  

2s  K610100163.0 −×+  K1311 1066.210538.3 −− ×+×  

s  
K
KK

6

15

10100163.0
)8.457)(6.1371(10314.1

−

−

×+
++×

  

1 K1311 1066.210538.3 −− ×+×   
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For stability row 2 requires 1630−>K  and row 4 requires 008.133−>K . The dominant 

requirement being the latter. It is clear also that when 008.133−>K , the first element on row 3 is 

positive. So the overall requirement for stability is 008.133−>K . 

 
62.  

 
The characteristic equation of the system is given by: 

0
1

11 2 =
+

−
++

+
TsK

K
kbsms

K

f

CC  or  

0)()1()1)(( 22 =++−+++++ kbsmsKTsKKTskbsmsK CCff  or  

0)()1()1)(( 22 =++−+++++ kbsmsKTsKKTskbsmsK CCff  or 

0)()1())()(( 223 =++−+++++++ kbsmsKTsKKksbkTsmbTmTsK CCff  or 

0][])([])([ 23 =−++−+++−++ kKKKksbKTKKbkTKsmKmbTKmTsK CCfCCffCff

Substituting numerical values the equation becomes: 

0]105.3122500[]1170078.1584[]8.103444.0[1028.5 6236 =×−+−+−+× −
ffff KsKsKsK

 

The Routh array is given by 

 

3s  fK61028.5 −×  1170078.1584 −fK  

2s  8.103444.0 −fK  6105.3122500 ×−fK  

s  
[ ] [ ][ ]

[ ]8.103444.0
8.103444.01170078.1584105.31225001028.5 66

−−

−−−×−× −

f

fff

K
KKK

  

1 
6105.3122500 ×−fK   

 

To obtain positive quantities on the first column it is required: 

001028.5 6 >⇒>× −
ff KK  

26.5208.103444.0 >⇒>− ff KK  

14000105.3122500 6 >⇒>×− ff KK  
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[ ][ ] [ ] 0105.31225001028.58.103444.01170078.1584 66 >×−×−−− −
fff KKK  

or 

fffff KKKKK 32.1661188.0210606.285248.40252.54 22 −>+−−  

or 

02106076.30884.54 2 >+− ff KK  

or 

01.3878.562 >+− ff KK  

or 

0)88.48)(92.7( >−− ff KK  

So either 92.7<fK  and 92.788.48 <⇒< ff KK  

or 92.7>fK  and 92.788.48 >⇒> ff KK  

The most dominant requirement is given by the fourth row. We conclude requiring 1400>fK . 

 

63. 
a. The Mesh equations obtained by defining clockwise mesh currents are given by 

 

:1I  121)1( VRIIR
sC

=−+  

:2I  0)12( 321 =−++− RII
sC

RRI  

:3I  0)12( 32 =++− I
sC

RRI  

Solving for 3I , 
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sC
RR

sC
RR

sC

VR

sC
RR

R
sC

RR

RR
sC

R
sC

RR

VRR
sC

I 2
32

1
2

1

3 23)12)(1(

120

12

01

00

012

1

−−++

−
=

+−

−+−

−+

−

+−

−+

=  

 

sC
RR

sC
RR

sC

VRRIV 2
32

1
3

32 23)12)(1( −−++

−
==  

 

sRCsRCsRC
V
V

23)12)(11(

1
21

2

−−++

−
=  

 

b. The gain of the inverting amplifier is given by: 
1

2

2

1

R
R

V
V

−=  or 
KR

R
V
V 1

2

1

1

2 −=−= . Equating to 

the transfer function obtained in Part a 

sRCsRCsRC
K 23)12)(11(

11
2 −−++

−
=− . Equivalently 

0
23)12)(11(

1
2

=
−−++

−

sRCsRCsRC

K
 

 
c.   The characteristic equation can be written as: 
 

023)12)(11( 2 =−−−++ K
sRCsRCsRC

 or 

01651
222333 =−+++ K

sRCCRsCRs
 or 

0156)1( 222333 =+++− sRCCRsCRsK  
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The Routh array is given by 

 

s3 
33)1( CRK−  RC5  

s2 226 CR  1 

s 8
)29( RCK−

  

1 1  

So for oscillation it is required to have K=29. The resulting auxiliary equation is 

16)( 222 += sCRsQ . Solving the latter for the ωj -axis poles we obtain 
RC

js
6
1

±= . The 

oscillation frequency is 
RC

f
62
1

π
= . 

64. 

 For simplification we substitute parameter values into the open loop transfer function. It becomes: 

 
2

2

80784 4322.8s 1( )
545760

p IK s K sG s
s
+ + +

=  

The characteristic equation 1 G(s) 0+ =  becomes:  
3 2

2
90794s 4322.8s 1

5457601 IKp K
s
+ + ++ =0 or 2 2545760 ( )(80784s 4322.8s 1) 0p Is K s K+ + + + =  

Or 
3 280784 K ps (4322.8 80784 545760) ( 4322.8 ) 0p I I IK K s Kp K s K+ + + + + + =  

The Routh array becomes: 

3s  80784Kp  

2s  80784 545760IKp K+ +4322.8  

s 
2 14322.8 545760 18686599.84 349213075.2 2359211328

4322.8 80784 545760
p p p I I I

p I

K K K K K K
K K

+ + + +

+ +
  

1 IK   

 

It is clear from the array that the entries in the first column will be positive for all   
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65.  

First, find the transfer function of the internal (flow-control) loop, 
)(
)()(

sX
sQsG w

WF = , then the 

overall transfer function 
)()()(1

)()()(
)(
)()(

sGsGsG
sGsGsG

sR
sCsT

fwWFLC

fwWFLC

⋅⋅+

⋅⋅
==  

The transfer function of the internal (flow-control) feedback loop in figure 2 is: 

s
s

s
s

s
s

sGsG
sGsG

sX
sQsG

VFC

VFCw
WF 55.1

25.0

13
25.01

13
25.0

)()(1
)()(

)(
)()(

+
+

=

+
+

+

+
+

=
×+

×
==   

Thus, the overall system transfer function is: 

( ) ( )
( ) ( )⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

+++
⎟
⎠
⎞

⎜
⎝
⎛

+
+

++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++
⎟
⎠
⎞

⎜
⎝
⎛

+
+

+

=
⋅⋅+

⋅⋅
==

122)125(
2

55.1
25.05.01

122)125(
2

55.1
25.05.0

)()()(1
)()()(

)(
)()(

2

2

sssss
ssK

sssss
ssK

sGsGsG
sGsGsG

sR
sCsT

fwWFLC

fwWFLC

  

= 
( ) ( )

( ) ( ) ( ) ( )145.0122)125(5.15
145.0

2 +×++++×+×+×

+×+

ssKsssss
ssK

 

= 
( ) ( )

( )( ) ( ) ( )145.01225.15.42125
145.0

223 +×++++++

+×+

ssKsssss
ssK

  

The characteristic polynomial is, therefore: 

( )( ) ( ) ( )145.01225.15.42125)( 223 +×++++++= ssKssssssP  = 

= ( ) ( ) 5.05.3445.5213335250 2345 +++++++ sKsKsss   

Hence, the Routh-Hurwitz array for the system is given by: 
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s5 250 213 3.5 + K 0 

s4 335 45.5 + 4 K 0.5 0 

s3 ( )Κ+×−× 4  45.5250213335 # ( ) 125K  3.5335 −+  0  

s2 C 0.5 0  

s1 ( )[ ] ( )[ ]
C

C K 4  45.52502133355.0125K  3.5335 +×−××−−+

 

0   

s0 0.5    

 

From the s3 row:  ( ) 04  45.5250213335 >Κ+×−× , therefore K < 59.98 (4) 

From the s2 row:  C = 
( )[ ] ( ) ( )[ ]

( )K
KKK

 4  45.5250213335
125  3.5335335 4  45.5 4  45.5250213335

+−×
−+×−+×+−×

 > 0. 

Therefore: ( )[ ] ( ) ( )[ ]125  3.5335335 4  45.5 4  45.5250213335 −+×−+×+−× KKK  > 0.   

This inequality may be expanded to: 

[ ] ( ) 41875392787.5112225 4  45.5100059980 +−−+×− KKK  =  

02378177.5821954000 2 >++− KK , or 016.1852)(36.7339)( <+×− KK which 

shows that for stability: 

K < 36.73  

For C > 0, the s1 row  
( )[ ] ( )[ ]

C
C K 4  45.52502133355.0125K  3.5335 +×−××−−+

 is 

greater than 0 if: 

                                                           

# The S
3

row was multiplied by 335 and the S
1

row was multiplied by C. 
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( )[ ] ( )[ ]
C

K 4  45.52502133355.0125K  3.5335 +×−××
−−+  > 0  

This inequality may be re-written as: 

( )[ ] ( )[ ]
( )[ ] ( ) ( )[ ]125  3.5335335 4  45.5 4  45.5250213335

K 4  45.52502133355.0125K  3.5335
2

−+×−+×+−×
+×−××

−−+
KKK

 > 0  

After algebraic manipulations this can be rewritten as: 

3 2 81340000 22845325 942768725 6.9234 10 0K K K− + + + × >  

or 

( 0.7485)( 18.84)( 36.7) 0K K K+ + − <  

From the previous, and for positive K,  we conclude that the system will be stable only if level 

controller’s derivative gain, KDLC
 is within the range: 0 < KDLC

< 36.7. 

 

66. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−+
−−−+

=−

s
s

KKs
KKs

s

1001
010
4.89.66245.3
7.76.618.67.11

AI   

1001
10

9.66245.3
7.7

01
010
4.89.665.3

6.61

101
00
4.89.665.3

8.6
100

01
4.89.6624

)7.11()det(

−
−
+

+
−

−
−

−

−

−
+−

−+
+=−

s
Ks

K
s

KK
K

s
s

KK

s
s

KKs
ss AI

 



Solutions to Design Problems   6-41 

Copyright ©   2011 by John Wiley & Sons, Inc. 

⎭
⎬
⎫

⎩
⎨
⎧

−
−

+
−

+−
−

+

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−

−
−

−

⎭
⎬
⎫

⎩
⎨
⎧ −

−
−

−+

⎭
⎬
⎫

⎩
⎨
⎧ −

−
−

−++=

01
10

9.66
101

0
)24(

100
1

5.37.7

01
10

4.8
1

00
9.66

0
01

5.36.61

100
1

4.8
1

00
9.66

10
0

5.38.6

100
1

4.8
0

01
9.66

10
0

)24()7.11(

K
s

s
s

K

K
s

K
s

K

s
K

s
K

s
s

s
K

s
K

s
s

ss

 

057.10323.71341.840)2.596.304(7.35 2234 =−+++++= KKKssKss  

 

The Routh array is: 

 

s4 1 K2.596.304 +  K3.713  

s3 7.35  K41.840  257.1032 K−  

s2 6.30466.35 +K  KK 3.71392.28 2 +   

s 
6.30466.35

08.23052458.28936 2

+
+

K
KK

   

1 KK 3.71392.28 2 +    

 

Row 3 is positive if 54.8−>K  

Rows 4 and 5 are positive if 0>K  

So the system is closed loop stable if 0>K . 
 

67. 

Sensor

+

-
Input 

transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
100

K 1
1000

0.7883( s + 53.85)
( s2 + 15.47 s + 9283 )( s2 + 8.119 s + 376 .3) 82300

1
100
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+

-

Desired 
force

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
1000

0.7883( s + 53.85)
(s2 + 15.47s + 9283 )(s 2 + 8.119 s + 376 .3) 82300

K
100

 

 

G(s) = 
Yh(s) − Ycat (s)

Fup(s)
=

0.7883(s + 53.85)
(s2 + 15.47s + 9283)(s2 +8.119s + 376.3)

 

Ge(s)=(K/100)*(1/1000)*G(s)*82.3e3 
 

                                            0.6488K (s+53.85) 
             Ge(s) =        
                            (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283) 

 
                                                  0.6488K (s+53.85) 
T(s) = ___________________________________________________________________________________________________________________________ 
            4               3                      2                                                                                 7 
           s  + 23.589 s  + 9784.90093 s  + (0.6488 K + 81190.038 )s + (34.94 K +   0.34931929 10 )     
 
 
 
 
                       

s4 1 9785 (0.3493e7+34.94K) 

 

+ 

s3 23.59 (0.6488K+81190) 0 + 

s2 (-0.0275K+6343) (0.3493e7+34.94K) 0 K<230654 

s1 
−0.0178K2 +1058.7K +432.59e6

−.0275K +6343
  0 -128966<K<188444 

s0 (0.3493e7+34.94K)  0 -99971<K 

 The last column evaluates the range of K for stability for each row. Therefore –99971 < K < 188444. 
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68.  

The Characteristic Equation is given by 

 

0
0126.011.06817.2

3844.105201 23 =
+++

−−
+

sss
sK  

or 

( ) 03844.105200126.011.06817.2 23 =+−+++ sKsss  

or 

0)3844.100126.0()52011.0(6817.2 23 =−+−++ KsKss  

The Routh Array is: 

 

3s  1 K52011.0 −  

2s  6817.2  K3844.100126.0 −  

s  6817.2
1.13842824.0 K−

  

1 K3844.100126.0 −   

Thus for stability 

 

0
6817.2

1.13842824.0
>

− K
 or 41004.2 −×<K  

and 

03844.100126.0 >− K  or 31021.1 −×<K  

The intersection of both requirements gives 41004.2 −×<K . 

69.   

From the block diagram it is readily obtained: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×+×++

+×
⎟
⎠
⎞

⎜
⎝
⎛ +

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×+×++

+×
⎟
⎠
⎞

⎜
⎝
⎛ +

=
Ω

0.01908)(s6)s(100.50.5173)(
)610(2491.040

0443.01

0.01908)(s6)s(100.50.5173)(
)610(2491.040

)(
)(

ss
s

s
sK

ss
s

s
sK

sR
s

P

P

v

  or 
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( )
( ) ( )[ ]246.04011035.00.05723.6136

)6.0(40491.2
)(
)(

22 ++++++
++

=
Ω

sKsKsss
ssK

sR
s

PP

P

v

 

 
( )

( ) ( )3 2

2.491 40 ( 0.6 )
6 3.613 0.11035 4.4712 0.06621 s 2.65

P

P P

K s s
s K s K

+ +
=

+ + + + +
  

 

Noting that the change in car speed, ωω 06154.0 ==
toti
rv , we get the system transfer function, T(s) = 

V(s)/Rv(s):  

 
( )

( ) ( )3 2

0.1533 40 ( 0.6 )( ) ( )0.06154
( ) ( ) 6 3.613 0.11035 4.4712 0.06621 s 2.65v v P P

s sV s s
R s R s s K s K

+ +Ω
= =

+ + + + +

  

The characteristic polynomial for that system is, therefore: 

( ) ( ) 2.65s0.066214.471211035.0613.36  P(s) 23 +++++= PP KsKs   

Hence, the Routh-Hurwitz for the system is given by: 

 

 

 

 

s3 6 
PK0.066214.4712 +  0 

s2 
PK11035.0613.3 +  2.65 0 

s1 ( )( )
P

PP

K
KK

11035.0613.3
9.150.066214.471211035.0613.3

+
−++

 
0 0 

s0 2.65 0 0 

 

For stability, 32.74011035.0613.3 −≥⇒≥+ PP KK  and 
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( )( ) 09.150.066214.471211035.0613.3 ≥−++ PP KK . That is: 

⇒++=++ )81.340.22100.00731( 0.25444560.732610.00731 22
PPPP KKKK  

0)348.0)(872.99()81.340.2210( 2 ≥++=++ PPPP KKKK   

The latter condition indicates that for stability 872.99−≥PK  and 348.0−≥PK   

The intersection of these two requirements shows that for stability: 348.0−≥PK  or, alternatively 0>
scPK . 

 



 
 

 

Copyright ©   2011 by John Wiley & Sons, Inc. 

S  E  V  E  N  
 
  Steady-State Errors  

 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: Steady-State Error Design via Gain 
 a. G(s) = 

76.39K
s(s+150)(s+1.32)  . System is Type 1. Step input: e(∞) = 0; Ramp input:  

e(∞) = 
1

Kv
   = 

1
76.39K

150 x 1.32

   = 
2.59

K   ; Parabolic input: e(∞) = ∞. 

 b.  
1

Kv
   = 

2.59
K    = 0.2. Therefore, K = 12.95. Now test the closed-loop transfer function,  

T(s) = 
989.25

s3+151.32s2+198s+989.25
   , for stability. Using Routh-Hurwitz, the system is stable. 

 

s3 1 198 

s2 151.32 989.25 

s1 191.46253 0 

s0 989.25 0 

 

Video Laser Disc Recorder: Steady-State Error Design via Gain 

a. The input, 15t2 , transforms into 30/s3. e(∞) = 30/Ka  = 0.005.  

Ka = 
0.2*600
20000   * K1K2K3 = 6x10-3 K1K2K3. Therefore: e(∞) = 30/Ka = 

30
6x10−3K1K2K3

 

= 5x10-3. Therefore K1K2K3 = 106. 

b.  Using K1K2K3 = 106, G(s) = 
2x105(s + 600)
s2 (s + 2x104 )

. Therefore, T(s) =  

2x105(s + 600)
s3 + 2x104 s2 + 2x105s +1.2x108 . 

          Making a Routh table,  
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s3 1 2x105 

s2 2x104 1.2x108 

s1 194000 0 

s0 120000000 0 

we see that the system is stable. 
 
c.   
Program: 
numg=200000*[1 600]; 
deng=poly([0 0 -20000]); 
G=tf(numg,deng); 
'T(s)' 
T=feedback(G,1) 
poles=pole(T) 
 
Computer response: 
ans =           
             
T(s) 
 
Transfer function: 
         200000 s + 1.2e008 
------------------------------------ 
s^3 + 20000 s^2 + 200000 s + 1.2e008 
  
poles = 
 
  1.0e+004 * 
 
  -1.9990           
  -0.0005 + 0.0077i 
  -0.0005 - 0.0077I 

 
ANSWERS TO REVIEW QUESTIONS 

1. Nonlinear, system configuration 

2. Infinite 

3. Step(position), ramp(velocity), parabola(acceleration) 

4. Step(position)-1, ramp(velocity)-2, parabola(acceleration)-3 

5. Decreases the steady-state error 

6. Static error coefficient is much greater than unity. 

7. They are exact reciprocals. 

8. A test input of a step is used; the system has no integrations in the forward path; the error for a step input 

is 1/10001. 

9. The number of pure integrations in the forward path 
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10. Type 0 since there are no poles at the origin 

11. Minimizes their effect 

12. If each transfer function has no pure integrations, then the disturbance is minimized by decreasing the 

plant gain and increasing the controller gain. If any function has an integration then there is no control over 

its effect through gain adjustment. 

13. No 

14. A unity feedback is created by subtracting one from H(s). G(s) with H(s)-1 as feedback form an 

equivalent forward path transfer function with unity feedback. 

15. The fractional change in a function caused by a fractional change in a parameter 

16. Final value theorem and input substitution methods 

 

SOLUTIONS TO PROBLEMS 

1.  

e (∞) =  lim s E(s )
s →0

  =  lim
s →0    

s R(s )
1+G(s )

 
where  

G(s) =
450(s +12)(s + 8)(s +15)

s(s + 38)(s2 + 2s + 28)
. 

For step, e (∞) = 0. For 37tu(t) , R(s) =
37
s2 . Thus, e (∞) = 6.075x10-2. For parabolic input,  

e(∞) = ∞. 
 

2.  

a. From the figure 235 =−=−= ssssss cre  

b. Since the system is linear, and because the original input was )(5.2)( ttutr = , the new steady 

state error is 8.0
5.2

2
==sse . 

 
3.  

e (∞) =  lim s E(s )
s →0

  =  lim
s →0    

s R(s )
1+G(s )

 

=
3

s 0

2

s(160/s )lim 2.8360(s 3)(s 4)(s 8)1
s (s 6)(s 17)

→
=

+ + +
+

+ +
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4.  
Reduce the system to an equivalent unity feedback system by first moving 1/s to the left past the 

summing junction. This move creates a forward path consisting of a parallel pair, 
1
s

+1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  in cascade 

with a feedback loop consisting of G(s) =
2

s + 3
 and H(s) = 7. Thus,  

 

Ge (s) =
(s + 1

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2/(s + 3)
1 +14 /(s + 3)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2(s +1)
s(s +17)

 

Hence, the system is Type 1 and the steady-state errors are as follows: 
 

 Steady-state error for 15u(t) = 0. 
 

 Steady-state error for 15tu(t) =
15
Kv

=
15

2 / 17
= 127.5. 

 
 Steady-state error for 15t2u(t) = ∞  
 
 

 
5.  

System is type 0.  Kp = 1.488. 

 For 30u(t), e(∞) = 
p

30 12.1
1 K

=
+

 

 For 70tu(t), e(∞) = ∞ 

 For 81t2u(t), e(∞) = ∞ 
6.  

4

3

( ) 150 /( ) 210( 4)( 6)( 11)( 13)1 ( ) 1
( 7)( 14)( 19)

R s SE s S S S SG s
S S S S

= =
+ + + ++ +

+ + +

 

Thus,  

0

150( ) lim ( ) 0.3875(210)(4)(6)(11)(13)
(7)(14)(19)

s
e sE s

→
∞ = = =  

  
7.  

 de
dt

  =  s E (s )
 

Therefore,  e
.
(∞)  =

0
lim
s→

s2E(s) = 
0

lim
s→

s2 
R(s)

1+G(s)   =

2
4

0

2

6

lim 100( 1)( 2)1
( 10)( 3)

s

s
s

s s
s s s

→ + ++
+ +

= 
9

10  . 
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8.  
15 1020(13)(26)(33)( ) ;  25.65

1 (65)(75)(91)p
p

e K
K

∞ = = =
+

. Therefore, e(∞) = 0.563. 

9.  

For 70u(t), ess = 
70 70 14

1 5pK
= =

+
 ; For 70tu(t), ess = ∞,  since the system is Type 0.  

 
 
10.  

a.  The closed-loop transfer function is,   

 T (s) =
5000

s2 + 75s + 5000
 

from which, ωn = 5000 and  2ζωn = 75. Thus, ζ = 0.53 and  

%OS = e−ζπ / 1−ζ 2

x100  = 14.01%. 

b.  Ts = 
4

ζωn

= 
4

75 / 2
= 0.107 second. 

c.  Since system is Type 1, ess for 5u(t) is zero. 

d.  Since Kv  is 
5000

75
= 66.67, ess = 

5
Kv

= 0.075. 

e.  ess = ∞, since system is Type 1. 

 

11.  

 
0

100500(5)(14)(23)lim ( ) 25000
(27)( )(33)v s

K sG s
α→

= = =  

 Thus, α = 7.26. 

 
12. 

 000,10
75

642)(lim 2

0
===

→ x
xxKxsGsK

sa . Therefore, K = 7291.667. 

 
13.  

a.  Ge(s) = 

5
s(s + 1)(s + 2)

1 + 5(s + 3)
s(s +1)(s + 2)

=  
5

s3 + 3s2+ + 7s + 15
 

Therefore, Kp = 1/3; Kv = 0; and Ka = 0. 
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b.  For 50u(t), e(∞) = 
50

1 + Kp
   = 37.5; For 50tu(t), e(∞) = ∞; For 50t2u(t), e(∞) = ∞ 

c. Type 0 
 

 
14.  

E(s) =
R(s)

1 + G(s)
. Thus, e(∞) = lim

s→ 0
sE(s)  = 

4

2 20

3

60

lim
1030( 8 23)( 21 18)1

( 6)( 13)
s

s
s

s s s s
s s s

→ + + + +
+

+ +

 

= 0.0110. 
 

 15.  
Collapsing the inner loop and multiplying by 1000/s yields the equivalent forward-path transfer 

function as, 

Ge (s) =
105(s + 2)

s(s2 +1005s + 2000)
 

Hence, the system is Type 1. 
 

16. 
 

The transfer function from command input to error signal can be found using Mason’s rule or any 
other method: 

 

1

2

1

2

20)3(
20)3(

)3(
201

)3(
201

)(
)(

Gss
Gss

G
ss

G
ss

sR
sE

++
−+

=

+
+

+
−

=  

Letting 
s

sR 1)( = and by the final value theorem: 

)(
)(

)(
1

2

00 sG
sGLimssELime

ssss →→
−==  

a. If 1G  is type 0, it is required that 0)(2 =sG  

b. If 1G  is type 1, it is required that )(2 sG must be type 0 

c. If 1G  is type 2, it is required that )(2 sG must be type 1 
 

 
17.    

 2 2 

0 0

( ) ( )= lims E(s) = lims
1 ( )s s

R se
G s

•

→ →
∞

+
. 

 For Type 0, step input: R(s) = 
1
s   , and 

0
( )=  lim = 0

1 ( )s

se
G s

•

→
∞

+
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 For Type 0, ramp input: R(s) = 
1
s2   , and 

  

0
0

1 1 1( )= lim =   = 
1 ( ) 1 lim ( ) 1s

ps

e
G s G s K

•

→
→

∞
+ + +

  

 For Type 0, parabolic input: R(s) = 
1
s3   , and 

0

1( )= lim =  
( )s

e
s sG s

•

→
∞ ∞

+
 

 For Type 1, step input: R(s) = 
1
s   , and 

0
( )= lim = 0

1 ( )s

se
G s

•

→
∞

+
 

 For Type 1, ramp input: R(s) = 
1
s2   , and 

0

1( )= lim =  0
1 ( )s

e
G s

•

→
∞

+
 

 For Type 1, parabolic input: R(s) = 
1
s3   , and

0

1( )= lim = 
( )s

e
s sG s

•

→
∞

+
1

Kv
  

 For Type 2, step input: R(s) = 
1
s   , and 

0
( )= lim = 0

1 ( )s

se
G s

•

→
∞

+
 

 For Type 2, ramp input: R(s) = 
1
s2   , and 

0

1( )= lim =  0
1 ( )s

e
G s

•

→
∞

+
 

 For Type 2, parabolic input: R(s) = 
1
s3   , and 

0

1( )= lim = 
( )s

e
s sG s

•

→
∞

+
0 

 

 
 

18. 

  a.  
1/10 7e( )= 0.01;  where 10.

5 8 12v
v

KK
K x x

∞ = = = Thus, 685.71K = . 

b. Kv = 10. 

c.  The minimum error will occur for the maximum gain before instability. Using the Routh-Hurwitz 

Criterion along with 
( )4 3 2

( 7)( )
25 196 480 7

K sT s
s s s K s K

+
=

+ + + + +
: 
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s4 1 196 7K For Stability 

s3 25 480+K   

s2 4420-K 175K  K < 4420 

s1 2 435 2121600K K− − +    -1690.2 < K < 

1255.2 

s0 175K   K > 0 

 

Thus, for stability and minimum error K = 1255.2. Thus, 
7 18.3

5 8 12v
KK

x x
= =  and 

1/10 1/10e( )= 0.0055
18.3vK

∞ = = . 

19. 

  e(∞) = 40 40 1040 0.006
/ 26vK Ka Ka

= = = . Hence, Ka = 173333.33. 

20.  

 Find the equivalent G(s) for a unity feedback system. G(s) = 

K
s(s+1)

1 + 
10
s+1

    = 
K

s(s+11)  . Thus, e(∞) = 

100
Kv

   = 
100
K/11   = 0.01; from which K = 110,000.  

21.  

 
3 20;  ( ) 0.061. Hence, 765.03.
7a

a

KK e K
K

= ∞ = = =  

22.  

 a. e(∞) = 
10
Kv

   = 
1

6000  . But, Kv = 
30K

5    = 60,000. Hence, K = 10,000. For finite error for a ramp 

input, n = 1. 

 b. 
2

0 0

10000( 3 30)lim ( ) lim
( 5)p s s

s sK G s
s s→ →

+ +
= = = ∞

+
 

 
2

0 0

10000( 3 30)lim ( ) lim 60000
( 5)v s s

s sK sG s s
s s→ →

+ +
= = =

+
 

 

2
2 2

0 0

10000( 3 30)lim ( ) lim 0
( 5)a s s

s sK s G s s
s s→ →

+ +
= = =

+
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23.  
 a. Type 0 

 b. E(s) = 
R(s)

1 + G(s)   . Thus, 20 0

2

12 / 12( ) lim ( ) lim
( 6 6) 1 0.081

( 5) ( 3)
s s

se sE s s
K s s K
s s

→ →
∞ = = =

+ + ++
+ +

. 

 c. e(∞) = ∞, since the system is Type 0. 
 
24. 

 
27 27e( ) = = = 0.4. Thus, K = 325

247 /1188vK K
∞ . 

25.  

 e(∞) =  1
1 pK+

= 
1
6K1
58

+
 = 0.08. Thus, K = 111. 

26.  

The system is stable for 0 < K < 2000. Since the maximum Kv is Kv = 
K

320
= 

2000
320

= 6.25, the 

minimum steady-state error is 
1

Kv
   = 

1
6.25

= 0.16.  

27.  
 To meet steady-state error characteristics: 

   

 Therefore, Kα = 9β2. 

 To meet the transient requirement: Since  T(s) = 
K(s+α)

s2 + (K+2β)s + (β2 + Kα)
  ,  

ωn2 = 10 = β2 + Kα ; 2ζωn = 10   = K+2β. Solving for β, β = ±1. For β = +1, K = 1.16 and α = 7.76. 

An alternate solution is β = -1, K = 5.16, and α = 1.74. 
28. 
  a. System Type = 1 

  b. Assume G(s) = 
K

s(s+α)  . Therefore, e(∞) = 1
Kv

   = 
1

K/α   = 0.01, or 
K
α   = 100. 

 But, T(s) = 
G(s)

1 + G(s)   = 
K

s2+αs+K
  .  

 Since ωn = 10, K = 100, and α = 1. Hence, G(s) = 
100

s(s+1)  . 
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 c. 2ζωn = α = 1. Thus, ζ = 
1

20  . 

29.  

 T(s) = 
G(s)

1 + G(s)   = 
K(s+α)

s2+(K+β) s+αK
   . Hence, K+β = 2, Kα = ωn2 = (12+12) = 2.  

Also, e(∞) = 1
Kv

   = 
β

Kα = 0.1. Therefore, β = 0.1Kα = 0.2, K = 1.8, and α = 1.111.   

 
 
 
 
30.  

 System Type = 1. T(s) = 
G(s)

1 + G(s)   =  
K

s2+as+K
  . From G(s), Kv = 

K
a    = 110. For 12% overshoot, ζ = 

0.56. Therefore, 2ζωn = a , and ωn2 = K. Hence, a = 1.12 K  .  

Also, a = 
110
K

. Solving simultaneously,  

K = 1.52 x 104, and a = 1.38 x 102.   
 
 
31.  

 a. For 20% overshoot, ζ = 0.456. Also, Kv = 1000 = 
K
a   . Since T(s) = 

K
s2+as+K

  , 2ζωn = a, and  

ωn = K  . Hence, a = 0.912 K  . Solving for a and K, K = 831,744, and a = 831.744. 

 b. For 10% overshoot, ζ = 0.591. Also, 
1

Kv
  = 0.01. Thus, Kv = 100 = 

K
a   . Since T(s) = 

K
s2+as+K

  , 

2ζωn = a, and ωn = K  . Hence, a = 1.182 K  . Solving for a and K, K = 13971 and a = 139.71. 

32.  
a. For the inner loop:  

G1(s) = 

1
s2(s+1)

1 + 
1

s3(s+1)

  = 
s

s4+s3+1
   

Ge(s) = 
1

s2(s+3)
  G1(s) = 

1
s(s5+4s4+3s3+s+3)

   

 

T(s) = 
Ge(s)

1+Ge(s)  = 
1

s6+4s5+3s4+s2+3s+1
  

b. From Ge(s), system is Type 1. 

c. Since system is Type 1, ess = 0 

d. ; From Ge(s), Kv = lim
s→ 0

sGe(s)  = 
1
3  . Therefore, ess = 

5
Kv

   = 15.  
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e. Poles of T(s) = -3.0190, -1.3166, 0.3426 ± j0.7762, -0.3495. Therefore, system is unstable and 

results of (c) and (d) are meaningless 
33. 

a. For the inner loop:  

G1(s) = 

10
s(s+1)(s+3)(s+4)

1 + 
20

(s+1)(s+3)(s+4)

  = 
10

s(s3+8s2+19s+32)
   

 

Ge(s) =  
20

s(s3+8s2+19s+32)
   

 

T(s) = 
Ge(s)

1+Ge(s)  = 
20

s4+8s3+19s2+32s+20
  

b. From Ge(s), system is Type 1. 

c. Since system is Type 1, ess = 0 

d. From Ge(s), Kv = lim
s→ 0

sGe(s)  = 
20
32  = 

5
8  . Therefore, ess = 

5
Kv

   = 8.  

e. Poles of T(s) = -5.4755, -0.7622 ± j1.7526, -1. Therefore, system is stable and results of parts c and 

d are valid. 

34. 
Program: 
numg1=[1 9];deng1=poly([0 -6 -12 -14]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
numg2=6*poly([-9 -17]);deng2=poly([-12 -32 -68]); 
'G2(s)=' 
G2=tf(numg2,deng2) 
numh1=13;denh1=1; 
'H1(s)=' 
H1=tf(numh1,denh1) 
numh2=1;denh2=[1 7]; 
'H2(s)=' 
H2=tf(numh2,denh2) 
%Close loop with H1 and form G3 
'G3(s)=G2(s)/(1+G2(s)H1(s)' 
G3=feedback(G2,H1) 
%Form G4=G1G3 
'G4(s)=G1(s)G3(s)' 
G4=series(G1,G3) 
%Form Ge=G4/1+G4H2 
'Ge(s)=G4(s)/(1+G4(s)H2(s))' 
Ge=feedback(G4,H2) 
%Form T(s)=Ge(s)/(1+Ge(s)) to test stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
'Poles of T(s)' 
pole(T) 
%Computer response shows that system is stable. Now find error specs. 
Kp=dcgain(Ge) 
'sGe(s)=' 
sGe=tf([1 0],1)*Ge; 
'sGe(s)' 
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sGe=minreal(sGe) 
Kv=dcgain(sGe) 
's^2Ge(s)=' 
s2Ge=tf([1 0],1)*sGe; 
's^2Ge(s)' 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
essstep=100/(1+Kp) 
essramp=100/Kv 
essparabola=200/Ka 
 
Computer response: 
ans = 
G1(s)= 
Transfer function: 
s + 9 
------------------------------- 
s^4 + 32 s^3 + 324 s^2 + 1008 s 
ans = 
G2(s)= 
Transfer function: 
6 s^2 + 156 s + 918 
------------------------------ 
s^3 + 112 s^2 + 3376 s + 26112 
ans = 
H1(s)= 
Transfer function: 
13 
ans = 
H2(s)= 
Transfer function: 
1 
----- 
s + 7 
ans = 
G3(s)=G2(s)/(1+G2(s)H1(s) 
Transfer function: 
6 s^2 + 156 s + 918 
------------------------------ 
s^3 + 190 s^2 + 5404 s + 38046 
Solutions to Problems 7-13 
ans = 
G4(s)=G1(s)G3(s) 
Transfer function: 
6 s^3 + 210 s^2 + 2322 s + 8262 
------------------------------------------------------ 
s^7 + 222 s^6 + 11808 s^5 + 273542 s^4 + 3.16e006 s^3 
+ 1.777e007 s^2 + 3.835e007 s 
ans = 
Ge(s)=G4(s)/(1+G4(s)H2(s)) 
Transfer function: 
6 s^4 + 252 s^3 + 3792 s^2 + 24516 s + 57834 
------------------------------------------------------- 
s^8 + 229 s^7 + 13362 s^6 + 356198 s^5 + 5.075e006 s^4 
+ 3.989e007 s^3 + 1.628e008 s^2 + 2.685e008 s 
+ 8262 
ans = 
T(s)=Ge(s)/(1+Ge(s)) 
Transfer function: 
6 s^4 + 252 s^3 + 3792 s^2 + 24516 s + 57834 
------------------------------------------------------- 
s^8 + 229 s^7 + 13362 s^6 + 356198 s^5 + 5.075e006 s^4 
+ 3.989e007 s^3 + 1.628e008 s^2 + 2.685e008 s 
+ 66096 
ans = 
Poles of T(s) 
ans = 
-157.1538 
-21.6791 



Solutions to Problems   7-13 

Copyright ©   2011 by John Wiley & Sons, Inc. 

-14.0006 
-11.9987 
-11.1678 
-7.0001 
-5.9997 
-0.0002 
Kp = 
7 
ans = 
sGe(s)= 
ans = 
sGe(s) 
Transfer function: 
6 s^5 + 252 s^4 + 3792 s^3 + 2.452e004 s^2 
+ 5.783e004 s 
-------------------------------------------------------- 
s^8 + 229 s^7 + 1.336e004 s^6 + 3.562e005 s^5 
+ 5.075e006 s^4 + 3.989e007 s^3 + 1.628e008 s^2 
+ 2.685e008 s + 8262 
Kv = 
0 
ans = 
s^2Ge(s)= 
ans = 
s^2Ge(s) 
Transfer function: 
6 s^6 + 252 s^5 + 3792 s^4 + 2.452e004 s^3 
+ 5.783e004 s^2 
-------------------------------------------------------- 
s^8 + 229 s^7 + 1.336e004 s^6 + 3.562e005 s^5 
+ 5.075e006 s^4 + 3.989e007 s^3 + 1.628e008 s^2 
+ 2.685e008 s + 8262 
Solutions to Problems 7-15 
Ka = 
0 
essstep = 
12.5000 
essramp = 
Inf 
essparabola = 
Inf 

 

35.  

 The equivalent forward transfer function is, G(s) = 
10K1

s(s+1+10Kf)
  .  

Also, T(s) = 
G(s)

1 + G(s)   = 
10K1

s2+(10Kf+1)s+10K1
  . From the problem statement, Kv = 

10K1
1+10Kf

   = 10. 

Also, 2ζωn = 10Kf+1 = 2(0.5) 10K1  = 10K1  . Solving for K1 and Kf simultaneously, K1 = 10 and 

Kf = 0.9. 

 

 
36. 

 
We calculate the Velocity Error Constant,  
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)842)(07895.0(

)3393.0108.02)(895.7(00842.0

94.31261.14393.95418.135
)2.557704724.144316.34(

00
)()(

+++

+++

++++

++−−
→→

==
sss

sss

sssss

ssss
ssv LimsPssGLimK

 

623.00357.0
94.31

2.557
==  

For a unit ramp input the steady state error is 605.11
==

v
ss K

e . The input slope is 6.15
605.1
25

=  

37.   

a. 

 

 

From the point of view of e(t) the above block diagram is equivalent to the original. In this unity 

feedback block diagram the open loop transmission is 
β

α
β

α
+

=
+

=
s

s

ssG
1

1

)( , the system is 

type 0. 

b. The position error constant is 
β
α

== )0(GK P . The steady state error is 

βα
β

β
α +

=
+

=
+

=
1

1
1

1

P
ss K

e . 
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38. 

 2

0
1 2

sR(s) sD(s)G (s)e( ) lim
1 G (s)G (s)s→

−
∞ =

+
, where G1(s) = 

1
s+5   and G2 = 

100
s+2  . From the problem statement,  

 R(s) = D(s) = 
1
s  . Hence, 

0

1001 49s 2e( ) lim 1 100 111
s 5 s 2

s→

−
+∞ = = −

+
+ +

. 

39.  

 Error due only to disturbance: Rearranging the block diagram to show D(s) as the input,   

 

 

 Therefore, 

  -E(s) = D(s) 

K2
s(s+4)

1 + 
K1K2(s+2)
s(s+3)(s+4)

   = D(s) 
K2(s+3)

s(s+3)(s+4) + K1K2(s+2)   

  

 For D(s) = 
1
s  , eD(∞) = 

0
lim
s→

 sE(s) = - 
3

2K1
   . 

 Error due only to input: eR(∞) = 
1

Kv
   = 

1
K1K2

6

   = 
6

K1K2
  . 

 Design:  

 eD(∞) = - 0.000012 =  - 
3

2K1
   , or K1 = 125,000.  

 eR(∞) = 0.003 =  
6

K1K2
  , or K2 = 0.016 
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40. 

a. The open loop transmission is 
2

35)()(
+

=
s

sPsG , so 
2

35)()(
0

==
→

sPsGLimK
sP . For a unit 

step input 0541.0
1

1
=

+
=

P
ssr K

e . Since the input is threefold that we have that 

1622.0)0541.0(3 ==ssre  
b.     
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c. The transfer function from disturbance to error signal is 
37

7

2
751

2
7

)(
)(

+
−=

+
+

+−=
s

s

s
sD
sE

 

Using the final value theorem 1892.0
37
71

37
7)(

00
==⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

+
−==

→→ ss
sLimssELime

ssssd  

d.     
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e. 351.01892.01622.0 =+=+= ssdssrtot eee  

f. 
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41. 

C(s)
R(s)

=
G1(s)G2(s)

1 + G2 (s)H1(s)
; ∴

Ea1 (s)
R(s)

=
G1(s)

1 + G2 (s)H1(s)

ea1(∞) = lim
s →0

sR(s)G1(s)
1 + G2 (s)H1(s)

 

 42.  
System 1: 

Forming a unity-feedback path, the equivalent unity feedback system has a forward transfer function of 
 

Ge (s) =

10(s + 10)
s(s + 2)

1 + 10(s +10)(s + 3)
s(s + 2)

=
10(s + 10)

11s 2 + 132s + 300
 

a. Type 0 System; b. Kp = Kp = lim
s→ 0

Ge (s) = 1/ 3 ; c. step input; d. e(∞) = 
1

1 + Kp

= 3/4; 

 e. ea −step (∞) = lim
s→ 0

sR(s)
1+ G(s)H(s)

= lim
s→ 0

s
1
s

⎛ 
⎝ 

⎞ 
⎠ 

1+ 10(s + 10)(s + 4)
s(s + 2)

= 0 . 

System 2: 

Forming a unity-feedback path, the equivalent unity feedback system has a forward transfer function of 
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Ge (s) =

10(s + 10)
s(s + 2)

1 + 10(s + 10)s
s(s + 2)

=
10(s + 10)

s(11s +102)
 

a. Type 1 System; b. Kv = lim
s→ 0

sGe (s) = 0.98 ; c. ramp input; d. e(∞) =
1
Kv

= 1.02; 

e. ea −ramp (∞) = lim
s →0

sR(s)
1 + G(s)H(s)

= lim
s→0

s
1
s2

⎛ 
⎝ 

⎞ 
⎠ 

1 + 10(s +10)(s +1)
s(s + 2)

=
1

50
. 

43. 
System 1. Push 5 to the right past the summing junction: 

 

(s+ 5)(s+ 8)

R(s) C(s)+

-

5(s+4)

2

 

Produce a unity-feedback system: 

R(s) C(s)+

1

-
(s+ 5)(s+ 8)

5(s+4)

-

 

 

Thus, 2

5( 4)
5( 4)( 3)( 7)( ) 5( 4) 15 411

( 3)( 7)

e

s
ss sG s s s s

s s

+
++ += =

+ + ++
+ +

. Kp = 
20
41

. estep = 
1

1+Kp
  = 0.67, eramp = ∞, 

eparabola = ∞. 

Checking for stability, from first block diagram above, T(s) = 2

5( 4)
20 61
s

s s
+

+ +
. The system is stable. 

System 2. Push 20 to the right past the summing junction and push 10 to the left past the pickoff point: 

5( 4)
( 3)( 7)

s
s s

+
+ +

 

5( 4)
( 3)( 7)

s
s s

+
+ +
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R(s) C(s)+

-

200(s+4)

(s+5)(s+8)

1

40
 

Produce a unity-feedback system: 
 

R(s) C(s)+

-

200(s+4)

(s+5)(s+8)

-39

40

-

 

 

Thus, 2

200( 4)
200( 4)( 3)( 7)( )

200( 4) 39 185 7591
( 3)( 7) 40

e

s
ss sG s

s s s
s s

+
++ += =

+ − −⎛ ⎞− ⎜ ⎟+ + ⎝ ⎠

. Kp  = 
200(4) 1.05

759
= −

−
. 

estep = 
1

1+Kp
  = -20, eramp = ∞, eparabola = ∞. 

Checking for stability, from first block diagram above, 2

( ) 200( 4)( )
1 ( ) 15 41

e

e

G s sT s
G s s s

+
= =

+ + +
. 

Therefore, system is stable and steady-state error calculations are valid. 
 

44.  
a. Produce a unity-feedback system: 

 

200( 4)
( 3)( 7)

s
s s

+
+ +

 

200( 4)
( 3)( 7)

s
s s

+
+ +

 



7-22   Chapter 7:   Steady-State Errors 

Copyright ©   2011 by John Wiley & Sons, Inc. 

R(s) C(s)+

-

(s+1)

s2(s+2)-

K-1

 

 

Thus, Ge(s) = 

(s+1)
s2(s+2)

1+
(s+1)(K-1)

s2(s+2)

   = 
s+1

s3+2s2+(K-1)s+(K-1)
  . System is Type 0. 

b. Since the system is Type 0, the appropriate static error constant is Kp. Thus, 
1( ) 0.001

1step
p

e
K

∞ = =
+

 

 

Therefore,  Kp = 999 = 
1

K-1  . Hence, K = 1.001001.  

Check stability: Using original block diagram, T(s) = 
 

(s+1)
s2(s+2)

1+
K(s+1)
s2(s+2)

  = 
s+1

s3+2s2+Ks+K
  . 

Making a Routh table: 
 

s3 1 K 

s2 2 K 

s1 
K
2   0 

s0 K 0 
 

Therefore, system is stable and steady-state error calculations are valid. 
 

45. 
a. Produce a unity-feedback system: 
 

H1(s) = 
4
2

s
s

+
+

- 1 = 
2

2s +
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R(s) C(s)+

-

K(s+1)

s2(s+2)-

1

s+3

 

 

Thus, 
2

4 3 2

2

( 1)
( 1)( 2)( 3)( ) 2 ( 1) 5 6 2 21

( 3)( 2)

e

K s
K s ss sG s K s s s s Ks K

s s s

+
+ ++= =

+ + + + ++
+ +

.  System is Type 0. 

b. Since Type 0, appropriate static error constant is Kp. 

c. 
2 1
2p

KK
K

= =  

d. estep = 
1

1+Kp
  = 

1
2

 

Check stability: Using original block diagram,  

 

2

4 3 2

2

( 1)
( 1)( 2)( 3)( ) ( 1)( 4) 5 ( 6) 5 41

( 3)( 2)

K s
K s ss sT s K s s s s K s Ks K

s s s

+
+ ++= =

+ + + + + + ++
+ +

. 

 
Making a Routh table: 
 

s4 1 K+6 4K 

s3 5 5K 0 

s2 6 4K 0 

s1 
5
3  K 0 0 

2

2s +

2

( 1)
( 3)

K s
s s

+
+
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s0 4K 0 0 
 

Therefore, system is stable for 0 < K and steady-state error calculations are valid. 
 

46. 
Program:  

K=10 
numg1=K*poly([-1 -2]);deng1=poly([0 0 -4 -5 -6]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
numh1=[1 6];denh1=poly([-8 -9]); 
'H1(s)=' 
H1=tf(numh1,denh1) 
'H2(s)=H1-1' 
H2=H1-1 
%Form Ge(s)=G1(s)/(1+G1(s)H2(s) 
'Ge(s)=G1(s)/(1+G1(s)H2(s))' 
Ge=feedback(G1,H2) 
%Test system stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
pole(T) 
Kp=dcgain(Ge) 
'sGe(s)' 
sGe=tf([1 0],1)*Ge; 
sGe=minreal(sGe) 
Kv=dcgain(sGe) 
's^2Ge(s)' 
s2Ge=tf([1 0],1)*sGe; 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
essstep=30/(1+Kp) 
essramp=30/Kv 
essparabola=60/Ka 
  
K=1E6 
numg1=K*poly([-1 -2]);deng1=poly([0 0 -4 -5 -6]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
numh1=[1 6];denh1=poly([-8 -9]); 
'H1(s)=' 
H1=tf(numh1,denh1) 
'H2(s)=H1-1' 
H2=H1-1 
%Form Ge(s)=G1(s)/(1+G1(s)H2(s) 
'Ge(s)=G1(s)/(1+G1(s)H2(s))' 
Ge=feedback(G1,H2) 
%Test system stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
pole(T) 
Kp=dcgain(Ge) 
'sGe(s)' 
sGe=tf([1 0],1)*Ge; 
sGe=minreal(sGe) 
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Kv=dcgain(sGe) 
's^2Ge(s)' 
s2Ge=tf([1 0],1)*sGe; 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
essstep=30/(1+Kp) 
essramp=30/Kv 
essparabola=60/Ka 
 
 

 
Computer response: 

K = 
 
    10 
 
 
ans = 
 
G1(s)= 
 
  
Transfer function: 
      10 s^2 + 30 s + 20 
------------------------------- 
s^5 + 15 s^4 + 74 s^3 + 120 s^2 
  
 
ans = 
 
H1(s)= 
 
  
Transfer function: 
     s + 6 
--------------- 
s^2 + 17 s + 72 
  
 
ans = 
 
H2(s)=H1-1 
 
  
Transfer function: 
-s^2 - 16 s - 66 
---------------- 
s^2 + 17 s + 72 
  
 
ans = 
 
Ge(s)=G1(s)/(1+G1(s)H2(s)) 
 
  
Transfer function: 
              10 s^4 + 200 s^3 + 1250 s^2 + 2500 s + 1440 
----------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
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ans = 
 
T(s)=Ge(s)/(1+Ge(s)) 
 
  
Transfer function: 
             10 s^4 + 200 s^3 + 1250 s^2 + 2500 s + 1440 
--------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2458 s^4 + 7378 s^3 + 8730 s^2 + 200 s + 120 
  
 
ans = 
 
  -8.5901 + 0.3993i 
  -8.5901 - 0.3993i 
  -6.0000           
  -4.4042 + 0.1165i 
  -4.4042 - 0.1165i 
  -0.0057 + 0.1179i 
  -0.0057 - 0.1179i 
 
 
Kp = 
 
   -1.0909 
 
 
ans = 
 
sGe(s) 
 
  
Transfer function: 
            10 s^5 + 200 s^4 + 1250 s^3 + 2500 s^2 + 1440 s 
----------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
  
 
Kv = 
 
     0 
 
 
ans = 
 
s^2Ge(s) 
 
  
Transfer function: 
           10 s^6 + 200 s^5 + 1250 s^4 + 2500 s^3 + 1440 s^2 
----------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
  
 
Ka = 
 
     0 
 
 
essstep = 
 
 -330.0000 
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essramp = 
 
   Inf 
 
 
essparabola = 
 
   Inf 
 
 
K = 
 
     1000000 
 
 
ans = 
 
G1(s)= 
 
  
 
 
Transfer function: 
  1e006 s^2 + 3e006 s + 2e006 
------------------------------- 
s^5 + 15 s^4 + 74 s^3 + 120 s^2 
  
 
ans = 
 
H1(s)= 
 
  
Transfer function: 
     s + 6 
--------------- 
s^2 + 17 s + 72 
  
 
ans = 
 
H2(s)=H1-1 
 
  
Transfer function: 
-s^2 - 16 s - 66 
---------------- 
s^2 + 17 s + 72 
  
 
ans = 
 
Ge(s)=G1(s)/(1+G1(s)H2(s)) 
 
  
Transfer function: 
  
          1e006 s^4 + 2e007 s^3 + 1.25e008 s^2 + 2.5e008 s + 1.44e008 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 997542 s^4 - 1.899e007 s^3 - 1.16e008 s^2 - 2.3e008 s   
                                                                                 
                                                                      - 1.32e008 
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ans = 
 
T(s)=Ge(s)/(1+Ge(s)) 
 
  
Transfer function: 
  
          1e006 s^4 + 2e007 s^3 + 1.25e008 s^2 + 2.5e008 s + 1.44e008 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2458 s^4 + 1.007e006 s^3 + 9.009e006 s^2 + 2e007 s      
                                                                                 
                                                                       + 1.2e007 
                                                                                 
  
 
ans = 
 
 -28.2460 +22.2384i 
 -28.2460 -22.2384i 
  16.7458 +22.2084i 
  16.7458 -22.2084i 
  -6.0000           
  -1.9990           
  -1.0007           
 
 
Kp = 
 
   -1.0909 
 
ans = 
 
sGe(s) 
 
  
Transfer function: 
  
        1e006 s^5 + 2e007 s^4 + 1.25e008 s^3 + 2.5e008 s^2 + 1.44e008 s 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 9.975e005 s^4 - 1.899e007 s^3 - 1.16e008 s^2            
                                                                                 
                                                          - 2.3e008 s - 1.32e008 
                                                                                 
  
 
Kv = 
 
     0 
 
ans = 
 
s^2Ge(s) 
 
  
Transfer function: 
  
       1e006 s^6 + 2e007 s^5 + 1.25e008 s^4 + 2.5e008 s^3 + 1.44e008 s^2 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 9.975e005 s^4 - 1.899e007 s^3 - 1.16e008 s^2            
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                                                          - 2.3e008 s - 1.32e008 
                                                                                 
  
 
Ka = 
 
     0 
 
essstep = 
 
 -330.0000 
 
 
essramp = 
 
   Inf 
 
 
essparabola = 
 
   Inf 

47. 
a.  Mason’s rule can be used to find the open loop transfer from input to output: 

Only one forward path, 21
1)1(

LCs
K

s
KKT mvT τ

+=  

Three touching loops, Ls
KL m α

−=1 , 22
1

LCs
L −= , 

CsZ
L

L

1
3 −=  

CsZLCsLs
K

L

m 111 2 +++=Δ
α

; 11 =Δ  

CsZLCsLs
K

s
K

LCs
KK

TsG

L

m

v
mT

111

)1(
)(

2

2
11

+++

+
=

Δ
Δ

=
α

τ . Letting 
L

L sC
Z 1

=  

 [ ]CKsCCLs
sKKK

C
C

LCsLs
K

s
K

LCs
KK

sG
mL

vmT

Lm

v
mT

ατ
τ

α
τ

++
+

=
+++

+
=

)(
)1(

11

)1(
)( 2

2

2
 

Since the system is not unity feedback, we calculate 

 

[ ]

[ ] [ ]CKsCCLs
sKKK

CKsCCLs
sKKK

CKsCCLs
sKKK

sGsGH
sG

mL

vmT

mL

vmT

mL

vmT

ατ
τ

ατ
τ

β

ατ
τ

++
+

−
++
+

+

++
+

=
−+

)(
)1(

)(
)1(

1

)(
)1(

)()(1
)(

22

2

 

[ ] )1()1()(

)1(
2 +−+++

+
=

sK
KK

CKsCCLs

sKKK

v
mT

mL

vmT

τ
τ

βα

τ
τ
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The system is type 0. 

 

b.  For a step input we calculate 
1

1
)()(1

)(
0 −

=
−+

=
→ βsGsGH

sGLimK
sP  

Then 
β
11

1
1

−=
+

=
P

ss K
e  

 
 

48.  

 Y(s) = R(s) 
G1(s)G2(s)

1 + G1(s)G2(s)H(s)   + 
D(s)G2(s)

1 + G1(s)G2(s)H(s)  

  

 E(s) = R(s) - Y(s) = R(s) - 
G1(s)G2(s)

1 + G1(s)G2(s)H(s)  R(s) - 
D(s)G2(s)

1 + G1(s)G2(s)H(s)    

  

 =  ⎣
⎡

⎦
⎤1 - 

G1(s)G2(s)
1 + G1(s)G2(s)H(s)   R(s) - 

G2(s)
1 + G1(s)G2(s)H(s)  D(s) 

Thus,  
  

1 2 2

0 0
1 2 1 2

G (s)G (s) G (s)e( ) limsE(s) lim 1 R(s) D(s)
1 G (s)G (s)H(s) 1 G (s)G (s)H(s)s s→ →

⎧ ⎫⎡ ⎤⎪ ⎪∞ = = − −⎨ ⎬⎢ ⎥+ +⎪ ⎪⎣ ⎦⎩ ⎭
  

49.  
a. E(s) = R(s) - C(s). But, C(s) = [R(s) - C(s)H(s)]G1(s)G2(s) + D(s). Solving for C(s),  
 

C(s) = 
R(s)G1(s)G2(s)

1 + G1(s)G2(s)H(s)   + 
D(s)

1 + G1(s)G2(s)H(s)    

Substituting into E(s),  
 

E(s) = ⎣
⎡

⎦
⎤1 - 

G1(s)G2(s)
1 + G1(s)G2(s)H(s)   R(s) - 

1
1 + G1(s)G2(s)H(s)   D(s) 

 

b. For R(s) = D(s) = 
1
s  ,  

1 20

0
1 2 1 20 0

lim G (s)G (s) 1e( ) limsE(s) 1
1 lim G (s)G (s)H(s) 1 lim G (s)G (s)H(s)

s

s
s s

→

→
→ →

∞ = = − −
+ +

 

 c. Zero error if G1(s) and/or G2(s) is Type 1. Also, H(s) is Type 0 with unity dc gain.  
50.  
 First find the forward transfer function of an equivalent unity feedback system.  
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Ge (s) =

K
s(s +1)(s + 4)

1 + K(s + a −1)
s(s + 1)(s + 4)

=
K

s3 + 5s2 + (K + 4)s + K(a − 1)
 

Thus, e(∞) = e(∞) =
1

1 + Kp

=
1

1 + K
K(a −1)

=
a −1

a
 

 

 Finding the sensitivity of e(∞), Se:a = 
a
e

δe
δa

= 
a
a

a −1

a − (a −1)
a2

⎛ 
⎝ 

⎞ 
⎠ = 

a − 1
a2 . 

 

 

 

51. 

a. 2: ))(1(
))()()(()())()()())((1(

)(1
)()(

)(
sL

sHsGsLsFsHsGsFsL

sL
sLsF

sP
P
T

T
PS PT +

−+

+

==
δ
δ

 

 

 
)(1

1
))(1(

)()()(
)()(

)(
sLsL

sHsGsF
sLsF

sP
+

=
+

=  

 b. 1
)(1

)(
)(1

1
)(
)(

: =
+

+
+

=+
sL

sL
sLsF

sTS PT  
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52.   

a. 
)(1

1
145

5
2

2

: sGPss
ss

P
T

T
PS PT +

=
++

+
==

δ
δ

 so 
)5(

14)(
+

=
ss

sGP and 

5
7

2
)5(

14

)(
)5(

14

)(
+

=
+

=
+

=
s

s

ss
sP

sssG . Also 
145

14

)5(
141

)5(
14

)(1
)(

2 ++
=

+
+

+
=

+ ss
ss

ss
sGP

sGP
, so 

)2)(1(
14

145
14

)145)(2)(1(
14

)(1
)(

)()(

2

2

++
=

++

++++
=

+

=
ss
K

ss

ssss
K

sGP
sGP

sTsF  

b. The system is type 1, so for 0=sse  it is required that 17)(
0

==
→

KsFLim
s

. So 
7
1

=K . 

53.  
 From Eq. (7.70),  

 

1 2 2

2

0 01 2 1 2 1 2

K K K
2-K(s 2) (s 2)e( ) 1 lim limK K (s 1) K K (s 1) 2 K K1 1

(s 2) (s 2)
s s→ →

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +∞ = − − = =⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟+ +
⎝ + ⎠ ⎝ + ⎠

 

 Sensitivity to K1: 

 Se:K1 = 
K1
e  

δe
δK1

   = - 
K1K2

2+K1K2
   = - 

(100)(0.1)
2+(100)(0.1)   = - 0.833 

 Sensitivity to K2: 

 Se:K2 = 
K2
e  

δe
δK2

   =  
2K2(1+K1)

(K2-2)(2+K1K2)   =  
2(0.1)(1+100)

(0.1-2)(2+(100)(0.1))   = - 0.89 

 

54.  
a. Using Mason’s rule: 

11 =T ; Loops rr
US

t m
ss

m
sMs

K
L

ε
ε

ω
ω

ε
ε

ω ++
+=

++
= 2

0
2

2
0

2
0

21
1

 and 
ε

ε
+

−=
s

m
L r

2 , no 

non-touching loops. 
ε

ε
+

+=Δ
s

mr11  

rr

r

m
sss

m

s
m

T
R
E

ε
ε

ω
ω

ε
ε

ε
ε

++
−

+
+

+
+

=
Δ
Δ

=

2
0

2

2
0

11

1

1
 

b. For a unit step input, 
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r
rr

r

rr

r

sss m
mm

m
s

m
sss

m

s
m

sLime +=
−+

+
=

++
−

+
+

+
+

=
→

1
1

11

1

1

2
0

2

2
0

0

ε
ε

ω
ω

ε
ε

ε
ε

 

c. For a unit ramp input, 

∞=

++
−

+
+

+
+

=
→ 2

2
0

2

2
0

0

1

1

1

s
m

sss
m

s
m

sLime

rr

r

sss

ε
ε

ω
ω

ε
ε

ε
ε

 

d. The system is type 0. 

 
55.  
 a. Using Eq. (7.89) with  

 

(sI  - A )
-1

 = 1
s3 + 20s2 + 111s+ 164

 

s2 + 15s+ 50 - (4s+ 22) - (2s+ 20)

- (3s+ 15) s2 + 10s+ 23 6

- (s+ 13) s+ 9 s2 + 15s+ 38  

 yields e(∞) = 1.09756 for a step input and e(∞) = ∞ for a ramp input. The same results are obtained 

using  
 

 

 and Eq. (7.96) for a step input and Eq. (7.103) for a ramp input. 

 b. Using Eq. (7.89) with  
 

(s I  - A )
-1

 =  1
s 3 + 9 s 2 + 5 s + 7

 

s 2 + 9 s s 7

- (5 s + 7 ) s 2 7 s

- (s + 9 ) -1 s 2 + 9 s + 5  
 

 yields e(∞) = 0 for a step input and e(∞) = 
5
7   for a ramp input. The same results are obtained using  

 

 

 and Eq. (12.123) for a step input and Eq. (12.130) for a ramp input. 

 c. Using Eq. (7.89) with  
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 yields e(∞) = 6 for a step input and e(∞) = ∞ for a ramp input. The same results are obtained using  

 

 

 and Eq. (7.96) for a step input and Eq. (7.103) for a ramp input. 

 56. 
 Find G4(s): Since 100 mi/hr = 146.67 ft/sec, the velocity response of G4(s) to a step displacement of 

the accelerator is v(t) = 146.67(1 - e-αt). Since 60 mi/hr = 88 ft/sec, the velocity equation at 10 seconds 

56becomes 88 = 146.67 (1 - e-α10). Solving for α yields α = 0.092. Thus, G4(s) = 
K1

s+0.092  . But, from 

the velocity equation, the dc value of G4(s) is 
K1

0.092   = 146.67. Solving for K1, G4(s) = 
13.49

s+0.092  . 

 Find error: The forward transfer function of the velocity control loop is 

G3 (s)G4(s) =
13.49K

s(s +1)(s + 0.092)
. Therefore, Kv = 

13.49K
0.092   . e(∞) = 

1
Kv

  = 6.82 x 10-3K.  

57.  
First, reduce the system to an equivalent unity feedback system. Push K1 to the right past the summing 

junction. 

 

 
 

Convert to a unity feedback system by adding a unity feedback path and subtracting unity from 
K1
K3

  . 

The equivalent forward transfer function is,  
 

Ge(s) = 

K1K2
Js2+Ds

1 + 
K1K2

Js2+Ds
 ⎝
⎛

⎠
⎞K3

K1
 - 1

   = 
K1K2

Js2 +Ds+K2(K3-K1)
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The system is Type 0 with K p =
K1

K3 − K1

. Assuming the input concentration is Ro,  

e(∞) = 
Ro

1+Kp
   = 

Ro K3 − K1( )
K 3

. The error can be reduced if K3 = K1.  

 

 

58. 

a. For the inner loop, G1e(s) = 
K 

(s+0.01)
s2

1+K 
(s+0.01)

s2

  = 
K (s+0.01)

s2+Ks+0.01K
  , where K = 

Kc
J   . 

Form Ge(s) = G1e(s) 
(s+0.01)

s2   = K 
(s+0.01)2

s2(s2+Ks+0.01K)
  . 

System is Type 2. Therefore, estep  = 0,  
b. eramp  = 0,  

c. eparabola = 
1

Ka
  = 

1
0.01  = 100 

d. T(s) = 
Ge(s)

1+Ge(s)  = 
K(s+0.01)2

s4+Ks3+1.01Ks2+0.02Ks+10-4K
  

 

s4 1 1.01K 10-4K 

s3 K 0.02K 0 0 < K

s2 1.01K-0.02 10-4K 0 0.0198 < K

s1 
0.0201 K2 0.0004 K−

1.01 K 0.02−
 0 0 0.0199 < K

s0 10-4K   0 < K
 

Thus, for stability K = 
Kc
J    > 0.0199 

59. 
a.    Following Figure P7.29, the transfer function from  fδ  to e is given by: 

*

1
f

f r

r Ge
KGδ
−

=
+

 

               For 
1

f s
δ =  we have that in steady state 
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2

2

4

2

0.8
( )

1 (0)

b
ae bK

a

−
∞ =

+
 

                 It can be seen from this expression that if ( )K s  is type 1 or larger ( ) 0e ∞ = . 
b. From Figure P7.29: 

*

1
f r

f r

G r KGr
KGδ

+
=

+
 

 
The error is now defined as 

* *1
1 1

1 1
f r r f r

f r r

G r KG KG G r KGr
KG KGδ

+ + − +
− = − =

+ +
 

 
In steady state this expression becomes: 

4 2 4 4 2

2 2 2 2 2

4 4

2 2

1 (0) 0.8 (0) 1 0.2 (0)
1 (0)

1 (0) 1 (0)f

b b b b bK K K
r a a a a a

b bK K
a a

δ

+ − − + −
− = =

+ +
 

It can be seen in this equation that the steady state error cannot be made zero. 

 

 

SOLUTIONS TO DESIGN PROBLEMS 
 

60.  

 Pot gains: K1 = 
3π
π

   = 3; Amplifier gain: K2 ; Motor transfer function: Since time constant = 0.5, α  

 

 = 2. Also, 
K
α   = 

100
10    = 10. Hence, K = 20. The motor transfer function is now computed as 

C(s)
Ea(s)   = 

20
s(s+2)  . The following block diagram results after pushing the potentiometers to the right past the 

summing junction: 
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 Finally, since Kv = 10 =  
60K2

2   , from which K2 = 
1
3  . 

61.  
 First find Kv: Circumference = 2π nautical miles. Therefore, boat makes 1 revolution  

in  
2π
20   = 0.314 hr.  

 Angular velocity is thus,  
1

0.314 
rev
hr    = 

2π 

3600 x 0.314 
rad
sec    = 5.56 x 10-3 

rad
sec  . 

 For 0.1o error, e(∞) = 
1/10o

360o    x 2π rad = 
5.56 x 10-3

Kv
   . Thus Kv = 3.19 = 

K
4   ; from which,  

 K = 12.76. 
 
 
62.  

a. Performing block diagram reduction:  

 

K1 −
s −13

+ 13
100

s2 +14 +100
2

(s+0.5)(s2+ 9.5s +78)

3s
s+ 0.2

+ + +

---

-s

R(s) C(s)

s s
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-

+R(s) C(s)
K1

2

(s+ 0.5)(s 2+ 9. 5 + 78)

+

-

100 (s+ 0. 2)

s 3 + 14. 2 s2 + 402. 8 s + 20

− s

− s − 13
+ 13s s

 

 

K1

+ +

--

Ge(s)

− s

R(s) C(s)

 

 

200− s 2 12.8 s− 2.6−

s 7 37.2 s 6 942.15 s 5 13420 s 4 1.0249×105 s 3 4.6048×105 s 2 2.2651×105 s 10140+ + + + + + +
Ge(s) = 

 

System is unity feedback with a forward transfer function, Gt(s), where 

Gt(s) = 200 K 1
s 2 12.8 s− 2.6−

s 7 37.2 s 6 942.15 s 5 13420 s 4 1.0269×105 s 3 4.5792×105 s 2 2.2599×105 s 10140+ + + + + + +
−

 
 

Thus, system is Type 0. 
 

b. From Gt(s), Kp = 
520K1
10140   = 700. Thus, K1 = 13650. 

c. T s
G t

1 G t+
=  

For K1 = 13650,  

T s 2730000 s 2 12.8 s− 2.6−

s 7 37.2 s 6 942.15 s 5 13420 s 4 1.0269×105 s 3 2.2721×106 s 2− 3.517×107 s 7108140+ + + + + +
−=

 
 

Because of the negative coefficient in the denominator the system is unstable and the pilot would not 

be hired. 
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63. 

The force error is the actuating signal. The equivalent forward-path transfer function is 

Ge (s) =
K1

s(s + K1K2 )
. The feedback is H(s) = Des + Ke . Using Eq. (7.72) 

Ea (s) =
R(s)

1 + Ge(s)H (s)
. Applying the final value theorem, 

ea _ ramp (∞) = lim
s →0

s
1
s 2

⎛ 
⎝ 

⎞ 
⎠ 

1 + K1(Des + Ke )
s(s + K1K2 )

=
K2

Ke

< 0.1. Thus, K2 < 0.1Ke. Since the closed-loop system 

is second-order with positive coefficients, the system is always stable. 

64. 
a. The minimum steady-state error occurs for a maximum setting of gain, K. The maximum K possible 

is determined by the maximum gain for stability. The block diagram for the system is shown below. 

-

+ K
(s +10)(s 2 + 4s +10)

3

3

ωi _desired ( s) ωo (s)Vi(s)

 
 

Pushing the input transducer to the right past the summing junction and finding the closed-loop 

transfer function, we get 

 

T (s) =

3K
(s + 10)(s2 + 4s +10)

1 + 3K
(s +10)(s 2 + 4s +10)

=
3K

s3 +14s2 + 50s + (3K +100)
 

Forming a Routh table, 

 
s3 1 50 

s2 14 3K+100 

s1 −3K + 600
14

 
0 

s0 3K+100 0 
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The s1 row says -∞ < K < 200. The s0 row says −
100

3
 < K. Thus for stability,  

−
100

3
 < K < 200. Hence, the maximum value of K is 200. 

b. Kp =
3K
100

= 6 . Hence, estep (∞) =
1

1 + Kp

=
1
7

. 

c. Step input. 

 

65. 

Substituting values we have 
)10)(67.2(

140625)(
1.0

++
=

−

ss
esP

s

, 
005.0

005.0)(
+

=
s

LsG  

The proportional error constant 

L
ss

e
s

LLimsPsGLimK
s

ssP 44.5273
)10)(67.2(

140625
005.0

005.0)()(
1.0

00
=

+++
==

−

→→
 

1.0
44.52731

1
1

1
=

+
=

+
=

LK
e

P
ss  which gives 31071.1 −×=L . 

66. 

a.  The open loop transmission is 
89.2

48500)( 2 +
+

=
ss

KsK
sGP IP . The system is type 2. 

b.  The Transfer function from disturbance to error signal is 

)(4850089.2
48500

89.2
485001

89.2
48500

)(
)(

23

2

2

IPIP KsKss
s

s
KsK

ss

ss
sD
sE

+++
−=

+
+

+

+−=  

Using the Final value theorem 

01
)(4850089.2

48500)( 2300
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

−==
→→ sKsKss

ssLimssELime
IP

ssss  

c.  We calculate 
89.2

48500
)()(2

0

I

sa
K

sPsGsLimK ==
→

 so 05.0
48500

89.21
===

Ia
SS KK

e . So 

we get 0120.0=IK  

d.  The system’s characteristic equation is 0
012.0

89.2
485001 2 =

+
+

+
s

sK
ss

P  or 

0021.5844850089.2 23 =+++ sKss P . The Routh array is: 
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3s  1 PK48500  

2s  89.2  021.584  

s  
89.2

21.584140165 −PK
  

1 PK48500   

 

 The dominant requirement is given by the third row 00417.0>PK  

 
 
 
67. 

a. 

Sensor

+

-
Input 

transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
100

K 1
1000

0.7883( s + 53.85)
( s2 + 15.47 s + 9283 )( s2 + 8.119 s + 376 .3) 82300

1
100

 

 

+

-

Desired 
force

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
1000

0.7883( s + 53.85)
(s2 + 15.47s + 9283 )(s 2 + 8.119 s + 376 .3) 82300

K
100

 

 
b.   

G(s) = 
Yh(s) − Ycat (s)

Fup(s)
=

0.7883(s + 53.85)
(s2 + 15.47s + 9283)(s2 +8.119s + 376.3)

 

 
Ge(s) = (K/100)*(1/1000)*G(s)*82.3e3 

 
                                              0.6488K (s+53.85) 
             Ge(s) =      
                              (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283) 

Kp = 0.6488K*53.85/[(376.3)(9283)] = K*1.0002E-5 
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Maximum K minimizes the steady-state error. Maximum K possible is that which yields stability. 

From Chapter 6 maximum K for stability is K = 1.88444 x 105. Therefore, Kp = 1.8848. 

c. ess = 1/(1+Kp) = 0.348. 

 

 

68. 

a. The system is Type 0 since there are no open-loop poles at the origin. 
b. The open loop transfer function is: 

3 2

520 10.3844( ) ( )
2.6817 0.11 0.012

sKG s P s K
s s s b

− −
=

+ + +
 

So that 
0

( ) ( ) 824.16p s
K Lim KG s P s K

→
= = −  

1 1 0.1
1 1 824.16ss

p

e
K K

= = =
+ −

 which results in 0.1092K = − . 

4 3 22.6817 0.11 (0.0126 520 ) 10.3844 0s s s K s K+ + + − + =  

The Routh array is 

 
 

 69. 

a. When the speed controller is configured as a proportional controller, the forward-path transfer 
function of this system is: 

0.01908)(s6).0(s50.5173)(

)6.0(0.11
)( SC

+×+++

×+
=

ss

Ks
sG

P
 (1) 

For the steady-state error for a unit-step input, r(t) = u(t), to be equal to 1%: 

01.0

0.01908)(s6).0(s50.5173)(

)6.0(0.11
lim1

1 
)(lim1

1)(
SC

0
0

step =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+×+++

×+
+

=
+

=∞

→
→

ss

KssG
e

P

s
s

 (2) 

From equation (2), we get: 01.0

01908.06.050

6.011.0
1

1

SC

=

××+

××
+

PK , which yields: KPSC
 = 85.9. 

b. When the speed controller is configured as a proportional plus integral controller, the forward-path 
transfer function of the system becomes: 
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[ ]0.01908)(s6).0(s50.5173)(

)100()6.0(0.11
)( SC

+×+++

+×+
=

sss

Kss
sG

I
 (3) 

For the steady-state error for a unit-ramp input, r(t) = t u(t), to be equal to 2.5%: 

[ ]

025.0

0.01908)(s6).0(s50.5173)(

)100()6.0(0.11
lim

1 
)(lim

1)(
SC

0
0

ramp =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+×+++

+×+
==∞

→
→

sss

Kss
s

sGs
e

I

s
s

 (4) 

From equation (4), we get: 025.0

01908.06.050

6.011.0
1

SC

=

××+

×× IK , which yields: KISC
 = 34.7. 

 
c. We’ll start by finding G1(s), the equivalent transfer function of the parallel combination, 
representing the torque and speed controllers, shown in Figure P7.35: 

 

)5.0(
7230053.31340100

)5.0(
)6.0(3

)5.0(
53.13)(

2

1 +
++

=⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

+
+

=
ss

ss
s
s

s
s

s
ssG  (5) 

Given that the equivalent transfer function of the car is: 
01908.0
1013.6)(

3

2 +
×

=
−

s
sG , we apply equation 

7.62* of the text taking into consideration that the disturbance here is a step with a magnitude equal to 

83.7:  

10 0
2

83.7 83.7( ) 01 3.11lim lim ( )
( )s s

e
G s

G s→ →

∞ = − = − =
+ ∞+
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  Root Locus Techniques  
 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: Transient Design via Gain 

a. From the Chapter 5 Case Study Challenge: 

G(s) = 
76.39K

s(s+150)(s+1.32)  

 Since Ts = 8 seconds, we search along - 
1
2  , the real part of poles with this settling time, for 180o. 

We find the point to be - 0.5+j6.9 with 76.39K = 7194.23, or K = 94.18. Second-order 

approximation is OK since third pole is much more than 5 times further from the imaginary axis 

than the dominant second-order pair. 

 b.  
Program: 
numg= 1; 
deng=poly([0 -150 -1.32]); 
'G(s)' 
G=tf(numg,deng) 
rlocus(G) 
axis([-2,0,-10,10]); 
title(['Root Locus']) 
grid on 
[K1,p]=rlocfind(G) 
K=K1/76.39  
 
Computer response: 

ans = 
 
G(s) 
 
  
Transfer function: 
           1 
----------------------- 
s^3 + 151.3 s^2 + 198 s 
  
Select a point in the graphics window 
 
selected_point = 
 
  -0.5034 + 6.3325i 



8-2   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
K1 = 
 
  6.0690e+003 
 
 
p = 
 
  1.0e+002 * 
 
  -1.5027           
  -0.0052 + 0.0633i 
  -0.0052 - 0.0633i 
 
 
K = 
 
   79.4469 
 
>>  
ans = 
 
G(s) 
 
  
Transfer function: 
           1 
----------------------- 
s^3 + 151.3 s^2 + 198 s 
  
Select a point in the graphics window 
 
selected_point = 
 
  -0.5000 + 6.2269i 
 
 
K1 = 
 
  5.8707e+003 
 
 
p = 
 
  1.0e+002 * 
 
  -1.5026           
  -0.0053 + 0.0623i 
  -0.0053 - 0.0623i 
 
 
K = 
 
   76.8521 
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UFSS Vehicle: Transient Design via Gain 

a. Push -K1  to the right past the summing junction yielding G(s) = 
K(s+0.437)

s(s+2)(s+1.29)(s+0.193)  , where 

K = 0.25K1. Combine the parallel feedback paths and obtain H(s) = (s+1). Hence, G(s)H(s) =  

K(s+0.437)(s+1)
s(s+2)(s+1.29)(s+0.193)   . The root locus is shown below in (b). Searching the 10% overshoot line (ζ 

= 0.591; θ = 126.24ο), we find the operating point to be -1.07 ± j1.46 where K = 3.389, or K1  = 

13.556. 

b. 
Program: 
numg= [1 0.437]; 
deng=poly([0 -2 -1.29 -0.193]); 
G=tf(numg,deng); 
numh=[1 1]; 
denh=1; 
H=tf(numh,denh); 
GH=G*H; 
rlocus(GH) 
pos=(10); 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2); 
sgrid(z,0) 
title(['Root Locus with ' , num2str(pos), ' Percent Overshoot Line']) 
[K,p]=rlocfind(GH); 
pause 
K1=K/0.25   
T=feedback(K*G,H) 
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T=minreal(T) 
step(T) 
title(['Step Response for Design of ' , num2str(pos), ' Percent']) 
 
Computer response: 
Select a point in the graphics window 
 
selected_point = 
 
  -1.0704 + 1.4565i 
 
 
K1 = 
 
   13.5093 
 
  
Transfer function: 
               3.377 s + 1.476 
--------------------------------------------- 
s^4 + 3.483 s^3 + 6.592 s^2 + 5.351 s + 1.476 
  
  
Transfer function: 
               3.377 s + 1.476 
--------------------------------------------- 
s^4 + 3.483 s^3 + 6.592 s^2 + 5.351 s + 1.476 
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ANSWERS TO REVIEW QUESTIONS 

1. The plot of a system's closed-loop poles as a function of gain 

2. (1) Finding the closed-loop transfer function, substituting a range of gains into the denominator, and 

factoring the denominator for each value of gain. (2) Search on the s-plane for points that yield 180 degrees 

when using the open-loop poles and zeros. 

3. K = 1/5 

4. No 

5. At the zeros of G(s) and the poles of H(s) 

6. (1) Apply Routh-Hurwitz to the closed-loop transfer function's denominator. (2) Search along the 

imaginary axis for 180 degrees. 

7. If any branch of the root locus is in the rhp, the system is unstable. 

8.If the branch of the root locus is vertical, the settling time remains constant for that range of gain on the 

vertical section. 

9. If the root locus is circular with origin at the center 

10. Determine if there are any break-in or breakaway points 

11. (1) Poles must be at least five times further from the imaginary axis than the dominant second order 

pair, (2) Zeros must be nearly canceled by higher order poles. 

12. Number of branches, symmetry, starting and ending points 

13. The zeros of the open loop system help determine the root locus. The root locus ends at the zeros. Thus, 

the zeros are the closed-loop poles for high gain. 

SOLUTIONS TO PROBLEMS  

1. 
a. No: Not symmetric; On real axis to left of an even number of poles and zeros 
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b. No: On real axis to left of an even number of poles and zeros 

c. No: On real axis to left of an even number of poles and zeros 

d. Yes 

e. No: Not symmetric; Not on real axis to left of odd number of poles and/or zeros 

f. Yes 

g. No: Not symmetric; real axis segment is not to the left of an odd number of poles 

h. Yes 

 
2. 

 

j 

 

j

X

X

X

X X O

(a) (b)

s-plane
s-plane

 

 

 

j 

 

j

OO

X

X

X

X

(c) (d)

s-plane s-plane
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j 

 

j

OO

X

X

X

X

(c) (d)

s-plane s-plane

 

 

j 

 

j

O O XXX X XX

(e) (f)

s-plane
s-plane

 
3. 

            

 

         a.          b.                                              c. 
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-1-4

                        
                                                                            d. 
 

4.  

a.  There are two asymptotes with  
2

3,
2

ππθ =a  and real axis intersection 

67.2
13

)
3
2(600

−=
−

−−−+
=aσ . The break-in and breakaway points are obtained by finding 

3
2

6

3
2

)6( 232

+

+
−=

+

+
−=

σ

σσ

σ

σσK . Obtaining 

( ) ( ) ( )
2

2

2

232

3
2

22

3
2

6123
3
2

⎟
⎠
⎞

⎜
⎝
⎛ +

+
−=

⎟
⎠
⎞

⎜
⎝
⎛ +

+−+⎟
⎠
⎞

⎜
⎝
⎛ +

−=

σ

σσ

σ

σσσσσ

σd
dK

and solving for the roots of the 

numerator we get: 2,2,0 −−=σ . So the root locus looks as follows: 
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b.  We can obtain K  from 0
)6(

3
2

1 22 =
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+ −=sss

sK
, resulting in 12=K . Note that the open loop 

zero will appear as a closed loop zero, so the closed loop transfer function is 3)2(
3
212

)(
+

⎟
⎠
⎞

⎜
⎝
⎛ +

=
s

s
sT  

5.  

a. The characteristic equation is given by 0
22

)1(1 2

2

=
++

+
−

ss
sK

 or 

0)2()22()1( 2 =−+−+− KsKsK . The Routh array is 

  

2s  K−1 K−2  

s  K22 −  

1 K−2  

 

For 0>K , the first column of  the Routh array will have no sign changes when either 1<K or 

when 2>K . The system is closed loop unstable in the range 21 << K . 
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b.   There are no asymptotes in this root locus. To calculate the break-in and breakaway points, let 

12
22

2

2

++
++

=
σσ
σσK . Then 

( )( ) ( )( )
( ) ( )2222

22

12
)1(2

12
22222212

++

+−
=

++

+++−+++
=

σσ

σ

σσ

σσσσσσ
σd

dK
 So the only 

break-in point occurs when 1−=σ . 

It is helpful to calculate directly the root positions from the characteristic equation. The closed loop 

poles are located at 
K

KK
K

KKKK
s

−
−±+−

=
−

−−−−±+−
=

1
11

)1(2
)2)(1(4)1(422 2

2,1  

It can be seen that when 1<K , both poles are complex conjugate with a real part =-1; when 

2>K  the two poles are real. 

The root locus is: 

 
c. When 1=K the poles are at ∞ . When 2=K , the solution of the quadratic equation above 
gives 2,0 −=s  
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6. 

 
 

Break-in: σ = -2.43 for K = 52.1 
7. 

 

Break-in: σ = -3.78 for K = 31.5; Breakaway: σ = -0.661 for K = 0.508. 
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8. 

Convert the denominator to the following form: 3 2

20 ( 5)( ) 1
2 7

K sD s
s s s

+
= +

+ +
 and thus identify 

3 2 2

20 ( 5) 20 ( 5)( )
2 7 ( 2 7)

K s K sG s
s s s s s s

+ +
= =

+ + + +
. 

Plotting the root locus yields 

 

 

  

 9. 

Re

Im
s-plane

Re

Im
s-plane
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10. 

 
Closed-loop poles will be in the left-half-plane when rhp pole reaches the origin,  
 

or
( )( )

(3)(5) 15
2 2 (2) 8

K > = . Thus, poles will be in the right half-plane for 
15
8

K <  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8-14   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
 
11. 

 

 
 

Closed-loop poles will be in the right-half-plane for 
(2)(2) 4
(3)(3) 9

K > =  (gain at the origin). 

Therefore, stable for K < 4/9; unstable for K > 4/9 .  
12. 
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Breakaway: σ = -3.436 for K = 1.781. System is never unstable. System is marginally stable for K = 

•. 
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13. 
System 1: 

(a)  

a. Breakaway: σ = 1.41 for K = 0.03; Break-in: σ = -1.41 for K = 33.97. 

b. Imaginary axis crossing at j1.41 for K = 1. Thus stable for K > 1. 

c. At break-in point, poles are multiple. Thus, K = 33.97. 

d. Searching along 1350 line for 1800, K = 5 at 1.414 ∠ 1350. 

System 2: 

(b)  

a. Break-in: σ = -1.41 for K = 28.14. 
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b. Imaginary axis crossing at j1.41 for K = 0.67. Thus stable for K > 0.67. 

c. At break-in point, poles are multiple. Thus, K = 28.14. 

d. Searching along 1350 line for 1800, K = 4 at 1.414 ∠ 1350. 
 

14.  
a. 

 

Root locus crosses the imaginary axis at the origin for K = 6. Thus the system is stable for K > 6. 
 
 
b. 

 

Root locus crosses the imaginary axis at j0.65 for  K = 0.79. Thus, the system is stable for K < 0.79. 
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15. 
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There will be only two right-half-plane poles when pole at +2 moves into the left-half-plane at the  
 

origin. Thus K  
(5)( 2)( 2)(2)

3
 6.67 . 

16. 
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Root locus crosses the imaginary axis at j7.348 with a gain of 810. Real axis breakaway is at –2.333 

at a gain of 57.04. Real axis intercept for the asymptotes is 
15
3

  5 . The angle of the asymptotes 

is = 
π
3  , π, 

5π
3  . Some other points on the root locus are: 

ζ = 0.4: -1.606 + j3.68, K = 190.1 

ζ = 0.6: -1.956 + j2.6075, K = 117.8 

ζ = 0.8: -2.189 + j1.642, K = 79.55  

17.  

 a. 

  

  
  

  

 

Imaginary axis crossing: j1.41 at K = 1.5. Stability: K < 1.5. Breakaway: -1.41 at K = 0.04. Points on 

root locus: -1.5 ± j0, K = 0.0345; -0.75 ± j1.199, K = 0.429; 0 ± j1.4142, K = 1.5;  

0.75 ± j1.1989, K = 9.  Finding angle of arrival: 90 -  θ1  -  θ2  +  θ3 = 90o -  tan-1(1/3) - tan-1(1/2) + 

θ3 = 180o. Thus, θ3 = 135o.   

b. 
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Imaginary axis crossing: j1.41 at K = 1. Stability: K < 1. Breakaway: -1.41 at K = 0.03. Break-in: 

1.41 at K = 33.97. Points on root locus: -1.5 ± j0, K = 0.02857; -0.75 ± j1.199, K = 0.33;  

0 ± j1.4142, K = 1; 0.75 ± j1.1989, K = 3. 
  
18.  

a. Root locus crosses the imaginary axis at 3.162j± at K = 52.  

b. Since the gain is the product of pole lengths to -5, ( )( )2 2 2 2(1) 4 1 4 1 17K = + + =  . 

19.  
a. 

 

 

b. σa = 
(0 - 2 - 3 - 4) - (-1)

3    = - 
8
3  ; Angle = 

(2k+1)π
3    = 

π
3  , π, 

5π
3   

c. Root locus crosses imaginary axis at j4.28 with K = 140.8. 

d. K = 13.125 
 

20.  

Assume that root locus is epsilon away from the asymptotes. Thus, σa = 
(0 - 3 - 6) - (-α)

2    .  -1; 

Angle = 
(2k+1)π

2    = 
π
2  , 

3π
2  . Hence α = 7. Checking assumption at –1 ± j100 yields -180o with K = 

9997.02. 
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21. 

 

a. Breakaway: -0.37 for K = 0.07. Break-in: 1.37 for K = 13.93 

b. Imaginary axis crossing: ±j0.71 for K = 0.33 

c. System stable for K < 0.33 

d. Searching 120o find point on root locus at 0.5∠120ο = - 0.25 ± j0.433 for K = 0.1429 
 
22. 

a. 
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b. 23.93 < K < ∞ 
 
c. K = 81.83 @ -13.04 ± j13.04 
 
d. At the break-in point, s = -14.965, K = 434.98.  
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 23. 

 

  

a. Asymptotes: σint = 
(-1 -2 -3 -4) - (0)

4    = - 
5
2   ; Angle = 

(2k+1)π
4    = 

π
4  , 

3π
4   , 

5π
4   , 

7π
4    

b. Breakaway: -1.38 for K = 1 and -3.62 for K = 1 

c. Root locus crosses the imaginary axis at ±j2.24 for K = 126. Thus, stability for K < 126. 

d. Search 0.7 damping ratio line (134.427 degrees) for 1800. Point is 1.4171∠134.427ο =  

- 0.992 ± j1.012 for K = 10.32. 

e. Without the zero, the angles to the point ±j5.5 add up to -265.074o. Therefore the contribution of 

the zero must be 265.074 - 180 = 85.074o. Hence, tan 85.074o = 
5.5
zc

  , where - zc is the location of the 

zero. Thus,  zc = 0.474. 
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f. After adding the zero, the root locus crosses the imaginary axis at ±j5.5 for K = 252.5. Thus, the 

system is stable for K < 252.5. 

g. The new root locus crosses the 0.7 damping ratio line at 2.7318∠134.427o for K = 11.075 

compared to 1.4171∠134.427o for K = 10.32 for the old root locus. Thus, the new system's settling 

time is shorter, but with the same percent overshoot. 
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 24.  

 

 25.  

T(s) =  
1

s2 + αs + 1
   = 

1
s2 + 1

1 + 
αs

s2 + 1

  . Thus an equivalent system has G(s) = 
1

s2 + 1
    and H(s) = αs. 

Plotting a root locus for G(s)H(s) = 
αs

s2 + 1
  , we obtain,  

 



8-24   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

26.  
a. 

 

 b. Root locus crosses 20% overshoot line at 1.8994 ∠ 117.126o = - 0.866 ± j1.69 for K = 9.398. 

 c. Ts = 
4

0.866   = 4.62 seconds; Tp = 
π

1.69   = 1.859 seconds 

 d. Other poles with same gain as dominant poles:  σ = -4.27 

 e. Root locus crosses imaginary axis at ±j3.32 for K = 60. Therefore stability for K < 60. 

27. 
a. 
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b. 

 

 a  
(  6  5  4  2)  (2)

4  2
  9.5

 a  
(2k  1) 

4  2
 

 
2

,  
3 
2

 

c. At the jω axis crossing, K = 115.6. Thus for stability, 0 < K < 115.6. 

d. Breakaway points at σ = -2.524 @ K = 0.496 and σ = -5.576 @ K = 0.031. 

e. For 25% overshoot, Eq. (4.39) yields ζ = 0.404. Searching along this damping ratio line, we find 

the 1800 point at –0.6608 + j1.496 where K = 35.98. 

f. –7.839 ± j7.425 

g. Second-order approximation not valid because of the existence of closed-loop zeros in the rhp. 

h.  
Program: 
numg=35.98*[1 -2 2]; 
deng=poly([-2 -4 -5 -6]); 
G=tf(numg,deng); 
T=feedback(G,1) 
step(T) 
 
Computer response: 
Transfer function: 
    35.98 s^2 - 71.96 s + 71.96 
------------------------------------ 
s^4 + 17 s^3 + 140 s^2 + 196 s + 312 
 

 
 

Simulation shows over 30% overshoot and nonminimum-phase behavior. Second-order 
approximation not valid. 
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 28.  
a. Draw root locus and minimum damping ratio line. 
 

145.55 o

Minimum damping ratio

 

Minimum damping ratio is ζ = cos (180 - 145.55) = cos 34.45o = 0.825. Coordinates at tangent point 

of ζ = 0.825 line with the root locus is approximately –1 + j0.686. The gain at this point is 0.32.  

b. Percent overshoot for ζ = 0.825 is 1.019%. 

c. Ts = 
4
1  = 4 seconds; Tp = 

π
0.6875   = 4.57 seconds 

d. Second-order approximation is not valid because of the two zeros and no pole-zero cancellation. 

e. 
0.32*2*3 1.92

1vK = = ; Therefore, 
1( ) 0.52.ramp

v

e
K

∞ = =  

29.  
The root locus intersects the 0.55 damping ratio line at –7.217 + j10.959 with K = 134.8. A 

 justification of a second-order approximation is not required. The problem stated the requirements in 

terms of damping ratio and not percent overshoot, settling time, or peak time. A second-order 

approximation is required to draw the equivalency between percent overshoot, settling time, and peak 

time and damping ratio and natural frequency. 

30.  
Since the problem stated the settling time at large values of K, assume that the root locus is 

approximately close to the vertical asymptotes. Hence, σint =  
-11 + α

2
   = - 

4
Ts

  . Since Ts is given 

as 4 seconds, σint = -1 and α = 9. The root locus is shown below. 
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31.  

The design point is - 0.506 ± j1.0047. Excluding the pole at -α , the sum of angles to the design point 

 is -141.37o. Thus, the contribution of the pole at -α is 141.37 - 180 = - 38.63o. The following 

geometry applies: 

 

 Hence, tan θ = 
1.0047

α - 0.506
   = tan 38.63 = 0.799. Thus α = 1.763. Adding this pole at -1.763 yields 

180o at - 0.506 ± j1.0047 with K = 7.987. 
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32.  
a. 
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b. Searching along the 10% overshoot line (angle = 126.239o), the point - 0.7989 + j1.0898 yields 

180o for K = 81.74. 

c. Higher-order poles are located at approximately –6.318 and –7.084. Since these poles are more than 

5 times further from the imaginary axis than the dominant pole found in (b), the second-order 

approximation is valid. 

d. Searching along the imaginary axis yields 180o at j2.53, with K = 394.2.  

Hence, for stability, 0 < K < 394.2. 

33. 
Program:  
pos=10; 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2) 
numg=1; 
deng=poly([0 -3 -4 -8]); 
G=tf(numg,deng) 
Gzpk=zpk(G) 
rlocus(G,0:1:100) 
pause 
axis([-2,0,-2,2]) 
sgrid(z,0) 
pause 
[K,P]=rlocfind(G) 
T=feedback(K*G,1) 
pause 
step(T) 
 
 
 
 
 
Computer response: 
z = 
 
    0.5912 
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Transfer function: 
             1 
---------------------------- 
s^4 + 15 s^3 + 68 s^2 + 96 s 
  
  
Zero/pole/gain: 
         1 
------------------- 
s (s+8) (s+4) (s+3) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -0.7994 + 1.0802i 
 
 
K = 
 
   81.0240 
 
 
P = 
 
  -7.1058           
  -6.2895           
  -0.8023 + 1.0813i 
  -0.8023 - 1.0813i 
 
  
Transfer function: 
               81.02 
------------------------------------ 
s^4 + 15 s^3 + 68 s^2 + 96 s + 81.02 
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34. 

a. For a peak time of 1s, search along the horizontal line, Im = π/ Tp= π, to find the point of  

intersection with the root locus. The intersection occurs at –2 ± jπ at a gain of 11.  
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b.  
Program: 
numg=11*[1 4 5]; 
deng=conv([1 2 5],poly([-3 -4])); 
G=tf(numg,deng); 
T=feedback(G,1); 
step(T) 

 

 
 
 

Peak time approximately 0.8 second instead of 1 second. 
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35. 
a.  

 
b. Searching the jω axis for 180o, we locate the point j6.29 at a gain of 447.83.  

c. Searching for maximum gain between -4 and -5 yields the breakaway point, -4.36. Searching for 

minimum gain between -2 and -3 yields the break-in point, -2.56. 

d. 

j2

j1

-6 -5 -4 -3 -2 -1

x

x

xxx OO
        

  

  

90o

 

j 

-j1
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To find the angle of departure from the poles at -1±j1: -θ1 - θ2 - θ3 + θ4 + θ5 - θ6 - 900   

= - tan-1(1/5) - tan-1(1/4) - tan-1(1/3) + tan-1(1/2) + tan-1(1/1) - θ6 - 90o = 1800 . Thus, θ6 = - 242.22o 

e. Searching along the ζ = 0.3 line (θ = 180 - cos-1(ζ) = 107.458o) for 180o we locate the point 

3.96 ∠ 107.458o = -1.188±j3.777. The gain is 127.133. 

36. 
a.  

 

 
b. Searching the jω axis for 180o, we locate the point j2.56 at a gain of 30.686.  

c. Searching for maximum gain between 0 and -2 yields the breakaway point, -0.823. Searching for 

maximum gain between -4 and -6 yields the breakaway point, -5.37. Searching for minimum gain 

beyond -8 yields the break-in point, -9.39. 

e. Searching along the ζ = 0.3 line (θ = 180 - cos-1(ζ) = 107.458o) for 180o we locate the point 

1.6 ∠ 107.458o = -0.48 ± j1.53. The gain is 9.866. 
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37. 

 

 

a. Searching the 15% overshoot line (ζ = 0.517; θ = 121.131ο) for 180o, we find the point 2.404 

∠ 121.131ο = -1.243 + j2.058. 

b. K = 11.09. 

c. Another pole is located left of -3. Searching for a gain of 11.09 in that region, we find the third pole 

at -4.514. 

d. The third pole is not 5 times farther than the dominant pair from the jω axis. the second-order 

approximation is estimated to be invalid. 
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38. 
  a. 
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 b. Searching the jω axis for 180o, we locate the point j1.69 at a gain of 4.249.  

 c. Searching between -2 and -3 for maximum gain, the breakaway is found at -2.512. 

 d.  

 

j

s-plane

X X

X

X

-3 -2 -1 2
  

  

  

  

  

  

-j2

j2

 

 To find the angle of arrival to the zero at 2 + j2: 
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 1   2   3   4   5   6   1  90D  0D  tan 1 4

3
 

  
  
   tan 1 2

4
 

  
  
   tan 1 2

5
  
  

  
   180 D

 

Solving for θ1, the angle of arrival is θ1 
 = –191.50. 

 
 e. The closed-loop zeros are the poles of H(s), or –1 ± j2. 

 f. Searching the ζ = 0.358; (θ = 110.97ο) for 180o, we find the point  
 

= -0.6537+j1.705. The gain, K = 0.8764. 
 
g. Higher-order poles are at –2.846 ± j1.731. These are not 5 times further than the dominant poles. 

Further, there are closed-loop zeros at  –1 ± j2 that are not cancelled any higher-order poles. Thus, the 

second-order approximation is not valid. 

39. 
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a. The root locus crosses the imaginary axis at j2.621 with K = 4365. Therefore, the system is stable  

for 0 < K < 4365. 

b. Search the 0.707 damping ratio line for 180o and find –0.949 + j0.949 with K = 827.2. 

c. Assume critical damping where root locus breaks away from the real axis. Locus breaks away at –

1.104 with K = 527.6. 

40. 
Program: 
numg=1; 
deng=poly([0 -3 -7 -8]); 
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numh=[1 30]; 
denh=[1 20 200]; 
G=tf(numg,deng) 
Gzpk=zpk(G) 
H=tf(numh,denh) 
rlocus(G*H) 
pause 
K=0:10:1e4; 
rlocus(G*H,K) 
sgrid(0.707,0) 
axis([-2,2,-5,5]); 
pause 
for i=1:1:3; 
[K,P]=rlocfind(G*H) 
end 
T=feedback(K*G,H) 
step(T) 

 
Computer response: 
Transfer function: 
              1 
------------------------------ 
s^4 + 18 s^3 + 101 s^2 + 168 s 
  
  
Zero/pole/gain: 
         1 
------------------- 
s (s+8) (s+7) (s+3) 
  
  
Transfer function: 
     s + 30 
---------------- 
s^2 + 20 s + 200 
  
Select a point in the graphics window 
 
selected_point = 
 
  -0.9450 + 0.9499i 
 
 
K = 
 
  828.1474 
 
 
P = 
 
  -9.9500 +10.0085i 
  -9.9500 -10.0085i 
  -8.1007 + 1.8579i 
  -8.1007 - 1.8579i 
  -0.9492 + 0.9512i 
  -0.9492 - 0.9512i 
 
Select a point in the graphics window 
 
selected_point = 
 
   0.0103 + 2.6385i 
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K = 
 
  4.4369e+003 
 
 
P = 
 
  -9.7320 +10.0691i 
  -9.7320 -10.0691i 
  -9.2805 + 3.3915i 
  -9.2805 - 3.3915i 
   0.0126 + 2.6367i 
   0.0126 - 2.6367i 
 
Select a point in the graphics window 
 
selected_point = 
 
  -1.0962 - 0.0000i 
 
 
K = 
 
  527.5969 
 
 
P = 
 
  -9.9682 +10.0052i 
  -9.9682 -10.0052i 
  -7.9286 + 1.5303i 
  -7.9286 - 1.5303i 
  -1.1101           
  -1.0962           
 
  
Transfer function: 
  
       527.6 s^2 + 1.055e004 s + 1.055e005 
------------------------------------------------- 
s^6 + 38 s^5 + 661 s^4 + 5788 s^3 + 23560 s^2     
                                                  
                        + 3.413e004 s + 1.583e004 

 



  Solutions to Problems   8-39 

Copyright ©   2011 by John Wiley & Sons, Inc. 
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41.  

a. Search jω = j10 line for 180o and find -4.533 + j10 with K = 219.676. 

b. Ka = 
219.676 x 6

20    

c. A settling time of 0.4 seconds yields a real part of -10. Thus if the zero is at the origin, G(s) 

K
s(s+20)  , which yields complex poles with -10 as the real part. At the design point, -10 + j10, K = 

200. 

42.  
a. Searching along ζωn = -1 for 180o, find –1 + j2.04 with K = 170.13. 

b. Assume critical damping when root locus breaks away form the real axis. Searching for maximum 

gain, the breakaway point is at -1.78 with K = 16.946. 

 

43.   

a.   The characteristic equation is 0
)3)(2(

)1(1 =
++

−
+

ss
sK

 or 0)6()5(2 =−+++ KsKs  

The Routh array is 

2s  1 K−6  

s  K+5   

1 K−6   
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It follows that 65 <<− K  

 
b.   The locus for 0>K  is 

 

c.   To find the break-in, breakaway points let 
1

65
1

)2)(1( 2

−
++

=
−

++
=

σ
σσ

σ
σσK . Then 

calculate 
( )( ) ( )

( ) ( )2

2

2

2

1
112

1
65521

−
−−

=
−

++−+−
=

σ
σσ

σ
σσσσ

σd
dK

 

The roots of the numerator are 4641.4,4641.2−=σ  

 

The locus for 0<K  is 
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d.   The smallest settling time for the system will occur when both roots are as far away as possible 
to the left of the ωj  axis. This will happen when the system has identical roots at -2.4641. To find 

the value of K we use the characteristic equation 

0
)3)(2(

)1(1 4641.2 =
++

−
− −=sss

sK
. Solving for K  we get 0718.0−=K  

 

e.   The proportional error constant 
6)2)(1(

)1(
0

K
ss

sKLimK
sp −=

++
−

=
→

 

Then 9882.0
6

6
1

1
=

−
=

+
=

KK
e

p
ss  

f.  The system in this case is critically damped, the settling time sec6.1
4641.2
4

=≈sT .The step 

response will approximately be: 
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44.  

T(s) = 
K

s3 + 6s2 + 5s + K
  . Differentiating the characteristic equation, s3 + 6s2 + 5s + K = 0, yields,  

3s2 δs
δK

  + 12s 
δs
δK

  + 5 
δs
δK

  + 1 = 0.  

Solving for 
δs
δK

 ,  

δs
δK

  = 
-1

3s2 + 12s + 5
  

The sensitivity of s to K is 

Ss:K = 
K
s  

δs
δK

   =  
K
s   

-1
3s2 + 12s + 5

  

a. Search along the ζ = 0.591 line and find the root locus intersects at s = 0.7353∠126.228ο = 

 - 0.435 + j0.593 with K = 2.7741. Substituting s and K into Ss:K yields 

Ss:K = 0.487 - j0.463 = 0.672∠-43.553o 

b. Search along the ζ = 0.456 line and find the root locus intersects at s = 0.8894∠117.129ο = 

 - 0.406 + j0.792 with K = 4.105. Substituting s and K into Ss:K yields 

Ss:K = 0.482-j0.358 = 0.6∠-36.603o 

c. Least sensitive: ζ = 0.456. 
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45.  

The sum of the feedback paths is He(s) = 1 + 0.02s + 
0.00076s3

s+0.06    . Thus,  

 

 
and 
 

 
 

 
 

 
 

Plotting the root locus,  
 

 

Searching vertical lines to calibrate the root locus, we find that 0.00076K is approximately 49.03 at  

-10 ± j41.085. Searching the real axis for 0.00076K = 49.03, we find the third pole at -36.09. 

a. ζ = cos (tan-1 (
41.085

10  )) = 0.236 

b. %OS = e    / 1  2

x100  = 46.63% 

c. ωn = 102 + 41.0852  = 42.28 rad/s 

d. Ts = 
4

ζωn
   = 

4
10  = 0.4 seconds 

e. Tp = 
π

ωn 1-ζ2
   = 

π
41.085   = 0.076 seconds 
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46. 

 Push K2 to the right past the summing junction and find, T(s) = (1 + 
K1s
K2

  ) (
K2

s2 + K3s + K2
  )  

= 

K1 (s + 
K2
K1

)

s2 + K3s + K2
   . Changing form,  T(s) = 

K1(s+
K2
K1

)

s2 + K2

1 + 
K3s

s2 + K2

   . Thus, G(s)H(s) = 
K3s

s2 + K2
  . Sketching the 

root locus,  

 

 

 

 

a. 

-

 

b. T(s) = 

K1(s+
K2
K1

)

s2 + K2

1 + 
K3s

s2 + K2

    = 

K1(s+
K2
K1

)

s2 + K3s + K2
   . Therefore closed-loop zero at - 

K2
K1

   . Notice that the zero 

at the origin of the root locus is not a closed-loop zero. 



8-46   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

c. Push K2 to the right past the summing junction and find, T(s) = (1 + 
K1s
K2

  ) (
K2

s2 + K3s + K2
  )  

= 

K1 (s + 
K2
K1

)

s2 + K3s + K2
   . Changing form,  T(s) = 

K1(s+
K2
K1

)

s2 + K3s

1 + 
K2

s2 + K3s

   . Thus, G(s)H(s) = 
K2

s2 + K3s
  . Sketching the 

root locus,  

 

The closed-loop zero is at - 
K2
K1

  . 

47. 

    
                                     a                                                                                             b 
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          c                                                                d                                 

48.  
a. Using Figure P8.15(a),  

[Ms2+(D+Dc)s+(K+Kc)]X(s) - [Dcs+Kc]Xa(s) = 0 

Rearranging,  

   [Ms2+Ds+K]X(s) = -[Dcs+Kc](X(s)-Xa(s))                                          (1) 

where [Dcs+Kc](X(s)-Xa(s)) can be thought of as the input to the plant. 

For the active absorber,  

(Mcs2+Dcs+Kc)Xa(s) - (Dcs+Kc)X(s) = 0 

or 

Mcs2Xa(s)+Dcs(Xa(s)-X(s))+Kc(Xa(s)-X(s)) = 0 

Adding -Mcs2X(s) to both sides,  

Mcs2(Xa(s)-X(s))+Dcs(Xa(s)-X(s))+Kc(Xa(s)-X(s)) = -Mcs2X(s) 

Let Xa(s)-X(s) = Xc(s) and s2X(s) = C(s) = plant output acceleration. Therefore,  

Mcs2Xc(s)+DcsXc(s)+KcXc(s) = -McC(s) 

or 

(Mcs2+Dcs+Kc)Xc(s) = -McC(s)                                              (2) 

Using Eqs. (1) and (2), and Xa(s)-X(s) = Xc(s),  

 
Xc(s)
C(s)   = 

-Mc

Mcs2+Dcs+Kc
   ; 

X(s)
Xc(s)  = 

Dcs+Kc

 Ms2+Ds+K
  

which suggests the following block diagram: 
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+

-

M c

M cs
2  Dcs K c

-Xc(s)
Dcs Kc

X(s)1
Ms2  Ds K

F(s)

-Fc(s)

s2

Structure

C(s)

Active vibration absorber

Input force
Output structure 
acceleration

force feedback from absorber

 

 

b. Substituting M = D = K = Dc = Kc =1 and redrawing the block diagram above to show X(s) as the 

output yields a block diagram with G s 1
s2 s 1+ +

=   and H s
Mc s2 s 1+

Mc s2 s 1+ +
=  . To study the steady-

state error, we create a unity-feedback system by subtracting unity from H(s). Thus He(s) = H(s)-1 = 

Mc s3 s 1 1
Mc s2 s 1+ +

. The equivalent G(s) for this unity-feedback system is Ge s G
1 G He+

=  = 

Mc s2 s 1+ +

Mc s4 2 Mc s3 s3 Mc s2 2 s2 s+ + + + +
 . Hence the equivalent unity-feedback system is Type 1 and will 

respond with zero steady-state error for a step force input.  

c. Using Ge(s) in part b, we find T s
Ge

1 Ge+
=  = 

Mc s2 s 1+ +

s2 2 s 2+ + Mc s2 s3 2 s2 2 s 1+ + + +
 . Dividing 

numerator and denominator by s3 2 s2 2 s 1+ + + , T s

Mc s2 s 1+ +

s3 2 s2 2 s 1+ + +

s2 2 s 2+ + Mc s2

s3 2 s2 2 s 1+ + +
1+

=  . Thus, the system 

has the same root locus as a system with G(s)H(s) = 
s2 2 s 2+ + Mc s2

s3 2 s2 2 s 1+ + +
 = 

s2 2 s 2+ + Mc s2

s 1+ s2 s 1+ +
 . 

Sketching the root locus,  
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j

 

x

x

o

o

oox

 

 

49.  

a.   The open loop transmission is 
739600

1300)( 2 −
=

s
KsL .  

There are two asymptotes with 0
02
860860

=
−
+−

=aσ and angles 
2

3,
2

ππθ =a  

To find the breakaway points let 
1300

86022 −
−=

σK . Then 0
1300
2

=−=
σ

σd
dK

, so the 

breakaway points occur when 0=σ . The gain at this point is given by the solution of 

0
860

13001 022 =
−

+ =ss
K

 or 9.568=K  

It is obvious from the figure that the system is unstable for all values of 0>K . 

 

 

b. The open loop transmission is 
)739600)(1000(

)200(1300)( 2 −+
+

=
ss
sKsL .  
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There are two asymptotes with 400
13

)200(8608601000
−=

−
−−+−−

=aσ  and angles 

2
3,

2
ππθ =a  

To find the breakaway points let 

)200(1300
106.739106.7391000

)200(1300
)860)(1000( 632322

+
×−×−+

−=
+

−+
−=

σ
σσσ

σ
σσK . 

 

Then 0
)200(1300

1068.5911040016002 6323

=
+

×+×++
−=

σ
σσσ

σd
dK

 The numerator has two 

complex conjugate solutions, and a real 928−=σ . The gain at this point is given by the solution 

of 0
)860)(1000(

)200(13001 92822 =
−+

+
+ −=sss

sK
 or 25.9=K  

We use Routh-Hurwitz to find the range of K for which the system is closed loop stable. Let 

0
)860)(1000(

)200(13001 22 =
−+

+
+

ss
sK

 or 

0)106.739260000()7396001300(1000 623 =×−+−++ KsKss  

The Routh array is: 

 

 

3s  1 7396001300 −K  

2s  1000 
6106.739260000 ×−K  

s  K1040   

1 
6106.739260000 ×−K   

 

The dominant requirement given by the fourth row: 6.2844>K  
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50.  

a. After substituting numerical values 
25.12
6.05.0)()( 2 −

+
==

s

Vs
VssG

δ
ϕ

 

The system’s characteristic equation is: 

0
25.12
6.05.01 2 =

−

+
+

s

Vs
V  or 0)25.12833.0(5.0 22 =−++ VVss  

 

The Routh array is 

2s  1 25.12833.0 2 −V  

s  V5.0   

1 25.12833.0 2 −V   

From which we get 
s
mV 83.3>  

b. The characteristic equation cannot be written in the form 0)(1 =+ sVGeq  

c. Solving for  the two roots we get 
2

4908.35.0 2

2,1
+−±−

=
Vs  

A simple script that will plot the root locus is 
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>> v=linspace(0,4,100000); 

>> s1 = (-0.5+sqrt(-3.08*v.^2+49))/2; 

>> s2 = (-0.5-sqrt(-3.08*v.^2+49))/2; 

>> plot(real(s1),imag(s1),real(s2),imag(s2)) 

 

-4 -3 -2 -1 0 1 2 3 4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 

51.  
a. The system’s characteristic equation is found by calculating 0)det( =− AIs . This results in 

02.19952.1250)9538.2565414.54(3415.12 234 =−+−+− KKssKss   

Which can be manipulated into 

0
9538.2563415.12

2.19952.12505414.541 234

2

=
−−

−+
+

sss
ssK  or 0

)3472.23)(11(
)42.24)(498.1(5414.541 2 =

−+
+−

+
sss

ssK  
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b. There are two asymptotes with 
2

3,
2

ππθ =a  and real axis intersection 

63.17
24

42.24498.13472.231100
=

−
+−+−+

=aσ .  

To find the break in-breakaway points let 

2.19952.12505414.54
9538.2563415.12

2

234

−+
−−

−=
σσ

σσσK , then 

( )( )
( )

( )( )
( )22

234

22

232

2.19952.12505414.54
2.12500828.1099538.2563415.12

2.19952.12505414.54
91.5130245.3742.19952.12505414.54

−+

+−−
−

−+

−−−+
−=

σσ

σσσσ
σσ

σσσσσ
σd

dK

 

( )22

2345

2.19952.12505414.54
1025400247380388405.30770828.109

−+

+−−+
−=

σσ

σσσσσ
 

The numerator of this expression has roots at 0664.3,1.7,95.11,13.36,0 −−=σ  

The root locus is: 

 
c. For any value of 0>K there are always closed loop poles in the RHP. 
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52.  

a.  The open loop transmission is  2

1)()(
Vs

KsK
Vss

KKsG IPI
P

+
=+= . The characteristic 

equation is 01 2 =
+

+
Vs

KsK IP or 02 =++ IP KsKVs . If PK is considered variable, then  this 

equation can be written as 01
2

=
+

+

V
Ks

s
V
K

I

P . In this case there is one asymptote. The break-in 

point is found by writing 
σ

σ I
P

KVK +
−=

2

and computing 

2

2

2

2 )()2(
σ

σ
σ

σσσ
σ

IIP KVKVV
d

dK −
−=

+−
−= . The numerator has roots at 

V
K I±=σ . 

The root locus is: 

 

b.   The characteristic equation can now be written as 0
)(

11 =
+

+

V
KssV

K
P

I . There are now two 

asymptotes with angles 
2

3,
2

ππθ =a  and real axis intersection 
V

KV
K

P

P

a 202

0
−=

−

−
=σ . The 

break-in breakaway point can be found by calculating )(
V
KK P+−= σσ . Differentiating we get 

02 =−−=
V
K

d
dK Pσ

σ
so 

V
K P

2
−=σ . The root locus is: 



  Solutions to Problems   8-55 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

 
53. 

 
After applying the Padé approximation 

)50)(5)(667.0(
)2.0(1406250

)50)(5)(667.0(
)2.01(7031250)(

+++
−

−=
+++

−
=

sss
sL

sss
sLsG  so this is a positive 

feedback system. 

We start by finding out the range of L for closed loop stability. The characteristic equation is 

0
)50)(5)(667.0(

)2.0(14062501 =
+++

−
−

sss
sL

 or 

0)2812508.166()14062507.286(67.55 23 =++−++ LsLss . The Routh array is 

3s  1 L14062507.286 −  

2s  55.67 L2812508.166 +  

s  L14113007076.283 −   

1 L2812508.166 +   

 

The resulting stability range is 44 1001.21093.5 −− ×<<×− L  

 

The root locus will have two asymptotes with angles πθ ,0=  
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For the breakaway break-in points, write  

)2.0(406251
8.1667.28667.55

)2.0(406251
)50)(5)(667.0( 23

−
+++

=
−

+++
=

σ
σσσ

σ
σσσK  . The derivative of 

this expression is  

 

2

23

2

232

)2.0(406251
1.2247.2207.552

)2.0(406251
)8.1667.28667.55()7.28634.1113)(2.0(

−
−−+

=
−

+++−++−
=

σ
σσσ

σ
σσσσσσ

σd
dK

 

The roots of the numerator are: 88.1,14.2,8.27 −−=σ of which the latter two are in the root 

locus. 

We find the values of L at 2.14 and -1.88 as follows 

0
)50)(5)(667.0(

)2.0(14062501 88.1 =
+++

−
− −=ssss

sL
 giving 5102661.6 −×=L  and 

0
)50)(5)(667.0(

)2.0(14062501 14.2 =
+++

−
− =ssss

sL
 giving 41083.3 −×=L  

The root locus is: 
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54. 
a. Using Mason’s rule it can readily be found that (with d=0) the open loop transmission from ru  to 

ou  is 

( )

[ ]1)(
)1(

111

111

2

2

0

+++
+

=
+++

+

=
CsKsCCLs

sKKK

C
C

LCsLs
K

CsLs
K

s
sK

K

u
u

mL

mT

L
m

mT

r ατ
τ

α

τ
τ

ν

ν

 

So the system’s characteristic equation is: 

 

[ ] 0
1)(

)1(
1 2 =

+++
+

+
CsKsCCLs

sKKK

mL

mT

ατ
τ

β ν  

or 

 

[ ] 0)( 23 =+++++ mTmTmL KKsKKKsCKsCCL βτβττατ ν  

 
b. Substituting numerical values the characteristic equation becomes 
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039125.27375.7352.14)11(2.15 23 =++++ smssCL μμμ  

The Routh array is 

 

3s  )11(15.2 LC+μμ  73.7375m 

2s  μ52.14  2.39125 

s  
μ

μμμ
52.14

07067.1)11(347.36
−

−+ LC
  

1 2.39125  

 

To have all the first column positive it is required that 

FCL μ11−>  and mFCL 45.29< . It follows that  

mFCL 45.290 <<  due to physical restrictions in the capacitance. 

 

 The characteristic equation can also be expressed as 

0
105212.1104101.486842

909091 10823

3

=
×+×++

+
sss

sCL  or 

( ) 0
)81428)(5379(35

909091
3

=
+++

+
sss

sCL .  

There are no asymptotes. The break-in and breakaway points are calculated by first obtaining 

3

10823

90909
105212.1104101.486842

σ
σσσ ×+×++

−=LC . Then differentiating, 

( )
6

210823823

90909
3105212.1104101.486842)104101.41736843(

σ
σσσσσσσ

σ
×+×++−×++

−=
d
dCL

 

6

210384

90909
10564.410893.786842

σ
σσσ ×+×+

=  The roots of the numerator are 

2.58,7.9030,0,0 −−=σ  
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The value of LC  at -9030.7 is obtained 

from 0
105212.1104101.486842

909091 7.903010823

3

=
×+×++

+ −=sL sss
sC giving 

5105523.3 −×=LC  

The root locus is: 
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55.  
a. Substituting values we have 

0.5 0.1538( ) 0.003 1 ,and ( )
0.5 ( 0.833)d t

K sG s G s
s s s s

−⎛ ⎞= + =⎜ ⎟ + +⎝ ⎠
 

              The systems characteristic equation is 

4 0.51 1 4.614 10 1 0
( 0833)( 0.5)d t

K sG G
s s s s

− −⎛ ⎞+ = + × + =⎜ ⎟ + +⎝ ⎠
 

              Which can be rewritten as: 
4

4 3 2 4

4.614 10 ( 0.5)1 0
1.333 0.417 2.308 10

sK
s s s s

−

−

× −
+ =

+ + − ×
 

or 
44.614 10 ( 0.5)1 0

( 0.0006)( 0.5029)( 8306)
sK

s s s s

−× −
+ =

− + +
 

There are 3 asymptotes with a real axis intersection at 
0 0.0006 0.5029 0.8306 0.5 0.61

4 1aσ + − − −
= = −

−
 

The breakaway points are found by defining 

( ) 0.5N s s= −  and 4 3 2 4( ) 1.333 0.417 2.308 10D s s s s s−= + + − × . Then ( ) 1N s′ = ; 

3 2 4( ) 4 4 0.834 2.308 10D s s s s −′ = + + − ×  

Then ( ) ( ) ( ) ( ) 0N s D s N s D s′ ′− =  becomes 

4 3 2 43 0.667 1.583 0.417 1.154 10 0s s s s −+ − − + × =  

That has roots at 0.7417, 0.694, 0.2703,0,0003s = − − . The only solution in the locus is -

0.2703. 

The roots locus is: 
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b. The system is unstable for all values of K, although with relatively large time constants 
for small K. It is very unlikely that the driver‐train system is unstable. 

56. 

 

a. 
1s0.04

5
11

1

+
=

+×
=

+

×
=

sCR
R

sC
R

sC
R

Z
rr

r

r
r

r
r

req
 & 

s0.0000506.0 +=+= sLRZ cablecablecable   

Hence: 

( )( ) 5104.0s0.0000506.0
104.0

104.0
5s0.0000506.0

11
+++

+
=

+
++

=
+ s

s

s
ZZ

eqrcable
  

         = 
2530000s1225s
500000s20000

06.5s 0.00245s62
104.0

22 ++
+

=
++×−

+
E

s
  

Thus: ( ) ( )000005s00002s0.0082530000s1225s
2530000s1225s

)(
)()( 2

2

++++
++

==
sI
sVsG

s

s  = 
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       = 
000005s40240s8.9s0.008

00002531225ss
23

2

+++
++

  

b. The transfer function of the forward loop, KG(s): 

     
( )

000005s40240s8.9s0.008
00005321225ss

)(
)()( 23

2

+++
++

==
K

sE
sVsKG

v

s   

The transfer function of the feedback loop is given by: 
200

200)(
+

=
s

sH . 

The system’s characteristic equation is:  

( ) 0
200

200
000005s40240s8.9s0.008

00005321225ss1 23

2

=⎟
⎠
⎞

⎜
⎝
⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

++
+

s
K

 

Or equivalently  

 

( ) ( ) ( )KKK 101079234 106.32510251.s103.0625101.0685s250005275000s1425s ×+×+×+×++++

= 0 

The following MATLAB M-file was written to plot the root locus for the system and to find the 

required-above operational parameters and functions: 

numg = [1 1225 2.53E6]; 

deng = [0.008 9.8 40240 500000]; 

G = tf(numg, deng); 

numh = 200; 

denh = [1 200]; 

H = tf(numh, denh); 

rlocus(G*H); 

title('Full Root Locus for DC Bus Voltage Control System')  

pause 

axis ([-150, 0, -150, 150]);   

z=0.707; 

sgrid(z,0) 
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title('Root Locus Zoomed-in around Dominant Poles with a 0.707 

Damping Line') 

[K1,p]=rlocfind(G*H); 

pause 

K = K1; 

T=feedback(K*G,H);       %T is the closed-loop TF of the system 

T=minreal(T); 

step(750*T); 

grid 

title('Step Response of DC Bus Voltage') 

 

The first figure shown below is the full root locus for that system.  
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Zooming into the locus by setting the x-axis (real-axis) limits to -150 to 0 and the y-axis (imaginary-

axis) limits to -150 to 150, we get the following Root locus with the line corresponding to a damping 

ratio,  = 0.707. That plot was used to find the gain, K, at which the system has complex-conjugate 

closed-loop dominant poles with a damping ratio  = 0.707. 
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From the locus we found that: 

i. The gain, K, at which the system would have complex-conjugate closed-loop dominant poles with a 
damping ratio  = 0.707 is: K = 1.6832; 

ii. The coordinates of the corresponding point selected on the root-locus are: 

-1.085 E+002    +1.090 E+002i 

iii. The corresponding values of all closed-loop poles are: 

p = 1.0 E+003 * 

  -0.6040 + 2.1602i 
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  -0.6040 - 2.1602i 

  -0.1085 + 0.1090i 

  -0.1085 - 0.1090i 

iv. The output voltage vs(t) for a step input voltage vdc-ref (t) = 750 u(t) was plotted in (c) below. 

c. The output response is shown below with the required characteristics noted on the graph and listed 
below. 

 

Step Response of DC Bus Voltage
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System: T
Rise Time (sec): 0.00996

System: T
Settling Time (sec): 0.0338

System: T
Peak amplitude: 721
Overshoot (%): 7.41
At time (sec): 0.0206

 

 

System: T
Final Value: 671

T

 

i. The actual percent overshoot = 7.41% and the corresponding peak time, Tp = 0.0206 sec; 

ii. The rise time, Tr = 0.00996 sec, and the settling time, Ts = 0.0338 sec; 

iii. The final steady-state value is 671 volts. 
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SOLUTIONS TO DESIGN PROBLEMS 
 

57. 

 a. For a settling time of 0.1 seconds, the real part of the dominant pole is - 
4

0.1   = - 40.  Searching 

along the σ = - 40 line for 180o,  we find the point –40 + j57.25 with 20,000K = 2.046 x 109, or K = 

102,300. 

 b. Since, for the dominant pole, tan-1 ( 
57.25

40   ) = 55.058o, ζ = cos (55.058o) = 0.573. Thus,   

%OS = e    / 1  2

x100  = 11.14%. 

 c. Searching the imaginary axis for 180o, we find ω = 169.03 rad/s for 20,000K = 1.43 x 1010.  

Hence, K = 715,000. Therefore, for stability, K < 715,000. 

 
 
58.  

G(s) = 
61.73K

(s+10)3 (s2 + 11.11s + 61.73)
  

 

 

 
a. Root locus crosses the imaginary axis at ±j6.755 with 61.73K equal to 134892.8. Thus for 

oscillations, K = 2185.21. 

b. From (a) the frequency of the oscillations is 6.755 rad/s. 

c. The root locus crosses the 20% overshoot line at 6∠117.126o = - 2.736 + j5.34 with 61.73K = 

23323.61. Thus, K = 377.83 and Ts = 
4

ζωn
   = 

4
2.736   = 1.462 seconds. 

59.  
a. Finding the transfer function with Ca as a parameter,  
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Y
  

m (s)
Y

G
(s )  = 

s2 (2 s+ 2 )

(C a+ 1 )s2 + 4 s+ 2
 =  

2 s
2

(s+ 1 )

s2 + 4 s+ 2

1 +  
C as2

s2 + 4 s+ 2  

Plotting the root locus,  

 

 

b. Since 2ζωn = 
4

Ca+1  ; ωn2 = 
2

Ca+1  , ζ2 =  
2

Ca+1   = 0.692. Hence, Ca = 3.2. 

60.  
a. 
 

 

 
b. The pole at 1.8 moves left and crosses the origin at a gain of 77.18. Hence, the system is stable for 

K > 77.18, where K = -508K2. Hence, K2 < -0.152. 

c. Search the ζ = 0.5 (θ = 120o ) damping ratio line for 180o and find the point, -8.044 + j13.932  

= 16.087 ∠ 120ο with a K = -508K2  = 240.497. Thus, K2 = -0.473. 

d. Search the real axis between 1.8 and -1.6 for K = 240.497 and find the point -1.01.  
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Thus Ge(s) =  
240.497K1(s+1.6)

s(s+1.01)(s+8.044+j13.932)(s+8.044-j13.932)    =    
240.497K1(s+1.6)

s(s+1.01)(s2+16.088s+258.8066)
   . 

Plotting the root locus and searching the jω axis for 180o we find j15.792 with 240.497K1 = 4002.6, or K1 

= 16.643. 

e.  
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Search the ζ = 0.45 (θ = 116.744o ) damping ratio line for 180o and find the point, -6.685 + j13.267  

= 14.856 ∠ 116.744o with a K = 240.497K1  = 621.546. Thus, K1 = 2.584. 

61.  
a. Update the block diagram to show the signals that form Hsys(s).  

 

 

Perform block diagram reduction of the parallel paths from TW(s).  
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Reduce the momentum wheel assembly to a single block. 

 

 

 

Substitute values and find Ge(s) = 
4.514x10 6 K(s 0.01)

s2 (s  0.043)
. Plotting the root locus yields 
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b. Searching the 25% overshoot line (ζ = 0.404; θ = 113.8o) for 180o yields   

-0.0153 + j0.0355 with a gain = 4.514E-6K  = 0.0019. Thus, K = 420.9. 

c. Searching the real axis between –0.025 and –0.043 for a gain of 0.0019. we find the third pole at -

0.0125. Simulate the system. There is no pole-zero cancellation. A simulation shows approximately 

95% overshoot. Thus, even though the compensator yields zero steady-state error, a system redesign 

for transient response is necessary using methods discussed in Chapter 9. 
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62. 

a. 
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b.  

Configuration A: System is always unstable. 

Configuration B: root locus crosses jω axis at j2897 with a gain of 3.22 x 106. Thus, for stability, K 

< 3.22 x 106.  

Configuration C: root locus crosses jω axis at j1531 with a gain of 9.56 x 105. System is unstable at 

high gains. Thus, for stability, 9.56 x 105 > K. 

63. 

a. Using MATLAB and the Symbolic Math Toolbox, the open-loop expression that yields a root 

locus as a function of N2 is 

 
              0.2284x107N2 (s2 + 3.772e-05s + 66.27) (s2 + 49.99s + 8789) 
Gdt(s) =     ________________  
 
                              s(s+45.12) (s2 + 4.893s + 8.777e04) 
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Program: 
syms s N KLSS KHSS KG JR JG tel s 
numGdt=3.92*N^2*KLSS*KHSS*KG*s; 
denGdt=(N^2*KHSS*(JR*s^2+KLSS)*(JG*s^2*[tel*s+1]+KG*s)+JR*s^2*KLSS*[(JG*s^2
+KHSS)*(tel*s+1)+KG*s]); 
Gdt=numGdt/denGdt; 
'Gdt in General Terms' 
pretty(Gdt) 
'Values to Substitute' 
KLSS=12.6e6 
KHSS=301e3 
KG=668  
JR=190120 
JG=3.8  
tel=20e-3 
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numGdt=3.92*N^2*KLSS*KHSS*KG*s; 
numGdt=vpa(numGdt,4); 
denGdt=(N^2*KHSS*(JR*s^2+KLSS)*(JG*s^2*[tel*s+1]+KG*s)+JR*s^2*KLSS*[(JG*s^2
+KHSS)*(tel*s+1)+KG*s]); 
denGdt=vpa(denGdt,4); 
'Gdt with Values Substituted' 
Gdt=numGdt/denGdt; 
pretty(Gdt) 
Gdt=expand(Gdt); 
Gdt=vpa(Gdt,4); 
'Gdt Different Form 1' 
pretty(Gdt); 
denGdt=collect(denGdt,N^2); 
'Gdt Different Form 2' 
Gdt=collect(Gdt,N^2); 
pretty(Gdt) 
[numGdt,denGdt]=numden(Gdt); 
numGdt=numGdt/0.4349e10; 
denGdt=denGdt/0.4349e10; 
denGdt=expand(denGdt); 
denGdt=collect(denGdt,N^2); 
Gdt=vpa(numGdt/denGdt,4); 
'Gdt Different Form 3' 
pretty(Gdt) 
'Putting into Form for RL as a Function of N^2 using previous results' 
numGH=[1 49.99 8855 3313 582400]; 
denGH=[41.87 2094 0.3684e7 0.1658e9 0]; 
denGH=denGH/denGH(1) 
GH=tf(numGH,denGH) 
GHzpk=zpk(GH) 
'Zeros of GH' 
rootsnumGH=roots(numGH) 
'Poles of GH' 
rootsdenGH=roots(denGH) 
K=0:1:10000; 
rlocus(GH,K) 
sgrid(0.5,0) 
pause 
axis([-10,0,-20,20]) 
[K,P]=rlocfind(GH) 
 
Computer response: 

ans = 
 
Gdt in General Terms 
 
  
  98  2                  /   2           2              2 
  -- N  KLSS KHSS KG s  /  (N  KHSS (JR s  + KLSS) (JG s  (tel s + 1) + KG s) 
  25                   / 
 
               2            2 
         + JR s  KLSS ((JG s  + KHSS) (tel s + 1) + KG s)) 
 
ans = 
 
Values to Substitute 
 
 
KLSS = 
 
    12600000 
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KHSS = 
 
      301000 
 
 
KG = 
 
   668 
 
 
JR = 
 
      190120 
 
 
JG = 
 
    3.8000 
 
 
tel = 
 
    0.0200 
 
 
ans = 
 
Gdt with Values Substituted 
 
  
          16  2     / 
  .9931 10   N  s  /  (301000. 
                  / 
 
         2           2           8          2 
        N  (190100. s  + .1260 10 ) (3.800 s  (.02000 s + 1.) + 668. s) 
 
                   13  2          2 
         + .2396 10   s  ((3.800 s  + 301000.) (.02000 s + 1.) + 668. s)) 
 
ans = 
 
Gdt Different Form 1 
 
  
          16  2     /          10  2  5           12  2  4           14  2  3 
  .9931 10   N  s  /  (.4349 10   N  s  + .2174 10   N  s  + .3851 10   N  s 
                  / 
 
                   14  2  2           16  2             12  5           13  4 
         + .1441 10   N  s  + .2533 10   N  s + .1821 10   s  + .9105 10   s 
 
                   17  3           18  2 
         + .1602 10   s  + .7212 10   s ) 
 
ans = 
 
Gdt Different Form 2 
 
  
          16  2     /           10  5           12  4           14  3 
  .9931 10   N  s  /  ((.4349 10   s  + .2174 10   s  + .3851 10   s 
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                  / 
 
                   14  2           16     2           18  2           12  5 
         + .1441 10   s  + .2533 10   s) N  + .7212 10   s  + .1821 10   s 
 
                   13  4           17  3 
         + .9105 10   s  + .1602 10   s ) 
 
ans = 
 
Gdt Different Form 3 
 
  
          7  2     / 
  .2284 10  N  s  /  ( 
                 / 
 
                5          4          3          2               2 
        (1.000 s  + 49.99 s  + 8855. s  + 3313. s  + 582400. s) N 
 
                   9  2          5          4           7  3 
         + .1658 10  s  + 41.87 s  + 2094. s  + .3684 10  s ) 
 
ans = 
 
Putting into Form for RL as a Function of N^2 using previous results 
 
 
denGH = 
 
  1.0e+006 * 
 
  Columns 1 through 4  
 
    0.0000    0.0001    0.0880    3.9599 
 
  Column 5  
 
         0 
 
  
Transfer function: 
s^4 + 49.99 s^3 + 8855 s^2 + 3313 s + 582400 
-------------------------------------------- 
s^4 + 50.01 s^3 + 8.799e004 s^2 + 3.96e006 s 
  
  
Zero/pole/gain: 
 (s^2  + 66.27) (s^2  + 49.99s + 8789) 
--------------------------------------- 
s (s+45.12) (s^2  + 4.893s + 8.777e004) 
  
 
ans = 
 
Zeros of GH 
 
 
rootsnumGH = 
 
 -24.9950 +90.3548i 
 -24.9950 -90.3548i 
  -0.0000 + 8.1404i 



8-77   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

  -0.0000 - 8.1404i 
 
 
ans = 
 
Poles of GH 
 
 
rootsdenGH = 
 
  1.0e+002 * 
 
        0           
  -0.0245 + 2.9624i 
  -0.0245 - 2.9624i 
  -0.4512           
 
Select a point in the graphics window 
 
selected_point = 
 
  -3.8230 + 6.5435i 
 
 
K = 
 
   51.5672 
 
 
P = 
 
 -21.1798 +97.6282i 
 -21.1798 -97.6282i 
  -3.8154 + 6.5338i 
  -3.8154 - 6.5338i 
  
 

b.   From the computer response, K = 0.2284x107N2  = 49.6. Therefore, N is approximately  5/1000. 
 

64.  

a.  There are two asymptotes with  
2

3,
2

ππθ =a  and real axis intersection 

5.4
13

)1(1000
−=

−
−−−+

=aσ . To find the breakaway and break-in points, write  

)1(10333.3
)10(

4

2

+×
+

=
σ

σσK  . The derivative of this expression is  

24

2

24

232

)1(103333.3
)20132(

)1(103333.3
)10()203)(1(

+×
++

−=
+×

+−++
−=

σ
σσσ

σ
σσσσσ

σd
dK

. The denominators 

roots for this expression are 4,5.2,0 −−=σ  

The values of K  at -2.5 and -4 are calculated from 

0
)10(

)1(10333.31 5.22

4

=
+

+×
+ −=sss

sK  giving 410375.9 −×=K  and 
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0
)10(

)1(10333.31 42

4

=
+

+×
+ −=sss

sK  giving 4106.9 −×=K  

The root locus is: 

 

b.  The line corresponding to 7.0=ξ must be at an angle D57.457.0cos 1 == −θ so the line 

must lie along the points )0202.11(tan jajaajbas −=−=+= θ . The angle condition for 

the root locus must be satisfied. Namely 

DD 180)57.45(2
10

0202.1tan
1
0202.1tan

)0202.110()0202.11(
)0202.11(10333.3arg

)10(
)1(10333.3arg

11

22

4

)0202.11(2

4

=−−
+

+
+

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

−+×
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+×

−−

−=

aa

jaja
ja

ss
s

jas

 

A numerical search gives 136.1−=a . So the root locus and the line intersect when 

1589.1136.1)0202.11(136.1 jjs +−=−−= . Then the value of K  can be found 

from 0
)10(

)1(10333.31 1589.1136.12

4

=
+

+×
+ +−= jsss

sK  giving 41005.6 −×=K  

65. 

a. The open loop transfer function can be expressed as  
89.2

48500)( 2 +
⎟
⎠
⎞

⎜
⎝
⎛ +

=
ss

KsKsG IP . The 

Acceleration Error Constant is given by 
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I
IP

ssa K
s

KsKLimsGsLimK 16872
89.2

)(48500)(
0

2

0
=

+
+

==
→→

. For a parabolic input 

02.0
16782

11
===

Ia
ss KK

e  . This gives 003.0=IK  

b. The characteristic equation is 0
89.2

48500003.01 2 =
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+
ss

sK P  or 

0003.089.2 23 =+++ sKss P  We start by finding the range of PK for closed loop stability. 

The Routh array is 

 

3s  1 PK  

2s  2.89 0.003 

s  
89.2

003.089.2 −PK
  

1 0.003  

 

So for closed loop stability 001.0>PK  

To  draw the root locus we write the characteristic equation 

as 0
003.089.2

1 23 =
++

+
ss
sK P or 0

)001037.00004.0)(89.2(
1 2 =

+−+
+

sss
sK P  

There are two asymptotes with  
2

3,
2

ππθ =a  and real axis intersection 

4452.1
13

0)0002.0(289.2
−=

−
−−−

=aσ . To find the break-in and breakaway points we write 

σ
σσ 003.089.2 23 ++

−=PK . We obtain 

( ) ( )
2

23

2

232 003.089.22003.089.278.53
σ

σσ
σ

σσσσσ
σ

−+
−=

++−+
−=

d
dK P  The 

roots of the numerator are 4443.1,0326.0,0319.0 −−=σ . We obtain the values of PK  at -

0.0326 and -1,443 from 

0
003.089.2

1 0326.023 =
++

+ −=sP ss
sK giving 1852.0=PK  and 

0
003.089.2

1 4443.123 =
++

+ −=sP ss
sK giving 0901.2=PK  
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The root locus is: 

 

 

c.  The value of PK when the system has a closed loop pole at -1 is obtained from 

0
003.089.2

1 123 =
++

+ −=sP ss
sK resulting in 893.1=PK . With this value of gain the 

characteristic equation becomes 0003.0893.189.2 23 =+++ sss . This equation has roots at 

884.1,1,0016.0 −−−=s . 

66. 

a. 

>> s=tf('s'); 

>> Ga=10.26/(s^2+11.31*s+127.9); 

>> F=6.667e-5*s^2/(s^2+0.2287*s+817.3); 

>> Gm=s/(s^2+5.181*s+22.18); 

>> G=Ga*F*Gm; 
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>> sisotool  

 

  

b. The system will be closed loop stable for 0 3*10 ^ 5K< <  

c. The system cannot be overdamped because there will always be two undamped poles very close to 

the jω axis. 

67. 
a. The characteristic equation is given by: 

4

2 21 0
( 1)

sK
s s

+ =
+ +

 

or 
4 3 2(1 ) 2 3 2 1 0K s s s s+ + + + + =  
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The Routh table is 
4s  1 K+  3 1

3s  2 2  
2s  2 K−  1  

s 2(1 )
2

K
K

−
−

 
  

1 1   

Clearly for closed loop stability 1K < . 

 

b. There is no locus on the real axis, and no asymptotes. The root locus starts at the loci of the 

complex poles and ends at the zeros in the origin: 
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68. 

a. 

 

Close-up View 

 

b. It can readily found that for closed loop stability 0<K<0.0059 

c. The fastest response will be obtained when the closest poles to the jω axis are both real and 

identical. This will occur when K=0.00136 
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d. When K=0.00136 the dominant poles are situated at -0.57. The settling time 
4 7.02

0.57sT sec≈ =  

e. The actual settling time is 9.7 sec as shown in the figure below. 
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69. 
% Parameters 
Jl=10;Bl=1;k=100;Jm=2;Bm=0.5;a=0.25;%a is the location of the zero 
%numerator and denominator of the open loop transfer function 
numo=k*[1 a]; 
deno=[Jl*Jm (Jl*Bm+Jm*Bl) (k*(Jl+Jm)+Bl*Bm) k*(Bl+Bm) 0]; 
syso=tf(numo,deno); 
 
%Pole-Zero map for the open loop transfer function 
pzmap(syso); 
%Root Locus 
rlocus(syso);axis([-1 0 -0.3 0.3]); 
zgrid(0.707,[]); %grid for zeta=0.707 for approx. 5% overshoot 
 [KD,poles]=rlocfind(syso); 
%Choose the appropriate location of the poles in the window and multiply the factor by the open 
loop 
%transfer function 
syso=KD*syso; 
%Close the loop 
sysc=feedback(syso,1); 
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figure; 
%Obtain the response 
step(sysc) 

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
0.707

0.707

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

 

Select a point in the graphics window 

 

selected_point = 

 

  -0.1031 + 0.0978i 
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Step Response
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Note the 5 % overshoot specified. 
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70. 

Front Panel 

 

Block Diagram 

 

Details of the Case Structure 
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71. 

The following MATLAB M-file was written to plot the root locus for the system and to find the 

required-above operational parameters and functions: 

 

numg = poly ([-0.071-6.25i -0.071+6.25i]); 

deng = poly ([-0.047 -2 -0.262+5.1i -0.262-5.1i]); 

G = tf(numg, deng); 

rlocus(G); 

pos=(16); 

z=-log(pos/100)/sqrt(pi^2+(log(pos/100))^2); 

sgrid(z,0) 

title(['Root Locus with ', num2str(pos), ' Percent Overshoot Line 

for Synchronous Machine with Te = 0.5 sec']) 

[K1,p]=rlocfind(G); 

pause 

K=0.936*K1; 

T=feedback(K*G,1);       %T is the closed-loop TF of the system 

T=minreal(T); 

step(T); 

grid 
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Root Locus with 16% Overshoot Line for Synchronous Machine  

 

a. The gain at which the system becomes marginally stable is: 

K = 7.1045  

b. The closed‐loop poles, p, and transfer function, T(s), corresponding to a 16% overshoot 
are: 

p = -0.2300 + 4.9446i 

   -0.2300 - 4.9446i 

   -1.0555 + 1.8634i 

  -1.0555 - 1.8634i 

        
 
T (s) = 

2.633 s^2 + 0.3739 s + 102.9 
-------------------------------------------------------- 

s^4 + 2.571 s^3 + 29.88 s^2 + 53.81 s + 105.3 
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c. The coordinates of the point selected on the root‐locus were: ‐1.0557 + 1.8634i and the 
corresponding unit‐step response, with δ (t) in p.u, was found. 
d. MATLAB was used to plot that unit‐step response and to note on that curve the 
required characteristics: 
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72. 
a. 

Sensor

+

-
Input 

transducer

Desired 
force

Input 
voltage

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
100

K 1
1000

0.7883( s  53.85)
( s2  15.47 s  9283 )( s2  8.119 s  376 .3) 82300

1
100

 

+

-

Desired 
force

Controller Actuator Pantograph 
dynamics

Spring

Fup

Yh-Ycat 
Spring 

displacement

Fout1
1000

0.7883( s  53.85)
(s2  15.47s  9283 )(s 2  8.119 s  376 .3) 82300

K
100

 

 

G(s) = 
Yh(s)  Ycat (s)

Fup(s)
 

0.7883(s 53.85)
(s2  15.47s  9283)(s2  8.119s  376.3)

 

                               Ge(s)=(K/100)*(1/1000)*G(s)*82.3e3 
 

                                         0.6488K (s+53.85) 
             Ge(s) =     __________________________ 
                           (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
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b. 38% overshoot yields ζ = 0.294. The ζ = 0.294 line intersects the root locus at –9 + j27.16. Here, 

Ke = 7.179 x 104. Thus K = Ke/0.6488, or K = 1.107 x 105. 

c.  Ts = 4/Re = 4/9 = 0.44 s; Tp = π/Im = π/27.16 = 0.116 s 

d. Nondominant closed-loop poles are located at –3.4 ± j93.94. Thus poles are closer to the imaginary 

axis than the dominant poles. Second order approximation not valid.  

e. 
Program: 
syms s 
numg=(s+53.85); 
deng=(s^2+15.47*s+9283)*(s^2+8.119*s+376.3); 
numg=sym2poly(numg); 
deng=sym2poly(deng); 
G=tf(numg,deng) 
K=7.179e4 
Ke=0.6488*K 
T=feedback(Ke*G,1) 
step(T) 
 
Computer response: 
Transfer function: 
  
                    s + 53.85 
------------------------------------------------- 
s^4 + 23.59 s^3 + 9785 s^2 + 8.119e004 s          
                                                  
                                      + 3.493e006 
                                                  
  
 
K = 
 
       71790 
 
 
Ke = 
 
  4.6577e+004 
 
  
Transfer function: 
  
             4.658e004 s + 2.508e006 
------------------------------------------------- 
s^4 + 23.59 s^3 + 9785 s^2 + 1.278e005 s          
                                                  
                                      + 6.001e006 
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Tp = 0.12 s, Ts = 0.6 s, %OS = 
0.66 0.42

0.42
 57.1% . 

 

73. 
a.   The open loop transfer function is  
 

)6419.2)(0661.002.0)(0661.002.0(
)02.0(520

0126.011.06817.2
)3844.10520()()( 23

+−+++
+−

=

+++
+

−=

sjsjs
sK

sss
sKsPsKG

 

There are two asymptotes with a real axis intersection given by 

33.1
13

)02.0()02.0(26419.2
−

−
−−−−−

=aσ and angles 
2

2 k
a

πθ = . For 0=k , 0=aθ and 

for 1=k , πθ =a . 

To obtain the breakaway points let 

3844.10520
0126.011.06817.2

)()(
1 23

+
+++

=−=
σ

σσσ
σσ HG

K  

And calculate and solve 
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0
)3844.10520(

41.57.5514261040
)3844.10520(

)0126.011.06817.2(520)11.03634.53)(3844.10520(

2

23

2

232

=
+

−++
=

+
+++−+++

=

σ
σσσ

σ
σσσσσσ

σd
dK

 

Giving 0446.0,0879.0,33.1 −−=σ  with only the latter in the root locus. The value of K at 

0446.0=σ is given by: 

4

0446.0

23

1082.6
3844.10520

0126.011.06817.2 −

=

×=
+

+++
=

σσ
σσσK  

It was already found in Problem 6.? That the system is closed loop stable for 41004.2 −×<K . 

The root locus is: 

 

b.  Now the open loop transfer function is:  

)6419.2)(0661.002.0)(0661.002.0(
)02.0(520

0126.011.06817.2
)3844.10520()()( 23

+−+++
+

=

+++
+

=

sjsjs
sK

sss
sKsPsKG

 

There are two asymptotes with a real axis intersection as in part a. but with angles 

2
)12( πθ +

=
k

a . For 0=k , 
2
πθ =a and for 1=k  , 

22
3 ππθ −==a . 

The breakaway point calculation is similar to the one in part a. giving 

0446.0,0879.0,33.1 −−=σ  with the first two points in the root locus. 
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  The value of K at 33.1−=σ is given by: 

0033.0
3844.10520

0126.011.06817.2

33.1

23

=
+

+++
−=

−=σσ
σσσK  

The value of K at 0879.0−=σ is given by: 

4

0879.0

23

105.6
3844.10520

0126.011.06817.2 −

−=

×=
+

+++
−=

σσ
σσσK  

We use Routh-Hurwitz to show that the system is closed loop stable for all 0>K . The 

characteristic equation is: 

0
0126.011.06817.2

3844.105201 23 =
+++

+
+

sss
sK  

or 

( ) 03844.105200126.011.06817.2 23 =+++++ sKsss  

or 

0)3844.100126.0()52011.0(6817.2 23 =+++++ KsKss  

The Routh Array is: 

 

3s  1 K52011.0 +  

2s  6817.2  K3844.100126.0 +  

s  6817.2
1.13842824.0 K+

  

1 K3844.100126.0 +   

 

It can easily be verified that all the entries in the first column are positive for all 0>K . 

The root locus is: 
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74. 

a. With the speed controller configured as a proportional controller [KISC
= 0 and G

SC
(s) = 

KPSC
], the open-loop transfer function is: 

sc v

0.11 ( 0.6)sc( ) ( )
( 0.5173) 5(s 0.6)(s 0.01908)

PK s
G s G s

s s
+

=
+ + + +

. 

Expanding the denominator of this transfer function, gives: 

0.05724  s  3.6136)( 2 ++= ssDG . 

Solving for the roots shows that there are two open-loop poles: – 0.5858 and – 0.0163. Thus, the 

open-loop transfer function may be re-written as: 

1
sc v 2

0.11 ( 0.6) ( 0.6)sc( ) ( )
( 0.5858)( 0.0163)6 3.613 s 0.05724 

PK s K sG s G s
s ss

+ +
= =

+ ++ +
 (1) 

 

In this equation: 
6

11.0sc
1

×
= PK

K  (2) 

 

The following MATLAB M-file was written to plot the root locus for the system and to find the 

value of the proportional gain, K1, at the breakaway or break-in points. 
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numg = [1 0.6]; 

deng = poly ([-0.0163 -0.5858]); 

G = tf(numg, deng); 

rlocus(G); 

pos=(0); 

z=-log(pos/100)/sqrt(pi^2+(log(pos/100))^2); 

sgrid(z,0) 

title(['Root Locus with ', num2str(pos) , ' Percent Overshoot 

Line']) 

[K1,p]=rlocfind(G); 

pause 

T=feedback(K1*G,1);       %T is the closed-loop TF of the system 

T=minreal(T); 

step(T); 

axis ([0, 8, 0, 1]);  

grid 

The root locus shown below was obtained. Using MATLAB tools, the gain at the break-in point was 

found to be larger and, hence, would yield a faster closed-loop unit-step response. The following 

repeated real poles were found, which indicated that the step response is critically damped:  p = - 

0.6910, - 0.6910. These poles corresponded to: K1 = 0.78 (which corresponds to KPSC
 = 42.54). The 

closed-loop transfer function, T(s), was found to be: 

0.78 s + 0.468 

T(s) = ----------------------- 

       s2 + 1.382 s + 0.4775 
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Therefore, it was used to find the closed-loop transfer function of the system, to plot its unit-step 

response, c(t), shown below, and to find the rise-time, Tr, and settling time, Ts. 
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Step Response
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System: T
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As could be seen from the graph, these times are: 

Tr = 2.69 sec and Ts = 4.69 sec 

 

b. When integral action was added (with KISC/KPSC
 = 0.4), the transfer function of the speed 

controller became: 
( )
s
sK

s
K

KsG PI
PSC

4.0
)( scsc

sc
+

=+=  and the open-loop transfer 

function obtained is: 

( )1
2

0.11 ( 0.6)( 0.4) ( 0.6) 0.4sc( ) ( )
( 0.5858)( 0.0163)(6 3.613s 0.05724) 

P
SC v

K s s K s s
G s G s

s s ss s
+ + + +

= =
+ ++ +

 

 

Where sc
1

0.11
6

PK
K =  or 1

1sc
6 54.5455
0.11P

KK K= =  

The following MATLAB M-file was written to plot the root locus for the system and to find the 

gain, K1, which could result in a closed-loop unit-step response with 10% overshoot.  
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numg = poly ([-0.4 -0.6]); 

deng = poly ([0 -0.0163 -0.5858]); 

G = tf(numg, deng); 

rlocus(G); 

pos=(10); 

z=-log(pos/100)/sqrt(pi^2+(log(pos/100))^2); 

axis ([-1, 0, -0.5, 0.5]); 

sgrid(z,0) 

title(['Root Locus with ', num2str(pos) , ' Percent Overshoot 

Line']) 

[K1,p]=rlocfind(G); 

pause 

T=feedback(K1*G,1);       %T is the closed-loop TF of the system 

T=minreal(T); 

step(T); 

axis ([0, 20, 0, 1.5]); 

grid 

The root locus shown below was obtained. Using MATLAB tools, the gain at the point selected on 

the locus (- 0.275 + j 0.376) was found to be K1 = 0.526 (which corresponds to KPSC
 = 28.7). The 

corresponding closed-loop transfer function, T(s), is: 

0.12620.53551.128
0.1262   0.526   0.526)( 23

2

+++

++
=

s ss
sssT  

T(s) has the closed-loop poles: p = – 0.580, – 0.275 ± j 0.376 and zeros at – 0.4 & – 0.6. Thus, the 

complex conjugate poles are not dominant, and hence, the output response, c(t), obtained using 
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MATLAB, does not match that of a second-order underdamped system. Note also that the settling 

time, Ts = 15 sec, , the rise time, Tr = 2 sec, the peak time, Tp = 5.03 sec, and the overshoot is 24.5% 

(higher than the 10% corresponding to the dominant poles). 

 

Root Locus with 10 Percent Overshoot Line

Real Axis

Im
ag

in
ar

y 
A

xi
s

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
0.591

0.591

System: G
Gain: 0.527
Pole: -0.275 + 0.376i
Damping: 0.591
Overshoot (%): 9.98
Frequency (rad/sec): 0.466

 



8-102   Chapter 8:   Root Locus Techniques   

Copyright ©   2011 by John Wiley & Sons, Inc. 

Step Response
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It should be mentioned that since we applied 1 volt-unit-step inputs (as compared to 4 volts in the 

Hybrid vehicle progressive problem in Chapter 5) in both parts (a) and (b) above, we should not be 

surprised that the final (steady-state) value of output voltage of the speed transducer was 1 volt, 

which corresponds to a change in car speed of only 5 km/hr.  
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N  I  N  E  
 
  Design via Root Locus 

 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: Lag-Lead Compensation 
a. Uncompensated: From the Chapter 8 Case Study Challenge, G(s) = 

76.39K
s(s+150)(s+1.32)   = 

7194.23
s(s+150)(s+1.32)   with the dominant poles at - 0.5 ± j6.9. Hence, ζ = cos (tan-1 

6.9
0.5  ) = 0.0723, or 

%OS = 79.63% and Ts = 
4

ζωn
   = 

4
0.5  = 8 seconds.  Also, Kv = 

7194.23
150 x 1.32   = 36.33. 

 b. Lead-Compensated: Reducing the percent overshoot by a factor of 4 yields, %OS = 
79.63

4    = 

19.91%, or ζ = 0.457. Reducing the settling time by a factor of 2 yields, Ts = 
8
2  = 4. Improving Kv 

by 2 yields Kv = 72.66. Using Ts = 
4

ζωn
   = 4, ζωn = 1, from which ωn = 2.188 rad/s. Thus, the 

design point equals -ζωn + j ωn 1-ζ2  = -1 + j1.946. Using the system's original poles and 

assuming a lead compensator zero at -1.5, the summation of the system's poles and the lead 

compensator zero to the design point is -123.017o . Thus, the compensator pole must contribute 

123.017o-180o = -56.98o. Using the geometry below, 
1.946
pc - 1   = tan 56.98o, or pc = 2.26. 

 

 
 

Adding this pole to the system poles and the compensator zero yields 76.39K = 741.88 at -1+j1.946. 

Hence the lead-compensated open-loop transfer function is GLead-comp(s) =   
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741.88(s +1.5)
s(s +150)(s +1.32)(s + 2.26)

. Searching the real axis segments of the root locus yields higher-order 

poles at greater than -150 and at -1.55. The response should be simulated since there may not be 

pole/zero cancellation. The lead-compensated step response is shown below. 

 

 
 

Since the settling time and percent overshoot meet the transient requirements, proceed with the lag 

compensator. The lead-compensated system has Kv = 
741.88 x 1.5

150 x 1.32 x 2.26   = 2.487. Since we want Kv 

= 72.66, an improvement of 
72.66
2.487   = 29.22 is required. Select G(s)Lag = 

s+0.002922
s+0.0001    to improve the 

steady-state error by 29.22. A  simulation of the lag-lead compensated system,   

 

GLag-lead-comp(s) = 
741.88(s+1.5)(s+0.002922)

s(s+150)(s+1.32)(s+2.26)(s+0.0001)   is shown below. 
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UFSS Vehicle: Lead and Feedback Compensation 

Minor loop: Open-loop transfer function G(s)H(s) = 
0.25K2(s+0.437)

(s+2)(s+1.29)(s+0.193)   ; Closed-loop transfer  

function: TML (s) =
0.25K2 (s + 0.437)

s(s3 + ...)
. Searching along the 126.87o line (ζ = 0.6), find the 

dominant second-order poles at -1.554 ± j2.072 with 0.25K2 = 4.7. Thus K2 = 18.8. Searching the 

real axis segment of the root locus for a gain of 4.7 yields a 3rd pole at -0.379.  

 Major loop: The unity feedback, open-loop transfer function found by using the minor-loop closed-

loop poles is GML(s) = 
-0.25K1(s+0.437)

s(s+0.379)(s+1.554+j2.072)(s+1.554-j2.072)  . Searching along the 120o line 

(ζ = 0.5), find the dominant second-order poles at -1.069±j1.85 with 0.25K1 = 4.55. Thus K1 = 18.2. 

Searching the real axis segment of the root locus for a gain of 4.55 yields a 3rd pole at -0.53 and a 4th 

pole at -0.815.  

 
ANSWERS TO REVIEW QUESTIONS  

1. Chapter 8: Design via gain adjustment. Chapter 9: Design via cascaded or feedback filters 

2. A. Permits design for transient responses not on original root locus and unattainable through simple gain 

adjustments. B. Transient response and steady-state error specifications can be met separately and 

independently without the need for tradeoffs 

3. PI or lag compensation 

4. PD or lead compensation 

5. PID or lag-lead compensation 

6. A pole is placed on or near the origin to increase or nearly increase the system type, and the zero is 

placed near the pole in order not to change the transient response. 

7. The zero is placed closer to the imaginary axis than the pole. The total contribution of the pole and zero 

along with the previous poles and zeros must yield 1800 at the design point. Placing the zero closer to the 

imaginary axis tends to speed up a slow response. 

8. A PD controller yields a single zero, while a lead network yields a zero and a pole. The zero is closer to 

the imaginary axis. 

9. Further out along the same radial line drawn from the origin to the uncompensated poles 

10. The PI controller places a pole right at the origin, thus increasing the system type and driving the error 

to zero. A lag network places the pole only close to the origin yielding improvement but no zero error. 

11. The transient response is approximately the same as the uncompensated system, except after the 

original settling time has passed. A slow movement toward the new final value is noticed. 
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12. 25 times; the improvement equals the ratio of the zero location to the pole location. 

13. No; the feedback compensator's zero is not a zero of the closed-loop system. 

14. A. Response of inner loops can be separately designed; B. Faster responses possible; C. Amplification 

may not be necessary since signal goes from high amplitude to low. 

 

SOLUTIONS TO PROBLEMS 
 

1. 
Uncompensated system: Search along the ζ = 0.5 line and find the operating point is at -1.5356 ± 

j2.6598 with K = 73.09. Hence, %OS = e−ζπ / 1−ζ 2

x100  = 16.3%; Ts = 
4

1.5356
= 2.6 seconds; Kp 

= 
73.09

30
=2.44. A higher-order pole is located at -10.9285. 

Compensated: Add a pole at the origin and a zero at -0.1 to form a PI controller. Search along the ζ = 

0.5 line and find the operating point is at -1.5072 ± j2.6106 with K = 72.23. Hence, the estimated 

performance specifications for the compensated system are: %OS = e−ζπ / 1−ζ 2

x100  = 16.3%; Ts = 

4
1.5072

= 2.65 seconds; Kp = ∞. Higher-order poles are located at -0.0728 and -10.9125. The 

compensated system should be simulated to ensure effective pole/zero cancellation.  

2. 

a. Insert a cascade compensator, such as Gc (s) =
s + 0.01

s
. 

b.  
Program: 
K=1 
G1=zpk([],[0,-3,-6],K)  %G1=1/s(s+3)(s+6) 
Gc=zpk([-0.01],[0],1)   %Gc=(s+0.01)/s 
G=G1*Gc 
rlocus(G) 
T=feedback(G,1) 
T1=tf(1,[1,0])          %Form 1/s to integrate step input 
T2=T*T1 
t=0:0.1:200; 
step(T1,T2,t)           %Show input ramp and ramp response 

 
 
Computer response: 

K = 
 
     1 
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Zero/pole/gain: 
      1 
------------- 
s (s+3) (s+6) 
  
  
Zero/pole/gain: 
(s+0.01) 
-------- 
   s 
  
  
Zero/pole/gain: 
   (s+0.01) 
--------------- 
s^2 (s+3) (s+6) 
  
  
Zero/pole/gain: 
                 (s+0.01) 
------------------------------------------- 
(s+6.054) (s+2.889) (s+0.04384) (s+0.01304) 
  
  
Transfer function: 
1 
- 
s 
  
  
Zero/pole/gain: 
                  (s+0.01) 
--------------------------------------------- 
s (s+6.054) (s+2.889) (s+0.04384) (s+0.01304) 
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3.  

a. Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating point at 

 -1.8731 + j2.5633 with K = 41.1905. Hence, 
41.1905 0.9807
2 *3*7pK = =  

 b. A 4.0787 x improvement will yield Kp = 4. Use a lag compensator, 
0.40787( )

0.1c
sG s

s
+

=
+

. 

c.  
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4. 
a. Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating point at 

 -1.1207 + j1.5336 with K = 27.9948. Hence, Kv = 
27.9948 1.3331

3x7
= .  

b. A 3.0006 x improvement will yield Kv = 4. Use a lag compensator, Gc(s)  = 
0.3.0006

0.1
s

s
+

+
. 

c.  

Program: 
K=17.5 
G=zpk([],[0,-3,-5],K)   
Gc=zpk([-0.3429],[-0.1],1)   
Ge=G*Gc; 
T1=feedback(G,1); 
T2=feedback(Ge,1); 
T3=tf(1,[1,0]);         %Form 1/s to integrate step input 
T4=T1*T3; 
T5=T2*T3; 
t=0:0.1:20; 
step(T3,T4,T5,t)        %Show input ramp and ramp responses 
 
 
Computer response: 

K = 
 
   27.9948 
 
  
Zero/pole/gain: 
   27.9948 
------------- 
s (s+3) (s+7) 
  
  
Zero/pole/gain: 
(s+0.3001) 
---------- 
 (s+0.1) 
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5.  

a. Uncompensated: Searching along the 126.16o line (10% overshoot, ζ = 0.59), find the operating 

point at -2.6255 + j3.5929 with K = 88.069. Hence, 
88.069 0.8388
3*5*7pK = = . An improvement of 

20 23.8449
0.8388

=  is required. Let 
0.238449( )

0.01c
sG s

s
+

=
+

. Compensated: Searching along the 

126.16o line (10% overshoot, ζ = 0.59), find the operating point at - 2.5859+j3.5388 with  

K = 88.7909. Hence, 
88.7909 *0.238449 20.1639

3*5*7 *0.01pK = = . 
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b.  
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c. From (b), about 28 seconds 

 
 6.  

Uncompensated: Searching along the 135o line (ζ = 0.707), find the operating point at  

-2.32 + j2.32 with K = 4.6045. Hence, Kp = 
4.6045

30
= 0.153; Ts = 

4
2.32

= 1.724 seconds; Tp = 

2.32
π

= 1.354 seconds; %OS = e−ζπ / 1−ζ 2

x100  = 4.33%;  

ωn = 2 22.32 2.32+ = 3.28 rad/s; higher-order pole at -5.366.  
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Compensated: To reduce the settling time by a factor of 2, the closed-loop poles should be – 4.64 ± 

j4.64. The summation of angles to this point is 119o . Hence, the contribution of the compensating 

zero should be 180o -119o =61o . Using the geometry shown below,  

4.64
4.64cz −

= tan (61o). Or, zc = 7.21. 

 

 

 
After adding the compensator zero, the gain at -4.64+j4.64 is K = 4.77. Hence, 

4.77 6 7.21 6.88
2 3 5p

x xK
x x

= = . 
4= 0.86

4.64sT =  second; = = 0.677
4.64pT π

 second;  

%OS = e−ζπ / 1−ζ 2

x100  = 4.33%; 2 2
n  = 4.64 4.64 = 6.56ω +  rad/s; higher-order pole at 

 -5.49. The problem with the design is that there is steady-state error, and no effective pole/zero 

cancellation. The design should be simulated to be sure the transient requirements are met. 

7. 
Program: 
clf 
'Uncompensated System' 
numg=[1 6]; 
deng=poly([-2 -3 -5]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G,0:1:100) 
z=0.707; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping Ratio 
Line']) 
[K,p]=rlocfind(G);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
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estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*G) 
'T(s)' 
T=feedback(K*G,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Uncompensated System with  ' , num2str(z),... 
' Damping Ratio']) 
'Press any key to go to PD compensation' 
pause 
'Compensated system' 
done=1; 
while done>0 
a=input('Enter a Test PD Compensator, (s+a). a =     ') 
numc=[1 a]; 
'Gc(s)' 
GGc=tf(conv(numg,numc),deng); 
GGczpk=zpk(GGc) 
wn=4/[(estimated_settling_time/2)*z]; 
rlocus(GGc) 
sgrid(z,wn) 
title(['PD Compensated Root Locus with ' , num2str(z),...  
' Damping Ratio Line', 'PD Zero at ', num2str(a), ', and Required Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGc);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*GGc) 
'T(s)' 
T=feedback(K*GGc,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Compensated System with  ' , num2str(z),...  
' Damping Ratio']) 
 
Computer response: 
ans = 
 
Uncompensated System 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
      (s+6) 
----------------- 
(s+5) (s+3) (s+2) 
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Select a point in the graphics window 
 
selected_point = 
 
  -2.3104 + 2.2826i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -5.3603           
  -2.3199 + 2.2835i 
  -2.3199 - 2.2835i 
 
Give pole number that is operating point   2 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -2.3199 + 2.2835i 
 
 
gain = 
 
    4.4662 
 
 
estimated_settling_time = 
 
    1.7242 
 
 
estimated_peak_time = 
 
    1.3758 
 
 
estimated_percent_overshoot = 
 
    4.3255 
 
 
estimated_damping_ratio = 
 
    0.7070 
 
 
estimated_natural_frequency = 
 
    3.2552 
 
 
Kp = 
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    0.8932 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
       4.466 s + 26.8 
----------------------------- 
s^3 + 10 s^2 + 35.47 s + 56.8 
  
 
ans = 
 
Press any key to continue and obtain the step response 
 
 
ans = 
 
Press any key to go to PD compensation 
 
 
ans = 
 
Compensated system 
 
Enter a Test PD Compensator, (s+a). a =     6 
 
a = 
 
     6 
 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
     (s+6)^2 
----------------- 
(s+5) (s+3) (s+2) 
  
Are you done? (y=0,n=1)  1 
Enter a Test PD Compensator, (s+a). a =     7.1 
 
a = 
 
    7.1000 
 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
  (s+7.1) (s+6) 
----------------- 
(s+5) (s+3) (s+2) 
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Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -4.6607 + 4.5423i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -4.6381 + 4.5755i 
  -4.6381 - 4.5755i 
  -5.4735           
 
Give pole number that is operating point   1 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -4.6381 + 4.5755i 
 
 
gain = 
 
    4.7496 
 
 
estimated_settling_time = 
 
    0.8624 
 
 
estimated_peak_time = 
 
    0.6866 
 
 
estimated_percent_overshoot = 
 
    4.3255 
 
 
estimated_damping_ratio = 
 
    0.7070 
 
 
estimated_natural_frequency = 
 
    6.5151 
 
 
Kp = 
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    6.7444 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
   4.75 s^2 + 62.22 s + 202.3 
--------------------------------- 
s^3 + 14.75 s^2 + 93.22 s + 232.3 
  
 
ans = 
 
Press any key to continue and obtain the step response 
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8.  

The uncompensated system performance is summarized in Table P9.8 below. To improve settling 

time by 4, the dominant poles need to be at -12.7808 ± j24.9444. Summing the angles from the open-

loop poles to the design point yields  72.6507o. Thus, the zero must contribute  180o - 72.6507 =  

107.3493o. Using the geometry below,  
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24.9444 tan(180 107.3493)
12.7808 cz

= −
−

. Thus, zc = 4.9879. Adding the zero and evaluating the 

gain at the design point yields K = 256.819. Summarizing results: 
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Table P9.8 
 

 
9.  

a.  ζωn = 
4
Ts

   = 2.5;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.404. Thus, ωn = 6.188 rad/s and the operating point 

is - 2.5 ± j5.67. 

b. Summation of angles including the compensating zero is -120.7274o. Therefore, the compensator 

pole must contribute 120.7274o - 180o = -59.2726o. 
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c. Using the geometry shown below, 
5.67 tan 59.2726

2.5cP
=

−
o . Thus, pc = 5.87. 

 
 

d. Adding the compensator pole and using -2.5 + j5.67 as the test point, K = 225.7929.  

e. Searching the real axis segments for K = 225.7929, we find higher-order poles at -11.5886, and  

--1.3624. 

f. Pole at -11.5886 is 4.64 times  further from the imaginary axis than the dominant poles. Pole at 

--1.3624 may not cancel the zero at -1. Questionable second-order approximation. System should be 

simulated. 

g. 

Time (sec)

A
m

pl
itu

de
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I/O: r to y
Peak amplitude: 0.563
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System: Closed Loop r to y
I/O: r to y
Settling Time (sec): 2.21
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A simulation of the system shows a percent overshoot of 49.9% and a settling time of 2.21 seconds. 

Thus, the specifications were not met because pole-zero cancellation was not achieved. A redesign is 

required. 

 
10.  

a.  ζωn = 
4
Ts

   = 2.4;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.5. Thus, ωn = 4.799 rad/s and the operating point is 

-2.4 ± j4.16. 

b. Summation of angles including the compensating zero is -131.36o. Therefore, the compensator 

pole must contribute 180o - 131.36o = -48.64o. Using the geometry shown below, 
4.16

pc - 2.4    = 

 tan 48.64o. Thus, pc = 6.06. 

 
 

c. Adding the compensator pole and using -2.4 + j4.16 as the test point, K = 29.117.  

d. Searching the real axis segments for K = 29.117, we find a higher-order pole at -1.263. 

e. Pole at -1.263 is near the zero at -1. Simulate to ensure accuracy of results. 

f. Ka = 
29.117
6.06    = 4.8 

g.  

 

From the plot, Ts = 1.4 seconds; Tp = 0.68 seconds; %OS = 35%. 
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11.  

a. 

 

 
b. and c. Searching along the ζ = 0.8 line (143.13o), find the operating point at  

–3.2 + j2.38 with K =45.9. 

d. Since ζωn = 
4
Ts

  , the real part of the compensated dominant pole is -4. The imaginary part is  

4 tan (180o-143.13o) = 3. Using the uncompensated system's poles and zeros along with the 

compensator zero at - 4.5, the summation of angles to the design point, -4 + j3 is –137.55o. Thus, the 

contribution of the compensator pole must be 137.55 - 180o = -42.450. Using the following geometry, 

3
pc − 4

 = tan 42.450, or pc = 7.28.  
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Adding the compensator pole and using – 4 + j3 as the test point, K = 105.46.  

e. Compensated: Searching the real axis segments for K = 105.46, we find higher-order poles at 

12.32, and approximately at –4.71 ± 1.38. Since there is no pole/zero cancellation with the zeros at -6 

and –4.5, the system should be simulated to check the settling time. 

f.  

 
The graph shows about 2% overshoot and a 1.1 second settling time compared to a desired 1.52% 

overshoot and a settling time of 1 second. 

12.  
Program: 
clf 
numg=[1 6];                         
deng=poly([-3 -4 -7 -9]);           
'G(s)' 
G=tf(numg,deng); 
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Gzpk=zpk(G) 
rlocus(G) 
z=0.8; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping 
Ratio Line']) 
[K,p]=rlocfind(G);  
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=K*numg(max(size(numg)))/deng(max(size(deng))) 
'T(s)' 
T=feedback(K*G,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Uncompensated System with  ' , 
num2str(z),... 
' Damping Ratio']) 
'Press any key to go to Lead compensation' 
pause 
'Compensated system' 
b=4.5; 
'Lead Zero at -4.5 ' 
done=1; 
while done>0 
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
'Gc(s)' 
Gc=tf([1 b],[1 a]) 
GGc=G*Gc; 
[numggc,denggc]=tfdata(GGc,'v'); 
'G(s)Gc(s)' 
GGczpk=zpk(GGc) 
wn=4/((1)*z); 
rlocus(GGc); 
sgrid(z,wn) 
title(['Lead Compensated Root Locus with ' , num2str(z),... 
' Damping Ratio Line, Lead Pole at  ', num2str(-a), ', and Required 
Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGc);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications' 
operatingpoint=p(i) 
gain=K 
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estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kp=dcgain(K*GGc) 
'T(s)' 
T=feedback(K*GGc,1) 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
title(['Step Response for Compensated System with  ' , 
num2str(z),... 
' Damping Ratio']) 

 
 
Computer response: 

 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
         (s+6) 
----------------------- 
(s+9) (s+7) (s+4) (s+3) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -3.1453 + 2.4074i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -10.3301           
  -6.3017           
  -3.1841 + 2.4187i 
  -3.1841 - 2.4187i 
 
Give pole number that is operating point   3 
 
ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -3.1841 + 2.4187i 
 
 
gain = 
 



9-26   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

   47.4666 
 
 
estimated_settling_time = 
 
    1.2562 
 
 
estimated_peak_time = 
 
    1.2989 
 
 
estimated_percent_overshoot = 
 
    1.5165 
 
 
estimated_damping_ratio = 
 
    0.8000 
 
 
estimated_natural_frequency = 
 
    3.9985 
 
 
Kp = 
 
    0.3767 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
            47.47 s + 284.8 
--------------------------------------- 
s^4 + 23 s^3 + 187 s^2 + 680.5 s + 1041 
  
 
ans = 
 
Press any key to continue and obtain the step response 
 
 
ans = 
 
Press any key to go to Lead compensation 
 
 
ans = 
 
Compensated system 
 
 
ans = 
 
Lead Zero at -4.5  
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Enter a Test Lead Compensator Pole, (s+a). a =     12 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
s + 12 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
        (s+6) (s+4.5) 
------------------------------ 
(s+12) (s+9) (s+7) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     11 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
s + 11 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
        (s+6) (s+4.5) 
------------------------------ 
(s+11) (s+9) (s+7) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     20 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
s + 20 
  
 
ans = 
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G(s)Gc(s) 
 
  
Zero/pole/gain: 
        (s+6) (s+4.5) 
------------------------------ 
(s+20) (s+9) (s+7) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     5 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
 s + 5 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
        (s+6) (s+4.5) 
----------------------------- 
(s+9) (s+7) (s+5) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     7 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
 s + 7 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
      (s+6) (s+4.5) 
------------------------- 
(s+9) (s+7)^2 (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     7.2 
 
ans = 
 
Gc(s) 
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Transfer function: 
s + 4.5 
------- 
s + 7.2 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
         (s+6) (s+4.5) 
------------------------------- 
(s+9) (s+7.2) (s+7) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  1 
Enter a Test Lead Compensator Pole, (s+a). a =     7.3 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
s + 4.5 
------- 
s + 7.3 
  
 
ans = 
 
G(s)Gc(s) 
 
  
Zero/pole/gain: 
         (s+6) (s+4.5) 
------------------------------- 
(s+9) (s+7.3) (s+7) (s+4) (s+3) 
  
Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -3.9990 + 2.9365i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -11.7210           
  -4.0254 + 2.9457i 
  -4.0254 - 2.9457i 
  -5.7292           
  -4.7990           
 
Give pole number that is operating point   2 
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ans = 
 
Summary of estimated specifications 
 
 
operatingpoint = 
 
  -4.0254 + 2.9457i 
 
 
gain = 
 
   92.5690 
 
 
estimated_settling_time = 
 
    0.9937 
 
 
estimated_peak_time = 
 
    1.0665 
 
 
estimated_percent_overshoot = 
 
    1.5165 
 
 
estimated_damping_ratio = 
 
    0.8000 
 
 
estimated_natural_frequency = 
 
    4.9881 
 
 
Kp = 
 
    0.4529 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
              92.57 s^2 + 972 s + 2499 
----------------------------------------------------- 
s^5 + 30.3 s^4 + 354.9 s^3 + 2091 s^2 + 6349 s + 8018 
  
 
ans = 
 
Press any key to continue and obtain the step response 
 
>> 
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13.  

a. Searching along the 117.13o line (%OS = 20%; ζ = 0.456), find the operating point at  

-6.39 + j12.47 with K = 9273. Searching along the real axis for K = 9273, we find a higher-order pole 

at –47.22. Thus, Ts =
4

ζωn

=
4

6.39
= 0.626  second. 

b. For the settling time to decrease by a factor of 2, Re = -ζωn = -6.39 x 2 = -12.78. The imaginary 

part is Im = -12.78 tan 117.13o  = 24.94. Hence, the compensated closed-loop poles are  

-12.78 ± j24.94. A settling time of 0.313 second would result.  

c. Assume a compensator zero at -20. Using the uncompensated system's poles along with the 

compensator zero, the summation of angles to the design point, -12.78 ± j24.94 is –159.63o. Thus, the 

contribution of the compensator pole must be 159.63o-180o = -20.37o. Using the following geometry, 

24.94
pc − 12.78

= tan 20.37o, or pc = 79.95.  

24.94

12.78

20.37

 
 
 Adding the compensator pole and using --12.78 ± j24.94 as the test point, K = 74130. 
 
 
 
 
 
 
 
 
 
 



9-34   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

d. 
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14.  

a. Searching along the 110.97o line (%OS = 30%; ζ= 0.358), find the operating point at  

-2.065 + j5.388 with K = 366.8. Searching along the real axis for K = 366.8, we find a higher-order 

pole at –16.87. Thus, Ts =
4

ζωn

=
4

2.065
= 1.937  seconds. For the settling time to decrease by a 

factor of 2, Re = -ζωn = -2.065 x 2 = - 4.13. The imaginary part is – 4.13 tan 110.970 = 10.77. Hence, 

the compensated dominant poles are – 4.13 ± j10.77. The compensator zero is at -7. Using the 

uncompensated system's poles along with the compensator zero, the summation of angles to the 

design point, – 4.13 ± j10.77 is –162.06o. Thus, the contribution of the compensator pole must be –

162.06o - 180o = -17.94o. Using the following geometry, 
10.77

pc − 4.13
= tan 17.94o, or pc = 37.4.  

10.77

-4.13

17.94

 
 

Adding the compensator pole and using – 4.13 ± j10.77 as the test point, K = 5443. 
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b. Searching the real axis segments for K = 5443 yields higher-order poles at approximately –8.12 and 

–42.02. The pole at –42.02 can be neglected since it is more than five times further from the 

imaginary axis than the dominant pair. The pole at –8.12 may not be canceling the zero at -7. Hence, 

simulate to be sure the requirements are met. 

c. 
Program: 
'Uncompensated System G1(s)'              
numg1=1;                              
deng1=poly([-15 (-3+2*j) (-3-2*j)]);             
G1=tf(numg1,deng1)                    
G1zpk=zpk(G1) 
K1=366.8 
'T1(s)' 
T1=feedback(K1*G1,1); 
T1zpk=zpk(T1) 
'Compensator Gc(s)' 
numc=[1 7];                        
denc=[1 37.4];                         
Gc=tf(numc,denc)                   
'Compensated System G2(s) = G1(s)Gc(s)'                          
K2=5443 
G2=G1*Gc;                              
G2zpk=zpk(G2) 
'T2(s)'                              
T2=feedback(K2*G2,1); 
T2zpk=zpk(T2) 
step(T1,T2)                                                                
title(['Uncompensated and Lead Compensated Systems'])  
Computer response: 
ans = 
 
Uncompensated System G1(s) 
 
  
Transfer function: 
            1 
-------------------------- 
s^3 + 21 s^2 + 103 s + 195 
  
  
Zero/pole/gain: 
           1 
----------------------- 
(s+15) (s^2  + 6s + 13) 
  
 
K1 = 
 
  366.8000 
 
 
ans = 
 
T1(s) 
 
  
Zero/pole/gain: 
              366.8 
--------------------------------- 
(s+16.87) (s^2  + 4.132s + 33.31) 
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ans = 
 
Compensator Gc(s) 
 
  
Transfer function: 
 s + 7 
-------- 
s + 37.4 
  
 
ans = 
 
Compensated System G2(s) = G1(s)Gc(s) 
 
 
K2 = 
 
        5443 
 
  
Zero/pole/gain: 
             (s+7) 
-------------------------------- 
(s+37.4) (s+15) (s^2  + 6s + 13) 
  
 
ans = 
 
T2(s) 
 
  
Zero/pole/gain: 
                5443 (s+7) 
------------------------------------------- 
(s+42.02) (s+8.118) (s^2  + 8.261s + 133.1)  
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15. 

a. Searching the 15% overshoot line (121.127o) for 180o yields -0.372 + j0.615. Hence, Ts = 
4

σd
   = 

4
0.372   = 10.75 seconds.  

b. For 7 seconds settling time, σd  = 
4
Ts

   = 
4
7   = 0.571.  ωd = 0.571 tan (180o - 121.127o) = 0.946. 

Therefore, the design point is -0.571 + j0.946. Summing the angles of the uncompensated system's 

poles as well as the compensator pole at -15 yields -213.493o. Therefore, the compensator zero must 

contribute (213.493o - 180o) = 33.493o. Using the geometry below,   

 

s-plane

jω

σ

j0.946

-0.571-zc

33.493o

 
 

0.946
zc - 0.571   = tan (33.493o) . Hence, zc = 2. The compensated open-loop transfer function is  

K(s+2)
s(s+1)(s2+10s+26)(s+15)

  . Evaluating the gain for this function at the point, -0.571 + j0.946 yields K 

= 207.512. 

c.  
Program: 
numg= 207.512*[1 2]; 
r=roots([1,10,26]); 
deng=poly([0 ,-1, r(1),r(2),-15]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T) 
title(['Step Response for Design of Ts = 7, %OS = 15']) 

Computer response: 
ans = 
 
G(s) 
 
Zero/pole/gain: 
                  207.512 (s+2) 
          ------------------------------- 
          s (s+15) (s+1) (s^2 + 10s + 26) 
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16. 

a. From 20.5% overshoot evaluate 0.45ζ = . Also, since 
4 4

3n
sT

ζω = = , 2.963nω = . The 

compensated dominant poles are located at -ζωn ± jωn 1-ζ2  = - 1.3333 ± j2.6432. Assuming  

the compensator zero at -0.02, the contribution of open-loop poles and the compensator zero to the 

design point, - 1.3333 ± j2.6432 is -175.78o. Hence, the compensator pole must contribute  

175.78o - 180o = -4.22o. Using the following geometry, o2.6432 = tan 4.22
1.3333cp −

, or pc = 37.16 

Adding the pole to the system, K = 4401.52 at the design point..   

 

 
 

  
b. Searching along the real axis segments of the root locus for K = 4401.52, we find higher-order 

poles at -0.0202, -13.46, and -37.02. There is pole/zero cancellation at -0.02. Also, the poles at , 
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 -13.46, and -37.02 are at least 5 times the design point’s real part. Thus, the second-order 

approximation is valid. 

c. 

 

 

From the plot, Ts = 2.81 seconds, and %OS = 20.8%. Thus, the requirements are met. 
17.  

a. ζωn = 
4
Ts

   = 
4

0.5   = 8. Since ζ = 0.4, ωn = 20. Therefore the compensated closed-loop poles are 

located at - ζωn ± jωn 1-ζ2  = -8 ± j18.33. 

 b. Using the system's poles along with the compensator's pole at -15, the sum of angles to the test 

point –8 ± j18.33 is -293.4o . Therefore, the compensator's zero must contribute 293.4o - 180o  = 

113.4o . Using the following geometry, 
18.33
8 - zc

   = tan 66.6o, or zc = 0.0679.   

 



9-40   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
 

c. Adding the compensator zero and using –8 ± j18.33 as the test point, K = 7297. 

d. Making a second-order assumption, the predicted performance is as follows:  

Uncompensated: Searching along the 133.58o line (ζ = 0.4), find the uncompensated closed-loop 

pole at -5.43 + j12.45 with K = 3353. Hence, Ts = 
4

ζωn
   = 0.74 seconds; %OS = e−ζπ / 1−ζ 2

x100 = 

25.38%; Kp = 
3353

101x20
= 1.66. Checking the second-order assumption by searching the real axis 

segments of the root locus for K = 3353, we find a higher-order pole at -29.13. Since this pole is more 

than five times further from the imaginary axis than the dominant pair, the second order assumption is 

reasonable. 

Compensated: Using the compensated dominant pole location, - 8 ± j18.33, Ts = 
4

ζωn
   = 0.5 

seconds; %OS = e−ζπ / 1−ζ 2

x100 = 25.38%; Kp = 
7297x0.0679
101x20x15

= 0.016. Checking the second-

order assumption by searching the real axis segments of the root locus for K = 7297, we find higher-

order poles at -2.086 and -36.91. The poles are not five times further from the imaginary axis nor do 

they yield pole/zero cancellation. The second-order assumption is not valid. 
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e.  

 
 

The uncompensated system exhibits a steady-state error of 0.38, a percent overshoot of 22.5%, and a 

settling time of 0.78 seconds.  

 

 
 

Since there is no pole/zero cancellation the closed-loop zero near the origin produces a large steady-

state error. The student should be asked to find a viable design solution to this problem by choosing 

the compensator zero further from the origin. For example, placing the compensator zero at -20 yields 

a compensator pole at -90.75 and a gain of 28730. This design yields a valid second-order 

approximation. 

18. 

 a. Since %OS = 1.5%, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.8. Since Ts = 
4

ζωn
   = 

2
3  second, 
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ωn = 7.49 rad/s. Hence, the location of the closed-loop poles must be -6±j4.49. The summation of 

angles from open-loop poles to -6±j4.49 is -226.3o. Therefore, the design point is not on the root 

locus. 

b. A compensator whose angular contribution is 226.3o-180o = 46.3o is required. Assume a 

compensator zero at  -5 canceling the pole. Thus, the breakaway from the real axis will be at the 

required -6 if the compensator pole is at -9 as shown below.  

 

 
Adding the compensator pole and zero to the system poles, the gain at the design point is found to be 

29.16. Summarizing the results: Gc(s) = 
s+5
s+9   with K = 29.16. 

19. 
Lead compensator design: Searching along the 120o line (ζ = 0.5), find the operating point at 

-1.531 + j2.652 with K = 354.5. Thus, Ts = 
4

ζωn
   = 

4
1.531   = 2.61 seconds. For the settling time to 

decrease by 0.5 second, Ts = 2.11 seconds, or Re = -ζωn = - 
 4

2.11  = -1.9. The imaginary part is 

 -1.9 tan 60o = 3.29. Hence, the compensated dominant poles are -1.9 ± j3.29. The compensator zero 

is at -5. Using the uncompensated system's poles along with the compensator zero, the summation of 

angles to the design point, -1.9 ± j3.29 is -166.09o. Thus, the contribution of the compensator pole 

must be 166.09o - 180o = -13.91o. Using the following geometry, 
3.29

pc - 1.9   = tan 13.91o, or pc = 

15.18.  
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Adding the compensator pole and using -1.9 ± j3.29 as the test point, K = 1417. 

Computer simulations yield the following: Uncompensated: Ts = 3 seconds, %OS = 14.6%. 

Compensated: Ts = 2.3 seconds, %OS = 15.3%. 

Lag compensator design: The lead compensated open-loop transfer function is  

GLC(s) = 
1417(s + 5)

(s + 2)(s + 4)(s + 6)(s + 8)(s +15.18)
. The uncompensated  

Kp = 354.5/(2 x 4 x 6 x 8) = 0.923. Hence, the uncompensated steady-state error is 
1

1+Kp
   = 0.52. 

Since we want 30 times improvement, the lag-lead compensated system must have a steady-state 

error of 0.52/30 = 0.017. The lead compensated Kp = 1417*5/(2*4*6*8*15.18) = 1.215. Hence, the 

lead-compensated error is  
1

1+Kp
   = 0.451. Thus, the lag compensator must improve the lead-

compensated error by 0.451/0.017 = 26.529 times. Thus 0.451/ ( 
1

1+Kpllc
  ) = 26.529, where Kpllc =  

57.823 is the lead-lag compensated system's position constant. Thus, the improvement in Kp from the 

lead to the lag-lead compensated system is 57.823/1.215 = 47.59. Use a lag compensator, whose zero 

is 47.59 times farther than its pole, or Glag = 
(s + 0.04759)
(s + 0.001)

. Thus, the lead-lag compensated open-

loop transfer function is GLLC(s) =  
1417(s + 5)(s + 0.04759)

(s + 2)(s + 4)(s + 6)(s + 8)(s +15.18)(s + 0.001)
. 

20. 
Program: 
numg=1; 
deng=poly([-2 -4 -6 -8]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G,0:5:500) 
z=0.5; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Uncompensated Root Locus with ' , num2str(z), ' Damping Ratio 
Line']) 
[K,p]=rlocfind(G);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for uncompensated system' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kpo=dcgain(K*G) 
T=feedback(K*G,1); 
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'Press any key to continue and obtain the step response' 
pause 
step(T) 
 
whitebg('w') 
title(['Step Response for Uncompensated System with  ' , num2str(z),...  
' Damping Ratio'],'color','black') 
'Press any key to go to Lead compensation' 
pause 
'Compensated system' 
b=5; 
'Lead Zero at -b ' 
done=1; 
while done>0 
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
numgglead=[1 b]; 
dengglead=conv([1 a],poly([-2 -4 -6 -8])); 
'G(s)Glead(s)' 
GGlead=tf(numgglead,dengglead); 
GGleadzpk=zpk(GGlead) 
wn=4/((estimated_settling_time-0.5)*z); 
clf 
rlocus(GGlead,0:10:2000) 
sgrid(z,wn) 
axis([-10 0 -5 5]) 
title(['Lead Compensated Root Locus with ' , num2str(z),...  
' Damping Ratio Line, Lead Pole at  ', num2str(-a), ', and Required Wn']) 
done=input('Are you done? (y=0,n=1)  '); 
end 
[K,p]=rlocfind(GGlead);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for lead-compensated system' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kplead=dcgain(K*GGlead) 
T=feedback(K*GGlead,1); 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
 
whitebg('w') 
title(['Step Response for Lead Compensated System with  ' , num2str(z),... 
' Damping Ratio'],'color','black') 
'Press any key to continue and design lag compensation' 
pause 
'Improvement in steady-state error with lead compensator is' 
error_improvement=(1+Kplead)/(1+Kpo) 
additional_error_improvement=30/error_improvement 
Kpnn=additional_error_improvement*(1+Kplead)-1 
pc=0.001 
zc=pc*(Kpnn/Kplead) 
numggleadlag=conv(numgglead,[1 zc]); 
denggleadlag=conv(dengglead,[1 pc]); 
'G(s)Glead(s)Glag(s)' 
GGleadGlag=tf(numggleadlag,denggleadlag); 
GGleadGlagzpk=zpk(GGleadGlag) 
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rlocus(GGleadGlag,0:10:2000) 
z=0.5; 
pos=exp(-pi*z/sqrt(1-z^2))*100; 
sgrid(z,0) 
title(['Lag-Lead Compensated Root Locus with ' , num2str(z), ... 
' Damping Ratio Line and Lag Pole at ',num2str(-pc)]) 
[K,p]=rlocfind(GGleadGlag);  %Allows input by selecting point on graphic 
'Closed-loop poles = ' 
p 
i=input('Give pole number that is operating point   '); 
'Summary of estimated specifications for lag-lead compensated system' 
operatingpoint=p(i) 
gain=K 
estimated_settling_time=4/abs(real(p(i))) 
estimated_peak_time=pi/abs(imag(p(i))) 
estimated_percent_overshoot=pos 
estimated_damping_ratio=z 
estimated_natural_frequency=sqrt(real(p(i))^2+imag(p(i))^2) 
Kpleadlag=dcgain(K*GGleadGlag) 
T=feedback(K*GGleadGlag,1); 
'Press any key to continue and obtain the step response' 
pause 
step(T) 
whitebg('w') 
title(['Step Response for Lag-Lead Compensated System with  ', 
num2str(z),... 
' Damping Ratio and Lag Pole at ',num2str(-pc)],'color','black') 
 
Computer response: 
ans = 

 

G(s) 

 

  

Zero/pole/gain: 

           1 

----------------------- 

(s+8) (s+6) (s+4) (s+2) 

  

Select a point in the graphics window 

 

selected_point = 

 

  -1.5036 + 2.6553i 

 

 

ans = 

 

Closed-loop poles =  

 

 



9-46   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

p = 

 

  -8.4807 + 2.6674i 

  -8.4807 - 2.6674i 

  -1.5193 + 2.6674i 

  -1.5193 - 2.6674i 

 

Give pole number that is operating point   3 

 

ans = 

 

Summary of estimated specifications for uncompensated system 

 

 

operatingpoint = 

 

  -1.5193 + 2.6674i 

 

 

gain = 

 

  360.8014 

 

 

estimated_settling_time = 

 

    2.6328 

 

 

estimated_peak_time = 

 

    1.1778 

 

 

estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 



Solutions to Problems   9-47 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

 

estimated_natural_frequency = 

 

    3.0698 

 

 

Kpo = 

 

    0.9396 

 

 

ans = 

 

Press any key to continue and obtain the step response 

 

 

ans = 

 

Press any key to go to Lead compensation 

 

 

ans = 

 

Compensated system 

 

 

ans = 

 

Lead Zero at -b  

 

Enter a Test Lead Compensator Pole, (s+a). a =     10 

 

ans = 

 

G(s)Glead(s) 

 

  

Zero/pole/gain: 

            (s+5) 

------------------------------ 

(s+10) (s+8) (s+6) (s+4) (s+2) 
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Are you done? (y=0,n=1)  1 

Enter a Test Lead Compensator Pole, (s+a). a =     15 

 

ans = 

 

G(s)Glead(s) 

 

  

Zero/pole/gain: 

            (s+5) 

------------------------------ 

(s+15) (s+8) (s+6) (s+4) (s+2) 

  

Are you done? (y=0,n=1)  0 

Select a point in the graphics window 

 

selected_point = 

 

  -1.9076 + 3.2453i 

 

 

ans = 

 

Closed-loop poles =  

 

 

p = 

 

 -13.0497 + 1.9313i 

 -13.0497 - 1.9313i 

  -5.0654           

  -1.9176 + 3.2514i 

  -1.9176 - 3.2514i 

 

Give pole number that is operating point   4 

 

ans = 

 

Summary of estimated specifications for lead-compensated system 
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operatingpoint = 

 

  -1.9176 + 3.2514i 

 

 

gain = 

 

  1.3601e+003 

 

 

estimated_settling_time = 

 

    2.0860 

 

 

estimated_peak_time = 

 

    0.9662 

 

 

estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 

 

 

estimated_natural_frequency = 

 

    3.7747 

 

 

Kplead = 

 

    1.1806 

 

 

ans = 
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Press any key to continue and obtain the step response 

 

 

ans = 

 

Press any key to continue and design lag compensation 

 

 

ans = 

 

Improvement in steady-state error with lead compensator is 

 

 

error_improvement = 

 

    1.1243 

 

 

additional_error_improvement = 

 

   26.6842 

 

 

Kpnn = 

 

   57.1876 

 

 

pc = 

 

    0.0010 

 

 

zc = 

 

    0.0484 

 

 

ans = 

 

G(s)Glead(s)Glag(s) 
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Zero/pole/gain: 

           (s+5) (s+0.04844) 

---------------------------------------- 

(s+15) (s+8) (s+6) (s+4) (s+2) (s+0.001) 

  

Select a point in the graphics window 

 

selected_point = 

 

  -1.8306 + 3.2919i 

 

 

ans = 

 

Closed-loop poles =  

 

 

p = 

 

 -13.0938 + 2.0650i 

 -13.0938 - 2.0650i 

  -5.0623           

  -1.8617 + 3.3112i 

  -1.8617 - 3.3112i 

  -0.0277           

 

Give pole number that is operating point   4 

 

ans = 

 

Summary of estimated specifications for lag-lead compensated system 

 

 

operatingpoint = 

 

  -1.8617 + 3.3112i 

 

 

gain = 

 

  1.4428e+003 
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estimated_settling_time = 

 

    2.1486 

 

 

estimated_peak_time = 

 

    0.9488 

 

 

estimated_percent_overshoot = 

 

   16.3034 

 

 

estimated_damping_ratio = 

 

    0.5000 

 

 

estimated_natural_frequency = 

 

    3.7987 

 

 

Kpleadlag = 

 

   60.6673 

 

 

ans = 

 

Press any key to continue and obtain the step response 
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21.  
a.  For the settling time to be 2.86 seconds with 4.32% overshoot, the real part of the compensated 

dominant poles must be 
4
Ts

   = 
4

2.86   = 1.4. Hence the compensated dominant poles are -1.4 ± j1.4. 

Assume the compensator zero to be at -1 canceling the system pole at -1. The summation of angles to 

the design point at -1.4 ± j1.4 is -176.19o. Thus the contribution of the compensator pole is  

176.19o - 180o = 3.81o. Using the geometry below, 
1.4

pc - 1.4   = tan 3.81o, or pc = 22.42. 

 

 
 

 Adding the compensator pole and using -1.4 ± j1.4 as the test point, K = 88.68. 

 b. Uncompensated: Search the 135o line (4.32% overshoot) and find the uncompensated dominant 

pole at - 0.419 + j0.419 with K = 1.11. Thus Kv = 
1.11

3    = 0.37.  Hence, Ts = 
4

ζωn
   = 

4
0.419   = 9.55 

seconds and %OS = 4.32%. Compensated: Kv = 
88.68

22.42 x 3   = 1.32 (Note: steady-state error 

improvement is greater than 2). Ts = 
4

ζωn
   = 

4
1.4   = 2.86 seconds and %OS = 4.32%. 

c. Uncompensated: K = 1.11; Compensated: K = 88.68. 

d. Uncompensated: Searching the real axis segments for K = 1.11 yields a higher-order pole at -3.16 

which is more than five times the real part of the uncompensated dominant poles. Thus the second-

order approximation for the uncompensated system is valid. 

Compensated: Searching the real axis segments for K = 88.68 yields a higher-order pole at -22.62 

which is more than five times the real part of the compensated dominant poles' real part. Thus the 

second order approximation is valid. 
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e. 
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Time (sec.)
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22.  

a. Searching the 30% overshoot line (ζ = 0.358; 110.97o) for 180o yields -1.464 + j3.818 with a gain, 

K = 218.6. 

b. Tp = 
π

ωd
  = 

π
3.818

= 0.823 second. Kv = 
218.6

(5)(11)
= 3.975. 

c. Lead design: From the requirements, the percent overshoot is 15% and the peak time is 0.4115 
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second. Thus, ζ = 
-ln(%/100)

π2+ln2(%/100)
  = 0.517; ωd = 

π
Tp

  = 7.634 = ωn 1-ζ2  . Hence, ωn = 8.919. The 

design point is located at -ζωn + jωn 1-ζ2   = -4.61 + j7.634. Assume a lead compensator zero at -5. 

Summing the angles of the uncompensated system's poles as well as the compensator zero at -5 yields 

–171.2o. Therefore, the compensator pole must contribute (171.2o - 180o) = -8.8o. Using the 

geometry below,   

 

s-plane

jω

σ

j7.634

-4.61-pc

8.8o
X

 
 

7.634
pc − 4.61

= tan (8.8o) . Hence, pc = 53.92. The compensated open-loop transfer function is 

K
s(s +11)(s + 53.92)

. Evaluating the gain for this function at the point, -4.61 + j7.634 yields  

K = 4430.  

Lag design: The uncompensated Kv =
218.6
(5)(11)

= 3.975. The required Kv is 30*3.975 = 119.25. 

The lead compensated Kv = 
4430

(11)(53.92)
= 7.469. Thus, we need an improvement over the lead 

compensated system of 119.25/7.469 = 15.97. Thus, use a lag compensator  
 

Glag(s) = 
s + 0.01597

s + 0.001
. The final open-loop function is 

4430(s + 0.01597)
s(s +11)(s + 53.92)(s + 0.001)

. 

23. 
a. Searching along the 10% overshoot line (ζ = 0.591) the operating point is found to be  

–1.85 + j2.53 with K = 21.27. A third pole is at –10.29. Thus, the estimated performance before 

compensation is: 10% overshoot, Ts =
4

1.85
= 2.16 seconds, and Kp =

21.27
(8)(10)

= 0.266 . 

b. Lead design: Place compensator zero at –3. The desired operating point is found from the desired 

specifications. ζωn =
4
Ts

=
4
1

= 4 and ωn =
4
ζ

=
4

0.591
= 6.768. Thus, 

Im = ωn 1 − ζ 2 = 6.768 1− 0.5912 = 5.46 . Hence the design point is –4 +j5.46. The angular 
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contribution of the system poles and compensator zero at the design point is –166.960. Thus, the 

compensator pole must contribute –1800 + 166.960 = -13.040. Using the geometry below,   

 

s-plane

jω

σ

j5.46

-4-pc

13.04o
X

 
 

5.46
pc − 4

= tan (13.04o) . Hence, pc = 27.57. The compensated open-loop transfer function is 

K(s + 3)
(s 2 + 4s + 8)(s +10)(s + 27.57)

. Evaluating the gain for this function at the point 

 -4 + j5.46 yields K = 1092 with higher-order poles at –4.055 and –29.52. 

Lag design: For the lead-compensated system, Kp = 1.485. Thus, we need an improvement of  
 

10
1.485

= 6.734  times. Hence, Glag(s) =
(s + 0.06734)

(s + 0.01)
. Finally, the equivalent forward-path 

transfer function is Ge (s) =
1092(s + 3)(s + 0.06734)

(s 2 + 4s + 8)(s +10)(s + 27.57)(s + 0.01)
. 

c. 

Time (sec.)
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24.  

a. Uncompensated: Search the 135o line (4.32% overshoot) for 180o and find the dominant pole at  

–3 + j3 with K = 10. 

Lag Compensated: Search the 135o line (4.32% overshoot) for 180o and find the dominant pole at -

2.88 + j2.88 with K = 9.95. 

b. Uncompensated: Kp = 
10

2 x 4   = 1.25 

Lag compensated: Kp = 
9.95 x 0.5
2 x 4 x 0.1   = 6.22 

c. %OS = 4.32% both cases;  

Uncompensated Ts = 
4

ζωn
   = 

4
3   1.33 seconds; Compensated Ts = 

4
2.88   = 1.39 seconds 

d. Uncompensated: Exact second-order system; approximation OK 

Compensated: Search real axis segments of the root locus and find a higher-order pole at -0.3. System 

should be simulated to see if there is effective pole/zero cancellation with zero at - 0.5. 
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e. 

 
 
 

The compensated system's response takes a while to approach the final value. 

f.  We will design a lead compensator to speed up the system by a factor of 5. The lead-compensated 

dominant poles will thus be placed at –15 ± j15. Assume a compensator zero at - 4 that cancels the 

open-loop pole at - 4. Using the system's poles and the compensator's zero, the sum of angles to the 

design point, -15±j15 is 131.69o. Thus, the angular contribution of the compensator pole must be 

131.69o - 180o = - 48.31o. Using the geometry below, pc = 28.36.  
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Using the compensated open-loop transfer function, Ge(s) = 
K(s+0.5)(s+4)

(s+2)(s+4)(s+0.1)(s+28.36)   and using 

the design point –15 ± j15, K = 404.1.The time response of the lag-lead compensated system is shown 

below. 
 

 
 

25.  

Since Tp = 1.047, the imaginary part of the compensated closed-loop poles will be 
π

1.047   = 3.  

Since 
Im
Re   = tan (cos-1ζ), the magnitude of the real part will be 

Im
tan(cos-1ζ)

   = 4. Hence, the design 

point is – 4 + j3. Assume an PI controller, Gc(s) =  
s+0.1

s   , to reduce the steady-state error to zero.  

Using the system's poles and the pole and zero of the ideal integral compensator, the summation of 

angles to the design point is -225.7o. Hence, the ideal derivative compensator must contribute 225.7o-

180o = 45.7o . Using the geometry below, zc = 6.93. 

 
 

The PID controller is thus 
(s+6.93)(s+0.1)

s   . Using all poles and zeros of the system and PID 

controller, the gain at the design point is K = 3.08. Searching the real axis segment, a higher-order 

pole is found at - 0.085. A simulation of the system shows the requirements are met. 
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26. 

a. The desired operating point is found from the desired specifications. ζωn =
4
Ts

=
4
2

= 2 and  

2 2 4.954
0.4037nω

ζ
= = = . Thus, 2 2Im 1 4.954 1 0.4037 4.5324nω ζ= − = − = . Hence 

the design point is –2 +j4.5324. Now, add a pole at the origin to increase system type and drive error 

to zero for step inputs.  

Now design a PD controller. The angular contribution to the design point of the system poles and pole 

at the origin is 101.90. Thus, the compensator zero must contribute 1800 – 101.90 =78.10. Using the 

geometry below,   

  

 
 

0

c

4.5324 tan(78.1 )
z 2

=
−

 . Hence, zc = 2.955. The compensated open-loop transfer function with PD 

compensation is 
( 2.955)

( 4)( 6)( 10)
K s

s s s s
+

+ + +
. Adding the compensator zero to the system and 

evaluating the gain for this at the point –2 + j4.5324  yields K = 294.51 with a higher-order pole at  

-2.66 and -13.34. 

PI design: Use GPI (s) =
(s + 0.01)

s
. Hence, the equivalent open-loop transfer function is  

 

2

( 2.955)( 0.01)( )
( 4)( 6)( 10)e

K s sG s
s s s s

+ +
=

+ + +
  with K = 294.75. 

b. 
Program (Step Response): 
numg=[-2.995 -0.01]; 
deng=[0 0 -4 -6 -10]; 
K=294.75; 
G=zpk(numg,deng,K) 
T=feedback(G,1); 
step(T) 
 
Computer response: 
Zero/pole/gain: 
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294.75 (s+2.995) (s+0.01) 
------------------------- 
 s^2 (s+4) (s+6) (s+10) 
 

 
Program (Ramp Response): 
numg=[-2.995 -0.01]; 
deng=[0 0 -4 -6 -10]; 
K=294.75; 
G=zpk(numg,deng,K) 
T=feedback(G,1); 
Ta=tf([1],[1 0]); 
step(T*Ta) 
 
 
Computer response: 
Zero/pole/gain: 
294.75 (s+2.995) (s+0.01) 
------------------------- 
 s^2 (s+4) (s+6) (s+10) 
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27. 
Program: 
numg=[]                      
deng=[-4 -6 -10]        
'G(s)'                       
G=zpk(numg,deng,1)         
pos=input('Type desired percent overshoot '); 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2);              
Ts=input('Type desired settling time '); 
zci=input(... 
'Type desired position of integral controller zero (absolute value) '); 
wn=4/(Ts*z); 
desired_pole=(-z*wn)+(wn*sqrt(1-z^2)*i) 
angle_at_desired_pole=(180/pi)*angle(evalfr(G,desired_pole)) 
PD_angle=180-angle_at_desired_pole; 
zcpd=((imag(desired_pole)/tan(PD_angle*pi/180))-real(desired_pole)); 
'PD Compensator'             
numcpd=[1 zcpd];                 
dencpd=[0 1];         
'Gcpd(s)' 
Gcpd=tf(numcpd,dencpd) 
Gcpi=zpk([-zci],[0],1) 
Ge=G*Gcpd*Gcpi 
rlocus(Ge) 
sgrid(z,0) 
title(['PID Compensated Root Locus with ' ,... 
      num2str(pos), '% Damping Ratio Line']) 
[K,p]=rlocfind(Ge);                      
'Closed-loop poles = ' 
p                           
f=input('Give pole number that is operating point   '); 
                           
'Summary of estimated specifications for selected point' 
'on PID compensated root locus' 
                           
operatingpoint=p(f)          
gain=K                       
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estimated_settling_time=4/abs(real(p(f))) 
                           
estimated_peak_time=pi/abs(imag(p(f))) 
                           
estimated_percent_overshoot=pos 
                           
estimated_damping_ratio=z 
                           
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2) 
T=feedback(K*Ge,1); 
step(T) 
title(['Step Response for PID Compensated System with  ' ,... 
      num2str(pos),'% Damping Ratio Line']) 
pause 
one_over_s=tf(1,[1 0]); 
Tr=T*one_over_s; 
t=0:0.01:10; 
step(one_over_s,Tr) 
title('Ramp Response for PID Compensated System') 

 
 

 
Computer response: 
numg = 
 
     [] 
 
 
deng = 
 
     0    -4    -6   -10 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
         1 
-------------------- 
s (s+4) (s+6) (s+10) 
  
Type desired percent overshoot 25 
Type desired settling time 2 
Type desired position of integral controller zero (absolute value) 0.01 
 
desired_pole = 
 
  -2.0000 + 4.5324i 
 
 
angle_at_desired_pole = 
 
  101.8963 
 
 
ans = 
 
PD Compensator 
 
 
ans = 
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Gcpd(s) 
 
  
Transfer function: 
s + 2.955 
  
  
Zero/pole/gain: 
(s+0.01) 
-------- 
   s 
  
  
Zero/pole/gain: 
  (s+2.955) (s+0.01) 
---------------------- 
s^2 (s+4) (s+6) (s+10) 
  
Select a point in the graphics window 
 
selected_point = 
 
  -1.9931 + 4.5383i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -13.3485           
  -1.9920 + 4.5377i 
  -1.9920 - 4.5377i 
  -2.6575           
  -0.0100           
 
Give pole number that is operating point   2 
 
ans = 
 
Summary of estimated specifications for selected point 
 
 
ans = 
 
on PID compensated root locus 
 
 
operatingpoint = 
 
  -1.9920 + 4.5377i 
 
 
gain = 
 
  295.6542 
 
 
estimated_settling_time = 
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    2.0081 
 
 
estimated_peak_time = 
 
    0.6923 
 
 
estimated_percent_overshoot = 
 
    25 
 
 
estimated_damping_ratio = 
 
    0.4037 
 
 
estimated_natural_frequency = 
 
    4.9557 
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 28.  

Open-loop poles are at -2, - 0.134, and -1.87. An open-loop zero is at -3. Searching the 121.13o line 

(ζ = 0.517), find the closed-loop dominant poles at -0.747 + j1.237 with K = 1.58. Searching the real 

axis segments locates a higher-order pole at -2.51. Since the open-loop zero is a zero of H(s), it is not 

a closed-loop zero. Thus, there are no closed-loop zeros. 

29. 
a. The damping ratio for 15% overshoot is 0.517. The desired operating point is found from the 

desired specifications. ζωn =
4
Ts

=
4
3

= 1.333  and ωn =
1.333

ζ
=

1.333
0.517

= 2.578. Thus, 
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Im = ωn 1 − ζ 2 = 2.578 1− 0.5172 = 2.207 . Hence the design point is –1.333 + j2.207. The 

angular contribution of the system poles and compensator zero at the design point is 100.80. Thus, the 

compensator zero must contribute 1800 – 100.80 = 79.20. Using the geometry below,   

 

s-plane

jω

σ

j2.207

-1.333-zc

79.2o
X

 
 

2.207
zc − 1.333

= tan (79.2o) . Hence, zc = 1.754. The compensated open-loop transfer function with PD 

compensation is 
K(s +1.754)

s(s + 2)(s + 4)(s + 6)
. Evaluating the gain for this function at the point 

 –1.333 + j2.207 yields K = 47.28 with higher-order poles at –1.617 and –7.718. Following  

Figure 9.49(c) in the text, 
1

K f

= 1.754 . Therefore, K f = 0.5701 . Also, using the notation of 

Figure 9.49(c), K1K f = 47.28 , from which K1 = 82.93 . 

b.  
Program: 
K1=82.93; 
numg=K1;                     
deng=poly([0 -2 -4 -6]);        
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
Kf=0.5701 
numh=Kf*[1 1.754]; 
denh=1 
'H(s)' 
H=tf(numh,denh); 
Hzpk=zpk(H) 
'T(s)' 
T=feedback(G,H); 
T=minreal(T) 
step(T) 
title('Step Response for Feedback Compensated System') 
 
 
Computer response: 
ans = 
 
G(s) 
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Zero/pole/gain: 
       82.93 
------------------- 
s (s+6) (s+4) (s+2) 
  
Kf = 
 
    0.5701 
 
denh = 
 
     1 
 
ans = 
 
H(s) 
 
Zero/pole/gain: 
0.5701 (s+1.754) 
  
ans = 
 
T(s) 
 
Transfer function: 
                 82.93 
--------------------------------------- 
s^4 + 12 s^3 + 44 s^2 + 95.28 s + 82.93 
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30.  
a. σd = ζωn = 4/Ts = 4/1 = 4. 5% overshoot -> ζ = 0.69. Since ζωn = 4, ωn  = 5.8.  

ωd  = ωn 1-ζ2  = 4.195. Thus, the design point is –1 + j4.195. The sum of angles from the minor-

loop's open-loop poles to the design point is -263.634o. Thus, the minor-loop's open-loop zero must 

contribute 83.634o to yield 180o  at the design point. Hence, 
4.195
zc - 4  = tan 83.634o, or zc = a = 4.468 

from the geometry below.  

s-plane

jω

σ

j4.195

-zc

83.634o

-4

83.634o

 
Adding the zero and calculating the gain at the design point yields K1 = 38.33. Therefore, the minor-

loop open-loop transfer function is K1G(s)H(s) = 
38.33(s+4.468)

s(s+4)(s+9)   . The equivalent minor-loop closed-

loop transfer function is Gml(s) = 
K1G(s)

1+K1G(s)H(s)  = 
38.33

s3+13s2+74.33s+171.258
  . A simulation of the 

step response of the minor loop is shown below. 

Computer response: 
 

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

Time (secs)

A
m

pl
itu

de

Minor-loop Closed-Loop Response
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b. The major-loop open-loop transfer function is G e(s) =
38.33K

s3 +13s2 + 74.33s +171.258
. 

Drawing the root locus using Ge(s) and searching along the 10% overshoot line (ζ = 0.591) for 180o 

yields the point -3.349 + j4.572 with a gain 38.33K = 31.131, or K = 0.812. 

c.  
Program: 
numg=31.131; 
deng=[1 13 74.33 171.258]; 
'G(s)' 
G=tf(numg,deng) 
T=feedback(G,1); 
step(T) 
title('Major-loop Closed-Loop Response') 
 
Computer response: 
G(s) 
 
  
Transfer function: 
            31.13 
------------------------------ 
s^3 + 13 s^2 + 74.33 s + 171.3 
  

 
 

d. Adding the PI compensator, Ge(s) =   
31.131(s+0.1)

s(s3+13s2+74.33s+171.258)
  . 
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Program: 
numge=31.131*[1 0.1]; 
denge=[1 13 74.33 171.258 0]; 
'Ge(s)' 
Ge=tf(numge,denge) 
T=feedback(Ge,1); 
t=0:0.1:10; 
step(T,t) 
title('Major-loop Closed-Loop Response with PI Compensator') 
pause 
step(T) 
title('Major-loop Closed-Loop Response with PI Compensator') 
 
Computer response: 
ans = 
 
Ge(s) 
 
Transfer function: 
         31.13 s + 3.113 
---------------------------------- 
s^4 + 13 s^3 + 74.33 s^2 + 171.3 s 
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31. 

a. PI controller: Using Table 9.10,   
R2
R1

 
s+

1
R2C
s    = 

s+0.01
s   , R2C = 100. Let C = 25 μF. Therefore, R2 

= 4 MΩ. For unity gain, R1 = 4 MΩ. Compensate elsewhere in the loop for the compensator negative 

sign. 
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b. PD controller: Using Table 9.10, R2C(s+
1

R1C )  = s+2. Hence,  R1C = 0.5. Let C = 1 μF. 

Therefore, R1 = 500 KΩ. For unity gain, R2C = 1, or R2 = 1 MΩ. Compensate elsewhere in the loop 

for the compensator negative sign. 

32. 

 a. Lag compensator: See Table 9.11.  

s +
1

R2C

s + 1
(R1 + R2)C

 = 
s + 0.1
s + 0.01

. Thus, R2C = 10, and 

 (R1 + R2)C = 100. Letting C = 10 μ F, we find R2 = 1 MΩ. Also R1C = 100 - R2C = 90, which 

yields R1 = 9 MΩ. The loop gain also must be multiplied by  
R1 + R2

R2

. 

b. Lead compensator: See Table 9.11.  
s + 

1
R1C

s + 
1

R1C + 
1

R2C

   = 
s+2
s+5   . Thus, R1C = 0.5, and  

1
R1C   + 

1
R2C   = 5. Letting C = 1 μF, R2  = 333 KΩ, and R1 = 500 KΩ.  

 c. Lag-lead compensation: See Table 9.11. 

(s + 
1

R1C1
)(s + 

1
R2C2

)

s2 + (
1

R1C1
 + 

1
R2C2

 + 
1

R2C1
)s + 

1
R1R2C1C2

   = 
(s+0.1)(s+1)

s2 + 10.01s + 0.1
   .  Thus, R1C1 = 1, and  

R2C2 = 10. Also, 
1

R1C1
  + 

1
R2C2

  + 
1

R2C1
   = 1 + 0.1 + 

1
R2C1

  = 10.01, or R2C1 = 0.112.  Letting C1 = 

10 μF, we find R1 = 10 MΩ , R2 = 1.12 MΩ, and  C2 = 8.9 μF. 

33.  

 a. Lag compensator: See Table 9.10 and Figure 9.58.  
s+0.1

s+0.01   = 
C1
C2

  
(s+

1
R1C1

)

(s+
1

R2C2
)
   . Therefore,  

 

 R1C1 = 10; R2C2  = 100. Letting C1 = C2 = 20 μF, we find  R1 = 500 KΩ and R2 = 5 MΩ. 

Compensate elsewhere in the loop for the compensator negative sign.  

b. Lead compensator: See Table 9.10 and Figure 9.58.  
s+2
s+5   = 

C1
C2

  
(s+

1
R1C1

 )

(s+
1

R2C2
 )

  . Therefore,  

R1C1 = 0.5 and R2C2 = 0.2. Letting C1 = C2 = 20 μF, we find  R1 = 25 KΩ and R2 = 10 MΩ. 

Compensate elsewhere in the loop for the compensator negative sign. 
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c. Lag-lead compensator: See Table 9.10 and Figure 9.58. For lag portion, use (a). For lead:  

s+1
s+10   = 

C1
C2

  
(s+

1
R1C1

 )

(s+
1

R2C2
 )

  . Therefore, R1C1 = 1 and R2C2 = 0.1. Letting C1 = C2 = 10 μF, we find   

R1 = 100 KΩ and R2 = 10 KΩ. The following circuit can be used to implement the design.  

 

 
 

SOLUTIONS TO DESIGN PROBLEMS 

 

34. 
a. 3

0
105184.7)( −

→
×== sGLimK

sp The steady state error for a unit step input is 

9925.0
1

1
=

+
=

p
ss K

e  

b. The conventional PI design cannot be carried on because all the closed loop roots are on the real 

axis. Adding a pole-zero pair close to the origin will add a dominant closed loop pole very close to 

the imaginary axis increasing significantly the system’s settling time. 
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c.    One possibility is to add the pole at the origin to increase the system’s type, and add the 

compensator zero immediatly to the left of the rightmost open loop pole. For the plant the open loop 

zeros are: -0.00025, -0.00164. The open loop poles are: -0.000092, -0.0032 and -0.00122. Thus the 

compensator will be of the form 
s

sKsGC
)0001.0()( +

= . This will modify the root locus as 

shown. However the gain can be adjusted to preserve the original pole locations without increasing 

much the overall system’s settling time. Using Sisotool 04.0=K was found as suitable. 
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d. The Simulink model is 
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Scope
s

0.04*[1/0.0001 1]

Gc(s)

n(s)

d(s)
G(s)

1

Constant

 

 

Simulation with 
s
ssGC

)0001.0/1(04.0)( +
=  
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Simulation with 1)( =sGC  

 

35.  

With 1)( =sGC , 06.2)(
0

==
→

sGLimK
spo  giving  32.0

1
1

=
+

=
po

ss K
e . The root locus is:  

 

 

Note that the damping factor 0.8ξ =  
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We start by calculating the required psK from the steady state error requirement 

1.0
1

1
=

+
=

ps
ss K

e or 9=psK . So 369.4
06.2
9

===
po

ps

c

c

K
K

p
z

. Arbitrarily let 

035.0=cz  which gives 008.0=cp . Then the loop gain is adjusted to obtain 0.8ξ =  , but did 

not change much in this design. We have 
)008.0(
)035.0()(

+
+

=
s
ssGC . The root locus is: 

 

 

The time domain simulation can be done as follows: 

 

>> syms s 

>> s=tf('s'); 

>> G=0.0187/(s^2+0.267*s+0.00908); 

>> Gc=(s+0.035)/(s+0.008); 

>> T1=G/(1+G); 

>> T2=G*C/(1+G*C); 

>> step(T1,T2) 
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36.  
a.  The system’s root locus shows that 7.0=ξ is achieved when 11.1=K , with a corresponding 

sec1.904
==

n
ST

ξω
. At this value of gain the system has dominant poles at 

0453.00444.0 j±−  and a third pole at -0.265 justifying the dominant pole approximation. 
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b.   We calculate the desired closed loop positions. The desired sec1.72=ST so the real part of the 

poles is 55.0
1.72

4
==σ . Since we want to maintain 7.0=ξ , the imaginary part is found from 

055.0
6.45tan dω

=o resulting in 056.0=dω . So the desired closed loop poles are 

0562.0055.0 j±− . The compensator has the form )()( cC zsKsG += . A search using 

MATLAB’s sisotool gives 178.0−=cz with 424.11=K . The resulting root locus is 
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c.   

>> syms s 

>> s=tf('s'); 

>> Gv = 0.02/(4*s+1); 

 >> G1 = 70/(50*s+1); 

 >> H = 1/(12*s+1); 

 >> G = Gv*G1’ 

 >> T=1.11*G/(1+1.11*G*H); 



Solutions to Problems   9-87 

Copyright ©   2011 by John Wiley & Sons, Inc. 

>> C=11.424*(s+0.178); 

>> T2=C*G/(1+C*G*H); 

>> step(T,T2) 

 

Step Response

Time (sec)

Am
pl

itu
de

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

System: T2
Settling Time (sec): 60.2

System: T
Settling Time (sec): 86.6

 

Note that the steady state error is also varied through ideal PD design because this is a type 0 system. 

 

37. 
a. This part is identical to the one in Problem 36. 
 
b. As is problem III.b the desired closed loop pole positions are: 0562.0055.0 j±− . The lead 

compensator has the form 
)(
)(

)(
c

c
c ps

zsK
sG

+
+

= . We arbitrarily choose 15.0−=cz , and perform 

a numerical search until the 180o angle condition is satisfied on the open loop transmission giving  
3955.0−=cp . Then the gain is adjusted in sisotool until the poles are placed at their desired 

positions. The resulting compensator is: 
)3955.0(

)15.0(6196.6)(
+

+
=

s
ssGc . The resulting root locus is: 
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c. 

>> syms s 

>> s=tf('s'); 

>> Gv=0.02/(4*s+1); 

>> G1=70/(50*s+1); 

>> H=1/(12*s+1); 

>> G=Gv*G1; 

>> T=1.11*G/(1+1.11*G*H); 

>> C=6.62*(s+0.15)/(s+0.396); 
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>> T2=C*G/(1+C*G*H); 

>> step(T,T2) 

 

Step Response

Time (sec)

Am
pl

itu
de

0 50 100 150
0
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0.9

1

System: T2
Settling Time (sec): 74.8

System: T
Settling Time (sec): 86.6

  



9-90   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

 

38.  

 a. 
θm(s)
Ea(s)    = 

Kt
RaJ

s(s+
1
J(D + 

KtKb
Ra

))
   

 Kb = 
Ea
ω    = 

5
60000

2π
 x 

1
60 x 2π

   = 0.005; Jeq = 5 (
4

10  x 
1
4 )2 = 0.05; Deq = 1 (

1
10  )2 = 0.01; 

  
Kt
Ra

   = 
Ts
Ea

   = 
0.5
5   = 0.1. Therefore,  

θm(s)
Ea(s)    = 

2
s(s+0.21)  . 

 b. The block diagram of the system is shown below. 

 

 

 

 Forming an equivalent unity feedback system,  

 

 

 

 Now, T(s) = 
1000

s2 + (0.21 + 0.2Kt)s + 1000
   . Thus, ωn = 1000  ; 2ζωn = 0.21 + 0.2Kt. Since ζ = 0.5, Kt = 

157.06. 

 c. Uncompensated: Kt = 0; T(s) =  
1000

s2 + 0.21s + 1000
   ; ωn = 31.62 rad/s; ζ = 3.32 x 10-3;  

%OS = e−ζπ / 1−ζ 2

x100  = 98.96%; Ts = 
4

ζωn
   = 38.09 seconds;  
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 Tp = 
π

ωn 1-ζ2   = 9.93 x 10-2 second; Kv = 
1000
0.21   = 4761.9. 

 Compensated: Kt = 157.06; T(s) =  
1000

s2 + 31.62s + 1000
   ; ωn = 31.62 rad/s; ζ = 0.5;  

%OS = e−ζπ / 1−ζ 2

x100 = 16.3%; Ts = 
4

ζωn
   = 0.253 second; Tp = 

π
ωn 1-ζ2   = 0.115 second;  

Kv = 
1000
31.62  = 31.63. 

39.  

 a. T(s) = 
25

s2 + s + 25
   ; Therefore, ωn = 5; 2ζωn = 1; ζ = 0.1;  

 %OS = e−ζπ / 1−ζ 2

x100  = 73%; Ts = 
4

ζωn
   = 8 seconds. 

 

 b. From Figure P9.6(b), T(s) = 
25K1

s2 + (1 + 25Kf )s + 25K1

. Thus,  

 ωn = 25K1  ; 2ζωn = 1 + 25Kf. For 25% overshoot, ζ = 0.404. For Ts = 0.2 = 
4

ζωn
  , ζωn = 20. 

Therefore 1 + 25Kf = 2ζωn = 40, or Kf = 1.56. Also, ωn = 
20
ζ    = 49.5.  

 Hence K1 = 
ωn2

25    = 
49.52

25    = 98.01. 

 c. Uncompensated: G(s) = 
25

s(s+1)  ; Therefore, Kv = 25, and e(∞) = 
1

Kv
   = 0.04.  

 Compensated: G(s) =
25K1

s(s + 1 + 25K f )
; Therefore, Kv = 

25 x 98.01
1+25 x 1.56   = 61.26, and  

 e(∞) = 
1

Kv
   = 0.0163. 

40. 
  a. The transfer functions of the subsystems are as follows:  

 Pot: Gp(s) = 
5π
10π

   = 
1
2  ; Amplifier: Ga(s) = 

K1
s+20  ; Motor and load: Since the time to rise to 63% of the 

final value is 0.5 second, the pole is at -2. Thus, the motor transfer function is of the form, Gm(s) = 

K
s(s+2)  . But, from the problem statement, 

K
2    = 

100
10    , or K = 20. The block diagram of the system is 

shown below. 
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 Using the equivalent system, search along the 117.126o line (20% overshoot) and find the dominant 

second-order pole at - 0.89 + j1.74 with K = 10K1 = 77.4. Hence, K1 = 7.74.  

 b. Kv = 
77.4

2 x 20   = 1.935. Therefore, e(∞) = 
1

Kv
   = 0.517. 

 c. %OS = 20%; ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

    = 0.456; ωn = 0.892 + 1.742    = 1.95 rad/s;  

Ts = 
4

ζωn
   = 4.49 seconds; Tp = 

π
ωn 1-ζ2   = 1.81 seconds. 

 d. The block diagram of the minor loop is shown below. 
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 The transfer function of the minor loop is GML(s) = 
20

s(s+2+20Kf)
  . Hence, the block diagram of the 

equivalent system is 

 

 

 where a = 2 + 20Kf. The design point is now found. Since %OS = 20%, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 

0.456. Also, since Ts = 
4

ζωn
   = 2 seconds, ωn = 4.386 rad/s. Hence, the design point is –2 + j3.9. Using 

just the open-loop poles at the origin and at -20, the summation of angles to the design point is -129.37o. 

The pole at -a must then be contributing 129.37o - 180o = -50.63o. Using the geometry below, a = 5.2, or 

Kf = 0.16.  

 

 
 

Adding the pole at -5.2 and using the design point, we find 10K1 = 407.23, or K1 = 40.723. 

Summarizing the compensated transient characteristics: ζ = 0.456; ωn = 4.386; %OS = 20%; Ts = 
4

ζωn
   = 

2 seconds; Tp = 
π

ωn 1-ζ2   = 0.81 seconds; Kv = 
407.23
20 x 5.2   = 3.92. 

41. 
Block diagram 

Preamplifier/Power amplifier: 
K1

(s+40)  ; Pots: 
20π  volts
5(2π) rad.  = 2. 

Torque-speed curve:  
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T (N-m)

ω (rad/sec)
15050

75

25

50 v

 
 

where 1432.35 
rev
min  x 

1
60 

min
sec   x 2π 

rad
rev  = 150 rad/sec; 477.45 

rev
min  x 

1
60 

min
sec   x 2π 

rad
rev  = 50 rad/sec. The 

slope of the line is - 
50
100  = - 0.5. Thus, its equation is y = -0.5x + b. Substituting one of the points, find b 

= 100. Thus Tstall = 100, and ωno load = 200. 
Kt
Ra

  = 
Tstall

ea
  = 

100
50   = 2; Kb = 

ea
ωno load  

 = 
50
200  = 0.25. 

Motor: 
θm(s)
Ea(s)   = 

Kt/(RaJ)

s(s+
1
J(D+

KtKb
Ra

))
   = 

0.02
s(s+0.505)  , where J = 100, D = 50. 

Gears: 0.1 

Drawing block diagram: 

 

40s + 40

2

K1

(s + 40)2
θc(s)

0.1
0.02

s(s + 0.505)

+

-

θL(s)

 

 
θc(s) θL(s)

K1
+

-

0.004
s(s + 0.505)(s + 40)

 

 
b. Compensator design - Lead 
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10% overshoot and Ts = 1 sec yield a design point of - 4 + j5.458. Sum of angles of uncompensated 

system poles to this point is -257.491o. If we place the lead compensator zero over the uncompensated 

system pole at -0.505, the angle at the design point is  -134.858o. Thus, the lead compensator pole must 

contribute 134.858o - 180o = -45.142o. Using the geometry below 

5.458
pc - 4  = tan(45.142o), or pc = 9.431. 

X

-p
c -4

j5.458

45.142o

 

 
Using the uncompensated poles and the lead compensator, the gain at the design point is  

0.004K1 = 1897.125. 

Compensator design - Lag 

With lead compensation, Kv = 
1897.125

(40)(9.431)  = 5.0295.029. Since we want Kv = 1000, 
zlag
plag

  = 
1000
5.029  = 

198.85. Use plag = 0.001. Hence zlag = 0.1988. The lag compensated  

 

Ge(s) = 
1897.125(s+0.1988)

s(s+40)(s+9.431)(s+0.001)  . 

c. Compensator schematic 

lag:  
1

R2C  = 0.1988. Let C = 100 μF. Then R2 = 50.3 kΩ. Now,  
1

(R1+R2)C   = 0.001.  

Thus, R1 = 9.95 MΩ. Buffer gain = reciprocal of lag compensator's 
R2

R1 + R2
  . Hence buffer  

gain =  
R1 + R2

R2
   = 198.8. 

lead:  
1

R1C  = 0.505. Let C = 10 μF. Then R1 = 198 kΩ. Now,  
1

R1C   +  
1

R2C   = 9.431.  

Thus, R2 = 11.2 kΩ.  
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d.  
Program: 
numg= 1897.125*[1 0.1988]; 
deng=poly([0 -40 -9.431 -.001]); 
'G(s)' 
G=tf(numg,deng); 
Gzpk=zpk(G) 
rlocus(G) 
pos=10 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2) 
sgrid(z,0) 
title(['Root Locus with ' , num2str(pos), ' Percent Overshoot Line']) 
[K,p]=rlocfind(G)  %Allows input by selecting point on graphic 
pause 
T=feedback(K*G,1); 
step(T) 
title(['Step Response for Design of ' , num2str(pos), ' Percent']) 
 
 
 
Computer response: 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
    1897.125 (s+0.1988) 
---------------------------- 
s (s+40) (s+9.431) (s+0.001) 
pos = 
 
    10 
 
 
z = 
 
    0.5912 
 
Select a point in the graphics window 
 
selected_point = 
 
  -3.3649 + 4.8447i 
 
 
K = 
 
    0.9090 
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p = 
 
 -41.3037           
  -3.9602 + 4.9225i 
  -3.9602 - 4.9225i 
  -0.2080 
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42.  
 Consider only the minor loop. Searching along the 143.13o line (ζ = 0.8), locate the minor-loop dominant 

poles at -3.36 ± j2.52 with Kf = 8.53. Searching the real axis segments for Kf = 8.53 locates a higher-

order pole at - 0.28. Using the minor-loop poles as the open-loop poles for the entire system, search along 

the 120o line (ζ = 0.5) and find the dominant second-order poles at -1.39 + j2.41 with K = 27.79. 

Searching the real axis segment locates a higher-order pole at - 4.2. 

43.  
Consider only the minor loop. Searching along the 143.13o line (ζ = 0.8), locate the minor-loop dominant 

poles at -7.74 ± j5.8 with Kf = 36.71. Searching the real axis segments for Kf = 36.71 locates a higher-

order pole at  - 0.535. Using the minor-loop poles at -7.74  ±  j5.8 and - 0.535 as the open-loop poles (the 

open-loop zero at the origin is not a closed-loop zero) for the entire system, search along the 135o line (ζ 

= 0.707; 4.32% overshoot) and find the dominant second-order poles at  

- 4.38 + j4 .38 with K = 227.91. Searching the real axis segment locates a higher-order pole at -7.26.  

 Uncompensated system performance: Setting Kf = 0 and searching along the 135o line (4.32% overshoot) 

yields -2.39 + j2.39 as the point on the root locus with K = 78.05. Searching the real axis segments of the 

root locus for K = 78.05 locates a higher-order pole at -11.2. The following table compares the predicted 

uncompensated characteristics with the predicted compensated characteristics. 
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      Uncompensated          Compensated 

 G(s) = 
78.05

(s+1)(s+5)(s+10)  G(s) = 
227.91

s3+16s2+101.71s+50
  

 Dominant poles: -2.39 + j2.39 Dominant poles: - 4.38 + j4 .38 

 ζ = 0.707 ζ = 0.707 

 %OS = e−ζπ / 1−ζ 2

x100 = 4.32% %OS = e−ζπ / 1−ζ 2

x100 = 4.32% 

 ωn = 2.392+2.392   = 3.38 rad/s ωn = 4.382+4.382   = 6.19 rad/s 

 Ts = 
4

ζωn
   = 1.67 seconds Ts = 

4
ζωn

   = 0.91 second 

 Tp = 
π

ωn 1-ζ2   = 1.31 seconds Tp = 
π

ωn 1-ζ2   = 0.72 second 

 Kp = 
78.05

1 x 5 x 10   = 1.56 Kp = 
227.91

50    = 4.56 

 Higher-order pole: -11.22 Higher-order pole: -7.26 

 Second-order approximation OK Higher-order pole not 5x further from imaginary 

axis than dominant poles.  

                                                               Simulate to be sure of the performance. 

44.  
In Problem 46, Chapter 8 , the dominant poles, - 40 ± j57.25, yielded Ts = 0.1 second and 11.14% 

overshoot. The unity feedback system consisted of a gain adjusted forward transfer function of  

G(s) = 
20000K

s(s+100)(s+500)(s+800)  , where K = 102,300. To reduce the settling time by a factor of 2 to 0.05 

seconds and keep the percent overshoot the same, we double the coordinates of the dominant poles to –80 

± j114.5. Assume a lead compensator with a zero at -100 that cancels the plant's pole at  

-100. The summation of angles of the remaining plant poles to the design point is 149.23o. Thus, the 

angular contribution of the compensator pole must be 149.23o - 180o = 30.77o. Using the  

geometry below, 
114.5
pc - 80   = tan 30.77o, or pc = 272.3. 

 

 
 

Adding this pole to the poles at the origin, -500, and -800 yields K = 9.92 x 109 at the design point, 

 -80 ± j114.5. Any higher-order poles will have a real part greater than 5 times that of the dominant pair. 

Thus, the second-order approximation is OK. 
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45.  

Uncompensated: G(s)H(s) = 
0.35K

(s+0.4)(s+0.5)(s+0.163)(s+1.537)   . Searching the 133.639o line  

(%OS = 5%), find the dominant poles at - 0.187 ± j0.196 with gain, 0.35K = 2.88 x 10-2. Hence, the 

estimated values are: %OS = 5%; Ts = 
4

ζωn
   = 

4
0.187   = 21.39 seconds; Tp = 

π
ωn 1-ζ2    = 

π
0.196   = 

16.03 seconds; Kp  = 0.575. 

PD compensated: Design for 8 seconds peak time and 5% overshoot.  

ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.69. Since Tp = 
π

ωn 1-ζ2   = 8 seconds and ωn 1-ζ2  = 0.393,   

ωn = 0.5426. Hence, ζωn = 0.374. Thus, the design point is - 0.374 + j0.393. The summation of angles 

from the system's poles to the design point is -295.34o. Thus, the angular contribution of the controller 

zero must be 295.34o-180o = 115.34o. Using the geometry below,  

 
 

 
0.393

0.374 - zc
   = tan (180o - 115.34o), from which zc = 0.19. Adding this zero to the system's poles and using 

the design point, - 0.374 + j0.393, the gain, 0.35K = 0.205. 

 PID compensated: Assume the integral controller, Gc(s) =  
s+0.01

s   . The total open-loop transfer 

function is GPID(s)H(s) = 
0.35K(s+0.19)(s+0.01)

s(s+0.4)(s+0.5)(s+0.163)(s+1.537)  .  

 Check: The PID compensated system yields a very slow rise time due to the lag zero at 0.01. The rise 

time can be sped up by moving the zero further from the imaginary axis with resultant changes in the 

transient response. The plots below show the step response with the PI zero at - 0.24.  
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 The response compares favorably with a two-pole system step response that yields 5% overshoot and a 

peak time of 8 seconds as shown below. 

 

 

46. 

a.  The open loop transfer function is 
)5)(2)(08.0(

1)(
+++

=
sss

sG  . The root locus for the 

system is shown below. With 02.7)( =sGc  the system has a 7.0=ξ damping factor for the 
dominant poles which are located at 849.0847.0 j±− . The third pole is located at -5.4 so the 2nd 

order approximation applies. The resulting sTS 16.5=  with a %OS=4.2% 
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b.   The desired 24
==

n
ST

ξω
 sec, so the real part of the desired closed loop poles is 2=nξω . The 

imaginary part is obtained from 04.27.0costan2 1 == −
dω . So the desired dominant closed loop 

positions are 04.22 j±− . We start by doing PD design with a compensator of the form 

)()( CC zsKsG +=  . A numerical search results in 456.2=Cz , and 963.9=K  gives the desired 

pole positions. So )456.2(963.9)( += ssGC . The root locus is shown next where it can be seen 
that the third pole is at approximately -3.06, so the dominant pole approximation is not as accurate as in 
part a) 
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For the PI part we arbitrarily choose a zero close to the origin. After adjusting the gain to obtain the 

desired damping factor, the resulting PID compensator is 
s

sssGc
)456.2)(1.0(717.9)( ++

= , the 

third pole moving to -3.16. 

c. 

>>syms s 

>>s=tf('s'); 

>>Gc=9.717*(s+0.1)*(s+2.456)/s; 

>>G=1/(s+0.08)/(s+2)/(s+5); 

>>T=6.95*G/(1+6.95*G); % No compensation 

>>T2=Gc*G/(1+Gc*G); % PID Compensation 
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>> step(T,T2,6) % Simulate up to 6 sec 
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Note that the compensated response results in the desired Settling time, however the resulting %OS≈8% 

is larger than expected due to the third pole being close to the dominant poles. 

47. 

a.   This part is identical to 46a) 

b.   We start by designing the lead compensator. The desired closed loop pole positions are 

04.22 j±− as in problem IV. We arbitrarily choose the position of the compensator zero at -2 

(cancelling a plant pole), and do a numerical search to get the pole position as -11.8, then adjust the gain 

until the desired pole positions are obtained. At this stage we have 
)2.11(
)2(7.95)(

+
+

=
s

ssGC . The 

resulting roots locus is: 
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Now we do the lag compensator design by first choosing arbitrarily the lag compensators pole position 

as -0.01 so the systems open loop transmission is: 

)2.11)(5)(08.0)(01.0(
)(7.95

)(
++++

+
=

ssss
zs

sG lag   . The steady state requirements demand 

99)0( =G , so 0463.0=lagz . The lead lag compensator is: 
)2.11)(01.0(

)2)(0463.0(7.95)(
++

++
=

ss
sssGc . 

The roots locus is: 
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c. 

>> syms s 

>> s=tf('s'); 

>> G=1/(s+0.08)/(s+2)/(s+5); 

>> Gc = 95.7*(s+0.0463)*(s+2)/(s+0.01)/(s+11.2); 

>> T=6.95*G/(1+6.95*G); %Uncompensated System 

>> T2=Gc*G/(1+Gc*G); %Compensated System 

>> step(T,T2,6) %Simulate for up to 6 sec 
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48. 

a.  

The root locus for the uncompensated system is shown next. The range for closed loop stability is 

04.00 << K . The fastest system will occur for vary small values of K  with sec8.0≈sT . The 

dominant poles have a damping factor 02.00 << ξ  

 

 

b. The notch filter is designed by arbitrarily placing two complex conjugate zeros close to the dominant 

complex pole plant pair, and then arbitrarily adding two ‘far away’ real poles in between the two pairs 

of plant poles. The gain is adjusted to obtain 7.0=ξ . The resulting 

)70)(20(
)425.612(0679.0)(

2

++
++

=
ss

esssGc  The resulting root locus is: 



9-108   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

The time domain simulation results in: %OS=5.22%, sec093.0=sT  

>> syms s 

>> s=tf('s'); 

>> P=0.63/(1+2*0.18*s/305.4+s^2/305.4^2)/(1+2*0.02*s/248.2+s^2/248.2^2); 

>> G=0.0679*(s^2+12*s+6.25e4)/(s+20)/(s+70); 

>> T=G*P/(1+G*P); 

>> step(T) 
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c.  The PI compensator is designed by adding a pole at the origin and arbitrarily placing a zero at the 
same point as that of the rightmost compensator pole. The resulting 

)70(
)425.612(0586.0)(

2

+
++

=
ss

esssGc  where the gain was adjusted to maintain the damping factor. 

The resulting simulation gives %OS=4.3% and sec124.0=sT  

>> syms s 

>> s=tf('s'); 

>> P=0.63/(1+2*0.18*s/305.4+s^2/305.4^2)/(1+2*0.02*s/248.2+s^2/248.2^2); 

>> G=0.0586*(s^2+12*s+6.25e4)/s/(s+70); 

>> T=G*P/(1+G*P); 

>> step(T,0.15) 
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49. 

a. The open loop transmission for the minor loop is 
)91.344724.4.1
)33.015.1(45.26

2

2

++
++

=
ss

ssLML  . The root 

locus is shown next where K=132results in the desired 5,0=ξ  
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b. 

With the value of K calculated in part a, the overall open loop transfer function from the main loop point 

view is    
s1.586e007  s1.396e007s1.21e007s5.376e004  s 3492

s 2.617e008  s 1.081e006  s 7.59e004
23456

23

++++
++

=G     

which results in an origin pole zero cancellation and an integrator at the origin. The uncompensated root 

locus is shown next: 
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With the two complex conjugate poles it is necessary to use a notch filter to obtain the required 

7.0=ξ . For )(sGc design the compensator zeros are chosen close to the open loop poles and the 
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poles are placed arbitrarily on the real axis, then the gain is adjusted to get the required damping factor. 

To satisfy the settling time requirement, the real poles are adjusted interactively in sisotool until their 

real part is ≈ 1. The resulting compensator is: 
)5)(3(

)34.115.1(738.0)(
2

++
++

=
ss

sssGc . The resulting 

root locus is: 
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c.  

>> syms s 

>> s=tf('s'); 

>> G1=574.98/s/(s^2+14.24*s+3447.91); 

>> H=0.046*s*(s^2+1.15*s+0.33); 

>> Gml=132*G1/(1+132*G1*H); 

>> Gc=0.738*(s^2+1.15*s+1.34)/(s+3)/(s+5); 

>> T=Gc*Gml/(1+Gc*Gml); 

>> step(T) 
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50.  
a. PD compensator design: Pushing the gain, 10, to the right past the summing junction, the system can 

be represented as an equivalent unity feedback system with G e(s) =
106

(s2 − 4551)(s + 286)
. This 
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system is unstable at any gain. For 1% overshoot and Ts = 0.1, the design point is –40 + j27.29. The 

summation of angles from the poles of Ge(s) to this point is -216.903o. Therefore, the compensator zero 

must contribute 216.903o - 180o = 36.903o. Using the following geometry: 

 

X

-zc -40

j27.29

36.903 o

 
 

27.29
zc - 40  = tan (36.903). Thus, zc = 76.34. Adding this zero to the poles of Ge(s), the gain at the design 

point is 106K = 23377. The PD compensated response is shown below. 
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b. PI compensator design: To reduce the steady-state error to zero, we add a PI controller of the form 

s+1
s   . The PID compensated step response is shown below.  
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We can see the 1% overshoot at about 0.1 second as in the PD compensated system above. But the 

system now corrects to zero error. 

51.  
a. Root locus sketch yields;  
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Root locus sketch near imaginary axis yields; 
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Searching imaginary axis for 180o yields: j0.083 at a gain of 0.072K = 0.0528 and j0.188 at a gain of 

0.072K = 0.081. Also, the gain at the origin is 0.0517. Thus, the system is stable for 0.0517 < 0.072K < 

0.0528; 0.072K > 0.081. Equivalently, for 0.7181 < K < 0.7333; 0.072K > 1.125. 

b. See (a) 

c. Uncompensated system: Searching the 20% overshoot line, we find the operating point at  

-8.987 + j17.4542 = 19.71∠117.126o at 0.072K = 16.94 for the uncompensated system. Simulating the 

response at this gain yields, 
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For 20% overshoot and Ts = 0.05 s, a design point of –80 + j156.159 is required. The sum of angles to 

the design point is -123.897o. To meet the requirements at the design point, a zero would have to 

contribute +303.897o, which is too high for a single zero. Let us first add the pole at the origin to drive 

the steady-state error to zero to reduce the angle required from the zero. Summing angles with this pole at 

the origin yields -241.023. Thus a zero contributing 61.023o is required.  Using the geometry below with 

156.159
zc - 80   = tan (61.023), zc = 166.478. 

X

-zc -80

j156.159

61.023o

 
 
The gain at the design point is 0.072K = 181.55. 
 
 
d. 
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The settling time requirement has been met, but the percent overshoot has not. Repeating the design for 

1% overshoot and a Ts = 0.05 s yields a design point of –80 + j54.575. The compensator zero is found to 

be at -47.855 at a gain 0.072K = 180.107. 
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52. 

ζωn = 
4
Ts

   = 2.667;  ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.591. Thus, ωn = 4.512 rad/s. 

Im = ωn 1 − ζ 2 = 4.512 1− 0.5912 = 3.64 . Thus, and the operating point is -2.667 ± j3.64. 

Summation of angles, assuming the compensating zero is at –5 (to cancel the open-loop pole at –5, is –

170.88o. Therefore, the compensator pole must contribute 180o – 170.88o = -9.12o. Using the geometry 

shown below,  

 

3.64

-2.667

9.12o

 
 

3.64
pc − 2.667

= tan 9.12o. Thus, pc = 25.34. Adding the compensator pole and using -2.667 ± j3.64 as the 

test point, 50K = 2504, or K = 50.08. Thus the compensated open-loop transfer function is  
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G e(s) =
2504(s + 5)

s(s+ 5)(s2 + 10s + 50)(s + 25.34)
. Higher-order pole are at –25.12, -5, and-4.898. The 

pole at –5 is cancelled by the closed-loop zero at -5. The pole at –4.898 is not far enough away from the 

dominant second-order pair. Thus, the system should be simulated to determine if the response meets the 

requirements. 

Program: 
syms s 
numg=2504; 
deng=expand(s*(s^2+10*s+50)*(s+25.34)); 
deng=sym2poly(deng); 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T) 
 
Computer response: 
Zero/pole/gain: 
            2504 
---------------------------- 
s (s+25.34) (s^2 + 10s + 50) 
 

 
53. 

a. We have that  (0) 3(1.9078) 5.7234pK G= = = . The steady state error for a unit step 

input is 
1 0.15

1ss
p

e
K

= =
+
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b. The required  0.075sse = , which corresponds to a 
1 12.33ss

p
ss

eK
e
−

= = . Following the 

procedure of Section 9.2, let 
12.33 2.2
5.7234

N

o

pc

c p

Kz
p K

= = = . Arbitrarily let  0.01cp = , so 

0.022cz = . The resulting compensator is 
3( 0.022)( )

( 0.01)c
sG s
s

+
=

+
 

c. We decided to use SIMULINK for this simulation. The block diagram is given by: 

Transfer Fcn 2

s+0.022

s+0.01
Transfer Fcn 1

9078 *[1/0.43 

/9.6 1 ],[1/0.5

Transfer Fcn

9078 *[1/0.43 

/9.6 1 ],[1/0.5

Scope

Gain 1

3

Gain

3

Constant 1

1

Constant

1

 

The resulting simulation shows the improvement in steady state error without affecting much the 

transient response. 

 
 
54. 

1. As can be seen from the entries in the first column of Table P9.54 below, we need to improve the 
steady-state error of this system as well as its transient response. 
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2. We design first the PD controller to meet transient response specifications. This includes the 

controller’s zero location and gain: )()( 3
3

1
331 cPD ZsK

K
KsKsKKsG +=+= =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+ .  

We start by finding the desired operating point (dominant pole), corresponding to transient response 

specifications:  

( )
( ) ( )

707.0
04321.0ln

04321.0ln

100/.O.S%ln

100/.O.S%ln
2222

=
+

−
=

+

−
=

ππ
ς  corresponds to an overshoot of 4.321%, 

which ≤4.4%. 

The peak time of the PID-controlled system, Tp, should be less than that of the uncompensated system by ~20%; 

e.g.; Tp ≈ 0.8 x 0.0207 = 0.01656 

rad/sec  189.7
 0.02078.0

=
×

==
ππω

p
d T

 

The natural frequency should be: rad/sec 268.2
707.01

7.189

1 22
=

−
=

−
=

ς

ω
ω d

n .  

Hence, the desired operating point is: 7.1897.189 jj dn ±−=±− ωςω .  
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Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

-600 -500 -400 -300 -200 -100 0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
0.0450.10.160.22

0.32

0.44

0.6

0.82

250

500

750

1e+003

1.25e+003

1.5e+003

1.75e+003

2e+003

 

 
G*H
C
D

 

Next we design the PD controller. Using the geometry of the triangle shown in red in Figure above we calculate the 

compensating zero’s location. 

To use the root locus utility, we find the open-loop poles and zeros of the plant, e.g., the roots of the numerator and 

denominator of Gp(s), which are: – 12.5, – 606.3 ± j 2155.8, and – 612.5 ± j 1467.9, respectively. As the 

coordinates of the desired dominant poles were entered, the sum of angles from the uncompensated system’s poles 

and zeros to the desired compensated dominant pole was found to be – 217.84
o
. Thus, the contribution required 

from the PD compensator zero is – 180
 o
 + 217.84

o
 = 37.84

o
. Hence: .9334

84.37tan
7.1897.189 =+= ocZ  and the 

poles of the systems are determined by the equation 1 + GC(s) Gp(s)H(s) = 0, where 

200))(s01625s  01503s 2521(s
)9.433)(s10532.s1225s(00025

5423

62
3

+×+×++
+×++

=
K(s)H(s)(s)GG pc

 

is the open-loop function.
 

 

Design point:  
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3. The following MATLAB M-file was written to simulate the system and plot its step response (shown below) to 
check whether all requirements may be met using a PD controller. 

 

numg = 125*[1 1225 2.53E6]; 

deng = [1 1225 503E4 625E5]; 

Gp = tf(numg, deng);       %Gp is the transfer function (TF) of the plant 

numh = 200; 

denh = [1 200]; 

H = tf(numh, denh);        %H is the TF of the feedback low-pass filter 

Zc = 433.9; 

numgc = [1 Zc]; 

dengc = 1; 

Gc = tf(numgc, dengc);     %Gc is the TF of the PD Controller     

rlocus(Gp*Gc*H); 

axis ([-250, 0, -250, 250]);   

z=0.707; 

sgrid(z,0) 

title('Root Locus Zoomed-in around Dominant Poles with a 0.707 Damping Line') 

[K1,p]=rlocfind(Gp*Gc*H); 

pause 

K = K1; 

T=feedback((K*Gc*Gp),H);     %T is the closed-loop TF of the system 

step(750*T); 

axis ([0, 0.04, 0, 1300]); 

grid 

title(['Step Response of PD-cont. Bus Voltage for Zc = - ', num2str(Zc)]); 



9-128   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

                              Step Response of PD-cont.  Bus Voltage for Zc = - 433.9
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System: PD-Cont.
Final Value: 725

System: PD-Cont.
Settling Time (sec): 0.0159

System: PD-Cont.
Peak amplitude: 1.23e+003
Overshoot (%): 69.6
At time (sec): 0

 

 
PD-Cont.

 

4. As could be seen from the above graph, the settling time, Ts, has been reduced significantly, but the overshoot is 
extremely high. Therefore, other values of the PD controller’s zero were tested to get a satisfactory transient 
response or, at least, the best possible one, with the idea that the transient may be improved further by adjusting the 
zero that will be added later in the following step (associated with the PI controller), since reducing the steady-state 
error to zero, requires the addition of an integral mode. 

The two graphs obtained for the PD controller’s zero at Zc = - 800 and at – 2000 are shown below. It could be seen 

from these graphs that the response of the PD-controlled system with Zc = - 800 is faster and its peak time, Tp = 

0.0142 sec, satisfies that requirement.   

Therefore, the results obtained for Zc = - 800 were added to Table P9.54 below as entries, which characterize the 

PD-compensated system.  
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                                                  Step Response of PD-cont. DC Bus Voltage for Zc = - 800
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System: PD-cont
Settling Time (sec): 0.0279
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PD-cont

 

Step Response of PD-cont.  Bus Voltage for Zc = -2000
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System: PD-Cont.
Final Value: 680

 

5. Adding the PI controller will introduce a pole at the origin, which will have a negative effect on the transient 

response. To minimize that effect we place a zero(
s

ZsK
s

KsK
s

KKsG PI
PI

)()( 1212
1

+
=

+
=+= ), ZPI = K2/K1, 

close to that pole. The poles of the system are determined by the equation 1 ( ) ( ) ( ) 0c pG s G s H s+ = , where 
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200))(s01625s  01503s 2521s(s
))(s800)(s10532.s1225s(25000

5423

62

+×+×++
++×++

= PI
pc

ZK(s)H(s)(s)GG . 

The following MATLAB M-file was written to add the integral mode. It was run a few times with various values of 

the PI controller’s zero, ZPI, (between zero and the closest open-loop pole at -12.5) to check whether all 

requirements are met using a PID controller. 

 

numg = 125*[1 1225 2.53E6]; 

deng = [1 1225 503E4 625E5]; 

Gp = tf(numg, deng);       %Gp is the transfer function (TF) of the plant 

numh = 200; 

denh = [1 200]; 

H = tf(numh, denh);        %H is the TF of the feedback low-pass filter 

Zc = 800; 

Zi = 4; 

numgc = poly ([-Zi, -Zc]); 

dengc = [1 0]; 

Gc = tf(numgc, dengc);   %Gc is the TF of the PID Controller     

rlocus(Gp*Gc*H); 

axis ([-200, 0, -200, 200]);   

z=0.707; 

sgrid (z,0) 

title('Root Locus Zoomed-in around Dominant Poles with a 0.707 Damping Line') 

[K1,p]=rlocfind(Gp*Gc*H); 

pause 

K = K1; 

T=feedback((K*Gc*Gp),H);     %T is the closed-loop TF of the system 

step(750*T); 
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axis ([0, 0.4, 0, 850]); 

grid 

title(['Step Response of PID-cont. of DC Bus for Zc = -',num2str(Zc),' and Zi 

= - ',num2str(Zi),]); 

 

PID Root Locus Zoomed-in around Dominant Poles with a 0.707 Damping Line
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System: PID-Cont
Gain: 0.00298
Pole: -125 + 125i
Damping: 0.707
Overshoot (%): 4.33
Frequency (rad/sec): 177
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6. As a result, the following transfer function of the PID controller was found: 

s
K
Ks

K
KsK

s
sssGc
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⎛ ++
×= 3
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1
32

2

3200804003.0)( . 

Thus, the gains, K1, K2, and K3 are:  K3 = 0.003; K1 = 2.41; and K2 = 9.6. 

7. The system simulation showed that all steady-state and transient response requirements have been met (see the 
figure below and Table P9.54).  
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                                         Step Response of PID-cont. of DC Bus for Zc = - 800 and Zi = - 4
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System: PID-Contr Sys
Final Value: 750

 

 

 

8. All requirements have been met. No need for any redesign. 



Solutions to Problems   9-133 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 

Table P9.54 

 Uncompensated PD-compensated PID-compensated 

Plant & Compensator TF, 

Gc(s)Gp(s)H(s) 
200))(s01625s  01503s 2521(s

)10532.s1225s(00025
5423

62

+×+×++
×++K

200))(s01625s  01503s 2521(s
)008)(s10532.s1225s(00025

5423

62

+×+×++
+×++K 200))(s01625s  01503s 2521s(s

)4)(s800)(s10532.s1225s(25000
5423

62

+×+×++
++×++K

 

Dominant Poles  - 108.5 ± j 108.5 - 130.6 ± j 130.6 - 125 ± j 125 

Proportional Gain, K = K1 1.675 1.498 2.41 

Damping Coefficient, ζ  0.707 0.707 0.707 

Natural Frequency, ωn; 153.47 rad/sec 184 rad/sec  177 rad/sec 

Percent Overshoot, %OS 7.31% 10.2% 3.25% 

Peak Time, Tp 0.0207 sec 0.0142 sec 0.0139 sec 

Settling Time, Ts 0.0338 sec 0.0279 sec 0.387 sec 

Static Error Constant, Kp  8.494 12.549 ∞ 

Steady-state Error, eVstep(∞) 10.53% 7.38% 0% 

Other Poles - 604.0 ± j 2160.2 - 623.6 ± j 2166.0 - 622.7 ± j 2165.5, – 3.8 

Zeros - 612.5 ± j 1467.9 - 200, - 612.5 ± j 1467.9, - 800 
 

- 4, - 200, - 612.5 ± j 1467.9, - 800             
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Comments Second-order Approximation OK Zeros at – 200 & - 800 not cancelled 
Zeros at - 4, – 200, and - 800 not 

cancelled 
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55. 

a. From Chapter 8,  
 
                                         0.6488K (s+53.85) 
             Ge(s) =      ______ 
                            (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283) 
 
 
 
 
 
Cascading the notch filter, 
      
                                  0.6488K (s+53.85)(s2 + 16s + 9200) 
             Get(s) =       
                            (s2 + 8.119s + 376.3) (s2 + 15.47s + 9283)(s+60)2 

Arbitrarily design for %OS = 30% (ζ = 0.358)  and Ts = 0.3 s. This places desired poles at  

–13.33 ± j34.79.  At the design point, the sum of the angles without the PD controller is 107.190. Thus,  
34.79

zc − 13.33
= tan 72.81 

 

-zc
-13.33

j34.79

72.810
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From which,  zc = 24.09. Putting this into the forward path,  
 
                              0.6488K (s+53.85)(s2 + 16s + 9200)(s+24.09) 
             Get(s) =       
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

Using root locus, the gain 0.6488K = 1637, or K =  2523. 

b.  Add a PI controller 

GPI (s) =
(s + 0.1)

s
 

Thus, 
 
                         0.6488K (s+53.85)(s2 + 16s + 9200)(s+24.09)(s+0.1) 
             Get(s) =     _____ 
                          s (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

 

Using root locus, the gain 0.6488K = 1740, or K =  2682. 
c.  
Program: 
syms s 
numg=1637*(s+53.85)*(s^2+16*s+9200)*(s+24.09)*(s+0.1); 
deng=s*(s^2+15.47*s+9283)*(s^2+8.119*s+376.3)*(s+60)^2; 
numg=sym2poly(numg); 
deng=sym2poly(deng); 
G=tf(numg,deng); 
Gzpk=zpk(G) 
T=feedback(G,1); 
step(T,0:0.01:1) 
title(['With PD, Notch, and PI']) 
pause 
step(T) 
title(['With PD, Notch, and PI']) 
 
Computer response: 
Zero/pole/gain: 
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  1637 (s+53.85) (s+24.09) (s+0.1) (s^2 + 16s + 9200) 
------------------------------------------------------- 
s (s+60)^2 (s^2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
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56. 

a.  The root locus for the uncompensated system was obtained in Chapter 8 . It was shown there that the system is closed loop stable for all K>0 . 

All the poles are real when 00331.0−=K . 
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The step response simulation: 

>> syms s 

>> s=tf('s'); 

>> P=(520*s+10.3844)/(s^3+2.6817*s^2+0.11*s+0.0126); 

>> Gc = 0.00331; 

>> T=Gc*P/(1+Gc*P); 

>> step(T) 
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The measured %OS=31% and sec100≈sT   

b.   A pole is placed at the origin and a zero is arbitrarily placed at -0.1, since the system has a pole very close to the origin (z=-0.02) , it may 

serve as the compensator’s zero. The resulting compensator is 
s

ssGc
)1.0(00189.0)( +

=  . The root locus is shown next: 
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The step response simulation: 
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>> syms s 

>> s=tf('s'); 

>> P=(520*s+10.3844)/(s^3+2.6817*s^2+0.11*s+0.0126); 

>> Gc=0.00189*(s+0.1)/s; 

>> T=Gc*P/(1+Gc*P); 

>> step(T,100) 

 



9-144   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

Am
pl

itu
de

 

%Os=7% and sec100≈sT  

 

57. 

 

a. To determine the improvements required in the transient and steady-state responses of the uncompensated system, its performance characteristics, obtained 
in part (a) of problem 8.71 are entered into Table P9.57 which is given at the end of part (b) below. To plot c(t) for r(t) = 4 u(t), volts, the MATLAB M-file 
developed for part (a) of problem 8.71 was modified as shown below: 
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numg = [1 0.6]; 

deng = poly ([-0.0163 -0.5858]); 

G = tf(numg, deng); 

rlocus(G); 

axis ([-0.8, 0.1, -0.1, 0.1]); 

pos=(0); 

z=-log(pos/100)/sqrt(pi^2+(log(pos/100))^2); 

sgrid(z,0) 

title(['Root Locus with ', num2str(pos) , ' Percent Overshoot Line']) 

[K1,p]=rlocfind(G); 

pause 

T=feedback(K1*G,1);  %Tu is the closed-loop TF of the uncompensated system 

T=minreal(T); 

step(4*T); 

xlabel ('Time') 

ylabel ('Speed Sensor Output, c(t) in volts')  

title (['Step Response of Uncompensated System at K = ', num2str(K1), ' to a 4 volt Input Step']) 

grid 



9-146   Chapter 9:   Design via Root Locus 

Copyright ©   2011 by John Wiley & Sons, Inc. 

The step response, c (t), of the uncompensated system to r(t) = 4 u(t) is shown below. As could be seen from the plot and the entries made into Table P9.57, 

the uncompensated system does not meet any of the steady-state requirements – the need to reduce estep
1 (∞) from 2% to the required 0% and to have a finite 

value for the steady-state error due a ramp input, eramp (∞) = 2%, indicate that the system should become type-1, e.g. an integral mode should be added to the 

controller. The speed of response also is not adequate – the rise time is 2.69 seconds and the settling time is 4.69 seconds whereas the compensated system is 

required to have a settling time equal to or less than four seconds. 

                                                           

1 %2100
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crestep  
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Step Response of Uncompensated System at K = 0.78 to a 4 volt Input Step
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System: Tu
Final Value: 3.92System: Tu

Settling Time (sec): 4.69
System: Tu
Rise Time (sec): 2.69

 

 

 

b. We now design the PI-controller to obtain a steady-state error, estep (∞) = 0, for a step input, r(t) = 4 u(t) and a steady-state error for a unit-ramp input, 
eramp(∞) ≤ 2%.  

To achieve that and at the same time either improve or have a minor negative effect on the transient response of the system, we need to place the PI-

controller’s zero on-top or close to the dominant pole of the uncompensated system, located at – 0.0163. Hence, we’ll start by assuming that the transfer 

function of the PI-controller is: 
( )

s
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Thus, we obtain a type-1 system with a transfer function1 of the “Plant & Compensator” given by: 
)5858.0(

)6.0()( 1
+

+
=

ss
sKsG , which has a “position” error 

constant ∞==
→

)(lim
0

sGK
s

P  and a “velocity” error constant, 1
0

 1.024)(lim KssGK
s

v ==
→

.  

Hence, the requirement to have a zero steady-state error for a step input, r(t) = A u(t) =  4 u(t) is satisfied, since: 0
1

4
1

)( =
∞+

=
+

=∞
P

step K
Ae . 

The requirement that eramp(∞) ≤ 2%, for a unit-ramp input will be satisfied if 02.0
024.1

11)(
1

≤==∞
KK

e
v

ramp , e.g., if 48.831 ≥K . At this value of 

K1, the open-loop transfer function of the PI-compensated system is: 
)5858.0(
3.2983.48)(

+
+

=
ss

ssG . 

The following MATLAB file was written to check whether all requirements have been met: 

 

numg = [48.83 29.3]; 

deng = poly ([0 -0.5858]); 

G = tf(numg, deng); 

T = feedback(G,1);   %T is the closed-loop TF of the PI_compensated system 

T = minreal(T); 

step(4*T); 

                                                           

1  Enter this transfer function and the results obtained for the PI-compensated system into Table P9.57. 



Solutions to Problems   9-149 

Copyright ©   2011 by John Wiley & Sons, Inc. 

axis ([0, 0.2, 0, 5]); 

grid 

xlabel ('Time') 

ylabel ('Speed Sensor Output, c(t) in volts')  

title ('PI-compensated Systems Response to a 4 volt Input Step') 

pause 

numr = 1; 

denr = poly (0); 

R = tf(numr, denr); 

T2 = R*T; 

E= R-T2;          %E = Ramp error of PI_compensated system 

step(T2,'b', R,'g', E,'r'); 

axis ([0, 5, 0, 5]); 

grid 

xlabel ('Time') 

ylabel ('Output Rate, dc(t)/dt, V/s (Blue); Unit Ramp (Green); Error (Red)');  

title ('Response of PI-compensated System to a Unit-ramp Input') 
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The step response, c(t), and the unit-ramp response, dc(t)/dt, of the PI-compensated system are shown below. As could be seen from the plots and the entries 

made into Table P.9.57, the PI-compensated system satisfies all performance requirements. Its steady-state error for a step input, r(t) = 4 u(t), is zero and the 

value of its steady-state error due a unit-ramp input, %202.0)( ==∞rampe .  

 

It has also an extremely fast speed of response – the rise time is 0.045 seconds and the settling time is 0.08 seconds. Since the PI-compensated system 

satisfies all performance requirements, there is no need to add a derivative mode. Therefore, Table P.9.57, shown below has been limited to entries for the 

uncompensated and PI-compensated systems only.  

 

It should be noted, however, that the rise and settling times obtained seem to be unrealistic for the reasons noted above. Therefore, the Simulink model 

(which was developed originally for problem 5.81) was modified as shown above and will be run in step (c). 
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PI-compensated Systems Response to a 4 volt Input Step
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Response of PI-compensated System to a Unit-ramp Input

Time (sec)

O
ut

pu
t R

at
e,

 d
c(

t)/
dt

, V
/s

 (B
lu

e)
; U

ni
t R

am
p 

(G
re

en
); 

Er
ro

r 
(R

ed
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

System: R
Time (sec): 4
Amplitude: 4

System: T2
Time (sec): 4
Amplitude: 3.98
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Table P9.57 Characteristics of Uncompensated and PI-compensated Systems 
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Table P9.57 

 

 Uncompensated PI-compensated 

Plant & Compensator, G(s)  3) 016.0)(5858.0(
)6.0(1

++
+
ss

sK
 

)5858.0(
)6.0(1

+
+

ss
sK

 

Closed-loop Transfer Function, 

T (s) 
4775.0382.1

468.078.0
2 ++

+

ss
s

 
3.2942.49

3.2983.48
2 ++

+

ss
s

 

Dominant Pole(s) – 0.691, – 0.691 – 48.82 

Proportional Gain, K K = K1 = 0.78 K1 = 48.83 

Damping Coefficient, ζ  1 1 

Rise Time, Tr 2.69 sec 0.045 sec 

Settling Time, Ts 4.69 sec 0.08 sec 

estep (∞) 2% 0 

eramp (∞) ∞ 2% 

Other Poles none – 0.6002 
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Zeros – 0.6 – 0.6 

Comments 
Second-order Critically-damped 

System 

Second-order1 Over-damped 

System 

 
c. We now run the following Simulink model, which includes a saturation element placed at the output of the motor armature, which 

was set to an upper limit of 250 A.  

 

                                                           

1 With the second closed-loop pole very small (compared to the dominant pole) and almost equal to the system’s zero, this system acts almost as a first-order 

lag.  
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1.8

Torque Const.
x Efficiency

 

Current

To Workspace3

acceleration

To Workspace2

time

To Workspace1

Speed

To Workspace

Speed vs Time

0.0443

Speed Sensor
Sensitivity, Kss

Saturation
UL = 250 A

Referece
Signal

PID

PI Torque
Controller

P = 10, I = 6

PID

PI Speed
 Controller

P = 61, I = 0.795

Motive
minus

Resistive 
Torques

 0.06154

Linear
Speed /
Angular 
Speed

7.226s

1

HEV Inertia
Referred to 
Motor Shaft

0.1

Friction
Coeff., D

du/dt

Derivative

0.5

Current Sensor
Sensitivity, Kcs

Clock

2

Back EMF
Const, Kb1

Armature
Current vs Time

20

s+20
Armature

0.61543

Aerodynamic Drag

Acceleration
vs Time
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As a result of that simulation, the following figures were obtained: 

1. Change in Motor Armature Current in Response to a Speed Change Command; 

2. Change in Car Acceleration in Response to a Speed Change Command; 

3. Change in Car Speed in Response to a 4-V Reference Input Step. 

Based on these graphs, the following observations may be made: 

a. The armature current rises very fast to 250 amps; sustains at that level for 0.7 seconds,  
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then drops down exponentially (in about 4 seconds) to 7.0 amps ± 5%.  

b. Car acceleration also rises very fast to 3.833 m/s2, drops down slightly (to 3.75 m/s2) in the first 0.7 
seconds, then drops down exponentially (in about 4.3 seconds) to 0.  

c. With a saturation element (set to a limit of 250 A) placed at the output of the motor armature, the step 
response obtained for the change in car speed exhibits realistic values of the rise and settling times (1.75 
and 2.8 seconds, respectively), whereas the steady-state error in car speed remains equal to zero (the final 
car speed = 5.556 m/sec) and the steady-state error in car acceleration remains below 2% 
( 48.83611 ≥== KP ). 
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Final Value = 
5.556 m/secRise Time = 1.75 sec

Settling Time = 2.8 sec
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T  E  N  
 
Frequency Response 
Techniques  

 

SOLUTION TO CASE STUDY CHALLENGE  
 

Antenna Control: Stability Design and Transient Performance 
First find the forward transfer function, G(s). 

Pot:  

K1 = 
10
π

   = 3.18 

Preamp: 

 K 

Power amp:  

G1(s) =  
100

s(s+100)  

Motor and load: 

J = 0.05 + 5 (
1
5 )2 = 0.25 ; D = 0.01 + 3 (

1
5 )2 = 0.13;  

Kt
Ra   = 

1
5  ; Kb = 1. 

Therefore,  

Gm(s) =  
θm(s)
Ea(s)    = 

Kt
RaJ

s(s+
1
J(D + 

KtKb
Ra

))
   = 

0.8
s(s+1.32)  . 

Gears: 

K2 = 
50
250   = 

1
5    

Therefore,  

G(s) = K1KG1(s)Gm(s)K2 = 
50.88K

s(s+1.32)(s+100)    

Plotting the Bode plots for K = 1,  
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a. Phase is 180o at ω = 11.5 rad/s. At this frequency the gain is - 48.41 dB, or K  = 263.36. Therefore, 

for stability, 0 < K < 263.36.  

b. If K = 3, the magnitude curve will be 9.54 dB higher and go through zero dB at ω = 0.94 rad/s. At 

this frequency, the phase response is -125.99o. Thus, the phase margin is 180o - 125.99o = 54.01o. 

Using Eq. (10.73), ζ = 0.528. Eq. (4.38) yields %OS = 14.18%. 

c.  

Program: 
numga=50.88; 
denga=poly([0 -1.32 -100]); 
'Ga(s)' 
Ga=tf(numga,denga); 
Gazpk=zpk(Ga) 
'(a)' 
bode(Ga) 
title('Bode Plot at Gain of 50.88') 
pause 
[Gm,Pm,Wcp,Wcg]=margin(Ga); 
'Gain for Stability' 
Gm 
pause 
'(b)' 
numgb=50.88*3; 
dengb=denga; 
'Gb(s)' 
Gb=tf(numgb,dengb); 
Gbzpk=zpk(Gb) 
bode(Gb) 
title('Bode Plot at Gain of 3*50.88') 
[Gm,Pm,Wcp,Wcg]=margin(Gb); 
'Phase Margin' 
Pm 
for z=0:.01:1 
Pme=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
if Pm-Pme<=0; 
break 
end 
end 
z 
percent=exp(-z*pi/sqrt(1-z^2))*100 
 
 
 
Computer response: 
ans = 
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Ga(s) 
 
Zero/pole/gain: 
      50.88 
------------------ 
s (s+100) (s+1.32) 
  
ans = 
 
(a) 
 
ans = 
 
Gain for Stability 
 
Gm = 
 
  262.8585 
 
ans = 
 
(b) 
 
ans = 
 
Gb(s) 
 
Zero/pole/gain: 
      152.64 
------------------ 
s (s+100) (s+1.32) 
  
ans = 
 
Phase Margin 
 
Pm = 
 
   53.9644 
 
z = 
 
    0.5300 
 
percent = 
 
   14.0366 
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ANSWERS TO REVIEW QUESTIONS 
1. a. Transfer functions can be modeled easily from physical data; b. Steady-state error requirements can be 

considered easily along with the design for transient response; c. Settles ambiguities when sketching root 

locus; (d) Valuable tool for analysis and design of nonlinear systems. 

2. A sinusoidal input is applied to a system. The sinusoidal output's magnitude and phase angle is measured 

in the steady-state. The ratio of the output magnitude divided by the input magnitude is the magnitude 

response at the applied frequency. The difference between the output phase angle and the input phase angle 

is the phase response at the applied frequency. If the magnitude and phase response are plotted over a range 

of different frequencies, the result would be the frequency response for the system. 
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3. Separate magnitude and phase curves; polar plot 

4. If the transfer function of the system is G(s), let s=jω. The resulting complex number's magnitude is the 

magnitude response, while the resulting complex number's angle is the phase response. 

5. Bode plots are asymptotic approximations to the frequency response displayed as separate magnitude and 

phase plots, where the magnitude and frequency are plotted in dB.  

6. Negative 6 dB/octave which is the same as 20 dB/decade 

7. Negative 24 dB/octave or 80 dB/decade 

8. Negative 12 dB/octave or 40 dB/decade 

9. Zero degrees until 0.2; a negative slope of 45o/decade from a frequency of 0.2  until 20; a constant -90o 

phase from a frequency of 20 until ∞ 
10. Second-order systems require a correction near the natural frequency due to the peaking of the curve for 

different values of damping ratio. Without the correction the accuracy is in question. 

11. Each pole yields a maximum difference of 3.01 dB at the break frequency. Thus for a pole of 

multiplicity three, the difference would be 3x3.01 or 9.03 dB at the break frequency, - 4. 

12. Z = P - N, where Z = # of closed-loop poles in the right-half plane, P = # of open-loop poles in the right-

half plane, and N = # of counter-clockwise encirclements of -1 made by the mapping.  

13. Whether a system is stable or not since the Nyquist criterion tells us how many rhp the system has 

14. A Nyquist diagram, typically, is a mapping, through a function, of a semicircle that encloses the right 

half plane. 

15. Part of the Nyquist diagram is a polar frequency response plot since the mapping includes the positive jω 

axis. 

16. The contour must bypass them with a small semicircle. 

17. We need only map the positive imaginary axis and then determine that the gain is less than unity when 

the phase angle is 180o.  

18. We need only map the positive imaginary axis and then determine that the gain is greater than unity 

when the phase angle is 180o.  

19. The amount of additional open-loop gain, expressed in dB and measured at 180o of phase shift, required 

to make a closed-loop system unstable. 

20. The phase margin is the amount of additional open-loop phase shift, ΦM, required at unity gain to make 

the closed-loop system unstable.  

21. Transient response can be obtained from (1) the closed-loop frequency response peak, (2) phase margin  

22. a. Find T(jω)=G(jω)/[1+G(jω)H(jω)] and plot in polar form or separate magnitude and phase plots. b. 

Superimpose G(jω)H(jω) over the M and N circles and plot. c. Superimpose G(jω)H(jω) over the Nichols 

chart and plot.  
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23. For Type zero: Kp = low frequency gain; For Type 1: Kv = frequency value at the intersection of the 

initial slope with the frequency axis; For Type 2: Ka = square root of the frequency value at the intersection 

of the initial slope with the frequency axis. 

24. No change at all 

25. A straight line of negative slope, ωT, where T is the time delay 

26. When the magnitude response is flat and the phase response is flat at 0o. 

 

SOLUTIONS TO PROBLEMS 
 

1.  
a.  

 ;  

 ;     

b. 

 ;  

;  

c. 

 ;  

 ;  
2.  

a. 
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b. 

 
c. 

 
3.  

a. 
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b. 
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4.  
a. 
 

 
b. 
 

 

c. 
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 5.  
a. System 1 

  
b. System 2 

 

 
  
c. System 3 
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d. 

 
6. 
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7. 
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8. 

Program: 
numg=[1 5]; 
deng=conv([1 6 100],[1 4 25]); 
G=tf(numg,deng); 
'G(s)' 
Gzpk=zpk(G) 
nyquist(G) 
axis([-3e-3,4e-3,-5e-3,5e-3]) 
w=0:0.1:100; 
[re,im]=nyquist(G,w); 
for i=1:1:length(w) 
M(i)=abs(re(i)+j*im(i)); 
A(i)=atan2(im(i),re(i))*(180/pi); 
if 180-abs(A(i))<=1; 
re(i); 
im(i); 
K=1/abs(re(i)); 
fprintf('\nw = %g',w(i)) 
fprintf(', Re = %g',re(i)) 
fprintf(', Im = %g',im(i)) 
fprintf(', M = %g',M(i)) 
fprintf(', Angle = %g',A(i)) 
fprintf(', K = %g',K) 
Gm=20*log10(1/M(i)); 
fprintf(', Gm = %g',Gm) 
break 
end 
end 
 

 
Computer response: 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
              (s+5) 
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---------------------------------- 
(s^2  + 4s + 25) (s^2  + 6s + 100) 
  
 
w = 10.1, Re = -0.00213722, Im = 2.07242e-005, M = 0.00213732, Angle = 
179.444, K = 467.898, Gm = 53.4026 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
              (s+5) 
---------------------------------- 
(s^2  + 4s + 25) (s^2  + 6s + 100) 
  
 
w = 10.1, Re = -0.00213722, Im = 2.07242e-005, M = 0.00213732, Angle = 
179.444, K = 467.898, Gm = 53.4026 
 

 
9.  
 a. Since the real-axis crossing is at -0.3086, P = 0, N = 0. Therefore Z = P - N = 0. System is stable. 

Derivation of real-axis crossing:  

( )
( )

2 2

4 3

50 9 1850( )
( 3)( 6) 81 18s j

j
G j

s s s ω

ω ω ω
ω

ω ω ω=

⎡ ⎤− − −⎣ ⎦= =
+ + + −

. 
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Thus, the imaginary part = 0 at 18ω = .  Substituting this frequency into ( )G jω , the real part is 

evaluated to be -0.3086. 

 b. P = 0, N = -2. Therefore Z = P - N = 2. System is unstable. 

 c. P = 0, N = 0. Therefore Z = P - N = 0. System is stable 

 d. P = 0, N = -2. Therefore Z = P - N = 2. System is unstable.  

10.  
 System 1: For K = 1,  

 

 
 The Nyquist diagram intersects the real axis at -0.0021. Thus K can be increased to 478.63 before 

there are encirclements of -1. There are no poles encircles by the contour. Thus P = 0. Hence, Z = P - 

N, Z = 0 + 0 if K <478.63; Z = 0 –(-2) if K > 478.63. Therefore stability if 0 < K < 478.63. 

 System 2: For K = 1,  
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 The Nyquist diagram intersects the real axis at -0.720. Thus K can be increased to 1.39 before there 

are encirclements of -1. There are no poles encircles by the contour. Thus P = 0. Hence, Z = P - N, Z 

= 0 + 0 if K <1.39; Z = 0 – (-2) if K > 1.39. Therefore stability if 0 < K < 1.39. 

 System 3: For K = 1,  

 
 

 Stable if 0<K<1. 

11.  
 Note: All results for this problem are based upon a non-asymptotic frequency response. 

 System 1: Plotting Bode plots for K = 1 yields the following Bode plot, 
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 K = 1000: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding  + 6.4 dB at 6.63 rad/s. Thus, the gain 

margin is  

- 6.4 dB. 

 Phase margin: Raising the magnitude curve by 60 dB yields 0 dB at 9.07 rad/s, where the phase curve 

is 200.3o. Hence, the phase margin is 180o-200.3o = - 20.3o. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding – 13.6 dB at 6.63 rad/s. Thus, the gain 

margin is 13.6 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields 0 dB at 2.54 rad/s, where the phase curve 

is 107.3o. Hence, the phase margin is 180o-107.3o = 72.7o. 

 K = 0.1: 

 For K = 1, phase response is 180o at ω = 6.63 rad/s. Magnitude response is -53.6 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding – 73.6 dB at 6.63 rad/s. Thus, the gain 

margin is 73.6 dB.. 

 System 2: Plotting Bode plots for K = 1 yields 
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 K = 1000: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding + 57.15 dB at 1.56 rad/s. Thus, the gain 

margin is 

 – 57.15 dB. 

 Phase margin: Raising the magnitude curve by 54 dB yields 0 dB at 500 rad/s, where the phase curve 

is -91.03o. Hence, the phase margin is 180o-91.03o = 88.97o. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding + 37.15 dB at 1.56 rad/s. Thus, the gain 

margin is 

 – 37.15 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields 0 dB at 99.8 rad/s, where the phase curve 

is -84.3o. Hence, the phase margin is 180o-84.3o = 95.7o. 

 K = 0.1: 

 For K = 1, phase response is 180o at ω = 1.56 rad/s. Magnitude response is -2.85 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding – 22.85 dB at 1.56 rad/s. Thus, the gain 
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margin is 

 – 22.85 dB. 

 Phase margin: Lowering the magnitude curve by 20 dB yields 0 dB at 0.162 rad/s, where the phase 

curve is -99.8o. Hence, the phase margin is 180o-99.86o = 80.2o. 

 System 3: Plotting Bode plots for K = 1 yields 

 

 
 K = 1000: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 1000, magnitude curve is raised by 60 dB yielding  60 dB at 1.41 rad/s. Thus, the gain margin 

is - 60 dB. 

 Phase margin: Raising the magnitude curve by 60 dB yields no frequency where the magnitude curve 

is 0 dB. Hence, the phase margin is infinite. 

 K = 100: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 100, magnitude curve is raised by 40 dB yielding  40 dB at 1.41 rad/s. Thus, the gain margin 

is - 40 dB. 

 Phase margin: Raising the magnitude curve by 40 dB yields no frequency where the magnitude curve 

is 0 dB. Hence, the phase margin is infinite. 
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 K = 0.1: 

 For K = 1, phase response is 180o at ω = 1.41 rad/s. Magnitude response is 0 dB at this frequency.  

For K = 0.1, magnitude curve is lowered by 20 dB yielding  -20 dB at 1.41 rad/s. Thus, the gain 

margin is 20 dB. 

 Phase margin: Lowering the magnitude curve by 20 dB yields no frequency where the magnitude 

curve is 0 dB. Hence, the phase margin is infinite. 

12. 
Program: 
%Enter G(s)************************ 
numg=1; 
deng=poly([0 -3 -12]); 
'G(s)' 
G=tf(numg,deng) 
w=0.01:0.1:100; 
%Enter K ************************** 
K=input('Type gain, K '); 
bode(K*G,w) 
pause 
[M,P]=bode(K*G,w); 
%Calculate Gain Margin************** 
for i=1:1:length(P); 
if P(i)<=-180; 
fprintf('\nGain K = %g',K) 
fprintf(', Frequency(180 deg) = %g',w(i)) 
fprintf(', Magnitude = %g',M(i)) 
fprintf(', Magnitude (dB) = %g',20*log10(M(i))) 
fprintf(', Phase = %g',P(i)) 
Gm=20*log10(1/M(i)); 
fprintf(', Gain Margin (dB) = %g',Gm) 
break 
end 
end 
%Calculate Phase Margin************** 
for i=1:1:length(M); 
if M(i)<=1; 
fprintf('\nGain K = %g',K) 
fprintf(', Frequency (0 dB) = %g',w(i)) 
fprintf(', Magnitude = %g',M(i)) 
fprintf(', Magnitude (dB) = %g',20*log10(M(i))) 
fprintf(', Phase = %g',P(i)) 
Pm=180+P(i);; 
fprintf(', Phase Margin = %g',Pm) 
break 
end 
end 
 
'Alternate program using MATLAB margin function:' 
 
clear 
clf 
%Bode Plot and Find Points 
%Enter G(s)************************ 
numg=1; 
deng=poly([0 -3 -12]); 
'G(s)' 
G=tf(numg,deng) 
w=0.01:0.1:100; 
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%Enter K ************************** 
K=input('Type gain, K '); 
bode(K*G,w) 
[Gm,Pm,Wcp,Wcg]=margin(K*G) 
'Gm(dB)' 
20*log10(Gm) 
 
 
 
 
 
 
 
 
Computer response: 
ans = 
 
G(s) 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 15 s^2 + 36 s 
  
Type gain, K 40 
 
Gain K = 40, Frequency(180 deg) = 6.01, Magnitude = 0.0738277, Magnitude 
(dB) = -22.6356, Phase = -180.076, Gain Margin (dB) = 22.6356 
Gain K = 40, Frequency (0 dB) = 1.11, Magnitude = 0.93481, Magnitude (dB) = 
-0.585534, Phase = -115.589, Phase Margin = 64.4107 
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Alternate program using MATLAB margin function: 
 
 
ans = 
 
G(s) 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 15 s^2 + 36 s 
  
Type gain, K 40 
 
Gm = 
 
   13.5000 
 
 
Pm = 
 
   65.8119 
 
 
Wcp = 
 
     6 
 
 
Wcg = 
 
    1.0453 
 
 
ans = 
 
Gm(dB) 
 
 
ans = 
 
   22.6067 
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13. 

Program: 
numg=8000; 
deng=poly([-6 -20 -35]); 
G=tf(numg,deng) 
ltiview 
 
 
 
Computer response: 
 
Transfer function: 
            8000 
---------------------------- 
s^3 + 61 s^2 + 1030 s + 4200 
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14.  

Squaring Eq. (10.51) and setting it equal to 
1
2

⎛ 
⎝ 

⎞ 
⎠ 

2

 yields 

ωn4

(ωn2 - ω2)2 + 4ζ2ωn2ω2   = 
1
2   

 Simplifying,  

ω 4 + 2ωn2(2ζ2 - 1)ω2 - ωn4  = 0 

 Solving for ω2  using the quadratic formula and simplifying yields,  

ω2  =  ωn2 [ ] - (2ζ2 - 1) ± 4ζ4 - 4ζ2 + 2   

 Taking the square root and selecting the positive term,  

ω  =  ωn  (1 - 2ζ2)  + 4ζ4 - 4ζ2 + 2   

15. 
a. Using Eq. (10.55), ωBW = 10.06 rad/s.  
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b. Using Eq. (10.56), ωBW = 1.613 rad/s. 

c. First find ζ. Since Ts = 
4

ζωn
   and Tp = 

π
ωn 1-ζ2   , 

Tp
Ts

   = 
ζπ

4 1 - ζ2   .  Solving for ζ with  
Tp
Ts

   = 0.5 

yields ζ = 0.537. Using either Eq. (10.55) or (10.56) yields ωBW = 2.29 rad/s. 

d. Using ζ = 0.3,ωnTr = 1.76ζ 3 − 0.417ζ 2 +1.039ζ + 1 =1.3217 . Hence,  

 

ωn = 
1.3217

Tr

=
1.3217

4
= 0.3304  rad/s. Using Eq. (10.54) yields ωBW = 0.4803 rad/s. 

16.  
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a. 
 

 
 b. 
 

 
 c. 
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17.  
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18. 
 a. The polar plot is approximately tangent to M = 5. Using Figure 10.40, the student would estimate 

72% overshoot. However, notice that the polar plot intersects the negative real axis at a magnitude 

greater than unity. Hence, the system is actually unstable and the estimated percent overshoot is not 

correct. 

b. The polar plot is approximately tangent to M = 3. Using Figure 10.40, we estimate 58% overshoot. 

c. The polar plot is approximately tangent to M = 2.5. Using Figure 10.40, we estimate 52% overshoot. 

19.  
Raise each curve in Problem 17 by (a) 9.54 dB, (b) 7.96 dB, and (c) 3.52 dB, respectively. 
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Systems (a) and (b) are both unstable since the open-loop magnitude is greater than unity when the 

open-loop phase is 180o. System (c) is tangent to approximately M = 3. Using Figure 10.40, we 

estimate 58% overshoot. 

20. 
Program: 
%Enter G(s)*********************** 
numg=[1 5]; 
deng=[1 4 25 0]; 
'G(s)' 
G=tf(numg,deng) 
%Enter K ************************* 
K=input('Type gain, K '); 
'T(s)' 
T=feedback(K*G,1) 
bode(T) 
title('Closed-loop Frequency Response') 
[M,P,w]=bode(T); 
[Mp i]=max(M); 
Mp 
MpdB=20*log10(Mp) 
wp=w(i) 
for i=1:1:length(M); 
if M(i)<=0.707; 
fprintf('Bandwidth = %g',w(i)) 
break 
end 
end 
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Computer response: 

ans = 

G(s) 

Transfer function: 

      s + 5 

------------------ 

s^3 + 4 s^2 + 25 s 

 

Type gain, K 40 

ans = 

T(s) 

Transfer function: 

       40 s + 200 

------------------------ 

s^3 + 4 s^2 + 65 s + 200 

 

Mp = 

    6.9745 

MpdB = 

   16.8702 

wp = 

    7.8822 

Bandwidth = 11.4655 
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21. 

Program: 
numg=[5 30]; 
deng=[1 4 15 0]; 
G=tf(numg,deng) 
bode(G)                             %Make a Bode plot. 
title('Open-Loop Frequency Response')        
                                    %Add a title to the Bode plot. 
[Gm,Pm,Wcp,Wcg]=margin(G);          %Find margins and margin  
                                    %frequencies. 
'Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s);'  
'180 deg. freq. (r/s)'              %Display label. 
margins=[20*log10(Gm),Pm,Wcg,Wcp]   %Display margin data. 
ltiview 
 
Computer response: 
Transfer function: 
     5 s + 30 
------------------ 
s^3 + 4 s^2 + 15 s 
  
 
ans = 
 
Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s); 
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ans = 
 
180 deg. freq. (r/s) 
 
 
margins = 
 
   15.5649   65.1103    2.4319  6.7088   
 

 
 

 
22. 

Program: 
%Enter G(s)************************************ 
numg=5*[1 6]; 
deng=[1 4 15 0]; 
'Open-Loop System' 
'G(s)' 
G=tf(numg,deng) 
clf 
w=.10:1:10; 
nichols(G,w) 
ngrid 
title('Nichols Plot') 
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[M,P]=nichols(G,w); 
for i=1:1:length(M); 
if M(i)<=0.45; 
BW=w(i); 
break 
end 
end 
pause 
MpdB=input('Enter Mp in dB from Nichols Plot  '); 
Mp=10^(MpdB/20); 
z2=roots([4,-4,(1/Mp^2)]);%Since Mp=1/sqrt(4z^2(1-z^2)) 
z1=sqrt(z2); 
z=min(z1); 
Pos=exp(-z*pi/(sqrt(1-z^2))); 
Ts=(4/(BW*z))*sqrt((1-z^2)+sqrt(4*z^4-4*z^2+2)); 
Tp=(pi/(BW*sqrt(1-z^2)))*sqrt((1-z^2)+sqrt(4*z^4-4*z^2+2)); 
'Closed-Loop System' 
'T(s)' 
T=feedback(G,1) 
bode(T) 
title('Closed-Loop Frequency Response Plots') 
fprintf('\nDamping Ratio = %g',z) 
fprintf(', Percent Overshoot = %g',Pos*100) 
fprintf(', Bandwidth = %g',BW) 
fprintf(', Mp (dB) = %g',MpdB) 
fprintf(', Mp = %g',Mp) 
fprintf(', Settling Time = %g',Ts) 
fprintf(', Peak Time = %g',Tp) 
pause 
step(T) 
title('Closed-Loop Step Response') 
 
Computer response: 
 
 
ans = 
 
Open-Loop System 
 
 
ans = 
 
G(s) 
 
  
Transfer function: 
     5 s + 30 
------------------ 
s^3 + 4 s^2 + 15 s 
  
Enter Mp in dB from Nichols Plot  0 
 
ans = 
 
Closed-Loop System 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
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       5 s + 30 
----------------------- 
s^3 + 4 s^2 + 20 s + 30 
  
 
Damping Ratio = 0.707107, Percent Overshoot = 4.32139, Bandwidth = 5.1, Mp 
(dB) = 0, Mp = 1, Settling Time = 1.35847, Peak Time = 1.06694>> 
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 23.  

System 1: Using non-asymptotic frequency response plots, the zero dB crossing is at 9.7 rad/s at a 

phase of –163.2o. Therefore the phase margin is 180o – 163.2o = 16.8o. |G(jω)| is down 7 dB at 14.75 

rad/s. Therefore the bandwidth is 14.75 rad/s. Using Eq. (10.73), ζ = 0.15. Using Eq. (4.38), %OS = 

62.09%. Eq. (10.55) yields Ts = 2.76 s, and Eq. (10.56) yields Tp = 0.329 s. 

System 2: Using non-asymptotic frequency response plots, the zero dB crossing is at 6.44 rad/s at a 

phase of -150.73o. Therefore the phase margin is 180o - 150.73o = 29.27o. |G(jω)| is down 7 dB at 

10.1 rad/s. Therefore the bandwidth is 10.1 rad/s. Using Eq. (10.73), ζ = 0.262. Using Eq. (4.38), 

%OS = 42.62%. Eq. (10.55) yields Ts = 2.23 s, and Eq. (10.56) yields Tp = 0.476 s. 
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24. 

a.  
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b. Zero dB frequency = 7.8023; Looking at the phase diagram at this frequency, the phase margin is 

8.777 degrees. Using Eq. (10.73) or Figure 10.48, ζ = 0.08. Thus, %OS = 77.7. 

c. 
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Step Response for K = 40

 
25. 

From the Bode plots: Gain margin = 14.96 dB; phase margin = 49.570; 0 dB frequency = 2.152 rad/s; 

1800 frequency = 6.325 rad/s; bandwidth(@-7 dB point) = 3.8 rad/s. From Eq. (10.73) ζ = 0.48; from 

Eq. (4.38) %OS = 17.93; from Eq. (10.55) Ts = 2.84 s; from Eq. (10.56) Tp = 1.22 s. 

26. 

Program: 
G=zpk([-2],[0 -1 -4],100) 
%G=zpk([-3 -5],[0 -2 -4 -6],50) 
G=tf(G) 
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bode(G) 
title('System 1') 
%title('System 2') 
pause 
%Find Phase Margin 
[Gm,Pm,Wcg,Wcp]=margin(G); 
w=1:.01:20; 
[M,P,w]=bode(G,w); 
%Find Bandwidth 
for k=1:1:length(M); 
 if 20*log10(M(k))+7<=0; 
 'Mag' 
 20*log10(M(k)) 
 'BW' 
 wBW=w(k) 
 break 
end 
end 
%Find Damping Ratio,Percent Overshoot, Settling Time, and Peak Time 
for z= 0:.01:10 
Pt=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
if (Pm-Pt)<=0 
 z; 
 Po=exp(-z*pi/sqrt(1-z^2)); 
 Ts=(4/(wBW*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
 Tp=(pi/(wBW*sqrt(1-z^2)))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
fprintf('Bandwidth = %g ',wBW) 
fprintf('Phase Margin = %g',Pm) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Percent Overshoot = %g',Po*100) 
fprintf(',Settling Time = %g',Ts) 
fprintf(', Peak Time = %g',Tp) 
 break 
end 
end 
T=feedback(G,1); 
step(T) 
title('Step Response System 1') 
%title('Step Response System 2') 
 
Computer response: 
Zero/pole/gain: 
  100 (s+2) 
------------- 
s (s+1) (s+4) 
  
  
Transfer function: 
   100 s + 200 
----------------- 
s^3 + 5 s^2 + 4 s 
  
 
ans = 
 
Mag 
 
 
ans = 
 
   -7.0007 
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ans = 
 
BW 
 
 
wBW = 
 
   14.7500 
 
Bandwidth = 14.75 Phase Margin = 16.6617, Damping Ratio = 0.15, Percent 
Overshoot = 62.0871,Settling Time = 2.76425, Peak Time = 0.329382 
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Zero/pole/gain: 

  50 (s+3) (s+5) 

------------------- 

s (s+2) (s+4) (s+6) 

Transfer function: 

    50 s^2 + 400 s + 750 

---------------------------- 

s^4 + 12 s^3 + 44 s^2 + 48 s 

ans = 

Mag 

ans = 

   -7.0026 

ans = 
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BW 

wBW = 

   10.1100 

Bandwidth = 10.11 Phase Margin = 29.2756, Damping Ratio = 0.27, Percent Overshoot 

= 41.439,Settling Time = 2.1583, Peak Time = 

0.475337
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 27.  

The phase margin of the given system is 20o. Using Eq. (10.73), ζ = 0.176. Eq. (4.38) yields 57% 

overshoot. The system is Type 1 since the initial slope is - 20 dB/dec. Continuing the initial slope 

down to the 0 dB line yields Kv = 4. Thus, steady-state error for a unit step input is zero; steady state 

error for a unit ramp input is 
1

K v

 = 0.25; steady-state error for a parabolic input is infinite. 

 28.  
The magnitude response is the same for all time delays and crosses zero dB at 0.5 rad/s. The following 

is a plot of the magnitude and phase responses for the given time delays: 
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a. 

 
 

For T = 0, ΦM = 93.3o; System is stable. 

 

 

For T = 0.1, ΦM = 55.1o; System is stable. 
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For T = 0.2, ΦM = 17o; System is stable.  

 

 

For T = 0.5, ΦM = -97o; System is unstable. 
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For T = 1, ΦM = 72.2o; System is unstable because the gain margin is -4.84 dB. 

b.  

For T = 0, the phase response reaches 180o at infinite frequency. Therefore the gain margin is infinite. 

The system is stable.  

For T = 0.1, the phase response is -180o at 11.4 rad/s. The magnitude response is -5.48 dB at 11.4 

rad/s. Therefore, the gain margin is 5.48 dB. The system is stable. 

For T = 0.2, the phase response is -180o at 7.55 rad/s. The magnitude response is -1.09 dB at 7.55 

rad/s. Therefore, the gain margin is 1.09 dB and the system is stable. 

For T = .5, the phase response is -180o at 4.12 rad/s. The magnitude response is +3.09 dB at 4.12 

rad/s. Therefore, the gain margin is – 3.09 dB and the system is unstable. 

For T = 1, the phase response is -180o at 2.45 rad/s. The magnitude response is +4.84 dB at 2.45 rad/s. 

Therefore, the gain margin is -4.84 dB and the system is unstable. 

c.  
T = 0; T = 0.1; T = 0.2 
 
d.  
T = 0.5, -3.09 dB; T = 1, - 4.84 dB;  

29. 
The Bode plots for K = 1 and 0.5 second delay is: 
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The phase is -180o  at 2.12 rad/s. At this frequency, the gain is -34.76 dB. Thus the gain can be raised 

by 34.76 dB = 54.71. Hence for stability, 0<K<54.71. 

30. 
The Bode plots for K = 40 and a delay of 0.5 second is shown below. 
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The magnitude curve crosses zero dB at a frequency of 1.0447 rad/s. At this frequency, the phase plot 

shows a phase margin of 35.74 degrees. Using Eq. (10.73) or Figure 10.48, ζ = 0.33. Thus, %OS = 

33.3. 

 
31. 

Program: 
%Enter G(s)************************ 
numg1=1; 
deng1=poly([0 -3 -12]); 
'G1(s)' 
G1=tf(numg1,deng1) 
[numg2,deng2]=pade(0.5,5); 
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'G2(s) (delay)' 
G2=tf(numg2,deng2) 
'G(s)=G1(s)G2(s)' 
G=G1*G2 
%Enter K ************************** 
K=input('Type gain, K '); 
T=feedback(K*G,1); 
step(T) 
title(['Step Response for K = ',num2str(K)]) 
 
Computer response: 

ans = 

G1(s) 

Transfer function: 

         1 

------------------- 

s^3 + 15 s^2 + 36 s 

ans = 

G2(s) (delay) 

Transfer function: 

-s^5 + 60 s^4 - 1680 s^3 + 2.688e004 s^2 - 2.419e005 s + 9.677e005 

------------------------------------------------------------------ 

s^5 + 60 s^4 + 1680 s^3 + 2.688e004 s^2 + 2.419e005 s + 9.677e005 

ans = 

G(s)=G1(s)G2(s) 

Transfer function: 

    -s^5 + 60 s^4 - 1680 s^3 + 2.688e004 s^2 - 2.419e005 s + 9.677e005 

-------------------------------------------------------------------------- 

s^8 + 75 s^7 + 2616 s^6 + 5.424e004 s^5 + 7.056e005 s^4 + 5.564e006 s^3    

                                             + 2.322e007 s^2 + 3.484e007 s 
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Type gain, K 40 

 
32. 
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Estimated K = 41 dB = 112. Therefore, final estimate is G(s) =
112

s(s + 5.3)
. 

33. 
Program: 
%Generate total system Bode plots - numg0,deng0 - M0,P0 
clf 
numg0=12*poly([-1 -20]); 
deng0=conv([1 7],[1 4 100]); 
G0=tf(numg0,deng0); 
w=0.1:0.1:100; 
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[M0,P0]=bode(G0,w); 
M0=M0(:,:); 
P0=P0(:,:); 
[20*log10(M0),P0,w]; 
bode(G0,w) 
pause 
%Subtract (s+1) [numg1,deng1] and generate Bode plot-M2,P2 
numg1=[1 1]; 
deng1=1; 
G1=tf(numg1,deng1); 
[M1,P1]=bode(G1,w); 
M1=M1(:,:); 
P1=P1(:,:); 
M2=20*log10(M0)-20*log10(M1); 
P2=P0-P1; 
clf 
subplot(2,1,1) 
semilogx(w,M2) 
grid 
subplot(2,1,2) 
semilogx(w,P2) 
grid 
pause 
%Subtract10^2/(s^2+2*0.3*10s+10^2) [numg2,deng2] and generate Bode plot-
M4,P4 
numg2=100; 
deng2=[1 2*0.3*10 10^2]; 
G2=tf(numg2,deng2); 
[M3,P3]=bode(G2,w); 
M3=M3(:,:); 
P3=P3(:,:); 
M4=M2-20*log10(M3); 
P4=P2-P3; 
clf 
subplot(2,1,1) 
semilogx(w,M4) 
grid 
subplot(2,1,2) 
semilogx(w,P4) 
grid 
pause 
%Subtract(8.5/23)(s+23)/(s+8.5) [numg3,deng3] and generate Bode plot-M6,P6 
numg3=(8.5/23)*[1 23]; 
deng3=[1 8.5]; 
G3=tf(numg3,deng3); 
[M5,P5]=bode(G3,w); 
M5=M5(:,:); 
P5=P5(:,:); 
M6=M4-20*log10(M5); 
P6=P4-P5; 
clf 
subplot(211) 
semilogx(w,M6) 
grid 
subplot(212) 
semilogx(w,P6) 
grid 
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Computer responses and analysis: 
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Original data showing estimate of a component, (s+1) 
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Original data minus (s+1) showing estimate of (102/(s2+2*0.3*10s+102)) 
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Original data minus (s+1)(102/(s2+2*0.3*10s+102)) showing estimate of (8.5/23)(s+23)/(s+8.5) 
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Original data minus final estimate of G(s) = (s +1)*
100

s2 + 6s +100
*

8.5
23
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s +8.5

 

 

Thus the final estimate is G(s) = (s +1)*
100

s2 + 6s +100
*

8.5
23

s + 23
s +8.5

* K. Since the original plot starts 

from -10 dB, 20 log K = -10, or K = 0.32.  

 

34. 
 

The Bode plot is:  
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0ω 0ωa

The frequency response is 
)(

)( 22
0

2

22
0

ωωω
ωω

ω
−−

−
=

a
jP , there is no imaginary part so the phase will 

be either -180o or 0o. As 0→ω , 0)( <ωjP so its phase is -180o. When 0ωω = , 0)( =ωjP . 

Then for 00 ωωω a<< the phase is 0o
. When 0ωω a= , ∞=)( ωjP . And for 

0ωω a> 0)( <ωjP . )( ωjP decreases in the intervals in which 0ωω < and 0ωω a> , and will 

increase when 00 ωωω a<< . 

 
35. 

a. The Nyquist plot is: 
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Nyquist Diagram
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b. The gain margin is infinite as the plot never crosses the 180° line. The phase margin is undefined 
since 1)( <ωjG  at all frequencies. 

c. The system is closed loop stable for all ∞<< K0 . 
 

36.  
The exact Bode plot and the asymptotic approximations are shown on the following figure. The 

magnitude asymptotes are obtained by noting that when 0→ω , 
s

sP 16782)( ≈ . So when 

1.0=ω , dbjP 5.104167820)1.0( == and the slope of the line is -6db/oct. This means that 

dbdbdbjP 5.9865.104)2.0( =−= . So a line is drawn between these two points until  

89.2=ω is reached. For higher frequencies the slope is -12db/oct, so the line is continued. 

To plot the phase asymptote at very low frequencies the phase is -180° due to the integrator until 

2.89/10=0.289rad/sec. At very high frequencies from 2.89*10=28.9 rad/sec and up the phase will be 

-270° due to the plant’s pole contribution. A line is drawn between 0.289 and 28.9 rad/sec with -

135° at 2.89 rad/sec. 
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37. 

a. The frequency response 22 860
1300)(
+

=
ω

ωjP is a real quantity. The Nyquist diagram is shown 

next. Since the open loop transfer function has one RHP pole, P=1 and Z=P-N=1 so the system will 
be closed loop unstable. 
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Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
Ax

is

-2.5 -2 -1.5 -1 -0.5 0

x 10
-3

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

 
b. In this case for 1=K  there are no encirclements of the -1 point so the system is closed loop 
unstable. However for large values of K  there will be a negative encirclement of the -1 point so 
Z=P-N=0 and the system is closed loop stable. The real axis crossover occurs at -3.5X10-4 so the 

range of stability is 2851
105.3

1
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38. 
The Nyquist diagram with 1=K  is shown next.  

Nyquist Diagram
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As shown the system is closed loop stable, since the system has one open loop RHP pole so P=1, 

N=1 and Z=P-N=1-1=0. Increasing the gain will not affect stability. However smaller K  will 

eventually make the system unstable. As seen from the figure the system becomes marginally stable 

when 1.0=K . Ths syetem then is closed loop stable for ∞<< K1.0 . 

39. 
a. The Nichols Chart is shown below. 
b. It can be seen there that 41.13 == dbM p . From figure 10.40 the %OS≈35%. From the 

Nichols chart, the phase margin is ooo 44136180 =−=Φ M , and from figure 10.48 in the text 
this corresponds to a 4.0≈ξ damping ratio. It follows from figure 10.41a that since the open loop 

bandwidth is 
sec

93.0 rad
BW =ω , the settling time is sec1.1615

=≈
BW

sT
ω

. The system is type 1 

so 1=finalc . 
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c. 

>> syms s 

>> s=tf('s'); 

>> P=0.63/(1+0.36*s/305.4+s^2/305.4^2)/(1+0.04*s/248.2+s^2/248.2^2); 

 >> G=0.5*(s+1.63)/s/(s+0.27); 

 >> L=G*P; 

>> T=L/(1+L) 

 >> step(T) 

 

It can be seen in the following figure that we slightly overestimated the %OS, but the settling time is 

close to the predicted. 
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40. 
a. 

Frequency (rad/sec)
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From the Bode plot: Gain margin = 29 52 dB; phase margin = 157.50; 0 dB frequency = 1.63 rad/s; 

1800 frequency = 49.8 rad/s. 

b. System is stable since it has 1800 of phase with a magnitude less than 0 dB. 
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41. 

a.  
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From the Bode plot: Gain margin = 17.1 dB; phase margin = 57.220; 0 dB frequency = 45.29 rad/s; 

1800 frequency = 169.03 rad/s; bandwidth(@-7 dB open-loop) = 85.32 rad/s. 

b. From Eq. (10.73) ζ = 0.58; from Eq. (4.38) %OS = 10.68; from Eq. (10.55) Ts = 0.0949 s; from Eq. 

(10.56) Tp = 0.0531 s. 

c.  
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42. 

 
 

Resonance at 70 rad/s. 
 

43.  

G(s) = 
10

s(s+2)(s+10)  . Plotting the Bode plots,  

 

  
 

The gain is zero dB at 0.486 rad/s and the phase angle is -106.44. Thus, the phase margin is 180o - 

106.44o  = 73.56o . Using Eq. (10.73), ζ = 0.9. Using Eq. (4.38), %OS = 0.15%. 

44.  

G(s) = 
22.5

(s+4)(s2+0.9s+9)
   . Plotting the Bode plots,  

 

  



Solutions to Problems   10-63 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 The phase response is 180o at ω = 3.55 rad/s, where the gain is -1.17 dB. Thus, the gain margin is 

1.17 dB. Unity gain is at ω = 2.094 rad/s, where the phase is - 49.85o and at ω = 3.452 rad/s, where 

the phase is -173.99o. Hence the phase margin is measured at ω = 3.452 rad/s and is 180o- 173.99o = 

6.01o. Using Eq. (10.73), ζ = 0.0525. Eq. (4.38) yields %OS = 84.78%. 

45.  
a. The Nichols Chart, shown below, shows that for 1=L  the system is closed loop unstable since 
the number of open loop RHP poles P=0 and the chart crosses the -180° line above the 0db line. 
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b.   It can be observed from the diagram that the -180° crossover occurs when 

5.425.13)( == dbjL ω  so the closed loop stability range is 221.0
5.4

10 =<< L .  

c.  The Nichols Chart below shows that dbPGL 58)0()0()0( ≈= , so for a unit step input 

998.0
33.7941

33.794
=

+
≈finalc . Also 26 =≈ dbM p which from figure 10.40 in the text 

corresponds to a %OS=47%. The phase margin is ooo 5.315.148180 =−=Φ M so from figure 
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10.48 the corresponding damping factor is 3.0=ξ . The open loop bandwidth is 

sec
5.2 rad

BW =ω so from figure 10.41a 20≈sBWTω and sec8≈sT  
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d.  

The block diagram and simulation are: 
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Transport
Delay

0.005

s+0.005
Transfer Fcn Scope

s  +12.67s+26.72
140625

P

0.095

Gain

1

Constant

 

 

 

The simulation verifies the predictions. 
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46.  
b.   The Nyquist diagram is: 

Nyquist Diagram
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A closed view of the -1 point shows below that 1)74.1( =jL and o8.132))74.1(arg( −=jL so 

the phase margin without delay is radM 824.02.478.132180 ==−=Φ ooo  
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Nyquist Diagram
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c. The maximum allowable time delay is obtained by noting solving 824.074.1 <T or 

sec47.0<T  

 

47.  
a.  
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The frequencies that will be reduced occur at the peaks of the magnitude plot. The frequencies at the 

peaks are 4.14 rad/s and 0.754 rad/s. 

b. Consider a system with a disturbance, Rd at the output of a system: 

G(s)
C(s)R(s) +

-

+
+

R  (s)d 

 

The transfer function relating C(s) to Rd(s) is 
C(s)
Rd (s

 = 
1

1 + G(s)
. Therefore,  

 

C(s) = 
1

1 + NG

DG

*
N Rd

D Rd

 = 
DG

DG + N G

*
N Rd

D Rd

 

Thus, if the poles of G(s) match the poles of Rd (DG = DRd) there will be cancellation and the 

dynamics of the disturbance will be reduced. Thus, if the dynamics of Rd is oscillation, add poles in 

cascade with G(s) that have the same dynamics. Since the poles yield large gain at these bending 

frequencies a zero is placed near the poles so that the filter will have minimal effect on the transient 

response (similar to placing a zero near a pole for a lag compensator). This arrangement of poles and 

zeros is called a dipole. Also note that a high gain at the bending frequency yields negative feedback 

for the output to subtract from Rd. Care should be exercised through analysis and simulation to be 

sure that the system's response to an input, other than the disturbance, is not adversely affected by the 

additional poles. 

 

48. 

a. The following code will generate the Nyquist diagram: 

>> s=tf('s'); 

>> P=1.163e8/(s^3+962.5*s^2+5.958e5*s+1.16e8); 

>> G=78.575*(s+436)^2/(s+132)/(s+8030); 

>> L=G*P; 

>> nyquist(L) 
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Nyquist Diagram
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          As seen in the figure the system is closed loop stable. 
b. It can be seen in the figure that the phase margin is 10.5 degrees. 
c. From Figure 10.48 in the text, a 10.5 degree phase margin corresponds 
approximately to a damping factor of 0.16. This in turn means that 

2% 100 60%
1

OS e ξπ
ξ

= =
−

 

d. To simulate the response of the system to a unit step, we can use: 
>> step(L/(1+L)) 
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Step Response
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         It can be seen that the actual overshoot is 64.2%. 

 

 

49. 

a. The Nyquist plot will approximately loop as follows (for positive ω(: 

  
b. For K=1, it can be seen that there are no encirclements of the ‐1 point. 
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c. The system will be stable for 0<K<∞, because the phase never exceeds ‐90 degrees, so 
there can be no encirclements of the ‐1 point. 

50. 

Front Panel and Block Diagram for “CDEx Nyquist Analysis.vi” (modified) 
 

 
 
 
 

 
 
Front Panel and Block Diagram for Nyquist plot and frequency response data 
Front Panel  
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Block Diagram 

 
 

 

51. 

                            Front Panel 
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Note: Notice minor differences in estimating the transient domain specifications from the open loop 
frequency response with respect to the close loop parametric data. That is: PO% is 44.43% (44.35% 
from close loop data), settling time is 1.6 sec (1.7 secs from close loop data), and finally, peak time is 
0.32 secs (0.33 secs from close loop data).  
 

                     Block Diagram 
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The details of the MathScript node code follow: 
 
for zeta=0:0.01:1 
newphasemargin=atan(2*zeta/(sqrt(-2*zeta^2+sqrt(1+4*zeta^4))))*(180/pi); 
tol=phasemargin-newphasemargin; 
if tol<=0 
  PO=100*exp(-zeta*pi/sqrt(1-zeta^2)); 
  ts=(4/(Bw*zeta))*sqrt((1-2*zeta^2)+sqrt(4*zeta^4-4*zeta^2+2)); 
  tp=(pi/(Bw*sqrt(1-zeta^2)))*sqrt((1-2*zeta^2)+sqrt(4*zeta^4-4*zeta^2+2)); 
  break 
end; 
end; 
 

 

52. 

The following MATLAB file was used to plot the Bode magnitude and phase plots for that system and 
to obtain the response of the system, c(t), at a pure delay of 1 second. 
 
numg1 = conv([4 1], [10 1]);    %numerator of G1 without pure delay 
deng0 = conv([25 1],[3.333 1]); %the denominator without pure 
integrator  
deng1 = conv(deng0, [1 0]);     %add pure integrator to denominator   
G1 = tf(numg1, deng1);          %G1 is the open-loop TF without pure 
delay 
[numd,dend]= pade(1,5);         %5th-order Pade approximation of 
pure delay 
D = (tf (numd, dend)); 
G = G1*D; 
Bode(G); 
grid 
pause 
T = feedback(G,1);       %C.L. TF of the PD_compensated system 
T = minreal(T); 
step(T); 
grid 
xlabel ('Time') 
ylabel ('Controlled Level, c(t) in p. u.')  
title ('Unit Step Response of Water Level in the Steam generator ') 
 

a. The Bode magnitude and phase plots for this system, obtained using fifth-order Pade approximation 
for τ = 1 sec, are shown below with minimum stability margins displayed. 
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Bode Diagram
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b. The response of the system, c(t), to a unit step input, r(t) = u(t), is shown below for τ = 1 sec. The rise 
time, Tr, the settling time, Ts, the final value of the output, percent overshoot, %OS, and peak time, Tp, 
are displayed.  
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               Unit Step Response of Water Level in the Steam generator 
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c. The Bode magnitude and phase plots for this system for a pure delay τ = 1.5 seconds, are shown below 
with minimum stability margins displayed. 

Also shown below is the response of the system, c(t), to a unit step input, r(t) = u(t), for a pure delay τ 
= 1.5 seconds. The rise time, Tr, the settling time, Ts, the final value of the output, percent overshoot, 
%OS, and peak time, Tp, are displayed on the graph. 

Note that the percent overshoot increased from 7.5% to 27.6% as the delay time increased from 1 to 
1.5 seconds. 
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Bode Diagram
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             Unit Step Response of Water Level in the Steam generator 
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53. 

a. From Chapter 8,  
                                0.6488K (s+53.85) 
             Ge(s) =    _________________________ 
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
 

Cascading the notch filter, 
                                 0.6488K (s+53.85)(s2 + 16s + 9200) 
             Get(s) =      _________________ 
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

Plotting the Bode plot,  

 
From the Bode plot: Gain margin = 96.74 dB; phase margin = ∞; 0 dB frequency = N/A; 1800 

frequency = 30.44 rad/s. 

b. K = 96.74 dB = 68732 

c.  In Chapter 6 K = 188444. The difference is due to the notch filter. 
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54. 
a.    A bode plot of the open loop transmission )()( sPsGc shows that the open loop transfer 

function has a crossover frequency of  
day
rad

c 04.0=ω . A convenient range for sampling periods is 

dayTday
cc

5.125.015.075.3 =<<=
ωω

. T=8 days fall within range. 

b.     We substitute 
1
1

4
1

+
−

=
z
zs into )(sGc we get 

8519.0852.1
)8489.071.1145.1(102)( 2

24

+−
+−×−

=
−

zz
zzzGc  

 
 
 
 
 

 

c. 
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55. 

a.  

The following MATLAB file was used to plot the Bode magnitude and phase plots for that system and 
to obtain the response of the system, c(t), to a step input, r(t) = 4 u(t). 

 
K = 0.78; 
numg = K*[1 0.6]; 
deng = poly ([-0.0163 -0.5858]); 
G = tf(numg, deng); 
bode (G); 
grid 
pause 
T = feedback(G,1);   %T is the closed-loop TF of the P_controlled 
system 
T = minreal(T); 
step(4*T); 
grid 
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xlabel ('Time') 
ylabel ('Speed Sensor Output, c(t) in volts')  
title ('P-controlled Systems Response to a 4 volt Input Step') 
  
The Bode magnitude and phase plots obtained are shown below with the minimum stability margins 
displayed on the phase plot. 
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The response of the system, c(t), to a step input, r(t) = 4 u(t) is shown below. The rise time, Tr, settling 
time, Ts, and the final value of the output are noted. 
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P-controlled System's Response to a 4 volt Input Step
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System: T
Rise Time (sec): 2.69

 

b.  

After adding the integral gain to the controller, we substituted the values of K1 = 0.78 and 

4.0
1

2 ==
K
KZc  into the transfer function of the plant and compensator. Thus we obtained: 

3) 016.0()5858.0(
0.1872s78.0 s 0.78

3) 016.0()5858.0(
)6.0()4.0(78.0)(

2

++
++

=
++

++×
=

ssssss
sssG . 

The following MATLAB file was written to plot the Bode magnitude and phase plots for that system 
and to obtain the response of the system, c(t), to a step input, r(t) = 4 u(t). 
 
numg = [0.78 0.78 0.1872]; 
deng = poly ([0 -0.0163 -0.5858]); 
G = tf(numg, deng); 
bode (G); 
grid 
pause 
T = feedback(G,1);   %T is the closed-loop TF of the PI-controlled 
system 
T = minreal(T); 
step(4*T); 
grid 
xlabel ('Time') 
ylabel ('Speed Sensor Output, c(t) in volts')  
title ('PI-controlled Systems Response to a 4 volt Input Step') 
 
The Bode magnitude and phase plots obtained are shown below with the minimum stability margins 
displayed on the phase plot. 
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Bode Diagram for PI-Controlled HEV
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The response of the system, c(t), to a step input, r(t) = 4 u(t) is shown below. The rise time, Tr, settling 
time, Ts, percent overshoot, %OS, peak time, Tp, settling time, Ts. and the final value of the output are 
noted. 
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c. 

The response obtained in (a), e.g. in the case of proportionally-controlled HEV, is closer to that of a 
first-order system rather than a critically-damped second order system. Note also that the Bode 
magnitude plot has a final slope of – 20 dB/dec and the phase plot has a final value of 90

o
.  

The response obtained in (b), e.g. in the case of PI-controlled HEV, does not resemble well that of a 
second-order underdamped response. It should be noted, that one of the closed-loop poles (located at – 
0.5753) is quite close to one of the closed-loop zeros (located at – 0.6) whereas the second closed-loop 
zero (located at – 0.4) is almost equal to the real part of the complex-conjugate dominant poles (located 
at – 0.4034 ± j 0.4034).        
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E  L  E  V  E  N  
 
  Design via 

Frequency Response 
 

SOLUTIONS TO CASE STUDIES CHALLENGES  

Antenna Control: Gain Design 
a. The required phase margin for 25% overshoot (ζ = 0.404), found from Eq. (10.73), is 43.49o.  

From the solution to the Case Study Challenge problem of Chapter 10, G(s) = 
50.88K

s(s+1.32)(s+100)  . 

Using the Bode plots for K = 1 from the solution to the Case Study Challenge problem of 

Chapter 10, we find the required phase margin at ω = 1.35 rad/s, where the magnitude response 

is -14 dB. Hence, K = 5.01 (14 dB). 

b.  
Program:  
%Input system 
numg=50.88; 
deng=poly([0 -1.32 -100]); 
G=tf(numg,deng); 
%Percent Overshoot to Damping Ratio to Phase Margin 
Po=input('Type %OS  '); 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
fprintf('\nPercent Overshoot = %g',Po) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Phase Margin = %g',Pm) 
%Get Bode data 
bode(G) 
pause 
w=0.01:0.05:1000;%Step size can be increased if memory low. 
[M,P]=bode(G,w); 
M=M(:,:); 
P=P(:,:); 
Ph=-180+Pm; 
for i=1:1:length(P); 
if P(i)-Ph<=0; 
M=M(i); 
K=1/M; 
fprintf(', Frequency  = %g',w(i)) 
fprintf(', Phase  = %g',P(i)) 
fprintf(', Magnitude = %g',M) 
fprintf(', Magnitude (dB) = %g',20*log10(M)) 
fprintf(', K = %g',K) 
break 

end 
end 
T=feedback(K*G,1); 
step(T) 
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Computer response: 
Type %OS  25 
 
Percent Overshoot = 25, Damping Ratio = 0.403713, Phase Margin = 43.463, 
Frequency  = 1.36, Phase  = -136.634, Magnitude = 0.197379, Magnitude (dB) 
= -14.094, K = 5.06641 
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Antenna Control: Cascade Compensation Design 
a. From the solution to the previous Case Study Challenge in this chapter, G(s) = 

50.88K
s(s+1.32)(s+100)  .  

For Kv = 20, K = 51.89. Hence, the gain compensated system is  

G(s) = 
2640.16

s(s+1.32)(s+100)  

Using Eq. (10.73), 15% overshoot (i.e. ζ = 0.517) requires a phase margin of 53.18o. Using the Bode 

plots for K = 1 from the solution to the Case Study Challenge problem of Chapter 10, we find the 

required phase margin at ω = 0.97 rad/s where the phase is -126.82o.  

To speed up the system, we choose the compensated phase margin frequency to be 4.6 * 0.97 = 4.46 

rad/s. Choose the lag compensator break a decade below this frequency, or ω = 0.446 rad/s. 

At the phase margin frequency, the phase angle is -166.067o, or a phase margin of 13.93o. Using 5o 

leeway, we need to add  53.18o -  13.93o + 5o = 44.25o. From Figure 11.8, β = 0.15, or γ = 
1
β  = 

6.667. Using Eq. (11.15), the lag portion of the compensator is  

 

GLag (s) = 
(s+0.446)

(s+
0.446
6.667)

   = 
s+0.446

s+0.0669  .  

Using Eqs. (11.9) and (11.15), T2 = 
1

ωmax β
   = 0.579. From Eq. (11.15), the lead portion of the 

compensator is  

GLead (s) = 
s+1.727
s+11.51   

The final forward path transfer function is  

G(s)GLag (s)GLead(s) =  
2640.16(s+0.446)(s+1.727)

s(s+1.32)(s+100)(s+0.0669)(s+11.51)  

b.  
Program: 
%Input system ***************************** 
K=51.89; 
numg=50.88*K; 
deng=poly([0 -1.32 -100]); 
G=tf(numg,deng); 
Po=15; 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
%Determine required phase margin************** 
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi) 
phreq=Pmreq-(180)%required phase 
w=0.1:0.01:10; 
[M,P]=bode(G,w); 
for i=1:1:length(P);%search for phase angle 
if P(i)-phreq<=0; 
ph=P(i) 
w(i) 
break 
end 
end 
wpm=4.6*w(i) 
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[M,P]=bode(G,wpm);%Find phase at wpm 
Pmreqc=Pmreq-(180+P)+5%Find contribution required from compensator+5 
beta=(1-sin(Pmreqc*pi/180))/(1+sin(Pmreqc*pi/180)) 
%Design lag compensator*************** 
zclag=wpm/10; 
pclag=zclag*beta; 
Kclag=beta; 
%Design lead compensator********** 
zclead=wpm*sqrt(beta); 
pclead=zclead/beta; 
Kclead=1/beta; 
%Create compensated forward path********* 
numgclag=Kclag*[1 zclag]; 
dengclag=[1 pclag]; 
'Gclag(s)' 
Gclag=tf(numgclag,dengclag); 
Gclagzpk=zpk(Gclag) 
numgclead=Kclead*[1 zclead]; 
dengclead=[1 pclead]; 
'Gclead(s)' 
Gclead=tf(numgclead,dengclead); 
Gcleadzpk=zpk(Gclead) 
Gc=Gclag*Gclead; 
'Ge(s)=G(s)*Gclag(s)*Gclead(s)' 
Ge=Gc*G; 
Gezpk=zpk(Ge) 
%Test lag-lead compensator**************** 
T=feedback(Ge,1); 
bode(Ge) 
title('Lag-lead Compensated') 
[Gm,Pm,wcp,wcg]=margin(Ge); 
'Compensated System Results' 
fprintf('\nResulting Phase Margin = %g',Pm) 
fprintf(', Resulting Phase Margin Frequency = %g',wcg) 
pause 
step(T) 
title('Lag-lead Compensated') 
 
Computer response: 
Pmreq = 
 
   53.1718 
 
phreq = 
 
 -126.8282 
 
ph = 
 
 -126.8660 
 
ans = 
 
    0.9700 
 
wpm = 
    4.4620 
Pmreqc = 
 
   44.2468 
 
beta = 
 
    0.1780 
 
ans = 
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Gclag(s) 
 
Zero/pole/gain: 
0.17803 (s+0.4462) 
------------------ 
   (s+0.07944) 
  
ans = 
 
Gclead(s) 
 
Zero/pole/gain: 
5.617 (s+1.883) 
--------------- 
   (s+10.58) 
  
ans = 
 
Ge(s)=G(s)*Gclag(s)*Gclead(s) 
 
  
Zero/pole/gain: 
     2640.1632 (s+1.883) (s+0.4462) 
---------------------------------------- 
s (s+100) (s+10.58) (s+1.32) (s+0.07944) 
  
ans = 
 
Compensated System Results 
 
Resulting Phase Margin = 57.6157, Resulting Phase Margin Frequency = 
2.68618»
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Answers to Review Questions 
1. Steady-state error requirements can be designed simultaneously with transient response requirements. 

2. Via the phase margin 

3. The lag compensator is a low pass filter. Thus, while the low frequency gain is increased, the high-

frequency gain at 180 o is decreased to make the system stable. 

4. The lag network affects the phase angle at low frequencies, but not at high frequencies. For the 

compensated system, the phase plot is about the same as that of the uncompensated system around and 

above the phase margin frequency yielding the same transient response. 

5. To compensate for the slight negative angle that the lag compensator has near the phase margin 

frequency 

6. Compensated system has higher low-frequency  gain than the uncompensated system designed to yield 

the same transient response; compensated and uncompensated system have the same phase margin 

frequency; the compensated system has lower gain around the phase margin frequency; the compensated 

and uncompensated system's have approximately the same phase values around the phase margin 

frequency. 

7. The lead network is a high pass filter. It raises the gain at high frequencies. The phase margin frequency 

is increased.
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8. Not only is the magnitude curve increased at higher frequencies, but so is the phase curve. Thus the 

180o point moves up in frequency with the increase in gain. 

9. To correct for the negative phase angle of the uncompensated system 

10. When designing the lag portion of a lag-lead compensator, we do not worry about the transient design. 

The transient response will be considered when designing the lead portion of a lag-lead compensator. 

 
SOLUTIONS TO PROBLEMS  
 

1. 
a. Plot Bode plots for K = 1; angle is 180o at ω = 15.8 rad/s where the magnitude is –76.5 dB. 

Therefore a 66.5 dB ( or K = 2113) increase will yield a 10 dB gain margin. 

 
 

b. Plot Bode plots for K = 1; angle is 180o at ω = 6.32 rad/s where the magnitude is –55 dB. 

Therefore a 45 dB ( or K = 177.8) increase will yield a 10 dB gain margin. 
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c. Plot Bode plots for K = 1; angle is 180o at ω = 9.45 rad/s where the magnitude is –63.8 dB. 

Therefore a 53.8 dB ( or K = 489.8) increase will yield a 10 dB gain margin. 
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2.  

a. For a 40o phase margin, the phase must be -140o when the magnitude plot is zero dB. The phase is 

-140o  at ω = 9.12 rad/s. At this frequency, the magnitude curve is –67.48 dB. Thus a 67.48 dB 

increase (K = 2365) will yield a 40o phase margin. 

b. For a 40o phase margin, the phase must be -140o when the magnitude plot is zero dB. The phase is 

-140o  at ω = 2.76 rad/s. At this frequency, the magnitude curve is – 42.86 dB. Thus a 42.86 dB 

increase (K = 139) will yield a 40o phase margin. 

c. For a 40o phase margin, the phase must be -140o when the magnitude plot is zero dB. The phase is 

-140o  at ω = 5.04 rad/s. At this frequency, the magnitude curve is – 54.4 dB. Thus a 54.4 dB increase 

(K = 525) will yield a 40o phase margin. 

3.  
20% overshoot => ζ = 0.456 => φM = 48.15o. 

a. Looking at the phase diagram, where φM = 48.15o (i.e. φ = -131.85o), the phase margin frequency = 

4.11 rad/s. At this frequency, the magnitude curve is -55.2 dB. Thus the magnitude curve has to be 

raised by 55.2 dB (K = 575). 

b. Looking at the phase diagram, where φM = 48.15o (i.e. φ = -131.85o), the phase margin frequency = 

7.14 rad/s. At this frequency, the magnitude curve is – 65.6 dB. Thus the magnitude curve has to be 

raised by 65.6 dB (K = 1905). 

c. Looking at the phase diagram, where φM = 48.15o (i.e. φ = -131.85o), the phase margin frequency = 

8.2 rad/s. At this frequency, the magnitude curve is – 67.3 dB. Thus the magnitude curve has to be 

raised by 67.3 dB (K = 2317). 
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4.  

a. Bode plots for K = 1: 

 
Using Eqs. (4.39) and (10.73) a percent overshoot = 15 is equivalent to a ζ = 0.517 and φM = 53.170. 

The phase-margin frequency  = 2.61 rad/s where the phase is 53.170 – 1800 = -126.830. The 

magnitude = -13 dB, or 0.0.2239. Hence K = 1/ 0.2239 = 4.466. 

b. 
Program: 
G=zpk([-20 -25],[0 -6 -9 -14],1) 
K=4.466 
T=feedback(K*G,1); 
step(T)  
 
Computer response: 
Zero/pole/gain: 
   (s+20) (s+25) 
-------------------- 
s (s+6) (s+9) (s+14) 
  
K = 
 
    4.466 
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5.   

For Kv = 50, K = 350. Plot the Bode plots for this gain.  

 
 

 Also, since %OS = 15%, ζ = 0.517. Using Eq. (10.73), φM = 53.17o. Increasing φM by 10o we will 

design for a phase margin of 63.17o. The phase margin frequency is where the phase angle is  

 63.17 - 180o = -116.83o, or ωφM = 3.54 rad/s. At this frequency, the magnitude is 22 dB. Start the 

magnitude of the compensator at - 22 dB and draw it to 1 decade below ωφM.  
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 Then begin +20 dB/dec until zero dB is reached. Read the break frequencies as 0.028 rad/s  and 0.354 

rad/s from the Bode plot and form a lag transfer function that has unity dc gain: 

Gc(s) =0.0791 
s + 0.354
s + 0.028

 

 The compensated forward path is 
 

G(s) = 
350 * 0.0791(s + 0.354)

s(s + 7)(s + 0.028)
=

27.69(s + 0.354)
s(s + 7)(s + 0.028)

 

6.  
a. For Kv = 1000, K = 1473. Plotting the Bode for this value of K: 

 
 

Using Eqs. (4.39) and (10.73) a percent overshoot = 15 is equivalent to a ζ = 0.517 and φM = 53.17. 

Using an extra 10o, the phase margin is 63.17o. The phase-margin frequency  = 1.21 rad/s. At this 
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frequency, the magnitude = 57.55 dB = 754.2. Hence the lag compensator K  = 1/754.2 = 0.001326. 

Following Steps 3 and 4 of the lag compensator design procedure in Section 11.3,  

Glag(s) = 0.001326 
s + 0.121

s + 0.0001604  

b.  
Program: 
%Input system 
numg=1473*poly([-10 -11]); 
deng=poly([0 -3 -6 -9]); 
G=tf(numg,deng); 
numc=0.001326*[1 0.121]; 
denc=[1 0.0001604]; 
Gc=tf(numc,denc); 
Ge=G*Gc; 
T=feedback(Ge,1); 
step(T) 
 
Computer response: 
 

 
7.  

Uncompensated system: 

 Searching along the 121.1o line (15% overshoot), find the dominant pole at -2.15 ± j3.56 with K = 

97.7. Therefore, the uncompensated static error constant is Kvo = 
97.7

70
= 1.396. On the frequency 
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response curves, plotted for K = 97.7, unity gain occurs at ω = 1.64 rad/s with a phase angle of  -71o. 

Therefore the uncompensated phase margin is 180o - 71o = 109o. 

 Compensated system: 

 The old steady-state error, 
1 1( ) 0.417497.71 1

70

step
po

e
K

∞ = = =
+ +

. For a 5 times improvement 

in steady-state error, 
1( ) 0.0835

1step
pn

e
K

∞ = =
+

, yielding , 10.98
70pn
KK = = . Thus 

768.6K = . Plotting the Bode plots at this gain,  

 
 
 

Adding 5o, the desired phase margin for 15% overshoot is 58.17o, or a phase angle of -121.83o. This 

phase angle occurs at ω = 3.505 rad/s. At this frequency the magnitude plot is +12 dB. Start the 

magnitude of the compensator at - 12 dB and draw it to 1 decade below ωΦM.  
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Then, begin +20 dB/dec until zero dB is reached. Read the break frequencies as 0.08797 rad/s and 

0.3505 rad/s from the Bode plot and form a lag transfer function that has unity dc gain, 
 

 
 
 
 

The compensated forward path is 
 

( 0.3505) 192.91( 0.3505)( ) 0.251*768.6
( 2)( 5)( 7)( 0.08797) ( 2)( 5)( 7)( 0.08797)

s sG s
s s s s s s s s

+ +
= =

+ + + + + + + +
. 

 
8.  

For Kp = 100 =
K(4)

(2)(6)(8)
, K = 2400. Plotting the Bode plot for this gain, 

 

0.3505( ) 0.251
0.08797c

sG s
s

+
=

+
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We will design the system for a phase margin 100 larger than the specification. Thus φm = 550. The 

phase margin frequency is where the phase angle is –1800 + 550 = -1250. From the Bode plot this 

frequency is ωφ m
= 11 rad/s. At this frequency the magnitude is 23.37 dB. Start the magnitude of the 

lag compensator at –23.37 dB and draw it to 1 decade below ωφ m
= 11, or 1.1 rad/s. Then begin a 

+20 dB/dec climb until 0 dB is reached. Read the break frequencies as 0.0746 rad/s and 1.1 rad/s 

from the Bode plot as shown below. 
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Ensuring unity dc gain, the transfer function of the lag is Glag(s) = 0.06782
(s +1.1)

(s + 0.0746)
. The 

compensated forward-path transfer function is thus the product of the plant and the compensator, or  
 

Ge (s) =
162.8(s + 4)(s +1.1)

(s + 2)(s + 6)(s +8)(s + 0.0746)
 

9.  
From Example 11.1, K = 58251 yields 9.48% overshoot or a phase margin of 59.19o. Also,  

G(s) = 
58251

s(s+36)(s+100)  

Allowing for a 10o contribution from the PI controller, we want a phase margin of 69.19o, or a phase 

angle of -180o + 69.19o = -110.81o. This phase angle occurs at ω = 9.8 rad/s where the magnitude is 

4 dB. Thus, the PI controller should contribute - 4 dB at ω = 9.8 rad/s. Selecting a break frequency a 

decade below the phase margin frequency,  

Gc(s) = 
s+0.98

s   

This function has a high-frequency gain of zero dB. Since we want a high-frequency gain of  

-4 dB (a gain of 0.631),  
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Gc(s) = 0.631 
s+0.98

s   

The compensated forward path is 

G(s) = 
58251*0.631(s+0.98)

s(s+36)(s+100)     =  
36756.38(s+0.98)

s(s+36)(s+100)      

10. 

 Bode plots for K = 1: 

 
Using Eqs. (4.39) and (10.73) a percent overshoot = 15 is equivalent to a ζ = 0.517 and φM = 

53.17o. The phase-margin frequency  = 1.66 rad/s. The magnitude = -9.174 dB = 0.3478. Hence K = 

1/ 0.3478 = 2.876. 

b. 

Bode plots for K = 2.876. 
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Adding 10o to the phase margin yields 63.17. Thus, the required phase is –1800 + 63.170 = -116.830, 

which occurs at a frequency of 1.21 rad/s. The magnitude = 3.366 dB = 1.473. Hence, the lag 

compensator K = 1/ 1.473 = =0.6787. Selecting the break a decade below the phase-margin 

frequency,  
 

Gc(s) = 0.6787 
s+0.121

s   

c. 
Program: 
%Input system 
numg=2.876*poly([-10 -11]); 
deng=poly([0 -3 -6 -9]); 
G=tf(numg,deng); 
numc=0.6787*[1 0.121]; 
denc=[1 0]; 
Gc=tf(numc,denc); 
Ge=G*Gc; 
T=feedback(Ge,1); 
step(T) 
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Computer response: 

 
11. 

Program: 
%PI Compensator Design via Frequency Response 
%Input system 
G=zpk([],[-5 -10],1); 
G=tf(G); 
%Percent Overshoot to Damping Ratio to Phase Margin 
Po=input('Type %OS  '); 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)+10; 
fprintf('\nPercent Overshoot = %g',Po) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Phase Margin = %g',Pm) 
%Get Bode data 
bode(G) 
title('Uncompensated') 
pause 
%Find frequency at desired phase margin and the gain at this frequency 
w=logspace(-1,2,10000); 
%w=.1:0.1:100; 
[M,P,w]=bode(G,w); 
Ph=-180+Pm 
for i=1:1:length(P); 
if P(i)-Ph<=0 
Mag=M(i) 
wf=w(i); 
fprintf(', Frequency  = %g',wf) 
fprintf(', Phase  = %g',P(i)) 
fprintf(', Magnitude = %g',Mag) 
fprintf(', Magnitude (dB) = %g',20*log10(Mag)) 
break 
end 
end 
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%Design PI compensator 
%Break frequency is a decade below phase margin frequency 
wh=wf/10; 
%Magnitude is reciprocal of magnitude of G at the phase margin frequency 
%so net magnitude is 0 dB at the phase margin frequency 
Kc=1/Mag 
'PI Compensator' 
Gpi=tf(Kc*[1 wh],[1 0]) 
bode(Gpi) 
title(['PI compensator']) 
pause 
'G(s)Gpi(s)' 
Ge=series(G,Gpi); 
Ge=zpk(Ge) 
bode(Ge) 
title('PI Compensated') 
[Gm,Pm,Wcp,Wcg]=margin(Ge);            
'Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s);'  
'180 deg. freq. (r/s)'              
margins=[20*log10(Gm),Pm,Wcg,Wcp]    
pause 
T=feedback(Ge,1); 
step(T) 
title('PI Compensated') 
 
Computer response: 
Type %OS  25 
 
Percent Overshoot = 25, Damping Ratio = 0.403713, Phase Margin = 53.463 
Ph = 
 
 -126.5370 
 
 
Mag = 
 
    0.0037 
 
, Frequency  = 14.5518, Phase  = -126.54, Magnitude = 0.00368082, Magnitude 
(dB) = -48.6811 
Kc = 
 
  271.6786 
 
 
ans = 
 
PI Compensator 
 
  
Transfer function: 
271.7 s + 395.3 
--------------- 
       s 
  
 
ans = 
 
G(s)Gpi(s) 
 
  
Zero/pole/gain: 
271.6786 (s+1.455) 
------------------ 
  s (s+10) (s+5) 
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ans = 
 
Gain margin(dB); Phase margin(deg.); 0 dB freq. (r/s); 
 
 
ans = 
 
180 deg. freq. (r/s) 
 
 
margins = 
 
       Inf   47.6277   14.5975       Inf 
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 12.  

For Kv = 4,  4
900
K

= , or K = 3600. Plot the Bode diagrams.  

 

 
 

The magnitude curve crosses zero dB at ω = 2.83 rad/s. with a phase angle of 152.1o, which yields an 
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uncompensated phase margin of 27.9o. Thus, we need an additional 12.1o plus an additional amount 

to compensate for the fact that the phase margin frequency will increase. Assume a lead network with 

a phase contribution of 22.1o. Using Eqs. (11.11), and (11.12),  

  
 The value of beta is: 0.453 
 The |G(jwmax)| for the compensator is: 1.485 
 or in db: 3.44 

 
 

 The magnitude curve has a gain of -3.44 dB at ω = 3.625 rad/s. Therefore, choose this frequency as 

the new phase margin frequency. Using Eqs. (11.9) and (11.6), the compensator transfer function has 

the following specifications: 

   
T 0.41
zero -2.44
pole -5.38

 gain        2.21

 
 The compensated forward path is 
 

3600*2.21( 2.44) 7956( 2.44)( )
( 3)( 15)( 20)( 5.38) ( 3)( 15)( 20)( 5.38)

s sG s
s s s s s s s s s s

+ +
= =

+ + + + + + + +
 

A Bode plot of G(s) shows a phase margin of 37.8o. Thus, a redesign is necessary to meet the exact 

requirement. This redesign can be done by adding a larger correction factor  to the phase required 

from the lead compensator, See Control Solutions for the redesign. 

13.  
a. Gain-compensated time response: 
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Bode plots for K = 1000 (Kv = 10): 

 
The specifications for the gain compensated system are: K = 1000, percent overshoot = 10, ζ = 

0.591155, peak time = 0.5 s, current phase margin = 22.5362o. 

To meet the requirements: required phase margin (Eq. 10.73) = 58.5931o, required phase margin with 

correction factor of 20o = 78.5931, required bandwidth (Eq. 10.56) = 9.03591, required phase 

contribution from compensator = 78.5931o - 22.5362o = 56.0569o, compensator beta (Eq. 11.11) = 

0.0931398, new phase margin frequency (Eq. 11.12) = 11.51.   

Now design the compensator: Compensator gain  Kc = 1/β = 10.7366,  compensator zero (Eq. 11.12) 

= -3.51272,  compensator pole = zc/β = -37.7144. 

Lead-compensated Bode plots: 
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Lead-compensated phase margin = 50.2352. 
 
b.  
Program: 
numg=1000; 
deng=poly([0 -5 -20]); 
G=tf(numg,deng); 
numc=[1 3.51272]; 
denc=[1 37.7144]; 
Gc=tf(numc,denc); 
Ge=G*10.7366*Gc; 
T=feedback(Ge,1); 
step(T) 
 
 
 
Computer response: 
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14.  

Uncompensated system: Searching the 0.456ζ =  line (20% overshoot), find the dominant poles  

Q = -6.544 ± j12.771 with a gain of 178.21. Hence, Ts = 
4

ζωn
   = 0.611 second, 

178.21*5 7.425
2*6*10pK = = . The Bode plot for the uncompensated system is: 

 

 
 

The uncompensated system has a phase margin  of 55.8o and a phase margin frequency of 11.3 rad/s. 

 

Compensated system: For a threefold improvement in Kp, Kpn = 22.28. Therefore, K = 3*178.21 = 

534.63. For a twofold reduction in settling time, the new dominant poles are Qn = 2Q = - 13.09 ± 

j25.54. The gain adjusted system is 

 
534.63( 5)( )

( 2)( 6)( 10)c
sG s

s s s
+

=
+ + +

 

 
Plotting the Bode diagrams for the gain compensated system,  
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At unity gain the phase is -147.8o at ω = 21.9 rad/s. Thus, the gain compensated phase margin is  

180o – 147.8o = 32.2o. Using Eq. (10.73) with ζ = 0.456 (i.e. 20% overshoot), the required  

ΦM = 48.15o.  We add 15.95o plus a correction factor of 5o to the phase margin of the gain 

compensated system for a total additional phase of 20.95o. Using Eqs. (11.11), and (11.12),  

  
 
  

The value of beta is: 0.473 
The |G(jwmax)| for the compensator is: 1.45 

 or in db: 3.25 
 
 

The magnitude curve has a gain of  -3.25 dB at ω = 26.9 rad/s. Therefore, choose this frequency as 

the new phase margin frequency. Using Eqs. (11.9) and (11.6), the compensator transfer function has 

the following specifications: 
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T 0.054
zero -18.51
pole -39.1
gain 2.11

 

 
 The compensated forward path is 

 
534.63*2.11( 5)( 18.51) 1128.1( 5)( 18.51)( )
( 2)( 6)( 10)( 39.1) ( 2)( 6)( 10)( 39.1)

s s s sG s
s s s s s s s s

+ + + +
= =

+ + + + + + + +
 

 

A simulation of the system shows percent overshoot = 23.2%, settling time = 0.263, phase margin = 

48.4o, phase margin frequency = 26.7 r/s. 

 
15.  

If G(s) = 
144000

s(s + 36)(s +100)
, Kv = 40.  Also, for a 0.1 second peak time, and ζ = 0.456 (20% 

overshoot), Eq.  (10.56) yields a required bandwidth of 46.59 rad/s. Using Eq. (10.73), the required 

phase margin is 48.15o. Let us assume that we raise the phase margin frequency to 39 rad/s. The 

phase angle of the uncompensated system at this frequency is -158.6o. To obtain the required phase 

margin, the compensator must contribute 26.75o more at 39 rad/s. Assume the following form for the 

compensator: Gc(s) = K'KD(s+
1

KD
  ). The angle contributed by the compensator is  

φc = tan-1 
ω

1/ K D

 = 26.75o. Letting ω = 39 rad/s, KD = 0.0129. Hence, the compensator is  

Gc(s) = 0.0129 (s+77.37). The compensated forward path is  

 

G(s) =
144000 * 0.0129(s + 77.37)

s(s + 36)(s +100)
=

1857.6(s + 77.37)
s(s + 36)(s +100)

 

 
The closed-loop bandwidth is approximately 50 rad/s, which meets the requirements. 

The lag compensated forward path is  

G(s) = 7.759 
(s+0.058)

s(s2+2s+5)(s+3)(s+0.0015)
  

16.  
a. Bode plots and specifications for gain compensated system are the same as Problem 13. Required 

phase margin and required bandwidth is the same as Problem 13. Select a phase margin frequency 7 

rad/s higher than the bandwidth = 9 + 7 = 16 rad/s. The phase angle at the new phase-margin 

frequency is -201.60. The phase contribution required from the compensator is –1800 + 201.60 + 

58.590 = 80.20 at the phase-margin frequency. Using the geometry below: 
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-z c

80.2 o

phase-margin 
frequency=j16

 
 

tan (80.2) = 
16
zc

  . Therefore, zc = 2.76. Thus, Gc (s) = 
1

2.76 (s + 2.76) . 

The PD compensated Bode plots: 
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Compensated phase margin is 62.942o. 
 
b.  
Program:  
numg=1000; 
deng=poly([0 -5 -20]); 
G=tf(numg,deng); 
numc=(1/2.76)*[1 2.76]; 
denc=1; 
Gc=tf(numc,denc); 
Ge=G*Gc; 
T=feedback(Ge,1); 
step(T) 
title('PD Compensated') 
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Computer response: 

 
17. 

Program: 
%Lead Compensator Design via Frequency Response 
         %Input system 
K=input('Type K to meet steady-state error  '); 
numg=K*[1 1]; 
deng=poly([0 -2 -6]); 
'Open-loop system' 
'G(s)' 
G=tf(numg,deng) 
            %Generate uncompensated step response 
T=feedback(G,1); 
step(T) 
title('Gain Compensated') 
 
            %Input transient response specifications 
Po=input('Type %OS  '); 
%Ts=input('Type settling time   '); 
Tp=input('Type peak time   '); 
         %Determine required bandwidth 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
%wn=4/(z*Ts); 
wn=pi/(Tp*sqrt(1-z^2)); 
wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
 
         %Make a Bode plot and get Bode data 
%Get Bode data 
bode(G) 
title('Gain Compensated') 
 
w=0.01:0.1:100; 
[M,P]=bode(numg,deng,w); 
 
         %Find current phase margin 
[Gm,Pm,wcp,wcg]=margin(M,P,w); 
 
         %Calculate required phase margin 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
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         %Add a correction factor of 10 degrees 
Pmreqc=Pmreq+10; 
 
         %Calculate phase required from compensator 
Pc=Pmreqc-Pm; 
 
         %Design lead compensator 
%Find compensator beta and peak compensator magnitude  
beta=(1-sin(Pc*pi/180))/(1+sin(Pc*pi/180)); 
magpc=1/sqrt(beta); 
%Find frequency at which uncompensated system has a magnitude of 1/magpc 
%This frequency will be the new phase margin frequency  
for i=1:1:length(M); 
if M(i)-(1/magpc)<=0; 
wmax=w(i); 
break 
end 
end 
%Calculate the lead compensator's break frequencies 
zc=wmax*sqrt(beta); 
pc=zc/beta; 
Kc=1/beta; 
numc=[1 zc]; 
denc=[1 pc]; 
'Gc(s)' 
Gc=tf(numc,denc) 
           %Display data 
fprintf('\nK = %g',K) 
fprintf('  Percent Overshoot = %g',Po) 
fprintf(', Damping Ratio = %g',z) 
%fprintf(', Settling Time = %g',Ts) 
fprintf(', Peak Time = %g',Tp) 
fprintf(', Current Phase Margin = %g',Pm) 
fprintf(', Required Phase Margin = %g',Pmreq) 
fprintf(', Required Phase Margin with Correction Factor = %g',Pmreqc) 
fprintf(', Required Bandwidth = %g',wBW) 
fprintf(', Required Phase Contribution from Compensator = %g',Pc) 
fprintf(', Compensator Beta = %g',beta) 
fprintf(', New phase margin frequency = %g',wmax) 
fprintf('  Compensator gain, Kc = %g',Kc) 
fprintf('  Compensator zero,= %g',-zc) 
fprintf('  Compensator pole,= %g',-pc) 
'G(s)Gc(s)' 
Ge=G*Kc*Gc 
pause 
            %Generate compensated Bode plots 
%Make a Bode plot and get Bode data 
%Get Bode data 
bode(Ge) 
title('Lead Compensated') 
 
w=0.01:0.1:1000; 
[M,P]=bode(Ge,w); 
%Find compensated phase margin 
[Gm,Pm,wcp,wcg]=margin(M,P,w); 
fprintf('\nCompensated Phase Margin,= %g',Pm) 
pause 
            %Generate step response 
T=feedback(Ge,1); 
step(T) 
title('Lead Compensated') 
 
Computer response: 
Type K to meet steady-state error  360 
 
ans = 
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Open-loop system 
 
ans = 
 
G(s) 
 
Transfer function: 
   360 s + 360 
------------------ 
s^3 + 8 s^2 + 12 s 
  
Type %OS  10 
Type peak time   0.1 
 
ans = 
 
Gc(s) 
 
Transfer function: 
s + 11.71 
--------- 
s + 77.44 
  
K = 360  Percent Overshoot = 10, Damping Ratio = 0.591155, Peak Time = 0.1, 
Current Phase Margin = 21.0851, Required Phase Margin = 58.5931, Required 
Phase Margin with Correction Factor = 68.5931, Required Bandwidth = 
45.1795, Required Phase Contribution from Compensator = 47.508, Compensator 
Beta = 0.151164, New phase margin frequency = 30.11  Compensator gain, Kc = 
6.61532  Compensator zero,= -11.7067  Compensator pole,= -77.4437 
ans = 
 
G(s)Gc(s) 
 
Transfer function: 
 2382 s^2 + 3.026e004 s + 2.788e004 
------------------------------------- 
s^4 + 85.44 s^3 + 631.5 s^2 + 929.3 s 
  
Compensated Phase Margin,= 60.676» 
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18. 
Program: 
%PD Compensator Design via Frequency Response 
          %Input system 
%Uncompensated system 
K=input('Type K to meet steady-state error  '); 
numg=K*[1 1]; 
deng=poly([0 -2 -6]); 
G=tf(numg,deng); 
T=feedback(G,1); 
step(T) 
title('Gain Compensated') 
'Open-loop system' 
'G(s)' 
Gzpk=zpk(G) 
 
          %Input transient response specifications 
Po=input('Type %OS  '); 
%Ts=input('Type settling time   '); 
Tp=input('Type peak time   '); 
 
          %Determine required bandwidth 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
%wn=4/(z*Ts); 
wn=pi/(Tp*sqrt(1-z^2)); 
wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
 
          %Make a Bode plot and get Bode data 
%Get Bode data 
bode(G) 
title('Gain Compensated') 
w=0.01:0.1:100; 
[M,P]=bode(G,w); 
 
          %Find current phase margin 
[Gm,Pm,wcp,wcg]=margin(M,P,w); 
 
          %Calculate required phase margin 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)+20; 
 
         %Determine a phase margin frequency 
wpm=wBW+7; 
  %Find phase angle at new phase margin frequency and    
  
  %calculate phase required from the compensator 
for i=1:1:length(w); 
if w(i)-wpm>=0; 
wpm=w(i); 
Pwpm=P(i); 
break  
end 
end 
       %Design PD compensator 
Pc=Pmreq-(180+Pwpm); 
zc=wpm/tan(Pc*pi/180); 
Kc=1/zc; 
numc=Kc*[1 zc]; 
denc=1; 
'Gc(s)' 
Gc=tf(numc,denc); 
Gczpk=zpk(Gc) 
           %Display data 
fprintf('\nK = %g',K) 
fprintf('  Percent Overshoot = %g',Po) 
fprintf(', Damping Ratio = %g',z) 
%fprintf(', Settling Time = %g',Ts) 
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fprintf(', Peak Time = %g',Tp) 
fprintf(', Current Phase Margin = %g',Pm) 
fprintf(', Required Phase Margin = %g',Pmreq) 
fprintf(', Required Bandwidth = %g',wBW) 
fprintf(', New phase margin frequency = %g',wpm) 
fprintf(', Phase angle at new phase margin frequency = %g',Pwpm) 
fprintf(', Required Phase Contribution from Compensator = %g',Pc) 
fprintf('  Compensator gain, Kc = %g',Kc) 
fprintf('  Compensator zero,= %g',-zc) 
 
pause 
  %Generate compensated Bode plots 
%Make a Bode plot and get Bode data 
%Get Bode data 
'G(s)Gc(s)' 
Ge=G*Gc; 
Gezpk=zpk(Ge) 
bode(Ge) 
title('PD Compensated') 
w=0.01:0.1:100; 
[M,P]=bode(Ge,w); 
%Find compensated phase margin 
[Gm,Pm,wcp,wcg]=margin(M,P,w); 
fprintf('\nCompensated Phase Margin,= %g',Pm) 
pause 
            %Generate step response 
T=feedback(Ge,1); 
step(T) 
title('PD Compensated') 
 
Computer response: 
Type K to meet steady-state error  360 
 
ans = 
 
Open-loop system 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
  360 (s+1) 
------------- 
s (s+6) (s+2) 
  
Type %OS  10 
Type peak time   0.1 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
0.05544 (s+18.04) 
  
 
K = 360  Percent Overshoot = 10, Damping Ratio = 0.591155, Peak Time = 0.1, 
Current Phase Margin = 21.0851, Required Phase Margin = 78.5931, Required 
Bandwidth = 45.1795, New phase margin frequency = 52.21, Phase angle at new 
phase margin frequency = -172.348, Required Phase Contribution from 
Compensator = 70.9409  Compensator gain, Kc = 0.0554397  Compensator zero,= 
-18.0376 
ans = 
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G(s)Gc(s) 
 
  
Zero/pole/gain: 
19.9583 (s+18.04) (s+1) 
----------------------- 
     s (s+6) (s+2) 
  
 
Compensated Phase Margin,= 69.546 
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19. 

K = 10714 for Kv = 1000. ζ = 0.517 for 15% overshoot using Eq. (4.39). Using Eq. (4.42),  

ωn = 77.37. Using Eq. (10.54) the required bandwidth, ωBW = 96.91. Using Eq. (10.73) with 5o 

additional, Φm  = 58.17o. Choose the new phase-margin frequency ωPm= 0.8 wBW= 77.53. Plotting 

the Bode plots for K = 10714,   
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At the new phase-margin frequency, the phase angle is -170.52. Thus, the contribution required from 

the lead is 58.17 - (180 -170.52) = 48.69o.   Using Eq. (11.11), β = 0.142. 

Lag compensator design: zclag= ωPm/10 = 77.53/10 = 7.753. pclag =  zclag*β = 1.102. Kclag = 

pclag/ zclag = 0.1421. Thus, Glag(s) = 0.1421 
s+7.753
s+1.102  . 

Lead compensator design: Using Eqs. (11.6), (11.9), and (11.12) zlead = 1/T = ωPm* β  = 29.22. 

plead = zlead /β = 205.74. Klead = plead /zlead  = 7.04. Thus, Glead(s) = 7.04 
s+29.22

s+205.74  . 

20. 
Program: 
  %Lag-Lead Compensator Design via Frequency Response 
  %Input system 
K=input('Type K to meet steady-state error  '); 
numg=K*[1 7]; 
deng=poly([0 -5 -15]); 
G=tf(numg,deng); 
'G(s)' 
Gzpk=zpk(G) 
 
  %Input transient response specifications 
Po=input('Type %OS  '); 
Ts=input('Type settling time   '); 
%Tp=input('Type peak time   '); 
T=feedback(G,1); 
step(T) 
title('Gain Compensated') 
pause 
 
        %Determine required bandwidth 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
wn=4/(z*Ts); 
%wn=pi/(Tp*sqrt(1-z^2)); 
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wBW=wn*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
%wBW=(4/(Ts*z))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
%wBW=(pi/(Tp*sqrt(1-z^2)))*sqrt((1-2*z^2)+sqrt(4*z^4-4*z^2+2)); 
 
        %Determine required phase margin 
Pmreq=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi)+5; 
 
        %Choose new phase margin frequency 
wpm=0.8*wBW; 
 
        %Determine additional phase lead required at the  
        %new phase margin frequency from the lead compensator 
[M,P]=bode(G,wpm); 
Pmreqc=Pmreq-(180+P); 
beta=(1-sin(Pmreqc*pi/180))/(1+sin(Pmreqc*pi/180)); 
        %Display data 
fprintf('\nPercent Overshoot = %g',Po) 
fprintf(', Settling Time = %g',Ts) 
%fprintf(', Peak Time = %g',Tp) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Required Phase Margin = %g',Pmreq) 
fprintf(', Required Bandwidth = %g',wBW) 
fprintf(', New Phase Margin Frequency = %g',wpm) 
fprintf(', Required Phase from Lead Compensator = %g',Pmreqc) 
fprintf(', Beta = %g',beta) 
bode(numg,deng) 
title('Gain compensated') 
pause 
          %Design lag compensator 
zclag=wpm/10; 
pclag=zclag*beta; 
Kclag=beta; 
'Lag compensator' 
'Gclag' 
Gclag=tf(Kclag*[1 zclag],[1 pclag]); 
Gclagzpk=zpk(Gclag) 
          %Design lead compensator 
zclead=wpm*sqrt(beta); 
pclead=zclead/beta; 
Kclead=1/beta; 
'Lead compensator' 
'Gclead' 
Gclead=tf(Kclead*[1 zclead],[1 pclead]); 
Gcleadzpk=zpk(Gclead) 
          %Create compensated forward path 
'Gclag(s)Gclead(s)G(s)' 
Ge=G*Gclag*Gclead; 
Gezpk=zpk(Ge) 
          %Test lag-lead compensator 
T=feedback(Ge,1); 
bode(Ge) 
title('Lag-lead Compensated') 
[M,P,w]=bode(Ge); 
[Gm,Pm,wcp,wcg]=margin(M,P,w); 
'Compensated System Results' 
fprintf('\nResulting Phase Margin = %g',Pm) 
fprintf(', Resulting Phase Margin Frequency = %g',wcg) 
pause 
step(T) 
title('Lag-lead Compensated') 
 
Computer response: 
Type K to meet steady-state error  10714.29 
 
ans = 
 
G(s) 
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Zero/pole/gain: 
10714.29 (s+7) 
-------------- 
s (s+15) (s+5) 
  
Type %OS  15 
Type settling time   0.1 
 
Percent Overshoot = 15, Settling Time = 0.1, Damping Ratio = 0.516931, 
Required Phase Margin = 58.1718, Required Bandwidth = 96.9143, New Phase 
Margin Frequency = 77.5314, Required Phase from Lead Compensator = 48.6912, 
Beta = 0.142098 
ans = 
 
Lag compensator 
 
 
ans = 
 
Gclag 
 
  
Zero/pole/gain: 
0.1421 (s+7.753) 
---------------- 
   (s+1.102) 
  
 
ans = 
 
Lead compensator 
 
 
ans = 
 
Gclead 
 
  
Zero/pole/gain: 
7.0374 (s+29.23) 
---------------- 
   (s+205.7) 
  
 
ans = 
 
Gclag(s)Gclead(s)G(s) 
 
  
Zero/pole/gain: 
10714.29 (s+29.23) (s+7.753) (s+7) 
---------------------------------- 
s (s+205.7) (s+15) (s+5) (s+1.102) 
  
 
ans = 
 
Compensated System Results 
 
 
Resulting Phase Margin = 53.3994, Resulting Phase Margin Frequency = 
55.5874 
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Percent overshoot exceeds requirements. Redesign if required. 

 
21.  

The required bandwidth for a peak time of 2 seconds and ζ = 0.456 (i.e. 20% overshoot) is 2.3297 

rad/s. Plotting the Bode diagrams for K = 1,  
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For 20% overshoot, ΦM = 48.15o, or a phase angle of -180o + 48.15o = -131.85o. This angle occurs 

at 1.12 rad/s. If K = 13.1, the magnitude curve will intersect zero dB at 1.12 rad/s. Thus, the following 

function yields 20% overshoot: 
13.1G(s) = 

( 2)( 5)s s s+ +
.  

PI controller design: Allowing for a 5o margin, we want ΦM = 48.15o + 5o = 53.15o, or a phase 

angle of -180o + 53.15o = -126.85o. This angle occurs at ω = 0.97 rad/s where the magnitude curve is 

1.5321 dB. The controller should contribute - 1.5321 dB so that the magnitude curve passes through 0 

dB at ω = 0.97 rad/s. Choosing the break frequency one decade below the phase margin frequency of 

0.97 rad/s, and adjusting the controller's gain to yield -1.5321 dB at high frequencies, the ideal 

integral controller is 

cPI
1.198( 0.097)G (s) = s

s
+

 

and the PI compensated forward path is 

PI cPI 2

15.694(s+0.097)G (s) = G(s)G (s) =  
s ( 2)( 5)s s+ +

 

Plotting the Bode diagram for the PI compensated system yields,  
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This function is zero dB at ω = 1.28 rad/s. The phase at this frequency is – 141.4o. Thus, we have a 

phase margin of 38.6o. 

PID controller design: Let us increase the phase margin frequency to 4 rad/s. At this frequency the 

phase is -193.48o. To obtain the required phase margin of 48.15o the phase curve must be raised an 

additional 61.63o. Assume the following form for the compensator : GcPD(s) = K'KD(s+
1

KD
  ). The 

angle contributed by the compensator is φc = tan-1 
ω

1/KD
   = 61.63o. Letting ω = 4 rad/s, KD = 0.463. 

Hence, the compensator is GcPD (s) = 0.463K' (s+2.16).  The final PID compensated forward path is  

 
'

'
PID PI cPD 2 2

15.694( 0.097) 2.266 ( 0.097)( 2.16)G (s)=G ( ) ( ) *0.463 ( 2.16)
( 2)( 5) ( 2)( 5)

s K s ss G s K s
s s s s s s

+ + +
= + =

+ + + +
 

Letting K' = 1 the magnitude of this function at 4 rad/s is -20.92 dB. Thus, K' must be adjusted to 

bring the magnitude to zero dB. Hence, K' = 11.12 (20.92 dB).  
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Thus,  

PID 2

25.2( 0.097)( 2.16)G (s)=
( 2)( 5)

s s
s s s

+ +
+ +

 

The PID compensated Bode plot follows: 

 

 
The PID compensated time response is shown below: 
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22. 

Program: 
%Input system 
numg1=1; 
deng1=poly([0 -3 -6]); 
G1=tf(numg1,deng1); 
[numg2,deng2]=pade(0.5,5); 
G2=tf(numg2,deng2); 
'G(s)=G1(s)G2(s)' 
G=G1*G2; 
Gzpk=zpk(G) 
Tu=feedback(G,1); 
step(Tu) 
title('K = 1') 
%Percent Overshoot to Damping Ratio to Phase Margin 
Po=input('Type %OS  '); 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
Pm=atan(2*z/(sqrt(-2*z^2+sqrt(1+4*z^4))))*(180/pi); 
fprintf('\nPercent Overshoot = %g',Po) 
fprintf(', Damping Ratio = %g',z) 
fprintf(', Phase Margin = %g',Pm) 
%Get Bode data 
bode(G) 
title('K = 1') 
pause 
w=0.1:0.01:100; 
[M,P]=bode(G,w); 
Ph=-180+Pm; 
for i=1:1:length(P); 
if P(i)-Ph<=0; 
M=M(i); 
K=1/M; 
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fprintf(', Frequency  = %g',w(i)) 
fprintf(', Phase  = %g',P(i)) 
fprintf(', Magnitude = %g',M) 
fprintf(', Magnitude (dB) = %g',20*log10(M)) 
fprintf(', K = %g',K) 
break 
end 
end 
T=feedback(K*G,1); 
step(T) 
title('Gain Compensated') 
 
Computer response: 
ans = 
 
G(s)=G1(s)G2(s) 
 
Zero/pole/gain: 
      - (s-14.59) (s^2 - 26.82s + 228.4) (s^2 - 18.6s + 290.5) 
-------------------------------------------------------------------- 
s (s+14.59) (s+6) (s+3) (s^2 + 26.82s + 228.4) (s^2 + 18.6s + 290.5) 
  
Type %OS  20 
 
Percent Overshoot = 20, Damping Ratio = 0.45595, Phase Margin = 48.1477, 
Frequency  = 0.74, Phase  = -132.087, Magnitude = 0.0723422, Magnitude (dB) 
= -22.8122, K = 13.8232» 
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Second-order approximation not valid. 
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SOLUTIONS TO DESIGN PROBLEMS 
 

23. 
a. Plot the Bode plot for K = 1.  

 
Using Eqs. (4.39) and (10.73) a percent overshoot = 10 is equivalent to a ζ = 0.591 and φM = 58.590. 

The phase-margin frequency  = 1.933 rad/s where the phase is 58.590 – 1800 = -121.410. The 

magnitude = 38.37 dB, or 82.85. Hence K = 1/ 82.85 = 0.01207. 

b. Plot the gain-compensated Bode plot (K = 0.01207). 

 



Solutions to Design Problems   11-53 

Copyright ©   2011 by John Wiley & Sons, Inc. 

The bandwidth, ωBW, is the frequency at which the magnitude is –7dB. From the compensated plots, 

this frequency is 3.9 rad/s. Eq. (10.55), Ts = 2.01 s. Using Eq. (10.57), Tp = 1.16 s. 

c. 

Time (sec.)

A
m

pl
itu

de

Step Response
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 24.  

a. The bode plot for the open loop transmission is obtained and shown next: 

>> syms s 

>> s=tf('s'); 

>> M=0.005/(s+0.005); 

>> P=140625/(s+2.67)/(s+10); 

>> set(P,'inputdelay',0.1) 

>> L=M*P 

Transfer function: 

                            703.1 

exp(-0.1*s) * ---------------------------------- 

              s^3 + 12.68 s^2 + 26.76 s + 0.1335 

  

>> bode(L) 
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Bode Diagram
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System: L
Gain Margin (dB): -13.1
At frequency (rad/sec): 3.4
Closed Loop Stable? No

 

It can be seen that with 1=L , the system is closed loop unstable. The desired %OS=15% 

corresponds to a damping factor of 517.0
)100/(%ln

)100/ln(%
22

=
+

−
=

OS
OS

π
ξ . In turn this 

corresponds to a phase margin of  o2.53
412

2tan
42

1 =
++−

=Φ −

ξξ

ξ
M . For this to occur 

the open loop transmission must have a phase of ooo 8.1262.53180 −=+− at the point where 

the open loop transmission has a magnitude of 0db. The open loop transmission attains this phase 

when 17.1=ω rad/sec, and at that frequency the open loop transmission has a magnitude of 

26.2db. So the open loop transmission must be decreased by this amount resulting in 049.0=L . 
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b. 

Transport
Delay

140625

v([1 2.67],[1 10
Transfer Fcn1

0.005

s+0.005
Transfer Fcn Scope

-K-

Gain

1

Constant

 

 

The figure shows a %OS slightly smaller than 15%. 

 

 

 



11-56   Chapter 11:   Design via Frequency Response   

Copyright ©   2011 by John Wiley & Sons, Inc. 

25.   
a. We calculate sse for step inputs in the uncompensated system. 21.19)(

0
==

⎯→⎯
sGLimK

s
p , so 

05.0
1

1
=

+
=

p
ss K

e . The uncompensated phase margin can also be obtained through a bode plot 

and is of 77.3°. 

A tenfold improvement in steady state error requires multiplying the open loop gain by 10. The 

resulting open loop transfer function frequency response is shown in the following ode plot. The 

desired phase margin for the design will be 77.3°+10°=87.3°. It can be seen there that this phase 

value is achieved when 
sec

1.10 rad
=ω . At this point the magnitude of the open loop transmission 

is 25.8db. So the lag compensator must provide -25.8db at 
sec

1.10 rad
=ω . 

 

Bode Diagram
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The compensator is designed by postulating -25.8db at high frequencies with a higher break 

frequency of 10.1/10=1.01 rad/sec. The phase lag asymptote predicts -5.8 db one decade earlier at 
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0.101 rad/sec, and approximately 0db one octave before that at 0.101/2=0.0505 rad/sec. Maintaining 

unity dc gain for the compensator we get: 
)0505.0(
)01.1(05.0*10)(

+
+

=
s

ssGc     

b.  

>> syms s 

>> s=tf('s'); 

>> P=1361/(s^2+69*s+70.85); 

>> Gc=10*0.05*(s+1.01)/(s+0.0505); 

>> T=P/(1+P); 

>> Tc=Gc*P/(1+Gc*P); 

>> step(T,Tc,0.7) 
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26. 

a.  For a phase margin of 30° the gain is 0.00135=K as shown in the following bode plot 

 
b. The gain margin is 12.1db 



Solutions to Design Problems   11-59 

Copyright ©   2011 by John Wiley & Sons, Inc. 

c. From figure 10.48 a phase margin of 30° corresponds to a 3.0=ξ damping factor. This in turn 
corresponds to a %OS=37%. The bode plot above shows three crossovers of -7db. We use the 

largest one as the estimate for 
sec

328.0max
rad

=ω ; from equation 10.55 we get sec59≈sT  

d.   

>>syms s 

>>s=tf(‘s’); 

>>P=(-34.16*s^3-144.4*s^2+7047*s+557.2)/(s^5+13.18*s^4+95.93*s^3+14.61*s^2+31.94*s); 

 >> L=0.00135*P; 

>> T=L/(1+L); 

>> t=linspace(0,350,5000); 

 >> step(T,t) 
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 The estimate for the %OS is very inaccurate, the settling time estimate is reasonable. 
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e. The reason the estimate of %OS is very inaccurate is due to the multiple crossovers of the 
magnitude response. The hypothesis of a second order approximation is invalid. 

 

 

 

 

 

 

 

 
27.  

G(s) = 
10

s(s2+2s+5)(s+3)
  . Therefore, Kvo = 

2
3  .  We want Kvn = 30Kvo = 20. Increasing K by 30 

times yields G(s) = 
300

s(s2+2s+5)(s+3)
   

Plotting the Bode diagrams,  
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For 11% overshoot, the phase margin should be 57.48o. Adding a correction, we will use a 65o phase 

margin, or a phase angle of 115o, which occurs at ω = 0.58 rad/s. The magnitude curve is 30.93 dB. 

Thus the high-frequency asymptote of the lag compensator is - 30.93 dB. Drawing the lag- 

compensator curve as shown on the magnitude curve, the break frequencies are found and the 

compensator's transfer function is evaluated as 

Gc(s) = 25.86 x 10-3 
s+0.058

s+0.0015    

28.   

G(s) = 
10K

s(s+1)(s+5)  . For Kv = 5, K = 2.5. Plot the Bode diagrams for this value of gain. 
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The uncompensated system has unity gain at ω = 2.04 rad/s. The phase is - 176.08o at this frequency 

yielding a phase margin of 3.92o. We want a 60o phase margin plus, after trial and error, a correction 

factor of 20o, or a total of 80o. Thus, the lead compensator must contribute 80o - 3.92o = 76.08o. 

Using Eqs. (11.11), and (11.12),  

  

 

The value of beta is: 0.01490254
The |G(jwmax)| for the compensator is: 8.1916207

or in db: 18.2673967  
 

The magnitude curve has a gain of - 18.27 dB  at ω = 5.27 rad/s. Therefore, choose this frequency as 

the new phase margin frequency. Using Eqs. (11.9) and (11.6), the compensator transfer function has 

the following specifications: 

T 1.55438723
zero -0.6433403
pole -43.169841
gain 67.1026497  

 
 The compensated forward path is 

 

G(s) =  
25*67.1(s+0.64)

s(s+1)(s+5)(s+43.17)   =   
1677.5(s+0.64)

s(s+1)(s+5)(s+43.17)   

 

29.  

a.   The %OS spec required a damping factor of 5.0
)100/(%ln

)100/ln(%
22

=
+

−
=

OS
OS

π
ξ , which in 

turn requires a phase margin of o52
412

2tan
42

1 =
++−

=Φ −

ξξ

ξ
M . The bandwidth 

requirement is obtained from 
sec

1.5088244214 242 rad
Ts

BW =+−+−= ξξξ
ξ

ω . To 

obtained the compensator gain requirement to achieve this bandwidth obtain 
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0013.0
1.5088
103333.3)1.5088( 2

4

−=
×

−=jG . The compensator’s gain can be obtained from 

2
10013.0 =K  or 1891.549=K .  

The required open loop crossover frequency is obtained by solving 1103333.32.549 2

4

=
×

cω
, 

giving 
sec

4280 rad
c =ω . This is the frequency at which the lead compensator should provide 

maximum lead phase. So for the design of the compensator from Figure 11.8 let 1.0=β  with 

5.3≈Tω giving 4101776.85.3 −×==
c

T
ω

. So the designed compensator is 

)9.12229(
)9.1222(102.549

1

1

)(
+

+
=

+

+
=

s
s

T
s

T
sKsGc

β
β

. The gain of the compensator is now adjusted so 

that the maximum phase lead is provided at the crossover frequency 

giving
)9.12229(
)9.1222(107.173)(

+
+

=
s

ssGc . However a time domain simulation shows that although 

the settling time spec is satisfied the resulting %OS=22%. The parameters of the phase lead 

compensator are slightly adjusted to provide more phase lead giving 

)15000(
)1000(157.173)(

+
+

=
s

ssGc  

b. 

>> syms s 

>> s=tf('s'); 

>> P=3.3333e4/s^2; 

>> G=173.67*15*(s+1000)/(s+15000); 

>> L=G*P; 

>> T=L/(1+L); 

 >> step(T,4e-3) 
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30. 

a. The equivalent forward transfer function is Ge(s) = 
4.514e-06K

s(s+0.04348)  .  

Kv = 200 = 
4.514e-06K

0.04348   or  K = 1926500. Using Eq. (4.39), ζ = 0.456. Using Eq. (10.55), ωBW = 

1.16. Using Eq. (10.73) with 15o additional, the required phase margin, φreq = 63.15o. Select a new 

phase-margin frequency, ωPm = 0.8 ωBW = 0.93. Plot the Bode plots for K = 1926500. 
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At ωPm = 0.93, the phase, φ = -177.3o. Hence, the phase required from the compensator, φC = φreq - 

(180+φ) = 63.15 - (180 - 177.3) = 60.45o. Using Eq. (11.11), β = 0.07. 

Design lag: zclag = ωpm/10 = 0.093; pclag = zclag* β  = 0.0065; Kclag = β = 0.07. Thus,  

Gclag(s) = 0.07 
s+0.093

s+0.0065  .  

Design lead compensator: zclead=ωPm* β  = 0.25; pclead=zclead/β = 3.57; Kclead=1/β = 14.29. Thus, 

Gclead(s) = 14.29 
s+0.25
s+3.57  . 
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The lag-lead compensated Bode plot:  
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b.  
Program: 
K=1926500; 
numg=4.514e-6; 
deng=[1 0.04348 0]; 
G=tf(numg,deng); 
numgclag=0.07*[1 0.093]; 
dengclag=[1 0.0065]; 
Gclag=tf(numgclag,dengclag); 
numgclead=14.29*[1  0.25]; 
dengclead=[1 3.57]; 
Gclead=tf(numgclead,dengclead); 
Ge=K*G*Gclag*Gclead; 
T=feedback(Ge,1); 
step(T) 
title('Lag-lead Compensated') 
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Computer response: 

 

 
31. 

 
We follow the step outlined in the chapter. 

a. 

1. We calculate the required 6.0
)100/(%ln

)100/ln(%
22

≈
+

−
=

OS
OS

π
ξ . The required bandwidth is 

sec
128.0244214 242 rad

Ts
BW =+−+−= ξξξ

ξ
ω  

2. The uncompensated system is 
)25.0)(0833.0)(02.0(

108333.5)(
4

+++
×

=
−

sss
KsG  so 

KGK p 4.1)0( == . The steady state requirement requires 05.0
4.11

1
=

+ K
 or 6.13=K  

3. The bode plot for the uncompensated system is  
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4. The required phase margin for the design is o2.59
412

2tan
42

1 =
++−

=Φ −

ξξ

ξ
M  

5. We arbitrarily select 
sec

1.0 rad
=ω  

6. It can be seen from the uncompensated bode plot that at 
sec

1.0 rad
=ω the phase margin is 29°. 

The requirement in the phase lead network is going to be 59.2°-29°+5° (for the lag compensator 
contribution)=35.2° 

7. The lag compensator design is done by schooseng the higher break frequency as 

sec
01.0

10
1.0 rad

= . From the lead compensator graphs, figure 11.8 in the text let 25.0=β or 

41
==

β
γ . So the lag compensator is given by 

)0025.0(
)01.0(

4
1

)1(

)1(
1

2

2
_ +

+
=

+

+
=

s
s

T
s

T
s

G lagC

γ
γ

 

8. For the lead compensator design 1.0max =ω  and 25.0=β . 05.01
max

1

== βω
T

 and 

2.01

1

=
Tβ

Resulting in 
)2.0(
)05.0(4

)(

)1(

1

1
_ +

+
=

+

+
=

s
s

T
s

T
s

G leadc γ
γ  

Uncompensated 

Uncompensated 
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9. The resulting lag-lead compensator is 
)2.0)(0025.0(

)05.0)(01.0(6.13)(
++

++
=

ss
sssGc . The resulting 

compensated bode plot is shown above. 
b. The step response simulation is 

>> syms s 

>> s=tf('s'); 

>> G=13.6*5.8333e-4/(s+0.02)/(s+0.25)/(s+0.0833); 

>> Gc = (s+0.01)*(s+0.05)/(s+0.0025)/(s+0.2); 

>> L=G*Gc; 

 >> T=L/(1+L); 

>> step(T) 
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The system exhibits a “long tail” response because compensation adds a pole-zero pair very close to 

the origin. However it can be seen that after 60sec the response is very close to steady state. 
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32. 
a. Using equation (4.39), x=0.7. Then from equation (10.52) Mp=1=0db. For zero 
steady state error we add an integrator, and then we raise the system’s gain.  

 

Then we design an appropriate lead compensator. So far, 
3.038( 4.6)

( 13.7)lead
sG

s s
+

=
+

 as 

shown in the figure with a slight violation of the 1db requirement.  
The resulting Kv=8.306 so a factor of 2.4 is needed to reach the required 20. The lag 
compensator is designed by arbitrarily adding a pole zero pair at 0.1 and 0.24 

respectively, giving 
0.24
0.1lag

sG
s
+

=
+

. The total compensation is 

3.038( 0.24)( 4.6)
( 0.1)( 13.7)c

s sG
s s s

+ +
=

+ +
 

b. For this design, we start by adding an integrator to the compensator. The resulting 
Kv=8.14 so a K=2.46 is needed to obtain Kv=20. Then enough lead is provided to satisfy 
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the Mp<1db requirement. The resulting 
35( 2.18)

( 31)
sG

s s
+

=
+

. The resulting 

32Bω = rad/sec as shown in the next figure. 

 
c. The following figure shows the step response of both designs. The faster design 
corresponds to part b with the larger bandwidth. 



11-72   Chapter 11:   Design via Frequency Response   

Copyright ©   2011 by John Wiley & Sons, Inc. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

Am
pl

itu
de

 

 
33. 

From Chapter 8,  

                                        0.6488K (s+53.85) 
               Ge(s)   =    _____ 
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 
 

Cascading the notch filter, 

 

                                  0.6488K (s+53.85)(s2 + 16s + 9200) 
             Get(s) =       
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

 

Since estep (∞) =
1

1 + Kp

, Kp = 9 yields 10% error. Thus, Kp =
Ke * 53.85 * 9200
376.3* 9283* 602 = 9. Thus, 

Ke = 0.6488K = 228452. Let us use Ke = 30,000 in designing the lead portion and we’ll make up the 

rest with the lag. Plotting the Bode plot for Ke = 30,000, 
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Design lead: The uncompensated phase margin = 10.290. Assume a required phase margin of 450. 

The required phase margin, assuming a 300 correction is 750. The phase contribution required from 

the compensator is 750 – 10.290 = 64.710. Using the inverse of Eq. (11.11), the compensator’s β = 

0.05033. Using Eq. (11.12), Gc( jωmax ) =
1
β

= 4.457 =12.98 dB . The new phase margin 

frequency is where the uncompensated system has a magnitude of –12.98 dB, or ωmax = 44.65 rad/s. 

Using Eqs. (11.6) and (11.9), the compensator is Glead (s) =
19.87(s +10.02)

(s +199)
. The plant is 

G(s) =
228452(s + 53.85)(s2 +16s + 9200)

(s + 60)2(s2 + 8.119s + 376.3)(s 2 +15.47s + 9283)
. Draw the lead-compensated 

Bode plot. 

 



11-74   Chapter 11:   Design via Frequency Response   

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
Design lag: The phase-margin frequency occurs where the phase is –1350, or at the required 450 

phase margin. From the lead-compensated Bode plots, this phase margin occurs at 43.64 rad/s. Let 

the upper break of the lag compensator be one decade lower, or 4.364. Since the magnitude is 17.97 

dB at the new phase-margin frequency, set the high-frequency asymptote of the lag compensator at –

17.97 dB. Draw a -20 dB/dec slope starting at 0.4364 rad/s and –17.96 dB and moving toward 0 dB. 

At 0 dB locate the lag compensator’s low-frequency break, or 0.551. Thus,  

 

Glag(s) =
0.551
4.364

(s + 4.364)
(s + 0.551)

= 0.126
(s + 4.364)
(s + 0.551)

 

 
Check bandwidth: Draw the lag-lead compensated Bode diagram for G(s)Glag(s)Glead(s).  
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From the open-loop plot, the magnitude is at –7 dB at 70 rad/s. Hence, the bandwidth is sufficient. Also, 

the lag-lead compensated Bode plot shows a phase margin of 400 . The transfer function,  

G(s) = G(s)Glag(s)Glead(s) shows Kp = 9, or an error of 0.1. Thus all requirements have been met. 

34. 

a. For an overdamped system 
BW

sT
ω

4
= . So for this system 

sec
04.0 rad

BW =ω  

b. The bode plot is: 
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At -90° of open loop phase lag the crossover frequency of the open loop transmission equals the 

bandwidth of the closed loop system, so it can be seen that we have to drop the magnitude 73.8db. 

So 42 −= eK . Note that in the low range of frequencies the phase of the loop transmission is 

approximately -90°, lowering the gain will maintain closed loop stability. 

c.  

>> syms s 

>> s=tf(‘s’); 

>> G=-2e-4*(s^2+0.04*s+0.0048)/(s+0.02)/s; 

>> L=G*P; 

>> T=L/(1+L); 

>> step(T) 
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No further gain adjustments are necessary. 

35.  

a. For a zero steady‐state error for step inputs and a steady‐state error for ramp 
inputs ≤2 %, the required value of K may be found from: 

02.01)( ≤=∞
v

ramp K
e , where 50

)5858.0(
)6.0(

lim)(lim
00

≥
+

+
==

→→ s
sKssGK

ss
v . 

Hence: 82.84505858.0
6.0 ≥⇒≥× KK  

The following MATLAB file was used to plot the Bode magnitude and phase plots for that system 

and to obtain the response of the system, c(t), to a step input, r(t) = 4 u(t). 

 

numg = [1 0.6]; 

deng = poly ([0 -0.5858]); 

G = 48.82*tf(numg, deng); 
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bode (G); 

grid 

pause 

T = feedback(G,1);   %T is the closed-loop TF of the PI-controlled system 

T = minreal(T); 

step(4*T); 

axis  

grid 

xlabel ('Time') 

ylabel ('Speed Sensor Output, c(t) in volts')  

title ('PI-controlled Systems Response to a 4 volt Input Step') 

 

The Bode magnitude and phase plots obtained are shown below with the minimum stability 

margins displayed on the phase plot. 

 

For a %OS ≤ 4.32 %, the damping ratio is  

707.0
)100/32.4(ln

)100/32.4ln(

)100/(%ln

)100/ln(%
2222

=
+

−
=

+

−
=

ππ
ζ

OS

OS
. Using Eq. (10.73) we 

find the phase margin needed to meet the damping ratio requirement:  

1 o

2 4

2tan 65.52
2 1 4

M
ζ

ζ ζ

−Φ = =
− + +
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The phase margin found from the Bode plot obtained in step (1) is greater than the required value. 

Therefore, the response of the system, c(t), to a step input, r(t) = 4 u(t), has been plotted and is 

shown below. The settling time, Ts, and the final value of the output are noted. 
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PI-controlled Systems Response to a 4 volt Input Step
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As could be seen from the graph and the analysis presented above all requirements are met. 

Therefore, the design has been completed. 

b. 1)  When the PI‐controller zero, ZI, moves to – 0.01304:    

61.0250
)5858.0()0163.0(
) 0.01304()6.0(

lim)(lim
00

≥⇒≥
++

++
==

→→
K

ss
ssKssGK

ss
v . 

The phase margin found from the Bode plot obtained is still greater than the required value. 

Therefore, c(t) was plotted and is shown below with the settling time, Ts, and the final value of the 

output noted on the graph. As could be seen from the graph, the settling and rise times are less by 

~ 20% than the respective values obtained for ZI at – 0.0163.  
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PI-controlled System's Response to a 4 volt Input Step for Zi at – 0.01304
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2) When the PI-controller zero, ZI, moves to – 0.01956:   

40.6850
)5858.0()0163.0(
) 0.01956()6.0(

lim)(lim
00

≥⇒≥
++

++
==

→→
K

ss
ssKssGK

ss
v . 

The phase margin found from the Bode plot obtained is still greater than the required value. 

Therefore, c(t) was plotted and is shown below with the settling time, Ts, and the final value of the 

output noted on the graph. In this case, however, the settling and rise times are higher by ~ 20% 

than the respective values obtained for ZI at – 0.0163. Nevertheless, all requirements are still met. 
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PI-controlled Systems Response to a 4 volt Input Step at Zi = – 0.01956
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The responses obtained in all cases here are closer to the response of a first-order system rather 

than a second order system. Note that when ZI is at – 0.01956, for example, two of the closed-loop 

poles (at – 0.6002 and – 0.01956) are very close, respectively, to the closed-loop zeros located at 

– 0.5999 and – 0.0196. Therefore, the system behaves as if it has only one closed-loop pole, 

which is at – 40.66. 
Since the PI‐controller designed meets all requirements (even when pole‐zero 
cancellation is not achieved and the controller’s zero changes by ± 20%), there no need 
to add a derivative mode. 
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T  W  E  L  V  E  
 
  Design via State Space 

 

SOLUTION TO CASE STUDY CHALLENGE  
 

Antenna Control: Design of Controller and Observer 
a. We first draw the signal-flow diagram of the plant using the physical variables of the system 

as state variables. 

 

 
 

 Writing the state equations for the physical variables shown in the signal-flow diagram, we 

obtain 

 

z.  = 
0 1 0
0 -1 . 3 2 0 . 8
0 0 -1 0 0

 z  +  
0
0

2 0 0 0
 u  ;   y  = 0 . 2 0 0  z

 
 

 The characteristic polynomial for this system is s3 + 101.32s2 + 132s + 0. Hence, the A and B 

matrices of the phase-variable form are 

 

Ax Bx
0 1 0 0
0 0 1 0
0 -132 -101.32 1  

 

 Writing the controllability matrices and their determinants for both systems yields 
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CMz Controllability Matrix of z CMx Controllability Matrix of x
0 0 1600 0 0 1
0 1600 -162112 0 1 -101.32

2000 -200000 20000000 1 -101.32 10133.7424

Det(CMz) -5.12E+09 Det(CMx) -1  
 

where the system is controllable. Using Eq. (12.39), we find the transformation matrix and its 

inverse to be 

 
P Transformation Matrix z=Px PINV

1600 0 0 0.000625 0 0
0 1600 0 0 0.000625 0
0 2640 2000 0 -0.000825 0.0005  

 
The characteristic polynomial of the phase-variable system with state feedback is 

 s3 + (k3 + 101.32)s2 + (k2 + 132)s + (k1 + 0) 

For 15% overshoot, Ts = 2 seconds, and a third pole 10 times further from the imaginary axis than 

the dominant poles, the characteristic polynomial is 

(s + 20)(s2 + 4s + 14.969) = s3 + 24s2 + 94.969s + 299.38 

Equating coefficients, the controller for the phase-variable system is 

 
Kx Controller for x

299.38 -37.031 -77.32  
 

Using Eq. (12.42), the controller for the original system is 

 
Kz Controller for z

0.1871125 0.04064463 -0.03866  
 

b. Using Kz, gain from θm =  - 0.1871125 (including gear train, pot, and operational amplifier); gain 

from tachometer = - 0.04064463; and gain from power amplifier output = 0.03866. 
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c. Using the original system from part (a) and its characteristic polynomial, we find the observer 

canonical form which has the following A and C matrices: 

 
Ax

-101.32 1 0
-132 0 1

0 0 0  

Cx
1 0 0  

 
Writing the observability matrices and their determinants for both systems yields 

 
OMz Observability Matrix of z OMx Observability Matrix of x
0.2 0 0 1 0 0
0 0.2 0 -101.32 1 0
0 -0.264 0.16 10133.7424 -101.32 1

Det(OMz) 0.0064 Det(OMx) 1  
where the system is observable. Using Eq. (12.89), we find the transformation matrix and its inverse to be 

 
P Transformation Matrix z=Px PINV
5 0 0 0.20 0.00 0.00

-506.6 5 0 20.26 0.20 0.00
62500 -625 6.25 26.40 20.00 0.16  
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The characteristic polynomial of the dual phase-variable system with state feedback is 

s3 + (l1 + 101.32)s2 + (l2 + 132)s + (l3 + 0) 

 

For 10% overshoot, ωn = 10 14.969   = 38.69 rad/s, and a third pole 10 times further from the 

imaginary axis than the dominant observer poles, the characteristic polynomial is 

(s + 228.72)(s2 + 45.743s + 1496.916) = s3 + 274.46s2 + 11959s + 3.4237x105 

Equating coefficients, the observer for the observer canonical system is 

 
Lx Observer for x

173.14
11827

342370  

Using Eq. (12.92), the observer for the original system is 
 

Lz Observer for z
865.7

-28577.724
5569187.5  

d. 
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e. 
Program: 
'Controller' 
A=[0 1 0;0 -1.32 0.8;0 0 -100]; 
B=[0;0;2000]; 
C=[0.2 0 0]; 
D=0; 
pos=input('Type desired %OS  '); 
Ts=input('Type desired settling time   '); 
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2)); 
wn=4/(z*Ts);                   %Calculate required natural 
                               %frequency. 
[num,den]=ord2(wn,z);          %Produce a second-order system that  
                               %meets the transient response  
                               %requirements. 
r=roots(den);                  %Use denominator to specify dominant 
                               %poles. 
poles=[r(1) r(2) 10*real(r(1))]; 
                               %Specify pole placement for all 
                               %poles. 
K=acker(A,B,poles) 
'Observer' 
pos=input('Type desired %OS  '); 
z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2)); 
wn=10*wn                        %Calculate required natural 
                                %frequency. 
[num,den]=ord2(wn,z);           %Produce a second-order system that 
                                %meets the transient response 
                                %requirements. 
r=roots(den);                   %Use denominator to specify dominant 
                                %poles. 
poles=[r(1) r(2) 10*real(r(1))];%Specify pole placement for all  
                                %poles. 
l=acker(A',C',poles)' 
 
 

Computer response: 
ans = 
 
Controller 
 
Type desired %OS  15 
Type desired settling time   2 
 
K = 
 
  0.1871    0.0406   -0.0387 
 
ans = 
 
Observer 
 
Type desired %OS  10 
 
wn = 
 
  38.6899 
 
l = 
 
  1.0e+006 * 
 
    0.0009 
   -0.0286 
    5.5691 
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ANSWERS TO REVIEW QUESTIONS 

1. Both dominant and non-dominant poles can be specified with state-space design techniques. 

2. Feedback all state variables to the plant's input through a variable gain for each. Decide upon a closed-

loop characteristic equation that has a pole configuration to yield a desired response. Write the 

characteristic equation of the actual system. Match coefficients and solve for the values of the variable 

gains.  

3. Phase-variable form 

4. The control signal developed by the controller must be able to affect every state variable. 

5. If the signal-flow diagram is in the parallel form, which leads to a diagonal system matrix, controllability 

can be determined by inspection by seeing that all state variables are fed by the control signal. 

6. The system is controllable if the determinant of the controllability matrix is non-zero. 

7. An observer is a system that estimates the state variables using information from the output of the actual 

plant. 

8. If the plant's state-variables are not accessible, or too expensive to monitor 

9. An observer is a copy of the plant. The difference between the plant's output and the observer's output is 

fed back to each of the derivatives of the observer's state variables through separate variable gains.  

10. Dual phase-variable 

11. The characteristic equation of the observer is derived and compared to a desired characteristic equation 

whose roots are poles that represent the desired transient response. The variable gains of each feedback 

path are evaluated to make the coefficients of the observer's characteristic equation equal the coefficients of 

the desired characteristic equation. 

12. Typically, the transient response of the observer is designed to be much faster than that of the 

controller. Since the observer emulates the plant, we want the observer to estimate the plant's states rapidly.  

13. Det[A-BK], where A is the system matrix, B is the input coupling matrix, and K is the controller. 

14. Det[A-LC], where A is the system matrix, C is the output coupling matrix, and L is the observer.  

15. The output signal of the system must be controlled by every state variable. 

16. If the signal-flow diagram is in the parallel form, which leads to a diagonal system matrix, observability 

can be determined by inspection by seeing that all state variables feed the output.  

17. The system is observable if the determinant of the observability matrix is non-zero. 



Solution to Problems   12-7 
 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
 
 
 
 
SOLUTIONS TO PROBLEMS  

1.  

i. 2 2

( 3) 1( ) *( 3)
( 4) 8 16

sG s s
s s s

+
= = +

+ + +
 

 
a. 

 
b. 

 
c. 

[ ]
1 2

0 1 0
 ;  3 1

( 16) ( 8) 1
r y

k k

• ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥− + − + ⎣ ⎦⎣ ⎦

x x x  
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d.  

2
2 1

3( )
( 8) ( 16)

sT s
s k s k

+
=

+ + + +
 

1 1 1 2 2 3 3

2 1 1 2 2 2 3 3

3 1 1 2 2 3 3

1 2 3

1 2 2 3

1 2

( 20 71.25 ) 71.25 71.25 71.25

27.5 ( 10 27.5 ) 27.5 27.5

6.25 6.25 6.25 6.25
( 20 71.25 ) 71.25 71.25

27.5 ( 10 27.5 ) 27.5
6.25 6.25 6

k x k x k x r

k x x k x k x r

k x k x k x r
k k k

k x k k
k k

•

•

•

= − − − − +

= + − + + −

= − − − +

− − − −
= − +

− − −

x

x

x

A [ ]
3

2

3 2
1 2 3 1 2 3 3

71.25
 ; 27.5  ; 1 1 1

.25 6.25

200( 7 25)( )
4 (120 285 110 25 ) (800 2850 2200 750 ) 5000

k

s sT s
s k k k s k k k s k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ +
=

+ + − + + + − + +

B C

 

e. 
 

Part d. yields same result as i(d). 

ii. 2

1( ) *
( 5)( 7) 12 35

sG s s
s s s s

= =
+ + + +

 

a. 
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b. 

 
c. 

[ ]
1 2

0 1 0
 ;  0 1

( 35) ( 12) 1
r y

k k

• ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥− + − + ⎣ ⎦⎣ ⎦

x x x  

d. 

2
2 1

( )
( 12) ( 35)

sT s
s k s k

=
+ + + +

 

e.  

[ ]1

1 2

0 1 0
( ) (s ) ;  ;  ;  0 1

( 35) ( 12) 1
T s

k k
− ⎡ ⎤ ⎡ ⎤

= − = = =⎢ ⎥ ⎢ ⎥− + − + ⎣ ⎦⎣ ⎦
C I A B A B C  

which yields the same result as ii(d). 

iii. 2
3 2

20 ( 7) 1( ) = = *  (20s +140s)
( 3)( 7)( 9) 19 111 189

s sG s
s s s s s s

+
+ + + + + +

 

a. 
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b. 

 

c.  

[ ]
1 2 3

0 1 0 0
0 0 1 0   ;  0 140 20

( 189) ( 111) ( 19) 1
r y

k k k

•
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦

x x x  

d. 

3 2
3 2 1

20 ( 7)( ) =
( 19) ( 111) ( 189)

s sT s
s k s k s k

+
+ + + + + +

 

e. 

[ ]1

1 2 3

0 1 0 0
( ) (s ) ;  0 0 1 ;  0 ;  0 140 20

( 189) ( 111) ( 19) 1
T s

k k k

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦

C I A B A B C

 

which yields the same result as iii(d). 

  

iv. 2
3 2

30( 2)( 3) 1( ) = = *  (30s 150 180)
( 4)( 5)( 6) 15 74 120

s sG s s
s s s s s s

+ +
+ +

+ + + + + +
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a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 

 
c.  

[ ]
1 2 3

0 1 0 0
 0 0 1 0   ;  180 150 30

( 120) ( 74) ( 15) 1
r y

k k k

•
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦

x x x  
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d. 
2

3 2
3 2 1

30 150 180( ) =
( 15) ( 74) ( 120)

s sT s
s k s k s k

+ +
+ + + + + +

 

e.  

[ ]1

1 2 3

0 1 0 0
( ) (s ) ;  0 0 1 ;  0 ;  180 150 30

( 120) ( 74) ( 15) 1
T s

k k k

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦

C I A B A B C

 

which yields the same result as iv(d). 

 

v.  
2

2
2 2 4 3 2

s 8 15 1( ) = = *  (s 8 15)
(s 4 10)(s 3 12) 7 34 78 120

sG s s
s s s s s s

+ +
+ +

+ + + + + + + +
 

a. 

 
b. 
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c.  

[ ]

1 2 3 4

0 1 0 0 0
0 0 1 0 0

 ;  15 8 1 0
0 0 0 1 0

( 120) ( 78) ( 34) ( 7) 1

r y

k k k k

•

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − + − +⎢ ⎥ ⎣ ⎦⎣ ⎦

x x x  

d. 
2

4 3 2
4 3 2 1

8 15( )
( 7) ( 34) ( 78) ( 120)

s sT s
s k s k s k s k

+ +
=

+ + + + + + + +
 

 

 

 

 

e.  

 

[ ]1

1 2 3 4

0 1 0 0 0
0 0 1 0 0

( ) (s ) ;  ;  ;  15 8 1 0
0 0 0 1 0

( 120) ( 78) ( 34) ( 7) 1

T s

k k k k

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − + − +⎢ ⎥ ⎣ ⎦⎣ ⎦

C I A B A B C

 

which yields the same result as v(d). 

2.  
i 
a. The output is  

 

 

Since, 
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2
1 1 1 1 2 2 1

2 3 2 1 1 2 3

(30 270 420) 30 270 420 30 270 420
30( 5 ) 270 420 420 120 30

y s s x x x x x x x
x x x x x x x

= + + = + + = + +
= − + + + = + +

&& & &
 

b. 

 

[ ]1

1 2 3

0 1 0 0
( ) (s ) ;  0 5 1 ;  0 ;  420 120 30

( 3) 1
T s

k k k

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = − = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − +⎣ ⎦ ⎣ ⎦

C I A B A B C

 

3 2
3 3 2 1

30( 2)( 7)( )
( 8) (5 15)

s sT s
s k s k k s k

+ +
=

+ + + + +
 

 
 
 
 
 
 
 
 
 
ii 
a. 

x 3 s
1

u 5 1 1

-2 -2

7
3

2x
1

x
y

1
r

-k 1

-k 2

-k 3

s
1

s
1

-10

1

 

b. 

 T(s) = C(sI − A)−1B; A =
0 1 0
0 0 1

−k1 −k2 −(5k3 + 2)

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;  B =

0
0
5

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; C = -3 1 1[ ] 

 

                                =
5(s2 + 3s + 7)

s3 + (5k3 + 4)s2 + (10k3 + k2 + 14)s + (50k3 + k1 + 20)
 

3. 
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i  
 a.  

250( 7 25) 6.25 27.5 71.25( )
( 10)( 20) 10 20

s sG s
s s s s s s

+ +
= = − +

+ + + +
 

 

 
 

b. Writing the state equations: 

 

1 1

2 2

3

20 71.25

10 27.5

6.25

x u

x u

u

•

•

•

= − +

= − −

=

x

x

x

 

But, u = -k1x1 - k2x2 - k3x3 + r . Substituting into the state equations,  

 

1 1 1 2 2 3 3

2 1 1 2 2 2 3 3

3 1 1 2 2 3 3

( 20 71.25 ) 71.25 71.25 71.25

27.5 ( 10 27.5 ) 27.5 27.5

6.25 6.25 6.25 6.25

k x k x k x r

k x x k x k x r

k x k x k x r

•

•

•

= − − − − +

= + − + + −

= − − − +

x

x

x

 

Therefore, T(s) = C(sI - A)-1B, where 
 

[ ]
1 2 3

1 2 2 3

1 2 3

( 20 71.25 ) 71.25 71.25 71.25
27.5 ( 10 27.5 ) 27.5  ; 27.5  ; 1 1 1
6.25 6.25 6.25 6.25

k k k
k x k k
k k k

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + = − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

A B C

 

Hence,  
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2

3 2
1 2 3 1 2 3 3

200( 7 25)( )
4 (120 285 110 25 ) (800 2850 2200 750 ) 5000

s sT s
s k k k s k k k s k

+ +
=

+ + − + + + − + +

 
 
 
 
 
ii  

 a.  

G(s) =
50(s + 3)(s + 4)

(s + 5)(s + 6)(s + 7)
=

50
s + 5

−
300
s + 6

+
300
s + 7

 

 

400
9

100
9

400
9

1

1

1

1
-30

-15

3x

x 1

2x
-k1

-k 2

-k 3

-550

-300
-6

300

-7
 

b. Writing the state equations: 

 

x1

•
= −5x1 + 50u

x2

•
= −6x2 − 300u

x3

•
= −7x3 + 300u

 

But, 

u = −k1x1 − k2x2 − k3x3 + r  

Substituting into the state equations, collecting terms, and converting to vector-matrix form yields 
 

x
•

=
−(5 + k1) −50k2 −50k3

300k1 (300k2 − 6) 300k3

−(300k1 + 7) −300k2 300k3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
x +

50
−300
300

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
r

y = 1 1 1[ ]x

 

 
Therefore, T(s) = C(sI - A)-1B, or 
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T (s) =
50s2 +1750s + (6900 − 88200k1 )

s3 + (300k3 − 300k2 + k1 + 11)s2 + 2(1475k3 − 750k2 + 3k1 − 7350k3k1 + 7350k2k1 + 15)s
                                                                                                      + 300k3 (23 − 294k1)

 

 
 
 
4.  

The plant is given by 

3 2
20 20( )

( 2)( 4)( 8) 14 56 64
G s

s s s s s s
= =

+ + + + + +
 

 

The characteristic polynomial for the plant with phase-variable state feedback is  
3 2

3 2 1( 14) ( 56) ( 64) 0s k s k s k+ + + + + + =  

The desired characteristic equation is 
2 3 2( 53.33)( 10.67 106.45) 64 675.48 5676.98s s s s s s+ + + = + + +  

based upon 15% overshoot, Ts = 0.75 second, and a third pole ten times further from the imaginary 

axis than the dominant poles. Comparing the two characteristic equations,  

1 25612.98, 619.48,k k= = and 3 50k = . 

5. 
a. The system in controller canonical form is:  

 

 

A =

− an− 1 −a n− 2 L − a1 − a0
1 0 L 0 0
M M M M M

0 0 L 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;B =

1
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;C = c1 c2 c3 c4[ ] 

The characteristic equation of the plant is: 

sn + an-1sn-1  + . . . + a1s + a0 = 0 

Forming the closed-loop system by feeding back each state variable and the input to u forming 

u = -Kx + r 

where  

K = [k1   k2   . . .  kn] 

and substituting u into the state equation, we obtain 

x
.

= Ax + B u = (A − BK)x + Br  

Forming A - BK: 
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A − BK =

−(an−1+ k1) −(an− 2 + k2 ) L −(a1+ kn−1 ) −(a0+ kn )
1 0 L 0 0
M M M M M

0 0 L 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

The characteristic equation is: 

sn + (an-1 + k1)sn-1  + (an-2 + k2). . . + (a1 + kn-1)s + (a0 + kn) = 0 

Assuming a desired characteristic equation, 

sn + dn-1sn-1  + dn-2sn-2+ . . . + d2s2 + d1s + d0  = 0 

 

Equating coefficients, 

di = ai + kn-i ; i = 0, 1, 2, ... n-1  

from which 

kn-i  = di – ai                                                                                  (1) 

b. The desired characteristic equation is 

s3 +15.9s2 +136.08s + 413.1 = 0  
the characteristic equation of the plant is 

s3 + 5s 2 + 4s + 0 = 0 
Using Eq. (1) above, k3-i = di – ai. Therefore, k3 = d0 – a0 = 413.1 – 0 = 413.1; k2 = d1 – a1 = 136.08 – 

4 = 132.08; k1 = d2 – a2 = 15.9 – 5 = 10.9. Hence,  

K = 10.9 132.08 413.1[ ] 

6. 
Using Eqs. (4.39) and (4.34) to find ζ = 0.5169 and ωn = 7.3399, respectively. Factoring the 

denominator of Eq. (4.22), the required poles are -3.7942 ± j6.2832. We place the third pole at -2 to 

cancel the open loop zero. Multiplying the three closed-loop pole terms yields the desired 

characteristic equation:   

s3 + 9.5885s2 + 69.0516s + 107.7493 = 0.   Since G(s) = 
100s2 + 2200s + 4000
s3 + 8 s2 + 19 s + 12

  , the controller 

canonical form is A =
−8 −19 −12
1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; B =
1
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; C = [100   2200   4000]. The first row of A 

contains the coefficients of the characteristic equation. Thus comparing the first row of A to the 

desired characteristic equation and using the results of Problem 5, k1 = -(9.5885 - 8) = 1.5885;  

k2 = -(69.0516 - 19) = 50.0516; and k3 = -(107.7493 - 12) = 95.7493. 

7.  
The plant is given by 
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3 2
20( 2) 20 40( )

( 5)( 7) 12 35 0
s sG s

s s s s s s
+ +

= =
+ + + + +

 

The characteristic polynomial for the plant with phase-variable state feedback is 
3 2

3 2 3( 12) ( 35) ( 0)s k s k s k+ + + + + +  

The desired characteristic equation is  
2 3 2( 20)( 4 11.45) 24 91.45 229s s s s s s+ + + = + + +  

based upon 10% overshoot, Ts =2 seconds, and a third pole ten times further from the imaginary axis 

than the dominant poles. Comparing the two characteristic equations,  

1 2229,  56.45,k k= = and 3k 12= . 

 
 
 

 
8.  

Drawing the signal-flow diagram,  
 

x 3 s
1

u 1 1 1

-2 -4

102x
1

x
y

1
r

-k 1

-k 2

-k 3

s
1

s
1

 
Writing the state equations yields the following A matrix: 

 

 
from which,  

 
  

The desired characteristic equation is (s + 80)(s2 + 16s + 183.137) = s3 + 96s2 + 1463.1s + 14651 

based upon 10% overshoot, Ts = 0.5 second, and a third pole ten times further from the imaginary 

axis than the dominant poles. Comparing the two characteristic equations, , k1 = 14651, k2 = 1095.1, 

and k3 = 90. 

9.  
Expand G(s) by partial fractions and obtain 
 

20 1.67 5 6.67( )
( 4)( 6) 4 6

G s
s s s s s s

= = + −
+ + + +
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Drawing the signal-flow diagram with state feedback 

 

Writing the state equations yields the following system matrix: 
 

1 2 3

1 2 3

1 2 3

1.67 1.67 1.67
5 (5 4) 5

6.67 6.67 (6.67 6)

k k k
k k k
k k k

− − −⎡ ⎤
⎢ ⎥= − − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

A  

 
Evaluating the characteristic polynomial yields, 
 

2
3 2 1 3 2 1 1( 6.67 5 1.67 10) ( 26.68 30 16.7 24) 40.08s k k k s k k k s k− = − + + + + − + + + +I A  

From Problem 7, the desired characteristic polynomial is  

3 224 91.45 229s s s+ + + .  

Equating coefficients and solving simultaneously yields  
 

1 25.71,  4.58,k k= = − and 3k 4.10= − . 
 
10.  

Writing the state equation and the controllability matrix for the system yields 
 

x.  = 
-5 1
-1 -3

 x  + 
b

1

b
2

 u ; C
M

 = B AB  = 
b

1
-5b

1
+b

2

b
2

-b
1

-3b
2  

The controllability matrix has a zero determinant if b2 = b1. 
11.  

The controllability matrix is given by Eq. (12.26) for each of the following solutions: 
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a. 
 

A  = 
-2 0 1
0 -2 0
0 0 -3

 ; B  = 
0
1
1

  ; C
M

 = 
0 1 -5
1 -2 4
1 -3 9

 ; det C
M

 = 0 ; system is uncontrollable

 
 

b. 
 

A  = 
-2 1 0
0 -2 0
0 0 -3

 ; B  = 
0
1
1

  ; C
M

 = 
0 1 -4
1 -2 4
1 -3 9

 ; det  C
M

 = -1 ;  system is controllable

 

c. 
 

A  = 
-4 1 0
0 0 1
0 0 -3

 ; B  = 
0
2
1

  ; C
M

 = 
0 2 -7
2 1 -3
1 -3 9

 ; det  C
M

 = 7 ;   system is controllable

 

 

d. 
 

A  = 
-4 1 0
0 0 1
-5 0 -3

 ; B  = 
1
0
1

  ; C
M

 = 
1 -4 17
0 1 -8
1 -8 44

 ; det  C
M

 = -5;   system is controllable

 

e. 
 

A  = 
0 1
-6 -5

 ; B  = 
1
-2

 ;  C
M

 = 
1 -2
-2 4

 ; det  C
M

 =0 ;   system  is uncontrollable
 

f. 
 

A  = 
-4 0 0
0 -5 0
0 0 -6

 ; B  = 
1
0
1

  ; C
M

 = 
1 -4 16
0 0 0
1 -6 36

 ; det  C
M

 =0;   system  is uncontrollable

 

This system can also be determined uncontrollable by inspection. 
 
12.     

Program: 
'(d)' 
A=[-4 1 0;0 0 1;-5 0 -3] 
B=[1;0;1] 
Cm=ctrb(A,B) 
Rank=rank(Cm) 
pause 
'(f)' 
A=[-4 0 0;0 -5 0;0 0 -6]        
B=[1;0;1]          
Cm=ctrb(A,B)        
Rank=rank(Cm)  
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Computer response:  
ans = 
 
(d) 
 
A = 
 
    -4     1     0 
     0     0     1 
    -5     0    -3 
 
B = 
 
     1 
     0 
     1 
 
Cm = 
 
     1    -4    17 
     0     1    -8 
     1    -8    44 
 
Rank = 
 
     3 
 
ans = 
 
(f) 
 
A = 
 
    -4     0     0 
     0    -5     0 
     0     0    -6 
B = 
 
     1 
     0 
     1 
 
Cm = 
 
     1    -4    16 
     0     0     0 
     1    -6    36 
 
Rank = 
 
     2 

 13. 

From Eq. (12.46) we write the controller canonical form: Acc =
−8 −17 −10
1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; Bcc =

1
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

. 

The controllability matrices are found using Eq. (12.35). For the original system of Eq. (12.44),  
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CMz =
0 0 1
0 1 −3
1 −1 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
. For the controller canonical form, CMcc =

1 −8 47
0 1 −8
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

. The transformation 

matrix is, P = CMzCMcc-1 = 
0 0 1
0 1 5
1 7 10

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

.  Comparing the first row of Acc with the desired 

characteristic equation, Eq. (12.50), Kcc = [ -2    -4    10]. Transforming back to the original system, 

Kz = KccP-1 = [-20    10    -2]. 

14. 

 Drawing the signal-flow diagram for the plant in cascade form yields  

z 3 s
1

u 1 1 1

-10 -8 -3

6
1

2z
1z

y
s
1

s
1

 

 

Writing the A and B matrices for the z system,  
    

Az   Bz 
-3 1 0 0 
0 -8 1 0 
0 0 -10 1 

Writing the A and B matrices for the x (phase-variable) system, 

 
Ax   Bx 
0 1 0 0 
0 0 1 0   Phase-Variable Form 

-240 -134 -21 1 
 
From the phase variable from, the characteristic polynomial is s3 + 21s2 + 134s + 240. 

Finding the controllability matrices and their determinants for the z and x systems shows that there is 

controllability,  

 
CMz Controllability Matrix of z  CMx Controllability Matrix of x 

0 0 1 0 0 1 

0 1 -18 0 1 -21 

1 -10 100 1 -21 307 

     
Det(CMz) -1  Det(CMx) -1 
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Using Eq. (12.39), the transformation matrix P and its inverse are found to be  
 

P Transformation Matrix z=Px PINV   

1 0 0 1.00 0.00 0.00 

3 1 0 -3.00 1.00 0.00 

24 11 1 9.00 -11.00 1.00 

Using the given transient requirements, and placing the third closed-loop pole over the zero at -6 

yields the following desired closed-loop characteristic polynomial: 

(s2 + 8s + 45.78)(s + 6) = s3 + 14s2 + 93.78s + 274.68 

Using the phase-variable system with state feedback the characteristic polynomial is 

s3 + (k3 + 21)s2 + (k2 + 134)s + (k1 + 240) 

Equating the two characteristic polynomials yields the state feedback vector for the x system as 

 
Kx Controller for x 

34.68 -40.22 -7 

Using Eq. (12.42),  

 

Kz Controller for z 

92.34 36.78 -7 

15.  
Program: 
A=[-3 1 0;0 -8 1;0 0 -10];       %Generate system matrix A 
B=[0;0;1];                       %Generate input coupling matrix B 
C=[3 1 0];                       %Generate output coupling matrix C 
D=0;                             %Generate matrix D 
Po=10;                           %Input desired percent overshoot 
Ts=1;                            %Input desired settling time 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
                                 %Calculate required damping ratio 
wn=4/(z*Ts);                     %Calculate required natural 
                                 %frequency 
[num,den]=ord2(wn,z);            %Produce a second-order system that  
                                 %meets transient requirements 
r=roots(den);                    %Use denominator to specify 
                                 %dominant poles 
poles=[r(1) r(2) -6];            %Specify pole placement for all 
                                 %poles. 
                                 %A few tries at the the third-pole 
                                 %value shows T(s) with a closed-  
                                 %loop zero at -7.  
                                 %Thus, choose the third pole to  
                                 %cancel this zero. 
K=acker(A,B,poles)               %Calculate controller gains in z- 
                                 %system 
Anew=A-B*K;                      %Form compensated A matrix 
Bnew=B;                          %Form compensated B matrix 
Cnew=C;                          %Form compensated C matrix 
Dnew=D;                          %Form compensated D matrix 
[numt,dent]=ss2tf(Anew,Bnew,Cnew,Dnew); 
                                 %Form T(s) 
'T(s)'                           %Display label 
T=tf(numt,dent)                  %Display T(s) 
poles=pole(T)                    %Display poles of T(s) 
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Computer response: 

 
K = 
 
   92.3531   36.7844   -7.0000 
 
ans = 
 
T(s) 
 
Transfer function: 
   -3.553e-015 s^2 + s + 6 
------------------------------ 
s^3 + 14 s^2 + 93.78 s + 274.7 
  
poles = 
 
  -4.0000 + 5.4575i 
  -4.0000 - 5.4575i 
  -6.0000 
           

16.  
Expanding by partial fractions,  

G(s) =
(s + 6)

(s + 3)(s + 8)(s +10)
=

0.085714
(s +3)

−
0.2

(s +8)
−

0.28571
(s +10)

 

Writing the A and B matrices for the z system with ki's set to zero,  

 

Az   Bz 
-3 0 0 0.085714 
0 -8 0 0.2 
0 0 -10 -0.28571 

 

Writing the A and B matrices for the x (phase-variable) system, 

 
Ax   Bx 
0 1 0 0 
0 0 1 0   Phase-Variable Form 

-240 -134 -21 1 
 
From the phase variable from, the characteristic polynomial is s3 + 21s2 + 134s + 240. 

Finding the controllability matrices and their determinants for the z and x systems shows that there is 

controllability,  

 
CMz Controllability Matrix of z  CMx Controllability Matrix of x 

0.085714 -0.257142 0.771426 0 0 1 

0.2 -1.6 12.8 0 1 -21 

-0.28571 2.8571 -28.571 1 -21 307 

     

Det(CMz) 0.342850857  Det(CMx) -1 
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Using Eq. (12.39), the transformation matrix P and its inverse are found to be  

 
P Transformation Matrix z=Px PINV   

6.85712 1.542852 0.085714 0.33 -0.50 -0.25 
6 2.6 0.2 -1.00 4.00 2.50 

-6.85704 -3.14281 -0.28571 3.00 -32.00 -25.00 
 
Using the given transient requirements, and placing the third closed-loop pole over the zero at -6 

yields the following desired closed-loop characteristic polynomial: 

(s2 + 8s + 45.78)(s + 6) = s3 + 14s2 + 93.78s + 274.68 

Using the phase-variable system with state feedback the characteristic polynomial is 

s3 + (k3 + 21)s2 + (k2 + 134)s + (k1 + 240) 

Equating the two characteristic polynomials yields the state feedback vector for the x system as 

 
Kx Controller for x  

34.7062 -40.2156 -7 
Using Eq. (12.42),  

Kz Controller for z  
30.78443595 45.7845 65.78543678 

 
 
 
 
 
17.  

Draw signal-flow diagram showing state variables, z, at the output of each subsystem and the state 

variables, w, at the output of the integrators. 

s
1

u 1 1

-3 -8

6

1

3z 1z ys
1

z 2 s
1

1 1

-10

1z

w1
w2w3

 
 

Recognizing that z2 = 6w2 − 8w2 + w3 = −2w2 + w3 , we can write the state equations for w as  

 

w
•

=
−10 −2 1
0 −8 1
0 0 −3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
w +

0
0
1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
u

y = 1 0 0[ ]w

 

Writing the relationship between z and w yileds 
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z =
1 0 0
0 −2 1
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
w = P−1w  

Thus 

P =
1 0 0
0 −0.5 0.5
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

Converting the state equations in w to state equations in z, we use Eqs. (5.87) and obtain the A matrix 

and B vector as 

Az   Bz 
-10 1 0 0 
0 -8 3 1 
0 0 -3 1 

 
Writing the A and B matrices for the x (phase-variable) system, 
 

Ax   Bx 
0 1 0 0 
0 0 1 0   Phase-Variable Form 

-240 -134 -21 1 
 
From the phase variable from, the characteristic polynomial is s3 + 21s2 + 134s + 240 

Finding the controllability matrices and their determinants for the z and x systems shows that there is 

controllability,  

 
CMz Controllability Matrix of z  CMx Controllability Matrix of x 

0 1 -15 0 0 1 
1 -5 31 0 1 -21 
1 -3 9 1 -21 307 
     

Det(CMz) -8  Det(CMx) -1 
 

Using Eq. (12.39), the transformation matrix P and its inverse are found to be  
 

P Transformation Matrix z=Px PINV   
6 1 0 -0.25 -0.13 0.13 

60 16 1 2.50 0.75 -0.75 
80 18 1 -25.00 -3.50 4.50 

 
Using the given transient requirements, and placing the third closed-loop pole over the zero at -6 

yields the following desired closed-loop characteristic polynomial: 

(s2 + 8s + 45.78)(s + 6) = s3 + 14s2 + 93.78s + 274.68 

Using the phase-variable system with state feedback the characteristic polynomial is 

s3 + (k3 + 21)s2 + (k2 + 134)s + (k1 + 240) 



12-28   Chapter 12:   Design via State Space  

Copyright ©   2011 by John Wiley & Sons, Inc. 

Equating the two characteristic polynomials yields the state feedback vector for the x system as 

 
Kx Controller for x  

34.68 -40.22 -7 
 

Using Eq. (12.42),  

Kz Controller for z  
65.78 -10 3 

18.  
Using Eqs. (4.39) and (4.34) to find ζ = 0.5169 and ωn = 18.3498 respectively. Factoring the 

denominator of Eq. (4.22), the required poles are -9.4856 ± j15.708. We place the third pole 10 times 

further at -94.856. Multiplying the three closed-loop pole terms yields the desired characteristic 

equation:  s3 + 114s2 + 2136s + 31940 = 0. Representing the plant in parallel form: 

0 0 0
0 5 0
0 0 9

⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦
parA ; 

2.222
5

2.778

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

parB ; Cpar = [1   1   1]. Using Eq. (12.26), 

2.222 0 0
5 25 125

2.778 25 225.018

⎡ ⎤
⎢ ⎥= − −⎢ ⎥

−⎢ ⎥⎣ ⎦
MparC , which is controllable since the determinant is 5555.4. Since 

3 2

100( )
14 45

G s
s s s

=
+ +

, the controller canonical form is 

14 45 0
1 0 0
0 1 0

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ccA ; Bcc =
1
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;  

C = [0  0  100 ]. Using Eq. (12.26), CMcc = 

1 14 151
0 1 14
0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, which is controllable since the 

determinant is 1. The first row of Acc contains the coefficients of the characteristic equation. 

Comparing the first row of Acc to the desired characteristic equation and using the results of Problem 

5, (14 + k1) = 114; (45 + k2)= 2136; and (0 + k3)= 31940. Hence Kcc =[31940  2091  110]. The 

transformation matrix is, P = CMparCMcc-1 = 

2.222 31.108 99.99
5 45 0

2.778 13.89 0

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

. Transforming back to 

the original system, Kpar = KccP-1 = [1.1  7882  25682]. 
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19. 

a. 

>> A=[-0.014 0 -1.4 0 0; 0.023 -0.023 -0.023 0 0; 0.134 0.67 -0.67 0.38 0.003264; 0 0 0.06 -0.06 0; 

0 0 0.0017 0 -0.001]; 

>> B = [1;0;0;0;0]; 

>> rank(ctrb(A,B)) 

ans = 

     5 

The controllability matrix has full rank so the system is controllable. 

 

b.  

>> [P,Ad]=jordan(A) % P is the similarity transformation matrix used for diagonalization, Ad the 

diagonalized A matrix 

 

P = 

 

  -0.0000 + 0.0000i   1.3181 + 0.1838i   0.0446            -1.6808             1.3181 - 0.1838i 

  -0.0000 + 0.0000i  -0.0336 - 0.0948i  -0.0286             0.0958            -0.0336 + 0.0948i 

   0.0000 - 0.0000i   0.1916 - 0.1798i   0.0014            -0.3845             0.1916 + 0.1798i 

   0.0000 - 0.0000i  -0.0605 - 0.0176i   0.0370             0.0841            -0.0605 + 0.0176i 

   0.0012 - 0.0000i  -0.0016 - 0.0002i  -0.0000             0.0020            -0.0016 + 0.0002i 
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Ad = 

 

  -0.0010                  0                  0                  0                  0           

        0            -0.1875 + 0.2151i        0                  0                  0           

        0                  0            -0.0577                  0                  0           

        0                  0                  0            -0.3343                  0           

        0                  0                  0                  0            -0.1875 - 0.2151i 

 

>> Bd=inv(P)*B 

 

Bd = 

 

   1.0000 + 0.0000i 

   1.0000           

   1.0000 + 0.0000i 

   1.0000 + 0.0000i 

   1.0000 + 0.0000i 
 

20.  

G(s) = 
1

s(s + 3)(s + 7)
= 

1
s3 +10s2 + 21s + 0

 

 Writing the A and C matrices for the observer canonical system,  
  

Az   
-10 1 0 
-21 0 1 
0 0 0 
   

Cz  
1 0 0 

  
The characteristic polynomial is s3 + 10s2 + 21s + 0. 

Now check observability by calculating the observability matrix and its determinant.  
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OMz Observability Matrix of z  
1 0 0 

-10 1 0 
79 -10 1 

   
Det(OMz) 1  

  

Using the given transient requirements, and placing the third closed-loop pole 10 times further from 

the imaginary axis than the dominant poles yields the following desired characteristic polynomial: 

(s + 300)(s2 + 60s + 5625) = s3 + 360s2 + 23625s +1687500  

Equating this polynomial to Eq. (12.67), yields the observer gains as: 

 
Lz Observer for z 
350  
23604  
1687500  

21.  
Using Eqs. (4.39) and (4.34) to find ζ = 0.5912 and ωn = 19.4753 respectively. Factoring the 

denominator of Eq. (4.22), the required poles are  -11.513 ± j15.708. We place the third pole 20 times 

further at –230.26. Multiplying the three closed-loop pole terms yields the desired characteristic 

equation:  s3 + 253.28s2 + 5681.19s + 87334.19 = 0.    

Representing the plant in observer canonical form: 

25 1 0
171 0 1
315 0 0

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

ocA ; Boc =
0
0

10

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

;  

Coc = [1   0   0]. The first column of Aoc contains the coefficients of the characteristic equation. 

Comparing the first column of Aoc to the desired characteristic equation and using Eq. (12.67), l1 = 

253.28 - 25 = 228.28; l2 = 5681.19 - 171 = 5510.19; and l3 = 87334.19 - 315 = 87019.19. Hence,  

Loc = [228.28  5510.19  87019.19]T.  

22.  

The A, L, and C matrices for the phase-variable system are: 
 

A =
0 1 0
0 0 1
0 −21 −10

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

 
C = 1 0 0[ ] 
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L =
l1

l2

l3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

Hence,  

λ − (A − LC) =
λ + l1 −1 0

l2 λ −1
l3 21 λ +10

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

or 
λ − (A − LC) = λ3 + (10 + l1)λ

2 + (21+ 10l1 + l2 )λ + (21l1 +10l2 + l3 )  

From Problem 19, the desired characteristic polynomial is λ3 + 360λ2 + 23625λ + 1687500.  

Equating coefficients yields: 

10 + l1 = 360; (21+10l1 + l2 ) = 23625; (21l1 +10l2 + l3 ) =1687500  

Solving successively,  

l1 = 350; l2 = 20104; l3 = 1479110  

23.  
The A, L, and C matrices for the phase-variable system are: 

A =
0 1

−45 −14
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; C = 2 1[ ]; L =

l1
l2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

Hence,  

λ − (A − LC) =
λ + 2l1 l1 −1
2l2 + 45 l2 + λ +14

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

or 
λ2 + (2l1 + l2 +14)λ + (2l2 −17l1 + 45)  

From the problem statement, the desired characteristic polynomial is λ2 + 144λ + 14400.  

Equating coefficients yields, 
 

(2l1 + l2 +14) =144; (2l2 −17l1 + 45) =14400  

Solving simultaneously,  

l1 = −671.2; l2 = 1472.4 

24.  
The A matrix for each part is given in the solution to Problem 11. Each observability matrix is 

calculated from Eq. (12.79).  

a.  
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b. 

 
c. 

 
d. 

 
e. 

 
f. 

 
25. 

Program: 
'(a)' 
A=[-2 0 1;0 -2 0;0 0 -3]       %Form compensated A matrix 
C=[5 5 5]                       %Form compensated C matrix 
Om=obsv(A,C)                    %Form observability matrix 
Rank=rank(Om)                   %Find rank of observability   
                                %matrix 
'(f)' 
A=[-4 0 0;0 -5 0;0 0 -6]        %Form compensated A matrix 
C=[1 1 1]                       %Form compensated C matrix 
Om=obsv(A,C)                    %Form observability matrix 
Rank=rank(Om)                   %Find rank of observability 
 
Computer response: 
ans = 
 
(a) 
 
A = 
 
    -2     0     1 
     0    -2     0 
     0     0    -3 
 
C = 
 
     5     5     5 
 
Om = 
 
     5     5     5 
   -10   -10   -10 
    20    20    20 
 
Rank = 
 
     1 
 
ans = 
 
(f) 
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A = 
 
    -4     0     0 
     0    -5     0 
     0     0    -6 
 
C = 
 
     1     1     1 
 
Om = 
 
     1     1     1 
    -4    -5    -6 
    16    25    36 
 
Rank = 
 
     3 

 26.  
Representing the system in state space yields 

x.   =  
0 1
-1 -2

 x  +  
0
1

 u  ;   y  =  c
1

c
2

 x  
 

Using Eq. (12.79),  

O
M

 = 
c
1

c
2

-c
2

(c
1

-2c
2

)
  and det O

M
 = c

1
2 - 2c

1
c
2

 +c
2
2

 
Thus, the system is unobservable if c1 = c2. 

27.  
The A and C matrices for the system represented in cascade form is 
 

Az   
-20 1 0 
0 -13 1 
0 0 -5 

 
Cz  
1 0 0 

 
The characteristic polynomial found from the transfer function of the plant is 

s3 + 38s2 + 425s + 1300 

From this characteristic polynomial, we can write observer canonical form of the state equations. The 

A and C matrices of the observer canonical form are given below as 

 
Ax   
-38 1 0 

-425 0 1 
-1300 0 0 

 
Cx  
1 0 0 
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To test observability, we write the observability matrices for both systems and show that both 

observability matrices have non zero determinants. Using Eq. (12.79),  

 
OMz Observability Matrix of z  OMx Observability Matrix of x 

1 0 0 1 0 0 
-20 1 0 -38 1 0 
400 -33 1 1019 -38 1 

     
Det(OMz) 1  Det(OMx) 1 

Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as 
 

P Transformation Matrix z=Px PINV   
1 0 0 1.00 0.00 0.00 

-18 1 0 18.00 1.00 0.00 
25 -5 1 65.00 5.00 1.00 

 
Using the characteristic polynomial given in the problem statement, the plant’s characteristic 

equation, and Eq. (12.67), the observer for the observer canonical system is 

Lx Observer for x 
562 

39575 
1498700 

 
Using Eq. (12.92), the observer for the cascade system is found to be 
 
 
 
 

Lz Observer for z 
562  

29459 
1314875 

28. 
Program: 
A=[-20 1 0;0 -13 1;0 0 -5] 
B=[0;0;1] 
C=[1 0 0] 
D=0 
poles=roots([1 600 40000 1500000]) 
L=acker(A',C',poles); 
'L' 
L' 

 
Computer response: 
A = 
 
   -20     1     0 
     0   -13     1 
     0     0    -5 
 
B = 
 
     0 
     0 
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     1 
 
C = 
 
     1     0     0 
 
D = 
 
     0 
 
poles = 
 
  1.0e+002 * 
 
  -5.2985           
  -0.3508 + 0.4001i 
  -0.3508 - 0.4001i 
 
 
ans = 
 
L 
 
 
ans = 
 
  1.0e+006 * 
 
    0.0006 
    0.0295 
    1.3149 

 
 
 
 
29.  

Expanding the plant by partial fractions, we obtain 

G(s) =
1

(s + 5)(s +13)(s + 20)
=

0.008333
(s + 5)

−
0.017857
(s +13)

+
0.0095238
(s + 20)

 

 
The A and C matrices for the system represented in parallel form is 

Az   
-5 0 0 
0 -13 0 
0 0 -20 

 
Cz  
1 1 1 

 
The characteristic polynomial found from the transfer function of the plant is 

s3 + 38s2 + 425s + 1300 

From this characteristic polynomial, we can write the observer canonical form of the state equations. 

The A and C matrices of the observer canonical form are given below as 
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Ax   
-38 1 0 
-425 0 1 

-1300 0 0 
 

Cx  
1 0 0 

  
To test observability, we write the observability matrices for both systems and show that both 

observability matrices have non zero determinants. Using Eq. (12.79),  

 
OMz Observability Matrix of z  OMx Observability Matrix of x 

1 1 1 1 0 0 
-5 -13 -20 -38 1 0 
25 169 400 1019 -38 1 

     
Det(OMz) -840  Det(OMx) 1 

Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as 
 

P Transformation Matrix z=Px PINV   
0.2083333 -0.04166667 0.008333333 1.00 1.00 1.00 
-3.017857 0.232142857 -0.01785714 33.00 25.00 18.00 
3.8095238 -0.19047619 0.00952381 260.00 100.00 65.00 

Using the characteristic polynomial given in the problem statement, the plant’s characteristic 

equation, and Eq. (12.67), the observer for the observer canonical system is 

 
Lx Observer for x 
562 

39575 
1498700 

 
Using Eq. (12.92), the observer for the parallel system is found to be 

 
Lz Observer for z 

10957.29167  
-19271.4821 
8876.190476 

30.   
Use Eqs. (4.39) and (4.42) to find ζ =  0.5912 and ωn = 135.328 respectively. Factoring the 

denominator of Eq. (4.22), the required poles are  -80 ± j109.15. We place the third pole 10 times 

further at -800. Multiplying the three closed-loop pole terms yields the desired characteristic 

equation:   

s3 + 960s2 +   146313.746s + 14650996.915 = 0.    
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Since G(s) = 
50

s3 + 18s2 + 99s + 162
  , the plant in observer canonical form is: Aoc =

−18 1 0
−99 0 1
−162 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; 

Boc =
0
0

50

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; Coc = [1   0   0]. Using Eq. (12.79), OMoc =
1 0 0

−18 1 0
225 −18 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

, which is observable since 

the determinant is 1. Since G(s) = 
50

s3 + 18s2 + 99s + 162
  , the phase-variable form is  

Apv =
0 1 0
0 0 1

−162 −99 −18

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; Bpv =
0
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; C = [50   0   0 ]. Using Eq. (12.79),  

OMpv = 
50 0 0
0 50 0
0 0 50

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

, which is observable since the determinant is 125000. The first column of 

Aoc contains the negatives values of the coefficients of the characteristic equation. Comparing the 

first column of Aoc to the desired characteristic equation and using Eq. (12.67), l1 = 960-18 = 942; l2 

= 146313.746-99 = 146214.746; and l3 = 14650996.915-162= 14650834.915. Hence,  

Loc = [942  146214.746  14650834.915].  The transformation matrix is,  

 

P = OMpv-1OMoc = 
0. 02 0 0
−0. 36 0.02 0
4.5 −0.36 0. 02

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 

Transforming back to the original system, Lpv = PLoc = [18.84  2585.175   244618.39]T. 

 

31. 

a. 

Since both systems are in phase variable form it readily follows that: 

23)det( 2 ++=− sss 1AI  

and 

6116)det( 23
2 +++=− ssss AI  
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[ ]
23

2
1
0

23
2

13

02()( 221 ++
=⎥

⎦

⎤
⎢
⎣

⎡
++

⎥
⎦

⎤
⎢
⎣

⎡
−
+

=−= −

ssss
s

s

ssG 1
1

11 B)AIC  

 

[ ]

23
2

6116
)3(2

1
0
0

6116

)611(6
)6(6

16116

026()(

223

23

2

2

2222

++
=

+++
+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
+−
+++

=−= −

sssss
s

sss

sss
sss

sss

ssG B)AIC 1
 

b. 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

20
02

11

1
M1 AC

C
O ; 2)( =M1Orank  System 1 is observable 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

62212
260
026

2
2
22

22

2

M

AC
AC

C
O ; 2)( 2 =MOrank  System 2 is not observable 

 

 
 
 32.  

The open-loop transfer function of the plant is T(s) = C(sI-A)-1B = 
s+2

s2-s-2
  . 

Using Eqs. (12.115), the closed-loop state equations with integral control is 

 

 
The characteristic polynomial is 

s3 + (k2-1)s2 + (k2 + k1 + ke - 2)s + 2ke 

The desired characteristic polynomial is calculated from the desired transient response stated in the 

problem. Also, the third pole will be placed to cancel the zero at -2. Hence, the desired characteristic 

polynomial is 

(s + 2)(s2 + 16s + 183.137) = s3 + 18s2 + 215.14s + 366.27 

Equating coefficients of the characteristic polynomials yields, 

ke = 183.135, k2 = 19, k1 = 15.005 
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33.  

The open-loop transfer function of the plant is T(s) = C(sI-A)-1B = 
s+3

s2+7s+10
  . 

Using Eqs. (12.115), the closed-loop state equations with integral control is 

 

 
The characteristic polynomial is 

s3 + (k2 + 7)s2 + (2k2 + k1 + ke + 10)s + 3ke 

The desired characteristic polynomial is calculated from the desired transient response stated in the 

problem. Also, the third pole will be placed to cancel the zero at -3. Hence, the desired characteristic 

polynomial is 

 
Equating coefficients of the characteristic polynomials yields,  

ke = 183.137, k2 = 12, k1 = 14.003 
 
 

SOLUTIONS TO DESIGN PROBLEMS 
 

34. 
Writing the A and B matrices for (G(s) represented in phase-variables form, 
 

A   B 
0 1 0 0 
0 0 1 0 

1.30E+06 4551 -286 10 
 
From the phase-variable from, the characteristic polynomial is s3 + 286s2 - 4551s - 1301586. 

Finding the controllability matrix and it’s determinant shows that there is controllability,  

 

CM  
0 0 10 
0 10 -2860 

10 -2860 863470 
   

Det(CM) -1000  
 

Using the given transient requirements, and arbitrarily placing the third closed-loop pole more than 5 

times further than the dominant pair at -50 yields the following desired closed-loop characteristic 

polynomial: 



Solution to Problems   12-41 
 

Copyright ©   2011 by John Wiley & Sons, Inc. 

(s2 + 16s + 134.384)(s + 50) = s3 + 66s2 + 934.4s + 6719.2Using the phase-variable system with state 

feedback the characteristic polynomial is 

s3 + (k3 + 286)s2 + (k2 - 4551)s + (k1 - 1301586) 

Equating the two characteristic polynomials yields the state feedback vector for the phase-variable 

system as 
K  

1308305.2 5485.4 -220 

35.  

a. The open loop characteristic polynomial is 

01
2

2
323 0005016.01288.0854.0)66.0)(19.0)(004.0( asasasssssss +++=+++=+++

The desired characteristic polynomial is 

01
2

2
3232 0005016.01288.0854.0)5.0()

15
1( dsdsdssssss +++=+++=++  

So we have 

0017204.0001 =−= adk  

05769.0112 −=−= adk  

2207.0223 −=−= adk  

 

b. 

>> A = [0 1 0; 0 0 1; -0.0005016 -0.1288 -0.854]; 

>> B=[0;0;1]; 

>> C = [0.000078 0.00414 0.01]; 

>> K=[0.0017204 -0.05769 -0.2207]; 

>> eig(A-B*K) 

 

ans = 

  -0.49995739538301 

  -0.06584435043216 

  -0.06749825418482 
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36.  
a.   By inspection the phase variable form of this system results in  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

5250.001265.0000078.0
100
010

A ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

B ;  

 

]010958.01001197.0[ 44 −− ×−×−=C ; 0=D  

 
b. The characteristic equation of the closed loop system will have 3 poles. Two of them will be 

placed at 1sec
75
1

sec300
4 −=−  to satisfy the settling time spec. The third pole will be placed 

farther to the left of the latter, say at -0.05. The desired characteristic polynomial is 
00000088445.000150689.00766.0)05.0()0133.0( 232 =+++=++ sssss  

The closed loop matrix is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+−+−
=−

)525.0()01265.0()000078.0(
100
010

321 kkk
BKA  

Which will result in a characteristic polynomial 

0)000078.0()01265.0()525.0( 32
2

3
3 =++++++ ksksks   

Equating coefficients for both polynomials we get 4484.03 −=k  , 01114311.02 −=k  and 

5
1 1091555.6 −×−=k  

c.  

>> A=[0 1 0; 0 0 1; -0.000078 -0.01265 -0.525]; 

>> B=[0;0;1]; 

>> C=[-0.01197e-4 -0.9580e-4 0]; 

>> D=0; 

>> K=[-6.91555e-5 -0.01114311 -0.4484]; 

>> eig(A-B*K) %check 

 

ans = 
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   -0.0133 

   -0.0133 

   -0.0500 

 

>> step(A-B*K,B,C,D) 
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-0.06

-0.04

-0.02

0
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Time (sec)
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pl

itu
de

 

 

37. 

a.   The system’s transfer function 
4166510

83335)( 2 ++
=−= −

ss
ssG BA)IC( 1  

b.    From the transfer function by inspection 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
1041665
10

pA ; ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

pB ; ]083335[=pC  

c.   A 20% overshoot gives 7.0=ζ , and 43.114
==

s
n Tζ

ω so the desired characteristic 

equation is 65.130162 222 ++=++ ssss nn ωζω  

Equating gains we have  
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65.13041665 1 =+ k  and 1610 2 =+ k  giving ]635.41534[][ 21 −== kkK x  

 
d.   The Controllability matrix for the original system is 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

833350
0167

ABBCMz  

The Controllability matrix for the phase variable system is 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

==
101
10

PPpx BABCM  

The transformation matrix is 

⎥
⎦

⎤
⎢
⎣

⎡
== −

083335
16716671

MxMzCCP  

The set of gains for the original system is: 

[ ]4991.00360.01 −== −PKK xZ  

       e. 65.13016))(det( 2 ++=−− ssBKAsI z  

       f. 

 >> A=[0 -83.33; 500 -10]; 

>> B = [166.67;0]; 

>> C=[0 1]; 

>> K=[0.0360 -0.499]; 

>> step(A-B*K,B,C,0) 
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38. 

a. We start by expressing the system in Observable Canonical form. From problem IV, the transfer 

function is 

2

2

2 41665101

83335

4166510
83335

)(
)()(

ss

s
sssR

sCsG
++

=
++

== , so we can write 

( )⎟
⎠
⎞

⎜
⎝
⎛ −+−= )(41665)(833351)(101)( sCsR

s
sC

s
sC  from which we get the following 

diagram: 
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By direct inspection we can write 

sE
x
x

x
x

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
83335

0
041665
110

1

0

1

0

&

&
 and ⎥

⎦

⎤
⎢
⎣

⎡
=

1

0]01[
x
x

y  

 

The characteristic equation for this system is 041665102 =++ ss with roots at  

-5±j204.06. To make the observer 10 times faster its poles will be placed at -50±j2040.6 

The desired characteristic equation is 010167.4100 62 =×++ ss  

The error equation is given by 

xxX l
l

eeLCAe ⎥
⎦

⎤
⎢
⎣

⎡
+−

+−
=−=

0)41665(
1)10(

)(
2

1&  which has a characteristic equation 

0)41665()10( 21
2 =++++ lsls  

By equation coefficients with the desired characteristic equation we obtain 

90101001 =−=l  and 41253354166510167.4 6
2 =−×=l  
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b. 

x1

x0

-K-

l2

90

l1

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

-10

Gain5

-K-

Gain4

-K-

Gain3

-10

Gain2

-K-

Gain1

-K-

Gain

1

Constant
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39. 

a. From the solution of Problem III the system can be written in phase variable form as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

5250.001265.0000078.0
100
010

zA ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

zB ;  

 

]010958.01001197.0[ 44 −− ×−×−=zC ; 0=zD  

The corresponding observability matrix is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×××
×−×−

×−×−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−−−

−−

−−

444

44

44

10491.0100121.0100001.0
10958.010019.00

010958.010012.0

2
zz

zz

z

Mz

AC
AC

C
O  

It is readily verified that the rank of MzO is 3 and the system is observable. 

Next we write the system in observable canonical form, for this let 

32

3

4

2

4

23

44

000078.001265.0525.01

1001197.010958.0

000078.001265.0525.0
1001197.010958.0

)(
)()(

sss

ss
sss

s
sR
sCsG

+++

×
−

×−

=
+++

×−×−
==

−−

−−

 

From which we can write: 
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(⎜⎜
⎝

⎛
⎜
⎝
⎛ −×−+−×−+−= −− 000078.0)(1001197.01)(01265.0)(10958.01)(525.01)( 44 CsR

s
sCsR

s
sC

s
sC

 

Giving the following state flow diagram. 

 

 

 

The system in observer canonical form is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
00000078.0
1001265.0
015250.0

xA ; 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×−
×−=

−

−

4

4

1001197.0
10958.0

0

xB ;  

 

]001[=xC ; 0=xD  

And 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−
+−
+−

=−
00)000078.0(
10)01265.0(
01)5250.0(

3

2

1

l
l
l

x xxCLA  

With a characteristic polynomial 

0)000078.0()01265.0()525.0( 32
2

1
3 =++++++ llsls  
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The plant has poles at -0.5, -0.0128 and -0.0122. To obtain the tenfold speed increase in the 

observer arbitrarily we will place the observer poles 10 times to the left of the plant poles, namely -

5, -0.128 and -0.122. The resulting desired polynomial is 

0007808.01406.075.0 23 =+++ sss  Comparing the observer and the desired polynomials 

we obtain: 

225.0525.075.01 =−=l  

128.001265.01406.02 =−=l  

0077.0000078.0007808.03 =−=l  

Or 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0077.0
128.0
225.0

xL  

The observability matrix for the observable canonical system is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
1525.0263.0
01525.0
001

2
M

AC
AC

C
O

xx

xx

x

x  

The transformation matrix is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××−×
×−××−
××−×

== −−

444

444

444

1014101101
106881014101
1033480106881014

mx
1

MzOOP  

Finally 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×−
×

==
700

10379
107286.1

2

6

xz OLL  
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b. 
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40.  

Controller design: 

The transfer function for the plant is 

 

G(s) = 
5

(s+0.4)(s+0.8)(s+5)   = 
5

s3+6.2s2+6.32s+1.6
    

 
The characteristic polynomial for the plant with phase-variable state feedback is 

s3 + (6.2 + k3)s2 + (6.32 + k2)s + (1.6 + k1)  

Using the given transient response of 5% overshoot and Ts = 10 minutes, and placing the third pole 

ten times further from the imaginary axis than the dominant pair, the desired characteristic equation is  

(s + 4)(s2 + 0.8s + 0.336) = s3 + 4.8s2 + 3.536s + 1.344. 

Comparing the two characteristic equations, k1 = - 0.256, k2 = -2.784, and k3 = -1.4. 

Observer design: 

The A and C matrices for the system represented in phase-variable form is 

Az
0 1 0
0 0 1

-1.6 -6.32 -6.2  
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Cz
5 0 0  

 
The characteristic polynomial found from the transfer function of the plant is 

s3 + 6.2s2 + 6.32s + 1.6 

From this characteristic polynomial, we can write the dual phase-variable form of the state equations. 

The A and C matrices of the dual phase-variable form are given below as 

Ax
-6.2 1 0

-6.32 0 1
-1.6 0 0  
Cx
1 0 0  

To test observability, we write the observability matrices for both systems and show that both 

observability matrices have nonzero determinants. Using Eq. (12.79),  

 
OMz Observability Matrix of z OMx Observability Matrix of x

5 0 0 1 0 0
0 5 0 -6.2 1 0
0 0 5 32.12 -6.2 1

Det(OMz) 125 Det(OMx) 1  
 

Using Eq. (12.89), we obtain the transformation matrix, P, and its inverse as 
 

P Transformation Matrix z=Px PINV
0.2 0 0 5.00 0.00 0.00

-1.24 0.2 0 31.00 5.00 0.00
6.424 -1.24 0.2 31.60 31.00 5.00  

 
Using the characteristic polynomial given in the problem statement, the observer for the dual phase-

variable system is 

Lx
41.8

347.28
1342.4  

Using Eq. (12.92), the observer for the cascade system is found to be 

Lz
8.36

17.624
106.376  

41. 
a.   As per equation (12.115) in the text the augmented system is: 
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[ ]
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⎥
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⎦

⎤
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⎣

⎡
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010
010500
67.166)67.16633.83(67.166

1
0
0

010
0

67.166
0

67.166
10500

33.830

1
0
0

0

2
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2

1
21

2

1

2

1

C
BBKA

&
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Nx
x
x

y 2

1

0C  

The characteristic equation for the system above is: 

e

e

kskksks

s
s

kkks
s

83335)83335416657.1666()67.16610(

10
010500
67.16667.16633.8367.166

)det(

21
2

1
3

21

++++++=

+−
−++

=− augAI
 

 

The desired polynomial for sec5.0=sT and %OS=20% with an extra far away pole is: 

5.65326.93066)50)(65.13016( 232 +++=+++ ssssss  

Equating coefficients in both polynomials we have: 

336.06667.16610 11 =⇒=+ kk  

4955.06.93083335416657.1666 221 −=⇒=++ kkk  

0783884.05.653283335 =⇒= ee kk  
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b. 

1

r

-K-

ke

-K-

k2

-K-

k1

c

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

-K-

Gain2

-K-

Gain1

-K-

-83.33
10

 

 

 
 



Solution to Problems   12-57 
 

Copyright ©   2011 by John Wiley & Sons, Inc. 

42. 
a. Using the following signal-flow graph,  

800

1
s 20000

1
s 1

1
s 1

y
x1x2x3

u

-800 -100
 

the plant is represented in state space with  
 

A =
0 1 0
0 −100 20000
0 0 −800

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; B =
0
0

800

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; and C = [1   0   0]. 

Using Eq. (12.26),  

CM =
0 0 1.6E07
0 1.6E07 −1.44E10

800 −6.4E05 5.12E08

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

The system is controllable since the determinant of CM = -2.04e17. Use Eqs. (4.39) and (4.42) to find 

ζ =  0.5912 and ωn = 135.3283 respectively. Factoring the denominator of Eq. (4.22), the required 

poles are  -80 ± j109.15. Place the third pole 10 times farther at = 800. Multiplying the three closed-

loop pole terms yields the desired characteristic equation 

s3 + 960s2 +   1.463E05s + 1.4651E07 = 0. 

Since the plant's characteristic equation is s3 + 900s2 + 80000s, we write the plant in controller 

canonical form as 

Acc =
−900 −80000 0

1 0 0
0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; Bcc =

1
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; and Ccc = [0   0   1.6E07] 

The controllability matrix for controllable canonical form is 

CMcc =
1 −900 730000
0 1 −900
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

Comparing the first row of Acc to the desired characteristic equation and using the results of Problem 

5, k1 = -(900 - 960) = 60; k2 = -(80000 - 1.463E05) = 66300; and k3 = -(0 - 1.465E07) = 1.465E07. 

Hence. 

Kcc = [60 66300 1.465E07] 

The transformation matrix is,  

P = CMCMcc-1 = 
0 150 1.6E07
0 1. 6E07 0

800 8E04 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Transforming back to the original system,  

K = KccP-1 = [9.1569E-01  3.7696E-03   7.5E-02] 

The controller compensated system is  

A - BK = 
0 1 0
0 −100 20000

−732. 55 −3.0157 −860

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; B =
0
0

800

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; C = [1   0   0] 

b. To evaluate the steady-state error, use Eq. (7.89) where  

A - BK = 
0 1 0
0 −100 20000

−732. 55 −3.0157 −860

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

is the system matrix. Thus,  

s I A B K−− 1−  =  

1
s 3 960 s 2 1.4631×105 s 14651040+ + +

s 2 960 s 1.4631 ×105+ + s 860+ 20000

14651040− s 2 860 s+ 20000 s

732.55 s− 73255− 3.0157 s− 732.55− s 2 100 s+  
 

The steady-state error is given by 

sR(s)[1 C s I A B K−− 1− B− ] as s->0 

For a step input, R(s) = 1/s. Since  

1 C s I A B K−− 1− B−  = 1 1
s 3 960 s 2 1.4631×105 s 14651040+ + +

16000000−  

 for a step input e(∞) = -0.092073. Using Eqs. 12.115, the system with integral control is:  

A I

0 1 0 0
0 100− 20000 0

800 K 1− 800 K 2− 800 K 3− 800− 800 K e
1− 0 0 0

= ; B I

0
0
0
1

= ; 

C I 1 0 0 0, , ,=  

Assume the following desired characteristic equation: 

(s3 + 960s2 + 1.463E05s + 1.4651E07)(s + 1000) = 

s 4 1960 s 3 1.1063×106 s 2 1.6096×108 s 1.4651×1010+ + + +  = 0, 

 which is the desired characteristic equation from part (a) plus an additional pole at -1000. But the 

integral controlled system characteristic equation is 

 |sI - AI| = s 4 100 8 K 3 9+ s 3 80000 K 3 200 K 2 1+ + s 2 16000000 K 1 s 16000000 K e+ + + +  

Equating coefficients to the desired characteristic equation 

100 8 K 3 9+ 1960= ; 80000 K 3 200 K 2 1+ + 1.1063×106= ; 16000000 K 1 1.6096×108= ; 

16000000 K e 1.4651×1010=  

 Solving for the controller gains: K e 915.69= ; K 1 10.06= ; K 2 0.05752= ; and K 3 1.325= . 
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Substituting into AI yields the integral controlled system. 

A I

0 1 0 0

0 100− 20000 0

8048.2− 46.016− 1860− 7.3255 ×105

1− 0 0 0

= ; B I

0
0
0
1

= ; C I 1 0 0 0, , ,=  

Finding the characteristic equation as a check yields  

s 4 1960 s 3 1.1063×106 s 2 1.6096×108 s 1.4651×1010+ + + +  

which checks with the desired characteristic equation. Now check the steady-state error using  

Eq. (7.89) using the integral controlled system. We find the error is zero. 

c.  
Program: 
 'Controller Compensated' 
A=[0 1 0;0 -100 20000;-732.55 -3.0157 -860]; 
B=[0;0;800]; 
C=[1 0 0]; 
D=0; 
S=ss(A,B,C,D) 
step(S) 
title('Controller Compensated') 
pause 
'Integral Controller' 
A=[0 1 0 0;0 -100 20000 0;-8048.2 -46.016 -1860 7.3255e05;-1 0 0 0]; 
B=[0;0;0;1]; 
C=[1 0 0 0]; 
D=0; 
S=ss(A,B,C,D) 
step(S) 
title('Integral Controller') 
 
Computer response:  
ans = 
 
Controller Compensated 
 
  
a =  
           x1      x2      x3 
   x1       0       1       0 
   x2       0    -100  2e+004 
   x3  -732.5  -3.016    -860 
  
  
 
b =  
        u1 
   x1    0 
   x2    0 
   x3  800 
  
  
c =  
       x1  x2  x3 
   y1   1   0   0 
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d =  
       u1 
   y1   0 
  
Continuous-time model. 
 
ans = 
 
Integral Controller 
 
  
a =  
               x1          x2          x3          x4 
   x1           0           1           0           0 
   x2           0        -100      2e+004           0 
   x3       -8048      -46.02       -1860  7.326e+005 
   x4          -1           0           0           0 
  
  
b =  
       u1 
   x1   0 
   x2   0 
   x3   0 
   x4   1 
  
  
c =  
       x1  x2  x3  x4 
   y1   1   0   0   0 
  
  
d =  
       u1 
   y1   0 
  
Continuous-time model.  
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43. 
Program: 
%Enter G(s) 
numg=0.072*conv([1 23],[1 0.05 0.04]); 
deng=conv([1 0.08 0.04],poly([0.7 -1.7])); 
'G(s)' 
G=tf(numg,deng) 
'Plant Zeros' 
plantzeros=roots(numg) 
%Input transient response specifications 
Po=input('Type %OS  '); 
Ts=input('Type settling time   '); 
 
%Determine pole location 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
wn=4/(z*Ts); 
%wn=pi/(Tp*sqrt(1-z^2)); 
[num,den]=ord2(wn,z); 
r=roots(den); 
poles=[r(1) r(2) plantzeros(2) plantzeros(3)] 
characteristiceqdesired=poly(poles) 
 
 
%Find controller canonical form of state-space representation of G(s) 
'Controller Canonical Form' 
[Ac Bc Cc Dc]=tf2ss(numg,deng) 
 
%Design controller gains 
Kc=acker(Ac,Bc,poles) 
Acnew=Ac-Bc*Kc 
Bcnew=Bc 
Ccnew=Cc 
Dcnew=Dc 
characteristiceqcontroller=poly(eig(Acnew)) 
 
%Transform to phase-variable form 
P=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 
'Phase-variable form' 
Ap=inv(P)*Ac*P 
Bp=inv(P)*Bc 
Cp=Cc*P 
Dp=Dc 
Kp=acker(Ap,Bp,poles) 
Apnew=Ap-Bp*Kp 
Bpnew=Bp 
Cpnew=Cp 
Dpnew=Dp 
characteristiceqphase=poly(eig(Apnew)) 
[numt,dent]=ss2tf(Apnew,Bpnew,Cpnew,Dpnew); 
T=tf(numt,dent); 
'T(s)' 
T=minreal(T) 
step(T) 
'T(s)' 
Tzpk=zpk(T) 
'Poles of T(s)' 
p=pole(T) 
 
 
 
 
 
 
 
Computer response: 
 ans = 
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G(s) 
 
  
Transfer function: 
 0.072 s^3 + 1.66 s^2 + 0.08568 s + 0.06624 
--------------------------------------------- 
s^4 + 1.08 s^3 - 1.07 s^2 - 0.0552 s - 0.0476 
  
 
ans = 
 
Plant Zeros 
 
 
plantzeros = 
 
 -23.0000           
  -0.0250 + 0.1984i 
  -0.0250 - 0.1984i 
 
Type %OS  10 
Type settling time   0.5 
 
poles = 
 
  -8.0000 +10.9150i  -8.0000 -10.9150i  -0.0250 + 0.1984i  -0.0250 - 
0.1984i 
 
 
characteristiceqdesired = 
 
    1.0000   16.0500  183.9775    9.7969    7.3255 
 
 
ans = 
 
Controller Canonical Form 
 
 
Ac = 
 
   -1.0800    1.0700    0.0552    0.0476 
    1.0000         0         0         0 
         0    1.0000         0         0 
         0         0    1.0000         0 
 
 
Bc = 
 
     1 
     0 
     0 
     0 
 
 
Cc = 
 
    0.0720    1.6596    0.0857    0.0662 
 
 
Dc = 
 
     0 
 
 
Kc = 
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   14.9700  185.0475    9.8521    7.3731 
 
 
Acnew = 
 
  -16.0500 -183.9775   -9.7969   -7.3255 
    1.0000         0         0         0 
         0    1.0000         0         0 
         0         0    1.0000         0 
 
 
Bcnew = 
 
     1 
     0 
     0 
     0 
 
 
Ccnew = 
 
    0.0720    1.6596    0.0857    0.0662 
 
 
Dcnew = 
 
     0 
 
 
characteristiceqcontroller = 
 
    1.0000   16.0500  183.9775    9.7969    7.3255 
 
 
ans = 
 
Phase-variable form 
 
 
Ap = 
 
         0    1.0000         0         0 
         0         0    1.0000         0 
         0         0         0    1.0000 
    0.0476    0.0552    1.0700   -1.0800 
 
 
Bp = 
 
     0 
     0 
     0 
     1 
 
 
Cp = 
 
    0.0662    0.0857    1.6596    0.0720 
 
 
Dp = 
 
     0 
 
Kp = 
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    7.3731    9.8521  185.0475   14.9700 
 
 
Apnew = 
 
         0    1.0000         0         0 
         0         0    1.0000         0 
         0         0         0    1.0000 
   -7.3255   -9.7969 -183.9775  -16.0500 
 
 
Bpnew = 
 
     0 
     0 
     0 
     1 
 
 
Cpnew = 
 
    0.0662    0.0857    1.6596    0.0720 
 
 
Dpnew = 
 
     0 
 
 
characteristiceqphase = 
 
    1.0000   16.0500  183.9775    9.7969    7.3255 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
 0.072 s + 1.656 
------------------ 
s^2 + 16 s + 183.1 
  
 
ans = 
 
T(s) 
 
  
Zero/pole/gain: 
    0.072 (s+23) 
-------------------- 
(s^2  + 16s + 183.1) 
  
 
ans = 
 
Poles of T(s) 
 
 
p = 
 
  -8.0000 +10.9150i 
  -8.0000 -10.9150i 
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44. 

Program: 
%Enter G(s) 
numg=0.072*conv([1 23],[1 0.05 0.04]); 
deng=conv([1 0.08 0.04],poly([0.7 -1.7])); 
'Uncompensated Plant Transfer Function' 
'G(s)' 
G=tf(numg,deng) 
'Uncompensated Plant Zeros' 
plantzeros=roots(numg) 
%Input transient response specifications 
Po=input('Type %OS  '); 
Ts=input('Type settling time   '); 
 
%Determine pole location 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
wn=4/(z*Ts); 
%wn=pi/(Tp*sqrt(1-z^2)); 
[num,den]=ord2(wn,z); 
r=roots(den); 
'Desired Observer Poles' 
poles=[r(1) r(2) plantzeros(2) plantzeros(3)]' 
'Desired Characteristic Equation of Observer' 
poly(poles) 
 
 
%Find phase variable form of state-space representation of Estimated Plant 
%Find controller canonical form 
[Ac Bc Cc Dc]=tf2ss(numg,deng); 
 
%Transform to phase-variable form of Uncompensated Plant 
P=[0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0]; 
'Phase-variable form of Estimated Plant' 
Ap=inv(P)*Ac*P 
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Bp=inv(P)*Bc 
Cp=Cc*P 
Dp=Dc 
 
%Design observer gains for phase variables 
'Observer gains' 
Lp=acker(Ap',Cp',poles)'  
 'Error System Matrix' 
Aep=Ap-Lp*Cp 
'Error System Eigenvalues' 
eig(Aep) 
'Error Characteristic Polynomial' 
poly(eig(Aep)) 
 
Computer response: 
 ans = 
 
Uncompensated Plant Transfer Function 
 
 
ans = 
 
G(s) 
 
  
Transfer function: 
 0.072 s^3 + 1.66 s^2 + 0.08568 s + 0.06624 
--------------------------------------------- 
s^4 + 1.08 s^3 - 1.07 s^2 - 0.0552 s - 0.0476 
  
 
ans = 
 
Uncompensated Plant Zeros 
 
 
plantzeros = 
 
 -23.0000           
  -0.0250 + 0.1984i 
  -0.0250 - 0.1984i 
 
Type %OS  10 
Type settling time   0.5/15 
 
ans = 
 
Desired Observer Poles 
 
 
poles = 
 
  1.0e+002 * 
 
  -1.2000 - 1.6373i 
  -1.2000 + 1.6373i 
  -0.0003 - 0.0020i 
  -0.0003 + 0.0020i 
 
 
ans = 
 
Desired Characteristic Equation of Observer 
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ans = 
 
  1.0e+004 * 
 
    0.0001    0.0240    4.1218    0.2070    0.1648 
 
 
ans = 
 
Phase-variable form of Estimated Plant 
 
 
Ap = 
 
         0    1.0000         0         0 
         0         0    1.0000         0 
         0         0         0    1.0000 
    0.0476    0.0552    1.0700   -1.0800 
 
 
Bp = 
 
     0 
     0 
     0 
     1 
 
 
Cp = 
 
    0.0662    0.0857    1.6596    0.0720 
 
 
Dp = 
 
     0 
 
 
ans = 
 
Observer gains 
 
 
Lp = 
 
  1.0e+004 * 
 
   -0.0002 
    0.0043 
   -0.0986 
    2.5994 
 
 
ans = 
 
Error System Matrix 
 
 
Aep = 
 
  1.0e+004 * 
 
    0.0000    0.0001    0.0003    0.0000 
   -0.0003   -0.0004   -0.0071   -0.0003 
    0.0065    0.0084    0.1636    0.0072 
   -0.1722   -0.2227   -4.3139   -0.1873 
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ans = 
 
Error System Eigenvalues 
 
 
ans = 
 
  1.0e+002 * 
 
  -1.2000 + 1.6373i 
  -1.2000 - 1.6373i 
  -0.0003 + 0.0020i 
  -0.0003 - 0.0020i 
 
 
ans = 
 
Error Characteristic Polynomial 
 
 
ans = 
 
  1.0e+004 * 
 
    0.0001    0.0240    4.1218    0.2070    0.1648 
 

45. 
a. Using Eqs. (12.115), the system with integral control is: 

A I

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

K 1− 0.0476+ K 2− 0.0552+ K 3− 1.07+ K 4− 1.08− K e
0.06624− 0.08568− 1.6596− 0.072− 0

= ; B I

0
0
0
0
1

= ; 

C I 1 0 0 0 0, , , ,=  

Assume the following desired characteristic equation,  

s 8 10.915 i+ + s 8 10.915 i−+ s 0.025 0.1984 i+ + s 0.025 0.1984 i−+ s 23+  = 

s 5 39.05 s 4 553.13 s 3 4241.3 s 2 232.65 s 168.43+ + + + +  
which is the desired characteristic equation from Problem 35 plus an additional pole at -23, the 

closed-loop zero. But the integral controlled system characteristic equation is |sI - AI| =  

s 5 K 4 1.08+ s 4 K 3 0.072 K e 1.07−+ s 3 K 2 1.6596 K e 0.0552−+ s 2 K 1 0.08568 K e 0.0476−+ s+ + + +
0.06624 K e+

 
Equating coefficients to the desired characteristic equation 

K 4 1.08+ 39.05= ; K 3 0.072 K e 1.07−+ 553.13= ; K 2 1.6596 K e 0.0552−+ 4241.3= ; 

K 1 0.08568 K e 0.0476−+ 232.65= ; and 0.06624 K e 168.43=  

Solving for the controller gains 

K 1 14.829= ; K 2 21.328= ; K 3 371.12= ; K 4 37.97=  and K e 2542.8=  

Substituting into AI yields the integral controlled system, 
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A I

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

14.781− 21.272− 370.05− 39.05− 2542.8
0.06624− 0.08568− 1.6596− 0.072− 0

= ; B I

0
0
0
0
1

= ;  

 
C I 0.06624 0.08568 1.6596 0.072 0, , , ,=  
 
Finding the characteristic equation as a check yields  

s 5 39.05 s 4 553.13 s 3 4241.3 s 2 232.65 s 168.43+ + + + +  

which checks with the desired. Now check the steady-state error using Eq. (7.89) using the integral 

controlled system. We find the error is zero. 

b.  

Program: 
%Design with Integral Control 

'State-Space Representation of System with Integral Control' 
AI=[0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;... 
-14.781 -21.272 -370.05 -39.05 2542.8;... 
-0.06624 -0.08568 -1.6596 -0.072 0] 
BI=[0;0;0;0;1] 
CI=[0.06624 0.08568 1.6596 0.072 0] 
DI=0 
 
%Convert to transfer function 
[numt,dent]=ss2tf(AI,BI,CI,DI); 
'Integral Control Transfer Function' 
'T(s)' 
T=tf(numt,dent) 
'Integral Control Transfer Function Zeros' 
roots(numt) 
'Integral Control Transfer Function Poles' 
roots(dent) 
step(T) 
title('Step Response with Integral Controller') 
 
 
Computer response:  
 ans = 
 
State-Space Representation of System with Integral Control 
 
 
AI = 
 
  1.0e+003 * 
 
         0    0.0010         0         0         0 
         0         0    0.0010         0         0 
         0         0         0    0.0010         0 
   -0.0148   -0.0213   -0.3700   -0.0390    2.5428 
   -0.0001   -0.0001   -0.0017   -0.0001         0 
 
 
BI = 
     0 
     0 
     0 
     0 
     1 
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CI = 
 
    0.0662    0.0857    1.6596    0.0720         0 
 
 
DI = 
 
     0 
 
 
ans = 
 
Integral Control Transfer Function 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
-1.421e-014 s^4 + 183.1 s^3 + 4220 s^2 + 217.9 s + 168.4 
-------------------------------------------------------- 
s^5 + 39.05 s^4 + 553.1 s^3 + 4241 s^2 + 232.6 s + 168.4 
  
 
ans = 
 
Integral Control Transfer Function Zeros 
 
 
ans = 
 
  1.0e+016 * 
 
   1.2883           
  -0.0000           
  -0.0000 + 0.0000i 
  -0.0000 - 0.0000i 
 
 
ans = 
 
Integral Control Transfer Function Poles 
 
 
ans = 
 
 -22.9998           
  -8.0001 +10.9151i 
  -8.0001 -10.9151i 
  -0.0250 + 0.1984i 
  -0.0250 - 0.1984i 
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46. 

a. We start by verifying that the system is controllable. For a system of this order it is best 
to use MATLAB or other computing tools: 

 
>>A=[-5 0 0 0 0; 0 0 1 0 0; -10.5229 -1066.67 -3.38028 23.5107 0; 0 993.804 3.125 -23.5107 0; 0 0 
0 10 -10]; 
>>B = [5;0;0;0;0]; 
>>C = [0 0 0 1.2331e5 0]; 
>>D=0; 
>> rank(ctrb(A,B)) 
 
ans = 
 
     5 
 
So the system is controllable. 
 
 We also use MATLAB to find the corresponding transfer function: 
>> [n,d]=ss2tf(A,B,C,D) 
 
n = 
 
  1.0e+010 * 

 
                   0   0.000000000000000   0.000000000000000  -0.002027466873438  -
0.665044169115073  -6.447695003806981 
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d = 
 
  1.0e+004 * 
 
   0.000100000000000   0.004189098000000   0.152603651149600   1.914775683863999   
7.933055056779999   8.565653331000014 
 
 We use this information to express the system in state variable form: 

0 1 0 0 0 0
0 0 1 0 0 0

' 0 0 0 1 0 0
0 0 0 0 1 0

85650 79330 19150 1526 41.89 1

xx x u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦

 

[ ]64476950038.1 6650441691.2 20274668.73 0 0 xy x= − − −  

 
Now we find the desired characteristic polynomial using a dominant pole approximation. 

Assuming a pair of complex conjugate dominant poles 
4 2ss

n

T
ξω

= = , or 2nξω = . The 

10% OS requirement corresponds to a 0.6ξ = damping factor. Therefore the dominant 

poles can be included in a 2 2 22 4 11.11n ns s s sξω ω+ + = + + . The must be a total of 5 
poles so arbitrarily we will add three poles 10 times to the left of the dominant poles, namely 

3( 20)s +  . Thus the desired polynomial is given by: 

2 3

5 4 3 2

( ) ( 4 11.11)( 20)
64 1451.11 13466.77 45335.47 88903.11

D s s s s
s s s s s

= + + +
= + + + + +

 

Under state feedback, the phase variable system will become  

=

1 2 3 4 5

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

(85650 ) (79330 ) (19150 ) (1526 ) (41.89 ) 1x x x x x

x u

k k k k k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + − + − + − + ⎣ ⎦⎣ ⎦

 

With a characteristic equation given by: 
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5 4 3 2
5 4 3

2 1

det( ( ))
(41.89 ) (1526 ) (19150 )

(79330 ) (85650 )

x x x

x x x

x x

sI A B K
s k s k s k s

k s k

− −
= + + + + + +
+ + + +

 

We now equate the coefficients of this equation with those of the desired polynomial to get: 

1 2 3 4 5[ ] [3253.11 33994.53 5683.28 74.89 22.11]x x x x x xK k k k k k= = − − −

 

This vector is now transformed to the original coordinate system using MATLAB: 

>> Ax=[0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1;-8.565653331000014e4 -

7.933055056779999E4 -1.914775683863999e4 -0.152603651149600E4 -

0.004189098000000E4]; 

>> Bx = [0;0;0;0;1]; 

>> P=ctrb(A,B)*inv(ctrb(Ax,Bx)); 

>>Kz=Kx*inv(P); 
 

[4.422 110.04 16.93 1.75 0.14]K = − −  

 
b. The simulation is performed with the following commands: 

 
>>Af=(A‐B*Kz) 
>>step(Af,B,C,D) 
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Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3
-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

5

System: sys
Peak amplitude: -7.96e+005
Overshoot (%): 9.7

System: sys
Settling Time (sec): 1.83

 

 
 

 
 
 
47. 

a. 

The open-loop block diagram is 

Actuator Pantograph 
dynamics

Spring

Fup
Fout

Input 
transducer

Desired 
force

Input 
voltage1

100

1

1000

0 . 7883 ( s + 53 . 85 )

(s
2

+ 15 . 47 s + 9283 )( s2 + 8 .119 s + 376 .3 )
82300

Yh-Ycat       Spring     displacement

 
 

From Chapter 3, the state-space representation for [Yh(s) – Ycat(s)]/Fup(s) is 
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0 1 0 0 0
-9353 -14.286 769.23 14.286 0

0 0 0 1 0
406.98 7.5581 -406.98 -9.3023 0.0581

upf

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x&  

y = 0.94911 0 0 0[ ]x 

 

where y = yh - ycat and x =

yh

yh

.

yf

yf

.

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

Let vi represent the input voltage shown on the diagram. Thus, fup = vi/1000. 

Also, fout = 82300(yh - ycat).  

Thus, fout = 82300y 

Substituting fup and fout into the state-equations above yields 

 

-3

0 1 0 0 0
-9353 -14.286 769.23 14.286 0

0 0 0 1 0
406.98 7.5581 -406.98 -9.3023 0.0581x10

iv

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x&  

fout = 78,112 0 0 0[ ]x 

Thus,  

A =

0 1 0 0
-9353 -14.286 769.23 14.286

0 0 0 1
406.98 7.5581 -406.98 -9.3023

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 

B =

0
0
0

0.0581x10-3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

K = k1 k2 k3 k4[ ] 
 

Hence, 

A-BK = 
[0 , 1 , 0 , 0 
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[-9350 , -14.3 , 769 , 14.3 

[0 , 0 , 0 , 1 

[407 - 0.0000581 k1 , 7.56 - .0000581 k2 , -407 - 0.0000581 k3 , -9.30 - 0.0000581 k4] 

 

 

and 
 

                       | A-BK| = s4  + (0.0000581 k4 + 23.60) s3 

+ (0.00083083 k4 + 0.00083083 k2 + 9781.882 + 0.0000581 k3) s2 

+ (0.00083083 k1 + 81141.36 + 0.543235 k4 + 0.00083083 k3 + 0.0446789 k2) s 

+(0 .0446789 k1 +0.3492467 107  + 0.543235 k3) 

Input transient response specifications, 

Po = 20 

Ts = 1 

yields poles at 

-4.0000 + 7.8079i,  -4.0000 - 7.8079i, -53.8500, -50.0000  

Thus, the desired characteristic equation is 

s4  + 112s3  + 3600s2  + 29500s + 207000 = 0 

We now equate the coefficients of |A-BK| to the coefficients of the desired characteristic equation. 

For compactness we solve for the coefficients, K, using the form FK = G, where 

F = 
         0                       0                        0                 0.0000581 
         0                0.00083083            0.0000581        0.00083083 
    0.00083083        0.0446789            0.00083083         0.543235 
    0 .0446789               0                    0.543235                0 
 

and 
G = 
    88.4 
–6181.882 
-51641.36 
-3285467 

Solving for K using K = F-1G 
   K =  
   -4.8225e8 
   -0.1131e8 
    0.3361e8 
    0.0152e8 

b. 
Integral Control Design 
 

A = 
   1.0e+03 * 
         0             0.0010         0                 0 
   -9.3530        -0.0143      0.7692         0.0143 
         0               0              0             0.0010 
    0.4070        0.0076      -0.4070        -0.0093 
B = 
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   1.0e-04 * 
         0 
         0 
         0 
    0.5810 
 
 C = 
          78112           0           0           0 
 
Aaug = A-BK = 

[0 , 1. , 0 , 0 , 0 

[-9350. , -14.3 , 769. , 14.3 , 0 

[0 , 0 , 0 , 1. , 0 

[407. - 0.0000581 k1 , 7.56 - 0.0000581 k2 , -407. - 0.0000581 k3 , 

                                          -9.30 - 0.0000581 k4 , 0.0000581 Ke 

[-78100. , 0 , 0 , 0 , 0] 

Desired poles 

Po = 20 

Ts = 1 

Determine pole location 

poles = -4.0000 + 7.8079i,  -4.0000 - 7.8079i,  -53.85,  -50 , -50          

Desired characteristic equation 

s5 + 162s4 + 0.919e4s3 + 0.210e6s2 + 0.168e7s + 0.104e8 

System characteristic equation 

|sI-Aaug| =  

s5  + (23.60 + 0.0000581 k4) s4 

 
+ (0.00083083 k4 + 0.00083083 k2 + 0.0000581 k3 + 9781.882) s3 

 
+ (0.00083083 k1 + 81141.36 + 0.0446789 k2 + 0.543235 k4 + 0.00083083 k3) s2 

 
+ (0.0446789 k1 + 64.887823 Ke + 0.543235 k3 + 0.3492467 107 ) s 
 
+ 3489.42209 Ke 

Solving for Coefficients, K, using FK = G as in (a), where 
 

F  
            0                  0                     0                    5.8100e-05            0 
            0           8.3083e-04        5.8100e-05        8.3083e-04            0 
   8.3083e-04    4.4679e-02        8.3083e-04        5.4324e-01            0 
   4.4679e-02         0                5.4324e-01                   0            6.4888e+01 
            0                0                      0                             0            3.4894e+03 
G = 
   1.3840e+02 
  -5.9188e+02 
   1.2886e+05 
  -1.8125e+06 
   1.0800e+07 
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Thus, 
K = 
  -1.0157e+09 
  -8.6768e+06 
   7.9827e+07 
   2.3821e+06 
   3.0951e+03 

 

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.4 0.8 1.2
0

0.2

0.4

0.6

0.8

1

1.2
 

 

48. 

a. 

In chapter 4 we found that the open loop transfer function of this system is type 0. Thus for zero 

steady state error, integral control is required. Also as the open loop transfer function has a zero at -

0.02, and this zero will appear as a zero of the closed loop transfer function if not eliminated, it will 

be cancelled with a closed loop pole. The 10% overshoot requirement corresponds to a 

6.0=ζ damping factor. The settling time requirement correspond to a second order term with 

04.04
==

s
n T

ζω or 0667.0=nω . The desired closed loop polynomial is: 
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000044.0003088.0056.06.0)5.0)(02.0)(0044.008.0( 2342 ++++=++++ ssssssss

where a far away pole was arbitrarily added at -0.5. 

Following equation (12.115a) in the text, the closed loop system matrix A is given by 

[ ]

[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−++−+
+−−+−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=

0100
04.21000
2.52.50058.02.524.02.50217.0

2.5)2.50058.0(2.5)2.504167.0(

0100
0

2.5
2.5

0
2.5

2.5

4.21000
0058.024.00217.0
0058.0004167.0

0

321

321

321

e

e

e

e
CL

kkkk
kkkk

kkkk

k
C

BBKA
A

 

The corresponding characteristic polynomial is: 

 

ee kskkkk
skkkskks

3844.10)5203844.102492256.09952.201241932.0(
)520583844.12728.131060088.0()2.52.568167.2(

321

2
321

3
21

4

−−−−+
+−−++−++

Equating the coefficients of this polynomial with those of the desired polynomial and solving 

simultaneous equations one gets 

[ ] [ ]0096.039615.0004174.0321 −−== kkkK  and 610237125.4 −×−=ek  
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b. 

-K-

ke

-K-

k3

-K-

k2

-K-

k1

Scope

1
s

Integrator3

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

5.2

Gain

1

Constant

-K-

100

-K-

0.0217

-K-

0.0058

-K-

-5.2

-K-

-2.4

-K-

-0.24

-K-

-0.04167

-K-

-0.0058
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49. 

We’ll start by finding the key parameters needed to meet specifications: 

• The damping ratio, ζ, for a 4.32% overshoot is:  

707.0
)100/32.4(ln

)100/32.4ln(

)100/(%ln

)100/ln(%
2222

=
+

−
=

+

−
=

ππ
ζ

OS

OS
 

• The natural frequency, ωn, for a settling time = 4 sec at the above ζ is: 

rad/sec 1.414
707.0

444
=⇒=⇒= n

nn
sT ω

ωζω
 

• The coordinates of the required dominant poles, – ζωn ± jωd = – 1 ± j 1. 

• The open-loop transfer-function of the “plant” is given by equation (3.73): 

DBAC +−== 1-)sI(
)(
)()(

sU
sYsG  

Here:  

⎥
⎦

⎤
⎢
⎣

⎡
+−

+
=⎥

⎦

⎤
⎢
⎣

⎡
−

−−
−⎥

⎦

⎤
⎢
⎣

⎡
=−

0191.02491.0
4020

0191.02491.0
4020

0
0

)sI(
s

s
s

s
A  

 

10.346s019120.
2040

2491.00191.0

10.346s019120.
0191.02491.0

4020
adj

)sI(det
)sI(adj)sI( 22

1-

++

⎥
⎦

⎤
⎢
⎣

⎡
+−

+

=
++

⎥
⎦

⎤
⎢
⎣

⎡
+−

+

=
−
−

=−
s

s
s

s
s

s

A
AA  

 

Hence:

[ ]

10.34620.0191s
20) + (s 61.54

10.34620.0191s
1000

0
2040

2491.00191.0
0.061540

)(
)()( 22 ++

=
++

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−

+

==
ss

s
s

sU
sYsG  

 

Now, we write the closed-loop state equations for the system with integral control in a form similar 

to that given in the text by equations 12.115a and 12.115b  (Figure 12.21): 
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r
x

I
Kkk

x

I

N

a

e

N

a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

00.061540
100010000191.010002491.0

04020

21 ωω
&

&

&

  

And the output equation is given by: [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

N

a

x

I
tvty ω00.061540)()(   

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

−−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−

006154.00
100010000191.010002491.0

04020

00
00
00

)sI( 21 eKKK
s

s
s

A  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+++−

+

s
KKsK

s

e

06154.00
100010000191.010002491.0

04020

21  

 

The characteristic polynomial for that system is: 

ee KsKKKsKs 8.1230)346.1054.612000040000()10000191.20( 21
2

2
3 ++++−+++

 

 

The desired characteristic polynomial (with the third pole placed to cancel the zero at -20) is: 

404222 23 +++ sss  

 

Equating coefficients of the characteristic polynomials yields: 

 

K1 = 0.000249, K2 = 0.001981, Ke = 0.0325. 

 

Substituting these values into the state equations for the system yields: 

 r
x

I

x

I

N

a

N

a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

00.061540
32.520.0001

04020
ωω

&

&

&
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

N

a

x

I
tvty ω00.061540)()(  

  

To check our assumptions, we use Eq. (3.73) and MATLAB to find the closed-loop transfer function 

of the system to be: 

22
2

)20)(22(
)20(2

404222
402

)(
)()( 2223 ++

=
+++

+
=

+++
+

==
sssss

s
sss

s
sR
sYsT  

 

The following MATLAB file was written to plot the step response. 

 

A=[-20 -40 0; 0.0001 -2.000 32.5; 0  -0.06154 0]; 

B= [0; 0; 1]; 

C = [ 0  0.06154 0]; 

D = 0; 

[num, den]= ss2tf(A,B,C,D,1); 

T = tf(num, den);             %T is the closed-loop TF 

step (T); 

 

The characteristics displayed on the step response shown below indicate that the desired transient and 

steady-state response requirements are met.  

 

To find, analytically, the steady-state error for a unit step input, we apply Equation (7.96) to the state 

equations to obtain: 

 

[ ] 0
1
0
0

00.061540
32.5200010

04020
00.0615401)(

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
+=∞

−

.e  
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Thus, the system behaves like a Type 1 system. 

Step Response

Time (sec)

P.
 U

. O
ut

pu
t S

pe
ed

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System: T
Final Value: 1

System: T
Settling Time (sec): 4.22

System: T
Peak amplitude: 1.04
Overshoot (%): 4.32
At time (sec): 3.18
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T  H  I  R  T  E  E  N   
 
  Digital Control 
  Systems  

 
SOLUTIONS TO CASE STUDIES CHALLENGES  

 
Antenna Control: Transient Design via Gain 
a. From the answer to the antenna control challenge in Chapter 5, the equivalent forward transfer 

function found by neglecting the dynamics of the power amplifier, replacing the pots with unity 

gain, and including the integration in the sample-and-hold is 

 

Ge(s) = 
0.16K

s2 (s +1.32)
 

But,  

 

Thus, Ge(z) = 0.16K 
z - 1

z   Gz , or,  

Ge(z) = 7.659x10-4K 
(z+0.95696)

(z-1) (z-0.87634)  

b. Draw the root locus and overlay it over the ζ = 0.5 (i.e. 16.3% overshoot) curve.  
 

.
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We find that the root locus crosses at approximately 0.93 ± j0.11 with 7.659x10-4K = 8.63x10-3. 

Hence, K = 11.268. 

c. 

Kv =
1
T

lim
z →1

(z −1)Ge (z) =
(7.659x10−4 K)(1.95696)

0.12366
= 0.1366; 

e(∞) = 1
Kv

= 7.321
 

d. 
Program:  
T=0.1;                   %Input sampling time 
numf=0.16;               %Numerator of F(s) 
denf=[1 1.32 0 0];       %Denominator of F(s) 
'F(s)'                   %Display label 
F=tf(numf,denf)          %Display F(s) 
numc=conv([1 0],numf);   %Differentiate F(s) to compensate 
                         %for c2dm which assumes series zoh 
denc=denf;               %Denominator of continuous system 
                         %same as denominator of F(s) 
C=tf(numc,denc);         %Form continuous system, C(s) 
C=minreal(C,1e-10);      %Cancel common poles and zeros 
D=c2d(C,T,'zoh');        %Convert to z assuming zoh 
'F(z)' 
D=minreal(D,1e-10)       %Cancel common poles and zeros and display 
rlocus(D) 
pos=(16.3); 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2); 
zgrid(z,0) 
title(['Root Locus with ' , num2str(pos), ' Percent Overshoot Line']) 
[K,p]=rlocfind(D)        %Allows input by selecting point on    
                         %graphic 
 
Computer response:  
ans = 
 
F(s) 
 
Transfer function: 
     0.16 
-------------- 
s^3 + 1.32 s^2 
  
ans = 
 
F(z) 
 
Transfer function: 
0.0007659 z + 0.000733 
---------------------- 
z^2 - 1.876 z + 0.8763 
  
Sampling time: 0.1 
Select a point in the graphics window 
 
selected_point = 
 
  9.2969e-001 +1.0219e-001i 
 
K = 
 
  9.8808e+000 
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p = 
 
  9.3439e-001 +1.0250e-001i 
  9.3439e-001 -1.0250e-001i 
 

 
 

Antenna Control: Digital Cascade Compensator Design 

a. Let the compensator be KGc(s) and the plant be Gp (s) =
0.16

s(s +1.32)
. For 10% overshoot and a 

peak time of 1 second, ζ = 0.591 and ωn = 3.895, which places the dominant poles  at  

–2.303 ± j3.142. If we place the compensator zero at –1.32 to cancel the plant’s pole, then the 

following geometry results. 

XX
-pc -2.303

j3.142

s-plane

 

Hence, pc = 4.606. Thus, Gc (s) =
K(s +1.32)
(s + 4.606)

 and Gc (s)Gp(s) =
0.16K

s(s + 4.606)
. Using the 

product of pole lengths to find the gain, 0.16K = (3.896)2, or K = 94.87. Hence,  
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Gc (s) =
94.87(s +1.32)

(s + 4.606)
. Using a sampling interval of 0.01 s, the Tustin transformation of Gc(s) 

is Gc (z) =
93.35(z − 0.9869)

(z − 0.955)
=

93.35z − 92.12
z − 0.955

. 

b. Cross multiplying,  

(z - 0.955)X(z) = (93.35z – 92.12)E(z) 

Solving for the highest power of z operating on X(z),  

zX(z) =  (93.35z – 92.12)E(z) + 0.955X(z) 

Solving for X(z),  

X(z) = (93.35 – 92.12z-1)E(z) + 0.955z-1X(z) 

Implementing this equation as a flowchart yields the following diagram 

 

 
c. 
Program: 
's-plane lead design for Challenge - Lead Comp' 
clf                             %Clear graph on screen. 
'Uncompensated System'          %Display label. 
numg=0.16;                      %Generate numerator of G(s). 
deng=poly([0 -1.32]);           %Generate denominator of G(s). 
'G(s)'                          %Display label. 
G=tf(numg,deng);                %Create G(s). 
Gzpk=zpk(G)                     %Display G(s). 
pos=input('Type desired percent overshoot '); 
                                %Input desired percent overshoot. 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2); 
                                %Calculate damping ratio. 
Tp=input('Type Desired Peak Time '); 
                                %Input desired peak time. 
wn=pi/(Tp*sqrt(1-z^2));         %Evaluate desired natural frequency. 
b=input('Type Lead Compensator Zero, (s+b). b=  '); 
                                %Input lead compensator zero. 
done=1;                         %Set loop flag. 
 
while done==1                   %Start loop for trying lead  
                                %compensator pole.  
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
                                %Enter test lead compensator pole. 
numge=conv(numg,[1 b]);         %Generate numerator of Gc(s)G(s). 
denge=conv([1 a],deng);         %Generate denominator of Gc(s)G(s). 
Ge=tf(numge,denge);             %Create Ge(s)=Gc(s)G(s). 
clf                             %Clear graph on screen. 
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rlocus(Ge)                      %Plot compensated root locus with  
                                %test lead compensator pole. 
axis([-5 2 -8 8]);              %Change axes ranges.                
sgrid(z,wn)                     %Overlay grid on lead-compensated  
                                %root locus. 
title(['Lead-Compensated Root Locus with ' , num2str(pos),... 
'%  Overshoot Line, Lead Pole at  ', num2str(-a),... 
' and Required Wn'])            %Add title to lead-compensated root  
                                %locus. 
done=input('Are you done? (y=0,n=1)  '); 
                                %Set loop flag. 
end                             %End loop for trying compensator  
                                %pole. 
[K,p]=rlocfind(Ge);             %Generate gain, K, and closed-loop  
                                %poles, p, for point selected  
                                %interactively on the root locus. 
'Gc(s)'                         %Display label. 
Gc=K*tf([1 b],[1 a])            %Display lead compensator. 
'Gc(s)G(s)'                     %Display label. 
Ge                              %Display Gc(s)G(s). 
'Closed-loop poles = '          %Display label. 
p                               %Display lead-compensated system's  
                                %closed-loop poles. 
f=input('Give pole number that is operating point   '); 
                                %Choose lead-compensated system  
                                %dominant pole. 
'Summary of estimated specifications for selected point on lead' 
'compensated root locus'        %Display label. 
operatingpoint=p(f)             %Display lead-compensated dominant  
                                %pole. 
gain=K                          %Display lead-compensated gain. 
estimated_settling_time=4/abs(real(p(f))) 
                                %Display lead-compensated settling  
                                %time. 
estimated_peak_time=pi/abs(imag(p(f))) 
                                %Display lead-compensated peak time. 
estimated_percent_overshoot=pos %Display lead-compensated percent  
                                %overshoot. 
estimated_damping_ratio=z       %Display lead-compensated damping  
                                %ratio. 
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2) 
                                %Display lead-compensated natural  
                                %frequency. 
s=tf([1 0],1);                  %Create transfer function, "s". 
sGe=s*Ge;                       %Create sGe(s) to evaluate Kv. 
sGe=minreal(sGe);               %Cancel common poles and zeros. 
Kv=dcgain(K*sGe)                %Display lead-compensated Kv. 
ess=1/Kv                        %Display lead-compensated steady- 
                                %state error for unit ramp input. 
'T(s)'                          %Display label. 
T=feedback(K*Ge,1)              %Create and display lead-compensated  
                                %T(s). 
'Press any key to continue and obtain the lead-compensated step' 
'response'                      %Display label 
pause 
step(T)                         %Plot step response for lead  
                                %compensated system. 
title(['Lead-Compensated System with  ' ,num2str(pos),'% Overshoot'])  
                                %Add title to step response of PD  
                                %compensated system. 
pause       
   
'z-plane conversion for Challenge - Lead Comp' 
clf                             %Clear graph. 
'Gc(s) in polynomial form'      %Print label. 
Gcs=Gc                          %Create Gc(s) in polynomial form. 
'Gc(s) in polynomial form'      %Print label. 
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Gcszpk=zpk(Gcs)                 %Create Gc(s) in factored form. 
'Gc(z) in polynomial form via Tustin Transformation'                
                                %Print label. 
Gcz=c2d(Gcs,1/100,'tustin')     %Form Gc(z) via Tustin 
                                %transformation. 
'Gc(z) in factored form via Tustin Transformation' 
                                %Print label. 
Gczzpk=zpk(Gcz)                 %Show Gc(z) in factored form. 
'Gp(s) in polynomial form'      %Print label. 
Gps=G                           %Create Gp(s) in polynomial form. 
'Gp(s) in factored form'        %Print label. 
Gpszpk=zpk(Gps)                 %Create Gp(s) in factored form. 
'Gp(z) in polynomial form'      %Print label. 
Gpz=c2d(Gps,1/100,'zoh')        %Form Gp(z) via zoh transformation. 
'Gp(z) in factored form'        %Print label. 
Gpzzpk=zpk(Gpz)                 %Form Gp(z) in factored form. 
pole(Gpz)                       %Find poles. 
Gez=Gcz*Gpz;                    %Form Ge(z) = Gc(z)Gp(z). 
'Ge(z) = Gc(z)Gp(z) in factored form'  
                                %Print label. 
Gezzpk=zpk(Gez)                 %Form Ge(z) in factored form. 
'z-1'                           %Print label. 
zm1=tf([1 -1],1,1/100)          %Form z-1. 
zm1Gez=minreal(zm1*Gez,.00001); 
'(z-1)Ge(z)'                    %Print label. 
zm1Gezzpk=zpk(zm1Gez) 
pole(zm1Gez) 
Kv=300*dcgain(zm1Gez) 
Tz=feedback(Gez,1) 
step(Tz) 
title('Closed-Loop Digital Step Response')   
                                %Add title to step response. 
 
Computer response: 
ans = 
 
s-plane lead design for Challenge - Lead Comp 
 
 
ans = 
 
Uncompensated System 
 
 
ans = 
 
G(s) 
 
  
Zero/pole/gain: 
   0.16 
---------- 
s (s+1.32) 
  
Type desired percent overshoot 10 
Type Desired Peak Time 1 
Type Lead Compensator Zero, (s+b). b=  1.32 
Enter a Test Lead Compensator Pole, (s+a). a =     4.606 
Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -2.3045 + 3.1056i 
 
 
ans = 
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Gc(s) 
 
  
Transfer function: 
93.43 s + 123.3 
--------------- 
   s + 4.606 
  
 
ans = 
 
Gc(s)G(s) 
 
  
Transfer function: 
    0.16 s + 0.2112 
------------------------ 
s^3 + 5.926 s^2 + 6.08 s 
  
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -2.3030 + 3.1056i 
  -2.3030 - 3.1056i 
  -1.3200           
 
Give pole number that is operating point   1 
 
ans = 
 
Summary of estimated specifications for selected point on lead 
 
 
ans = 
 
compensated root locus 
 
 
operatingpoint = 
 
  -2.3030 + 3.1056i 
 
 
gain = 
 
   93.4281 
 
 
estimated_settling_time = 
 
    1.7369 
 
 
estimated_peak_time = 
 
    1.0116 
 
 
estimated_percent_overshoot = 
 
    10 
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estimated_damping_ratio = 
 
    0.5912 
 
 
estimated_natural_frequency = 
 
    3.8663 
 
 
Kv = 
 
    3.2454 
 
 
ess = 
 
    0.3081 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
         14.95 s + 19.73 
--------------------------------- 
s^3 + 5.926 s^2 + 21.03 s + 19.73 
  
 
ans = 
 
Press any key to continue and obtain the lead-compensated step 
 
 
ans = 
 
response 
 
 
ans = 
 
z-plane conversion for Challenge - Lead Comp 
 
 
ans = 
 
Gc(s) in polynomial form 
 
  
Transfer function: 
93.43 s + 123.3 
--------------- 
   s + 4.606 
  
 
ans = 
 
Gc(s) in polynomial form 
 
  
Zero/pole/gain: 
93.4281 (s+1.32) 
---------------- 
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   (s+4.606) 
  
 
ans = 
 
Gc(z) in polynomial form via Tustin Transformation 
 
  
Transfer function: 
91.93 z - 90.72 
--------------- 
   z - 0.955 
  
Sampling time: 0.01 
 
ans = 
 
Gc(z) in factored form via Tustin Transformation 
 
  
Zero/pole/gain: 
91.9277 (z-0.9869) 
------------------ 
    (z-0.955) 
  
Sampling time: 0.01 
 
ans = 
 
Gp(s) in polynomial form 
 
  
Transfer function: 
    0.16 
------------ 
s^2 + 1.32 s 
  
 
ans = 
 
Gp(s) in factored form 
 
  
Zero/pole/gain: 
   0.16 
---------- 
s (s+1.32) 
  
 
ans = 
 
Gp(z) in polynomial form 
 
  
Transfer function: 
7.965e-006 z + 7.93e-006 
------------------------ 
 z^2 - 1.987 z + 0.9869 
  
Sampling time: 0.01 
 
ans = 
 
Gp(z) in factored form 
 
  
Zero/pole/gain: 
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7.9649e-006 (z+0.9956) 
---------------------- 
   (z-1) (z-0.9869) 
  
Sampling time: 0.01 
 
ans = 
 
    1.0000 
    0.9869 
 
 
ans = 
 
Ge(z) = Gc(z)Gp(z) in factored form 
 
  
Zero/pole/gain: 
0.0007322 (z+0.9956) (z-0.9869) 
------------------------------- 
  (z-1) (z-0.9869) (z-0.955) 
  
Sampling time: 0.01 
 
ans = 
 
z-1 
 
  
Transfer function: 
z - 1 
  
Sampling time: 0.01 
 
ans = 
 
(z-1)Ge(z) 
 
  
Zero/pole/gain: 
0.0007322 (z+0.9956) 
-------------------- 
     (z-0.955) 
  
Sampling time: 0.01 
 
ans = 
 
    0.9550 
 
 
Kv = 
 
    9.7362 
 
  
Transfer function: 
0.0007322 z^2 + 6.387e-006 z - 0.0007194 
---------------------------------------- 
   z^3 - 2.941 z^2 + 2.884 z - 0.9432 
  
Sampling time: 0.01 
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ANSWERS TO REVIEW QUESTIONS  

1. (1) Supervisory functions external to the loop; (2) controller functions in the loop 

2. (1) Control of multiple loops by the same hardware; (2) modifications made with software, not 

hardware; (3) more noise immunity (4) large gains usually not required 

3. Quantization error; conversion time 

4. An ideal sampler followed by a sample-and-hold 

5. z = esT 

6. The value of the time waveform only at the sampling instants 

7. Partial fraction expansion; division to yield power series 

8. Partial fraction 

9. Division to yield power series 

10. The input must be sampled; the output must be either sampled or thought of as sampled. 

11. c(t) is c*(t) = c(kT), i.e. the output only at the sampling instants. 

12. No; the waveform is only valid at the sampling instants. Instability may be apparent if one could only 

see between the sampling instants. The roots of the denominator of G(z) must be checked to see that they 

are within the unit circle. 

13. A sample-and-hold must be present between the cascaded systems. 

14. Inside the unit circle 

15. Raible table; Jury's stability test 

16. z=+1 

17. There is no difference. 

18. Map the point back to the s-plane. Since z = esT, s = (1/T) ln z. Thus, σ = (1/T) ln (Re z), and  

ω = (1/T) ln (Im z). 

19. Determine the point on the s-plane and use z = esT. Thus, Re z = eσT cos ω, and Im z = eσT sin ω. 

20. Use the techniques described in Chapters 9 and 11 and then convert the design to a digital compensator 

using the Tustin transformation. 

21. Both compensators yield the same output at the sampling instants. 
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SOLUTIONS TO PROBLEMS 

1.  

a. f(t) = e-at; f*(t) = ∑
k=0

∞
e-akTδ(t-kT) ; F*(s) = ∑

k=0

∞
e-akT e-kTs   = 1 + e-aT e-Ts + e-a2T e-2Ts + . . . Thus,  

F(z) = 1 + e-aT z-1 + e-a2T z-2 + . . .  = 1 + x-1 + x-2 + . . .  where x = e-aT z-1.  

 

But, F(z) = 
1

1 - x-1   = 
1

1 - e-aT z-1   = 
z

z - e-aT  . 

b. f(t) = u(t); f*(t) = ∑
k=0

∞
δ(t-kT) ; F*(s) = ∑

k=0

∞
 e-kT s  = 1 + e-Ts + e-2Ts + . . .  

Thus, F(z) = 1 + z-1 + z-2 + . .    Since  
1

1 - z-1   = 1 + z-1 + z-2 + z-3,  F(z) =  ∑
k=0

∞
z-k  = 

1
1 - z-1   =  

z
z - 1  . 

c. f(t) = t2 e-at; f*(t) = ∑
k=0

∞
(kT)2e-akTδ(t-kT) ; F*(s) = T2 ∑

k=0

∞
 k2 e-akT e-kTs   

 = T2 ∑
k=0

∞
 k2 (e-(s+a)T)k  = T2 ∑

k=0

∞
 k2 xk  = T2(x + 4x2 + 9x3 + 16x4 + . . . ) , where x = e- (s+a)T. 

Let s1 = x + 4x2 + 9x3 + 16x4 + . . .  Thus, xs1 = x2 + 4x3 + 9x4 + 16x5 + . . .  

Let s2 = s1 - xs1 = x + 3x2 + 5x3 + 7x4 + . . .Thus, xs2 = x2 + 4x3 + 9x4 + 16x3 + . . . 

Let s3 = s2 - xs2 = x + 2x2 + 2x3 + 2x4 + . . .  Thus xs3 = x2 + 2x3 + 2x4 + 2x3 + . . . 

Let s4 = s3 - xs3 = x + x2.  

Solving for s3,  

s3 = 
x + x2
1 - x   

and 

s2 = 
s3

1 - x   = 
x + x2

(1 - x)2
  

and 

s1 = 
s2

1 - x   = 
x + x2

(1 - x)3
  

Thus 

F*(s) = T2 s1 = T2 
x + x2

(1 - x)3
   = T2 

(e-(s+a)T+ e-2(s+a)T)
(1 - e-(s+a)T)3

  = 
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T2[z−1e−aT + z−2e−2aT]
z−3 (z − e−aT )3 =

T2ze −aT[z + e− aT]
(z − e− aT )3  

d.  f(t) = cos(ωkT); f*(t) = cos(ωkT)δ(t − kT)
k =0

∞

∑ ; F*(s) = cos(ωkT)e− kTs

k =0

∞

∑    

= 
(e jωkT + e− jωkT )e−kTs

2k =0

∞

∑ = 
1
2

(eT (s − jω ) )− k +
k = 0

∞

∑ (eT (s + jω ) )− k  

But, 

∑
k=0

∞
 x-k   = 

1
1 - x-1  . 

Thus,  

F*(s) = 
1
2

1
1− e−T (s − jω ) +

1
1 − e−T (s+ jω )

⎡ 
⎣ 

⎤ 
⎦ 

=  
1
2

2 − e−Ts
(e jωT + e− jωT

)

1− e−T (s − jω ) − e−T (s + jω ) ) + e−T (s− jω )e− T (s + jω )
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

= 
1
2

2 − e− Ts(2cos(ωT )
1− e−Ts (e jωT + e− jωT ) + e−2Ts

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

1 − z −1 cos(ωT )
1 − 2z−1 cos(ωT ) + z−2  

Therefore, 

F(z) =
z(z − cos(ωT))

z2 − 2zcos(ωT ) +1
 

2.  
Program: 
syms T a w n                 %Construct symbolic objects for  
                             %'T', 'a','w', and 'n'. 
'(a)'                        %Display label. 
'f(kT)'                      %Display label.      
f=exp(-a*n*T);               %Define f(kT). 
pretty(f)                    %Pretty print f(kT) 
'F(z)'                       %Display label. 
F=ztrans(f);                 %Find z-transform, F(z). 
pretty(F)                    %Pretty print F(z). 
 
'(b)'                        %Display label. 
'f(kT)'                      %Display label.      
f=exp(-0*n*T);               %Define f(kT) 
pretty(f)                    %Pretty print f(kT) 
'F(z)'                       %Display label. 
F=ztrans(f);                 %Find z-transform, F(z). 
pretty(F)                    %Pretty print F(z). 
 
'(c)'                        %Display label. 
'f(kT)'                      %Display label.      
f=(n*T)^2*exp(-a*n*T);       %Define f(kT) 
pretty(f)                    %Pretty print f(kT) 
'F(z)'                       %Display label. 
F=ztrans(f);                 %Find z-transform, F(z). 
pretty(F)                    %Pretty print F(z). 
 
'(d)'                        %Display label. 
'f(kT)'                      %Display label.      
f=cos(w*n*T);                %Define f(kT) 
pretty(f)                    %Pretty print f(kT) 
'F(z)'                       %Display label. 
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F=ztrans(f);                 %Find z-transform, F(z). 
pretty(F)                    %Pretty print F(z). 
 
Computer response: 
ans = 
 
(a) 
 
ans = 
 
f(kT) 
 
  
                                  exp(-a n T) 
ans = 
 
F(z) 
 
                                       z 
                           ------------------------- 
                                     /    z        \ 
                           exp(-a T) |--------- - 1| 
                                     \exp(-a T)    / 
ans = 
 
(b) 
 
ans = 
 
f(kT) 
 
                                       1 
ans = 
 
 
 
 
F(z) 
 
                                       z 
                                     ----- 
                                     z - 1 
ans = 
 
(c) 
 
ans = 
 
f(kT) 
 
                                2  2 
                               n  T  exp(-a n T) 
ans = 
 
F(z) 
 
                         2 
                        T  z exp(-a T) (z + exp(-a T)) 
                        ------------------------------ 
                                              3 
                               (z - exp(-a T)) 
ans = 
 
(d) 
 
ans = 
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f(kT) 
 
                                  cos(w n T) 
ans = 
 
F(z) 
 
                               (z - cos(w T)) z 
                             --------------------- 
                              2 
                             z  - 2 z cos(w T) + 1 

 
 
 
3.  

a. 

F(z) =
z(z + 3)(z + 5)

(z − 0.4)(z − 0.6)(z − 0.8)
 

 
F(z)

z
=

229.5
z − 0.4

−
504

z − 0.6
+

275.5
z − 0.8

 

 

F(z) =
229.5z
z − 0.4

−
504z

z − 0.6
+

275.5z
z − 0.8

 

 
f (kT) = 229.5(0.4)k − 504(0.6)k + 275.5(0.8)k ,  k = 0,  1, 2,  3,. . .  

 
b. 

F(z) =
(z + 0.2)(z + 0.4)

(z − 0.1)(z − 0.5)(z − 0.9)
 

 
F(z)

z
= −

1.778
z

+
4.6875
z − 0.1

−
7.875
z − 0.5

+
4.9653
z − 0.9

 

 

F(z) = −1.778 +
4.6875z
z − 0.1

−
7.875z
z − 0.5

+
4.9653z
z − 0.9

 

 
f (kT) = 4.6875(0.1)k − 7.875(0.5) k + 4.9653(0.9)k ,  k = 1 ,2,  3,. . .  
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c. 

2

2

( 1)( 0.3)( 0.4)( )
( 0.2)( 0.5)( 0.7)

( ) ( 1)( 0.3)( 0.4)
( 0.2)( 0.5)( 0.7)

38.1633 72 60 26.1633 1.7143         =
0.7 0.5 0.2

38.1633 72 60 1.714( ) 26.1633
0.7 0.5 0.2

z z zF z
z z z z

F z z z z
z z z z z

z z z z z
z z zF z

z z z

+ + +
=

− − −
+ + +

=
− − −

− + − −
− − −

= − + − −
− − −

3

38.1633(0.7) 72(0.5) 60(0.2)   for 2,3,4,
    =1 for 1
    =0 for 0

k k k

z
F k

k
k

= − + =
=
=

K

 

4. 
Program: 
'(a)' 
syms z k 
F=vpa(z*(z+3)*(z+5)/((z-0.4)*(z-0.6)*(z-0.8)),4); 
pretty(F) 
f=vpa(iztrans(F),4); 
pretty(f) 
'(b)' 
syms z k 
F=vpa((z+0.2)*(z+0.4)/((z-0.1)*(z-0.5)*(z-0.9)),4); 
pretty(F) 
f=vpa(iztrans(F),4); 
pretty(f) 
'(c)' 
syms z k 
F=vpa((z+1)*(z+0.3)*(z+0.4)/(z*(z-0.2)*(z-0.5)*(z-0.7)),4); 
pretty(F) 
f=vpa(iztrans(F),4); 
pretty(f) 
 
Computer response: 

 
ans = 
 
(a) 
 
  
                              z (z + 3.) (z + 5.) 
                      ----------------------------------- 
                      (z - .4000) (z - .6000) (z - .8000) 
  
                             n              n              n 
                  275.5 .8000  - 504.0 .6000  + 229.5 .4000 
 
ans = 
 
(b) 
 
  
                            (z + .2000) (z + .4000) 
                      ----------------------------------- 
                      (z - .1000) (z - .5000) (z - .9000) 
  
                                         n              n              n 
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       -1.778 charfcn[0](n) + 4.965 .9000  - 7.875 .5000  + 4.688 .1000 
 
ans = 
 
(c) 
 
  
                       (z + 1.) (z + .3000) (z + .4000) 
                     ------------------------------------- 
                     z (z - .2000) (z - .5000) (z - .7000) 
  
                                                          n              n 
  -1.714 charfcn[1](n) - 26.16 charfcn[0](n) + 38.16 .7000  - 72.00 .5000 
 
                      n 
         + 60.00 .2000 
 

 
 
 
 
 
5.  

a. 

Instant Value k Value
0 1 0 1
1 9.8 1 9.8
2 31.6 2 31.6
3 46.88 3 46.88
4 53.4016 4 53.4016
5 53.43488 5 53.43488
6 49.64608 6 49.64608
7 44.043776 7 44.043776
8 37.90637056 8 37.90637056
9 31.95798733 9 31.95798733

10 26.5581568 10 26.5581568
11 21.84639857 11 21.84639857
12 17.83896791 12 17.83896791
13 14.48905384 13 14.48905384
14 11.72227881 14 11.72227881
15 9.456567702 15 9.456567702
16 7.612550239 16 7.612550239
17 6.118437551 17 6.118437551
18 4.911796342 18 4.911796342
19 3.939668009 19 3.939668009
20 3.15787423 20 3.15787423
21 2.529983782 21 2.529983782
22 2.026197867 22 2.026197867
23 1.622284879 23 1.622284879
24 1.298623886 24 1.298623886
25 1.039376712 25 1.039376712
26 0.831787937 26 0.831787937
27 0.665602292 27 0.665602292
28 0.532584999 28 0.532584999
29 0.4261299 29 0.4261299
30 0.34094106 30 0.34094106

By division By Formula
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b.  

 

Instant Value k Value
1 1 1 1.00002
2 2.1 2 2.100018
3 2.64 3 2.6400162
4 2.766 4 2.76601458
5 2.6859 5 2.685913122
6 2.51571 6 2.51572181
7 2.313354 7 2.313364629
8 2.1066276 8 2.106637166
9 1.90826949 9 1.908278099

10 1.723594881 10 1.723602629
11 1.554311564 11 1.554318538
12 1.400418494 12 1.40042477
13 1.261145687 13 1.261151336
14 1.13541564 14 1.135420724
15 1.022066337 15 1.022070912
16 0.919955834 16 0.919959951
17 0.828008315 17 0.828012021
18 0.745231516 18 0.745234852
19 0.670720381 19 0.670723383
20 0.603654351 20 0.603657053
21 0.54329192 21 0.543294352
22 0.48896423 22 0.488966419
23 0.440068558 23 0.440070528
24 0.396062078 24 0.39606385
25 0.356456058 25 0.356457653
26 0.320810546 26 0.320811982
27 0.288729538 27 0.28873083
28 0.259856608 28 0.259857771
29 0.233870959 29 0.233872006
30 0.210483869 30 0.210484811
31 0.189435485 31 0.189436333

By division By Formula
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c. 

 
 
6.  

a. 

G(s) =
(s + 4)

(s + 2)(s + 5)
=

0.6667
s + 2

+
0.3333
s + 5

 

 

G(z) =
0.6667z
z − e−2T +

0.3333z
z − e−5T  

For T = 0.5 s, 
 

G(z) =
0.6667z

z − 0.3679
+

0.3333z
z − 0.082085

=
z(z − 0.1774)

(z − 0.3679)(z − 0.082085)
 

b. 

G(s) =
(s + 1)(s + 2)

s(s + 3)(s + 4)
=

0.1667
s

−
0.6667
s + 3

+
1.5

s + 4
 

 

G(z) =
0.1667z

z − 1
−

0.6667z
z − e−3T +

1.5z
z − e−4T  

For T = 0.5 s, 
 

G(z) =
0.1667z

z − 1
−

0.6667z
z − 0.22313

+
1.5z

z − 0.13534
=

z(z − 0.29675)(z − 0.8408)
(z −1)(z − 0.22313)(z − 0.13534)
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c. 

2 2 2 2

20 1.25 1.25 3.57 1.25 1.25( 3)( )
( 3)( 6 25) 3 6 25 3 ( 3) 4

s sG s
s s s s s s s s

+ +
= = − = −

+ + + + + + + + +
 

2

2 2

cos( ) 1.25 1.25
2 cos

aT

aT aT aT

z z zae TG z
z e z ze T e

ω
ω

−

− − −

−
= − −

− − +
 

For 3;  4;  0.5a Tω= = = , 
2

2

0.0929( ) 1.25 1.25
0.2231 0.1857 0.0498
z z zG z

z z z
+

= − −
− + +

 

           2

( 0.2232)0.395
( 0.2231)( 0.1857 0.0498)

z z
z z z

+
=

− + +
 

d. 
 

2 2

15 0.1852 0.2083 0.9978( ) 0.02314
( 1)( 10 81) 1 10 81

sG s
s s s s s s s s

+
= = − +

+ + + + + +
 

                            2

0.1852 0.2083 ( 5) 0.5348 560.02314
1 ( 5) 56

s
s s s

+ −
= − +

+ + +
 

2

2 2 2 2

cos sin( ) 0.1852 0.2083 0.02314 0.0124
1 2 cos 2 cos

aT aT

T aT aT aT aT

z z z zae T ze TG z
z z e z ze T e z ze T eβ

ω ω
ω ω

− −

− − − −

−
= − + −

− − − + − +
 

For 5;  =1; 56;  0.5a Tβ ω= = = , 
2

2 2

0.0678( ) 0.1852 0.2083 0.02314 0.0005748
1 0.6065 0.1355 0.006738 0.1355 0.006738

z z z z zG z
z z z z z z

+
= − + +

− − + + + +
 
        

( ) ( )
4 3 2 3 2

2 2

0.00004 0.05781 0.02344 0.001946 0.05781 0.02344 0.001946
( 1)( 0.6065) 0.1355 0.006738 ( 1)( 0.6065) 0.1355 0.006738

z z z z z z z
z z z z z z z z

+ + + + +
= ≈

− − + + − − + +
 

( ) ( )
3 2

2 2

0.4055 0.0337 ( 0.2888)( 0.1167)0.05781 0.05781
( 1)( 0.6065) 0.1355 0.006738 ( 1)( 0.6065) 0.1355 0.006738

z z z z z z
z z z z z z z z

+ + + +
= =

− − + + − − + +

 
 

 
7. 

Program: 
'(a)' 
syms s z n T                 %Construct symbolic objects for  
                             %'s', 'z', 'n',and 'T'. 
Gs=(s+4)/((s+2)*(s+5));      %Form G(s). 
'G(s)'                       %Display label. 
pretty(Gs)                   %Pretty print G(s). 
%'g(t)'                      %Display label. 
gt=ilaplace(Gs);             %Find g(t). 
%pretty(gt)                  %Pretty print g(t). 
gnT=compose(gt,n*T);         %Find g(nT). 
%'g(kT)'                     %Display label. 
%pretty(gnT)                 %Pretty print g(nT). 
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Gz=ztrans(gnT);              %Find G(z). 
Gz=simplify(Gz);             %Simplify G(z).            
%'G(z)’                      %Display label. 
%pretty(Gz)                  %Pretty print G(z). 
Gz=subs(Gz,T,0.5);           %Let T = 0.5 in G(z). 
Gz=vpa(simplify(Gz),6);      %Simplify G(z) and evaluate numerical 
                             %values to 6 places. 
Gz=vpa(factor(Gz),6);        %Factor G(z).    
   
'G(z) evaluated for T=0.5'   %Display label. 
pretty(Gz)                   %Pretty print G(z) with numerical  
                             %values. 
'(b)' 
Gs=(s+1)*(s+2)/(s*(s+3)*(s+4)); 
                             %Form G(s) = G(s). 
'G(s)'                       %Display label. 
pretty(Gs)                   %Pretty print G(s). 
%'g(t)'                      %Display label. 
gt=ilaplace(Gs);             %Find g(t). 
%pretty(gt)                  %Pretty print g(t). 
gnT=compose(gt,n*T);         %Find g(nT). 
%'g(kT)'                     %Display label. 
%pretty(gnT)                 %Pretty print g(nT). 
Gz=ztrans(gnT);              %Find G(z). 
Gz=simplify(Gz);             %Simplify G(z).            
%'G(z)’                      %Display label. 
%pretty(Gz)                  %Pretty print G(z). 
Gz=subs(Gz,T,0.5);           %Let T = 0.5 in G(z). 
Gz=vpa(simplify(Gz),6);      %Simplify G(z) and evaluate numerical 
                             %values to 6 places. 
Gz=vpa(factor(Gz),6);        %Factor G(z).     
'G(z) evaluated for T=0.5'   %Display label. 
pretty(Gz)                   %Pretty print G(z) with numerical  
                             %values. 
'(c)' 
Gs=20/((s+3)*(s^2+6*s+25));  %Form G(s) = G(s). 
'G(s)'                       %Display label. 
pretty(Gs)                   %Pretty print G(s). 
%'g(t)'                      %Display label. 
gt=ilaplace(Gs);             %Find g(t). 
%pretty(gt)                  %Pretty print g(t). 
gnT=compose(gt,n*T);         %Find g(nT). 
%'g(kT)'                     %Display label. 
%pretty(gnT)                 %Pretty print g(nT). 
Gz=ztrans(gnT);              %Find G(z). 
Gz=simplify(Gz);             %Simplify G(z).            
%'G(z)’                      %Display label. 
%pretty(Gz)                  %Pretty print G(z). 
Gz=subs(Gz,T,0.5);           %Let T = 0.5 in G(z). 
Gz=vpa(simplify(Gz),6);      %Simplify G(z) and evaluate numerical 
                             %values to 6 places. 
Gz=vpa(factor(Gz),6);        %Factor G(z).      
'G(z) evaluated for T=0.5'   %Display label. 
pretty(Gz)                   %Pretty print G(z) with numerical  
                             %values. 
'(d)' 
Gs=15/(s*(s+1)*(s^2+10*s+81)); 
                             %Form G(s) = G(s). 
'G(s)'                       %Display label. 
pretty(Gs)                   %Pretty print G(s). 
%'g(t)'                      %Display label. 
gt=ilaplace(Gs);             %Find g(t). 
%pretty(gt)                  %Pretty print g(t). 
gnT=compose(gt,n*T);         %Find g(nT). 
%'g(kT)'                     %Display label. 
%pretty(gnT)                 %Pretty print g(nT). 
Gz=ztrans(gnT);              %Find G(z). 
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Gz=simplify(Gz);             %Simplify G(z).            
%'G(z)'                      %Display label. 
%pretty(Gz)                  %Pretty print G(z). 
Gz=subs(Gz,T,0.5);           %Let T = 0.5 in G(z). 
Gz=vpa(simplify(Gz),6);      %Simplify G(z) and evaluate numerical 
                             %values to 6 places. 
Gz=vpa(factor(Gz),6);        %Factor G(z).      
'G(z) evaluated for T=0.5'   %Display label. 
pretty(Gz)                   %Pretty print G(z) with numerical  
                             %values. 
 
Computer response: 
ans = 
 
(a) 
 
ans = 
 
G(s) 
 
                                     s + 4 
                                --------------- 
                                (s + 2) (s + 5) 
ans = 
 
G(z) evaluated for T=0.5 
 
                                   z (z - .177350) 
                     1.00000 ---------------------------- 
                             (z - .0820850) (z - .367880) 
ans = 
 
(b) 
 
ans = 
 
G(s) 
 
                                (s + 1) (s + 2) 
                               ----------------- 
                               s (s + 3) (s + 4) 
ans = 
 
G(z) evaluated for T=0.5 
 
                            z (z - .296742) (z - .840812) 
                 1.00000 ------------------------------------ 
                         (z - .135335) (z - .223130) (z - 1.) 
ans = 
 
ans = 
 
(c) 
 
 
ans = 
 
G(s) 
 
  
                                      20 
                            ----------------------- 
                                      2 
                            (s + 3) (s  + 6 s + 25) 
 
ans = 
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G(z) evaluated for T=0.5 
 
  
                                    (z + .223130) z 
               .394980 ----------------------------------------- 
                                       2 
                       (z - .223135) (z  + .185705 z + .0497861) 
 
ans = 
 
(d) 
 
 
ans = 
 
G(s) 
 
  
                                      15 
                          -------------------------- 
                                      2 
                          s (s + 1) (s  + 10 s + 81) 
 
ans = 
 
G(z) evaluated for T=0.5 
 
  
                             (z + .289175) (z + .116364) z 
       .0578297 -------------------------------------------------------- 
                                              2 
                (z - .606535) (z - .999995) (z  + .135489 z + .00673794) 

 
8. 

a. 
 

 
Thus,  

 
Hence,  
 
 

 
Letting T = 0.3, 
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b. 
 

 
Thus, 

 
 

Hence, 
 

 
Letting T = 0.3, 

 
c. 
 

( ) ( ) ( )e aG z G z G z=  

where ( )aG z  is the answer to part (a) and ( )G z , the pulse transfer function for 
1

3s +
in cascade 

with a zero-order-hold will now be found: 
 

 
Thus,  
 

 
 

Hence, 
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Letting T = 0.3, 
 

 
Thus, 
 

6.482 3.964( ) ( ) ( ) 0.19464
( 1)(4.482 1)(2.46 1)e a

zG z G z G z
z z z

+
= =

− − −
 

 
9.  

a. Add phantom samplers at the input, output, and feedback path after H(s). Push G2 (s) and its input 

sampler to the right past the pickoff point. Add a phantom sampler after G1(s). Hence,  

 

1
G (s)

C(s)

-

+R(s)

2
G (s)

H (s)
2

G (s)

 

 

From this block diagram, T(z) = 
G1(z)G2(z)

1 + G1(z)HG2(z)  . 

b. Add phantom samplers to the input, output, and the output of H(s). Push G1(s)G2(s) and its input 

sampler to the right past the pickoff point. Add a phantom sampler at the output. 

 
C(s)

-

+R(s)

H(s)
1

G (s)
2

G (s)

1
G (s)

2
G (s)

 
 



13-28   Chapter 13:   Digital Control Systems  

Copyright ©   2011 by John Wiley & Sons, Inc. 

From this block diagram, T(z) = 
G1G2(z)

1 + G1G2(z)H(z)  . 

 10.  
Add phantom samplers after G1(s), G3(s), G4(s), H1(s), and  H2(s).  

 
 

 
 

Push G1(s) and its sampler to the left past the summing junction. Also, push G4(s) and its input 

sampler to the right past the pickoff point. The resulting block diagram is,  

 

Converting to z transforms,  
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2 3

2 3 1 2 4
1 4

2 3
3 1 4

2 3 1 2 4

( ) 1*
(1 ( ) ( )) (1 ( ))( ) ( ) ( ) ( ) 11 * ( )

(1 ( ) ( )) (1 ( ))

G G z
G G z H z H G zC s RG z G z G G z H G G z

G G z H z H G z

⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥+
⎢ ⎥+ +⎣ ⎦

 

 

1 4 2 3

2 3 1 2 4 2 3 3 1 4

( ) ( ) ( )
(1 ( ) ( ))(1 ( )) ( ) ( )

RG z G z G G z
G G z H z H G z G G z H G G z

=
+ + +

  

 11. 
Push gain of 2 to the left past the summing junction and add phantom samplers as shown. 

 

Push the z.o.h. and 
1

s(s+1)
 to the right past the pickoff point. Also, add a phantom sampler at the 

output. 

 
 

Add phantom samplers after the gain of 2 at the input and in the feedback. Also, represent the z.o.h. 

as Laplace transforms. 
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Push the last block to the right past the pickoff point and get,  

 
 

Find the z transform for each transfer function. 

1( ) 2G s =  

transforms into  

1( ) 2G z = . 

1 2 2

2 2 2 2( ) (1 ) (1 )
( 1) 1

sT sTH s e e
s s s s s

− − ⎡ ⎤= − = − − +⎢ ⎥+ +⎣ ⎦
 

transforms into  

1 2

1 1( ) 2 2 2 2
( 1) 1 ( 1)( )

T T T

T T

z Tz z z Tz Te ze z eH z
z z z z e z z e

− − −

− −

⎡ ⎤− − + − − +
= − + =⎢ ⎥− − − − −⎣ ⎦

 

2 3 2 3

2 2 2 2 2( ) (1 ) (1 )
( 1) 1

sT sTH s e e
s s s s s s

− − ⎡ ⎤= − = − − − +⎢ ⎥+ +⎣ ⎦
 

 transforms into  

2

2 2 3

1 2 2 2 ( 1)( )
1 ( 1) ( 1)T

z z z Tz T z zH z
z z z e z z−

⎡ ⎤− +
= − − +⎢ ⎥− − − −⎣ ⎦
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2 2 2 2 2

2

( 2 2 2 ) (4 4 2 2 ) (2 2 2 )
( 1) ( )

T T T T T T T

T

T e T z e Te T T T e z e Te T e
z z e

− − − − − − −

−

− + − + − + + + − + − − −
=

− −
 

2 3

1( ) (1 )
( 1)

sTG s e
s s

−= −
+

 

 transforms into 

 2
1 ( )
2

H z  

 

Thus, the closed-loop transfer function is 

 1 2
1 2

1( ) ( ) ( )
1 ( ) ( )

T z G z G z
H z H z

⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

 

 12.  

G(z) = 
z - 1

z    z 
⎩
⎨
⎧

⎭
⎬
⎫1

s2(s + 1)
 .  

Using Eq. (13.49) 
 

G(z) = 
T

z - 1   -  
(1 - e-T)
z - e-T    = 

(T-1+e-T)z + (1-e-T-Te-T)
(z-1)(z-e-T)

  

But,  

T(z) = 
G(z)

1 + G(z)   = 
(T-1+e-T) z + (1-e-T-Te-T)

z2 + (T-2) z + (1-Te-T)
  

The roots of the denominator are inside the unit circle for 0<T<3.923. 
13. 

Program: 
numg1=10*[1 7]; 
deng1=poly([-1 -3 -4 -5]); 
G1=tf(numg1,deng1); 
for T=5:-.01:0; 
Gz=c2d(G1,T,'zoh'); 
Tz=feedback(Gz,1); 
r=pole(Tz); 
rm=max(abs(r)); 
if rm<=1; 
break; 
end; 
end; 
T 
r 
rm 
 
Computer response: 
T = 
 
    3.3600 
 
 
r = 
 
   -0.9990 
   -0.0461 
   -0.0001 
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   -0.0000 
 
 
rm = 
 
    0.9990 
 
>>  
T = 
 
    3.3600 
 
 
r = 
 
   -0.9990 
   -0.0461 
   -0.0001 
   -0.0000 
 
 
rm = 
 
    0.9990 

 
 14. 

 

2

2

4(0.2) 2

3( ) (1 )
( 4)

0.1875 0.1875 0.75( ) (1 )
4

1 0.2( ) 0.1875 0.1875 0.75
1 ( 1)

0.0467( 0.767)( )
( 0.4493)( 1)

sT

sT

G s K e
s s

G s K e
s s s

z z z zG z K
z z e z z

zG z K
z z

−

−

−

= −
+

⎡ ⎤= − − +⎢ ⎥+⎣ ⎦
⎡ ⎤⎧ ⎫−

= − +⎨ ⎬⎢ ⎥− − −⎩ ⎭⎣ ⎦
+

=
− −

  

 
 

K = 0.736/0.0467 = 15.76 
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 15. 
a. 

 
 

First, check to see that the system is stable. 
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Since the closed-loop poles are inside the unit circle, the system is stable. Next, evaluate the static 

error constants and the steady-state error. 

Kp = lim
z →1

G(z) = 0.5                e*(∞) =
1

1+ Kp

=
2
3

Kv =
1
T

lim
z →1

(z −1)G(z) = 0       e* (∞) =
1

Kv

= ∞

Ka =
1

T 2 lim
z→1

(z − 1)2 G(z) = 0    e*(∞) =
1

Ka

= ∞

 

 
 
b. 

 
 

Kp = lim
z →1

G(z) = ∞                  e* (∞) =
1

1 + Kp

= 0

Kv =
1
T

lim
z →1

(z −1)G(z) =10      e* (∞) =
1

Kv

= 0.1

Ka =
1

T 2 lim
z→1

(z − 1)2 G(z) = 0    e*(∞) =
1

Ka

= ∞

  

 
 
 
 



Solutions to Problems   13-35 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
 
 
 
 
 
c. 

 
  

Kp = lim
z →1

G(z) = 2.03              e*(∞) =
1

1+ Kp

= 0.33

Kv =
1
T

lim
z →1

(z −1)G(z) = 0       e* (∞) =
1
Kv

= ∞

Ka =
1

T 2 lim
z→1

(z − 1)2 G(z) = 0    e*(∞) =
1

Ka

= ∞

 

d. 

 
 

Kp = lim
z →1

G(z) = ∞                  e* (∞) =
1

1 + Kp

= 0

Kv =
1
T

lim
z →1

(z −1)G(z) =10     e* (∞) =
1
Kv

= 0.1

Ka =
1

T 2 lim
z→1

(z − 1)2 G(z) = 0    e*(∞) =
1

Ka

= ∞

 

 
16. 
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Program: 
T=0.1; 
numgz=[0.04406 -0.03624 -0.03284 0.02857]; 
dengz=[1 -3.394 +4.29 -2.393 +0.4966]; 
'G(z)' 
Gz=tf(numgz,dengz,0.1) 
'Zeros of G(z)' 
zeros=roots(numgz) 
'Poles of G(z)' 
poles=roots(dengz) 
%Check stability 
Tz=feedback(Gz,1); 
'Closed-Loop Poles' 
r=pole(Tz) 
M=abs(r) 
pause 
'Find Kp' 
Gz=minreal(Gz,.00001); 
Kp=dcgain(Gz) 
'Find Kv' 
factorkv=tf([1 -1],[1 0],0.1);    %Makes transfer function 
                                  %proper and yields same Kv 
Gzkv=factorkv*Gz; 
 
Gzkv=minreal(Gzkv,.00001); %Cancel common poles and    
 %zeros 
Kv=(1/T)*dcgain(Gzkv) 
'Find Ka' 
factorka=tf([1 -2 1],[1 0 0],0.1);%Makes transfer function 
                                  %proper and yields same Ka 
Gzka=factorka*Gz; 
 
Gzka=minreal(Gzka,.00001); %Cancel common poles and    
 %zeros 
Ka=(1/T)^2*dcgain(Gzka) 

 
Computer response: 
ans = 
 
G(z) 
 
  
Transfer function: 
0.04406 z^3 - 0.03624 z^2 - 0.03284 z + 0.02857 
----------------------------------------------- 
 z^4 - 3.394 z^3 + 4.29 z^2 - 2.393 z + 0.4966 
  
Sampling time: 0.1 
 
ans = 
 
Zeros of G(z) 
 
 
zeros = 
 
  -0.8753           
   0.8489 + 0.1419i 
   0.8489 - 0.1419i 
 
 
ans = 
 
Poles of G(z) 
 
 
poles = 
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   1.0392           
   0.8496 + 0.0839i 
   0.8496 - 0.0839i 
   0.6557           
 
 
ans = 
 
Closed-Loop Poles 
 
 
r = 
 
   0.9176 + 0.1699i 
   0.9176 - 0.1699i 
   0.7573 + 0.1716i 
   0.7573 - 0.1716i 
 
 
M = 
 
    0.9332 
    0.9332 
    0.7765 
    0.7765 
 
 
ans = 
 
Find Kp 
 
 
Kp = 
 
   -8.8750 
 
 
ans = 
 
Find Kv 
 
 
Kv = 
 
     0 
 
 
ans = 
 
Find Ka 
 
 
Ka = 
 
     0 
 

17. 
 First find G(z) 
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Next, plot the root locus. 

 

  

  
Root locus intersects 0.5 damping ratio for 0.00431K = 0.0611. Thus, K = 14.18 for 16.3% overshoot.  
Root locus intersects the unit circle for 0.00431K = 0.47.  Thus 0 < K < 109.28 for stability. 
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18. 
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19. 
Program: 
numgz=0.13*[1 1]; 
dengz=poly([1 0.74]); 
Gz=tf(numgz,dengz,0.1) 
Gzpkz=zpk(Gz) 
Tz=feedback(Gz,1) 
Ltiview 
 
Computer response: 
Transfer function: 
   0.13 z + 0.13 
------------------- 
z^2 - 1.74 z + 0.74 
  
Sampling time: 0.1 
  
 
 
Zero/pole/gain: 
  0.13 (z+1) 
-------------- 
(z-1) (z-0.74) 
  
Sampling time: 0.1 
  
Transfer function: 
   0.13 z + 0.13 
------------------- 
z^2 - 1.61 z + 0.87 
  
Sampling time: 0.1 
 

 
 



Solutions to Problems   13-41 

Copyright ©   2011 by John Wiley & Sons, Inc. 

20. 
Program: 
%Digitize G1(s) preceded by a sample and hold 
numg1=1; 
deng1=poly([-1 -3]); 
'G1(s)' 
G1s=tf(numg1,deng1) 
'G(z)' 
Gz=c2d(G1s,0.1,'zoh') 
%Input transient response specifications 
Po=input('Type %OS  '); 
%Determine damping ratio 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 
%Plot root locus 
rlocus(Gz) 
zgrid(z,0) 
title(['Root Locus']) 
[K,p]=rlocfind(Gz)  %Allows input by selecting point on graphic 
pause 
'T(z)' 
Tz=feedback(K*Gz,1) 
step(Tz) 

 
Computer response: 
 
ans = 
 
G1(s) 
 
  
Transfer function: 
      1 
------------- 
s^2 + 4 s + 3 
  
 
ans = 
 
G(z) 
 
  
Transfer function: 
0.004384 z + 0.003837 
---------------------- 
z^2 - 1.646 z + 0.6703 
  
Sampling time: 0.1 
Type %OS  16.3 
Select a point in the graphics window 
 
selected_point = 
 
   0.8016 + 0.2553i 
 
 
K = 
 
    9.7200 
 
 
p = 
 
   0.8015 + 0.2553i 
   0.8015 - 0.2553i 
 
 
ans = 
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T(z) 
 
  
Transfer function: 
  0.04262 z + 0.0373 
---------------------- 
z^2 - 1.603 z + 0.7076 
  
Sampling time: 0.1 
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21.  

13.12
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9 deg
25.46 deg

 

  

  

 

22. 

First find G(z). G(z) = K 
z-1
z   z{

1
s2(s+1)(s+3)

  } = K 
z-1
z   

z{ 1
18

1
s 3+

− 1
2

1
s 1+

4
9

1
s

− 1
3

1
s 2

+ + }  

For T=0.1, G(z) = K
z 1−

z

1
18

z−

z 0.74082−

1
2

z
z 0.90484−

4
9

z
z 1−

−
1
30

z

z 1− 2
+ +   

= 0.00015103K 
z 0.24204+ z 3.3828+

z 1− z 0.74082− z 0.90484−
. Plotting the root locus and overlaying 

the 20% overshoot curve, we select the point of intersection and calculate the gain: 0.00015103K = 

1.789. Thus, K = 11845.33.  Finding the intersection with the unit circle yields 0.00015103K = 9.85. 

Thus, 0 < K < 65218.83 for stability. 
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23. 

First find G(z). G(z) = K 
z-1
z   z{

(s+2)
s2(s+1)(s+3)

  } = K 
z-1
z   z{ 1

18
1

s 3+
1
2

1
s 1+

5
9

1
s

− 2
3

1
s 2

+ + } = 

For T=1, G(z) = Kz 1−
z

1
18

z

z 0.049787−

1
2

z

z 0.36788−

5
9

z

z 1−
−

2
3

z

z 1− 2
+ +   

= 0.29782K z 0.13774− z 0.55935+
z 1− z 0.049787− z 0.36788−

. Plotting the root locus and overlaying the Ts = 15 

second circle, we select the point of intersection (0.4 + j0.63) and calculate the gain: 0.29782K = 

1.6881. Thus, K = 5.668.  Finding the intersection with the unit circle yields 0.29782K = 4.4. Thus, 0 

< K < 14.77 for stability. 

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

Real Axis

Root Locus

 

24. 
Substituting Eq. (13.88) into Gc(s) and letting T = 0.01 yields  
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Gc (z) =
1180z 2 −1839z + 661.1

z2 −1
= 1180

(z − 0.9959)(z − 0.5625)
(z +1)(z −1)

 

25. 

Since %OS = 10%, ζ = 
- ln (

%OS
100 ) 

π2 + ln2 (
%OS
100 )

   = 0.591. Since Ts = 
4

ζωn
   = 2 seconds, 

ωn = 3.383 rad/s. Hence, the location of the closed-loop poles must be –2 ± j2.729. The summation of 

angles from open-loop poles to –2 ± j2.729 is –192.99o. Therefore, the design point is not on the root 

locus. A compensator whose angular contribution is 192.99o - 180o = 12.99o is required. Assume a 

compensator zero at  -5 canceling the pole at -5. Adding the compensator zero at –5 to the plant’s 

poles yields –150.690 at to –2 ± j2.729. Thus, the compensator’s pole must contribute 1800 – 150.69 

= 29.310. The following geometry results. 

 

-2

j2.729

29.31

 
Thus,  

2.729
pc − 2

= tan(29.310 ) 

Hence, pc = 6.86.Adding the compensator pole and zero to the system poles, the gain at the design 

point is found to be 124.3. Summarizing the results: Gc (s) =
124.3(s + 5)
(s + 6.86)

. Substituting  

Eq. (13.88) into Gc(s) and letting T = 0.01 yields  
 

Gc (z) =
123.2z −117.2

z − 0.9337
=

123.2(z − 0.9512)
(z − 0.9337)

 

26. 
Program: 

'Design of digital lead compensation' 
clf                                 %Clear graph on screen. 
'Uncompensated System'              %Display label. 
numg=1;                             %Generate numerator of G(s). 
deng=poly([0 -5 -8]);               %Generate denominator of G(s). 
'G(s)'                              %Display label. 
G=tf(numg,deng)                     %Create and display G(s). 
pos=input('Type desired percent overshoot '); 
                                    %Input desired percent overshoot. 
z=-log(pos/100)/sqrt(pi^2+[log(pos/100)]^2); 
                                    %Calculate damping ratio. 
rlocus(G)                           %Plot uncompensated root locus. 
sgrid(z,0)                          %Overlay desired percent overshoot  
                                    %line. 
title(['Uncompensated Root Locus with ' , num2str(pos),... 



Solutions to Problems   13-47 

Copyright ©   2011 by John Wiley & Sons, Inc. 

'% Overshoot Line'])                %Title uncompensated root locus. 
[K,p]=rlocfind(G);                  %Generate gain, K, and closed-loop  
                                    %poles, p, for point selected  
                                    %interactively on the root locus. 
'Closed-loop poles = '              %Display label. 
p                                   %Display closed-loop poles. 
f=input('Give pole number that is operating point   '); 
                                    %Choose uncompensated system  
                                    %dominant pole. 
'Summary of estimated specifications for selected point on' 
'uncompensated root locus'          %Display label. 
operatingpoint=p(f)                 %Display uncompensated dominant  
                                    %pole. 
gain=K                              %Display uncompensated gain. 
estimated_settling_time=4/abs(real(p(f))) 
                                    %Display uncompensated settling  
                                    %time. 
estimated_peak_time=pi/abs(imag(p(f))) 
                                    %Display uncompensated peak time. 
estimated_percent_overshoot=pos     %Display uncompensated percent  
                                    %overshoot. 
estimated_damping_ratio=z           %Display uncompensated damping  
                                    %ratio. 
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2) 
                                    %Display uncompensated natural  
                                    %frequency. 
numkv=conv([1 0],numg);             %Set up numerator to evaluate Kv. 
denkv=deng;                         %Set up denominator to evaluate Kv. 
sG=tf(numkv,denkv);                 %Create sG(s). 
sG=minreal(sG);                     %Cancel common poles and zeros. 
Kv=dcgain(K*sG)                     %Display uncompensated Kv. 
ess=1/Kv                            %Display uncompensated steady-state  
                                    %error for unit ramp input. 
'T(s)'                              %Display label. 
T=feedback(K*G,1)                   %Create and display T(s).  
step(T)                             %Plot step response of uncompensated  
                                    %system. 
title(['Uncompensated System with  ' ,num2str(pos),'% Overshoot']) 
                                    %Add title to uncompensated step  
                                    %response. 
‘Press any key to go to lead compensation' 
                                    %Display label. 
pause 
Ts=input('Type Desired Settling Time '); 
                                    %Input desired settling time. 
b=input('Type Lead Compensator Zero, (s+b). b=  '); 
                                    %Input lead compensator zero. 
done=1;                             %Set loop flag. 
while done==1                       %Start loop for trying lead  
                                    %compensator pole.  
a=input('Enter a Test Lead Compensator Pole, (s+a). a =     '); 
                                    %Enter test lead compensator pole. 
numge=conv(numg,[1 b]);             %Generate numerator of Gc(s)G(s). 
denge=conv([1 a],deng);             %Generate denominator of Gc(s)G(s). 
Ge=tf(numge,denge);                 %Create Ge(s)=Gc(s)G(s). 
wn=4/(Ts*z);                        %Evaluate desired natural frequency. 
clf                                 %Clear graph on screen. 
rlocus(Ge)                          %Plot compensated root locus with  
                                    %test lead compensator pole. 
axis([-10,10,-10,10])               %Change lead-compensated root locus  
                                    %axes. 
sgrid(z,wn)                         %Overlay grid on lead-compensated  
                                    %root locus. 
title(['Lead-Compensated Root Locus with ' , num2str(pos),... 
'%  Overshoot Line, Lead Pole at  ', num2str(-a),... 
' and Required Wn'])                %Add title to lead-compensated root  
                                    %locus. 
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done=input('Are you done? (y=0,n=1)  '); 
                                    %Set loop flag. 
end                                 %End loop for trying compensator  
                                    %pole. 
[K,p]=rlocfind(Ge);                 %Generate gain, K, and closed-loop  
                                    %poles, p, for point selected  
                                    %interactively on the root locus. 
'Gc(s)'                             %Display label. 
Gc=tf([1 b],[1 a])                  %Display lead compensator. 
'Gc(s)G(s)'                         %Display label. 
Ge                                  %Display Gc(s)G(s). 
'Closed-loop poles = '              %Display label. 
p                                   %Display lead-compensated system's  
                                    %closed-loop poles. 
f=input('Give pole number that is operating point   '); 
                                    %Choose lead-compensated system  
                                    %dominant pole. 
'Summary of estimated specifications for selected point on lead' 
'compensated root locus'            %Display label. 
operatingpoint=p(f)                 %Display lead-compensated dominant  
                                    %pole. 
gain=K                              %Display lead-compensated gain. 
estimated_settling_time=4/abs(real(p(f))) 
                                    %Display lead-compensated settling  
                                    %time. 
estimated_peak_time=pi/abs(imag(p(f))) 
                                    %Display lead-compensated peak time. 
estimated_percent_overshoot=pos     %Display lead-compensated percent  
                                    %overshoot. 
estimated_damping_ratio=z           %Display lead-compensated damping  
                                    %ratio. 
estimated_natural_frequency=sqrt(real(p(f))^2+imag(p(f))^2) 
                                    %Display lead-compensated natural  
                                    %frequency. 
s=tf([1 0],1);                      %Create transfer function, "s". 
sGe=s*Ge;                           %Create sGe(s) to evaluate Kv. 
sGe=minreal(sGe);                   %Cancel common poles and zeros. 
Kv=dcgain(K*sGe)                    %Display lead-compensated Kv. 
ess=1/Kv                            %Display lead-compensated steady- 
                                    %state error for unit ramp input. 
'T(s)'                              %Display label. 
T=feedback(K*Ge,1)                  %Create and display lead-compensated  
                                    %T(s). 
'Press any key to continue and obtain the lead-compensated step' 
'response'                          %Display label 
pause 
step(T)                             %Plot step response for lead  
                                    %compensated system. 
title(['Lead-Compensated System with  ' ,num2str(pos),'% Overshoot'])  
                                    %Add title to step response of PD  
                                    %compensated system. 
pause   
'Digital design'                    %Print label. 
T=0.01                              %Define sampling interval. 
clf                                 %Clear graph. 
'Gc(s) in polynomial form'          %Print label. 
Gcs=K*Gc                            %Create Gc(s) in polynomial form. 
'Gc(s) in polynomial form'          %Print label. 
Gcszpk=zpk(Gcs)                     %Create Gc(s) in factored form. 
'Gc(z) in polynomial form via Tustin Transformation'                
                                    %Print label. 
Gcz=c2d(Gcs,T,'tustin')             %Form Gc(z) via Tustin transformation. 
'Gc(z) in factored form via Tustin Transformation' 
                                    %Print label. 
Gczzpk=zpk(Gcz)                     %Show Gc(z) in factored form. 
'Gp(s) in polynomial form'          %Print label. 
Gps=G                               %Create Gp(s) in polynomial form. 
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'Gp(s) in factored form'            %Print label. 
Gpszpk=zpk(Gps)                     %Create Gp(s) in factored form. 
'Gp(z) in polynomial form'          %Print label. 
Gpz=c2d(Gps,T,'zoh')                %Form Gp(z) via zoh transformation. 
'Gp(z) in factored form'            %Print label. 
Gpzzpk=zpk(Gpz)                     %Form Gp(z) in faactored form. 
pole(Gpz)                           %Find poles of Gp(z). 
Gez=Gcz*Gpz;                        %Form Ge(z) = Gc(z)Gp(z). 
'Ge(z) = Gc(z)Gp(z) in factored form'  
                                    %Print label. 
Gezzpk=zpk(Gez)                     %Form Ge(z) in factored form. 
'z-1'                               %Print label. 
zm1=tf([1 -1],1,T)                  %Form z-1. 
zm1Gez=minreal(zm1*Gez,.00001);     %Cancel common factors. 
'(z-1)Ge(z)'                        %Print label. 
zm1Gezzpk=zpk(zm1Gez)               %Form & display (z-1)Ge(z) in 
                                    %factored form. 
pole(zm1Gez)                        %Find poles of (z-1)Ge(z).  
Kv=10*dcgain(zm1Gez)                %Find Kv. 
Tz=feedback(Gez,1)                  %Find closed-loop  
                                    %transfer function, T(z) 
step(Tz)                            %Find step reponse. 
title('Closed-Loop Digital Step Response')       
                                    %Add title to step response. 

Computer response: 
ans = 
 
Design of digital lead compensation 
 
 
ans = 
 
Uncompensated System 
 
 
ans = 
 
G(s) 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 13 s^2 + 40 s 
  
Type desired percent overshoot 10 
Select a point in the graphics window 
 
selected_point = 
 
  -1.6435 + 2.2437i 
 
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
  -9.6740           
  -1.6630 + 2.2492i 
  -1.6630 - 2.2492i 
 
Give pole number that is operating point   2 
 
ans = 
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Summary of estimated specifications for selected point on 
 
 
ans = 
 
uncompensated root locus 
 
 
operatingpoint = 
 
  -1.6630 + 2.2492i 
 
 
gain = 
 
   75.6925 
 
 
estimated_settling_time = 
 
    2.4053 
 
 
estimated_peak_time = 
 
    1.3968 
 
 
estimated_percent_overshoot = 
 
    10 
 
 
estimated_damping_ratio = 
 
    0.5912 
 
 
estimated_natural_frequency = 
 
    2.7972 
 
 
Kv = 
 
    1.8923 
 
 
ess = 
 
    0.5285 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
           75.69 
--------------------------- 
s^3 + 13 s^2 + 40 s + 75.69 
  
 
ans = 
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Press any key to go to lead compensation 
 
Type Desired Settling Time 2 
Type Lead Compensator Zero, (s+b). b=  5 
Enter a Test Lead Compensator Pole, (s+a). a =     6.8 
Are you done? (y=0,n=1)  0 
Select a point in the graphics window 
 
selected_point = 
 
  -1.9709 + 2.6692i 
 
 
ans = 
 
Gc(s) 
 
  
Transfer function: 
 s + 5 
------- 
s + 6.8 
  
 
ans = 
 
Gc(s)G(s) 
 
  
Transfer function: 
              s + 5 
---------------------------------- 
s^4 + 19.8 s^3 + 128.4 s^2 + 272 s 
  
 
ans = 
 
Closed-loop poles =  
 
 
p = 
 
 -10.7971           
  -5.0000           
  -2.0015 + 2.6785i 
  -2.0015 - 2.6785i 
 
Give pole number that is operating point   3 
 
ans = 
 
Summary of estimated specifications for selected point on lead 
 
 
ans = 
 
compensated root locus 
 
 
operatingpoint = 
 
  -2.0015 + 2.6785i 
 
 
gain = 
 
  120.7142 
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estimated_settling_time = 
 
    1.9985 
 
 
estimated_peak_time = 
 
    1.1729 
 
 
estimated_percent_overshoot = 
 
    10 
 
 
estimated_damping_ratio = 
 
    0.5912 
 
 
estimated_natural_frequency = 
 
    3.3437 
 
 
Kv = 
 
    2.2190 
 
 
ess = 
 
    0.4507 
 
 
ans = 
 
T(s) 
 
  
Transfer function: 
              120.7 s + 603.6 
-------------------------------------------- 
s^4 + 19.8 s^3 + 128.4 s^2 + 392.7 s + 603.6 
  
 
ans = 
 
Press any key to continue and obtain the lead-compensated step 
 
 
ans = 
 
response 
 
 
ans = 
 
Digital design 
 
 
T = 
 
    0.0100 
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ans = 
 
Gc(s) in polynomial form 
 
  
Transfer function: 
120.7 s + 603.6 
--------------- 
    s + 6.8 
  
 
ans = 
 
Gc(s) in polynomial form 
 
  
Zero/pole/gain: 
120.7142 (s+5) 
-------------- 
   (s+6.8) 
  
 
ans = 
 
Gc(z) in polynomial form via Tustin Transformation 
 
  
Transfer function: 
119.7 z - 113.8 
--------------- 
  z - 0.9342 
  
Sampling time: 0.01 
 
ans = 
 
Gc(z) in factored form via Tustin Transformation 
 
  
Zero/pole/gain: 
119.6635 (z-0.9512) 
------------------- 
    (z-0.9342) 
  
Sampling time: 0.01 
 
ans = 
 
Gp(s) in polynomial form 
 
  
Transfer function: 
         1 
------------------- 
s^3 + 13 s^2 + 40 s 
  
 
ans = 
 
Gp(s) in factored form 
 
  
Zero/pole/gain: 
      1 
------------- 
s (s+8) (s+5) 
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ans = 
 
Gp(z) in polynomial form 
 
  
Transfer function: 
1.614e-007 z^2 + 6.249e-007 z + 1.512e-007 
------------------------------------------ 
    z^3 - 2.874 z^2 + 2.752 z - 0.8781 
  
Sampling time: 0.01 
 
ans = 
 
Gp(z) in factored form 
 
  
Zero/pole/gain: 
1.6136e-007 (z+3.613) (z+0.2593) 
-------------------------------- 
  (z-1) (z-0.9512) (z-0.9231) 
  
Sampling time: 0.01 
 
ans = 
 
    1.0000 
    0.9512 
    0.9231 
 
 
ans = 
 
Ge(z) = Gc(z)Gp(z) in factored form 
 
  
Zero/pole/gain: 
1.9308e-005 (z+3.613) (z-0.9512) (z+0.2593) 
------------------------------------------- 
  (z-1) (z-0.9512) (z-0.9342) (z-0.9231) 
  
Sampling time: 0.01 
 
ans = 
 
z-1 
 
  
Transfer function: 
z - 1 
  
Sampling time: 0.01 
 
ans = 
 
(z-1)Ge(z) 
 
  
Zero/pole/gain: 
1.9308e-005 (z+3.613) (z+0.2593) 
-------------------------------- 
     (z-0.9342) (z-0.9231) 
  
Sampling time: 0.01 
 



Solutions to Problems   13-55 

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
ans = 
 
    0.9342 
    0.9231 
 
 
Kv = 
 
    0.2219 
 
  
Transfer function: 
1.931e-005 z^3 + 5.641e-005 z^2 - 5.303e-005 z - 1.721e-005 
----------------------------------------------------------- 
       z^4 - 3.809 z^3 + 5.438 z^2 - 3.45 z + 0.8203 
  
Sampling time: 0.01 
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+ 
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SOLUTIONS TO DESIGN PROBLEMS 
 

27.  
a. Push negative sign from vehicle dynamics to the left past the summing junction. The computer will be the area 

inside the large box with the inputs and outputs shown sampled. G(s) is the combined rudder actuator and 

vehicle dynamics. Also, the yaw rate sensor is shown equivalently before the integrator with unity feedback. 

 

 
 

where G(s) = 
0.25(s+0.437)

(s+2)(s+1.29)(s+0.193)  .  

b. Add a phantom sampler at the output and push G(s) along with its sample and hold to the right past the 

pickoff point.  

 

 

 

Move the outer-loop sampler to the output of 
G(s)

s    and write the z transforms of the transfer functions. 

 

 
 

where 
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G1(s) = (1 - e-Ts)  
0.25(s+0.437)

s(s+2)(s+1.29)(s+0.193)     

and  

G2(s) =  (1 - e-Ts)  
0.25(s+0.437)

s2(s+2)(s+1.29)(s+0.193)
   . 

Now find the z transforms of G1(s) and G2(s). For G1(z).  

 

For G2(z):  
 

 
Now find the closed-loop transfer function. First find the equivalent forward transfer function. 

 

 
 

 
Thus,  

T(z) = 
Ge(z)

1 + Ge(z)  

Substituting values,  
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c. Using Ge(z), plot the root locus and see where it crosses the unit circle. 
 

  

 

 
 

 
The root locus crosses the unit circle when 3.8642x10-5K = 5.797x10-4, or K = 15. 

28. 
a. First find G(z).  

G(z) = K 
z-1
z   z{ 1

s 2 s 2 7 s 1220+ +
}  

 

 = K 
z-1
z   z{6.7186x10-7(7 s 3.5+ 34.4 1207.8−

s 3.5+ 2 1207.8+
7 1

s
− 1220 1

s 2
+ ) }   

For T = 0.1, 

 

= K 
z-1
z   {6.7186x107(7 z 2 0.66582 z+

z 2 1.3316 z 0.49659+ +
7.8472 z

z 2 1.3316 z 0.49659+ +
7 z

z 1−
− 122 z

z 1− 2
+ + ) }   

  
G(z) = K 7.9405×10−5 z 0.63582 0.49355 i+ + z 0.63582 0.49355 i−+

z 1− z 0.66582 0.2308 i+ + z 0.66582 0.2308 i−+
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b.  

 
 

c. The root locus intersects the unit circle at -1 with a gain, 7.9405x10-5K = 10866, or 

0 < K < 136.84x106. 

d.  
Program:  
%Digitize G1(s) preceded by a sample and hold 
numg1=1; 
deng1=[1 7 1220 0]; 
'G1(s)' 
G1s=tf(numg1,deng1) 
'G(z)' 
Gz=c2d(G1s,0.1,'zoh') 
[numgz,dengz]=tfdata(Gz,'v'); 
'Zeros of G(z)' 
roots(numgz) 
'Poles of G(z)' 
roots(dengz) 
%Plot root locus 
rlocus(Gz) 
title(['Root Locus']) 
[K,p]=rlocfind(Gz) 
 
Computer response: 
ans = 
 
G1(s) 
 
  
 
Transfer function: 
         1 
-------------------- 
s^3 + 7 s^2 + 1220 s 
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ans = 
 
G(z) 
 
  
Transfer function: 
7.947e-005 z^2 + 0.0001008 z + 5.15e-005 
---------------------------------------- 
  z^3 + 0.3316 z^2 - 0.8351 z - 0.4966 
  
Sampling time: 0.1 
 
ans = 
 
Zeros of G(z) 
 
 
ans = 
 
  -0.6345 + 0.4955i 
  -0.6345 - 0.4955i 
 
 
ans = 
 
Poles of G(z) 
 
 
ans = 
 
   1.0000           
  -0.6658 + 0.2308i 
  -0.6658 - 0.2308i 
 
Select a point in the graphics window 
 
selected_point = 
 
   -0.9977 
 
 
K = 
 
  1.0885e+004 
 
 
p = 
 
  -0.9977           
  -0.0995 + 0.2330i 
  -0.0995 - 0.2330i 
 
See part (b) for root locus plot. 
 

29. 

a. First find G(z). G(z) = K 
z-1
z   z{

20000
s2(s+100)

  } = K 
z-1
z   z{2 1

s 100+
2 1

s
− 200 1

s 2
+ }  

For T = 0.01, G(z) = Kz 1−
z

2 z
z 1−

− 2 z
z 1− 2

2 z
z 0.36788−

+ +   

= 0.73576K z 0.71828+
z 1− z 0.36788−

.  
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b. Plotting the root locus. Finding the intersection with the unit circle yields 0.73576K = 1.178. Thus, 0 < K < 

1.601 for stability. 

 

 
 

c. Using the root locus, we find the intersection with the 15% overshoot curve (ζ = 0.517) at  

0.5955 + j0.3747 with 0.73576K = 0.24. Thus K = 0.326. 

d.  
Program: 
%Digitize G1(s) preceded by a sample and hold 
numg1=20000; 
deng1=[1 100 0]; 
'G1(s)' 
G1s=tf(numg1,deng1) 
'G(z)' 
Gz=c2d(G1s,0.01,'zoh') 
[numgz,dengz]=tfdata(Gz,'v'); 
'Zeros of G(z)' 
roots(numgz) 
'Poles of G(z)' 
roots(dengz) 
%Input transient response specifications 
Po=input('Type %OS  '); 
%Determine damping ratio 
z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)) 
%Plot root locus 
rlocus(Gz) 
zgrid(z,0) 
title(['Root Locus']) 
[K,p]=rlocfind(Gz)  %Allows input by selecting point on graphic. 
 
Computer response: 
ans = 
 
G1(s) 
 
  
Transfer function: 
   20000 
----------- 
s^2 + 100 s 
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ans = 
 
G(z) 
 
  
Transfer function: 
  0.7358 z + 0.5285 
---------------------- 
z^2 - 1.368 z + 0.3679 
  
Sampling time: 0.01 
 
ans = 
 
Zeros of G(z) 
 
 
ans = 
 
   -0.7183 
 
 
ans = 
 
Poles of G(z) 
 
 
ans = 
 
    1.0000 
    0.3679 
 
Type %OS  15 
 
z = 
 
    0.5169 
 
Select a point in the graphics window 
 
selected_point = 
 
   0.5949 + 0.3888i 
 
 
K = 
 
    0.2509 
 
 
p = 
 
   0.5917 + 0.3878i 
   0.5917 - 0.3878 
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30.  

The open loop transmission with the sample and hold is 
ss

esL
sT 200001)(

−−
= , so 

1
20000

)1(
200001)( 2 −

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

z
T

z
Tz

z
zzL  

The system’s characteristic equation is 0
1

200001)(1 =
−

+=+
z

TzL  or 

0200001 =+− Tz . So the system has one closed loop pole at Tz 200001−= . For stability it is required 

to have 1200001 <− T , or 12000011 <−<− T  or 0200002 <−<− T  or sec10 mT << . 

 
31.  

 
With the zero order hold the open loop transfer function is 

 

⎥⎦
⎤

⎢⎣
⎡

+
+

+
−−=

++
−

=
++

−
=

−

−−

1889.0
7031.0

0481.0
76.206.2)1(

)1889.0)(0481.0(
0187.0)1(

)00908.0237.0(
0187.0)1()( 21

sss
Ke

sss
Ke

sss
KesG

s

ss

 

)8279.0)(953.0(
)0104.00031.00031.0(7031.076.2

1
06.21)(

2

1889.00481.0 −−
++

=⎥⎦
⎤

⎢⎣
⎡

−
+

−
−

−
−

= −− zz
Kzz

ez
z

ez
z

z
z

z
zKzG  
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The characteristic equation for this system is: 

0
)8279.0)(953.0(

)0104.00031.00031.0(1)(1
2

=
−−

++
+=+

zz
KzzzG  or 

0)0104.0789.0()7809.10031.0()0031.01( 2 =++−++ KzKzK  

We use now the bilinear transformation by substituting 
1'
1'

−
+

=
s
sz  

0)0104.0789.0(
1'
1')7809.10031.0(

)1'(
)1'()0031.01( 2

2

=++
−
+

−+
−
+

+ K
s
sK

s
sK  

giving 

 

0)0104.05699.3(')0146.0422.0(')0166.00081.0( 2 =++−++ KsKsK  

The Routh array is 

 

2's  K0166.00081.0 +  K0104.05699.3 +  

's  K0146.0422.0 −   

1 K0104.05699.3 +   

 

The first column of the array will be >0 when K>0 and from the second row 

9041.28
0146.0
422.0

=<K  

So the system is closed loop stable when 9041.280 << K . 

 
32.  

a.  In Problem 31 we found that for this system with T=1sec, 
)8279.0)(953.0(

)0104.00031.00031.0()(
2

−−
++

=
zz

zzKzG  

In MATLAB this system is defined as G=tf(0.0031*[1 1 3.3548],conv([1 -0.953],[1 -0.8279]),1). Invoking 
SISOTOOL one gets 
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b.   7.0=ζ  is achieved when K=0.928 
c.   The closed loop poles are located at 0.866±j0.103. The radial distance from the origin is 

872.0103.0866.0 22 =+=r , so sec2.29
)ln(

4
=

−
=

r
TTs . The radial angle from the origin is 

rad12.08.6
866.0
103.0tan 1

1 === − oθ , so 54.26
12.01

===
π

θ
π

T
Tp or sec54.26=pT  

d.   We have that 
( )( )( ) 905.1

)8279.0)(953.0(
3548.30031.0928.0)(

2

11
=

−−
++

==
→→ zz

zzLimzGLimK
zzp . The steady state 

error is 344.0
1

1
=

+
=

p
ss K

e . Then 655.0344.01)( =−=∞c  

e.   

Zero-Order
Hold

Scope

0.928

Gain

0.0031*[1 1 3.3548]

conv([1 -0.953],[1 -0.8279])(z)

Discrete
Transfer Fcn

1

Constant
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33.  

a.  A bode plot of the open loop transmission )()()( sPsMsL =  shows that the crossover frequency for this 

system is 
sec

726.0 rad
c =ω . The recommended range for the sampling frequency is: 

sec6887.05.015.0sec2066.0 =<<=
cc

T
ωω

. Arbitrarilly we choose sec25.0=T . 

b.  Substituting 
1
18

+
−

=
z
zs  into )(sM , after algebraic manipulations  we get  

9347.0935.1
)6614.03386.0(07278.0)( 2

2

+−
−+

=
zz

zzzM  
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  c.  

Zero-Order
Hold

Scope

0.63

conv([1/305.4^2 0.36/305.4 1],[1/248.2^2 0.04/248.2 1])(s)

P(s)2

0.63

conv([1/305.4^2 0.36/305.4 1],[1/248.2^2 0.04/248.2 1])(s)

P(s)1

z  -1.935z+0.93472
0.07278*[1 0.3386 -0.6614]

M(z)

s  +0.27s2
0.5*[1 1.63]

M(s)1

Constant
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The output of the system exhibits oscillations caused by a plant high frequency resonance. This problem can be 

improved by using other discretization techniques. 

34. 
a.  A bode plot of the open loop transmission )()()( sGsGsL c=  shows that the crossover frequency for this 

system is 
sec

9.9 rad
c =ω . The recommended range for the sampling frequency is: 

sec051.05.015.0sec015.0 =<<=
cc

T
ωω

. Arbitrarilly we choose sec02.0=T . 

b.  Substituting 
1
18

+
−

=
z
zs  into )(sGC , after algebraic manipulations  we get  

999.0
4948.05047.0)(

−
−

=
z

zzGc  

c. 
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35. 

a.  With the zero order hold the open loop transfer function is 

 

⎥⎦
⎤

⎢⎣
⎡

+
−

+
+

+
−−=

+++
−

=

−

−

5
0136.0

2
0868.0

08.0
3233.125.1)1(

)5)(2)(08.0(
)1()(

5.0

5.0

1

ssss
Ke

ssss
KesG

s

s

 

02903.04628.0411.1
)1617494(101

)961.0)(368.0)(0821.0(
)1617494(101

0821.0
0136.0

368.0
0868.0

961.0
3233.1

1
25.11)(

23

234234

−+−
−−−×−

==
−−−

−−−×−
=

⎥⎦
⎤

⎢⎣
⎡

−
−

−
+

−
−

−
−

=

−−

zzz
zzzK

zzz
zzzK

z
z

z
z

z
z

z
z

z
zKzG

 

In MATLAB this system is defined as G=tf(-1e-4*[1 -94 -174 -16],[1 -1.411 0.4628 -0.02903]),0.5). Invoking 

SISOTOOL one gets 
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b.  7.0=ζ  is achieved when K=5.15 
c.  The closed loop poles are located at 0.661±j0.247. The radial distance from the origin is 

706.0247.0661.0 22 =+=r , so sec75.5
)ln(

4
=

−
=

r
TTs . The radial angle from the origin is 

rad36.049.20
661.0
247.0tan 1

1 === − oθ , so 8.8
36.01

===
π

θ
π

T
Tp or sec4.4=pT  

d.  We have that 
( )( )( ) 4.6

)02903.04628.0411.11(
1617494110115.5)(

4

1
=

−+−
−−−×−

==
−

→
zGLimK

zp . The steady state error is 

135.0
1

1
=

+
=

p
ss K

e . Then 865.0135.01)( =−=∞c  

e. 
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36. 

GPID(s) =
0.5857(s + 0.19)(s + 0.01)

s
. 

Substituting Eq. (13.88) with T = 1/3 second,  

Gc (z) =
3.632z2 − 7.028z +3.397

z2 −1
=

3.632(z − 0.9967)(z − 0.9386)
(z +1)(z −1)

 

Drawing the flow diagram yields 
 

3.632

-7.028

3.397

0

-1

T = 1/3 second  
 

37. 

a. The pulse transfer function for the plant is  2

1 1( )
1p

z TG z Z
z s z
− ⎧ ⎫= =⎨ ⎬ −⎩ ⎭

. The desired 

1( )T z z−= , so the compensator is 
1 ( ) 1( )
( ) 1 ( )c

p

T zG z
G z T z T

= =
−

 

b. The steady state error constant is given by  1
1 1 1lim ( 1)

1v zK z
T z T−= − =

−
. So the steady 

state error for a ramp input is 
1( )

p

e T
K

∞ = =  

c. The simulations diagram is shown next 
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Zero -Order
Hold

Transfer Fcn

1

s

Scope 1

ScopeGain

20

Constant

1

 

 
For a step input, the system reaches steady state within one sample. 
For a ramp input the error signal is displayed: 
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38. 

Block Diagram 
 

  

Front Panel 

 



13-76   Chapter 13:   Digital Control Systems  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
 
 

 

 

 

 

 

 

39. 

 Front panel 

 
Note: K=0.3082 coincides with the answer for Skill-Assessment Exercise 13.8.  
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Step response of the close loop discrete system 
 
Block Diagram 

 

 

 

 

40. 

a. From Chapter 9, the plant without the pots and unity gain power amplifier is 
 
                                                  64.88 (s+53.85) 
             Gp(s) =       
                            (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283) 

 
The PID controller and notch filter with gain adjusted for replacement of pots (i.e. divided by 100) 
was 
 

                              26.82 (s+24.1) (s+0.1) (s^2 + 16.s + 9200) 
            Gc(s) =      --------------------------------------------------------------- 
                                                    s (s+60)^2 
 
Thus, Ge(s) = Gp(s)Gc(s) is 
 

                           1740.0816 (s+53.85)(s2 + 16s + 9200)(s+24.09)(s+0.1) 
             Get(s) =       
                            s (s2 + 8.119s + 376.3) (s^2 + 15.47s + 9283)(s+60)2 

 
A Bode magnitude plot of Ge(s) shows ωc = 36.375 rad/s. Thus, the maximum T should be in the 

range 0.15/ωc to 0.5/ωc or 4.1237e-03 to 1.3746e-02. Let us select T = 0.001. 

Performing a Tustin transformation on Gc(s) yields 
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              5.166e04 z4 - 2.041e05 z3 + 3.029e05 z2 - 2.001e05 z + 4.963e04 
Gc(z) =    ------------------------------------------------------------------------------------------ 
                              Z4 - 1.883 z3 - 0.1131 z2 + 1.883 z - 0.8869 

b. Drawing the flowchart 
 

- --

5.166e4

-2.041e5

3.029e5

-2.001e5

4.963e4

-1.883

-0.1131

1.883

-0.8869

T = 0.001

+ + +

 
c. 
Program: 
syms s 
'Compensator from Chapter 9' 
T=.001 
Gc=26.82*(s^2+16*s+9200)*(s+24.09)*(s+.1)/(s*((s+60)^2)); 
Gc=vpa(Gc,4); 
[numgc,dengc]=numden(Gc); 
numgc=sym2poly(numgc); 
dengc=sym2poly(dengc); 
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Gc=tf(numgc,dengc); 
'Gc(s)' 
Gczpk=zpk(Gc) 
'Gc(z)' 
Gcz=c2d(Gc,T,'tustin') 
'Gc(z)' 
Gczzpk=zpk(Gcz) 
'Plant from Chapter 9' 
Gp=64.88*(s+53.85)/[(s^2+15.47*s+9283)*(s^2+8.119*s+376.3)]; 
Gp=vpa(Gp,4); 
[numgp,dengp]=numden(Gp); 
numgp=sym2poly(numgp); 
dengp=sym2poly(dengp); 
'Gp(s)' 
Gp=tf(numgp,dengp) 
'Gp(s)' 
Gpzpk=zpk(Gp) 
'Gp(z)' 
Gpz=c2d(Gp,T,'zoh') 
'Gez=Gcz*Gpz' 
Gez=Gcz*Gpz 
Tz=feedback(Gez,1); 
t=0:T:1; 
step(Tz,t) 
pause 
t=0:T:50; 
step(Tz,t) 
 
Computer response: 
ans = 
 
Compensator from Chapter 9 
 
 
T = 
 
    0.0010 
 
 
ans = 
 
Gc(s) 
 
  
Zero/pole/gain: 
26.82 (s+24.09) (s+0.1) (s^2  + 16s + 9198) 
------------------------------------------- 
                s (s+60)^2 
  
 
ans = 
 
Gc(z) 
 
  
Transfer function: 
5.17e004 z^4 - 2.043e005 z^3 + 3.031e005 z^2 - 2.002e005 z + 4.966e004 
---------------------------------------------------------------------- 
           z^4 - 1.883 z^3 - 0.1131 z^2 + 1.883 z - 0.8869 
  
Sampling time: 0.001 
 
ans = 
 
Gc(z) 
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Zero/pole/gain: 
51699.4442 (z-1) (z-0.9762) (z^2  - 1.975z + 0.9842) 
---------------------------------------------------- 
              (z+1) (z-1) (z-0.9417)^2 
  
Sampling time: 0.001 
 
ans = 
 
Plant from Chapter 9 
 
 
ans = 
 
Gp(s) 
 
  
Transfer function: 
                   64.88 s + 3494 
---------------------------------------------------- 
s^4 + 23.59 s^3 + 9785 s^2 + 8.119e004 s + 3.493e006 
  
 
ans = 
 
Gp(s) 
 
  
Zero/pole/gain: 
               64.88 (s+53.85) 
---------------------------------------------- 
(s^2  + 8.119s + 376.3) (s^2  + 15.47s + 9283) 
  
 
ans = 
 
Gp(z) 
 
  
Transfer function: 
1.089e-008 z^3 + 3.355e-008 z^2 - 3.051e-008 z - 1.048e-008 
----------------------------------------------------------- 
       z^4 - 3.967 z^3 + 5.911 z^2 - 3.92 z + 0.9767 
  
Sampling time: 0.001 
 
ans = 
 
Gez=Gcz*Gpz 
 
  
Transfer function: 
  
0.000563 z^7 - 0.0004901 z^6 - 0.005129 z^5 + 0.01368 z^4 - 0.01328 z^3    
                                                                           
                                  + 0.004599 z^2 + 0.0005822 z - 0.0005203 
                                                                           
-------------------------------------------------------------------------- 
z^8 - 5.85 z^7 + 13.27 z^6 - 12.72 z^5 - 0.6664 z^4 + 13.25 z^3            
                                                                           
                                            - 12.74 z^2 + 5.317 z - 0.8662 
                                                                           
  
Sampling time: 0.001 
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41. 
a.   A bode plot of the open loop transmission )()( sPsGc shows that the open loop transfer 

function has a crossover frequency of  
day
rad

c 04.0=ω . A convenient range for sampling periods 

is dayTday
cc

5.125.015.075.3 =<<=
ωω

. T=8 days fall within range. 

b.    We substitute 
1
1

4
1

+
−

=
z
zs into )(sGc we get 

8519.0852.1
)8489.071.1145.1(102)( 2

24

+−
+−×−

=
−

zz
zzzGc  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

c.  
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42.  

a. The following MATLAB M-file was developed  

 

%Digitize G1(s) preceded by a sample and hold 

%Input transient response specifications 

Po=input('Type %OS '); 

K = input('Type Proportional Gain of PI controller  '); 

     

    numg1 = K*poly([-0.01304 -0.6]); 

    deng1 = poly([0 -0.01631 -0.5858]); 

    G1 = tf(numg1,deng1); 

       for T=5:-.01:0; 

       Gz=c2d(G1,T,'zoh'); 
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       Tz=feedback(Gz,1); 

         r=pole(Tz); 

         rm=max(abs(r)); 

         if rm<=1; 

         break; 

         end; 

       end; 

'G1(s)'; 

G1s=tf(numg1,deng1); 

'G(z)'; 

Gz=c2d(G1s,0.75*T,'zoh'); 

%Determine damping ratio 

z=(-log(Po/100))/(sqrt(pi^2+log(Po/100)^2)); 

%Plot root locus 

rlocus(Gz) 

zgrid(z,0) 

title('Root Locus') 

[K,p]=rlocfind(Gz); %Allows input by selecting point on graphic 

pause 

'T(z)'; 

Tz=feedback(K*Gz,1); 

step(Tz) 

b. As the M-file developed in (a) was run and the values of the desired percent overshoot, %O.S. = 0, and PI 
speed controller’s proportional gain, K = 61 were entered, the root locus, shown below, was obtained. 

c. A point was selected on the root locus such that is inside the unit circle. That point is:  0.9837 + 0.0000i  

d. The sampled data transfer functions, Gz and Tz, obtained at a Sampling time, T = 0.0225 = 0.75*0.03 are:  



13-86   Chapter 13:   Digital Control Systems  

Copyright ©   2011 by John Wiley & Sons, Inc. 

 
zzz

zzGz 9865.0973.2987.2
354.1727.2373.1

23

2

−+−
+−

=  

-1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

π/T

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

π/T

0.1

0.2

0.3

0.4

0.5

0.6
0.7

0.8

0.9

0.1π/T

0.2π/T

0.3π/T

0.4π/T
0.5π/T

0.6π/T

0.7π/T

0.8π/T

0.9π/T

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

 

and 
9688.0973.2969.2

01775.003575.0018.0
23

2

−+−
+−

=
zzz

zzTz   

The poles, r, of the closed-loop transfer function, Tz, are: 

– 0.8300, 0.9996, 0.9822 

e. The step response of this digital system, Tz, is shown below with the main transient response characteristics 
(the final value, rise time, and settling time) displayed on the graph.  These are:  

Final Value = c(∞) = 1 p. u.; 

Rise Time = Tr = 2.68 seconds; 

Settling Time = Ts = 4.82 seconds. 
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