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To verify this result, note that

L7 [sis75) = (r0-r0 &) 1D
L. (10-10€ "1k = /o

B-2-10.

{(o-i-)—-.&m.-S‘F(‘) = Lo

S5 00 S 00 (5“'2)1— o

L[$0] = sFE) - for) = sFE)



Hence

0 S*F(s
.'F('I‘) /f‘:z F() ;_é";(s_*Z) =/
B-2-11.
_ S+/ 1 _ S+0.8 —0.5
F&) s(s*+s+/) S (s-}-a,.s*)"-;- 2,75~
L S+ 0.8 4o o.266
S (stos)+o.84* 088 (stas) + 0.8687%
F@&) = /- e % crn 0866 + /7/32 € hi 0. 5487
B-2-12. .S\e'—s

F6) =
&) s/

Note that for a translated function g(t -« )1(t -of ), we haw}e

LLgtt-x) 1(t-0)] = €™ G (o >0)

Define

Then Gtz) = sf:/
ge)=se”"
So we have
L[se P ace-1)] = e 55;/
or
fp)=L[Fe] = s 1t-1)
B-2-13.
@ pw=EL oL, 2
fF&) = 6+ 3¢
(b) . S$s+2 — 3 o z

E(‘)"" (s-f-l)CS‘-l-z)" = 5+/ t (:_‘_2):_"' =tz
fl)=-3eF+ote T +a3e |




B-2-14.

Y A >
=) FeI= si(s*+at) W\ sthwt

9= o (2= st

2

(b) Fals) = Wn - (0<S‘</>
S (5% 23am s+ &n*)
— St23&n
s S*+ 25wns t @&
— 1 St _ | Se,
S (StSwn) P+ wr =5t (st5wn)*+ e =3k

Hence

F,8) =/~ e Wn\/ I-5*T - J%; 8—;%2:4“:. W f1~3+ T

= /~g "t (c,w,, [t + g teton 1757 z‘) |

—

f2(t) can also be written as

falt)= /- \/—/—-—- e™ Yt i (T35t + )

where e
= tw—, A
¢ s
B-2-15. o) = /0 (S+2)(s5+ #)

(s+7)(s+3)(s+5)*
A MATLAB program to obtain the partial-fraction expansion of F(s) is given below.

num = conv([10 20],[1 4]);
den=conv([1 4 3L[L 10 25]);
[r.p,k] = residue(num,den)

r=

-2.1875
3.7500
1.2500
0.9375




-5.0000
-5.0000
-3.0000
-1.0000

[

From the MATLAB output, the partial-fraction expansion of F(s) can be given as
follows:

— "'2'/}7-5- . 3.75 /.25 o0 7375‘
FE) =53+ (s+09° ¥ 513 s+ (
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A MATLAB program to obtain the partial-fraction expansion of F(s) is given below.

nm=[1 § 6 9 30];
den=[1 6 21 46 30];
[r.p.k] = residue(num,den)

r=

-1.0812+ 1.7051i
-1.0812- 1.7051i°
-0.1154
1.2778

-1.0000+ 3.0000i
-1.0000- 3.0000i
-3.0000
-1.0000




From this MATLAB output, the partial-fraction expansion of F(s) can be given as
follows:

~/,08/2%) 705/ L fos2 ~JL 708 o //s¢ | 12998
S+/-43 SH/I+j3 St+3 s+/

F&) = +/
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The inverse Laplace transform of F(s) becomes as follows:

S = 5O —2./624€ e 3t ~ 3. 9002 € Caus 3t 0. yr59€ S 29057

-1, s = -2: z = [-1; -2]

B-2-17. Zeros at s

[0; -4; -6]

Poles at s =0, s = -4, s=-6: p
gain K = 5: K=4

A MATLAB program to obtain B(s)/A(s) is given below.

z=[-1;-2];

p = [0;-4;-6];

K=4;

{num,den] = zp2tf(z,p,K);
printsys(num,den,'s")

num/den =

4s"2+12s+8

s 3+10s"2+24s

From the MATLAB output, we obtain
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AG) st o5t 248
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(25*+7s +3) X =65 +2/
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The Laplace transform of this differential equation is
SXG) = sZ) —2lo) + 3[sXE) ~Ale)] + EXEG) =0

By substituting the given initial condition to the last equation, we obtain. .
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o . -t o ,
X+ 22x+/oxX=Cc X@)=0 , x> =0

The forcing function e-t is given at t = 0, when the system is at rest. Taking
the Laplace transform of the differential equation, we obtain

SXE)— s H(2) ~2l) +2[sXE) —X()] + 4 XE) = ?:TT

By substituting the given initial condition into this last equation, we get

/
s+/
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XE) =S50 5+ -7 5%/ 7 (+/)*+3*%

The inverse Laplace transform of X(s) gives

xX(y=Fe - Fe e 5t (#2z2)
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X q, “‘q@”g > H-%r - G, .
3 |<
RG) G G35 (GatH1) €G)
| (G@48)+(Gt#) B
C(S) _ 6/ 6263 + G/ 63///

R() !+ GoH2 +6263H3+63HIH3 +6;6z63 + GIGJH/

B-3-4. In the following diagrams, (a) denotes the unit-step respbnse and (b)
Corresponds to the unit-ramp response.
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B-3-5. When D(s) is zero, the closed-loop transfer function Cgr(s)/R(s) is

Cls) G ) Gob)
R(s) At Gls) Gp )
When R(s) = O, the closed-loop transfer function Cp(s)/D(s) is
Co) /
) I+ GelD) Go0)

When both the reference input and disturbance input are present, the output C(s)
is the sum of Cg(s) and Cp(s). Hence

/
1+ G:(5)6p )

CES)=Cels) t Cpls) = [gc[s) Gpl RE) + Db')]

B-3-6. When only the reference input R(s) is present, the output Cp(s) is given

by Cg{f) _ ({/(;) 6:. (3)
R) 11 G,05) 620)

For the reference.input R(s), the desired output is R(s) for the unity-feedback
system such as the present system. Thus, the error Eg(s) is the difference

between R(s) and the actual output Cgr(s). The error Ex(s) is given by

' Ce ()
6= RE) = Cel) = ;e/;)[/_ = ]
G,6) (71(5') ] /

= Rfs - = Rl

&) [ / /1 t6G,(5)G2(D /1 G )5) G (}
Assuming the system to be stable, the steady-state error eggp(t) can be given

i Cssp )= Lo €x@) = bt SE (D =L = R

trw © see 7 T 146,6)6.6
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When only the disturbance input D(s) is present, the output Cp(s) is given by
Cpb) _ G 6)
D6) I+ G,6)6:6)

Since the desired output to the disturbance input D(s) is zero, the error Ep(s)
can be given by

Ep6)=0— Cpls) =— Cp6)

Hence

G (57

Ep6)=—Cp ) = — DB

For the stable system, the steady-state error eggp(t) is given by

— 5 G2() DE)
e < 7 "',Zhvx e = = ot >
e (%) ole) = Lo 5 Ep0) = et G,(5)Ga(s)

The steady-state error when both the reference input R(s) and disturbance input
D(s) are present is the sum of eggp(t) and eggp(t) and is given by

ssft) = Caxp () T ?;;p t)

\ [ sRE) $6.(5) PE) ]
1+6,(5) 620 /1&,6)G2(s)

!

s=>e

s20 { /‘f’é//‘)éz(s?

i

[ #8)-6.6> P&] 1

B-3-7. When D(s) = 0, the block diagram of the system can be simplified as
follows:

R() ' G G, Cr6)
 Ge - ™ s >
/'t G,6, H,
H,

The closed-loop transfer function Cp(s)/R(s) can be given by
6:: @/ ng C?.e

CR(’) = (+G)Ga K/ _ Ge 6/ G2 63
RE) )4 Se2&nMe T 46,6, M1t 6o, Gate
/116,62 Hy
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When R(s) = 0, the block diagram of the system shown in Figure 2-76 can be
modified as follows:

l D6)
Cr ()
—> G | — G, ‘a@__’LCZ? ™ % >
Hy & |
H, (=
D6) C6)
—> GG, >
)
6 [ wret g [
Hence
G6) _ G, G, B G2 Gs |
Dls) /%6265 Gy (G th + 4 I+616, 63 6. Mz + G, 6,

B-3-8. There are infinitely many state-space representations for this system.
We shall give two of the possible state-space representations.

State-space representation 1: From Figure 2-77, we obtain

s+ g /
Yo _ “s+p 5= - S+&
Us) 4 3te ] S+ psiy s+ 2
s+p  s3

which is equivalent to
Frpy+yt2y=d+2u
Comparing this equation with the standard equation

Yray+hY tasy = b i+ hd +huthu

we obtain

4I=f) =/, 3=z, be =09, b,=é, be=1, bs=8
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Define

XN =Y-fo 4
Xs =:?2."'F:."¢
Bo = b¢e =0

p1=bi=4,f0 =0
f; = by ‘4/1’)-—’43180 '-'—'/

/3=ba"4//63‘f4318,—43ﬁ = z—f

Then, state-space equations can be given by

2] [e 7 o]z] [a
R =9 o ’_Xz»+ﬁzvu

I.O -z =/ -Ib 3 ﬁ,

| %
Y=[1 o o]lx, + fou

or

X."-:-'o o [/ |||+ ] l«
JREIEVAE Y P

%
y=[/ o o]lg
%)

State-space representation 2: Since
S+p S +f S+ lb
we can redraw the block diagram as shown below.
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Mi\

—ZZ—» -r | X ,é_v_ﬂ 1 Xz'
Stp MK

From this block disgram we get the following equations:
V= U""’X/ -+ X;
Xs __ _E=2_
- X, S+ /’
, Xa [
T-Xi t Xs s

X . L
X, ®

from which we obtain
At prs = (Z-p)u—(E-p) %,

X, = =X+ s+ U

=.-2’z

-~

Rewriting, we have
X =X
_ i’;=""ZI+ 7(31"”

dy == (2-p)a, —pXs +(2-pu

Jd=%

or
! 4 /9]y 0
nl=|-/ o  /|l|+]

X'J /b -2 0 A 1 E6 2~ P
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%
¥=[7 o olix|

6]

B-3-9. - .
| 4+3y+2y=¥K
Define
. 1’/-'-'?
=4
1’3':7”
‘Then
L +30+ 20 =«
i,, =3
x’,=2’¢
or
io o / ollx 0
Ll={e o /||x]|t|o|¥
1.0 o —2 —3 X, /
|
¥=[/ o o]|%
3
B-3-10.
d 3‘-/)”—-’;”—[/ 0]
The transfer function G(s) of the system is given by
| -/
S+ 4 /
-1,
G6)= S[s£~d> £=[/ a][-a s+/] [/

- 18 -~
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0] / 5+/ "/ /
Grels+)+3 | 3 sexl|/

/ s
s2p8&s+7 L 0][’*'7]

— 5
sS4 8s+7
B-3-11. 5
- -5 -/
p=17 2] e=[E] gmoa

The transfer function G(s) of the system is given by

iy st+s /| -2
Gb)= CCI-40"B = [/ 2] s

-3 S+/
s+t -/ 1]2]
= [_/ 2] : { '
' (5+s)(s+/)t3 | 3 Sts | 5]
. / [/ z] 25-3 _ /125459
T oS4 458 ss+2/ | s*ts+ &

A MATLAB solution to this problem is given below.

A=[5 -1;3 -1}
B=[2;5];

c=[1 2}

D=0;

| [num,den] = ss2tf{A,B,C.D)

0 12 59

den=

- 19 -



The transfer matrix of the system can be given by

N

i

s =~/ o
.y [ ¢0 ©O
Ge) =C(sI—-A 5:[ ] g.s
|s*+s+¢ St6
0 1 0] SP+ssFtres+2)
—25  —¢s-2
/ /[ S+€
S35t es+2 |S SHES
B ; S+4 ]
SPp f57 4st2 stt+ o5 gstz
< B L TRp |
STtEsry¢s+2 si+fs T+ gst2z

A MATLAB solution to this problem is given below. -

B=[0 0;0 1;1 0];
C=[10 00 1 0];
D=[0 0;0 0];

A=[0 1 0,0.0 1;2 4 -6];

[num,den] = ss2tf{A,B,C,D,1)
num =

0 0.0000 0.0000 1.0000
0 0.0000 1.0000 0.0000

den=
1.0000 6.0000 4.0000 2.0000
[num,den] = ss2tfA,B,C,D,2)

~0 0.0000 1.0000 6.0000
0 1.0000 6.0000 0.0000

den=

1.0000 6.0000 4.0000 2.0000

- 20 ~
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B-3-13. Since the same force transmits the shaft, we have

fob(3-%)=b, (§-2)+ bs(§5-2) o (1)

where displacement z is defined in the figure below.

b2
. 1}
T
[ . .
JITul
x L’_ ¥
z
In terms of the equivalent viscous friction coefficient, the force f is given by

f= 57 (§4-%) (2)

From Equation (1) we have
b by e+ bii=b xtbag+bsd

or

é—m——‘ [bl"'(é?-""é.i)g‘l (3)

By substituting Equation (2) into Equation (1), we have

Febit ")“’fmu,zwbway] -
b-{-b:

’b/b-t—b i, (9% (4)
Hence, by comparing Equations (2) and (4), we obtain
éz "l' bj /
= b —
beg = 1 bitbatby, 1 4 L
bz_'l' bs b/
B-3-14.
(a) | mx +EX =«
X6 _ [/
TE) | mst+k

(b) Define the displacement of a point between springs kj and kp as y. Then
the equations of motion for this system become

mxX +ky (x-4) =«
il? = X2 (x-4)

- 21 -



From the second equation, we have

or

‘,”'i‘izy =Jez X

m2+—z/f4'_:—_‘t’c=“"

X6 _ /

T ™ Tpery Ak
B-3-15.

7’"% +h (H-h)+éY =4,
Mgy th (4, ~4 )tk =4,

Define
x/""’ﬂ/
11 ‘—='7.'
R’;=7z
2’,..—.-%
Then
7”/;’; +b/(3'z"xﬁ)+ilxz = ¥,
My Xy + by (X=X )+ o 2y = &
‘Hence
X, = X
?‘(;-T-‘—' ',57[5/(3'1—2';‘) + 4, X/:] + ';,%’l«(l
% =2

:.C,.:.—. - -”‘éz- ['h(xg "'Xz)'f'éz 1’3] + '}}% 4,

- 22 -



or

% 0 /0 o ||x o @

A "’5’; "3%/; o 73:‘ %G ‘»% o ([,

% B 4 g o [/ |5 * o 0 [ﬂz

4. ;1 7:% ’%éf | |9 -r'nl:

1 L _ JL 1 L 3
F_zl'

& /! o o ol|x,

Y.l o e 1 ollx;

Xy
B-3-16. v
Jo = T
where
T =-2kpa"—mgLand
J=ml?
For small O,

wl26 =—2ka*6 —mg Lo

or

2ka 3 _
s + ﬁ+1>a.—o

B-3-17. Note that

4=x+1""""'5; yq""'/(caz.ﬁ
For x direction: ‘

M76+7ﬂ1§=6{

MX +m — (X'P[Mﬁ

dz"
Since
ad? ' . s 2 é'
TS = (¢n8)8 +(cmg)

- 23 -



(M+m):'z'—- ml(wa’—-a)iz-rm/(mi)(;=u
For small O and small 62, we have
(M-}-m)i"-f'?ﬂ[ﬂ. =« : (1)

For rotational motion:

Js =m;/,a~"ﬁ —mzhcrp

vhere
T=T+ml*, I=m%

- (T+md?)5 = mglaiss - mid coe 8

For small 6, we have , . v
(T+mA?) 6 =,,,;,(,9-me » (2)

From Equation (2),
I+mll )

mlﬂ

Substituting this last equation into Equation (1), we obtain

(mem)(30~ L4 ) #ml & =

£=?&—

or mL
Mam) op — AP T+Mml® o
(M+m) 26 —y p =«
Thus,
'C 1 M-
Y (M+m)g o — md 3)

(Mtm )z +pmL? (M ) I +MmL* “

Also, from Equation (1) we have

er ?lf!d"'mlx" —
(M+m)x +ml Tomgt =

[MI+m(T+MEY]Z +mA*98 =u(T+mLlY)

from which we get

- 24 -



- wiL* T+ml*

MI + 1 (T+#L) MI+m(T+ML2)

Equations. (3) and (4) describe the system dynamics in terms of differential
equations.
By taking the Laplace transform of Equation (3), we obtain

2_ m'((M'*’ﬂ)L - mnd
[S ( M+m)I+/hml’-] 66 (Mtm) I+ MmL* ve)

or

{[ MI+m (T+MLT] 5°— m/(A/m);} A =—-ml UE)

Hence

@6) _ _ md (5) -

T6E) [MI+m (T+mL2)] s —md (M+m)3 ‘

By taking the Laplace transform of Equation (4), we get '
- L T+ml*
S2X(6) =— »

& MI +m(T+ML2) Ok + MI+m( IT+MLZ) 2%

Hence
STX6) _ ml*g @6 + T+mk3

TE)  MI+wm(r+me?) TG6)  MI+m(T+ML2)
or . .

X _. i 2 ml

Ts) [MI+ m[I+ml‘)]$ [MT+m (T+milD]s _:/[(/{M);

T+ml?
[MI+m(T+tmL)]S> ®

Equations (5) and (6) define the inverted pendulum control system in terms of

transfer functions.
Next, we shall obtain a state-space representation of the system. Define
state variables by

and output variables by

- 25 -



y,=ﬂ=1/

J2=X =2%3

Then, from the definition of state variables and Equations (3) and (4), the
state equation and output equation can be written as

" . ] ar ~ M
[ e /I o ol 0
. ml(Mim)g | m{
Z, -
4 * - MI +m [I+/‘Il‘) o 0 g (1% + m.)-m(_[f-”jt) %@
i’ [/ o o0 /|% 0
v ket IT+md*
X - g 0 ||X ‘
i "‘l i MI-!-m(I-Iﬂ.(‘) 9 JL ’: _MI-)-‘M(I-]—MI‘)J
.x,.
% /- o o o Xz
,l- o o / 2’,
)

B-3-18. The equations for the system are
e ¢
My Xy =y Xy = b A, - ks (4 —A) T U

H2 2z =~/ Zz"'bz;(z—'ks (%2~ 3[/)
Rewriting, we have
) Ay by A, Ry A ks X = ks At U

mz'x‘l“' bzi:_ +k?. 2’1'. +£3 X}_ =k39(/

Assurhing the zero initial condition and taking the Laplace transforms of these
two equations, we obtsin

(7’7/ s+ bys t kit ks ) Xa(® = ks X.()+ UE) (1)

(”’zs’+sz+,é;+ k3)X2() = £: X1 6) (2)

By eliminating X2(s) from Equations (1) and (2), we get

(m)s™+ bsth tks )X () =

2

Rs
m:.S"ﬂ"b,_S#' é‘l. +k_;

X16)t UE)
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Hence
XI[S) M St bast ket ks

TG T (st hysthitks)(mesttbastkathks) —KE
From Equation (2), we obtain

Xz(’) _ ks
X 5) T M ST by st ki +ks
Hence
Y=06) _ Xel9 X0 _ k3

Vﬂ) Xl{f) ) (»7/511‘— k/S‘ 'f’k/ +/(3)(Mz Szfészka+k3)_k31

B-3-19. The equations for the given circuit are as followw:

4, ¢
/?,2,+-L("- z)=¢<
dis {
sz«‘l szo[f“‘f'L( : "o/,) 0
—-é,— ‘\Lﬂéf =€o

Taking the Laplace transforms of these three equations, assuming zero initial
conditions, gives

AT+ L[sh) —shs)] =Ec) (1)
Re I, (5) + ’é[;.‘]z[>7 + L [SIQ(S)—-SI,(»")] =0 (2)
25 16) = E.6) (3

From Equation (2) we obtain

(fzJ’E[s"*é’)Ia(’) = LsI,(&)

or

IS = LCs* 7, |
2(5) PP, ,6) ()

Substituting Equation (4) into Equation (1), we get

(R+ts=-1cs £cs” )L(f)=£;{»~)

LCs*tRCs+/

or
LC(RAR)s*+(RRC+L)st
LC s*+ R.Cs+
From Equations (3) and (4), we have

Ls
= E

-Z/ 5) = £, (f) (5)
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From Equations (5) and (6), we obtain

Eo(j) _ Z..S'
Ei6)  LC(R +R2)s*+ (R1RC+.)s+ R,

B-3-20. Equations for the circuit are

[/

—Ei"‘ S([,-—fz) At + P,f, = €.
- \ ) .
_CJTJ(u—,,) c(/‘("+kz,¢z+ 'E;fglx'{‘.::o

_24: L‘zo(/r_ =€o

The Laplace transforms of these three equations, with zero initial conditions,

are
—c—-/—~[I,(5)-Iz(S):|.+ R I,6) = E;(s) (1)
/S
L [re-10] + B Lt =0 (2)
i
o LW = 6 (3)

Equation (1) can be rewritten as
e, s Et—RIK) ] = 1,6 —I.6) (4)

Equation (4) gives the block diagram shown in Figure (a). Equation (2) can be
modified to
C,s /

kzﬂz;"-/ CIS

T.6s) = [Z’,{S) - Iz(S)] (5)

Equation (5) yields the block diagram shown in Figure (b). Also, Equation (3)
gives the block diagram shown in Figure (c). Combining the block diagrams of
Figures (a), (b), and (c), we obtain Figure (d). This block diagram can be
succesively modified as shown in Figures (e) through (h). 1In this way, we can
obtain the transfer function Ey(s)/Ej(s) of the given circuit. .
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(a)

(b)

(a)

(e)

(9)

(h)

EL‘(S) | J}{’) - —Tz{f)
CIS -
LG
R/ - )
1; 6)"];(—‘) ] Cos Iz (’) Iz(f) ]
| — > e (c) -
Crs ReCrs+l Cas
: I,()-L65)
N W M L TR
‘S R;(‘15+L Ces
1R, e
E:ts) j oY , E.(5)
- G s > - . — >
C s 1 | RzCz.J'f/ Cas
C;S -
CZJ_. ' ' 50(5')
ReCo st/ Ces .
R/ = Gs =
RCstl | | ReCas+/ -
KiCoo [
Ei(’) / Ep/‘)
R,C} RZ ('g’z‘f‘ (&Q*chx +kl('t.)’+’
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B-3-21. Impedance 7; is

Z, =K + E'_I'; , — r-""“_‘i'z
/ I_.".'L.:'.‘Y/-[’] o
Impedance Z; is Z' 'Rz §§ '
z, 1 ', "
Hence O | .
' R4 -
E.® - 22 _ 2" Cs
E®  Zi+Z,  p 4L
! C/ +Fe C2s
— XzCzS +/
(Re:+mc)s+ | + -g-/‘-

If we change Ry to by, Ry to by, C; to l/k;, Cz to 1/kp, then we obtain

R:C25 =+ / bz-#;_g-'-/
RARD Cos +/+ 5% (bytb)des +1+ %

or

Xo(5) - bz.r.+k,, b1s5 ks
Xe®  (bth) Sthath,  (hsth,)+ (hsthe)

The analogous mechanical system is shown below.
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B-3-22. 2
; I W
Z =k + 55 I BB T
k’ i — - —— ' |
Z. =R, &_Lll -t :(>_l__—a
S

Then | e, eo
E,-(s‘) = (% +=5) 16 o— * —o

E,(J) =— Ra2 IG)

Hence Eo(s)._ _ /?z _ R:Cs
Ec(s) k’+c—ls" R,es+/

- - = . - —————————— T ————— - — " S — fie = > e = = - e G e S = S e e M S S S N e o

B-3-23. Define the voltage at point A as ep. Then
EA (s‘) P/ '?l Cs

Ectsy 'C"/_;’ + R, T R Cs+ |
Define the voltage at point B as eg. Then

Rs

EB(S) = kz +R3

E,(3)
Noting that
[E,,(y)._ eg(;)] K = E,65)

and K 3>>1, we must have

EA(S) = E&(f)

Hence

RiCs K3
E\(s) = ————— L. =Egls) = E.G
2 (5) RCs E;ils) z () %2 tF3 2 5)
from which we obtain
Rz
Eo(f) _ Fz'f'?a RCs — (/+7é; s
gi) R Rcs+1 -
’ S+R,c
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B-3-24. For the op-amp circuit shown to 7
The +3¢ 4

the right, we have L
I, ZTA
EA —EO .‘:Zl/_ Iz Zzl - o
._.J VA +
EB-—-O ='Z3I/ ’ _}T—EI"B
Hence
Z;‘.I2+Eo = Z3 I/ o 1 °
or B
I2=%(23I/_Ea) (1)
Also,
Ei-Es =(Z:+Z, )1, (2)
E, =(2,+2Zs )I/ 4 (3)

By substituting Equation (1) into Equation (2), we obtain
. — l ~
Ec - &0 = (Z'z'f'Zy)z (Zg_[/ -—Eo)
By substituting Equation (3) into this last equation, we get
| Z2 Z2
(z+207 —6 = (B +1) 51 - (£ 1)

or

(/'——Zf ~/>Ea =(z+2s - 'Z;f’—z) I,

Hence

'—ZZE¢=(Z/'Z¢‘2223)I/ (4)
From Equations (3) and (4), we have
2 7 -217
E, _ —‘2—3—2';—‘5 2273 -2,Z
&; Z, + Z3 Z,Ze +2. 25

For the current op-amp circuit, we have

Zl:"—c‘L_{'; Z, =R, , Z3=Ra, Zs=RKR,

Hence

[
E,,(S) _ P/A’z —2—;’7\’, k,_—E&_— R2Cs—/

. / , = / -
Es) .E}-k/.,.p/kz Z"'s—_"-k?‘ R2Cs+ [
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B-3-25. Define the current in the armature circuit to be iz.- Then, we have

dbm

de .
LTE TR+ K

= 6‘.
(Ls+R) L) + Kys @9 = E:& (1)

where Ky is the back emf constant of the motor. We also have
1 X}
TIn B +T = Tn=K4, (2)
8
T=T.=nT

56 =T,

vhere K is the motor torque constant and i, is the armature current. Equation
(2) can be rewritten as :

(T +7°T) 6 =2Kia

(Tm+n2T. ) s* O =1k I.6) - (3)

By substituting Equation (3) into Equation (1), we obtain

z 2
(Lorr) (BEETIE Gy 1k 5 S8 = E26)

[(LS +R (Tt To ) S+ KKy s] A = 7K E;6)

Hence

o _ #nK
EG)  s[(Ls+R)(@tnT) s +KK,]

B-3-26. We shall use Mason's gain formula to obtain Y(s)/X(s).

where
b b/'
F == =2
/ oz p) P‘?— <
Also,
A =/-(L,+ 41)
where
- a; _ d2
LI _—.T /7 Lz - SZ



Hence

2
L= /= (L +L) = /+—§4+—j—§- = 4:;””
Also,
A=, A, =/
Hence,
P s* b2 +_1’_L)_ b,s+ ba
T s*q,s4a: \s* s /) s*yg4,s+a=

B-3-27. We shall use Mason's gain formula to obtain Y(s)/X(s).

P:—AL%aAk :':ZL(P;A, +P1A2+}§A3>

where
_ b _ b; b
=g R=gh Rl
Also,
A=/~(t,+L+Ls5)
where
-4y _—4a _ —4as
'Z'/: < ] LZ— 52 ’ Z'3-_— SJ
Hence a q S34+aq,8S*+4.5+4
/ az 2 _ ST +4 + 4z 3
A = /‘f‘ < + 2 + PE = s
Also,
A/:/) AQZ /, A3 :/
Hence,
s? bs b ba
P-_—:. 3 z 3 + Ky + Sz
‘ S°+4q,5*t 4,5 + 4as S
<3 bys*+ b.s+ b,
S3+4,5*+ g, 5+4z2 s3

b/.fz‘f‘ bas + b_’g
S?+a,;s*+a.s+asz

B-3-28. Define
Z=x"+ £y +3g7‘=f(117)
2<X< 4, [j0LY</zZ
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Tet us choose X = 3 and y = 11. Then
F=Y"+827 +39> = 9+ 244 + 343 = 636

We shall obtain a linearized equation for the nonlinear equation near the point

X =3, ¥=11. Expanding the nonlinear equation into a Taylor series about
point X = X, ¥y = ¥ and neglecting the higher-order terms, we obtain

= K, (7(—27)'1’ K2 (7—5)

where

ot —
Lo e =2 g =4+ &F =
k/ X x=;, 7:5 +8(7 lir}l 5:‘// ?%
K2 =25 ._Px+o’7 ' _ = 2¢+ 48 = 90
ox X"—"il 9,;; "//

Hence the linearized equation is

2436 = 9 (x-3)+70(y—v/)

or

R=7¢X +704 — 636

B-3-29. Define
| j=o2x’=§, x=2
Then
Y=40 = &) + (x X )t

Since t}ile higher-order terms in this equation are small, neglecting those terms,
we obtain

- fR) =0.4x*(x-X)

Y- 0.2x2% = 0.4 X2° (X-2)

Thus, linear approximation of the given nonlinear equation near the operating
point is

7=2.f-x- 3.2
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CHAPTER 4

(), =k, e=kvF
Thus
c.{’ +6=R;,
Note that
dQ = K 4L
Hence o
Since ‘(Q
_ @ _ se2
Kl ==
we have .
R = :f?:_ = 300
Thus, -JJ

Time constant = CR = 5 x 300 = 1500 sec

B-4-2. For this system

Cadif=—@adt, H=3r, C=rr =(T?/792'7z:
Hence

(L'ran = ~0.008 a7 «t

or

HEdy - 0.008 - dt

Assume that the head moves down from H = 2m to x for the 60 sec period.

do
5 //'«///::——aoas-—z— a4t

o

- 36 -
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or

_;-.(z’f:_ 2{') = —0.0/%32 (60-2)

which can be rewritten as

X —(rs42/3)" =—2./%80
or

xf =t 45685 -2./¢50 = 35087

Taking logarithm of both sides of this last equation, we obtain
S
- Ky
z 1’7/' X = o Z50 87

or

X =/.82 -

B4-3. From Figure 4-49 we obtain the following equationsy

H5) —/1:6)
K,

= &, ()

—%2‘ = G, ()

Ql'ﬁ) - Q/ 6’)
Cs

= H,(9

e - Q.6 + QJ(’)
 (5) s =

C:s
For each of the above equations, a block diagram can be drawn, as shown next.

H,(s) 7 a,6) Hifs) 7 Q.(s)
| Q)
H.(5)
e (% T ,6) 7] Hel)
Ast > — f————
S Q s
Q) 0,9
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Combining these elements of block diagrams, we obtain a block diagram for the
system as shown below.

Qi)

/'/'(S) ! al(‘:) <

Qz(’l
R N S //;(S) o

bl

Simplifying this block diagram successively, we obtain a reasonably simplified
‘block diagram as follows:

IQJ(f)
S e Y P e Tl mm e an ovd maa % -
C/S kz ‘
Q46)
7 7 @)
RCis+/ , " R Ce3t! T
X;(‘ﬁ‘

RC5 4+ (e QJ(S')

/ €:.() 2 ‘//1(3‘)
(RiGs+/)(RuCas+7) 12
R s
Quls)—> RiCyst]
Q) < Rz | H2()
‘ (PICIS'*',)(fZ('g5+/>+kz(',;f
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From this last block diagram we obtain Hp(s) as a function of Qj(s) and Qq(s)
as follows:

Ra
(R,¢,s +/)[kzc'zs+/) +R, G S

Hals) = [4&+ (Ras+)au)]

B4-4. Figure (a) below is a block diagram of the given system when changes in
the variables are small. Since the set point of the controller is fixed, r = O.
(Note that r is the change in the set point.) To investigate the response of the
level of the second tank subjected to a unit-step disturbance input qg, we find it

convenient to modify the block diagram of Figure (a) to the one shown in Figure (b).

ZJ Rz

Ralast] ? /I
q Rz z

y=0 / Rz hy | Rtstl !

K b > e
R,0;5+| Rulas+|
KR:
(Ris+] )(ReC2541)
() )

The transfer function between Hy(s) and Q4(s) can be obtained as
Hals) R (RiC s+ /)
Qu ) (RiCs+1)(RaCoas+ /) + KR

From this equation, the response Hp(s) to the disturbance input Qg(s) can be
obtained. For the unit-step disturbance input Qg(s), we obtain

hy(w) = Liwn s Ho05) = R

s20 /Tt KR2
or
tead tat Ra
steady-state error = — —
Y It KRz

The system exhibits offset in the response to a unit-step disturbance input.

B-4-5. Note that

Cdf,:ﬁ;(,f'
where g is the flow rate through the valve and is given by

Pe=5

 m—————
—

R
Pe=po
R

Hence

e _
C ot

from which we obtain
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RS) ___/
P Res+ ([

For the bellows and spring, we have the following equation

/4/4, =k
The transfer function X(s)/P;(s) is then given by

X BO _ A __/

X0 _
76 P Pl R RCs+/
B-4-6
— X® z6) Bt
f—@—»— -a—é-F-b- k’ Kz c

Y6)

b d)

In this block diagram, Z(s) is the Laplace transform of the small displacement
of the diaphragm of the pneumatic relay. The transfer function P.(s)/E(s)

is given by
=6) __¢b K &, =k
E(f)“ Atb K A = r
/+Kike +b ~

The control action of this controller. is proportional. Thus, the controller

is a proportional controller.

-B-4-17. Define the pressure of air in the bellows as Fc + po- Then
o = -t
Cop,=g At , g= "tz
Hence
o — i)
At R
or
(1)

c ‘:"{?"f‘/’,"'ﬁc’

Define the area of bellows as A and the displacement of the bellows as Y + Y.
Then, noting that pOA 'Ky, Equation (1) becomes as

A
ke F A=A
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or

4 _ A
RC L+ =4p

Thus

A
Y5 _ &
() RCs +/

A block diagram for this system is shown below.

) )/ 72(s)
= - :
a ), Alk
a+b [ Res+/ |
RE) _ b /GK
& - oa+b
) rh K 7

ﬂ'*‘.b RCs +)

Assume that KjK2>1. Then

RG) _ _b __arb _ROsH _ (::)(2054—/)

EC) T at+tb 4 {_

'I'hus} the control action is proportional-plus-derivative. The controller is
a proportional-plus-derivative controller. :

B-4-8.
b k] 20
A
]
a
a+b
% A _/
k RCcs+/
BE) _
E(s) ~ a+b K/cq ( )
4 & A’(s+/

If K3K» 1, then
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7 b5) b K K
Er) atb K kaq RCs ( ,et‘s

A
a+b R k(‘_g‘-{-/

The controller is a proportional-plus-integral controller.

B—4-9.

ES) X6) R()
e ey e g . e K

a ‘ A ]?(S) /

a-+t b %' BRI RS +d

/ ——
RaCaS+/
RE) b ki K

“'*'b R RCost+l Ro,s+)
If K3K >>1, then

RE) _ _» /
E6) A+b 4 A Reles /
at+b K RC.s+l R, s+

_ [ bl \/RCas+/

—(ﬂ k R2 0, s )(kC’IS‘I"/)
bk /

— [/+ chzs)(k,c,sw)
- %(’* LG 4 !

£ C, le(’zS+ﬁC’S>

Thus, the control action is proportionaléplus—integral—plus—derivative. The
controller is a PID controller.

B4-10. Referring to the figure shown on the next page, we can obtain the
equations for the system.
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Qil under
pressure

For the diaphragm and spring assembly,
Adx = KB

or

For the jet pipe,

or

For the pilot valve,

or

XE)

e

26)

Qil under
pressure

A¢

X6)

R

Y6) _

Kz

Ues)

A,,ﬁ_r

A simplified block diagram for the system is shown below.

K

Ka

‘ A¢ Z6)

£ | Aps

)

Ap LS

From this block diagram we obtain
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Yis) _ Y9 Up 2 _ K2 Ky Ad K

——
—

XO = U8 26 XJ A ps Aps & e

where

K2K; Ag
Affl Ajﬁk

B-4-11. Define displacements e, x, and y as shown in the figure below.

Oil under
pressure

L
al

!

&fh

From this figure we can construct a block diagram as shown below.

o) E() [ X6s) [k )
— 4 = a+b"‘*C83 e I -
1 a - ke
) atb

From the block diagram we obtain the transfer function Y(s)/@®(s) as follows:

( 5 £
Yo _ " atb s . _4b  _a+b 3
@F) 4k _a " a+b a — T a
S a+b

We see that the piston displacement y is proportional to the deflection angle ©

of the control lever. Also, from the system diagram we see that for each
value of y, there is a corresponding value of angle g. Therefore, for each
angle @ of the control lever, there is a corresponding steady-state elevator

angle ¢@.
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B-4-12. Since the increase of water in the tank during dt seconds is equal to
the net inflow to the tank during the same dt seconds, we have

(’//;:(Z‘. t9a—Fo) dE (1)
where
__h
70"‘;{
For the feedback lever mechanism, we have
R G
X =2+ h
Equation (1) can now be written as follows:
dh
gt pa—Fo =Kyt @
Note that
Ay _ =K, 2 __ 3
ﬂ&f kli /</ “+19 /l ()

By substituting the given mumerical values into Equations (2) and (3), we obtain

oA
o =

Taking the Laplace transforms of the preceding two equations, assuming zero
initial conditions, we obtain

25 HG) =~ Y6+ Quls)— 2HE)
sY6) = HE)
By eliminating Y(s) from the last two equations, we get

252 p(s) = —H ) + SRal) — 25 HE)

Hence

(2s*+25¢/)HE) =5 Ra(5)
from which we get

HE) s

Qub) ~ 252+ 2s+/

B—4-13. For the system
BA=hk(x-2)
where A is the area of the bellows and z is the displacement of the lower end

of the spring. Also,
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gzij&- 5 gy=-Z

Thus
Y(5) = _f. X, YY) =—Z6)
Hence
ARGy = k [XE)~269) = #[ X + Y] = ke (1+ 5 )X6)
Therefore,

Yo _ kX ___KA kA
56 S Fp) Sé(/+—§-) k(s+K)

B—4-14. Define

6p = ambient temperature

0 = temperature of thermocouple

8, = temperature of thermal well

Ry = thermal resistance of thermocouple

Ry = thermal resistance of thermal well

C; = thermal capacitance of thermocouple
Cy = thermal capacitance.of thermal well

h; = heat input rate to thermocouple
heat input rate to thermal well

=2
N
]

Then, the equations for the system can be written as
C/ﬁ(&[ =/’/dt
Codbr = (ha— /t/)‘(t
where h; = (62 - 61)/R; and hp = (6g - ©2)/R3.

46
K[UI'ZEI""&[ = b,

Thus we have

c dliz;___ 00"‘192 — pz"&/
At Ry R,

By eliminating 87 from the last two equations, we obtain

o) _ / |
O,(s) RiCRC s*+ (R C+R +k24)5 +/

Noting that
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2 sec

R1Cy time constant of thermocouple

R2C2

time constant of thermal well 30 sec

we have

#0

Hence the denominator of @;(s)/@3(s) becomes as

Ry = kzcz—g:‘ =30 2 = { sec
2

RCORC s*+ (RC +RCo+R:C )5+ [
= bos*+ 385 +/ = (r65/5+/)(36355+7)

Thus, the time constants of the system are

Ty = 1.651 sec, Ty = 36.35 sec
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CHAPTER 5

B-5-1. Time constant = 0.25 min. The steady-state error is 2.5 degrees.

B-5-2. Rise time = 2.42 sec
- Peak time = 3.63 sec
Maximum overshoot = 0.163
Settling time = 8 sec (2 % criterion)

B-5-3. The maximum overshoot of 5% corresponds to § = 0.69. Hence

&, = 2 = Z '-..=2. a/
n T T Jo 4 /j'ec

T cs) . K(7s+/)
RE) Js*+ KTs+K
Since T = 3, K/J = 2/9, we have
cG) .  F(35+/)

RE) ~—  s2(2 2
é) st(§)3s + 2
Hence,2 $ &y = 6/9 and Wp2 = 2/9. Thus

¥X=o0.707

B-5-5. When the mass m is set into motion by a unit-impulse force, the system
equation becomes

MX+FX =)

Define another impulse force to stop the motion as A S (t - T), where A is the
undetermined magnitude of the impulse force and t = T is the undetermined ins-
tant that this impulse is to be given to the system. Then, the equation for
the system when the two impulse forces are given is

mithx =80 +AS(F-T) , X(0)=0, %) =0
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A plot of y(t) versus t is shown below.
04 Step Response
Cw /\\
0
\\
06
-0.8 \
"o 1 2 3 4 5 6 7 8 9 10
1 Sec
B-5-8.
~Xdnty, )
Z2 e"’.ya’ﬂ(fl"'-r) e—;‘Unr
A -— / = e (-DanT
Xy e ~Sou (=T —
x
Logarithmic decrement = -ix-i = ?l'/" 7 j” Z:,
= e, 2T _ _2XF
54’;.7-——5'4'/:1 Wy J—3z
Define
/ >4 273
n=/ fr Xn — [/=32 4
Then
£T°5* = 4%(/-32)
orxr
2
;2-_—-_ _—‘..4*__.;.
i+ A




Thus

A () Zr)

s= A _
V4T +A4 b/,4WT2 " ;;{%77)2(:l§«is%- 2

For the system shown in Figure 4-54(b), we have

cé) _ /0 |
R(s) S+ ((+0K, )s +/0

B-5-9.

Noting that 2 §&, = 1 + 10Ky, &2 = 10, § = 0.5, we obtain
/10K, = 2Xx0.8 X o = /o
Hence

Y=/ _
kl)"" ——-/—5—-——-—-0.2/6

The unit-step response curves of both systems are shown below.

Unit-Step Responses

r Original system
{

\ System with ¢ l feedbatk

VAN

\
7TV TS

S
T~

o o
a o
\‘%\

Note that for the original system

) _ RE)—Cify S+
R R® T stis+/o

For the tachometer-feedback system
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Ef) _ RO -C:l9 _

S+3./4s

R®

For the unit-ramp input, we have

£,6) =(

RE

S5

Eg{f) -

S+ S+/0

Sz+.3./65' /)._L_—
< =

S 43, /fSs+/0 S

$*4+-3./854+/0

si+s /

D=

S345%+/os

s‘+3./6s 4

s3+3./45 1 jos ¥

The error versus time curves [e;(t) versus t and ey(t) versus t] are shown below.

Emor Curves for Ramp Responses

0.45

04

\h——- System wilth dback

0.35

0.3

\

0.25 l
g 02 ] Original sy
ol L\
o I T N Ve W PR
» \/
1l
\/
B-5-10. For the given system we have
@ _ K
R6) = s*+2s5+ Kks +K
Note that
K=wy =45=lf
Since
we obtain 2;’”" = 2+k‘k
2X0 7R 4 =2 +Kh =24 /6K
Thus

k=0.225
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B-5-11. _
c6) _ /6
RE)  s*+ (0.8 +/k)S+/E

From the characteristic polynomial, we find

Un=4 , 25Wn=2X0.8X % =0.8+/ER
Hence _ '
kR=o0.2

The rise time ty is obtained from

i.r__,_f_:.é_

wy

Since
ﬁ:—: M’,—gf = ,ul‘"a..?// = .371;
we have
PR ik x
r 3. 46 = 0.608" Sec

The peak time tp is obtained as
/
.é - __T_. = __‘?_’._ﬁ_— = g, 90
1 4 Wy 3. %4 707 sec
The maximum overshoot Mp is

- T ¢ Ve /.87
Mf=8 V-5t = €@ Vi-s2s =€ =0./63

The settling time tg is

A &
— = = 2 Alc.
s SOn 0.5 XE

B-5-12. A MATLAB program to obtain the unit-step response, unit-ramp response,
and unit-impulse response of the given system is shown on the next page.
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% ***** Unit-step response *****

num=[0 0 10];
den=[1 2 10];

t = 0:0.02:10;
step(num,den,t)

grid

title('Unit-Step Response’)
xlabel('t Sec')
ylabel{'c(t)’)

- % ***** Unit-ramp response *****

~numr=[0 0 0 10];
denr=[1 2 10 O]
¢ = step(numr,denr,t);
plot(t,c,'-',t,t,'--'
grid
title('Unit-Ramp Response')
xlabel('t Sec')
ylabel(’c(t)')

% ***** Unit-impulse response *****

impulse(num,den,t)

grid

title('Unit-Impulse Response')
xlabel('t Sec')

ylabel(*c(t)’)

The unit-step response curve is shown below. The unit-ramp response curve and
-unit-impulse response curve are shown on the next page.

Unit-Step Response

14

04 1
0.2]

o2
-
»
»
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o
@
~}-
°
L -]
-]
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Unit-Ramp Response

ot
wn
N

tSec
25 Unitdmpulse Response
2-A
15 / \
1 [ \
% \
05
. /N
e y N—
* \/'/
-1
[ 1 2 3 4 5 [} 7 8 ) 10
tSec

B-5-13. A MATLAB program to obtain a unit-step response of the given system

is given below. The resulting unit-step response curve is shown on the next page.

% ***#* njt-Step Response *****.

A=1[1 -0.5;1 O]

B = {0.5;0];

c=1I[1 0]

D = [0);

ly.x,t] = step(A,B,C,D);
plot(t,y)

grid

title(*Unit-Step Response’)
xlabel('t Sec’)
ylabel('Output’)
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Unit-Step Response

0.35

TN
|
[
/

Output
=)
@

.05 0

A MATLAB program to obtain a unit-ramp response of the given system is
presented below, together with the unit-ramp response curve.

% ***** Unit-ramp response *****

% ***** Enter matrices AA, BB, CC, and DD of the new enlarged state
% equation and output equation *****

AA = [A zeros(2,1);C O};
BB = [B;0l;

CC=10 0 1];

DD = [0);

% ***** Enter step-response command [z,x,t] = step(AA,BB,CC,DD) **#*+*+

[z,x,t] = step(AA,BB,CC,DD);

x3 = {0 0 1]*x'; plot{t,x3,t,t,"-")
grid

titie("Unit-Ramp Response’)

xlabel('t Sec’)

ylabel('Output and Unit-Ramp Input’)
text{11,3,'Output’)

Unit-Ramp Response

30

25
-
E20
3
]
%
515
210
3

(
% 5 10 15 20 25 30
tSec :
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Finally, a MATLAB program to obtain a unit-impulse response of the system
is given next, together with the unit-impulse response curve.

% ***** Unit-impulse response *****

-1 -0.5:1 Ol

OOwW>

= [0};
impulse(A,B,C,D)

Unit-impuise Response

02

(o]
"

B-5-14. From the closed-loop transfer function

) 36 _ 34

RE) — S*+25+36  (s+/)24 ()
we find that &y = 6, & = 4, and Wy =/35.

Rese time:
TwT—F
Y=o
where '(/ \/3?
- @d -7 f7-%2 -/ k73
— /T / - —_—
B=lu S = bn' —— = o A
=o' SN/8) = 1 034 20
Hence .

QS E — kO _ 0.2735 sec
IS

fyz

- 57 -



Peak time:
7T 3. /%78

fl)z WJ = \/3_‘5_:

Maximum overshoot:

- . - ~0,53/0
/Lé,::g rmt=e VB =e

il

0. 8580

Settling time (2% criterion):

Sa'n 4 X6
A MATLIAB program to obtain the rise time, peak time, maximum overshoot, and
settling time is shown below. The unit-step response curve of this system is
shown on the next page. .

mm={f0 0 36];
den=[1 2 36];
t=0:0.001:5;

[yx,t] = step(num,den,t);

r=1; while y(r) <1.0001; r =r+1; end
_nise_time = (1-1)*0.001
rise_time =
0.2940

[ymax,tp] = max(y);
peak_time = (tp-1)*0.001

peak_time =

0.5310
max_overshoot = ymax-1
max_overshoot =

0.5880

s = 5001; while y(s)>0.98 & y(5)<1.02; s = s-1; end;
settling_time = (s-1)*0.001 '

' settling_time =

3.8210
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The closed-loop transfer function of System I is

B-5-15.
G6) /
R(s) st+o2s+|
The closed-loop transfer function of System II is:
Cpl . /tobs
R(s) St+s+/
The closed-loop transfer function of System IIT is
Cals) _ /
Rs) ~ s+ st/

The unit-step response curves for the three systems are shown in Figure 1.

The

system utilizing proportional-plus-derivative control action exhibits the short-

est rise time.

The system with velocity feedback has the least maximum over-

shoot, or the best relative stability, of the three systems.

s Unit-Step Responsss
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/'\g.—smmﬂ ’
1.6 /
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1.2 XXX XKy \ / I
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'3. 1 x "\ \"xxxx YRRAEEEBOOS
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The unit-impulse response curves for the three systems are shown in Figure 2.

Unit-Impuise Responses

1 T

08 ny //“\
0.6 % \
8o
o o yslem ’
04 l x 2 I
AL L g
x| ©
2 02 °o\ /
‘;4' /xx o KSyﬂsmS
s o
< 0 -/ N\ %5 e 0 LLELL LLLEL EEYEY
shemz ‘}‘(xx:&%ni LLLE

06 N
Figure 2 |
08 1 2 3 4 5 6 7 8 9 10
t Sec

The unit-ramp response curves for the three systems are shown in Figure 3. Sys-
tem II has the advantage of quicker response and less steady error in following

a ramp input.

The main reason why the System II that utilizes proportional-plus-deriva-
tive_.control action has superior response chracteristics is that - derivative
control responds to the rate of change of the error signal and can produce ear-~
ly corrective action before the magnitude of the error becomes large. Notice
that the output of System III is the output of System II delayed by a first-
order lag term 1/(1 + 0.8s).

Unit-Ramp Responses
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yl.y2,y3
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Figure 3 3 i i




The MATLAB program that used to obtain Figures 1, 2, and 3 is shown below.

% ----- Obtaining unit-step, unit-impulse, and unit-ramp responses -----

% ***** Unit-step responses of three systems *****

numl =[0 0 1I;
den1 =[1 0.2 1];
num2 = [0 0.8 1];

nuim3 =00 0 1];

den3 =1[1 1 1];

¢1 = step(num1,den1,t);
c2 = step{num2,den2,t);
c3 = step(num3,den3,t);
plot{t,c1,'-',t,c2,'x’, t,¢3,0")
grid

title('Unit-Step Responses')
xlabel('t Sec')

ylabel{'c1, ¢c2, ¢3’)

| text(4.2,1.7,'System 1')
text(4.2,1.3,'System 2')
text(3,0.9,'System 3')

% ***** Unit-impulse responses of three systems ***#*+

x1 = impulse{(num1,den1,t);
x2 = impulse(num2,den2,t);

x3 = impuise(num3,den3,t);
plot(t,x1,'-',t,x2,'x", 1,x3,'0")
grid

title('Unit-lmpulse Responses')
xlabel('t Sec’)

ylabel('x1, x2, x3")
text(3,0.5,'System 1')
text(0.8,-0.1,'System 2°)
text(4.1,0.1,'System 3')

% ***** Unit-ramp responses of three systems *****

numir=[0 0 0 1];
denir=1[1 0.2 1 0
num2r=[0 0 0.8 1];
den2r=1[1 1 1 O}
num3r=[0 0 0 1J;
den3r=1[1 1 1 O]

y1 = step{numir,denir,t);
y2 = step(num22r,den2r,t);
y3 = step{num3r,den3r,t);
plot(t,t,'--",t,y1,'-,t,y2,'x", t,y3,'0")
grid

title('Unit-Ramp Responses')
xlabel{'t Sec')

ylabel('y1, y2, y3')
text{2.5,5.5,"'System 1°)
text(6.2,4.5,'System 2')
text(4.8,2.5,'System 3')
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B-5-16. The closed-loop transfer function of the system is

K.6). _

%o

R(s)

0./5% 4 s+ 105+ #O

MATLAB program to obtain the unit-step response curve is given below, together
with the unit-step response curve.

Unil-Slep Response

1.2

num=[0 0 0 40j;

den = [0.1 1
= 0:0.01:2;

x1 = step(num,den,t);

plot(t,x1,'-")

grid

xlabel("t Sec"')
ylabel('x1’)

% ***** Unit-step response ***##*

10 405

title("Unit-Step Response’)

AN

N

A MATLAB program to obtain the unit-ramp response curve is given below.

U

0 02 04 08

resulting unit-ramp response curve is also shown,

08 1
tSec

- 12

14

18

N

numr=[0 0 0 O
denr = [0.1 1
t = 0:0.01:2;
y1 = step(numr,denr,t);
p|°t(tltl""rt'v1o".)

grid

xlabel('t Sec')

% ***** Unpjt-ramp response ****#

40];
10 40 O

title("Unit-Ramp Response’)

ylabel('Ramp Input and Output x1°)

Noting that X3 =

e
At

X;, we have

%S

12

Xl) _

Res)

0./1S3 + S 4 fos + %0

14

16 18

The response x2(t) for the unit-step input and that for the unit-ramp input can

be obtained by using the MATLAB program given on the next page.
response curves [x5(t) versus t curves] are also shown on the next page.
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% *xexx+ MATLAB program to obtain responses x2 to inputs r{t) = 1(t) and
% r(t) = t.1(t) *****

num2 =[0 0 40 O]

den2 =[0.1 1 10 40];

t = 0:0.02:3;

x2 = step(num2,den2,t};

grid

title('Response x2 to Input r{t) = 1(t}')
xlabel('t Sec')

ylabel('x2")

num2r=[0 0 0 40 O]

den2r = [0.1 1 10 40 O]

y2 = step(num2r,den2r,t);
plOt(t:t:'“':t:yzr'O'):

grid

title(’Response x2 to input r(t) = t.1(t)')
xlabel('t Sec')

ylabel('Input Unit-Ramp and Response x2')

Responss x2 to input r(t) = 1(t)

0, \ / N /
0.5 \/
10 05 1 1.5 2 25 3
t Sec

Response x2 to input r(t) = . 1(t)

[nd
w

2
B
§ 2
o
[:4
§.1.5
bt
5, gﬁn\k
2 §
[+
3
0.5 P4
(=]
o
OD 05 1 15 2 25 3

t Sec




Next, we shall obtain x3(t) versus t curves for the unit-step input and
unit-ramp input. Noting that

X5) /0
X3(s) ~ o5+

and
Xis) _ s
RG6) ~ 0./s53+ S+ fos + %O

we have
X:6) _ N6 Xb) - ¢s¥+ gos .
RE)  Xeb) RG)  sP 4105 v /005 + oo

The following MATLAB program can be used to obtain responses x3(t) to inputs
r(t) = 1(t) and r(t) = t+1(t). The response curves are shown below and on the

next page.

% ****+ MATLAB program to obtain response x3 to inputs
% r(t) = 1(t) and r(t) = t.1(t) *****

num3 =[0 4 40 O]

den3 = [1 10 100 400];

t = 0:0.01:3;

x3 = step(num3,den3,t);

plot(t,x3);

grid

title("Response x3 to Input r(t) = 1{t)")
xlabel('t Sec')

ylabel{'x3")

num3r=[0 0 4 40 O];

den3r = [1 10 100 400 O}

y3 = step(num3r,den3r,t);
plot(t,t,'--",t,y3,'0")

grid

title('Response x3 to Input r{t) = t.1(t)’)
xlabel('t Sec’)

yiabel(’Input Unit Ramp and x3')

Response 13 to Input r(t) = (1)

025 05 1 15 2 25 3
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Response x3 to Input rt) = L.1(1)

[

Finally, we shall obtain the error versus t curves. Plots of e(t) versus-
t curves when the input r(t) is a unit step or unit ramp can be obtained by use

of the following MATLAB program.

% ----- MATLAB program to obtain e(t) versus t curves --—
9% **++* Upit-step response *****

num=[0 0 O 40}

den = [0.1 1 10 40);

t = 0: 0.01:3;

x1 = step(hum,den,t);

plot(t, 1 - x1);

grid

title('Plot of e(t) versus t when r{t) = 1{t}')
xlabel('t Sec’)

ylabel('e(t) = 1(t) - x1(1)")

9% **#*# Unpjt-ramp response *****

numr=[0 0 0O O 40}
denr = [0.1 1 10 40 O;
y1 = step(numr,denr,t);
plot(t,t,"--",t,t' - y1,'0’)

gri
title("Plot of e(t) versus t when r{t) = t.1(t}")
xiabel('t Sec')

ylabel('e(t) = t.1(t) - x1{t)') -

The error e(t) versus t curves are shown on the next page.
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Piot of e{t) versus t when r{t) = 1(1)

I

[=]
-]
| "1

ety = 1(1) - x1(t)
o
S

o
N

<

Plot of e{t) versus t when r(t) = L1(1)

w

N

o) =L1(1) - x1()
o

B-5-17. The closed-loop transfer function C(s)/R(s) of this system is

/0
C6) G TEistIGEe)
RG) ~ 1t Gs) /0
| ) /'t S(s+2)(s+%)

/70
S3+Ls2+ s+ /O

A MATLAB program to obtain the unit-step response curve as well as the rise
time, peak time, maximum overshoot, and settling time is shown on the next page.

The unit-step response curve is also shown on the next page.

fl
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aum=[0 0 0 10};

den=[1 6 8 10];
t=0:0.002:10;

[y,xt] = step(num,den,t),
plot(t,y)

gnd

title("Unit-Step Response Curve')
xlabel(t (sec)")

ylabel("Output’)

r=1; while y(r) <1.0001; r =r+1; end
rise_time = (1-1)*0.002

rise_time =
1.7720

[ymax,tp] = max(y);
peak_time = (tp-1)*0.002

peak_time =
2.6320
max_overshoot = ymax-1
 max_overshoot =
0.2146

s = 5001; while y(s)>0.98 & y(s)<1.02; s = s-1; end;
settling_time = (s-1)*0.002

settling_time =
5.9960

12 7 \

g
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B-5-18. A MATLAB program that produces a two-dimensional diagram of unit-
impulse response curves and a three-dimensional plot of the response curves is

given below.

% To plot a Two-Dimensional Diagram.

t=0:0.2:10;

zeta=[0.2 04 0.6 0.8 1];
forn=1:5;
num=[0 2*zeta(n) 1];
den=[1 2*zeta(n) 1];
bgﬁhm$ﬂ=mwmw@mm&n¢
en

plot(t.y)

grid

title(Plot of Unit-Impulse Response Curves with \zeta = 0.2,0.4,0.6,0.8,1")
xlabel(t (sec))

ylabel(Response’)

text(2.5,0.4,'0.2")

text(2.5,0.6,'0.4")

text(2.5,0.8,'0.6")

text(0.5,1.3,'0.8")

text(0.5,1.75,'1)

% To plot a Three-Dimensional Diagram.

mesh(t,zeta,y)
title("Three-Dimensional Plot of Unit-Impulse Response Curves')

xlabel('t (sec)’)

ylabel(\zeta")
zlabel(Response")

The two-dimensional diagram and three-dimensional diagram produced by this
MATLAB program are shown below and on the next page, respectively.

Pict of Unit-impuise Response Curves with { = 8.2,04,08.08,1

15

038

05
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A MATLAB program to produce a three-dimensional diagram of the

B-5-19.

hown below. The resulting three-dimensional

unit-step response curves is s
plot is also shown below.

t

0:0.2:10;
zeta=[02 04 0.6 0.8 1];

forn=1:5;
mm=[0 1 1};

den

step(num,den,t);

[1 2*zeta(n) 1];

(1:SLo)xt]

end

mesh(t,zeta,y")

title('Three-Dimensional Plot of Unit-Step Response Curves’)

xlabel('t (sec))

ylabel(\zeta")

zlabel('Response’)
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B-5-20. A MATLAB program to obtain the unit-ramp response curve of the given
system is given below.

% MATLAB Program for Problem B-5-20

A=[0 1;-1 -1};

B ={0;1};

C=[1 0},

D=0;

t=0:0.1:8;

(u=t

y = Isim(A,B,C.D,u,t);
plot(t,u,-',t,y,'0)

grid

title("Unit-Ramp Response’)
xlabel('t (sec)’)
ylabel('Unit-Ramp Input and System Output’)
text(1.5,4.5,'Unit-Ramp Input’)
text(4.5,2.5,'Output’)

The resulting response curve is shown below, together with the unit-ramp input.

Unit-Ramp Response

;
i
Sy

! M&.

B-5-21. The closed-loop transfer function of the system is
c6) G /05 + /o
R 11 GE) S’+ 4853+ fos+ /0

The unit-acceleration input is given by

r(t) = 0.5 t2 (t >0)

A MATLAB program to obtain the response of the system subjected to the unit-
acceleration input is given on the next page.
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% MATLAB Program to solve Problem B-5-21

nm=[0 0 10 10];

den=[1 4 10 10];

t=0:0.1:5;

r=0.5%t"2;

y = Isim(num,den,r,t);

plot(t.r,-,t.y,'o")

grid

title("System Response to Unit-Acceleration Input’)
xlabel('t (sec))

ylabel("Unit-Acceleration Input and System Output’)
text(0.7.4.5,Unit-Acceleration Input")
text(3.3,3,'Output’)

The response curve is shown in the figure below, together with the unit-accele-
ration input.

Systern Responss 0 Unit-Acceleralion input

- 14

12
(~]
©
£
- - Q

Unit Acceferstion Iput and Sywtem Output
[}
)

]
A
(>}
‘ - = \/{\4
[-]
<>°° \O'."
2 e
56°
°
/00
(oYo) °°°°
K 05 1 15 2 25 ) as 4 45 s
t(vec)

B-5-22. By taking the Laplace transform of the differential equation:
y+3+2y=0, y(0) = 0.1, y(0) = 0.05
we obtain
s2¢(s) - sy(0) - y(0) + 3[s¥(s) - y(0)] + 2¥(s) = 0
By substituting the given initial condition, we get
(s2 + 3s + 2)¥(s) = 0.1s + 0.35

Solving this last equation for Y(s), we obtain
9:)5t0.38 o./s + 0,24 2128 o. /8

76 = s*+3s+2  (s+/)(st2) = st/ s+2
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The inverse Laplace transform of Y(s) gives

y(t) = 0.25¢e~t - 0.15e-2t
This is the solution of the given differential equation.

MATLAB solution:

Let us obtain a state space equation for the system. Define

X1=Y

Y

X2

Then, the state space equation and the output equation become as follows:

X3 0 1% %1 (0) 0.1
R — ’ =
X2 -2 =3(]|x%xp x2(0) 0.05
X1
y=1[1 0]
x2

A possible MATLAB program to obtain the response y(t) is given in the following.
The resulting response curve is shown below.

A=[0 1;-2 -3];

B =10; 0J;

C=[1 0];

D=0

t=0:0.01:5;

y = initial(A,B,C,D,[0.1;0.05],t);
plot(t,y)

gid

title(Response to Initial Condition")
xlabel('t (sec)) '

{ Ylabel('Output y’)

Reeponse 1o inllial Condilion

0.12—

01 Y

NI

- N
s S

0.02

Outputy
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B-5-27. From Figure 5-89(b) we have
' X
Cc6) _ K _ T
RE) Js*+ Kk, s+ K s+ ._'3_‘55.. S+
By substituting K/J = 4 into this last equation, we obtain
ce) _ ¢
R St ¢«bps+ &4
Since &y = 2, &= 0.6, and 2 §4/ = 4Ky, we have

23 &y
K, =
' #

Ui

= 0.6

B-5-28. From the block diagram of Figure 5-90, we have

C6) _ 20K
RE) S I+ &S+ (¢ +20£K )st 20K

The stability of this system is determined by the denominator polynomial
(characteristic polynomial). The Routh array of the characteristic equation

S3+ SsP+ (4t 20kKkK, )52k =0

is
53 / 4+20KK,
s* s 20 K

s’ gt2okk -4l O

s? 20 K

For stability, we require
¢+ 20K —¢Kk >0, 2 K >o

or

SKKn > K~/[ , K>o

The stable region in the K-Kj plane is the region that satisfies these two
inequalities. Figure 1 shows the stable region in the K-K, plane. If a
point in the K-Ky, plane (that is, a combination of K and Ky values) lies in the
shaded region, then the system is stable. Conversely, if a point in the

K-Kp, plane lies in the nonshaded region, the system is unstable. The dividing
curve is defined by S5KKh = K - 1. (Any point above this dividing curve corres-
ponds to a stable combination of K and Ky.)
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B-5-29.
- -/ o
“' I-fl=l & s -

SJ+ b/ $z+(£z+é3) S + L/ 53

The Routh atray is

s? / bitbs

Sz b/ bl LJ
s’ b, 0
s¢ b/bJ

Thus, the first column of the Routh array of the characteristic equation con-
sists of 1, by, by, and byb3.

B-5-30.
C) _ _GB)  Ks+b
RS — 1+ G(s) T st+as+b

Hence

(s*+as+b) 66) = (ks+b)[1+66)]

_ _ks+b
) = S(st+a4—K)

- 76 -



The steady-state error in the unit-ramp response is

/ / s(s+a-k) a—kK
Cepr = = = L, ——— = Z;,'” ' =
kv T 550 SGE)  Sae  S(ks+b) 2

B-5-31. The. closed-loop transfer function is

— K
Jst+8s +K

For a unit-ram_p input, R(s) = 1/s2. Thus,
£6) _ RG)—CO) __Js'+Bs
K6) RE) Js*+ 8s+K

or
' Js*+ 8Bs |

EL) = L
& JS*+Bs+K st

The steady-state error is

€ = e) =LinasEl) = 5
S0 .

We see that we can reduce the steady-state error egg by increasing the gain K
or decreasing the viscous-friction coefficient B. Increasing the gain or
decreasing the viscous-friction coefficient, however, causes the damping ratio
to decrease, with the result that the transient response of the system will
become more oscillatory. Doublimg K decreases egg to half of its original
value, while § is decreased to 0.707 of its original value since § is inversely
proportional to the square root of K. On the other hand,decreasing B to half
of its original value decreases both egg and ¥ to the halves of their original
values, respectively. Therefore, it is advisable to increase the value of K
rather than to decrease the value of B. After the transient response has
died out and a steady state is reached, the output velocity becomes the same as
the input velocity. However, there is a steady-state positional error between

the input and the output. Examples of

the unit-ramp response of the system for o x
three different values of K are illust- et x
rated to the right. o
eln
[+] 4
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B-5-32. Consider the system shown below.

D)
- )
Re)=0 6.6) 66) =

From the diagram we obtain
) __ Gb)

) 1+ G6) G )
For a ramp disturbance d(t) = at, we have D(s) = a/s2. Hence,

Ct) =i SCl) = fome —396) _a__ ,. _a
s s»e [+ G)Ge(s) S* S0 SG.(s)
c(w) becomes zero if Go(s) contains double integrators.
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CHAPTER 6

B-6-1. The open-loop transfer function for the system is
S+
C%s) //(S‘) = _KL‘Y?_)_.

We first locate the open-loop poles and zero on the complex plane. A root locus
exists on the negative real axis between -1 and -eo. Since the open-loop
transfer function involves two poles and one zero, there is a possibility that

a circular root loci exists.

The equation for the root-locus branches can be obtained from the angle

condition K¢ +/)
s _
/——' =t/80° (24 +/)

SpZ

which can be rewritten as
[s+) -2/ =t/80°(2k+1/)
By substituting s = 0-+ jw, we obtain

Jo+jwt /] ~ 2/@0‘@ =t /80" (2k+/)

) — 2 G = 1 /80% (2k+1)

or

7’544 tr-(-/

Rearranging, we obtain

- -/ . o
! () = B G = T £ 180°(2KH)

Taking the tangents of both sides of this last equation,

[ /(0‘+/> &‘*‘.’6“)} ﬁ"[f 'L+ /50" (2/4-!-/)]

which can be simplified to

& L/ ma——
7 T *0  _ w
@ w2 v o
Hence
(774 _ [ . & W
o~/ o (7+ o+/ )
from which we obtain
w [(7+1) +w*— ]
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This last equation is equivalent to
w=o o (0C+))+w=/

These two equations are the equations for the root loci for the system. The .
first equation, e = 0, is the equation for the real axis. The real axis from
s = -1 to s = -~o corresponds to a root- locus for K> 0. (The remaining part
of the real axis corresponds to a root locus for K <O0.) In the present system,
K is positive. The second equation is an equation of a circle with the center
at ¢ = -1, 4/= 0 and the radius equal to 1. The root-locus diagram is shown

below.

Jw A
K’l
!/ v
B-6-2. The open-loop transfer function is

_ K(s+4)
GG HE) = "——"""(_,+ /)7

This system is similar to the one in Problem B-6-1. The system involves two
poles and one zero. The root-locus plot involves a circular root locus. A
root-locus plot of the system is shown below.

\ J \

.Jtd
[N
U
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B-6-3. The open-loop transfer furiction
K
G 5) = :
16)HE) S(st/)(s2+ ¢5+5)
= -2 # j1 and no zeros. The asymptotes have

has the poles at s = 0, s = -1, s = :
angles + 45° and + 135°. The asymptotes meet on the negative real axis at

QO"5 = -1.25. Two branches of the root loci cross the imaginary axis at s =
+ j'l. The angle of departure from the complex pole in the upper half s plane

is +162°.

A MATLAB program to plot the root loci and asymptotes is givén below, to-
gether with the resulting root-locus plot. _

% ***** Root-locus plot *****

num={00 0 0 1]

den=[1 5 9 5 O0];

numa=[00 0 0 1]

dena=[1 5 9.376 7.8125 2.4414];
r = rlocus(num,den);

plot(r,'-')

hold

Current plot held

plot{r,'0’)

rlocus{numa,dena)

v: [-4 2 -3 3J; axis(v); axis('square');
g ‘

title('Plot of Root Loci and Asymptotes’)

Plot of Root Locl and Asymptotes

2,

E \
-
2 //‘
3 -3 2 4!

Real Axis
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B-6-4. A MATLAB program to plot the root loci and asymptotes for the follow-
ing system:
K

S(s+o.85)(s*+o0.65+/0)

GEHE) =

is given below and the resulting root-locus plot is shown below.
Note that the equation for the asymptotes is :

K
(s to.295)*

K
S“+ 4153 0885305 s+ 0,083 /874 S +0.0057/F/

Gals) Hol3) =

—
—

% ***** Root-locus plot *****

num=[0 0 0 0 1};

den=1[1 1.1 10.3 5 0O}

numa=10 0 0 0 1};

dena =1 1.1 0.45375 0.0831874 0.0057191];
r = rlocus{num,den);

plot(r,'-')

hold

Current plot held

plot(r,’'o’)

rlocus{numa,dena)

v=1I[5 5 -5 B5J axislv); axis{'square');
grid :
titie('Plot of Root Loci and Asymptotes  (Probiem B-6-4)°)

Siii\ /
N\ wd [
Nl 4

N

= =N
17 N
7 AN

-5 0 5
Real Axis

w -

N

-

Imag Axis
(=]
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B-6-5. A MATLAB program to plot the root loci and asymptotes for the system

K
G(s) =
1) = T s 2)(s2+25+ %)

is shown below. The resulting root-locus plot is also shown below. The
root loci cross the imaginary axis at «/ = + 1.87. This point is obtained by
solving the following equation:

[(ja/)"+ z)‘«/-f-z][(jw)‘-f- 2jw rs{] + K

= (W*-%0 + o+ k) +j(— ¢ +/tw) =O

By equating the imaginary part equal to zero, we obtain &/= + 1.8708. By
equating the real part equal to zero, we get the gain value at the crossing

point to be 9.25.

% ***%+ poot-locus plot *****

num=[{0 0 0 0 1}
den=1[1 4 11 14 10};
numa=10 0 0 O 1};
dena=[1 4 6 4 1};

r = rlocus{num,den);
plot(r,'-')

hold

Current plot held

plot(r,’0")
rlocus(numa,dena)

v=1[6 4 -5 B5}; axis(v); axis{'square’);

grid
title('Plot of Root Loci and Asyniptotes  (Problem B-6-5)’)

Piot of Root Loci and Asymplotes  (Problem B-6-5)

Real Axis
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(1+K)S: +(2+6K)S +/0+ /0K
s*+2s + /o

/+ 6[5’)/‘/(5) =

The characteristic equation

(1+K)s*+ (2+6Kk)s +/04+ 10Kk =0

has two roots at

(2K, VKE 10k +9
/tk /4K
If we write s = X # jY, that is

/+3K Y_____ VK + 18-k +9
/+k 7 1+K

X = —
then R ) 2
s (S8R KLY R,
'Ihm%s indicates that the root loci are on a circle about the origin of radius

B-6-7. The open-loop transfer function

K(S+0.2)
CIHS) =
G(s) H(5) 52 (s13.)

has the zero at s = -0.2 and the double poles at s = 0 and a single pole at
s = -3.6. The asymptotes have angles of + 90 °, The asymptotes meet on the
real axis at @; = -1.7. The breakaway or break-in points are located at s =
0, s = -0.43155, and s = -1.6685. A MATLAB program to obtain the root locus
plot is shown below. The resulting root-locus plot is shown on the next page.

% ***** Root-locus plot *****

num=[0 0 1 0.2

den = {1 3.6 0 O]

rlocus{num,den)

v : -6 2 -4 4); axis(v); axis{'square’)
gri

title('Root-Locus Plot  {Problem B-6-7)')
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Rool-Locus Plol  (Problem B-6-7)

o * <
E
-1
-2
-3 —
‘% -5 4 -3 -2 -1 0 1 2
Real Axis
B-6-8. The open-loop transfer function
| S 0.5
S34st+/
has the poles at s = 0.2328 + j 0.7926 and s = -1.4656. The zero is at s =

-0.5.

A MATLAB program to plot the root loci is shown below.

root-locus plot is shown on the next page.

The resulting

% ***** Root-locus plot ****=*

num=[0 0 1 0.5);

den=1{1 1 0 1]

rlocus(num,den)

v -a- -3 3 -3 3J; axis(v); axis('square")
gri

title{'Root-Locus Plot  (Problem B-6-8)°)




Root-Locus Plot  (Problem B-6-8)

INEN

B-6-9. The open-loop transfer function

_ K(st+9)
GEIHE) = PEETYYY))

has the poles at s = 0, s = -2 % j ﬁ and the zero at s = -9. The asymptotes
have angles + 90° and meet the real axis at 03 = 2.5. The complex branches
cross the imaginary axis at s = + j 4.45. The angle of departure from the
complex pole in the upper half s plane is -16.5°.

The dominant closed-loop poles having the damping ratio § = 0.5 can be
located as the intersection of the root loci and lines from the origin having
The desired dominant closed-loop poles are found to be at

S=-=/S :tJ' 2.5°0%

The third pole is at s = -1. The gain value corresponding to these dominant
= A MATLAB program to plot the root-loci is shown

closed-loop poles is K = 1.
below. The resulting root-locus plot is shown on the next page.

angles + 60°.

% ***** Root-locus plot *****

num=[0 0 1 9]
den=1{1 4 11 0]
rfocus{num,den)

hold

Current pilot held
x = [0,-3]; y = [0,56.196}; line(x,y);
v=[15 5 -10 10]; axis(v); axis('square’)

grid
title("Root-Locus Plot of G(s)H(s) = K(s+9)/[s(_s“2+4s_+.1 1)°)
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o Rool-Locus Plot of G(s}H(s) = K(s+a)s(s"2s4s+11)
8 | /
s |
4 , $eos N\ é— k=88
A

? K=/ J \

=

-4 \

Imag Axis

\

-10 -
-15 -10 5 0 5
: Real Axis

B-6-10. A MATLAB program to obtain a root-locus plot of the given system

is shown below. The resulting root-locus plot is shown on the next page.

% ***** Root-locus plot *****

num=[0 0 0 2 2]
den=1{[1 7 10 0 0]
numa=[0 0 0 1]
dena =[0.b 3 6 4);
r = rlocus{num,den);

Curfent plot held

plot(r,’o")

rlocus(numa,dena)

v : [-10 10 -10 10]; axis(v); axis{'square'};

gri :
title('Plot of Root Loci and Asymptotes (Problem B-6-10)°)
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Plo! of Root Loci and Asympiotes  (Problem B-8-10)

10

—6—-6—0-X0d)

Imag Axis
(=)

1% 5 0 5

Real Axis

10

A root-locus plot near the origin can be obtained by entering the follow-
ing MATLAB program into the computer. The resulting root-locus plot near the

origin is shown next.

% ***** Root-locus plot *****

num=1[0 0 0 2 2]
den=1[1 7 10 0 O]

‘rlocus(num,den)
v=[3 3 -3 3J; axis(v); axis('square’);

grid
title("Root-Locus Plot near the Origin  {Problem B-6-10)")

Root-Locus Plot near the Origin  (Problem B-8-10)

[ TTV

'2 \

Real Axis
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The range of K for stability can be determined by use of Routh stability
criterion. Since the closed-loop transfer function is
G 2k (s+ /)
| RG) = s¥+ 753 +/0s*+ 2ks+ 2K
the characteristic equation for the system is

S*+ 753 o052 +2Ks + 2Kk =0
The Routh array of coefficients becomes as follows:

s¥ / /0 2K
s3 7 2k

<
s 702K ok

(70-2K)2K _ 14 k

70 ~ 2K

5-/

5° 2K
.For stability, we require
70 > 2K
%2 ~ $K >0
K>2o

Thus, the range of K for stability is

705> K>0

B-6-11. The characteristic equation for the system is
s+ ¢t + ES+K =0
If K is set equal to 2, then the characteristic equation becomes

S+ ¢s*+¥s +2 =0
The closed-loop poles are located as follows:
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-1.8557 + j1.8669
s = -1.8557 ~ j1.8669
-0.2887

n
i}

)]
1}

See the following MATLAB program for finding the closed-loop poles.

p=1[1 4 8 2]
roots(p)

ans =

-1.8557 + 1.8669i
-1.8557 - 1.8669i
-0.2887

A MATLAB program to plot the root loci is shown below. The resulting root-
locus plot is also shown below.

% ***** Rool-locus plot *****

num=[0 0 0 1}

den=[1 4 8 0Ol

rlocus{num,den)

axis('square’)

grid

title(*"Root-Locus Plot of G(s) = K/ls(s~2+4s+8)]")

Root-Locus Plot of G(s) = K/[s(s"2+45+8)]

- -

3 V
2 /
N~ P
1
%
o0 *
[1 ]
E

2 NN

3 N -
\ |

Real Axis
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B-6-12.

The open-loop transfer function for the system is

KCs+)

GE)Hls) =

(s*+25+2)(s*+ 25 +5)
A possible MATLAB program to plot a root-locus diagram is shown below.

resulting root-locus plot is also shown below.

mm=[0 0 0 1

K1=10:0.1:2;

K2 =2:0.02:2.5;
K3 =2.5:0.5:10;
K4 =10:1:50;

K5 = 50:5:800;
K=[K1 K2 K3

plot(r,'o")

v=[-8 2 -5 5];
gnid

xlabel('Real Axis')
ylabel('Imag Axis")

1].

den=[1 4 11 14 10];

K4 KS5];

r = rlocus(num,den,K);

axis(v)

title(Root-Locus Plot of G(s) = K(s+1)/[(s"2+2s+2)(s"2+2s+5)])

Root-Locus Plot of G(s) = K(s+1)Vi(s°+2s+2)(s°+28+5)]

Imag Axs

‘Read Avis

The

B-6-13.

The open-loop transfer function is given by

K(s=0.6660)

Q(S) HE) =

SE+33%0/ 52+ 2. 6725 5%
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The equation for the asymptotes may be obtained as

6‘ {’) Hq {5)

Il

K

—
—

3+ (7300) + 06667 ) s+ .+ -

K

<51_ 2.3¢0) +0.6667\3
’ 3

]I+

K
(s+43356)3

K

S?+ %00 F8sST+ S 35/85s +2.2825

Hence, we enter the following numerators and denominators in the program.

the system,

For the asymptotes,

A MATLAB program to plot the root loci and asymptotes is given below.

nma =[0 O
dena = [1

nm=[0 0 0 1 -0.6667]
den = [1 3.3401 7.0325 0 0]

0 1]

4.0068 5.3515 2.3825]

resulting root-locus plot is shown on the next page.

% ***** Root-locus plot *****

num={0 0 0 1 -0.6667);
den = [1 3.3401 7.0325 0 O);

numa={0 0 0 1},
dena = [1 4.0068 5.3515 2.3825];

K1 = 0:1:50;
K2 = 50:5:200;
K= [K1 K2];

r = rlocus{num,den,K);

a = rlocus(numa,dena,K);
plot(r,’o")
v = [-6
hold
Current plot held
p'Ot(al"')

grid
title('Root-Locus Plot
xlabel('Real Axis’)

-4 4); axis(v); axis({'square’)

(Problem B-6-13)")

ylabel('Imag Axis’)
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Root-Locus Piot  {Problem B-6-13)

B-6-14. By substituting 8 = O~ + j&/ into
Kk
S(s+1)

and rewriting, we obtain
K= l(o+)fu)(a~+ju/+/)| = ’|(0~+)‘u)‘+o~+\jw|

= [0+ 0~ t jw (1+20)]

=/

Thus,
K*= (0“4- o W)+ w1+ 26)"
= [o(e+)—w?] + &% (1t ¢0 + #02)
=[0(0+) +a*]" + &
tence |

[o(a+1) +wr] +w®= K*

The constant gain loci for K =1, 2, 5, 10, and 20 on the s plane are shown
on the next page.
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B-6-15. The term (s + 1) in the feedforward transfer function and the term
(s + 1) in the feedback transfer function cancel each other. The reduced
characteristic equation is '

K(s+1) / ~ /4 K _
s(s*+2s5+6) S+/ S(s*+ 2s+6) =0

The open-loop poles of G(s)H(s) isat s =0 and s = -1 % jJ—. The following
MATLAB program produces the root-locus plot shown on the next page.

I+ GEIHS) = 1 +

% ***** Root-locus plot ****+*

num=[0 0 O 1}
den=[1 2 6 O]
rlocus(num,den)

Warning: Divide by zero
;ri: [-5 3 -4 4]; axis(v); axis('square')
title("Root-Locus Plot  (Problem B-6-15)")
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Root-Locus Plot  (Problem B-6-15)
4
//
s .
/

Imag Axis
=}
e

-2

)t’—\
-3 \
4 N
-5 -4 -3 -2 -1 0 1 2 3

Real Axis

‘To find the closed-loop poles when the gain K is set equal to 2, we may enter
the following MATLAB program into the computer.

p=[1 2 6 2
roots(p)

ans =

-0.8147 + 2.1754i
-0.8147 - 2.1754i
-0.3706

Thus, the closed-loop poles are located at
s = -0.8147 + j 2.1754, s = ~0.3706

B-6-16. For the system shown in Figure 6-65(a):

A MATLIAB program to plot a root-locus diagram for the system shown in Figure
6-65(a) is shown in MATLAB Program (a). The resulting root-locus plot is shown

in Figure (a) (see next page).
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% MATLAB Program (a):
nml=[0 1 -1];
denl =[1 6 8j;
K1 =0:0.01:50;
K2 =50:0.5:1000;
K=[K1 K2
rlocus(num1,denl,K)
grid
title(Root-Locus Plot of G(s) = K(s-1)/(s"2+6s+8))
xlabel('Real Axis')
ylabel('Imag Axis")
. ” Rook-Locus Plot of G(s) = K(s-1)s 2+00u)

08

0.6

04

02|

£,
H

€2

04

0.8

08}

s 3 -+ 3 2 Kl ] 1 2

Real Mods

For the system shown in Figure 6-65(b):

A MATLAB program to produce a root-locus plot of the system shown in Flgure
6-65(b) is given in MATLAB Program (b) The resulting root-locus plot is shown

on the next page.

% MATLAB Program (b):

nm2=[0 -1 1];
den2=[1 6 8J;
K1 =0:0.01:50;
K2 = 50:0.5:1000;
K=[K1 K2},
rlocus(num2,den2,K)
=[-8 8 -8 8]; axis(v); axis('square’)
grid
title(Root-Locus Plot of G(s) = K( l-s)/(s’\2+6s+s)')
xlabel(Real Axis')
ylabel(Tmag Axis'")




Root-Locus Piot of G(s) = K(1-s)s Zpe48)

Note that the equations for the root loci for both systems are the same.
They are given by

w[(o—1 )+ w?i—/5] =0

This equation is equivalent to
w=0 av  (=/)*+w*=/5

The first equation (4 = 0) is the equation for the real axis. The second
equation is the equation for the circle with center at (1,0) and the radius

equal to Jf15.

The equation for the break away or break-in points is obtained from
dk/ds = 0. For both systems, the solutions for dk/ds = O are

S=¢4£873 S=—2.373

?

For System (a):

K =-15.746 for s = 4.873

K = -0.254 for s = -2.873
This means that there are no break away or break-in points for System (a). The
root loci exist only on the real axis. (The root loci exist between s = -2
and s =1 and between s = -4 and s = - 00.)

For System (b):

15.746 for s 4.873

=
i

=
i

0.254 for s = -2.873
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Hence, s = ~2.873 and s = 4.873 are actual break away and break-in points,
respectively. The root loci involves the circular locus where the center of
the circle is at (1,0) and the radius equal to J/15. The root loci also

exist on the real axis, froms = -2 tos= -4 and froms =1 tos =o9.
B-6-17.
==L 2K s

G) = — @

q wos + 1

The characteristic equation for the closed-loop system is
2K -
/+ e #s =0
[o0st/

The angle condition is

2k —gs _ ,
//w.s+/ e = fe™* - fioos+/ = L180°(2441)

Since .
[ = e 9 = [er oy — jas s

- 4 & radians

- 229.24) degrees

The angle condition becomes
—229.24 — [5+o.0/ =1t [80°(2k t/)

For k = 0, the root-locus plot can be obtained as shown below.

W=0-3

@W=0.2

W=o.|
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The magnitude condition states that

2K —¢s
—_ e
/oos +{

[
\

,[8-;«, — 'e—w’,,g—@w': e e

The magnitude condition becomes as

105/ |= 2k e el

The root locus crosses the j& axis at 4« = 0.3927. By substituting 0= 0,
¢ = 0.3927 into this last equation, we obtain the critical gain K. as follows:

|r0lse3227)+/ | = 2k

or

|7 +539.27] =2k
Solving for K., we get
Ko = 19.64

The critical gain for stability is 19.64. Hence the stability range for
the gain K is

19.64 > K> 0
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CHAPTER 7

B-7-1. The differential equation for this mechanical system is

bl e —Z,)+ k(20 —X,) = b1 7,

Taking the Laplace transforms of both sides of this equation, assuming zero
initial conditions and then rewriting, we obtain

2
Xols) _ bzs +4 Tk 7 +/
Xets)  (bitb)sth b,;b e+ /

If we{define
bz bl +AZ _
=T el

then the transfer function X,(s)/Xj(s) becomes

L

Xl _ _Tstl _y ('

Xe(s) ATs+/ 4 54

_ AT

This is a lag network, because the pole (s = -1/ - T) is located closer to the
origin than the zero (s = -1/T). v

B-7-2. The complex impedances Z; and 2, are

Z’=R,J

= /
Zy = Ret 51
The transfer function between the output voltage Eg(s) and the input voltage
Ej(s) is given by |

Eaﬁf) = 22 = R2Cs+ ]
Epls) 2+%. (R +&)Cs+/

Define _
_ Ri+Pe _
?;C = T) ———E:——lg>/

Then, the transfer function becomes

Eos) _ Tst] 4 [ S+
Exs) s+/ _J_
(4 FT | P S+ 2T

td
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This is a lag network.

€ S+2 S$+2
The zero ( s = - 0.4) is located closer to the origin than the pole (s = - 2).

Hence G.(s) is a lead network.

B-7-4.

Gc(y)z/(—f};-%— (a>0, b>o, /<>a)

For this Go(s) to be a lead network, we require

b<a
B-T5- o $(st/1) _ & St/
Zc(r) = = -
S+5 8 o.123s5+/

An op-amp lead controller is shown below.

¢
¢
v Ry
| Kz Rz
R o -
E:6) ( E,()
O -J—_- el

The transfer function of this op-amp circuit is
E,5) _ R2Ry RC s+l
E;)  RRs Rcas+/
If we arbitrarily choose, C; = C2 = 104F and R3 = 10 k&, then

Ro=lovknr , Re=/2.8kh0

Since RoR4/(R1R3) must be equal to 5/8, we obtain

/25X 00 Ry &
J0oX (03X 10 X f03 &

or

R¢ = So f.Q.
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Thus, we determined Cy, C; Rj, Ry, R3, and Ryq as follows:

C'/:/ﬂ,u/—‘, (o =10pMF, R =/(ockll
R,=/2.542 , R =/0kI, Ry= s kL2

B-7-6. The following MATLAB program gives a root-locus plot for the system.
The plot obtained is shown below.

% ***** Root-locus plot *****

num=[0 0 0 1]

den=[1 4 5 O]

rlocus{num,den)

hold

Current plot held

x=[0 -2);y = [0 3.464]; linelx,y)
axis{'square’)

grid

title{'Root-Locus Plot"')

Root-Locus Plot

\\

TN 7

-4 -3 -2 -1 0 1 2 3 4
Real Axis

Since the dominant closed-loop poles have the damping ratio & of 0.5, we
may write them as :

S=xxj VER,
The chéracteristic equation for the system is
S3+4st*+5s5s+ K=0
By substituting s = x + j/3x into this equation, we obtain
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(XY + (24 ]VF 2) >+ $( X +)VTX) + K =0
or
—#2° Pyt o + K+ 23 (#x*+2.50)=0
By equating the real part and imaginary part to zero, respectively, we get
~fX? =X+ X+ K =0 (1)
4x* 4+ 2.5 =0 (2)

Noting that x # O, from Equation (2), we obtain

GX+2.5 =0

or
X ==0625

By substituting x = -0.625 into Equation (1), we get
K=8x'+px*-sx
= 5’(—0-;2;)34- &(- 0.628) —5(—0.625)

= k296875

To determine all closed-loop poles, we may enter the following MATLAB pro-
gram into the computer.

p=[1 4 5 4.296875];
roots(p)

ans =
-2.7500 :

-0.6250 + 1.0825i
-0.6250 - 1.0825i

Thus, the closed-loop poles are located at s = -0.625 + j1.0825 and s = -2.75.

The unit-step response curve can be obtained by entering the following
MATLAB program into the computer. The resulting unit-step response curve is
shown on the next page.

% ***#** Unjt-Step Response *****
num=[0 0 O 4.2969];
den=[1 4 5 4.2969];
step(num,den)

grid
title("Unit-Step Response
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Uni-Step Response

1 AN
08 /
/
%o.s //
T
02 //
lco 1 2 3 4 5 (-] 7 8 9 10
Tir_'-(m)

B-7-7. The solution to such a problem is not unique. "We shall present two
solutions to the problem in what follows. Note that from the requirement

stated in the problem, the dominant closed-loop poles must have & = 0.5 and Wy
=3 y O

Notice that the angle deficiency is
Angle deficiency = 180° - 120° - 100.894°= - 40.894°

Method 1: If we choose the zero of the lead compensator at s = -1 so that it
will cancel the plant pole at s = -1, then the compensator pole must be located

at s = =3, or

G.6) =K Tis+/ _ KT 5+,-7L7->:_-_ Ky _S+/
s+ / T2 Us+ £ Tz St

or

= _S+/
Gel) = 3K S+3

The value of K can be determined by use of the magnitude condition.

S+/ /0
3K B
S+32 S(5+/) S=—A.$“+J~Z-ﬁd’/ /
or
S(s+3)
K= = .
30 Ss=/5St)2.508/ d
Hence
C- by 0. —S;}——,—
7¢(5) 7 S+23

The open-loop transfer function is
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b)) = e

The closed-loop transfer function C(s)/R(s) becomes as follows:

G ___ ¢
R(s) s*+35+9

Method 2 Referring to the figure shown below, if we bisect angle OPA and take
20.447° each side, then the locations of the zero and pole are found as follows:

zero at s = -1.9432
pole at s = -4.6458

Thus, Go(s) can be given as

Tis+/ 71 St/ 5832 S+/5822
Ge(s) =K Tos+/ Te S+agsest 74/ StTREESY
Je A
A PP
(X -jZ
"&Q?:‘/‘& - ',
/? ’
645y ~/9832 0o ¢ 2¢o
-..)', :
“"‘).Z

The value of K can be determined by use of the magnitude condition.

S+/9¢32 /0

2,39/ K =/
N S+ gyt S(s+/) S=—/5+j 2508/
S+EL4S8 )5 (5141
k= | (5+& )s(s5+1) = 0.5/ §
23.7/ (s+/5p32) | _ 15 4] 2598/
Hence, the compensator Gg(s) is given by
S+ /932 0.5/%65 +/
s) = s22 = 0 ‘
G.(5) = /2285 St #6558 5738 o2/ 525t/

Then, the open-loop transfer function becomes as

a.slsco’s—t-/) /0
S(st+/)

o.2/s525t/

Gc(’)éff) = 0-5‘/38(
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The closed-loop transfer function is

) _ 5738 (0.5/%6S+/)
R(5) — S(s+N(0.2/s25+/)) +5/38 (057 ¥5+/)

_ 2.6k% s + $ /328
T oz2/$82S° +/.2/525 + 3 £8%S + 5. /38

It is interesting to compare the static velocity error constants for the
two systems designed above.

For the system designed by Method 1:

KQ:,&“S 7

530 S(St3)

=3

For the system designed by Method 2:

oS/ s+ / /0
0.2/s2s+/ s(st/)

Ky = SZ:: s (0.5738) =4$/3F

The system designed by Method 2 gives a larger value of the static velocity
error constant. This means that the system designed by Method 2 will give
smaller steady-state errors in following ramp inputs than the system designed

by Method 1.
In what follows, we compare the unit-step responsés of the three systems:
the original uncompensated system, the system designed by Method 1, and the

system designed by Method 2. The MATLAB program used to obtain the unit-step
response curves is given below. The resulting unit-step response curves are

shown on the next page.

% ***+* Comparison of unit-step responses for three systems *****

num={[{0 O 10);

den=1[1 1 10];

numt =[0 O 9];

dent =[1 3 9J;

num2 =[0 0 2.644 5.138];
den2 = [0.2152 1.2152 3.644 5.138];

t = 0:0.02:8;

¢ = step{num,den,t);

c1 = step(num1,deni,t);

c2 = step(num2,den2,t);

plot(t,c,'.".t,c1,'-',t,c2,'-.")

grid

title("Comparison of Unit-Step Responses for Three Systems')
xlabel('t Sec’)

ylabel('Outputs’)
text(1.5,1.5,'Uncompensated system’)
text(1.1,0.5,'Compensated system with
text(1.1,0.3,'Compensated system with

138, T1 = 0.5146, T2 = 0.2152')
T = 1,T2 = 0.3333')

AA
nn
oo
wo
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Comparison of Unit-Step Responses for Three Systems

"-._<- Uncompensated system

NN

1B iR i
YRV

0.6
N
%\ "Compensaled syslelm with K =0.5138, T = 0.5146, T2 = 02152

04 ] l
I "CompenJaled system with K=0.3, T{ =11, T2=0.3333
0.2

B-7-8. The closed-loop transfer function C(s)/R(s) is given by

C6) K(Ts+/)
RE) —  S(s+2) +K(Tst/)
Since the closed-loop poles are specified to be

= *ZiJ‘Z
we obtain
S(s+2D+K(T5+) = (s+2+y2)(S+2~)2)
or
S+ (24KT)s+ K= 5S"+4s5+§

Hence, we require
2+KkT= ¢, K=g
which results in

T:ﬂ\ZS‘, K:X

B-7-9. The angle deficiency at the closed-loop pole s'= -2 + j2 ﬁ is
180°- 120°- 90°= - .30°
The lead compensator must contribute 30°.

let us choose the zero of the lead compensator at s = -2. Then, the
pole of the compensator must be located at s = -4. Thus,

- S+2
Gl = K X2

The gain K is determined from the magnitude condition.
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]
~~

K S+ 2 $=
ST¥ S(o554)) | s=-24,2NF

or
s(s+¢)
k=2
Hence 5':-2*')‘2\[-3-

G = St2

Next, we shall obtain unit-step responses of the original system and the
compensated system. The original system has the following closed-loop trans-
fer function: .

Ct) /0

K6) st42s5+/0

The compensated system has the following closed-loop transfer function:

Cts) /6
R(s) S*+ gs+/6
The unit-step response curves of the original system and compensated system are

shown below.

Unit-step responses of original system and compensated system

| /\ro.,-gma.L,m |

/:/-\ \\— Compensated system
1 / —\\

Tl

1.4

1.2

Outputs

0.2

, 3 35 4 4.5 5
Sec

B-7-10. The angle deficiency is

180° - 135° -135° = - 90°
A lead compensator can contribute 90°. Let us choose the zero of the lead
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compensator at s = -0.5. Then, the pole of the compensator must be at s = -3.

Thus,
S+ 4.5
s = ert———
éc[) K St+3

The gain K can be determined from the magnitude condition.

s+o.5 /
K = =/
S+3 J =-14j)
or
S+ 2
Stos =-/+)]

Hence the lead compensator becomes as follows:

S+ 065

5) = ==
Gels) = 4 -T2
The feedforward transfer function is
45+ 2
Ge(s) G6) = —S3i3sT
A root-locus plot of the system is shown below.

Root-Locus Plot of (4s+2)/(s*3+35"2)

) Close /-/aof /»/es
| N
g | \\ )
E \

-2

-3-4 -3 -2 -1 0 1 2

Real Axis

Note that the closed-loop transfer function is
C6 s+ 2

—

RGs) ~— s34 3s*+4¢s +2
The closed-loop poles are located at s = -1 + jl and s = -1.

In what follows we shall give the unit-step and unit-ramp responses of the
uncompensated system and the compensated system. A MATLAB program to obtain
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unit-step response curves is given below. The resulting curves are also shown

below.

% ***** Unit-step responses of uncompensated and compensated systems ***##

num=[0 0 1];
den=[1 O 1];
numc = [0 O 4 2J;
denc=1[1 3 4 2];

t = 0:0.02:10;

¢1 = step(num,den,t);
c2 = step(numc,denc,t);
plot{t,c1,'.",t,c2,'-')

grid
title('Unit-step responses of uncompensated and compensated systems')
xlabel({'Sec’)

ylabel('Outputs’)
text(3,0.9,"Compensated system’)
text(3,1.5,’"Uncompensated system')

Unit-step responses of uncompensated and compensated sysiems
2 \

/
:’{-——- Umnp}gwcd:yﬂqn /
TN

/

Outputs
o
] -
[*0ee. T~
g
:
_ Lo
Sl
_—y -

(=]

(-]
_—
/

[ e

]
5/ AN,

A MATLAB program to obtain unit-ramp response curves is given next. The re-
sulting response curves are shown on the next page.

9% ****+ Unjt-ramp responses of uncompensated and compensated systems ***** '

num=[0 0 0 1}

den=[1 0 1 O]

numc=[0 0 0 4 2];

denc ={1 3 4 2 0O}

t = 0:0.02:15;

c1 = step(num,den,t};

c2 = step(nume,denc,t);

plOt(t,t,'-',t,c‘l "-o‘,t'cz,".)

grid

title(*Unit-ramp responses of uncompensated and compensated systems ')
xlabel('t Sec') '
ylabel{'Input and Qutputs')

text(4,1.5,'Compensated system')

text(8,6,'Uncompensated system')
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Unit-ramp responses of uncompenssted snd compensaled systems

15

10}

sated system

input and Outputs

/ Uncompen

n

Compensated system

t Sec

B-7-11. The original uncompensated system has the following closed-loop trans-
fer function: .
ch) _ /6
Ris) = s*+4s+/6
The two closed-loop poles are located at s = -2 + jzﬁ_. Choose a lag compen-
sator of the following form:

L
6((’) =I<c j:_L- J’ (ﬁ>/)
T

Then, the static velocity error constant Ky can be given by

L
Ko = Moo SGLIGE) = fimn sk, —FT 6 _gpp
e 7 s'é-;T * e shr S(5tR) 7pke=20

Let us choose Ko = 1. Then
B= 5

The pole and zero of the lag compensator must be located close to the origin.
Tet us choose T = 20. Then, the lag compensator becomes

)‘_ s+"2l3 _ St+o0.75
967 = P T st+oo/
+/ﬂo *
Notice that
S+0.05 = 0. 9950
S+0.0/ | 5= z4jed7 .
Ss+6.05 / . .
=2 TTee, = [=AP5+ )2 —_ [ =/ 27+ ,2{3
/.S+0.0/ | )23 / [97+,2[3
- J:—Zf}l{-}—

~bo.628) + 60./242° =—o0.4979°
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The angle contribution of this lag network is very small ( -0.4999°) and the
magnitude of Gq(s) is approximately unity at the desired closed-loop pole.

Hence, the designed lag compensator is satisfactory. Thus
S+2. 08~

‘Ci‘(f) = St+o0.0/

Let us compare the unit-step response curves of the uncompensated and
compensated systems. The closed-loop transfer function of the uncompensated
system is .

Cé) /8
R() Si4+ #s+/6

For the compensated system the closed-loop transfer function is

®_ _ /E(S+o0os)
R(s) (S5+0.0/) 5(5+8) +/6 (5+0.95)
— fs+0.8

5’4—%&/:"#—/&’.0?—5 o8

The closed-loop poles can be found by entering the following MATLAB program
into the computer. ’

p=1[1 4.01 16.04 0.8];
roots(p)

ans =

-1.9797 + 3.4526i
-1.9797 - 3.4526i
-0.0505

The dominant closed-loop poles are located at s = -1.9797 + j3.4526. These
locations are very close to the original closed-loop poles.

The following MATLAB program produces a plot of unit-step respbnse curves.

% ***** Comparison of Unit-Step Responses for Two Systems *****

num = [0 O 16];
den=1[1 4 16];

numc = [0 O 16 0.8];

.denc = [1 4.01 16.04 0.8];

t = 0:0.02:5;

c1 = step(num,den,t);

c2 = step(numc,denc,t);
plotit,c1,".',t,c2,'-")

grid

title{'Unit-Step Responses of Uncompensated and Compensated Systems’)
xlabel('Sec')

ylabel('Outputs')
text(1.5,1.1,"Compensated system’)
text(1.5,0.9,'"Uncompensated system’)
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The unit-step response curves obtained are shown below.

tad Cuel

Unit-Step R of Uncomg ted and Comy

P

1.2 T I

h‘RCmpersdod sJﬂem
1 p: T -

/ L Uncomplensaled:syslem

0.8 - .
0 / - . - -

_ Cutputs

0.2

00 0.5 1 1.5 2 25 3 a5 4 - 45 5

Clearly, the unit-step response curves for the two systems are approximately
the same.

For the unit-ramp response, the response curves for the two systems differ,
because the original uncompensated system gives the steady-state error of 0.25,
while the compensated system exhibits the steady-state error of 0.05. The
following MATLAB program gives the unit-ramp response curves in the time range
95 sec <t € 100 sec. The resulting unit-ramp response curves are shown on the

next page.

% ***** Comparison of Unit-Ramp Responses for Two Systems *****

num=[0 0 0 16];
den=[1 4 16 O}

numc=[0 O O 16 0.8];

denc = [1 4.01 16.04 0.8 O];

t = 0:0.1:100;

c1 = step{num,den,t);

c2 = step{numc,denc,t);

plot(t,t,'-',t,c1,'-.",t,¢2,'-')

v =[95 100 95 100j; axis{v)

grid

title('Unit-Ramp Responses of Uncompensated and Compensated Systems’)
xlabel('Sec")

ylabel('Input and Outputs’)

text(95.5,97.7,'Compensated system')

text(97.5,96.7,'Uncompensated system')
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Unit-Ramp Responses of Uncompensated and Compensated Systems-

100
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Sec

B-7-12. Since the characteristic equation of the uncompensated system is
s?+3052+ Roos + 820 =0
the uncompensated system has the closed-loop poles at

S==3.60 *j ¢ 8o , 5=—22.§8

To increase the static velocity error constant from 4.1 to 41 sec~l without
appreciably changing the location of the dominant closed-loop poles, we need
to insert a lag compensator Go(s) whose pole and zero are located very close

to the origin. For example, we may choose
s+ /
G.(c) = o —2FL
7c(5) = / o Ts+/
where T may be chosen to be 4, or T = 4. Then the lag compensator becomes

4s+/ S+o028
= /0 = -
Gels) =/ gos+/ S+ao2s (1)
The angle contribution of this lag network at s = -3.60 + j4.80 is -1.77°,
which is acceptable in the present problem.

The open-loop transfer function of the compensated system becomes

_ ®20 (s+0.25)
Ge51G65) = s(s+0:028)(5+r0)(S+2a)

Clearly, the velocity error constant K, for the compensated system is

ki = lin 5G6)GE) = ¥ soc™

Notice that because of the addition of the lag compensator the compensated
system becomes of fourth order. ‘The chdracteristic equation for the compen-

sated system is
S*+ 30,026 57 + 200.795 s+ £25 s+ 205 =0
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The roots of this characteristic equation can be easily obtained by use of MAT-
LAB as shown below.

p=[1 30.025 200.75 825 205];
roots(p)

ans ‘=

-22.7866

-3.4868 + 4.6697i
-3.4868 - 4.6697i
-0.2649

Thus, the dominant closed-loop poles are located at
S=-3.¢868% ) . 6677
The other two closed-loop poles are located at

S=-0.26¢49, S=~22.787

The closed-loop pole at s = -0.2648 almost cancels the zero of the lag compen-
sator, s = -0.25. Also, since the closed-loop pole at s = -22.787 is located
very farther to the left compared to the complex-conjugate closed-loop poles,

the effect of this pole on the system response is very small. Therefore, the
closed-loop poles at s = -3.4868 + j4.6697 are indeed the dominant closed-loop

poles.
The undamped natural frequency &, of the dominant closed-loop poles is

Wn=\3¢868°+ 4466972 = 52828 nnd [Sec

Since the original uncompensated system has the undamped natural frequency of
6 rad/sec, the compensated system has an approximately 3% smaller value, which
would be acceptable. Hence, the lag compensator given by Equation (1) is

satisfactory.

B-7-13. Let us choose a lag-lead compensator as given below.

(5> 4)
(g>7)
(~5)6+ 7 *

The desired closed-loop poles are located at

Gels) = Ke

s=-2£;2V3
and the static velocity error constant Ky is specified as
Ky = 50 sec™l

The open-loop transfer function of the compensated system is
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(;+7-/)(y+ /0

Gels) G(s) =
(34__&)(54_#72 5(s+2)(5+s)
Hence
kv=,£:w\ :é[s)@[:j ,&m Ke —-—————.:- Ke =87
S0 2X 5
Thus

Ke = S0

The time constant T; and the value of ﬂ are determined from the requirements
that

5*"‘7% S0 X /0 )
. S(s+2)(s+ =
S‘i—-%— (5+2) ) S=-2vj2F
L
S+ , oy
./ﬂ;
s+-£ 4
7;
S:-—Z‘PJ‘Z\G-

The angle 79.1066° comes from the fact that the lead portion must compensate
the angle deficiency which is _

Angle deficiency = 180° - 120°- 90°- 49.1066 = - 79.1066"°

See the diagram shown below.

Ja,u\

By using trigonometry we find the locations of the zero and pole of the lead
portion of the compensator as follows:
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L
S+T SH+2.2/87

s+—74— S+27./0//
/

Hence,
77:0.”07; IB'::/?'Z/f;'

For the lag portion, we may choose T, = 10. Then, the lag portion may be

given by
s+ ’7‘-; _ s+0/
:+/;7§ S+ 0,00 8/ 84
Notice that
5""742‘ - s+0./
L S+o.00 8t TR
St P2 | S=-2t5a0F S=-2+jeVy
L
S+ A o
— = — [ /538
s+
T
ATz $=-Z+j2\/§-

The changes caused by the lag portion are small and acceptable. Hence the
lag-lead compensator can be given by

s+22/87 S+0.)
G.(s) =50
S+27.///) Sto,008/ ¥
The compensated system will have the open-loop transfer function

_ so(s+2.2/87)(s+0/) 0
Get7 G0) (st27.107 )(5+o.00878%) S(s+2)(5+5)

SO0 524~ //59. 3585 +//0, 735

SE+3% /193 S+ 200.08705° +272. 28425+ 2.2/ 8E'S
The closed-loop transfer function becomes as follows:

Ct) _ §00 S + /59,355 + //0. $25
R(s) ST 301193554 200.057053 + 772. 7962 5 4/ /64 S 4885 +/10.738°
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The following MATLAB program will give the unit-step response of the compen-
sated system.

% ***** Unit-step response *****

num=[0 0 O 500 1159.35 110.935];

den = [1 34.1193 200.0570 772.7462 1161.5688 ' 110.935];
step(num,den) :

grid

title("Unit-Step Response of Compensated System')

The resulting unit-step response curve is shown below.

Unit-Slep Response of Compensated System

14

1.2
1 /\\ |

|
|
.
|

Time (sac)

- The system needs at least one integrator to eliminate offset in the
step response. Therefore, the controller should include an open-loop pole at
the origin. _ Suppose that we want to have the dominant closed-loop poles around
s = -2 + j2[3. Then, the angle deficiency becomes as follows:

B""7—14 Ul

Angle deficiency = 180° - 134.29424° - 112.29253° - 120°

-186.58677 °

See the diagram shown to the right. ~2+520F

N
9y

—# -
/2. 29253"
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This suggests that the controller should have two zeros near point s = -2.

Therefore, we choose the controller Gu(s) to have the following form:
¢ S
(It is a PID controller.)

Let us plot a root-locus plot for this system. Note that

_ K(st2) g _[0K(S™H¢s+4)
W@BGE) = —5 s*+2 5% +2s

The following MATLAB program will produce the root-locus plot as shown below.

% ***#** Root-locus plot *****

num=[0 1 4 4];
den=1[1 0 2 O}

rlocus(num,den)
v =[-8 2 -5 B5]; axis{v); axis('square’)

grid
title(*Root-Locus Plot of Gels)G(s) = 10K(s"2+4s+4)/[s(s"2+2)]')

Root-Locus Plot of Gc(s)G(s) = 10K(s*2+4s+4)/[s(s"2+2)]

Imag Axis
o
/\’——' —
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By examining this root-locus plot, it may be a good choice to have the dominant
closed-loop poles at

S'=—-.?'J:J' 2.5

(Of course, other points on the circular root locus may be chosen as potential
dominant closed-loop poles.) The characteristic equation for this system is

S3+25s+/0K (s*+¢s+%) =0
or '

S0k sP+ (24 #0K)s + ¢o kK =0

By dividing this characteristic equation by the quadratic factor

(5+2+,32.8)(s+3~j38)= g*+&5 +23.%&
or
s + LoKk—-6

si g5+ 23. “,_)-53 F+/0kST + (2490K)S + %ok
S} 4 £s*+ 23.¢xs

(Vok—6)s> + (#0k — 2/.4) 5 + #0K.
(70k ~6) S* 4 (fok~36 ) s + 23K R4k~ /006§
| os -+ o

By setting the remainder equal to zero, we require
Gk ~2/ g%~ ok +36 =0 (1)

4ok — 234 ¢« K +/g0. 6% =0 (2)

Equation (1) yields K = 0.728 and Equation (2) gives K = 0.723. Hence, we
may choose

K=o.725
Then, the. controller can be written as follows:
( s+2 Zz'
Ge(5) = 0:728 ——
The open-loop transfer function becomes as

_0i225(5+2)* __fo 2285 (s+2)*
6:6’)6(5)— S Sl+2 - S(:&_‘_z)

The assumed closed-loop pole locations

S=-3 :I:J‘3.¢?

will be slightly shifted. By substituting K = 0.725 into the characteristic
equation, we obtain
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SP+/0ks T+ (2+ o k) s+ 20K = S+ P255 4+ 3] s+ 2§ =0

The roots of this characteristic equation can be obtained by use of MATLAB as
follows:

p=I[1 7.25 31 29
roots(p)

ans =

-3.0106 + 3.8128i
-3.0106 - 3.8128i
-1.2287

These roots (closed-loop poles) are shown on the root-locus plot shown earlier.

Using the designed controller, the unit-step response and unit-ramp res-
ponse can be obtained by use of MATLAB. The following MATLAB program will
produce the unit-step response curve, as shown below..

% ***** Unit-step response *****

numc = [0 7.25 29 29];
denc = [1 7.25 31 29];
step{numc,denc)
rid
tgitle('Unit-Step Response of Compensated System  (Problem B-7-12)')

Unit-Step Response of Compensaled System  (Problein B-7-12)

14

A
=
]

t’0 05 1 1.5 2 25 3
Time (sec)

Ampl

The response curve shows that the maximum overshoot is 23% and the settling
time is 3 sec. Therefore, the system satisfies the given specifications.
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The MATLAB program shown next produces a unit-ramp response curve.

% ***** Unit-ramp response *****

numl =[0 0 7.25 29 29);
dent =[1 7.26 31 29 O}
t = 0:0.02:3;

¢ = step(num1,dent,t);
pIOt(t:cll'lltltv"")

grid _
title("Unit-Ramp Response of Compensated System  (Problem B-7-12)')

xlabel('t Sec’)
ylabel(*Input Ramp and Output')

The resulting unit-ramp responae curve is shown below.

Unit-Ramp Response of Compensated System  (Problem B-7-12)

I8 7
| 7

[~

Ve

25 3

' Since Ky of this system is

K, = low s 228 (s+2)% _ /4 &

s>0 S(s*+2)
the steady-state error in the unit-ramp response is

/ /
Co3 = T = ————— = 0.04F
The designed controller is acceptable. (Note that infinitely many other cont-
rollers can be designed for this system.. The present controller is just one

of many possible controllers.)

- B-7-15. Let us choose the dominant closed-loop poles at s = -2 & j2f3.. Then,
the angle deficiency at a closed-loop pole s = -2 + j2/3 becomes as follows:

180° - 120° - 90° - 106.1021° + 113.4132°

]

Angle deficiency
-22.6889°
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See the fpllowing diagram for the computation of the angle deficiency.

Jjo |

-242F

)23
/ [0é./02/°

/ 13.4732°

[/R0°

\

From this diagram we find the zero of the compensator to be at s = -10.2857.

The compensator thus can be written as

Gels) = K ( s+/0, 2857)
The feedforward transfer function becomes

_ K(s+/2.2857) (25 +/)
G G6) =

The gain K can be determined from the magnitude condition:

K(s+/0.2857) (25 +/) _
S(s+/7)(s+2) S=-24520F =/
or
p = S(s+1)(s+2) |
Stwees7)(2s+/)| s 2420

The evaluation of this K can be made easily by use of MATLAB. The following
MATLAB program produces the value of K.

9% **##** Determination of gain constant K **#***

a=[1 3 2 0]

b=1[2 21.5714 10.2857];

s = -24j*2*sqrt(3);

format long

K = abs(polyval(a,s))/abs{polyval(b,s})

K=
0.73684318666243

Hence, the compensator becomes as follows:

G.(5) =0.7268% (5+ /o zas?)

The closed-loop transfer function becomes as
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cs) SUD368 STk S BFUEDS + P SPFFsS
R6)  S*+ 47368 s+ ,7. 8975+ 7 5759/5~

The following MATLAB program will produce the unit-step response curve.

% ***** Unit-step response *****

numc = [0 1.47368 15.89467 7.578915];
denc = [1 4.47368 17.8947 7.578915];
t = 0:0.01:5;

¢ = step{numc,denc,t);

ploti{t,c)

grid
title('Unit-Step Response of Compensated System (Problem B-7-13)’)

xlabel('t Sec')
ylabel('Output’)

The resulting unit-step response curve is shown below.

Unil-Step Response of Compensated Sysiem (Problem B-7-13)

N

1 A

1.2

04 /
0.2

tSec

The response curve shows the maximum overshoot of 13% and the settling time of
approximately 3 sec. Thus, the designed system satisfies the requirements of

the problem.

B-7-16. The first step in the design of the compensator is to choose the
desired closed-loop pole locations. Considering the open-loop poles of the
plant and the given specifications, we may choose the dominant closed-loop

poles to be »
S=-¢%,¢4

(Of course, other choices can be made.) With the present choice of the domi-
nant closed-loop poles, we may choose the compensator to have a zero at s = -4
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The closed-loop poles are located at s = -4 + j4 and s = -1.3333 as seen from
the following MATLAB output. .

roots(denc)

ans =

-4.0000 + 4.0000i
-4.0000 - 4.0000i
-1.3333

The unit-step response curve shows that the maximum overshoot is approximately -
25% and the settling time is approximately 3 sec. Hence, the given specifi-
cations are met and the designed system is acceptable.

B-7-17. The closed-loop transfer function for the system is

K
b _ K Fa

RE) ™ 25*+s+KKys+K 52y 1tk oo K
From this equation, we obtsin Z <

YV 2 2 2

Since the damping ratio ¥ is specified as 0.5, we get

1t kk,
Wy =
Therefore, we have
[+ KK, _ [k
2 V2
The settling time is specified as
74
s = ¢ = = % <2
, Sewhy (14 KK ) /¢ I+ KK,
Since the feedforward transfer function G(s) is
K
_ 2s+/ 1 _ K /
G6) = + K& S T s+t KK S
25+
the static velocity error constant Ky is
Yy . K K
K, = Lo s6(s) = liden s L =K
s>e s>o 2s + ) + KK, /KK,
This value must be equal to or greater than 50. Hence,
K
KK 259

- 127 -



Thus, the conditions to be satisfied can be summarized as follows:
/+KK K. (1)
2 —V 2

7 <
Jt KK, $2 (2

K

_——Z
T (3)

0<K,< |

From Equations (1) and (2), we get

F< /‘f‘KK‘, = \/zK

or

22<K

From Equation (3) we obtain

£oxrern =i

or
K 2 so00

If we choose K = 5000, then we get

I+ KK, =2k = /00

77
Spoo

Thus, we determined a set of values of K and Ky as follows:
K= Svove |, &:ﬁ,a/f’j‘

With these values of K and Ky, all specifications are satisfied.

or

Ky, = =0.0/58

B-7-18.
Cr) K
RB) ~ s+ KKys+K
thing that

S+ KKys+K =(s+/#NZ)(s+/-)VF) = s*+ 25 + ¢
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we obtain Kk = 2 and K = 4. Hence, Ky = 0.5.

To plot a root-locus diagram for the system with Kp = 0.5, we need to
rewrite the open-loop transfer function such that it contains a multiplying
factor K. Since the characteristic equation for K, = 0.5 is

S t+osks+K=0

we rewrite this equation as
K(o.85+1)
st -

/ + 0

and consider K(0.5s + 1)/s2 as the open-loop transfer function, or

K (e.s
C7(.f) — ( szS"l'/)

Thus, the system will have an open-loop zero. (This zero is not a closed-loop
zero.) A MATLAB program to obtain the root-locus plot is shown below. The

resulting root-locus plot is also shown below.

Root-Locus Piot

% ***** Root-locus plot *****
num= [0 0.5 1] 2 '

den=[1 0 O] N
rlocus(num,den)

v=I[5 1 -3 3];axis(v); axis{'square’) ' '

grid 1 \
title("Root-Locus Plot*) / \

Imag Axis
=)

2 \ /
35 4 3 2 -1 0 1
Real Axis
B-7-19. The closed-loop transfer function is
cis) K | K

Rs) ~ s[E+)(s+2)+0.2K]+*K ™ s?+35*+25+7.2KS+K
The dominant closed-loop poles may be written as

s=xt;V3x
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Substituting s = x + j J?x into the characteristic equation, we obtain

(x5’ +3(X+ N3 + 2 (VT +Ha2K X+ V30 + K=0

or .
S fAT+2X +o2KX+K + 2J3‘j(31‘+z+a./kz') =0

By equating the real part and imaginary part to zero, respectively, we obtain

~8X}—fx* +oex +o2kx+K=0 (1)
3X*+x+ 01 kx =0 (2)
From equation (2), noting that x # 0, we get

2x+/t+e./K =0
or
K=—=/0(3X+7/)
By substituting this equation into Equation (1), we obtain
Ex3+ /2x*+30x+ /0 =0

To find the roots of this cubic equation, we may enter the following MATLAB
program into the computer:

p=1([8 12 30 10}
roots(p)

ans =
-0.5622 + 1.7354i

-0.5622 - 1.7354i
-0.3756

The value of X must be real. Hence, we take X = -0.3756. Thus, the dominant
closed-loop poles are located at

=~0.7756% 04506

The value of K for the dominant closed-loop poles is obtained as
K=—r0(3x+/)
=—/0(-3x03754+/) = /[.268

To obtain the unit-step response of this system, we first substitute K =
1.268 into the closed-loop transfer function and then enter the following MAY-

LAB program into the computer:
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% ***** Unit-step response *****

num=[0 0 0 1.268]

den=1[1 3 2.2536 1.268];

t = 0:0.05:20;

¢ = step{num,den,t);

plotit,c)

grid

title('Unit-Step Response  (Problem B-7-19)")
xlabel{'t Sec')

ylabel{'Output c(t)’)

The resulting unit-step response curve is shown below.

Unit-Step Response  (Problem B-7-19)

JAN

1.2

il
il
|/

0 2 4 6 8 10 12 14 16 18 20
t Sec :

Output c{t)
[=]
(+)]
]

B-7-20. The characteristic equation is
+/ =0

(s+%) s¥(s+2)

In this case the variable « is not a multiplying factor. Hence, we need to
rewrite the charactristic equation such that X becomes a multiplying factor.
Since the characteristic equation is

S+ 25*4+25+2 =0

we rewrite it as follows:

2«
/] + — =0

s3+2s5*4 258

Define K = X . Then, the characteristic equation becomes
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2K
/+ =0

S(s*+25+2)

A root-locus plot of this system may be obtained by entering the following

MATLAB program into the computer.

% ***** Root-locus plot *****

title('Root-Locus Plot
xlabel{’Real Axis’);
ylabel{'imag Axis')

num=[0 0 0 2

den=1[1 2 2 0}

K1 = 0:0.1:10; K2 = 10:0.5:200;

K =[K1 K2);

r = rlocus(num,den,K);

ploti(r,'-*)

hold

Current plot held

x =[0 -2];y = [0 3.464]; line(x,y)
v : [-3 1 -2 2); axis(v); axis{'square')
ari

The resulting root-locus plot is shown below.

From the root-locus plot, the dominant closed-loop poles that correspond
to the damping ratio ¥ of 0.5 are found to be

S = —a.s.tja.&%

The value of K corresponding to the dominant closed-loop poles is obtained as

S(S*+25+2)

- 0.8

- 2 =~0.51 ) 0.966
Root-Locus Piot
2 \ /
1.5f \\ y
1 </
05
[ 2]
2,
[
E
05
-1 \\
1.5 ‘\
325 2 45 4 <05 0 05 1
Real Axis
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B-7-21. The closed-loop transfer function is

<S+/ £ /0 (st+/0)
C) _ S+s S(s+/)(s+10) +/0ks
Ri(s) . ( S+/4¢ /8 (s+/0)

S+s5 ) S(s+/)51+r0)+ /04 s

Thus, the characteristic equation is

o (SHE /0 (s+/0) _
(s--rr S(s+7)(s+/0) + /0kS

Since the variable k is not a multiplying factor, we rewrite the characteristic
equation as

G+s-)s (s+/)(str0) + (5t /0ks + SHg)1e (51 /0) = 0

which may be rewritten as
10(5+5) ks _
G+r)(s’+ss? + /55 +/9

or
+ /0[5'{-3’9 ks = 0
(+2)(s+w)(s+21)/232)(St+2—j/732)

/

Notice that the open-loop poles are at s = -2, s = =10, and s = -2 + jl1l.732.
A root locus plot for the system may be obtained by entering the following
MATLAB program into the computer. The resulting root-locus plot is shown

on the next page.

% ***** Root-locus plot ***#+

num=[0 O 10 50 O]
den=[1 16 75 164 140];
numa = [0 O 10];

dena = [1 11 20];
rlocus(num,den)

hold

Current plot held

a = rlocus(numa,dena);
plot(a,’-')

v=[-15 5 -10 10} axis(v); axis('square’)
x = [0 -B.5];y = [0 9.5263]; line(x,y)
grid

title("Root-Locus Piot')
text(-12,3,'Asymptote’')
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Root-Locus Plot

10 r

6 \
i A\
Asymptole ~—————f \\x\

X

imag Axis

The dominant closed-loop poles having the damping ratio equal to 0.5 can
be determined as the intersections of the root-locus branches and the straight
lines from the origin having an angle of 60° or -60° with the negative real
axis. The intersections are located at s = -5.14 + j8.90. The gain value

k is obtained from ,
4 __l (s+2)(s+/0)(S+2+j/.732)(S+2~)4732)
l /0 (s+3)S S ==554)8.90

= 2085

With k = 9.08, G(s)H(s) can be given as
6) ) = (AL Al Cadis
@ = (s-rr S(s+1)(S+/0) + $0.85

The static velocity error constant Ky is

Ky = ,f:: S GE)HE)
S+/¢ VAERTD.
s> | S+5 S[(S‘\"/)(S-I‘/Q) +77“?J

= 02,2998
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B-7-22. The closed-loop transfer function of the system is
Cls) K
R¢Gs) s*+ (/+KK)s + K

The characteristic equation for the system is

S*+ s+ K(Kks+/)=0
Divide this characteristic equation by s2 + s and define
Ge) = K(Kys+1/)
s*+s
Note that G(s) is in the form suitable for plotting the root loci.
Root-locus plots for G(s) when Ky = 0.1, K, = 0.3, and Ky = 0.5 are shown

in Figures (a), (b), and (c), respectively.

Root-Locus MdG(’)'Klﬂ.‘!#iy(lz"l) s Rul-l.mPluo'G(s)-K(D.:s+1y(sz*s)
15
4
10 -
/ \ 3
2 2
5 1& '

%MHM

— ; ‘

10 \_/ 3
-4
s 20 15 ET) 5 0 [ T s 5 4 3 =2 o [) 1
Real Axis Real Ads
(@ (k)

Roat-Locus Plot of G(s) » K(0.55 + 1)z 2 +3)

%o The closed-loop poles when
E x K =10, R = 0.1; K = 10,
A 'Q‘T\m Kp = 0.3; K =10, K = 0.5
are shown by @ in Figures
2 (a), (b), (c), respectively.
'i-s - 3 .-Z'A* 1 o 1
(<)
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The closed-loop transfer function when K = 10 and Ky = 0.1 becomes as
follows:

(G) _ /0
R6G) = S*y2s +/0
The two closed-loop poles are
s=—/%£43
The closed-loop transfer function K = 10 and Ky, = 0.3 is
cg) /o
RG) S*+4¢s 40
The closed-loop poles are located at
S=-2%F,JF
Similarly, the closed-loop transfer function when K = 10 and K = 0.5 is
cE) 10

R6) ~ s*+Es+/w0
The closed-loop poles are located at
S==-3%j
The unit-step response curves for the above three systems are shown in the
figure shown below.

Unit-Step Response Curves for Three Systems Considered

1'4 L T ¥ T T L T
K=10,Kh=0.1
121 ~
K=10,Kh=03
1k T~
08} s
g |
% K=10,Kh=0.5
(o]
06 4
04+ .
0.2} 4
o 1 L 1 1 ] i A
0 1 2 3 4 S 6 7 8
t(sec)
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CHAPTER 8

The closed-loop transfer function is

B-8-1.
ce) _ s0
R(s) — s+ //
The steady-state outputs of the system when it is subjected to the given inputs
‘are
(a) Cos () =0.925 nen (t+ 2% 8°)
(b) Css() = [. 79 co= (2t -55.3°)
(c) Csslt) = 0. 805 wean (¢+2¢8°) — .75 Coz (2¢—5%.3°)
B-8-2. The steady-state output .cgg(t) is
/+Rrw® . ) _ -} —
Cer(®) = RK /—/—;_-;;;;— A (wz’+ ' Trw — law: /Ild)
B-8-3.

Bode Diagram of G1(s) = (1 + s)/(1 + 23)

0
\\
2
\\
N
4
g L.
é 'e
§ 4
g o —
2 s AN A
a \ ’/
/
10 \ /f
15 /
\ .
- \\__//
10? T 10° 10' 10°
Frequency (rad/sec)



Bode Diagram of G2(s) = (1 - s)/(1 + 2s)

0
\\
2
4 b -
52: ¥ -
£
g 3
g s
i, BN
z \\\
-100 \\ N
L
-150 T
-200'~ v y 1 2
10 10 10 10 10
Frequency (radisec)
B-84.
dp r
/(—
— 0 : ~ Slope = 20 dB/dec
Gry= L=tL 1o
Tes+/ L B
0 ; l
(i>T>0) — -
; -_;;- T'z- W (ﬁ} sa-/c)
48“_‘/1————
]
s+ / v ' '
(T >7>0) "l i\i\F
-;—7- -%z w/ (/a;_.su/c)
ds )
Gy = Zlisxl o—"1
Tes+/ : [
o’ ! |
-180° ; =
s S
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B-8-5. The following MATLAB program produces the Bode diagram shown below.

% *kk%k Bode dlagram L2221

mm=[0 10 4 10];

den=11 08 9 0];

bode(num,den) :

titte(Bode Diagram of G(s) = 10(s"2+0.4s+1)/[s(s"2+0.85+9)]"

Bode Diagram of G(s) = 10(sz+0.4s+1)/[s(sz+0.as+9)]

60
i
40
—~
\\\\
20 -
N
—~ ] / N
g \\\ / \\\\
j i
5 20
T 100
s
| -
0
50
A
_,/// \\\_
-100
10° 10" 10° 10'
Frequency (rad/sec)
B-8-6. Noting that
(()nt /

69"0):0‘(”; ,)+“JZ vo \*+ . &
)+25'fdn(J‘U ) ()2'—; +g;() —(;”-)..;.]

we have

|66

_, / _
=/ +2%; +/ l—
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B-87- 66) S+0.4
1= s st 4/

The following MATLAB program produces the Bode diagram of G(s) shown below. Notice

that the phase curve starts from 0° and ends at 180°.

% kkkk$ Bode Dlag-am bl L L

mm=[0 0 1 05};

den=[11 0 1};

bode(num,den)

title(Bode Diagram of G(s) = (s+0.5)/(s"3+5"2+1))

Bode Diagram of G(s) = (s+0.5)/(8>+s%+1)

20
0 puN
20 -
Py P
g s
. 40
2
g 80
§ 200
§ /
g 150 //
100 .
50 —— =
_“/
I
0 .
10" 10° 10'
Freqbency (rad/sec)

To verify why the phase angle starts from.0° and ends at 180°, we may compute
angles /G(jO) and /G(joo). Since

G(s) = s+o.&
(S+ressé )(s—o2328~5 07726 )(5~0-2328 +0.7926)
we have
[G00) = (05~ /14658 ~ [-02328-]0r7524 ~/-0.232F+)0.72¢
— e pt_ A~ O 7726 -1 _07926 _ .
=0"= 0"~ T 02328 02729 =7
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o0 .y oo

o o ’,___________ ———— e
70°—90° = L’ 7% —0,2328

ancé G’ “ (o)

%° —90° + 90° + F0° = /80"

B-8-8. Typical Nyquist curves for the cases (a) and (b) are shown below.

Im |
k) T>Tavo, T»h>o0. 4
__/—\ o
0 Re
@ Ta>T>o0, 7I>T>o/

Nyquist plots of example systems that belong to case (a) and case (b) are shown
below.

Nyquist Plots

08

08
04
* G(8)H(e) = (0.6s+1)(s+1)/fs*Rs+1)]
02—
\K
2 0 ~=]
E \‘/

02

-

04 /
08 -
08 //\(
| GeH(® = 0.1(1 23+1)(0i55+1)1[82(0.4s+1)]
i i

T4 i 1 .
-5 -4 -3 -2 -1 0 A 1
Real Axis ’

- 141 -



B-8-9.

m ]
Im} Fi(5) Plane I} £ E) Plane

™ e
NN

Ke

(a) (b)

B-8-10.
. Imi

//w<o
/“’""” \

' The stability requirement of the unity feedback control system with

6_(”) _ K(l-jw)
_ JW+/
is that -K be greater than -1, or

K</

Since we assume that K >0, the condition for stability is

/>K>0

B-8-11. A closed-loop system with the following open-loop transfer function

GEIHE) = T(gs—w (7 >0)
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is unstable, while a closed-loop system with the following ‘open-loop transfer
function is stable.

K(rzs+1)
s2(Ts+1)

Nyquist plots of these two systems are shown below.

GO HE) = (72>T, >0)

GG HE) = ———-- ( lnstable)

Z(T
\ |
X— —>-
-1 0 KRe
G6) HE) = Kf(r 1) (Stable)
(>7> o)
B-8-12.
' /
Im { q'fll P/dne wsr.'."p —G-'Tf- P/ﬂl)&
K=/o
Stable~y/,
W=0- % W=0t
oy .
weo* GAw=0- | e
=] \\
Stable
&= 00

The system is stable for 0 < K < 16.8.

B-8-13.

-2ya)
ij)ﬁg'w)_ .ﬁ_e_.i_
(GG HGy) = [co2w-jaizw — f0°

= —Rw - 70°
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The phase angle becomes equal to -180° at 2« = 7t /2 rad/sec. For stability,
the magnitude ]G(Jw)H(Jw)|at w= /4 must be less than unity. Hence,
noting that

|45 Hgw)| =

we require that K < 7U/4 for stability.

The following MATLAB program wi]y.l produce the Nyquist plot shown below.

. B-8-14.
% [ XX X X J Nyquist plot *RERR
num=[0 0 0 1];.
den=1{1 0.8 1 0}
nyquist{num,den)
v : [-4 4 -4 A4]; axis(v); axis('square’}
gri
title('Nyquist Plot of G(s) = 1/[s(s~2+0.8s+1)]")
4 Nyquist Plot of G(s) = 1/[s(s"2+0.85+1)]
3
| .
g,
E
-1 \
-2 \
3
YT 2 a 0 1 2 3 4
Real Axis
B-8-15. Note that G(s) has two open-loop poles in the nght-hals s plane, as

seen from the following MATLAB output.

p=1[1 02 1 1}
roots(p)

ans =

0.2623 + 1.1451i
0.2623 - 1.14561i
-0.7246
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The following MATLAB program produces the Nyquist plot shown below.

% LA XK X 3 NYQUiSt plOt (X2 XX J

num=[0 0 O 1};

den=[1 0.2 1 1];

nyquist(num,den)

v : [-1.5 1.5 -1.5 1.5]; axis{v); axis('square’)
gri

title("Nyquist Plot of G(s) = 1/[s"34+0.25"2+s+1)]")

Nyquist Plot of G(s) = 1/8*3+0.2s8"2+s+1)]

/

7

Imag Axis
N O~ )
g

0.5 \

-1

135 - 05 0 0.5 1 15
Real Axis

From the plot notice that the critical point (-1+jO) is not encircled. Because
there are two open-loop poles in the right-half s plane and no encirclement of

the critical point, the closed-loop system is unstable.

B-8-16. The following MATLAB program produces the Nyquist plot shown on the next
page.

% ****+ Nyquist plot I ZXT Y]

num=1[0 1 2 1}
den=1[1 02 1 1)
nyquist(num,den)

grid
title("Nyquist Plot of G(s)=(s"2+2s+1)/(s*3+0.25s"2+s+1}')

Since G(s) has two open-loop poles in the right-half s plane (see the solution
to Problem B-8-15) and the Nyquist plot encircles the critical point (-1+j0)
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twice counterclockwise, the system is stable.

Nyquist Piot of G(s)=(s*2+25+1)/(s"3+0.252+s+1)

"""_é'_\
]
e \\
2

L/ N
N .

Imag Axis
[=)

N

-1

/

2 >\ = e

35 2 45 - 05 0 0.5 1 1.5
Real Axis

B-8-17. The open-loop transfer function is

. /
%) = St

The points corresponding to s = jO+ and s = jO- on the locus of G(s) in the
G(s) plane are joo and -joo , respectively. On the semicircular path with
radius g (vhere £« 1), the complex variable s can be written as

s=se’®
where 6 varies from -90° to + 90°. Then G(s) becomes
. / / ~j (6 1/80°)
'Jo = — - =

The value 1/5 approaches infinity as £ approaches zero, and -0 varies. from
-90° to -270° as a representative point s moves along the semicircle in the
s plane. Thus the points G(j0-) = -je© and G(jO+) = +joo are joined by a
semicircle of infinite radius in the left-half G plane. The infinitesimal
semicircular detour around the origin in the s plane maps into the G plane
as a semicircle of infinite radius. Figure (a) shows the G(s) locus in the
G plane. [Figure (a) is shown on the next page.]

Since G(s) has one pole in the right-half s plane (P = 1) and G(s) locus
encircles the -1 + jO point once clockwise (N ='1), we have

72 =N+FP =2

"I'here are two zeros of 1 + G(s) in the right-half s plane. Therefore, the
system is unstable.
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B-8-18. Since G(s) has no poles in the right-half s plane, the stability
of the system can be studied by checking the enclosure of the -1 + jO point
by the Nyquist locus for 0 < w <eo,

If the Nyquist plot of G(s) is as shown in Figure 8-119(a), then there
is no enclosure of the -1 + jO point. [See Figure (a) below.] Hence, the
system is stable.

For the case of the Nyquist plot shown in Figure 8-119(b), the -1 + jO

point is enclosed by the Nyquist plot of G(jw ) for O<aw/ < oo . [See
Figure (b) below.] Hence, the system is unstable.

In 4 Im A

B-8-19. Consider the case where G(s) has one pole in the right-half s plane.
From the Nyquist plot of G(je«’) shown on the next page, the -1 + jO point is
encircled by the G(j&) locus once clockwise and once counterclockwise. Hence
N = 0. Since G(s) has one pole in the right-half s plane, we have P = 1.
Since

Z=N+P=o0+tl=|

the system is unstable.
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Next, consider the case where G(s) has no pole in the right-half s plane,
but has one zero in the right-half s plane. The -1 + jO point is encircled
by the G(jw ) locus once clockwise and once counterclockwise. Hence, N = 0.
Since G(s) has no poles in the right-half s plane, we have P = 0. Therefore,

Z2=NtP=0+0 =0
The system is stable. (Note that the presence of a zero of G(s) in the right- .
half s plane does not affect the stability of the system. )

Re

_ K(s+2)
G6) = S(s+/2(s +r2)

A MATLAB program to plot Nyquist diagrams of G(s) for K = 1, K = 10, and K = 100
is shown below. The resulting Nyquist diagrams are shown on the next page.

%‘t##*N)-,quistDiammsttttt

mm =[1 2];
den=[1 11 10 O};
w=0.1:0.1:100;
frel,im1,w] = nyquist(num,den,w);
[re2,im2,w] = nyquist(10*num,den,w);
fre3,im3,w] = nyquist(100*num,den,w);
plot(rel,im1,re2,im2 re3,im3)
v=[2 2 -2 2J; axis(V)

id

gn

title(Nyquist Diagrams’)
xlabel(Real Axis')
ylabel(Tmag Axis")
text(0.1,-0.75,K=1")
text(0.1,-1.25,K = 10)
text(-1.6,-1.25,K = 100°)
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Nyquist Diagrams

2
15
1
05
£,
E
05 4
/ / N
-1 /
K= 100 K=10
a5 > Z/
-2
-2 -15 -1 05 0 05 1 15 2
" Real Avds
B-8-21.
—_— 2

G = s(s+/)(s+2)

The Nyquist diagrams for G(s) and -G(s) are symmetric about the imaginary axis.
A MATLAB program for plotting the Nyquist diagrams for the two cases is shown
below. The resulting Nyquist diagrams are shown on the next page.

% ***** Nyquist Diagrams of G(s) and -G(s) *****

mml=[0 0 0 2J;
denl=[1 3 2 0];
mm2=[0 0 0 -2}
den2=[1 3 2 0];
nyquist(num],denl)

bold

Current plot held
nyquist(num?2,den2)
v=[4 4 -4 4] axis(v)

grid
text(-2.6,-1.5,'G(s)")
text(2.2,-1.5,“G(s)")
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Nyquist Diagrams

Imaginary Axis
=)

= =
| \

Real Axis

B-8-22.
/0
Gls) =

S Py gSP+ (S /0k)S

A MATLAB program for plotting Nyquist diagrams of G(s) for k = 0.3, k = 0.5,
and k = 0.7 is shown below. The resulting Nyquist diagrams are shown on the

next page.

% * * “‘NyquiStDiagTamS‘***'*

mnm={0 0 0 10};

denl=[1 6 8 0]; %k=03
den2=[1 6 10 0]; %k=0.5
den3=[1 6 12 0]; %k=0.7
w=0.1:0.1:100;

[rel,im1,w] = nyquist(num,denl,w);
[re2,im2,w] = nyquist(num,den2,w);
[re3,im3,w] = nyquist(num,den3,w);
plot(rel,im1 re2,im2.re3,im3)
v=[-1.5 0.5 -4 4]; axis(v)

grd

title(Nyquist Diagrams")
xlabel(Real Axis")

ylabel(Imag Axis’)
text(-0.25,-1.5,k = 0.3")
text(-0.25,-2.5,k = 0.5")
text(-1.25,-1.5,k = 0.7")
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Nyquist Diagrams

\
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-1.5 -1 0.5 4] 0.5
Real Axis
B-8-23.
— . K(s+t/)
GG) = ———
4S. - ﬂr 25\

A MATLAB program to plot Bode diagrams of G(s) for K = 0.2, 0.5, and 2 is shown
below. The resulting Bode diagrams are shown on the next page.

% ***** Bode Diagrams *****

mm=[0 1 1];
den=[1 0 -0.25];

w = logspace(-1,2,100);
bode(0.2*num,den,w)
hold

Current plot held
bode(0.5*num,den,w)
bode(2*num,den,w)
gtext(K = 0.2")

gtext(K = 0.5)

gtext(K = 2)
gtext(Phase curve is the same for all K values.”)




Phase (deg); Magnitude (dB)

A MATLIAB program to plot Nyquist diagrams of G(s) for K =
The resulting Nyquist diagrams are shown on t

shown below.

Bode Diagrams

0 — i 7
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mm=[0 1 1};
den=[1 0 -0.25];
w=0.01:0.01:20;

[rel,im1,w] = nyquist(0.2*num,den,w);
[re2,im2,w] = nyquist(0.5*num,den,w);

[re3,im3,w] = nyquist(2*num,den,w);
plot(rel im1,re2,im2,re3,im3)
[-9 1 -3 3]; axis(v)

gtext('K 0.2)
gtext(K = 0.5

gtext(K =2')
-title(Nyquist Diagrams’)
xlabel(Real Axis")

ylabel(Tmag Axis")
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~ Nyquist Diagrams
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' Real Axis )

A root-locus diagram for the given G(s) is shown below. The MATLAB program
- that produced this root-locus diagram is shown on the next page. ‘

Root-Locus Plot of G(s) = K(s+1)/(s%-0.25)

08 TN
/ \\

/ K=T.
/ \ K05
02 / —o3
0]
|
\
\

04

Imaakda
o

02

04

06 \ /

08 T

-1 - -
3 25 -2 -15 -1 05 0 05 1

" Real Axs
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% ***** Root-Locus Plot *****

mm=[0 1 1J;

den=[1 0.0000001 -0.25];

rlocus(num,den)

grid ,

title(Root-Locus Plot of G(s) = K(s+1)/(s"2-0.25))
text(-0.06,0.166,K = 0.3")

text(-0.1,0.43,K = 0.5

text(-0.25,0.58, K = 0.7"

% To locate a point where K assumes a given value, we may use the
% rlocfind command. For example, to locate a point where K = 0.3,
% enter the command [K 1] = rlocfind(num,den) and select a probable
% point on a root locus.

[K,1] = tlocfind(num,den)
Select a point in the graphics window

selected_point =
-0.1594+ 0.1642i

-0.1500+ 0.1658i
-0.1500- 0.1658i

% At point -0.1500 + j0.1658, the K value is 0.30000.

B-8-24. The following MATLAB program produces two Nyquist plots for the input
u; in one diagram and two Nyquist plots for the input uz in another diagram.

% ***** Nyquist plots *****

9% ***** We shall first obtain Nyquist plots when the input is
% ul. Then we shall obtain Nyquist plots when the input is

0/° u2 (122 1]

o, ***** Enter matrices A, B, C, and D *****

A=[-1 -1;6.5 0O];

B=[1 1;1 0]

C=[1 00 1};
=[0 0;0 0]
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% ***** To obtain Nyquist plots when the input is u1, enter
% the command 'nyquist(A,B,C,D,1)" *****

nyquist(A,B,C,D, 1)

grid

title("Nyquist Plots : Input = ul (u2 = 0))
text(0.1,0.7,'Y1")

text(0.1,2.5,'Y2")

% ***** Next, we shall obtain Nyquist plots when the input is
% u2. Enter the command 'nyquist(A,B,C,D,2)" ****+

nyquist(A,B,C,D,2)

grid

title("Nyquist Plots : Input = u2 (u1 =0)") -
text(0.1,0.5,'Y1')

text(0.1,2.2,'Y2")

The Nyquist plots obtained by this MATLAB program are shown below.

s Nyquist Plots : input = ul u2 = 0)
------ L Teeseead..
et 2 I
2
1
-1
-2
3! :
Nyquist Plots : input = u2 (ul = 0)
3
------ > e,
--------- v i S

...“.. Yl -"
g , e C
£ ) < / \
a N\ A
\ j /
-3 i _
-1.5 B <5 0 05 1 1.5 2
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B-8-25. The following MATLAB program produces the Nyquist plot for Y;(j«)/
Uj(jw) for w >0. The plot obtained is shown below.

% REERN Nyquist plOt LEXX X

A=[-1 -1;6.5 0];
B=[1 1;1 0O;
C=[1 0,0 1};
D=[0 0,0 0];

[re,im,w] = nyquist(A,8,C,D,1);
rel = re*[1;0];
im1 = im*[1,0);
plot(re1,im1)
grid
 title("Nyquist Plot for Y1(jw)/U1(jw)")
xlabel('Real Axis')
ylabel('Imag Axis')

Nyquist Plot for YIwyUI (w)

1 1T T

Imag Axis
o £ 2
——
-\
e

-0.2

o \___,_/

02 0 02 0.4 0.6 0.8 1 1.2

To plot the Nyquist locus for -0 < @ < od , replace the plot command
plot(rel,iml) in the above MATLAB program by plot(rel,iml,rel,-iml).

|po|= L, f6w) = baw ~ /507

The phase margin of 45° at @ =&’ 1 requires that
qua’l‘-i-/ - /

a/l‘!-
Taaw, —/180° = #5°— /80°
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Thus, we have
a*wi+ ! =wr | ad, =/

Solving for a, we obtain

N
a —-(Efzf;> = 0, §¢/

B-8-27. A Bode diagram of the system is shown below.

4o
20 o
dé N
NN
a

-2
— |

~ N
¥ N
N
_fa . _mi
H ~ \
\~

N
3.7
™ N\

0.1 02 0.8 0.6 ¢ 2 4 & /1 20 N b /x
& rad/fsen

From this Bode diagram, we find the phase margin and gain margin to be 27%and

13 dB, respectively.
The phase margin, gain margin, phase crossover frequency, and gain crossover

frequency can be obtained easily with MATLAB. Use the command
[Gm, pm, wcp, wcg] = margin(sys)

See Problem B-8-28.

B-8-28.
- 20(s+/)

s(s*+2s+/10)(5+5)

(/’(S) =

The phase margin, gain margin, phase crossover frequency, and gain crossover
frequency are obtained by use of the command

[Gm, pm, wcp, wcg] = margin(sys)
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A MATLAB program to solve this problem is given below. The Bode diagram shown
below verifies the phase margin, gain margin, phase crossover frequency, and gain
crossover frequency obtained with MATLAB.

% ***** Bode Diagram ****#*

mum=[0 0 0 20 20];

den=conv([1 2 10 OL[1 5]);

sys = tf{num,den);

w = logspace(-1,2,100);

bode(sys,w)

title(Bode Diagram of G(s) = 20(s+1)/[s(s"2+2s+10)(s+5)])
[Gm,pm,wcp,weg] = margin(sys);

GmdB = 20*10g10(Gm);

[GmdB pm wcp weg]

ans =

9.9293 103.6573 4.0131 0.4426

Bode Diagram of G(g) = 20(s+1)/fs(s>+2s+10)(s+5)]
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250 ! ] A
]
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-300 L
10" o 4226 1° 4013 10 10°
Frequency (rad/sec)
B-8-29.
: K g,.25°K
G = =

S(s2+S+¢)  S(o0255 +o0.255+/)
The quadratic term in the denominator has the undamped natural frequency of 2

rad/sec and the damping ratio of 0.25. Define the frequency corresponding to
the angle of -130° to be @;.
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[GGw) = —[jw, ~ [/-0 28w+ jo 25w,

"I ’
= -90° ~ Zan 0254, = —/30°
/=025 m)* ~

Solving this last equation for @i, we find &/; = 1.491. Thus, the phase
angle becomes equal to -130° at w = 1,491 rad/sec. At this frequency, the
magnitude must be unity, or |G(j w 1)] = 1. The required gain K can be deter-

mined from

0.25K

. = 0.2390
@) /5‘7/)("0’-53‘!‘+Ja-3725’+/) 50K

|GG sa)| =

Setting |G(j1.491)| = 0.2890K = 1, we find
K= 2.%6
Note that the phase crossover frequency is at & = 2 rad/sec, ‘since
[G(j2) = — fJ2 — /[—ozsx2*+o2sxj2+( =—90°—90°= —(80°
The magnitude |G(j2)| with K = 3.46 becomes
. 0.365"
lc»;v()z), = G2)(~7 +o.555 +7)

Thus, the gain margin is 1.26 dB. The Bode diagram of G(j &> ) with K = 3.46
is shown below.

= 0. P65 =~—/.26 dB

20 \\ l

[~ | Jriud
° \\'—ﬁk d

B

\\“& \\ -0 |

¢

\'ﬂﬂ — -170.
0l 62 eo¢of / 2 & 6 /0 20 g0 b0 to0
) 0‘4/’“
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B-8-30. Note that
Jwto.r /0 _ 2k (losw +1)
JwW+o.s jw (_jw1"l) Jw (ZJ‘W +/)(J'w +/)

We shall plot the Bode diagram when 2K = 1. That is, we plot the Bode diagram
of

/05w +{
J@ (230 +/)(jw+/()

The'diagram is shown below. The phase curve shows that the phase angle is -130
- at & = 1.438 rad/sec. Since we require the phase margin to be 50° , the magni-
tude of G(1.438) must be equal to 1 or 0 dB. Since the Bode diagram indicates
that G(1.438) is 5.48 dB, we need to choose 2K = -5.48 dB, or '

é/(jw) =

[

K=0 266
o :
\\\
\%
20 1
~>
& \\"
. w0 4B Ime- “r LT
H ;
; \\
-20 : N
: N.
]
1
! .
-4 : ”
1
E
|} I~ E
et ‘\ -”'
S T
~/F0°

ool 602 ook &/ 02 0806 / A 2 4 & po
& Arad/Fec

Since the phase curve lies above the -180° line for all ¢’ , the gain margin is
+ 06 dB.

B-8-31. Note that
| K 2K

Gb) = S(st+s+o0s) . S(2s% 4 2s +/D

We shall first plot a Bode diagram of G(j« ) when K = 0.5. That is, we plot
‘a Bode diagram for

/
Jwlazgw)*+2jw+1]
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It is shown below. By reading the magnitude and phase angle values at each
frequency point condidered, the log-magnitude versus phase curve can be plotted

as shown below the Bode diagram. By moving the curve vertically, we can shift
the curve to be tangent to the M = 2 dB locus. The vertical shift needed is 9.3
dB. That is, if we lower the curve by 9.3 dB, then it is tangent to the M = 2 dB

locus. Therefore, we set

2K =-92.34d5
Solving this equation for K determines the desired value of X as

K=0./2/%
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B-8-32. For this system

Gow) = K

e /¥
S JW +

By setting K = 1, we draw a Nyquist diagram as shown below, Note that

feﬁu==—m@mO=J4z3m)

—-i'

The Nyquist locus crosses the negative real axis at ¢~-= -0.442. Hence, for
stability, we require
/

0 %%2

>K>o0

or
2.262>K >0

The same result can also be obtained analytically. Since

KeJv _ K(erRw~— ) aun w)(/~Jw)

G()U) = j“’ +/ (/+j4/)[,.j@)
K : S/
= et [(CR W — L A w)+J(Muw +a)¢:¢za))]

by setting the imaginary part of G(jw) equal to zero, we obtain
A W+ Lese o/ =0

or

W=~ lan &
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Solving this equation for the smallest positive value of &), we obtain
W=2.029
Substituting w = 2.029 into G(jw) yields
G(j2029 L S - 2.029 X A 2
J ) /+2.oz~?‘(wa 2.027-2027x 02?)

==-dep2! K
The critical value of K for stability can be obtained by letting G(j2.029) = -1,
or '

0.2/ K :/

Thus, the range of gain K for stability is

2262 >K>0

B-8-33. The magnitude of G(jw )H(jw) is
Kk
GGw) H(w) | =
99249 | = Ty
The phase angle of G(jw)H(jw) is
/ Glw)H(w) = = Tew ~ 90°— tan’e)

The maximum value of K for stability can be determined from the following two
equations:

K !
ot ——— 22 c— - o‘... - 4

By eliminating &) from these two equations, we can obtain the maximum value of
K for stability as a function of dead time T. A graphical solution is given

in the figure shown below.

K|
2t

——

o
N
o
~Y
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B-8-34. Polar plots of G(jw) and e~JTW are shown on next page. From the
plots, we see that G(jw) gives a good approximation to the transport lag

e—JT% for the frequency range 0 < WT < 2‘[3_.

Iml
WT=5

WT=4 &T=/0 WTed
wT=23. /(- R // 1 WOT=é
wT=0 Re o 0
w‘r-3\‘\// NTK uT=0 Re
w -l\ WT=| \ - W T

WT=2 = &( ) (o) -4 Tjw +/2 OT=2
(Tjw)* +4Tjw+i12

/0
Slo/7s+/)

G96) =

B-8-36. From the magnitude curve-the transfer function for G(j«) may be ap-
proximated by
/

0, ¢s59s +/

A
Ge) =

A
The phase curve of G(jw ) differs from the given phase curve. Therefore, we
expect the presence of the transport lag and/or minimum-phase transfer function
of the form

c , m————, =
/t+Ts /I-Ts

Hence, we may assume G(j&’) to be

Gl = —L e~V (LT (1t T
Y 0.459 jw + / 7, jw /=Tajw

By use of a curve fitting process, we find

‘ . W
G,bw) = / -)-——5_ /=0 Slf)u) /+ﬂ./5¢_}«)
0 V59ja/+/ /+o. f«;)w =0 /¢
Thus, the transfer function G(s) is
GG) = / /= 04455 [+0./%5
0484S + / /+ 0. gcrs /= 0./%5

- 164 -



CHAPTER 9
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Go(s) = 5(1 + 0.5s)

éo
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dB
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* 68/0 20 o b0 [for

B-9-3.
Gci s).

The following MATLAB program produces the Bode diagram of the given

Phase (deg); Magnitude (dB)

% Hkkkk Bode d.lagam *EkxE

num = [30.3215 39.41795 12.810834];
den=[0 1 0];
bode(num,den)

title(Bode Diagram of G(s) = 30.3215(s+0.65)"2/s")

Bode Diagram of G(s) = 30.3215(s+0.65)%/s
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B-9-4. Choose the gain crossover frequency to be approximately 0.4 rad/sec
and the phase margin to be approximately 60? Draw the high frequency asymptote
having the slope of -20 dB/dec to cross the O dB line at about & = 0.35 rad/sec.
Choose the corner frequency to be 0.25 rad/sec. - Then the low-frequency asymp-
tote can be drawn on Bode diagram. See the Bode diagram shown below.

fo
\
20 ‘\“\ \
N\
. N
dB N P‘\
o )
Y
\\
-20 -
N
O
. A
-4 i -f9
T
L ATE
p—t"| [ /Py
aef 0oF 4/ 0.2 o¥ /¢ 2 & 6 p

- The actual magnitude curve crosses the 0 dB line at about & = 0.41 rad/sec and
the phase margin is approximately 58°.

Since we have chosen the corner frequency to be 0.25 rad/sec, we get
Te= ¢
From the Bode diagram, Kq must be chosen to be -21.4 dB, or

Kt =—2/, ¢ dB = 0,085/
Thus
Ke(1+Tas) = 0,085 ( 1+ ¢5)
Then, the open-loop transfer function becomes
00 8s/ ( 1+ %5)

G6) = =
The closed-loop transfer function is _
Co) _ __oows/ (/+2s) gs + /
RE) S 40,085/ (1+45) ~ 4,.25) sP+¢s+ )
A Bode diagram of
clw) %+ /

RGw) — 1495/ (@) + & 4+ /

is shown on the next page. From this diagram we see that the bandwidth is appro-
ximately 0.5 rad/sec. : : :

- 167 -



20 /V
o 4
dB 4
0 --_—./../’;
N
N
\ N
~/o N TTS
N N
N ' \\
NG .
\ ~fo
00/ 20F ol 62 0% 1 2 E 600
w W/J'ec
B-9-5. Let us use the following lead compensator:
L
Ts +/ St T
Gels2 kc *Ts+/ Ke s+ L
aT
Since Ky is specified as 4.0 sec™l, we have
Ts +/ K
= Lo Ske =tk =¢
Ky S20 i XTs+/ S(orts+/)(s5+/)) eX K

Iet us set K = 1 and define Koo¢ = K. Then
A
K =4¢
Next, plot a Bode diagram of
& — #
SCo/s+1)(s+/1) o/s?+//s* +5
The following MATLAB program produces the Bode diagram shown on the next page.

% L2 L2 2 BOde dlagfam b2 2 02 ]

mm=[0 0 0 4];

den=[0.1 1.1 1 Of;

bode(num,den)

title(Bode Diagram of G(s) = 4/[s(0.1s+1)(s+1)])
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Bode Diagram of G(s) = 4/[s(0.1s+1)(s+1)}
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From this plot, the phase and gain margins are 17° and 8.7 dB, respectively.
Since the specifications call for a phase margin of 45° 1let us choose
L] U
¢m'= 45 —/74+/72"= gp°

(This means that 12° has been added to compensate for the shift in the gain
crossover frequency.) The maximum phase lead is 40°. Since

Mfm = //_:: (én =$‘0°)

o{ is determined as 0.2174. Let us choose, instead of 0.2174, &« to be 0.21,
or '

& =22/

Next step is to determine the corner frequencies &= 1/T ande = 1/(xX T) of the
lead compensator. Note that the maximum phase-lead angle g, occurs at the

geometric mean of the two corner frequencies, oraw/= 1/(JX T). The amount of
the modification in the magnitude curve at w = 1/(VX T) due to the inclusion of

the term (Ts + 1)/(xTs + 1) is
/+ )@ T
/TJ‘A”NT

W=
Note that a7

A A _
= s =2./822 = £.2078 AR

We need to find the frequency point where, when the lead compensator is added,
the total magnitudg becomes 0 dB. The magnitude G(j /) is -6.7778 dB corres-
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ponds to ¢w= 2.81 rad/sec. We select this frequency to be the new gain cross-
over frequency «o. Then we obtain

_T’_=fa;uc =0zl x2.8/ = 12877
/

———— —

— e 2.8/
xXT Vel Vo.z/ =6./3/7

Hence
S+ /2899
f) = K
and R
k %
ke = ¥ — 0.2/
Thus

Gfs) = £ _Strezo7 _ , 97766 +/
0.2) S+6.73/9 0. /863085 + /]

The open-loop transfer function becomes as

007668 + /
0./6308s /) S(o./s+7)(s+/)

G.(s) GG) = 4

3./06% S + ¥
0,0/63/s% +0.20885% +,. 263/ 5" +S

——
p—

The closed-loop transfer function is

Cc6) _ 3. /0% S + ¢

R(s) 00763/ S% +0.2792 5% + /.24 3/ S + @ /os4S + ¢
The following MATLAB program produces the unit-step response curve as shown on the
next page. ‘

% ***** {nit-step response ****+

numc =[0 0 O 3.1064 4j;
denc = [0.01631 0.2794 1.2631 4.1064 4];
step(numc,denc)

grid
title('Unit-Step Response of Compensated System  (Problem B-9-5)')
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Unit-Slep Response of Compensated System (Problem 8-9-5)
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Similarly, the following MATLAB program produces the unit-ramp response curve
as shown below.

% ***** Unit-ramp response *****

numc = [0 0O 0O O 3.1064 4];

denc = [0.01631 0.2794 1.2631 4.1064 4 O0];

t = 0:0.01:5;

¢ = step{numec, denc,t);

plot(t,c,t,t)

grid .

title("Unit-Ramp Response of Compensated System  (Problem B-9-5)')

xlabel{'t Sec')
ylabel{'Unit-Ramp Input and System Output’)

Unit-Ramp Resp of Comp d Sy {Problem B-9-5)
5 .
g
45 v
4 //
g . g
83 Ve
£, L
Ez.s //
:, A
3. o
5 , g
e
Y 4
/
% o5 1 15 2 25 3 35 4 a5 s
t Sec
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B-9-6. To satisfy the requirements, try a lead compensator Gn(s) of the form

Ts+/ e S*’—f-‘
- C

x7s+/

qc(;) ':kc"(
StIT

Define &
G, (s)=KG(s) = PIZET))

where K = Ko . Since the static velocity error constant Ky is given as 50
sec~l, we have

K, = L 56 = Lo, st/ Al = K=
v =5 S GkIGE) = L S G AT Sesery T KT

We shall now plot a Bode diagram of

SO
G ) = S(s+/)

The following MATLAB program produces the Bode diagram shown below. ‘

0 *¥*x%x Bode dlagram *hkkE

mm=[0 0 50];

den=[1 1 0};

w = logspace(-1,2,100);

bode(num,den,w);

title(Bode Diagram of G1(s) = 50/[s(s+1)])

Bode Diagram of G1(s) = 50/[s(s+1))
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From this plot, the phase margin is found to be 7.8°. The gain margin is + oo
dB. Since the specifications call for a phase margin of 50®. the additional
phase lead angle necessary to satisfy the phase margin requirement is 42.2°,

We may assume the maximun phase lead required to be 48°. This means that 5.8°
has been added to compensate for the shift in the gain crossover frequency.

Since

. /=

n = 48° corresponds to & = 0.14735. (Note that & = 0.15 corresponds to &y =
47.657°.) Whether we choose gy = 48° or @y = 47.657 ° does not make much diffe-
rence in the final solution. Hence, we choose & = 0.15.

. The next step is to determine the corner frequencies = 1/T and w = 1/(XT)
of the lead compensator. Note that the maximum phase-lead angle @y occurs at
the geometric mean of the two corner frequencies, or & = 1/(W'T). The amount
of the modification in the magnitude curve at w = 1/(J&T) due to the inclusion

of the term (Ts + 1)/(xTs + 1) is

e

W T
+je/ o o s, T
/+j/ T “’:\&L'F I+ o 7= Vo(
Note that A
/ /
= =2.5220 = 5.2
o = T 5 ' F.237 A8

We need to find the frequency point where, when the lead compensator is added,

the total magnitude becomes 0 dB. The frequency at which the magnitude of
Gy(jw) is equal to -8.239 dB occurs between w = 10 and 100 rad/sec. From the

Bode diagram we find the frequency point where |G1(jw)| = -8.239 dB occurs at
@ = 11.4 rad/sec. Noting that this frequency corresponds to 1/(JXT), or
wc _ _L_
_ Y T
we obtain

=X =0 EJoss = gars2

/ Le /7%

= = 2¢, ¢
The lead compensator thus determined is

L
St _ S+ L/
G.6s) = Ke = Ko 2

I

x7 St+25 $2%7
where K, is determined as
_ kK _ s /o000
Kc — - = g
o< 0. /5 3
Thus,
022655+ /

_ [leoo St¢g/5802.
.C}c(;)—' 3 S+20 83247 - 0033575+ /
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The following MATLAB program producés the Bode diagram of the lead compensator
just designed, as shown below.

% ***** Bode diagram *****

numl =[11.325 50};

denl =[0.03397 1};

w = logspace(-1,3,100);

bode(numl,denl,w);

title(Bode Diagram of Ge(s) = 50(0.2265s+1)/(0.03397s+1)])

Bode Diagram of Ge(s) = 50(0.2265s+1)/(0.03397s+1)]
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The open-loop transfer function of the designed system is

Yy — (000 S+hE¥rs2 /
G(5) GE) = 3 (s+27.s:3#7 S(s+1)

The following MATLAB program produces the Bode diagram of Gu(s)G(s), which is
shown on the next page.

9p ¥¥*3% Dode dlaglam khhk

mm=[0 0 1000 44152);

den=[3 91.3041 88.3041 0],

w = logspace(-1,3,100);

bode(num,den,w);

title(Bode Dlagram of Ge(s)G(s) = 1000(s+4.4152)/[3(s+29. 4347)s(s+1)]')
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Bode Diagram of Ge(s)G(s) = 1000(s+4.4152)/13(s+29.4247)s(s+1)]

100

Phase (deg); Magnitude (dB)
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From this diagram, it is clearly seen that the phase margin is approximately

52°, the gain margin is +©0dB, and Ky = 50 sec™l; all specifications are met.
Thus, the designed system is satisfactory.

Next, we shall obtain the unit-step and unit-ramp responses of the original
uncompensated system and the compensated system. The original uncompensated
system has the following closed-loop transfer function:

c6) _ /
CRG) T O S*+ s+ /
The closed-loop transfer function of the compensated system is
CE /000 (S + g.9/52)
RG)  3(s+2f.83%7)S(51/) + /000 (S+ # #/52)

[P0 S + w4/ 8 2
352t §f30 ¢/ s*+/08F 30%/S + R/ 2

——
on—

The closed-loop poles of the compensated system are as follows:

s = =11.1772 + j7.5636
= =11.1772 - j7.5636
s = -8.0804

The m\'I‘LAB program given at the top of next page produces the unit-step res-
ponses of the uncompensated and compensated systems. The resulting response
curves are shown on the next page.
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% ***** Unit-step response *****

num=[0 0 1];
den=1[1 1 1];

numc = [0 O 1000 4415.2];

denc = [3 91.3041 1088.3041 4415.2];

t = 0:0.01:8;

¢1 = step(num,den,t);

c2 = step{numc,denc,t);

plot(t,c1,t,c2)

- title("Unit-Step Responses of Uncompensated and Compensated Systems')
xlabel('t Sec’) .
ylabel('Outputs')
text(1,1.25,'Compensated system’')
text(2,0.5,"Uncompensated system')

Unit-Step Responses of Uncomp 1 and Comp led Systems.

14 T T

The MATLAB program given below produces the unit-ramp responses of the uncom-
pensated system and compensated system. The response curves obtained are

shown on the next page.

% **#*** Unit-Ramp Response *****

num=[0 0 0 1J;
den=[1 1 1 0}

numc =[0 O O 1000 4415.2];

denc = [3 91.3041 1088.3041 4415.2 O];

t = 0:0.01:8;

c1 = step{num,den,t);

¢2 = step{numc,denc,t);

plot(t,c1,t,c2,t,1)

title('Unit-Ramp Responses of Uncompensated and Compensated Systems’)
xlabel('t Sec’)

ylabel('Unit-Ramp Input and Outputs’)
text(1,5,'Compensated system’)
text(4,1.5,"Uncompensated system')
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Unit-Raimp Responses of Uncompensated and Compensaled Syslems
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B-9-7. Since the plant does not have an integrator, it is necessary to add
an integrator in the compensator. Let us choose the compensator to be

K sy, Lo G()=

S-iﬂ}

Gels) =

where Gc( s) is to be determined later. Since the static velocity error cons-
tant is specified as 4 sec™l, we have ~

= Lim 5G,6) SH- *"‘ S/:n;s—g"— c>f—‘-°"'——o/k -4

Thus, K = 40. Hence

Ges) = -—j—‘i’ 6.0

Next, we plot a Bode diagram of
d(s+0-/
S(s*+/)

The following MATLAB program produces a Bode diagram of G(s). See the Bode
diagram shown on the next page.

9% ***** Bode Diagram *****

num=[0 0 40 4];

den=[1 0.000000001 1 0];
bode(num,den)

title(Bode Diagram of 40(s+0.1)/[s(s"2+1)])
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Bode Diagram of 40(s+0.1)s(s%+1)}
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We need the phase margin of 50° and gain margin of 10 dB or more. ' Let us choose

ec(s) to be A
GeGs) = as+ | (az>e)

Then Gg(s) will contribute up to 90°® phasé lead in the high frequency region.

By simple MATLAB trials, we find that a = 0.1526 gives the phase margin of 50°

and gain margin of + e dB. See the MATIAB program shown below and the resulting
Bode diagram shown on the next page. From this Bode diagram we see that the static
velocity error constant is 4 sec—!, phase margin is 50° and gain margin is +oo dB.
Therefore, the designed system satisfies all the requirements.

%% ***** RBode Dlagram *ERER

num = conv([40 4],[0.1526 1]);
den=[1 0.000000001 1 OJ;
sys = tf{num,den);

w = logspace(-2,2,100);
bode(sys,w)

[Gm,pm,wep,weg] = margin(sys);
GmdB = 20*1og10(Gm);

[GmdB, pm, wcp,wcg]

ans=
Inf 50.0026 NaN 8.0114

title(Bode Diagram of G(s) = 40(s+0.1)(0.1526s+1)/[s(s"2+1)])
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Bode Diagram of G(s) = 40(s+0.1)(0.1528s+1)/fs(s*+1)]
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The designed compensator has the following transfer function:

46 (0.1526s +/)
S
The open-loop transfer function of the designed system is
(015265 +1) Ssto.l
S s*+/
6./04S* +lo. blogs + &
S(s>+/) '

Gel) = L-G.6) =

Open-loop transfer function =

—
—

We shall next check the unit-step response and the unit-ramp response of the designed
system. The closed-loop transfer function is

Ck) _ 610452+ 40. /o %5 + ¢
| Rils) S +6./0%5 T H blogst+ #
The closed-loop poles are located at

S= — 3 7£32 +j 546573

S=—3.0032— 86573

S=—0.0975

The following MATLAB program (shown on the next page) will produce the unit-step
curve of the designed system. The resulting unit-step response curve is shown
on the next page. Notice that the closed-loop pole at s = -0.0975 and the plant
zero at s = -0.1 produce a long tail of small amplitude.
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% ***** {Jnit-Step Response *****

num=[0 6.104 406104 4];
|den=[1 6.104 41.6104 4];

t=0:0.01:10;
step(num,den,t)
grd
Step Response
14
2 /\\
1H e
V%
g 0.8
2
06
0.4
02
0
0 1 2 3 4 5 6 7 8 9 10

Time (sec.)

The following MATLAB program produces the unit-ramp response curve of the
designed system. The resulting response curve is shown on the next page.

W***** Unit-Ramp Response ¥***#

nm=[0 0 6.104 40.6104 4];
den=[1 6.104 41.6104 4 0];
t=0:0.01:20;

¢ = step(num,den,t);

plot(t,c,"-.\t,t,-)

title('Unit-Ramp Response')

xlabel('t (sec)) ,
ylabel(Input Ramp Function and Output’)
text(3,14,Tnput Ramp Function')
text(13,10,'Output’)
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Unit-Ramp Response
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Nyquist plot: Define the open-loop transfer function as G(s). Then

_ S+o./ _ b./o4 3 + 4o, 6/04s + 4
96 = G s*+/ s (s*+/)

Let us choose a modifued Nyquist path in the s plane as shown in Figure (a) below.
The modified path encloses three open-loop poles (s = 0, s = j1, s = -jl). Then
The Nyquist path becomes as shown in Figure (b) below. In the s; plane, the
open-loop transfer function has three poles in the right-hals s; plane.

Let us choose 0o = 0.01. Since s = 57 - 0", we have

' \ k ’ v
JWw S'the Jw ) S,kau_
Pl—_
- .. x .
0 o 0 "
X X
A A
- |
)

(a) (b)
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G6) =G (s—-0.2/)
Open-loop transfer function in the s; plane

Lro4 (S12—0.82 S, to.ov0/) + 40.6/0 4 (5)—0.0/) + &

(5’/ ~0.0/) (s)*—0.02 S, + /.00 /)
/04 5%t 40. ¢6832 S, + 3.59 4S50 ¥

) —0.035,2+ o003, —o.0/000/

A MATLAB program to obtain the Nyquist plot is shown below. The resulting Nyquist
plot is shown below. '

1l

% kkkk Nyqulst Plot kRgkk

num=[0 6.104 40.48832 3.5945064];
den=[1 -0.03 1.0003 -0.010001];

nyquist(num,den)
v=[-1500 1500 -2500 2500]; axis(v)

Nyquist Diagram

2000

1500 -

Imaginary Axis
o
T

-1000 |-

-1500

-2000 -

-2500 L '
-1500 -1000 500 [} 500 1000 1500

The NYquist plot obtained here is not easy to determine the encirclement of the
-1 + jO point by the Nyquist locus. Therefore, we need to redraw this Nyquist
plot qualitatively to show the details near the -1 + jO point. ' Such a redrawn

Nyquist diagram is shown on the next page.
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W0~

w=0+t

From this diagram we find that the -1 + jO point is encircled counterclockwise
three times. Hence, N = -3. Since the open-loop transfer function has three
poles in the right-half s; plane, we have P = 3. Then, we have Z = N + P = 0.
This means that there are no closed-loop poles in the right-half s; plane. The

system is therefore stable.

B—S-a. The plant transfer function is

. 2s5s+0./
Gs) =
S(st+o./s + &)

The plant involves a quadratic term with & = 0.025. This term is quite osci-
llatory. MATLAB program shown below produces the Bode d1agram of G(s) as

shown on the next page.

94 *Eee BOdediagl'm *E8%

mm=[0 0 2 01];

den=[1 0.1 4 0];

w = logspace(-3,2,100);

bode(num,den,w);

title(Bode Diagram of G(s) = (2s+0.1)/[s(s"2+0.1s+4)])

The closed-loop transfer fun_ction of the original uncompensated system is

C6) _ 2s+0o./
RG6)  S¥+o./s:+6s+20

The closed-loop poles of the uncompensated system are

-0.0417 + j2.4489
-0.0417 - j2.4489
-0.0167
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Bode Diagram of G(g) = (25+0.1)/1s(s>+0.1s+4)]
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The unit-step response of this original, uncompensated system is obtained by
entering the following MATLAB program into the computer. The resulting unit-
step response curve is shown below.

% ***** {nit-step response *****

num=[0 0 2 0.1}

den=[1 0.1 6 O0.1);

step(num,den)

grid

title('Unit-Step Response of Uncompensated System’)

Unit-Step Response of Uncompensated Sysiem

1
/ —"] —
0.8 ~
0.8
0.7
0.6
g
30.5
0.4
0.3
0.2
0.1}
% 50 100 - 150 200 250 300

Time (sec)
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To design a compensator for such a sysi:em, it is desirable to cancel the
zero of the plant, since it is located very close to the origin. It is some-
times useful to include double zero and double pole in the compensator. So,

we may choose the compensator to be
G.()= K (s+2)? s+4q
/T TC (ste)R 2s+o.

where we have chosen the double zero at s = -2 and double pole at s = -10.
The value of a is determined later. Since the static velocity error constant

is specified as 4 sec~l, we have

/(u-—,&m SG.E)GE) =L sk Gt2)* sta _2ste./

s> (5 +r0)* 25t0.] 3(s'to/stk)

— a4 _
= Ke o0 %
Hence,

Ko a = 00

By several MATLAB trials we find a = 4 will give a satisfactory result. There-
fore, we choose a = 4 and Ko = 100. Then, the transfer function of the com-

pensator becomes
(s+2)° s+
s) =
Geb) =4 (s+r0)* 2s5+0o.!

The open-loop transfer function becomes as follows:

/00 (5+2)%(s+&)
(s+/0)* s (S*+o.-/s+%)
20 52+ oo s*+ 20p0s +/bo0
5§+ 20./sFt /08 s>+ oSt + %00 S

G.(9G(s) =

i

The following MATLAB program produces a Bode diagram of Go(s)G(s).  The result-
ing Bode diagram is shown on the next page. :

% L i 22 1] BOde diam L2222

nm=[0 0 100 800 2000 1600];

den=[1 20.1 106 90 400 0];

w = logspace(-1,2,100);

bode(num,den,w);

title(Bode Diagram of 100(s+2)"2(s+4)/[(s+10)"25(s"2+0 1s+4)])

From this Bode diagram, it is seen that Ky = 4 sec~1l, phase margin is approxi-
. mately 50° and gain margin is +00.dB. S0, all the requirements are met.
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Bode Diagram of 100(s+2)%(s+4)/[(s+10)%s(s*+0.1s+4)]
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The closed-logp transfer function of the compensated system becomes as follows:

c6 1005° + Bog st + 2000 5 + lb00
REY — 5%+20./S% +20653+ 8905t + 24005 + /600
The closed-loop poles of the compensated system can be found as follows.

denc = [1 20.1 206 890 2400 1600];
roots(denc)

ans =

-7.3481 + 7.2145i
-7.3481 - 7.2145i
-2.2424 + 3.3751i
-2.2424-- 3.3751i
-0.9189

The following MATLAB program produces the unit-step response of the designed
system.

% ***** |nit-step response *****

numc = [0 O 100 800 2000 1600];
denc = [1 20.1 206 890 2400 1600};

step(numc,denc)

grid
title("Unit-Step Response of Compensated System (Problem B-9-8)')
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The unit-step response curve is shown below.

Unit-Step Response of Compensated System (Problem B-8-8)

1.4

1.2

0.8

Amplitude

0.6

0.4

|

02

|

25 3 35 4 45

Time (sec)

0 05 1 1.5 2

The following MATLAB program will produce the unit-ramp
pensated system.

response of the com-

% ***** Unit-ramp response ****#

numc =[0 0 0O 100 800 2000 1600I;
denc = [1 20.1 206 890 2400 1600 O];
t = 0:0.02:10;

¢ = step(numc,denc,t);

p'ot(tlc""rtrtr"")

title("Unit-Ramp Response of Compensated System
xlabel('t (Sec)')

ylabel('Output and Input Ramp')
text(5,3,'Compensated system')

(Problem B-9-8}')

The unit-ramp response curve is shown below.

Unit-Ramg Response of Compensated Sysiem  (Problem B-9-8)

10

Compensated system
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It is noted that there are infinitely many possible compensators for
system. A few possible compensators are shown below.

(s+/)?

(5) = ¢oo
. +28) (25 +0./)
2
G, () = 320 — (1)
(Stz0)(25to0./)
7.(5) /60 T S
G (5) = /202,12 = + 2.8/
St7/k32

this

B-9-9. Let us assume that the compensator G.(s) has the following form:

TistiIXTes+) ~<’+%)(S+'7L-;
(‘;"*l)(ﬂnwl) ‘ (5'1-—%)(51-?7"7:

Since Ky is specified as 20 sec~l, we have

QC(-’D = kc

Ky =L s G(e) —L =y L
=55 T S(s+)(s+8) ke o =20
Hence
kc = /o0
Define
/o0

! 767 S(s+1)(s+5)

The following MATLAB program produces the Bode diagram of G;(s) as shown
next page.

o;, **#22 Bode diagram .

| oum=[0 0 O 100];
den=[1 6 5 0];
w = logspace(-2,3,100);
bode(num,den,w); ,
title(Bode Diagram of G1(s) = 100/[s(s+1)X(s+5)])
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Bode Diagram of G1(s) = 100/[s(s+1)(s+5)]

100

Phase (deg); Magnitude (dB)
8
o

10? 10 10° ' 10' 10 10
Frequency (rad/sec)

From this diagram we find the phase crossover frequency to be & = 2.25 rad/
sec. let us choose the gain crossover frequency of the designed system to be
2.25 rad/sec so that the phase lead angle required at &/ = 2.25 rad/sec is 60°.

Once we choose the gain crossover frequency to be 2.25 rad/sec, we can
determine the corner frequencies of the phase lag portion of the lag-lead
compensator. Let us choose the corner frequency 1/T2 to be one decade below
the new gain crossover frequency, or 1/T» = 0.225. For the lead portion of
the compensator, we first determine the value of £ that provides @y = 65°, (5°
added to 60°) Since

i

- Y S =
A o = AL

we £ind @ = 20 corresponds to 64.7912°, Since we need 65° phase margin, we
may choose {3 = 20. Thus

/9 = 20
Then, the corner frequency 1/( ﬁTZ) of the phase lag portion becomes as follows:
0.225 |
'—,;‘;.-z L = = 0.0 1/3E
2 zox o228 20

Hence, the phase lag portion of the compensator becomes as

st+0.225 g EgeEs +/
s+0.0//28 82. 8887s t/
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For the phase lead portion, we first note that
G,(j2.28) = 10,35 dB

If the lag-lead compensator contributes -10.35 dB at & = 2.25 rad/sec, then the
new gain crossover frequency will be as desired. The intersections of the

line with slope +20 dB/dec [passing through the point (2.25, -10.35 dB)] and the
0 dB line and -26.0206 dB. . line determine the corner frequencies. Such
intersections are found as ¢ = 0.3704 and & = 7.4077 rad/sec, respectively.

Thus, the phase lead portion becomes

s+o0.3704¢ _ ( [ 26998 s+
S+pr077 20 0./3505 /)

Hence the compensator can be written as

G, () _/W( LLEES + /)(2-6??35'+/
L (5) =

£8.5889 S +/ 0./3850s5 t/
___/00( S+0.22.5 )(.S"Pp' 3704
Sto.e/ 28 S+ 78077

Then the open-loop transfer function G.(s)G(s) becomes as follows:

Gls) ) = /00 (a’&fﬂ’?""/ o-/sros-i-/) S(s+/)(s+s)

/799, 90 S P+ /% %25 + /00
1255+ 16102395 + 8985 1228 S+ ¢51. /175 S*+ ST

—

The following MATLAB program produces the Bode diagram of the open-loop trans-
fer function.

% EL L 2] Bode dlagram skt

mm=[0 0 0 1199.90 714.42 100];
den=[12 161.0239 595.1434 451.1195 5 0];
w = logspace(-3,3,100);

bode(num,den,w);

title(Bode Diagram of Compensated System')

The resulting Bode diagram is shown on the next page.
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Bode Diagram of Compensated System

100

Phase (deg); Magnitude (dB)
R
3

10° 10? 10" 10° 10' 10° 10
Frequency (rad/sec)

To read the phase margin and gain margin precisely, we need to expand the dia-
gram between w = 1 and w = 10 rad/sec. This can be done easily by modifying

the preceding MATLAB program. [Simply change the command w = logspace (-3,3,
100) to w = logspace(0,1,100).] The resulting Bode diagram is shown below.

Bode Diagram of Compensated System

10 -
'\
—_—
0 )
\
-10
P S~
g -20 >
E ™
§
2 -30
T %0
h-
-150 B
\.\\
-200 ——
-250 = .
10 10
Frequency (rad/sec)
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From this diagram we find that the phase margin is approximately 60° and gain
margin is 14.35 dB. The static velocity error constant is 20 sec-l.

The closed-loop transfer function of the designed system is

B /199.90 8% + p/4. 425 + /0o

R /285 +76) s*+ 505/ 5>+ /Es/ s>+ /9. 45 + /00

The following MATLAB program produces the unit-step response. The resulting
unit-step response curve is shown below.

% ***** Unit-step response *****

numc =[0 0O O 1199.90 714.42 100};
denc = {12 161 595.1 1651 719.4 100}J;
step(numc,denc)

grid

title('Unit-Step Response of Compensated System’)

Unit-Step Response of Compensated System

1.2

0.2

° 2 4 6 8 10 12 14 16 118 20
Time (sec)

The closed-loop poles can be obtained by entering the following MATLAB program

into the computer.

roots{denc)
1 ans =

-9.7022

-1.6110 + 3.0494i
-1.6110 - 3.0494i
-0.2463 + 0.1076i
-0.2463 - 0.1076i
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Notice that there are two zeros (s = -0.225 and s = -0.4939) near the closed-
loop poles at s = -0.2463 + j0.1076. Such a pole-zero combination generates

a long tail with small amplitude in the unit-step response.

The following MATLAB program will produce the unit-ramp response as shown
below.

% ***** Unit-ramp response *****

numc=[0 0 O O 1199.90 714.42 100];
denc = [12 161 595.1 1651 719.4 100 O];
t = 0:0.05:20;

¢ = step(numc,denc,t);

plot(t,c,’-',t,1,".")

grid

title("Unit-Ramp Response of Compensated System')
xlabel('t Sec’)

ylabel(’Output and Ramp Input’)
text(11,7,'Output’); text(1,7,'Ramp Input’)

Unit-Ramp Resp of Compensaled Sys!

20
18
16
14
=12
1
Ew
s
L
§ Remp lnput || | oulput
s /V
4 /,
2 .
,,/1(
() 2 4 6 8 10 12 14 16 18 20

tSec
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CHAPTER 10

B-10-1. Referring to Equation (3-76), we have

R (RC + RaCo)
f k.iﬁ/cz

=37 F2

T= RiC,+ R0y = 3.077

Ty= KRGkl _ 5000,
RiC,+ RaCa
First, notice that

(k/ Cl)+(/?z.cz) =3.077
(Ric,)(Rec,) = 07672 X 3077 = 2. 3468

Hence we obtain

R,C,=05385, Rl;=/S38S

Since we have six unknown variables and three equations, we can choose three
variables arbitrarily. So we choose C; = C2 = 10 #F and one remaining varia-

ble later. Then we get
R, =,f: =/53.55 kL2

From the equation for Kp, we have
RJ kl Cz

=39 ¢2

or
P _ z0paxL =197/
K3

We now choose arbitrarily R3 = 10 k..  Then, Rq = 197.1 k1.  The PID cont-
roller obtained is shown below. ~

153.85 k@

10 uF —W—]
—m 10 uF 197.1 k&3
o——]-— 10 k@

153.85 k22 " L ww
+ —0
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B-10-2. For the reference input, the closed-loop transfer.function is

<6) _ 2K (as+1)(bs+)(s+2)
RG)  s(st/)(st0) + 2K Cas+/)(b5+1)(s+2)

Notice that the numerator is a polynomial in s of degree 3 and the denominator
is also a polynomial in s of degree 3. 1In such a case, it is advisable to
reduce the degree of numerator polynomial by one by chocsing a = 0. Then the
closed-loop transfer function becomes

Ct) _ 2k (bs+/)(5+2)
R(s) S(s+/)(s+0) + 2K (b5 +/)( s+2)

Let us choose the value of b to be 0.5 so that the zero of the controller is
located at s = -2. Then, the controller transfer function Go(s) becomes

_ K(oss+r) _ oe.sk(s+z)
| Go(s) = = = :
Then
6 _ K(s+2)?

RE) S(s+1)(s+70) + k (s+2)%
The closed-loop transfer function for the disturbance input becomes as

S 25(s+2)
DGy Ss(st/)(ste) + K(s+2)?

The requirement on the response to the step disturbance input is that the response
should attenuate rapidly. Let us interpret this requirement to be the settling.
time of 2 sec. By a simple MATLAB trial-and-error approach on the value of K,

we find that K = 20 gives the settling time to be 2 sec. So we choose K = 20.
Wity K = 20, the closed-loop transfer function Cp(s)/D(s) for the disturbance input
becomes
G (s) 252+ ¢s

D) T s+ 3/s24 Fos+ 80

The following MATLAB program produces the response to the unit-step disturbance
input. The resulting response curve is shown on the next page.

% ***** Unit-step response (Disturbance input) ****#*

numd =[{0 2 4 O0];

dend =[1 31 90 80

step(numd,dend)

grid

title('Unit-Step Response (Disturbance Input)’)
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Unil-Step Responsa (Disturbance input)

0.07
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0.01 "
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This response curve corresponds to the settling time of 2 sec. This may not
be obvious. Therefore, we plot the response to the unit-ramp disturbance

input. The following MATLAB is used to obtain the unit-ramp response.

% ***** Unit-ramp response {Disturbance input) *****

numdd =[0 0 2 4 O]

dendd =[1 31 90 80 O];
step{numdd,dendd)

grid

title('Unit-Ramp Response (Disturbance Input)’)

The resulting response curve is shown below.

Unit-Ramp Response (Disturbence Input)

0.08

0.05

0.04 r

Amplituds
[-)
8

0.02

0.01

00 5 10 15 20 25 30 35 40 45 50
Time (sec)

The settling time can be seen to be approximately 2 sec.
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For the reference input, the closed-loop transfer function with K = 20 is

C(s)

205+ Sos + 8o

R(s)

s + 3/5%+ F0s t 8o

The MATLAB program below produces the unit-step response curve for the refe-
rence input, as shown below.

% *r*** nit-step response (Reference input) *****

numr = [0 20 80 80I;

denr = [1 31 90 80];
step(numr,denr)
grid

title{'Unit-Step Response (Reference Input)’)

Unit-Step Response (Reference lnpul)

1.2

]

0.8

04

0.2

0
]

From this plot, we see that the settling ti ‘
The closed-loop poles for the system are shown in the MATLAB out

0.5 1 1.5 2
Time (sec)

roots{denr)
ans =

-27.8742
-1.5629 + 0.6637i
-1.5629 - 0.6537i

The designed controller is

G.(s) = =

20(o.s°s+1)

25 3

me for the reference input is 2 sec.

put shown below.

70(s+2)
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B-10-3. The closed-loop transfer function of the system shown in Figure 10-

58 (a) is
/,
i) b (1+ 75+ T35) G

) T (1)
/+—I<,,(/+:/.-_‘_L: +7js>g/(;}

The closed-loop transfer function of the system shown in Figure 10-58 (b) can
be obtained as follows: Define the input to the block Gp(s) as U(s). Then,

K
UE) = kp (1+Ta5) RS + == [ ROV~ C)) = K (14 T2sDCE)

Also, we have

Ck) =G, 6) UTs)

- Hence

Chk) - _ L
%) =Ky (145 +Tas) RO) = ko (14525 Tis) CE)

from which we obtain

co) __ K (r+ 75 +703) G0
R 1t+uc, (74 ?‘,Ls""z’S) %,(5)

This last equation is the same as Equation (1). Thus, the two systems are

equivalent.

B-10-4. We shall first obtain the closed-loop transfer function C(s)/R(s) of
the I-PD controlled system. In the absence of the disturbance D(s), the
minor loop has the following transfer function:

U6)  S(St/)(sts) + 39.%2( /+0,76925)
where U(s) is the input to the minor loop. The open-loop transfer function
G(s) of the system is

6l5) = / 39, ¥2
3.6997S S(s+/)(s+5) + 3042 (/+0.74825)

/12.8//2
SF4 653+ 35, 32/9 s*+ 35 ¢2s
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The closed-loop transfer function is
c6) /2, 8//2

R(s) ~ S*+6s?+ 35.32/95%+ 30425 +/12.6//2
The resulting

The following MATLAB program produces the unit-step response.
response curve is shown below.

% ***** Unit-step response *****

num=1[0 0 0 0 12.8112};

den =[1 6 35.3219 39.42 12.8112];

t = 0:0.05:30;

step(num,den,t)

grid

title('Unit-Step Response of I-PD controlled System’)

Unil-Siep Resp of -PD coniroil

1.2

Ampgtuda
@ 'can

1
]

e
[ B 10

15 20 26 30
Time (sec)

Notice that the response is slow but shows no overshoot. The closed-loop
poles are shown in the following MATLAB output.

roots{den)
ans =

-2.3514 + 4.8215i
-2.3514 - 4.8215i
-0.6486 + 0.1568i
-0.6486 - 0.1568i

Since the dominant closed-loop poles are located very close to the jW axis,
the response speed is very slow compared with that of the closed-loop system

shown in Figure 10-59 (a).
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B-10-5. For the PID controlled system shown in Figure 10-59(a), the closed-
loop transfer function between the output and the disturbance input is

CG) S

DB) T si(s+1)(515) + 39. %2 (S+0.3250 +0. 7492 )

S
St+ 65 +35.32/7 S+ 38925 +/2.8//2

For the I-PD controlled system shown in Figure 10-59(b), the closed-loop
transfer function between the output and the disturbance input can be obtained

as follows:

Ch) _ s
D6) S:(st1)(5+$) + 35. 42 ( 5+0.3280 +0.76925%)

Il

S .
St gs34+385.22/7s5%*+ 28 ¢2s +/2.8/7/2

Since the two closed-loop transfer functions are identical, we get the same
unit-step response curves for the two systems. The following MATLAB program .
produces the response to the unit-step disturbance input. The resulting

response curve is shown below.

I

% ***+% |njt-step response ***E ¥

nim=[0 0 0 1 Q]

den =[1 6 35.3219 39.42 12.8112];
step(num,den)

grid

title('Response to Unit-Step Disturbance Input')

Response lo Unit-Step Disturbance Input

0.012 I
é 0.01 I | \
L\
0.006 ] \
e
0.002 ] <
° 2 4 6 s~\1;—¥u . 14

Tine (sec)
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The closed-loop transfer function C(s)/R(s) of the system of Figure 10-59(a)

is obtained as follows: [We assume that D(s) = 0.]
/ : /
C6) 3202 (/1 3,077;."".0'7”?25) s(st/)(s+5)

RS / /
9 +3%.42 (/-f—_ia??S +0»7o’725) ST

30.32/5S%+ 39425 + /2.8//2
St 453+ 35, 32/88 S+ 39425 1+ /2.8 2

it

The closed-loop transfer function C(s)/R(s) of the system of Figure 10-59(b) is
obtained as follows: [We assume that D(s) = 0.]

325 ¢2 /
C6)  S(s+/)(s+S) +22.42(/+0,76925) 3.0975
RE) J+ 39 %2 /
S (str)(s+$) t 3742 (/+0.76925) 3077
/2. 8072

I

St+ f53+34 32/54 s*+ 35928 +/2.8//2

Note that the characteristic equation (denominator) for both systems are the
same, but the numerators are different.

B-10-6. For the reference input, the closed-loop transfer function-is

C6) _ D) Gls)

R /It Gis)Go(s) Als)
For the disturbance input,

@ @2(5) ,

D(s) !+ Gils)G,(s) HE)
For the noise input,

) G (5) Gafs ) HE)

M)~ 1t G)Gau(s) HB)

Notice that the characteristic equations for the three closed-loop transfer
functions are the same;

/% G(5) Go(s) HE) =0

That is, the characteristic equation for this system is the same regardless of
vhich input signal is chosen as input.
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B-10-7.

The closed-loop transfer function C(s)/R(s) for the reference input
is .

6/62 (7_3.
) _ /t6; 63 /2 _ G, G265
R(s) /+ G) 62 G3H B /+ 6 6
Het G, G, Gs H
/1‘-6263/7/3_ 2973 N2 ql F2 9311

The closed-loop transfer function C(s)/D(s) for the disturbance input is ob-
tained as follows: Noting that the feedforward transfer function is G3(s)

and the feedback transfer function is [-Gj(s)H;(s) - Hp(s)1Gz(s), and that
the closed-loop system is a positive-feedback system, we have

) _ s :
P6) /= G3 [-G14) —#2]6G:

_ G3
/t+ G, G.G3 Ay 7".6:63 Ha

B-10-8. For the system shown in Figure 10-62 (b), the closed-loop transfer
function for the disturbance input is

WG) _ K GEIHE)
D(s) 1+ kG(s) H(s)

To minimize the effect of disturbances, the adjustable gain K should be chosen
as small as possible. Thus, the answer to the question is "no".

-‘f‘j‘—*—"-' Y05) G Gp
Rls) [t Gy Gea @f
Y2 _ Gp
D6) 1+ G Gea Gp
Y6) . Ger Ger Gpo
A/(")- /t 4 </ 6:; 6/,
Hence



If Gyq is given, then Gy, is fixed but Gy, is not fixed because G; is indepen-
dent of Gyqg. Thus, two closed-loop transfer functions among three closedtloop
transfer functions Gyr, Gygq, and Gy are independent. Hence, the system is a
two-degrees-of -freedom system.

(b) N6) _  Ges Gee Gp
RE) /1t Gee G
b, Gp

be) 1t Ger G,

Y{S) - - 66‘2 6,0
N(’) [+ 6"2 6f

Hence

677’ = 67-6‘/ 66:'6’4

Gyd —Gp
Gp

If Gyq is given, then Gy, is fixed but Gy, is not fixed because Go1Gnp is in-
dependent of Gyq. Thus, two closed-loop transfer functions among three closed-
loop transfer functions Gyr: Gyg, and Gyp are independent. Hence, the system
is a two-degrees-of-freedom system.

6'77); =

(c) Y6) _ G Gp
R(s) /+ Gca 6/
Y6) _ G

D) - [+ Gea Gp

V1$> = - th 6&
M(s) /1 Gea éap

Hence

6'7/ = Gy C?,/

= Gyd — G,
G yn '—Jq,

If Gyg is given, then Gy, is fixed. Gy is not fixed because Gg) is indepen-
dent” of Gyg- Thus, the system is a two-degrees-of-freedom system.
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B-10-10. Define the input signal to box G.3 as A(s). Then, for D(s) = 0 and
N(s) = 0, we have

AG) = Geg R(s) + Gy [RIS)=Y(5)] = G)Ges AlS)
YG6) = Geg G, G, Als)

Eliminating A(s) from the above two equations, we get
(Ger +Gea ) RG) = Ger YB)
It Grs G,

Yts) = Ges G, G,

(/ + 6(;3-(7"/ "- 67‘61 GCJ q/ qz) Yﬁ) = 6‘:3 6[ 62 (é"’ 1'(76'2—)2(;)

Hence,

Y6) _ _(6atGer) G 6,6 w
Ri(s) (tGes G + Gy Ges G, G

To find Y(s)/D(s). we may proceed as follows. For R(s) = O and N(s) = O, we have
AB) = Gey ["‘ Y(f)] - 7,'[ DE) + Ges A(’)l
Y6) = G, 6. [ D) + Gz AL

Hence
| e = 6,6, [ D6) + Goy =Gt YO =G p@)]
(1T Ges G,

Simplifying, we have

(/‘f' Ges G, + Gey Gesz 6162> V6) = G,6; D6)

Y) G G, (2)
P(s) /+ 6"3 €7/T Gey 6:1. Ci/éz
Next, we shall find Y(s)/N(s). For R(s) = 0 and D(s) = 0, we have

AG) = — Gey [YGE)+N()) — Ges G, AB)
Y6)= Ges 6,6, AG) |

Therefore,

—6e) Y6) — Gy NVG)
/'t Gez G,

Y(’) =Ge3 9,6,
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or
(’ Y Gy §/F GeiGes 9/5:) Y6) == Ges Ges G G2 NE)
Hence,
Yo - ~Ge) Ges G, Gz (3)
M) 1+ Ge36 + Gey Ges G, Ge

From Equations (1), (2), and (3), we get
470 == Get Ges nyq'
Grr == Gyn + Gea Gez G

If Gyg is given, Gyp is independent of Gyg because Gc1Gc3 is independent of
Gyd- Cyr is independent of Gyq and Gyy because Go2G-3 is independent of Gyy
and G Hence, all three closed-loop transfer functions Gy, Gyg, and G
>yd* yr: “yd yn
are independent. Hence, the system is a three-degrees-of-freedom system.

B-10-11. The open-loop transfer function of the system is

GE) = K(s+a)* /.2
AL (0.35¢/)(s+7) (£251()

/2Ks* o2, ¢kas + /-2k a>
0,365 +/86s%+ 2.55%*+ 5

i

Hence, the closed-loop transfer function is ‘
c6) /2K S+ 2.4 kas + L2 Ka*
RE) 0.3 s¥+ 1.8 s+ (2.5 1.2K)s*+ (/+ 2.£2KA)S+ /. 2Kad

The requ1rement in this problem is that the maximum overshoot in the unit-step
response is that

Mr< p'/ J Mp>ﬁ.a2

where Mp is the maximum overshoot. In terms of the output y to the imit—step

input,
m</./ m > /.02

where
m = max (y)

A possible MATLIAB program to obtain a set of the values of K and a that satisfies
the requirement is given on the next page. The resulting unit-step response
curve is shown also on the next page.
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Output

14

1.2

08

06

04

02

% ***** Search of K and a Values for 0.02<Mp<0.10 **#**

t=0:0.01:8;
for K = 4:-0.05:1;
fora=4:-0.05:04;
num=[0 0 1.2*K 24*K*a 1.2*K*a"2j;
den=[0.36 1.86 2.5+1.2*K 1+2.4*K*a 1.2*K*a"2];
y = step(num,den,t);
m = max(y);
fm<1.l&m>1.02
break;
end
end
ifm<11é&m>1.02
break;

end

- end

plot(t.y)

grid

title('Unit-Step Response')

xlabel(t Sec")

ylabel('Output)

KK = num2str(K);

aa = num2str(a);

text(5.1,0.54,K ="), text(5.6,0.54,KK)
text(5.1,0.46, 'a ="), text(5.6,0.46,aa)
sol=[K a m]

sol =
- 4,0000 0.7000 1.0846

Unit-Step Response
K= 4
a= 07
1 2 3 4 5 6 7
tSec
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The selected set of K and a is

The maximum overshoot is 8.46 %.

B—iO—lZ. The féedforward transfer function is
G /-2 k (s+a)*
7(5) =
s(o-3s+()(s+/) (/-25+/)
The closed-loop transfer function is

c6) _ lr2Ks? + 2, $kasS + /-2 Ka?

RE) ~ 0-365%+/.88s%+ (2.5+/.2K)s*+ (/+2.9Ka) s+ /. 2ka*
The requirements in this problem are

/03 < m < (.08 , s < 2 sec
where m = maximum output. The search region is

2LK<#, os-<Laxgs

The step size is 0.05 for both K and a. A MATLAB program to obtain the first
set of K and a that satisfies the requirements is shown below.

Y ***** Search of K and a Values for 0.03 < Mp < 0.08 and ts < 2 sec *****

t=0:0.01:8;
for K =4:-0.05:2;
for a = 3:-0.05:0.5;
mm=[0 0 1.2*K 24%*K*a 1.2*K*a"2];
den=[0.36 1.86 2.5+1.2*K 1+2.4*K*a 1.2*K*a™2];
y = step(num,den,t);
m = max(y);
s'= 801; while y(s) > 0.98 & y(s) < 1.02;
s=s-1; end;
ts = (s-1)*0.01;
fm<108&m>1.03&ts<20
break;
end
end
ifm<108&m>103&ts<2.0

title(Unit-Step Response')
xlabel('t sec’)
ylabel('Output’)

solution=[K a m ts]
sohution =

2.6000 0.8500 1.0774 1.8400
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The first set of K and a that satisfies the requirements is K = 2.6 and a = 0.85.
The maximum overshoot Mp and settling time tg are 7.74 % and 1.84 sec, respectively.

The response curve with K = 2.6 and a = 0.85 is shown below.

Unit-Step Response
14
1.2
| /
0.8
5
g
(o]
06 /
04 /
02
o
0 1 2 3 4 5 6 7 8
tsec

Next, we shall obtain all possible sets of K and a that satisfy the require-
ments. The following MATLAB program produces the desired result.

% ***** Search of all possible Sets of K and a Values for 0.03 < Mp < 0.08
% and ts <2 sec *¥*** :

t=0:0.01:8;
k=0;
fori=1:41;
K(i) = 4.05 - i*0.05;
forj=1:51;
-a(j) = 3.05 - j*0.05;
mm=[0 0 1.2*K@{i) 2.4*K(i)*a(j) 1.2*K(i)*a()*a(j)];
den=[0.36 1.86 2.5+1.2*K(i) 1+2.4*K(i)*a(G) 1.2*K(i)*a(j)*a()};
y = step(num,den,t);
m = max(y);
s = 801; while y(s) > 0.98 & y(s) < 1.02;
s =s-1; end;
ts = (s-1)*0.01;
ifm<1.08&m>1.03&ts<2.0
k=k+1;
table(k,’) = [K(i) a() m ts];
end

end

end
table(k,:) = [K(@) a() m ts]
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table =

2.6000 0.8500 1.0774 1.8400
2.5500 0.8500 1.0737 1.8500
2.5000 0.8500 1.0700 1.8600
24500 0.8500 1.0662 1.8800
2.4000 0.8500 1.0624 1.8900
2.3500 0.8500 1.0585 1.9000
2.3000 0.8500 1.0546 1.9100
2.2500 0.8500 1.0507 1.9200
2.2000 0.8500 1.0468 1.9300
2.1500 0.8500 1.0428 1.9400
2.1000 0.8500 1.0388 1.9400
2.0500 0.8500 1.0348 1.9400
2.0000 0.5000 0.9552 8.0000

sorttable = sortrows(table,3)

sorttable =

2.0000 0.5000 09552 8.0000
2.0500 0.8500 1.0348 1.9400
2.1000 0.8500 1.0388 1.9400
2.1500° 0.8500 1.0428 1.9400
2.2000 0.8500 1.0468 1.9300
22500 0.8500 1.0507 1.9200
2.3000 0.8500 1.0546 1.9100
2.3500 0.8500 1.0585 1.9000
2.4000 0.8500 1.0624 1.8900.
2.4500 0.8500 1.0662 1.8800
2.5000 0.8500 1.0700 1.8600
2.5500 0.8500 1.0737 1.8500
26000 0.8500 1.0774 1.8400

K = sorttable(13,1)
K=
2.6000
a = sorttable(13,2)
a =
0.8500
mm=[0 0 12*%K 24*K*a 12*K*a"2];
den=[0.36 1.86 2.5+1.2*K 1+2.4*K*a 1.2*K*a"2];
y = step(num,den,t);
plot(t.y)
grid
hold ‘
Carrent plot held
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K = sorttable(2,1)
K=

2.0500
a = sorttable(2,2) .
a=

0.8500

| mm=[0 0 1.2*K 24*K*a 12*K*a"2];

den=[036 1.86 2.5+1.2*K 1+24*K*a 12*K*a"2];
y = step(num,den,t);

plot(t,y)

title('Unit-Step Response Curves’)

xlabel(’t sec”)

ylabel("Outputs’)

text(2.2,1.1, K = 2.6, a = 0.85"

text(2.2,0.9,K = 2.05, a = 0.85")

There are 12 sets of the values of K and a that satisfy the requirements. All
sets produces similar response curves. The best choice of the set depends on
the system objective. If a small maximum overshoot is desired, then K = 2.05
and a = 0.85 will be the best choice. If the shorter settling time is more
important than a small maximum overshoot, then K = 2.6 and a = 0.85 will be the
best choice. The unit-step response curves for the two cases are shown below.

Unit-Step Response Curves

14

i2
- K=26,a=085

7 -
//{\‘K-Z.DS,:I-O.BS

-+

0.6

Outputs

|
//

02
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13.
B-10-13 3(s+5)

G, () =
7pl5) S(S+/D(s*+ ¢S 1+/3)
The closed-loop transfer functions Y(s)/D(s) and Y(s)/R(s) are given by
Y) - GpG) . Gp
Dé&) )t Goy(s) Gpls) ItGci &
and / 4 r
) [6.,6) + Ges3) ] 6,6) — (Ge) + Gez) Gp
R6) I+ Ge,l5) Gpl) /TGy Gp

Assume that Gop(s) is a PID controller with a filter and has the following form:

_ K(s+tayr 5Tt ¢s5+ /3
Ger (5) = S (s+5)(5+27)

The characteristic equation for the system is

; 2 S+ s +/3 3(sts5
I+GyGp = [ + R(sta) TE z)
s (5t5)(s+27) S(s+/)(s*+4s+/3)
3k (s+a)?

I

/% S2(s+7)(s+27)

With a trial-and-error search of K and a with MATLAB, we find a possible set of
K and a as follows:

K'-'—".S\(?, ﬂ=/-¢
With this chosen set of K and a, the controller Goj(s) becomes as follows:

G ) = SE(s+/#)2 S Est/3
“re s G+8)(s+27)

$8 S +/82.45S ¥//3.48  SPt¢st /3
S Gts)(s +27)

The closed-loop transfer function Y(s)/D(s) is obtained as

3(s+35)D
Y6) B SCSt/)(s2+4s+/2)
D6 IXSE (SH+4A%)*
/+
s*(s+7)(st27)

353+ s+ s s
(S2+ ¢s+/3) (st 285 +20/S*+ 45725 + 3%/ .0%)

The response curve when D(s) is a unit-step disturbance is shown in the next page.

Next, we consider the response to reference inputs. The closed-loop transfer
function Y(s)/R(s) is
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Response to Unit-Step Disturbance Input

0.07

System Output

0.03 /
0.02

] N

Y6) = (Ges * ('/"ez)@p = (6(’[ ‘f’(;cz-) Zi;

RE) 't GGy
Define Goi(s) + Gga(s) = Ga(s). Then
Y6, Ys» . '
&) _ G, (2 5, Gp
REB) D¢E) 11+ Gey (i/

G 383+ 965+ $0 £
7e S2+¢gs+/3
S¥+28534+20/s%+ 487,25 + 3¢/ 0F

To satisfy the requirements on the responses to the ramp reference input and
acceleration reference input, we use the zero-placement approach. That is, we
choose the numerator of Y(s)/R(s) to be the sum of the last three terms of the

denominator, or

I3+ 9653+ Yoss 2
= : /0
Ge PSP 20/ S+ 497,25 + 39404

from which we get

(20/5%+ 487.25 + 3%/ 04D (5°F ¢5+/3)

5) =
el 3(s3+325+/35s)
675+ /2. 45 1/73.658 S*+¢s+ /3
S (St+£)(s+27)

- 212 -



The closed-loop transfer function Y(s)/R(s) now becomes

\G 20! SEF+ Y8725 + 34/-04

—
—

RG) St+2853+20/s%+ 487. 25 +3¢/.0%

The response curves to the unit-step reference input, unit-ramp reference input,
and unit-acceleration reference input are shown below and on the next page.

. Response to Unit-Step Reference Input
1. - - - - -
12 //\\
1 / AN
§o.a
E
%0
04
02
t’0 1 2 3 4 5 (] 7 8
tesec
‘ L) 1
a -
A
Bl
1
B
[}
By -
a
E :
3r -
3
2
2k .
1 .
Y .'/', L 1 1 R 1 1 1
°o 1 2 3 4. 5 6 7 8
teec
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Response to Uniit-Acceleration Reference Input
35 . L} T I 1] 1 T o -

& -8 B g

Unit-Acceleration Input and System Output

-
O
T

Notice that the maximum overshoot in the unit-step response is approximately 25 %
and the settling time is approximately 1.25 sec. The steady-state errors in the -
ramp response. and acceleration response are zero. Therefore, the designed centroller

Go(s) is satisfactory.

Finally, we determine Ga2(s). Noting that

G2 (5) = Gels) ~ G 5)

where
() = L1 pS 41568 SPres /3
j $ (5+$)(s+27)
e G 6.)__ 5‘8’.5‘2‘#/(2.#5'1-//3.62 52"!'4‘.5'-[—/3
- g (5+$D(s+27)
we have . . .
S*+4¢s+/3

Geal8) = 75 (s+5)(5t27)
The block diagram of the designed system is shown on the next page. Note that
s*+ ¢ 5+ /3
(St5)(s+27)

is a filter and is a part of the controller.
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>~ 75 ] - bts)

RE | /(368 ' 3 SEr#s /2 G Y(’)_
— g4 + “5— tAES Y Gtrs)(5+27) | r o
B-10-14. 2(st/)

G =
7/’(5) S(s+3)(s+8)

The closed-loop transfer functions Y(s)/D(s) and Y(s)/R(s) are given by

Y(s) _ Gpl) - qam
. D) 1466 [6e/6)+ G G)] 11 (Ge) +G22) G
YGs) _ Ges 5) Gp &) _ G Gp

| ®6) / +€7,a(:)[€7c, (s) +Gea(s)] 1+( 6., 4G¢;) (7’/,
Let us define Ggoy + Gap = Go- Then

Y6 _ %
D(—’) /‘1'('7( ij
Let us assume that Go(s) is a PID controller and has the following form:
_ K(s+ta)*z
Got) = 10
The characteristic equation for the system is
K(sta)? 2(s5+/)

/16,6, = | + s SCs+3)(s5+8D

In what follows, we shall use the root-locus approach to determine the values
of K and a. After trial-and-error analysis with MATLAB, we choose the dominant

closed-loop poles to be at s = -4 ¢ jO.2. :
The angle deficiency at the desired closed-loop pole at s = -4 + j0.2 is

obtined as follows: :
790, 1378 = )97 13 7E° — VP &P0(° — 1. 3055 * + /76 /85 ]’ + /50°

=—/78.0893°
(Note that the poles are at s =0, s = 0, s = -3, s = -5 and the zero is at s = -1.)
The double zero at s = -a must contribute 178.0893 °. (Each zero must contribute
89.04465°) By a simple calculation, we find

A= 400323
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The controller Go(s) is then determined as

K(s+4.0033)°
57‘-[5) = <

The constant K must be determined by use of the magnitude condition. This condition

is
[6:6Gp6) | s2prjoz =1

Since
K(s+40033)" 205+/) =/
s S($+3)(5+5) | s=—ptjoz
we obtain
s2(s+3)(s+s)
'/< = : = 57 2233
2 ®
|(s+goe33D™ 2(5t/) cottjaz
Hence
6%.3233 (5+ $0033)*
Geb) = - = 2
Then the closed-loop transfer function Y(s)/D(s) can be obtained as
2(st/)
(2 Gp _ S(s+32(3t5)
)~ It G, Gp /v 623323 (s+ ¢.00323)? 2(54/)
S S(s+3)(st+5)
_ 25%+2s

S¥+ /S bEEE S3+/1263. 9/46. 5%+ 3332.87595 +2222.3279
The response curve when D(s) is a unit-step disturbance is shown below.

x10* Response to Unit-Step Disturbance input

14

J
\
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Next, we consider the responses to reference inputs. The closed-loop
transfer function Y(s)/R(s) is

Y&  Ga Gy _ Yé)

RS) — /t(6a t%)G ' DE)

(252+25) Ggy
St /g h 666657 +/263 7/ ¥ES+ 3322.5759S + 2222.3277

—
P

To satisfy the requirements on the responses to the ramp reference input and
acceleration reference input, we use the zero-placement approach. That is, we
choose the numerator of Y(s)/R(s) to be the sum of the last three terms of the

denominator, or

(25*+25)Go, = (263- 9146 S©13332.57 59 5 +2222.3277

from which we get
&3/ 7;73 S24+ /666.2880 s + (777~ 7640

Ger = SCs+/)
Hence, the closed-loop transfer function Y(s)/R(s) becomes as
YE) 1243, 9/%6 s*+ 3332.5789 s +2222, 3279

RS)  St/ef. 665653 + 1263, /44 S5+ 2332, 57859 S+ 2222.3279

The response curves to the unit-step reference input, unit-ramp reference input,
and unit-acceleration reference input are shown below and on the next page.

“ Response to Unk-Step Reference input
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Response to Unit-Ramp Reference Input
4.5 T T T T T T T

) )
N 1) w »
T T T T

Unit-Ramp Input and System Output
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System Output
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Unit-Acceleration Input and
N w
l T

35 4

wl

The maximum overshoot in the unit-step response is approximately 19 % and the
settling time is approximately 1.3 sec (2% criterion) or 1.0 sec (5% criterion).
The steady-state errors in the ramp response and acceleration response are zero.
Therefore, the designed controller G.(s) is satisfactory.
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Finally, we determine Gga(s). Noting that
ez 65) = G &) ~ Gy (s)

where
£9,.3333 (s+ ¢.0033)%
and
E3/.9873S> 1t JE56. 2880 s + /L/7. /640
Ge,)(5) = .
S(s+/)
we have
892233 S*—~ 75s
Geals) = 3 z
st/

A block diagram of the designed

system is shown below.

RE) £3). 95935+ JEF£.2880 S+ 171118 %0
Q‘Q S(s+/) |

1 D)

‘%@*@*

£9,33335"-7.8s
s+ /

|

Y6)

. B-10-15. o
GF(S) = 37
The closed-loop transfer functions Y(s)/D(s) and Y(s)/R(s) are given by
Y6) Gp |
D@s) /%‘(ékv'fﬂfrz) G?
and
Yo _ Ges Gp
CRGY 14 (Gey +Gea ) Gp
Let us define Gg1 + Ge2 = Ge.  Then
Ys) Gp
pé) /It Gec Gp

- 219 -



Assume that Go is a PID controller and has the following form:

K (s+a)z
) =
G.6) S
The characteristic equation for the system is
K(sta): |/

1GeGp = [t 3 sz

In what follows, we shall use the root-locus approach to determine the values
of K and a. Let us choose the dominant closed-loop poles at

Then, the angle deficiency at the desired closed-loop pole at s = =7 + jl is obtained
as follows:

~/71. SEFF X3 ¥ [80° =—3355097°

The double zero at's = -a must contribute 235.6097°. (Each zero must contribute
167.80485°.) By a simple calculation, we find a = 2.3729. The controller G.(s)

is then determined as
K(s+2372%)%

q%(g) = <
where K is determined as :
, s
K = - = /520287
(s+2.3729)% | s=-7+j1
Hence
/59087 (s+2.3729)°
G.6)=
S
Then the closed-loop transfer function Y(s)/D(s) can be obtained as
Y6) _ __Gr _ + B
DE) 116 G /S 7767 (s+2.27 25 )%
(4 / t+
S s+
S .

p—

S3+ /8767 SP+ PR 373/ S +58.833/
The response curve when D(s) is a unit-step disturbarice is shown in the next page.

Next, we consider the response to reference inputs. The closed-loop transfer
function Y(s)/R(s) is

&) _ Ger Gp _ o YO
RE)  /4(Ge)+Gn)Gp ' DE)
S Gey

il

S3t /s o575+ 74573/ 5 + 85 £33/
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Response to Unlt—étep Disturbance Input
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To satisfy the requirements on the responses to the ramp reference input and
acceleration reference input, we use the zero-placement approach. That is, we
choose the numerator of Y(s)/R(s) to be the sum of the last three terms of the

denominator, or
SGey = /597675 + 74 873/s + §8. 533/

from which we get

Gy (5) = 15726757+ 748731 S + 85 833/

S
Hence, the closed-loop transfer function Y(s)/R(s) becomes as
V) IS8T s+ 7A 873, s+ 56533/

RC)  S3H /59067 s>+ 71893/ S+ 82833/

The response curves to the unit-step reference input, unit-ramp reference input;
and unit-acceleration reference input are shown on the following two pages. -

Notice that the maximum overshoot in the response to the unit-step reference input
is 18 % and the settling time is approximately 0.7 sec. The steady-state errors
in the ramp response and acceleration response are zero. Therefore, the designed
controller Gu(s) is satisfactory.

Finally, we determine Go2. Noting that
‘$C(k) = Cir/(3) t C?bz (%)

I1S0N67 st 4+ 7 F73) s+ EF. 833/
S

where

QbJS) =
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and 160787 S 5+ 74,8931 5 + 88. 7337
Ger(5) = <

we obtain Gap(s) = 0. This means that we do not need Ggp(s) to get the desired
result.

Response to Unit-Step Reference Input
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Response to Unit-Ramp Reference Input
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Response to Unit-Acceleration Reference Input
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A block diagram of the designed system is shown below.

RG)

I1S7769s*+ ¢ 8537 s + 88, £33/
: S _

Y5)

Y
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CHAPTER 11

B—ll-lo
(a) Controllable canonical form:
2', 0 /X 0
L= + U
¥4 -4 —q-ﬁ /
X I.
? = [ 4 /]
> |
(b) Observable canonical form:
! o =6 || '4
X, / -85 |22 /

X
g=[e /]
> £3

The transfer function representation of this system is

Y6) _ é _ 1
Ues) S34 52+ /546 T (s+/)(s+2)(5+3

B—ll—z -

The partial-fraction expansion of Y(s)/U(s) is
B (7N N SEA |
TE) s+ / s+2 S+ 3

Then, a diagonal canonical form of the system is

o ar 1 r o
X -~/ o ol /
Lis| o -2 of|la|+|/|«
;(3 o o =3|| % /
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B-11-3. We shall present two methods to obtain the controllable canonical
form of the given system equation.

Method 1: Referring to Equation (3-29), we have
s~/ -2 /

Ge) = CCsp-7g =0 A" ||

|
—
j S—

~-¢ s—=/1|2

35+ / _ st +b;s+b,
$3p2s5+5 St+a,5+4z
Hence

d,=2/ ﬂz:&, ba=0, bl=3l Azz/

Then, referring to Equations (11-3) and (11-4), the controllable canonical
form of the state and output equations are obtained as

X, o /1% 0
. |= +| |«
x.; -5 -2 x; /
X
7:[/ 3]
£

Method 2: Transform the original state vector x to a new state vector x by
means of the transformation matrix T, or

X:Tx

T=uw -6 47
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“J

|

003

Hence,
o A
A 2 =0l 0 -§ 2
and '
~ o,/ -0.08
- o.38

A

The state equation and output equation become
=T7AT X + T Bu

A —
\ﬁx»\ wA WA A
A
d=CL%
or
E 2 P R ~0.05 7, s 0./ —o08||/
%l o3 ess|l-¢ =3l[-6 2 (|7 |03 o362
ke
A
7 / ';, 2'I
y=[s /] A =07 3.
-6 2 zz, Z;
B-11-4. Referring to Equation (3-29), we have
¢s) =C (sI-A)"'E
, -/
S+ / o -~/ o
=[s ¢+ 0}| —y s+ 2 P 0
e 0 S+3 /
l' / (s+2)(s+3) o stz o
=1/ 0
1(:1*/)(:1-2)(:1-3) S+3  (s+/)(5+3) 1
‘ ¢ g (st/)(st2
_ s+3

S+3
S3tgst+ s+ E

= (s+1)(s+2)(s+3)
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Although this is a third-order system, there is a cancellation of (s + 3) in
the numerator and denominator. Hence, the reduced transfer function becomes

of second order.

The transfer function expression can be easily obtained from the state-
space expression if MATLAB command

[num’den] = SSth(A,B’CiD)

is used. See the following MATLAB output.

A=[1 0 1;1 -2 0,0 0 -3
B = [0;0;1];
C=([1 1 O]
D = [O];
[num,den] = ss2tf(A,B,C,D)
num =
0 0 1.0000 3.0000

This output corresponds to the'transfer function
S+ 3
S3+ s +//s 16

Notice thatthe MATLAB output does not show the reduced transfer function when
cancellation occurs.

B-11-5. The eigenvalues are
A=), Aa=-/, /\3=j: Ar ==

The following transformation matrix P will give E‘l‘éﬂ = diag(A 1, A 2/ A 3: \g):

s 0 [eoros0 7]
?= ')‘, AL /\3 A’. . / -I J. "j
LN AT AT /r =1 =]

N oAD AL N /- =

This can be seen as follows. Since the inverse of matrix P is
. v,
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(o
7 =L 6o _-/
- 1, U =1V
/) =/ )
we have o _
/1 e eo |27 7/
/ -l / - “
PYAP =4 Nee el
mm SF Nyt jee e |1 )1~
AN | WA | WA A
[/ 0 o o]
_ o -/ © o
o 0 J 0
0o o 0]
B-11-6.
Method 1:
' / S =/ =
At = A7 | = -
= £ [6I-p7] =L i[ m] }
(2 / /
st/ S+2 s+ / s+ 2
=)
=d
-2 4 _2 / 2
L'.S'r[ S+2 s+/ S+2
zef- e e - e
—oef+ 2™ _etirge-
Method 2: Referring to Equation (11-46), we have
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: e/\lt 7]
T =/ -
eff =pelil" =p Z

Since the eigenvalues are Aj = -1 and A , = -2, we obtain

Method 3:

or

[ 1€t o2 v

At
e~ = -
_/ -2 0 elt ~/ -/
[, _- - -
| 2e7- e e t-e %
—ze"t4+2et ety e

o

Referring to Equation (11-47), we have

which can be rewritten as

/A eMt
I A et =0
I A 4t
/1 -/ et
/ -2 el =0
At
I A e
- 2t T — -t
-—e-ﬂ*+(é+2£)e F_e I =4A¢
- - -2t
eﬁt=(A+ 2I)e e "“.'E -e A
[ 2 / -+ |/ 0 e-zt o / e-zt
= e -] -
-2 =/ o -2 -3
rZe"'t__ e-'zt e—f_ e;zt
—2eVy2e”%" —e~tr e
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B-11-7.

The given state matrix is in the Jordan canonical form.

The eigenvalues

are
A1 =2, Aa=2, Az =2
Since _ -
et et ;i:"tze 2t
e ‘ﬁf — p ez’t + 821‘
0 0 érzt
we have
2 = €4 x(e)
or ) _
2/68) czf Z ezf é_t—lezf Fxl{,)
a8 (5| 0 e e || Xup)
% ¢) 0 o ¥ || %e)
= - - - L .
B-ll—a.
o /
A =[ ‘,
-3 =2
s - .
51— 41 = =5t 25+ 3 = (50 njE)(/VE)
v 3 St+2

e’ = £ [z-A)"] =

/
S(s+2) 13

= I

st+/+/
(st1)*+Jz*
-3
,)z_'__‘/zz

|

(s+

- 230 -

S
3

-/
S+ 2

< L)

s+2 /
-3 S
| /
(st7)*+vz?
s+ /—~/
(s+/)* +v2*




[ st/ (VT AR )
-~ 2z (S+1)*Z* vz (s+])*+yZ° V2 (Cs+1)*+VZ?
- _ 3 JZ St/ Nz
2 (st)re VR (s+1%+ V3 VE e
_ e Yerizt +(—Z¥e't'¢«‘~\f2t | —\,ﬁ—'e#mﬁz‘
. 3 - 1 - ]
~Z e a2t e Yece VT2 -—‘[!-,-_-—e",tw'fiil
Hence
At ar| !
2@) = e~ x(0) = e4 _

e TNzt
~etenyTt —JZ @ Tk 2T

il

B-11-9. Define

-6 [ 0 2
‘é: ~// 0 / ) E: re P E:[/ o 0]
-é o 0 2

Define also the transformation matrix as a such that X = Ea.

P Pz Pill %
“XA‘—'fi: Pzt Paa Pusll 2

Psr Pz Pis)| s
Then with this transformation the state equation and output equation:

i= Az Bu
1-Cx

can be written as
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In this problem it is specified that

| 0o o0 -6 /
zac- 7 2 5| reel
o 1 -6 o
Thus
[/ Pt Pz P/ Fuy 4
=PI0| =t Pa ts|0|=|tu|=|6
0 Pa1 fsz pasf| © P |2
" Hence
[2 bl P
Z: £ Pz po3
2 P P
Since T
' 0 o =6
8E=p|/ o -y
o /1 -é]
we have
~6 1 ofl2 L by |2 Pe pl|0 e
=17 0 || b Pt pil=|€ P K
-6 0 02 Pz By _2‘ Fr2 Fasz 0
or |

. ] [~

from which we obtain

flz=-——() ,Du—_--_ZO; /032 =-/2

and .
—éfse + fra =/
~éfiz t frzs = =12V (728 s
—U s * P = p,
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-4

~/2t 4 ~épn 1-,0,,_ —p’/,;-f-/” Pa //3 ‘/2"///73 ‘//’P
-221+2 —//ﬁ:.‘f'/ajz —(//;3 +£¥J = Ibz?- /bz, —3{_///23_//33
] -2 -—/f/; —-‘f/i | L_PJZ /3’ "/Z -'///33_-5/53_




TV pis iz = =38 =/ par — 8 py
—EpPr=/fis
—Epi3 =12 =V for =&}z

Solving the last six equations for pj3, p23, and p33 we find

Hs =76, Fez =5¥%, Pias =35

Hence
[2 -¢ #
F=1é -20 sy
2 =/2 36

We thus determined the necessary transformation matrix P. The output equation
becomes "

2
y=CcPz=L2 ¢ /8]|2
23

Alternative approach: An alternative approach to the solution of this pro-
blem is given below. Since the characteristic equation for the system is

st¢ -1 0O .
lsr-—/‘\|= s -t| =SPHESH/stE
-7 é o S

= s+ 4, s +ad.s5+a;

we find
a, = 6, a, =1/, 43 =6
Define
2 =4 /6
m=le 4z LBI=|6 -0 o
2 —/2 36
Then
g -3 0,5
M =|s =5 zy
- % —4S os
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It can be shown that

o ¢ -a; 0 c -6 /
M—/AM =|/ p —as|=1| / o -1/ M"_B:: 0
o 0 / -aq o [/ <6 meow 0
Also _
2 =6 /6
cMm=1[r © 0l 6 -20 s¢|=[2 -¢ /£]
e 2 =/2 36

Hence, by use of the following transformation:

2 —6 /5 ?,
X =Mz2 =| é -20 s¥l||g
wa [ N

2 =/ 36 || %

;E:Ax-f-fq
1=Cx

g-@"AM + M Bu
y: CHM =

or

A

’3. /I —é|lg 0
Tgl
,Lzs

B-11-10. A MATLIAB program to obtain a state-space representation is given
next.
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num = [0 10.4 47 160];
den =[1 14 56 160];
[A,B,C,D] = tf2ss(num,den)

A=
-14 -56 -160
1 o 0
0 1 0
B =
1
0
0
C =

The state-space representation is

45| [~r¢ -s6 -s0llx| |7

Xl=| 0 0 A || 0|«
A
y=[r0.¢ 47  r60])|%| +0u
X3
B-11-11. A=[0 1 01 -1 0;1 O OJ;
B = [0;1:0];
C=1[0 0 1]
D = [0];
[num,den] = ss2tf(A,B,C,D)
num =
0 0 0.0000 1.0000
den =

1.0000 1.0000 1.0000 0
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The transfer function representation of the system is

Y6) — /
Us? s34+ s?+s

B_ll_]..Z.
A=[2 1 0;0 2 0,0 1 3};
B=1[0 1;1 0;0 1};
C=[{10 :
D=[0 O]
[NUM,den] = ss2tf(A,B,C,D,1)
NUM =
o o 1 -3
den =

1 -7 16 -12
[NUM,den] = ss2tf(A,B,C,D,2)
NUM =

0 1 -5 6

den =
1 -7 16 -12

The transfer function representation of the system consists of two equations:
Y6) _ S-3
U,65) S3—-7s 4 )65 -/2

Y6) __ s*—S5s +4
Uals) ~ S3mppsii-/6s —/2

B-11-13. The controllability and cbservability of the system can be deter-
mined by examining the rank conditions of

[8 43 48]

[c* a4 @]

and
réspectively.
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Since the rank of [B

A=I[1 -2 -20 -1 1;1 0 -1];
B = [2,0;1];
cC=[1 1 0]
D = [O];
rank([B A*B A~2"B])
ans =
3

rank([C' A'*C' A'"2*C']))
ans =

3

AB AZB] is 3 and the rank of [C'
also 3, the system Ts completely state controllable and observable.

Alcl

A|2£|] is

B-ll.14 .

o TODO>

=0uny

o
=)
0]

i

3
rank([C' A'*C’ A'"2*C']
ans =

2
rank({C*B C*A*B C*A"“2*B])
ans =

2

From the rank conditions obtained above, the system is completely state cont-

rollable but not completely observable.

It is completely output controllable.

Note that the condition of the output controllability is that the rank of

[c

c A8

MW‘W]

ca8

be m (the dimension of the output vector, which is 2 in the present system).
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B—]J.—ls L

0,0 0 1;-6 -11 -6];

o

A=[0 1
B = [0;0;1];
C=[20 9 1};
D = [0];
rank{([B A*B A"2*B])
ans =
3

rank([C' A'*C' A'"2*C'])
| ans =

3

Since the rank of [B 2B AZB] is 3 and that of [C' A'C' A'2c'] is also
3, the system is completely State controllable and completely obsérvable.

B-11-16.
0 /0O 0
A=lo o 1|, B=loe|, ¢=[c ¢ &)
-6 =1/ -6 /

The observability matrix is
C/ —‘Cs "5((.3"‘63)
* & F S 1 B
[e* arc* wici=|ea ey —rent o
Cs Cz—'{C, CI—'JC';'I"ZS‘;;

L

There are infinitely many sets of c;, c3, and c3 that will make the system un-
cbservable. Examples of such a set of c;, ¢, and c3 are

£'=[/ /0]

c=Ls 7 7]
e=[é s /]
c=L/ 1 4]
ele,

With any of these matrices C the rank of the observability matrix becomes less
(Y
than 3 and the system becomes unobservable.
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B-11-17.

(2) 2 0
d_-_-.- e 2 0}, g:[/ / /]
o S /
The rank of .
/2 ¢
[C* A*E-A# 'A“‘FZQ*]= / s /3
' / / /
is two, because '
[ 2 '
# / 2
/I & /3] =0p . =
/ /7

Hence, the system is not completely observable.

{b) If the output vector is given by

X,
’I / / / A
-— 71 =cz
Y / 2 3 oA
8 13
then the rank of
n Ax /2 Z ¢ 4
[¢* ardr a8%l=|1 2 s 13 15 55
/3 !/ 3 3

is three, because the determinant of a 3 x 3 matrix consisting of the first,
fourth, and sixth column is

/ 2 ¢
/! (3 34| =—%2
/ S 3

Il Al A
Since the rank of [C*  A*C* A*2C*] is 3, the system is completely observable.
A MATLAB solution to this problem {s given on the next page.
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2 0,0 3 1];

A'"2*C'])

2 0,0 3 11
31;

2 35
A'"2*C'))
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CHAPTER 12

B-12-1. Referring to Equation (3-29), we have
~/
S+ o - 0
GE)=C(sI-A)'B =[17 o]l -1 stz @ | |
Z o Sst3 /

-
(s+2)(s+3) o s+2 0

_ /
T (s+1)(st2)(st3) [+ 1 0] 5+3  (s+)(st3) /
| 0 o (st)(s+3)|| /.
S+3 s+3 .

B (s+1)(s+2)(st3) T Siirgstay/s +& (1)

Comparing this transfer function with
bo 3+ bys*+ beS+ by

we obtain
Q/-'-'—"J, dz——:/// 43;—‘
5020, b/=01 bI-:/, b3=3

(a) Controllable canonical form: Referring to Equations ( 11-3) and (11-4),
we have :

s ] Ir. T "
Li=le o a|+|o|« (2)
X, | "¢ Y x| |/
L, T - [ § U -
—x,
? = [3 / 0] A (3)
A s
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Note that because of the cancellation of the terms (s + 3) in the transfer
function, the system defined by Equations (2) and (3) is state controllable,

but not observable.

(b) Observable cancnical form: Referring to Equations (11-5) and (11-6), we
have ‘

7'(,- FO o —5- r)(,- f'3'
Ll =7 o —s||Xe|+|1]| U (4)
-’E-U 0 /1 =€ %] ho_
X |
y=1L[c o /]x (5)
X3 |

Because of the cancellation of the terms (s + 3) in the transfer function given
by Equation (1), the system defined by Equations (4) and (5) is observable, ‘but

not state controllable.

It is important to note that when cancellation of the numerator and deno-
minator of the transfer function occurs [see Equation (1)], the system becomes
controllable but ‘not observable or observable but not controllable depending on

how one writes the state and output equations.

12-2.
s+/ o -1 "o

q(’)=£(’£‘é)-,£=[/ s 1l -1 s+2 o | |1
e o s+3| |/

/ ] (s+2)(5+3) 0 s+2 |lol
= [r 77 / |
(s+1)(s+2)(5+3) | 5t3 (s+1)(s¢3) 1 /
o o (st)sw))|!
25*+9s+ 8 - 25*+9s+ &

(S+/)(s+2)(s+3) ~  SP+ 45 /) sté€
Comparing this transfer function with
boS3+ bist+ 425 T b
3+ 9,5*+ q25+4a;
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we obtain
a=€£, Aa=//, d3z =6
ba-:ﬂ, 5122,‘ ba:?, b_g"—'g

Referring to Equations (11-5) and (11-6), we have the state-space equations in
the following observable canonical form:

il F 0 0 _—é ’.x, ,-8

L(=[1 o =/l ||%| |8
_XJJ _0 / —é.J.an _2'_J
X
y=[o o 1]x%
X

B-12-3. Referring to Equation (12-18), the state-feedback gain matrix K can
be given by

K=loo/1lE 48 A1 #Q

where

$(A) = A+ X AT+ A+ ols T

The values of {1, 2, and X 3 are determined from the desired characteristic
equation:

|sI—(A-8R)| = (s+2+j8)(st2-j8)(s+2)

S+ /¢ + fos + 200

I

S"'I‘O(/St'f“’(z-f'l" Xz

Thus, ,
¥, =%, =60, o3 =R00
Then
o 1 0|3 o 1 o|l® e 1 o /00
P@)=|0 0 1| +/1%|0 o 1| Téolo o 1|72, /0
] =5 =4 -] -5 -6 A i X7
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/99 KX -3
=|-2 s9 7

7 —#3 /7
Since |
o
[ A8 A8]=| 1 1 —u

! =17 60

we have the desired state-feedback gain matrix 5 as follows:

T o 0 (V'[9 s 5

kK=[o o (1) 7 1 =V —~8 /59 9
[ -1l 6o =7 -¥3 /17

0.73¢ 79 0. 855 ¢ 0. /¥%E
=[o 0 /]| o.88c¢ o0.0020 —0.0120
01946 —p.0s20 0.0/20

-

/279 s ¥

X| -3 /59 7
-7 —¢3 /77

-

[ /30,3994 /70.206F 28783/
=[e o0 )| 1702169 ¥RY2/G  SsvE)
22.7283/ NSV E/ 2.48/9

=[20283/  $5/87 2.¢8/9]

B-12-4. MATIAB programs to obtain the state-feedback gain matrix K by use of
the command "acker" or command - "place" are shown on the next page.
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9% **+** Generating matrix K by use of command "acker" *****

A=[0 1 00 0 1;-1 -5 -6];
B=[0;1;1];

J=[-2+j*4 -2-j*4 -10];

K = acker(A,B,J)

K=

28.7831 5.5181 2.4819

1 % ***** Generating matrix K by use of command "place" *****

A=[0 1 00 0 I;-1 -5 -6];
B =[0;1;1];

J=[-2+j*4 -2-*4 -10];

K = place(A,B,J)

place: ndigits= 15

K=
28.7831 5.5181 24819

B—lz—s .

Substituting

= + (74
Jd e 2| (o
-
0 / (T, / X,
— - [kl ‘z]
o 2|4 [4 2,
— ’-'k/ /—él X,
0 2 ||1Xa

The characteristic equation becomes
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s+ 76, —]tka
4 S-2

=(5+k))(s-2) =0

Because of the presence of one eigenvalue (s = 2) in the right-half s plane, the
system is unstable whatever values kj and kp may assume.

B-12-6. Since

YG) /0 _ /0
U6) ~ (5+1)(s+2)(s+2) s+ gst /)5S + &

we have

o0

Y16y v/l +6y=/oa

Using the state variables as defined in the problem statement, the state equ-
ation becomes .

=, -~ -r T -
x/ 0 / 0 X’ l 0
Ll=loe 0 I||x|+|o]|«
X -6 -/ =b||x3| |s0
e - b - S

Thus
e / @ 0
A=|lo o ]|, B=lo
-6 =/ =6 /o

Referring to Equation (12-18), the state-feedback gain matrix K can be given by
Yo
-1
2
= o
K=o 0 /118 48 A'B] ¢

where
¢(‘lj\) =d3+ x,dz'l' D{zd-" N.?:.L:

The values of ¥ 3, & 7, and & 3 are determined from the desired characteristic
equation:

|sI- (A-BK)| = (s+2+j 207 )(s+2~32F )(5+r0)
| = s?+/hs2+ SE s+ /60
=5 +x)st+AHest+

Thus
X, =/¢, o2=88, &3=/60
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Hence,

6 1 ol’ o 1 0] o [/ 0
d@p)=| o o | *H#| 0o o 4| t¥|lo o
-6 =/ -6 =6 =</ -6} -6 =/ -4

/! 0 0

+lol p 1 o

o ¢ /

Since
0 7 /0
[8 A8 AB]l=| o s0 -4o
wA WA "wa /0 -éa 260
we have

-

o 0 0| ey e s

K=[0 e 710 0 -6o| |~¢8 46 -3
0 -40 zsp /8 | -/5 &%

. - -

r/./ 0.6 o./lll /s¢ s~ ¥
=[o o 7]|%6 o/ 0 ||-4p £ -3
2./ o 0 | g —/s S |

(102, 37246 ey
=[_'a‘ e +]| ez ¢ 33.6 & s~

/f'éL ¢|$~ alg

=[s¢ 45 o8]

B-12-7. A MATLAB solution of Problem B-12-6 is given on the next page.
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% ***** Generating matrix K by use of command "acker" *****

A=[0 1 0;0 0 1,6 -11 -6];

B =[0,0,10];
J=[-2+j*2%(sqrt(3)) -2-j*2*(sqrt(3)) -10];

K = acker(A,B,])
K =
15.4000 4.5000 0.8000

B-12-8. From Figure 12-49 we obtain

. . AAA Wy
where
“IS =I:*l fa &_g]
Noting that the rank of ,
4 0 /

M=[B AB ABl=|op | -6
A wA [ Y nA, v
/! =6 3/
is three, arbitrary pole placement is possible, The characteristic equation
for this system is
, s =/ 0
ISI"‘Al: s =/ | =sd+v6s*+ 85
wA WA
o & St6

=353+4,5*+ 4.8 +43 =0

Hence
a =6 , a, =5, ds =0

Since the state equation for the system is already in the controllable cano-
nical form, we have E = ‘:‘[_‘ The desired characteristic equation is

(s+2+;¢)(s +2-)¢)(5+M) =53+ /¢ 52+ fos + 200
=5 'f"“ls -f-sz‘-{—D(.’
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from which we obtain

¥y =/%, 2=§67, oy =200
Then '
55[0’3-“3 o2 — Q2 NI"‘I(]T-I
=[200-~0 bo-s=  s¢-6]I
WA
=[200 s& #£]

The state equation for the designed system is

[ 4
A =

Y,

Ax+Be = Ax+ BOAfx+km)

=& BhY

Since

o 1 ol [o o [/ 0
A-BK =lo o ) |=10|(200 s 8)=| 0 o
- o -5 -é] |/ -200 -60 -I¢
we have _
zl, Tﬂ / 0‘ X 0
X, |=] 0 o ! ||xe|t+]| 2|7 (1)
, | |20 40 ~/4 11 X3 200
The output equation is
Y= [/ o o] 2, - (2)

A3

The unit-step response of the designed system can be obtained from Equations

(1) and (2) by substituting r = 1(t) and finding y(t).

A MATLAB program to

obtain the unit-step response curve [y(t) versus t curve] is given on the next

page.
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% ***** Unit-step response *****

A=[0 1 0,0 0 1:;-200 -60 -14];
B = [0;0;200];

C=1[1 0 O
D = [0];
step(A,B,C,D)

grid
title{"Unit-Step Response of Designed System’')

The resulting unit-step response curve is shown below.

2 Unit-Slep Response of Designed Sy.t(em
LN

08

%0.6 /

04— /

02 //
% 05 1t .15 2 25

Time (sec)

Derivation of the state-space equations for the system:

(Mim)% +mls =«
me*é +ml X =mile

which can be modified to

MLE =Mm)g8 —u
Mz = u—mgl

Since the state variables are defined as

QC’:I, Xy =

we get the following state space equations:
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Referring to Section
12-4, a mathematical model for the inverted pendulum system shown in Figure 12-
50 is given by



A
M+m

#| | m

v 0

3

. -

_Xg . M 7

7/ / 174

yz 174 7

QD

(2

Substituting the given numerical values into Equations (1) and (2), we obtain

the foll_owing state-space equations for the system:

1 [ o
',_ _| /2. 2€2s
03 - P

| % __."2%‘25_
J; I A%
72 B o

Determination of the state-feedback gain matrix K:
A

this system are

0
/2. z; 25

1 3=
n

o

and the desired closed-loop poles are at

-2.4¢285

/

o
4
o

l

T

DN D o

Since matrices A and B for
“a L




the following MATLAB program can be written for the determination of the state-
feedback gain matrix k.

9% ***** State feedback gain matrix K *****

A=[0 1 0 0;122625 0 0 0,0 0 0 1;24525 0 0 O];
B ={0;-0.5;0;0.5];

J=[4+*4 -44*4 -20 -20];

K = acker(A,B,J)

K=
1.0e+003 *

-4.1381 -1.0094 -2.6096 -0.9134

Obtaining system response to initial condition: To obtain the system respoﬁse

' to the initial condition, we first substitute

“=-Kz
into the system equation
V :2‘ =AX+Bu
Yan WAA, VA "
and get the following equation:
x =(A-BK)X
“A ooy o

which, when the numerical values are substituted, can be given by

re 1 MU
X, ~2.0568 —p.50¢7 /3048 —0:%5¥7 || x,
' (3)
Xy 0 v 0 V7 oo/ 13
x| | 20866 o.5v¢7 /3048 o %567 || 2,
Let us rewrite Equation (3) as
. A
k=4x
where
r ) ]
o o.00/ e 4
A ~2.0568 —o.S04] —/ 3048 —0.£SE€]
A = .
w e o o o.00/
2.066€ 0.50 47 /H30¢8 o.«S567 |
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A
Define the initial condition vector as E, or

=~ -

0

B =

~N O O

=3 -

Then, the response of the system to the initial condition can be obtained by
solving the following equations:

2Z2=AT+Bu
o w;\m “:“
;(-—.AZ"'E“

The following MATLAB program will generate the response of the system to the
initial condition. 1In the MATLAB program we used the following notations:

A=AA B =BB

wA A

% ----- Response to initial condition -----

" op #=### This program obtains the response of the system
% xdot = (Ahat)x to the given initial condition x(Q) *****

9 ***** Enter matrices A, B, and K to produce matrix
%AA = Ahat [ XX X B J .

[0 1 0 0;12.2625 0 O 0;0 0 O 1;-2.4525 0 0 OJ;

A=

B = [0;-0.5;0;0.5];

‘K = [-4138.1 -1009.4 -2609.6 -913.4};
AA = A-B*K; ,

% ***** Enter the initial condition matrix BB = Bhat *****

BB = [0;0;0;1}];

[x,z,t] = step(AA,BB,AA,BB);
x1=([1 0 0 O]*x";
x2=1[0 1 O O]*x%;
x3=[0 0 1 O]*x";
x4=[0 0 O 1]*x";

% ***#** plot response curves x1 versus t, x2 versus t; x3 versus t,
% and-x4 versus t on one diagram *****

subplot(2,2,1);
plot{t,x1);grid

title('x1 (Theta) versus t')
xlabel{'t Sec')

ylabel('x1 = Theta')

subplot(2,2,2);
plot(t,x2);grid. -
title('x2 (Theta dot) versus t')

xlabel('t Sec') ,
ylabel("x2 = Theta dot’)
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subplot(2,2,3);
plot(t,x3);grid ‘
title{'x3 (Displacement of Cart) versus t')

xlabel('t Sec’)
ylabel('x3 = Displacement of Cart’)

‘'subplot(2,2,4);

plot(t,x4);grid

title('x4 (Velocity of Cart) versus t')
xlabel{'t Sec')

ylabel('x4 = Velocity of Cart')

The resulting response curves are shown below.

x1 (Theta) versus t ‘ x2 (Thela dot) versus ¢

0.2 - 5
5] Z € 0 L
2 a8
= 0.2 / ,ug
® i -5

0.4 v SN

0 s 1 15 2 o5 1 15 2

t Sec _ t Sec
x3 (Displacement of Cart) versus t - x4 (Velocity of Cart) versus t

08 - 10
5. 1A |
o
g 04 \ 35

3

W -—
.:.“ 0.2 ; 0
$ AAve
a 0 = x
R

-0.

20 ’ 0.5 4 15 2 .50 0.5 1 1.5 2

t Sec

B-12-10. We shall present three methods for the design of the full-order state
observer. .
We shall first transform the system equations into the observable

Method 1:
canonical form. Define a transformation matrix 9,. by
/
—_ *
Q =(WN*)
where
wA wa m /

[
' |
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where a; is a coefficient in the characteristic equation of the original state

equation:
' s+ -/
oW -/ s+2
= s¥+q,5+d,
.'I‘hus

and » ,
13 /
‘ [/ 0

v\hv/\_—:
Hence V :
3 /W0 pA /
~1_ * _ =] ° .
Q =Wy "[/ o][-—/ /] |7 o
and '
o /
=1, -2
Define a new state vector ; by
a=a§.

Then, the state and output equations become
F=R7A8RF
A

wA W vy A

y=C&%

where : ’ ; /
' 2 /|- ! o -

8 é 8 —l:/ 0][ / =2l ! -2 / -3

. o /

The new state and output equations are in the observable canonical form. Re-
ferring to Equation (12-61), the state observer gain matrix Ko can be given by

_ Xy — Az
(fe B Q“ ) =4y

where of ; and & 7 are determined from the desired characteristic equation:
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(s=p1)(5-p2) = (s+8)(5+5) = s*+/05 + 25

=5*+u,s5+&;, =0

as

Hence,

Method 2: Define

Then, the characteristic equation of the observer is

st/+hke, —/

[st-a~kegl=_, " s

s

=S*+(/+ ke, +2)St It 2ke, + ke,

sS4 fos +25

Hence
|+ ke, + 2 =10, [|+2ke, T+ ke; =25

or

éc'-—:?; kea =/a

Method 3: Next, we shall obtain the observer gain matrix Ke by use of Acker-
mann's formula given by Equation (12-65):
~1

Ke = #(A) c:q

A A

0
/

where @g(s) is the desired characteristic polynomial, or

¢) =(s-p,)(s—px) =E+sHs+s) =S+ 105 r2s |
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Hence

PA)=A"+ /oA +25T
A L ] BN R B KA
=l s -2 +100, -2 >lo -._7 /0
17 21 o' [o] [r7 7|+ olfe] _[7
Ke = 9 soll-1 ({72 sl 7] /0

The equation for the full-order state observer is given by Equation (12-60):

%= (kg L +Burkey

(20

where B = & in this problem. Hence

% - 7 A 7
"fzj Zd /0 Xz

or . A~
i.y’ N A R 7

This is the equation for the full-order state observer.

B-12-11. A full-order state observer for the given system is designed by use
of MATLAB. The MATLAB program used for the design of the state observer is given

below.

% ***** Design of full-order state observer *****

A=[0 1 00 0 1;5 -6 O];
c=[1 0 o

L=[-10 -10 -15};

Ke = acker(A',C'L)

Waming: Pole locations are more than 10% in error.

Ke=

35
394
1285
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Referi'ing to Equation (12-60), the full-order state observer is given by
e ns
% = (A~ Z +Bu + k

(ﬂ 50 g ) WA WA w\e g'

%
2 [ -3 7 olla] | 35
2| =|-322 o /||%|t|0|4T|39¢4|Y
3:(, —/2%p -6 O A A /1285

We shall present two methods for obtaining the full-order state ob-

B-12-12.
A MATLAB solution is also given.

server gain matri_x Ke.
Referring to Equation (12-61), the state observer gain matrix Ke

Method 1:
can be given by
oy —-ds
Ke = Q oy — 47_
Ya Y
«l —4/

Matrix Q is given by
“wA

vhere
/ o0 0
N —.__.[ca‘ﬁ A*%* d*2£+] =0 / 0 =“I;
wA Y wa 0 0 /
a2 q, |1
u\'!': 9, [( o©
/ o 0

The values of aj and ap are determined from the characteristic equatlon of the
original system.

_ s -/ 7]
sI-gl=| o = -/
~f2%f  —03954 S+ /S

S + 3. /55— 0,398y S—/ 284

|

1

s2+g,5*+ 4,5 +4;

4) =3./%5, az =—-013986, Az=—/2%%
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Thus ,
—0\3956 = 3/%8 /

'!AV;' 3. /8 / 4
/ 0 Y/,
Therefore [-0.3756 /%5 T/ Te o /
-] .
Q:(Wd*) =| 3./% 5 / ol=|o / -2/#5
~ / 0 0 !/ =3r¥S 0,286

The values of & j, X', and 3 are determined from the desired characteristic
equation.

(s=p:)(s—p2 (5 ~H3)

= (s+s—joG (S +5+)N3)(5+/0)
= (s2-+ fos + /100 ) (s +/0)

= 52 +20s*+ 200 s + /050

=57 +od; S5+ X Stoly =0

Thus
v, =20, oG =200 , Y3 =000
Hence
: s —dz | | ¢ o / 1000 1 /.2 g
Ke =f’2 W, —a. =0 7 -3./& || 200 +0.395%6
&, — 4y /=388 /0028866 || 20 — 3./ 88
/6. 8SS
=| /¢7.387

S¥g. 387/

Method 2: Define the state observer gain matrix as

kes
b/fe = | kez
kes

The desired characteristic equation becomes
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S o0 0 / 0 Ke) .
lsg—d+f¢C]= o s ol=|o ) / + | ke|[7 2 2]
| o~ oo S 12¢¢  0:3956 —3./%S|  lkes
S"f"ke/ ,.—I o
= kez S =/
—/2¢y 1+ ke —0:395-6 S+ 3. /%8~

= 53+ (he, 13 /#5) S+ (3./85 ke, t her —3756)s
t (~l2g Fhey T+ /%S ke, —O-355€ Ke,)
=S534+208"+ 2005+ /1002 =0

Hence
Koy + 3788 = 20 |
3./5& ke, -i-(cé,_ —o. 3956 = 200
—h2%¢ + Reg 1+ /%5 kee — 03756 ke, = (000

from which we obtain

ko) = (.55 , Reoa =/*7.387, Ltes=S2¥328/

or
/6 ES ST

ke =|/#2. 387
Sye#. .38/

Referring to Equation (12-60), the full-order state observer is

ENR.

= (A-feg) Z+2utLey

or

g ~/E B85S / o 51 o /6, 356
%= | -w7387 0 / L+ 0 |Uut|renzs7|Y
» . ~ i -
X, -5¢3./37 03958 -3¢ || T l2g g S¢K 38/

MATLAB solution: A MATLAB program to obtain the state observer gain matrix
Ke is shown on the next page. ,
LY
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% ***** Design of full-order state observer *****

A=[0 1 0,0 0 1;1.244 0.3956 -3.145};
C=[1 0 0]

L =[-5+j*5*(sqrt(3)) -54*5*(sqrt(3)) -10];
Ke = acker(A',C',L)

Ke:
16.8550
147.3866
544.3809
B—12_13. 4 7
z/ 1/ / 4 ) 0
, = + u
X, o 0|l /
X
y=1[s o],
. 2]

The desired closed-loop poles for the pole-placement part are

S=—0.727/ 1L50707/
and the desired observer pole of the minimum-order observer is at
= — &
The first step to design a observer controller is to determine the state feedback

gain matrix K and the observer gain matrix Ke. By using the MATLAB program given
below we can determine K and Ke.

94, #**3% Determination of K and Ke *****

A=[0 1,0 0];

B=[0;1];

J=1[-0.7071+j*0.7071 -0.7071-j*0.7071];
K = acker(A,B.,J)

K=
1.0000 1.4142

Abb = [0];

Aab=1];

L=[-5];

Ke = acker(Abb', Aab']L)

Ke=
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The feedback gain matrix K and the observer gain matrix K are obtained as follows:

=[/ /,4/9{2] 5 Kez

. Next, we obtain the transfer function of the observer controller. Noting
that the minimum-order observer equation is given by Equation (12-89), we have

7 =(Ap —Ke Aab)f + [(Abb" Ke Aay ) Ke + Apa — Ke Aaq]g+($’b—-ke B,l)u

For the present system,

A =0, Nab =/, Awm=9, A =0, Ba=27, By,=/

Ka=l, Kkp=/rt#2 , Ke=5

By substituting these numerical values into the minimum-order observer equation,
we get

"z‘.’ =(0-5X/) o}' + [(0-sx7)5 + 0- sxoly + (/-$x0) u

or .

H a8y 25y tu

Taking the Laplace transform of the last equation, assuming the zero initial
condition, we have

‘%v/f) =-5 7(s) —25 Y + Uls)

or

76 = —t=[-25ve> + 76) ] (1)
Referring to Equation (12-104) we have
U = -—'fg-_-._/(b %—(/(q ‘I'Kbkg)o‘{
=—/4/¢2 Y — 8§97/ 4

Taking the Laplace transform of this last equation, we obtain
TE)=—/. 47825 6) — 807/ Y ()
Eliminating % (s) from Equations (1) and (2), we have |
UE)= —1¢/¢2 ——[-25Y06) + m«)jl .07/ YE)

Simplifying, |
(515D Uk) = - 1. #1%2 [-25Y5) + U& |~ (5¢5) §:27/ Y5)

from which we get

S+.$‘
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TE) = &oy7/st S _ gy S¥06/25
-Ye) T stéegsr4z St e/¥2

which gives the transfer function of the observer controller. The same cbserver
controller equation can be obtained by use of MATLAB. - See the MATLAB program

given below.

% ***** Design of Observer Controller ****#*

1A=[0 1;0 0]; B=[0;1];

Aaa 0; Aab=1; Aba=0; Abb=0;Ba=0;Bb=1;
Ka (11 Kb=[1.4142];Ke=5;

= Abb - Ke*Aab;

Bhat Ahat*Ke + Aba - Ke*Aaa;
Fhat = Bb - Ke*Ba;
Atilde = Ahat - Fhat*Kb;
Btilde = Bhat - Fhat*(Ka + Kb*Ke);
Ctilde = -Kb;
Dtilde = -(Ka + Kb*Ke);
[num,den] = ss2tf{Atilde, Btilde, -Ctilde, -Dtilde)

num =

8.0710 5.0000

den=

1.0000 6.4142

A block diagram for the designed system is shown below.

Y=0 ' S+ 0, U ?"'0
507/ /757 > / -
Ste.4/42 Sz

Notice that the observer controller is a lead network.

B-12-14. We shall use the MATLAB 'approach to solve this problem. The first
MATLAB | program given in the next page determines the state feedback gain matrix
K and the observer gain matrix 59 The observer to be designed is a full-order

observer.
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% ***** Determination of K and Ke **#***

A=[0 1 00 0 1;-6 -11 -6];
B =[0,0;1}; :

C=[1 0 O}

T=[1%j -14 -5]

K= acker(A,B,))

K=

4 11
L=[-6 -6 -6];
Ke = acker(A',C'L)
Ke=

12
25
72

The state feedback gain matrix K and the observer gain matrix Ke thus obtained are
as follows:

k=[+ ¢ /]

/2
!{e =l 25
=72
The second MATLAB program given below determines the transfer function of the
observer controller.

% Obtaining transfer function of observer controller — full-order observer

A=[0 1 00 0 1;6 -11 -6];
B =[0;0;1];

lc=1 0 o

K=[4 1 1];

Ke =[12;25;-72];

AA = A-Ke*C-B*K;

BB =Ke; '

CC=K;

DD =0;

[num,den] = ss2tf{AA,BB,CC,DD)

num =

0 1.0000 119.0000 618.0000

den =

1.0000 19.0000 121.0000 257.0000
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The transfer function of the observer controller is
U6) S+ /95 +E/8
~Yts) T s34 /952 4+ 2/ 5+ 2857

The transfer function of the given system in state space form is

/
SiPH+ s+ /s T+ E

G =

A block diagram of the designed system is shown below.

r=0 S + /7St ElS U /

——

S pr95 4720 3 +257 SPvEs2+//s+ £

Notice that the designed system is of sixth order.

B-12-15. The transfer function of the plant is
Y6) _ s+ 25t SO
ves) S?t/05* t 24

The corresponding differential equation is

'g"-+/ag}'+294;'/=¢'4'+242+5‘04c

Comparing this plant differential equation with the standard third-order differen-

tial equation

s

we find
G, =/0, 4z =2¢, Az =0, b =0, by={(, ba=2, bz =

Define the state variables as follows:
X, =4~ /3:: 'tc
Y.=2-fu
X3 =Z, — B2
!@o =b, =0
B = 5/—41/5a= /

- 265 -
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P> =ba —~a, 8, =z fp = 2~ /00X =2 = -

Bz = bs —a,8: "‘vﬁz_/; —dsf, = SOH/0X 8~ 2¢X [ — 0 =(0&
Refering to Equation (3-36), we have

X, =+l

2"2 = X3 — &

By = Qs A, —da Xa — A1 As T s U= 2L~ 02y H0
The output equation is

7=%

Hence the state-space representation of the plant is

vl [e 7 o] [/ ]
;(z =10 o /|t |«
R
Z, |
j:[/ o 9] A2
A3

System with a full-order observer: .We now obtain the state feedback gain matrix
K and observer gain matrix Ke when the observer is a full-order one. The MATLAB
program shown below produces 5\ and Ke-

% **+*** Determination. of K and Ke for the full-order observer ***++*

A=[0 1 00 0 1;0 -24 -10];
B =[1;-8;106];

C=[1 0 0];

I=[-1+*2 -14*2 -5];

" format long

K = acker(AB))

K=
0.50000000000000 -0.09040074557316 -0.03984156570363

L=[-10 -10 -10;
Ke = acker(A',C'L)

Ke=
20

76
-240
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The transfer function of the observer controller can be obtained easily with MATLAB.
The MATLAB program given below produces the transfer function of the observer cont-

roller when the observer is of full order.

% Obtaining transfer function of observer controller — full-order observer

A=[0 1 00 0 1;0 -24 -10];
B =[1;-8;106];

C=[1 0 0]

K =[0.5000 -0.09040075 -0.039841566];
Ke = [20;76;-240];

AA = AKe*C-B*K;

BB =Ke;

CC=Kk;

DD=0;

format short

[num,den] = ss2t{AA.BB,CC,DD)

num =

0 12.6915 163.6626 500.0000

den=

1.0000 27.0000 218.3085 554.8695

The transfer‘ function of the observer controller obtained is
TE) /2.63/5 S*+ /636626 s + Sp0. 0900
-Y& $3t 27,0000 s*+ 2/8, 30855 + SSH P75

System with a minimum-order observer: We next consider the case where the state
observer is a minimum-order observer. (The state feedback gain matrix K is the
same as the case of the full-order observer.) The following MATLAB program produces
the observer gain matrix Ke when the observer is the minimum-order observer.

9% ***#* Determination of Ke for the minimum-order observer *****

Abb=[0 1;24 -10];
Aab=[1 0]

L=[-10 -10];

Ke = acker(Abb',Aab'L)'

Ke=

10
-24
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The MATLAB program shown below produces the transfer function of the observer
controller based on the minimum-order observer.

% Obtaining transfer function of observer controller — minimum-order observer

A=[0 1 00 0 1;0 -24 -10];

B =[1;-8;106]; .

Aaa=0; Aab=[1 0]; Aba=[0;0]; Abb=[0 1;-24 -10]; Ba=1;Bb = [-8;106];
Ka = 0.5000; Kb =[-0.09040075 -0.039841566]; Ke = [10;-24];
Ahat = Abb - Ke*Aab,

Bhat = Ahat*Ke + Aba - Ke*Aaa;

Fhat = Bb - Ke*Ba;

Atilde = Ahat - Fhat*Kb;

Btilde = Bhat - Fhat*(Ka + Kb*Ke);

Ctilde = -Kb;

Dtilde = -(Ka + Kb*Ke);

[num,den] = ss2tf{ Atilde, Btilde, -Ctilde, -Dtilde)

mm =

0.5522 12.6915 50.0000

den=

1.0000 16.4478 52.7260

The transfer function of the observer controller obtained is
U6) _ 0-55228*+/2.69/5 s +50.0000

=Y) S*+ /6. %%78 5 + £ 2. 7260

Unit-step response: The closed-loop transfer function when the observer is of
full order is

Ye) o 12:87/5s E ot )55 O 4SE S5+ 14870 900255+ /8 3. /35 + 25000
RE) St H37STH $25 5%+ 750555+ /2250 S P+ 225005 + 25002
The closed-loop transfer function when the observer is the minimum-order observer

is given by _
VB 0.65%+ 13.8 S3+ J035*+ 7245 + 2S00
RE) S+ 275% 4 28553+ f0255 4 20005 + 28500

The unit-step response curves for both cases are shown in the next page. Notice
that the unit-step response curves for both systems are almost identical. :

Comparison of bandwidths of both systems: Bode diagrams of both systems are
shown in the next page. The bandwidths are almost the same for both systems.
The bandwidth for the system with the full-order observer is 2.4771 rad/sec. The -
bandwidth for the system with the minimum-order observer is 2.4201 rad/sec.
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The MATLAB program to obtain the bandwidths of both systems is shown on the next
page.
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% ***++* Comparison of bandwidths *****

numl =[12.6915 189.0456 1461.9002 9183.13 25000];
denl=[1 37 525 3575 12250 22500 25000];
nm?2 = [0.6 13.8 103 734 .2500];

den2=[1 27 255 1025 2000 2500};

[mag,phase,w] = bode(mum],denl,w);

n=1,

while 20*log(mag(n)) >= -3;

n=n+l;

end

bandwidth = w(n)

bandwidth =
24771

[mag,phase,w] = bode(num2,den2,w);
n=1;

while 20*log(mag(n)) >= -3;
n=ntl;

end

bandwidth = w(n)

bandwidth =

2.4201

B-12-16. The transfer function of the plant is

Ys) _ /
ue6) S(s+/)
The corresponding differential equation is
ITI =4
Define the state variables by .
X =4
x, = d

Then the state space representation of the plant becomes as follows:

71 (e /]lx
,’ = 71+ 0 U
Xz 0 -/ 2 /

%)
y=1 o}

Now we obtain the transfer function of the observer controller with MATLAB. The
MATLAB program given on the next page produces the desired observer controller.
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% ***** Obtaining the transfer function of observer controller *****

A=[0 1,0 -1};
B=[0;1];

C=[ 0];
J=[2+*2 -2*2];
L=[-8 -8];

K = acker(A,B,))

K=
8 3

Ke = acker(A',C'L)

Ke=

15
49

AA = AKe*C-B*K;

BB =Ke;

CC=K;

DD =0,

[num,den] = ss2tf{AA,BB,CC,DD)

um =

0 267.0000 512.0000

den =
1 19 117

The observer controller obtained with MATLAB is

G ?) 28 7s+5/2
T SERb s +/17
Block diagrams for Systems (a) and (b) can now be redrawn as shown in the next
page. In System (b), we determined N so that the steady-state output to the
unit-step input is unity.

The closed-loop transfer function Y(s)/R(s) for System (a) is
YG6) 2675+8/2
R~ st+2053+/36S + 345 +57/2

The closed-loop transfer function Y(s)/R(s) for System (b) is
Yis) | 4306/ 5%+83./4575 + $/2
RE) St+Ros3 +/34 5t 3845t 572
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2675+ $7/2 /
sf+ /9s+//7 S(s+/)
(a)
372 /
—_— .
"7 , s(s+/)
2875+ 572 -

s+ /9s+1/7 .

(b)

The unit-step response curves of both systems are shown below. The MATLAB program
that produced these unit-step response curves is given on the next page.

Unit-Step Response Curves
1 .4 T R 1 ¥ L] ] H ] )
12 Systern (a) .
1 -
08 4
§ System (b)
o]
06 ’:‘}lr -
H
i
04} ; .
H
02+ ; .
G 1 L ] 1 1 L L 1 1
0 05 1 15 2 25 3 35 4 45 5
tsec
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% ***** Unit-step response curves ***#*

numl-=[267 512];
denl =[1 20 136 384 512];
num?2 = [4.3761 83.1459 512];
den2=[1 20 136 384 512];
t=0:0.01:5;
yl = step(num1,denl,t);
y2 = step(num2,den2,);
plotityl,“,ty2,\)
title(Unit-Step Response Curves")
xlabel(t sec’)
ylabel("Outputs’)

' gtext(System (a))
gtext('System (b))

B-12-17. To determine the parameter a in matrix A, we first determine matrix
P from w

ATP+PA=-T

or
o o =/ [P Pz P> Pu b Py llo 1 0 /0 0
/ o0 =2 Pir P a3 + P Loz Pas 0 0 / =~lo /o
o | -4 Frs Pas Pz Pis Prsz Pzl -2 —4 oo/
The result is - ' -~
aA*+a ~/ 2a*+ 3 )
2(za~/) 2(2a-1) z
p o= | 24+3 al+at+a+7 at+at/
we 2(n -/ 2(2a~/) 2(2a~/)
3 ar+a+ | a+3
2 2(2a-)) Z[ZA“/)_J

Then we can obtain the optimal value of the parameter a that minimizes the
performance index J for any given initial condition 3&(0). Since :&(0) is given
by
<
Z (0) —_— /)
A
0

. the performance index J can be simplified to

JT=z2"0)F x(9 = p, C°
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Therefore, we obtain
E 3
G
€a -2

J=

To minimize J, we determine a from dJ/da = 0, or
¢a*— ¢a —4
(+a-2)*

=0
from which we get ‘
a=/523 , A= —0,§23
Since a is specified to be positive, we discard the negative value of a. Thus,

we choose a = 1.823. Noting that a = 1.823 satisfies the condition for the
minimum (d2J/da2 > 0), the optimal value of a is 1.823.

B-12-18.

) 2.5K
R(sD St+ L85 +0.5+2.5K

From this closed-loop transfer function, we obtain

28wy = /.5, wnt =0.5 +2.5K

Since S is given as 0.5, we obtain

bm =/ 5 =]0.85+2.5K
from which we get K = 0.7, @y = 1.5. Then we obtain

Ch) _ 7. 75
R(s) S 4SS5+ 2.25
E(s)/R(s) can then be obtained as

E() - RG)-C6) . S*+/.5s+ 0.5
R) RE) ST+ ASS+228

E + /56 +2.25@ =V +/)ST+0,5Y

Since r = 0 in this problem, we have

e +/.5€ +2.28e =0

Define e; = e, e = e. Then we have
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% ! {le

el
e, -2.25 —/S||e,
Note that
L 8
(Cemar = [“eTwa el at
(/] o
where
e, / 0
™ e=ft) o 0

let us solve ATP + PA = —Q for P Using this P we obtain
= wa

J = S e*t)dt = ST(o)fs(a)

Note that for a general.case of

7] /
A=
et -, -2%a),
we have
/ [
" / /
2wy L3ein
Thus, .we obtain
L] ‘ f’,/ﬂ) /
e dt = [e, o) e, 0)) P =[/ o
So ’ 1z eals) [ 1Z|,

— _ ! £

By substituting § = 0.5 and ¢/ = 1.5 into this last equation, we obtain

Sne‘/t)atr=

4

B-12-19. The optimal control signal u will have the form u = -Kx. Therg-
fore, the performance index J becomes

= (T@a e uDdt = [ X1 KR 24

°
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Since ﬁ = E in this problem, Equation(12-115) becomes
(A-BK)7 P+ P (A=~ BK) =—~(I+ KTK)

WA wvann

and Equation (12-117) becomes
W A v v a WA
where P is determined from the reduced matrix Riccati equation:
A
AT7’+ }’A PBBTP +I 0
W A W LW

Solving for a, requiring that it be p051t1ve deflnite, we obtain

p=|% /
~ / /

The optimal feedback gain matrix K becomes
K=8"F =[c /] =[r /]

Thus, the optimal control signal u is given by

L{:—KZ:—XI—X?;
WA v

B-12-20. We first solve the reduced matrix Riccati equation:

AP +FPA ~FBR™ B*jj‘fQ =0

WA VvV e

Noting that matrix A is real and matrix Q is real symmetric, matrix 2 is a real
symmetric matrix. “Hence the reduced matrix Riccati equation can be written as

o o P f"z. + " Pn 0 -.ﬂ
/ 0 Fr P2z 12 far 0 0_

_ P //2 0 [[][O /] 1) P + / 0 = o 0
Fiz paz || ] ] Pr pe | o M 0o 0

This last equation can be simplified to

o 0 + g /OI/‘\__‘F b /’/2/7:.:-‘} o _ o o
Pu piz o Vra \,/”l/’zz 2% | o M o 0

from which we obtain the following three equations:
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f<ta =0
P =P Pz =0
pr2ps - pat =0

Solving these three simultaneous equations for p;j, P12, and p2o, requiring P
to be positive definite, we get w

P :[P/; /’/z]_[\//“"'z /
bt bz Pz / JMtZ

The optimal feedback gain matrixig\is obtained as

K=k"2"F =11le 11]7 fﬂ
M - P/z /922-

=[ . rel=Ls JpFzZ ]

Thus, the optimal control signal is

_=-—V/SA)’C\ ——.=—->(,—-\//u+2 :Zla

B-12-21. A MATLAB program to solve the given quadratic optimal control pro-
blem is shown below.
% ***** Quadratic optimal control *****

0 0;20.601 0 0 0;0 O O 1;-0.4905 0 O OJ;

o1

10; -1; 0; 0.5);

[100 000;0100;0010;0001];
1;

AR RIOW@>
[ ]

-54.0554 -11.8079 -1.0000 -2.7965

The state-feedback gain matrix is obtained as follows:
K =[-stoss¢ —1/.8075 —(00°0 —2.2865

Next, we shall obtain the response to the given initial condition. We sub-

stitute ‘
H=—k£

into the original state-space equation and obtain the following equation:

X=Az+Bu=dx- BhX =(A-BK)Z
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The MATLAB program given below produces the response to the given initial condition.
Note that A - B*K is written as AA and the initial condition [0.1; 0; 0; 0] is
represented by BB. The resulting response curves are shown below and on the next

page.

% ***** Response to initial condition *****

AA = A -B*K;

BB = [0.1; 0;0;0I;

[x,z,t] = step(AA,BB,AA,BB);
x1=[1 0 0 O0O}]*x'; '
x2=[0 1 0O 0O)*x";
x3=[0 0 1 O0]*x";
x4=[0 0 0 1]*x";

plot{t,x1)

grid

title('Response of x1, Theta')
xlabel('t Sec')

ylabel('x1 = Theta')

ploti{t,x2)

grid

title(’'Response of x2, Theta dot’)
xlabel('t Sec')

ylabel{'’x2 = Theta dot’)

plot(t,x3)

grid

title("Response of x3, Displacement of Cart’)
xlabel{'t Sec')

ylabel{’x3 = Displacement of Cart’)

plot{t,x4)

grid

title{'Response of x4, Velocity of Cart’)
xlabel('t Sec')

ylabel{'x4 = Velocity of Cart')

Response of x1, Theta

0.1

0.08

o
2

x1 =Theta

[ =]
) ]
e}

0,02 A\

-0.040
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Response of x2, Theta dot

0.05

b
&

s

X2 = Theta dot
o
>

-0.25

0.3
0

2 3 4 6 7

]
tSec

Response of x3, Displacement of Cart

10

0.35

-

7N

0.25

o
N

x3 = Displacement of Cart
s =
- 0

o
73

Q

-0.05
[}

Response of x4, Velocity of Cert

x4 = Velocity of Cart
o

0.05

-0.05

-0.1
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The END


CD1
4/13 US
The END
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