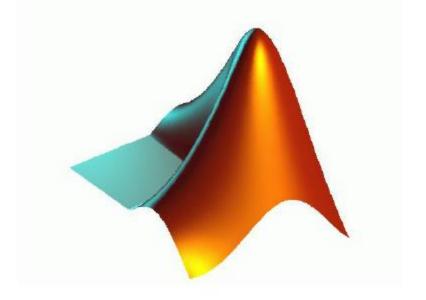
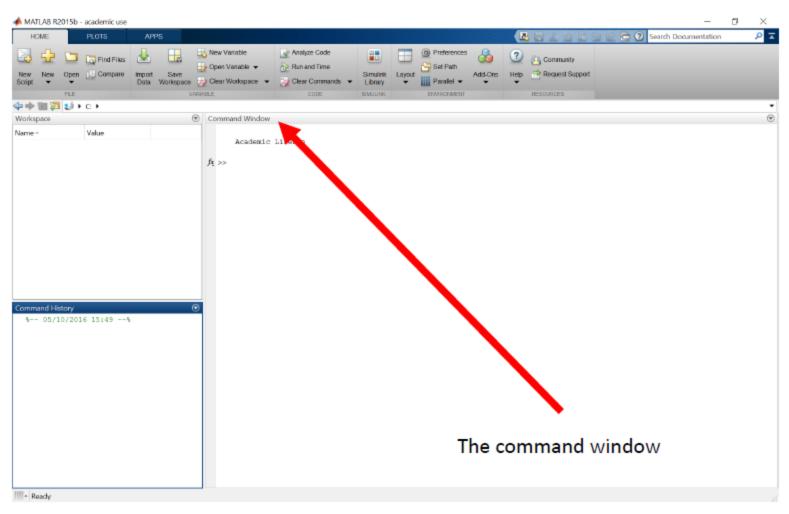
Introduction to MATLAB



MATLAB Screen

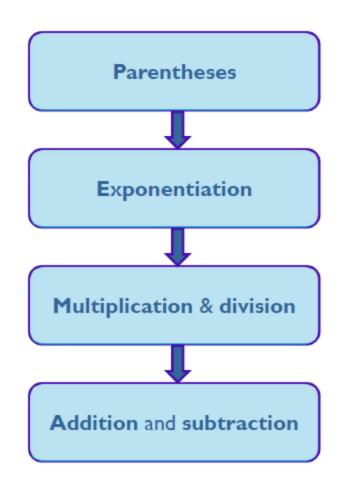


The exact layout can differ from machine to machine, but the windows are always labelled!

Matlab as interactive calculator

```
>> 8/10
ans=
      0.8000
>> 5*ans
ans=
>> r=8/10
r =
      0.8000
>> r
r =
      0.8000
>> s=20*r
s =
      16
```

Order of Precedence of Arithmetic Operators



Note: if precedence is equal, evaluation is performed from left to right.

Scalar Arithmetic Operations

Symbol	Operation	Mathematical Syntax	Matlab Syntax
^	Exponentiation	a ^b	a^b
*	Multiplication	ab	a*b
/	Forward Division	a/b	a/b
\	Backward Division	a\b	a\b
+	Addition	a+b	a+b
-	Subtraction	a-b	a-b

Examples of Precedence

Commonly Used Mathematical Functions

Function	Matlab Syntax
e ^x	exp(x)
\sqrt{x}	sqrt(x)
ln x	log(x)
log ₁₀ x	logI0(x)
cos x	cos(x)
sin x	sin(x)
tan x	tan(x)
cos ⁻¹ x	acos(x)
sin ⁻¹ ×	asin(x)
tan ^{-I} x	atan(x)
x	abs(x)

NOTES

- Trigonometric functions in Matlab use radian measure
- $cos^2(x)$ is written $(cos(x))^2$ in Matlab

Row Vectors

Row vector: comma or space separated values between brackets

```
row = [1 \ 2 \ 5.4 \ -6.6]
row = [1, 2, 5.4, -6.6];
```

Command Window:

```
>> row = [1 2 5.4 -6.6]
row =
```

1.0000 2.0000 5.4000 -6.6000

Column Vectors

Column vector: semicolon separated values between brackets

$$col = [4;2;7;4]$$

Command Window:

$$>> col = [4;2;7;4]$$

- 4.0000
- 2.0000
- 7.0000
- 4.0000

Size & Length

- You can tell the difference between a row and a column vector by:
- ➤ Looking in the workspace
- > Displaying the variable in the command window
- Using the size function:

To get a vector's length, use the length function:

```
>> length(row) >> length(column)

ans = ans =
```

Other Methods for Creating Vectors

The colon operator (:) easily generates a large vector of regularly spaced elements.

```
\mathbf{x} = [\mathbf{m} : \mathbf{q} : \mathbf{n}] \rightarrow to create a vector \mathbf{x} of values with a spacing = \mathbf{q}
The first value is \mathbf{m}, the last value is \mathbf{n} if \mathbf{m} - \mathbf{n} is an integer multiple of \mathbf{q}. If not, the last value is less than \mathbf{n}.
```

The number of elements = ((n-m)/q)+1

• Examples:

```
x=[0:2:8] creates the vector x=[0,2,4,6,8]

x=[0:2:7] creates the vector x=[0,2,4,6]
```

· Default increment:

If the increment q is omitted, it is assumed to be 1.

```
y = [-3:2] produces the vector y=[-3,-2,-1,0,1,2]
```

Other Methods for Creating Vectors

 The linspace command also creates a linearly spaced row vector, but instead you specify the number of elements rather than the increment.

y = linspace(x1, x2, n) where x1 and x2 are the lower and upper limits and n is the number of points.

Here the increment = (x2-x1)/(n-1)

Examples:

linspace (5, 8, 31) is equivalent to [5:0.1:8]

Default increment:

If n is omitted, the spacing is 1.

Automatic Initialization

```
    Identity Matrix (I)
    eye (n) , eye (m, n)
    All-ones matrix
```

ones(n), ones(
$$m,n$$
), ones($size(A)$)

All-zeros matrix

Matrix of Random numbers (between 0 and 1)

Matrix of Not a Number

$$nan(n)$$
, $nan(m,n)$, $nan(size(A))$

Matrix with elements only in the diagonal:

```
diag([x1,x2,...,xn])
```

Basic Array Functions

Function	Description
size(A)	Returns a row vector [m n] containing the size of the mxn array A
sort(A)	Sorts each column of the array A in ascending order and returns an array of same size as A
sum(A)	Sums the elements in each column of the array A and returns a row vector containing the sums
inv(A)	Computes the inverse of array A
diag(A)	Returns the elements along the main diagonal of A
flipIr(A)	Flips array A about it central column
flipud(A)	Flips array A about it central row

: find(A), max(A), min(A), cat(n,A,B,C)

Some Vector Functions

The transpose operator turns a column vector into a row vector and vice versa.

```
>> a = [1 2 3 4];
>>transpose(a)
>>a'
```

• You can sum or multiply the elements of a vector

```
>> a = [1 2 3 4];
>>s = sum(a)
>>p = prod(a)
```

Addition and Subtraction

 Addition and Subtraction are element-wise operations; sizes must match (unless one is a scalar)

```
>> r2=[2 11 -30 32];
                     Error using +
>> c1=[12;1;-10;0];
                       Matrix dimensions must
>> c2=[3;-1;13;33];
                        agree.
>> a=r1+r2
                        >> r1+c1'
a =
                        ans =
   14
     14
            2
                21
                           24
                                    22 -11
>> b=c1+c2
b =
   15
   33
```

Element-wise Functions

All the functions that work on scalars also work on vectors.

```
>> t = [1 2 3];

>> f = exp(t)

Is the same as

>> f = [exp(1) exp(2) exp(3)]
```

- If in doubt, check a function's help file to see if it handles vectors element-wise.
- Operators (* / ^) have two modes of operation:
- → Element-by-Element
- → Standard

Operators: Element-by-Element

- To do element-wise operations, use the dot: (.* ./ .^)
- BOTH dimensions must match, unless one is scalar.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot * \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = ERROR$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot * \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$$

$$3 \times 1 \cdot * 3 \times 1 = 3 \times 1$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \cdot * \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$
$$3 \times 3 \cdot * 3 \times 3 = 3 \times 3$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} . ^2 = \begin{bmatrix} 1^2 & 2^2 \\ 3^2 & 4^2 \end{bmatrix}$$

Can be any dimension

Operators: Standard

- Standard Multiplication (*) is either a dot product or an outer-product.
- → Inner dimensions MUST match.
- Standard exponentiation (^) can only be done on square matrices or scalars.
- · Standard Division is NOT recommended, multiply by matrix inverse instead.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} * \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = 11$$
$$1 \times 3 * 3 \times 1 = 1 \times 1$$

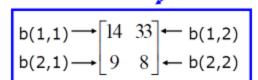
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 6 & 12 & 18 \\ 9 & 18 & 27 \end{bmatrix}$$
$$3 \times 3 * 3 \times 3 = 3 \times 3$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} ^2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Must be square to do powers

Matrix Indexing

- · Matrices can be indexed in two ways:
- → Using **subscripts** (rows and columns)
- → Using **Linear Indices** (as if the matrix is a vector)
- Matrix Indexing: Subscripts or Linear Indices



$$b(1) \longrightarrow \begin{bmatrix} 14 & 33 \\ 9 & 8 \end{bmatrix} \longleftarrow b(3)$$
$$b(2) \longrightarrow \begin{bmatrix} 9 & 8 \end{bmatrix} \longleftarrow b(4)$$

Picking Submatrices:

$$\gg$$
 A = rand(5)

Plotting

Example:

```
>> x = linspace(0,4*pi,10);
>> y = sin(x);
```

• Plot values against their indexes:

```
>> plot(y)
```

Usually we want to plot y versus x:

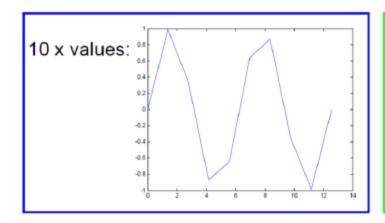
```
>> plot(x,y)
```

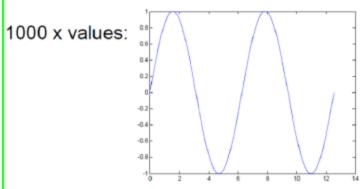
What does plot do?

- plot generates dots at each (x,y) pair and then connects the dots with lines.
- To make the plot of a function look smoother, evaluate at more points:

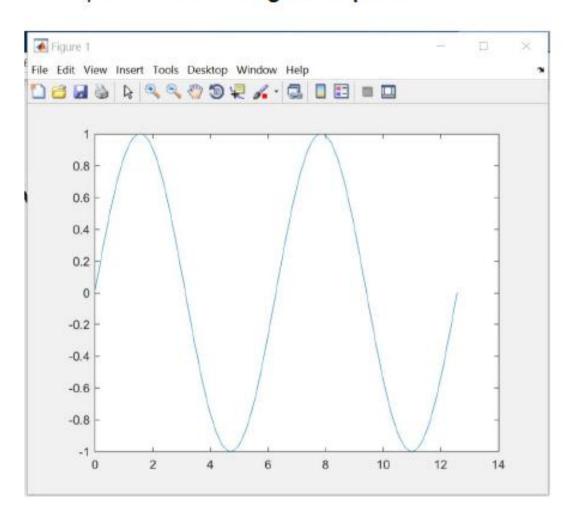
```
>> x = linspace(0,4*pi,1000);
>> y = sin(x);
>> plot(x,y)
```

• x and y vectors must be of the same size or else you will get an error.

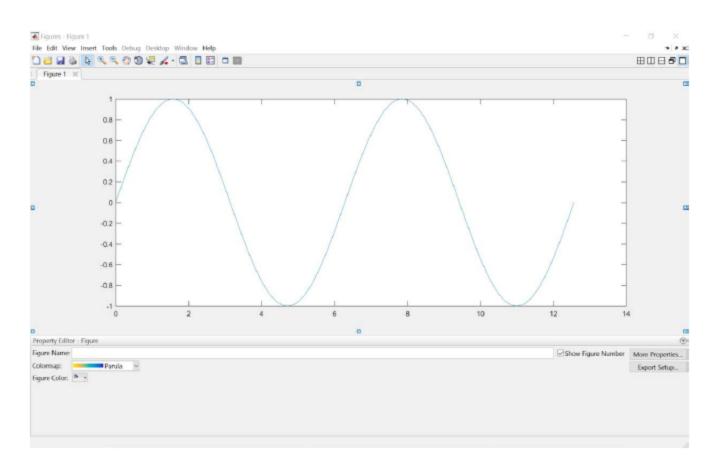




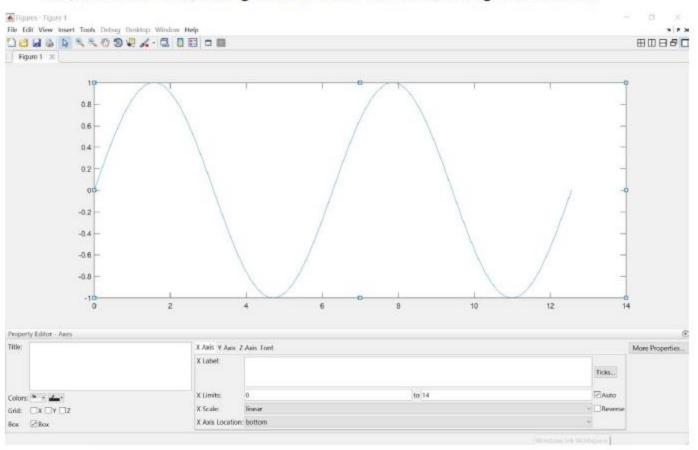
To format the plot click Edit → Figure Properties



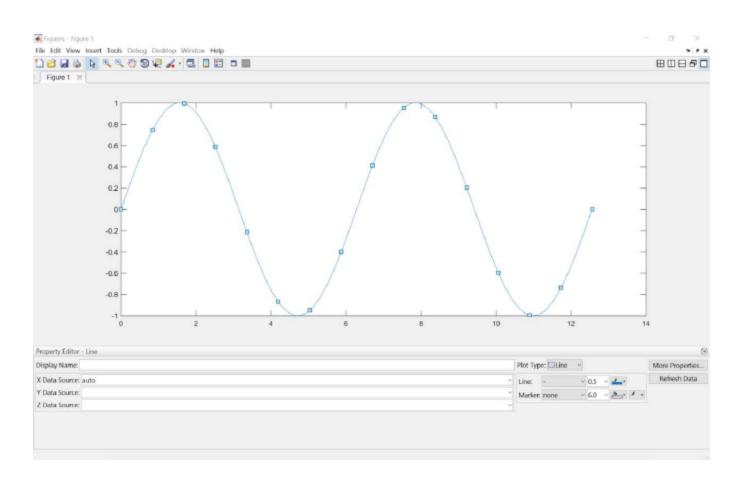
• You will get the following screen, you can change the Figure name.



 Click on one of the axes to get the following screen, you can give the plot a title, label the axes, change the limits of the axes, change the fonts ...



• Click on the line to get the following screen, you can change the line type, thickness and colour. Also, you can show data points.

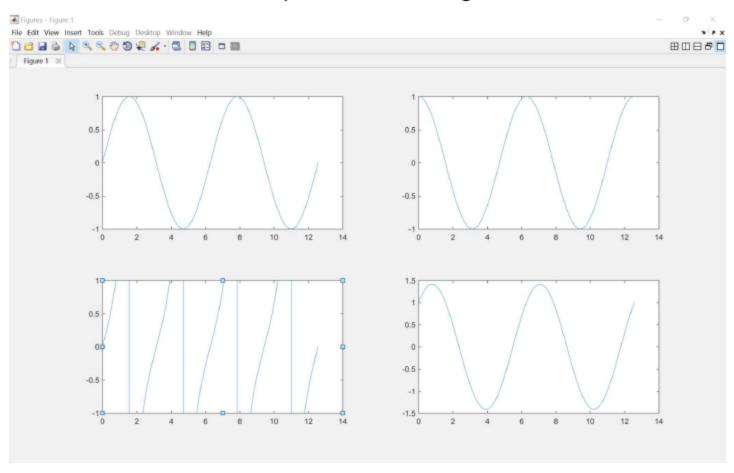


Multiple Plots in One Figure

To have multiple plots in one figure:

```
>> x = linspace(0, 4*pi, 1000);
>> subplot (2,2,1) -> Creates a figure with 2 rows and 2 columns of plots,
                     and activates the first axis for plotting
>> plot(x, sin(x))
>> subplot(2,2,2)
>> plot(x, cos(x))
>> subplot(2,2,3)
>> plot(x,tan(x))
>> subplot(2,2,4)
>> plot(x, sin(x) + cos(x))
```

Multiple Plots in One Figure



Systems of Linear Equations

Given a system of linear equations:

$$\rightarrow$$
 x+2y-3z=5

$$\rightarrow$$
 -3x-y+z=-8

Construct matrices so the system is described by Ax=B

>>
$$A = [1 \ 2 \ -3; -3 \ -1 \ 1; 1 \ -1 \ 1];$$

>> $B = [5; -8; 0];$

Solve the system with a single line of code:

$$\gg$$
 x = A\B Or inv(A) *b

Polynomials

Many functions can be well described by a high-order polynomial.

MATLAB represents a polynomial by a vector of coefficients

- Examples:
- $P = [1 \ 0 \ -2]$ represents the polynomial x^2-2
- $P = [2 \ 0 \ 0]$ represents the polynomial $2x^3$

Polynomial Operations

- P is a vector of length N+1 describing an N-th order polynomial
- To get the roots of a polynomial :

```
r = roots(P)
```

To get the polynomial from the roots:

```
P = poly(r)
```

To evaluate a polynomial at a point:

```
y0 = polyval(P, x0)
```

To evaluate a polynomial at many points:

```
y = polyval(P, x) x and y are of the same size
```

Solve the equation $3x^2 - 2x - 4 = 0$.

```
p = [3 -2 -4];
r = roots(p)

r =

1.5352
-0.8685
```

Solve the equation $x^4 - 1 = 0$.

Solve the equation $x^4 - 1 = 0$.

```
p = [1 0 0 0 -1];
r = roots(p)
```

```
r =
-1.0000 + 0.0000i
0.0000 + 1.0000i
0.0000 - 1.0000i
1.0000 + 0.0000i
```

Command Window

$$>> r=[1,2]$$

$$\mathbf{r} =$$

$$p =$$

$$>> r=[0,5];$$

Examples

```
The polynomial p(x) = 3x^2 + 2x + 1 is evaluated at x = 5, 7,  and 9 with
```

```
p = [3 2 1];
polyval(p,[5 7 9])
```

which results in

```
ans = 86 162 262
```

Polynomial Fitting

- MATLAB makes it very easy to fit polynomials to data.
- Given data vectors X = [-1 0 2] and Y = [0 -1 3]

$$P2 = polyfit(X,Y,2)$$

Finds the best second order polynomial that fits the points (-1,0), (0,-1) and (2,3)

```
poly.m*
       clc
      x=[-1 \ 0 \ 2];
      y=[0 -1 3];
      p2=polyfit(x,y,2);
      plot(x,y,'o')
       hold on
      x=-3:0.1:3;
      plot(x,polyval(p2,x),'r-');
9
```

Symbolic Math Toolbox

• Do not do nasty calculations by hand.

• Symbolics vs. Numerics

	Advantages	Disadvantages
Symbolic	 Analytical Solutions Lets you understand things from the solution form 	 Sometimes cannot be solved Can be overly complicated
Numeric	 Always gives a solution Can make solutions accurate Easy to code 	 Hard to extract a deeper understanding Numerical methods sometimes fail Can take a while to compute

Symbolic Variables

- Symbolic variables are a type, like double or char.
- To make symbolic variables, use sym:

```
>> a = sym('1/3');
>> b = sym('4/5');
>> See help sym for a list of tags
```

Or use syms

```
>> syms x y real
>> Shorthand for x = sym('x','real'); y = sym('y','real');
```

Symbolic Expressions

Multiply, add, subtract and divide expressions

```
>> d = a*b
d =
4/15
>> expand((a-c)^2)
ans =
c^2 - (2*c)/3 + 1/9
>> factor(ans)
ans =
(3*c - 1)^2/9
```