Clutches and Brakes

Clutches and brakes depend on friction in order to function.

Design objectives of brake and clutch design:

- Maximize friction
- Keep it uniform over a wide range of operation
- Minimize wear.

Clutch:

The function of a *clutch* is to permits smooth, gradual connection and disconnection of two members with common axis of rotation.

Brake:

Acts the same as the *clutch* but one member is fixed.

Types of clutches and brakes:

- 1- Friction type
- 2- Magnetic
- 3- Eddy current
- 4- Hydrodynamic (fluid coupling)

In this course, we will consider only friction type brakes and clutch

Friction Type Clutches and Brakes:

These types of brakes must satisfy the following requirement

- 1- The friction torque must be produced by acceptable force.
- 2- The energy produced must be dissipated without producing high temperature.
- 3- Reduce friction wear to give acceptable life.

Drum Brakes

Drum brakes are of two types:

- 1- *External Shoe* that contracts to bear against an outer drum surface.
- 2- *Internal Shoe* that expands to contact the inner drum surface.

Short- Shoe Drum Brake:

The shoe contact only a small segment of drum periphery

 Short-Shoe Analysis: assume that the friction and normal force act at the center of contact.

A Free- Body diagram for clockwise drum rotation:

Taking moment about pivot A for the shoe and lever:
\n
$$
\sum M_A = 0 \implies Fc + fNa - bN = 0
$$
\nTaking moment about O of the drum:
\n
$$
\sum M_O = 0 \implies T = fNr
$$
\nSolving (1) for N and substituting in (2):
\n
$$
\Rightarrow N = \frac{Fc}{(b - fa)}
$$
\n(2)

$$
\Rightarrow T = \frac{fFcr}{(b - fa)}
$$

 $T =$ friction torque[Inertial or load torque required for equilibrium]

Self-Energizing and Self-de-Energizing Brakes:

A brake is considered *self- energizing* if the moment friction force (*fNa*) assists the applied force (F) in applying the brake (reduce the force F). Self-energizing is produced for *cw* rotation of the drum. *Self-de-energizing* brake: if the moment of friction force opposes the application of the brake (increase the force *F* required for brakeing). Self-de-energizing is produced for *ccw* rotation of the drum.

Friction force opposes direction of rotation *F*

$$
T = \frac{fFcr}{(b + fa)}
$$

ccw

Note:

 T (self-energizing) T (self-de-energizing)

Self Locking Brake:

For cw rotation:

If : $(b-fa) \leq 0$ \rightarrow no torque required to produce the brake (self-locking)

 $I =$

 $(b - fa)$ $T = \frac{fFcr}{(b - f d)}$

Self -Locking brake \rightarrow *b* \leq *fa*

For example: For cw rotation if $f = 0.3$ Self locking $\rightarrow b \leq 0.3a$ \rightarrow Self locking: $F = 0$ (no force is required to produce the brake)

Long Shoe Drum Brake:

Long –Shoe: contact arc $\theta \ge 45^{\circ}$.

- Internal Shoe
- External Shoe

Internal Shoe Drum Brake:

It is normally used for automotive rear wheel .

Function:

Both shoes pivot about pin and are forced against the inner surface of the drum by a hydraulic piston at the ends. The spring is used to retract the shoes to the original position

To determine the pressure *p* of lining on the drum caused by applying the force *F* on the left shoe which is deformed (as shown by dashed line) δ = Radial deflection

 $\delta = \delta' \cos \theta = \gamma A G \cos \alpha$ γ = small angle of shoe rotation. $\delta = r \sin \theta = \gamma r \sin \theta$ *AGcosa* = *AN* = $r \sin \theta$ $p \propto \delta \propto \sin \theta$, $p = k\delta$, $p =$ pressure on the drum, $k =$ stiffness constant of lining.

$$
p_{\max} \rightarrow \theta = \theta_{\max}
$$

$$
\Rightarrow \qquad \frac{p}{\sin \theta} = \frac{p_{\text{max}}}{\sin \theta_{\text{max}}} \tag{1}
$$
\n
$$
(\sin \theta)_{\text{max}} = 1.0 \qquad \text{when} \quad \theta_{\text{max}} = 90^{\circ} \qquad \Rightarrow \text{at } (\theta = 90) \qquad p = p_{\text{max}} \Rightarrow \text{max wear}
$$

 \rightarrow Good design: max thickness of friction material at point of max. pressure.

It is required to find the friction torque and the reactions at the hinge of the shoe.

Drum rotating *cw***:**

Taking an infinitesimal area (*dA*)then integrating over the whole contact area

$$
dA = brd\theta
$$
 where: $b = \text{face width of friction material}$

$$
dN = pbrd\theta
$$
 (2)

 $dN = pbrd\theta$ From (1):

$$
p = \frac{p_{\text{max}}}{\sin \theta_{\text{max}}} \sin \theta
$$

(3)

Substituting (3) in (1) :

$$
\Rightarrow \qquad dN = p_{\text{max}} \frac{b r \sin \theta \ d\theta}{\sin \theta_{\text{max}}}
$$

To find the actuating force *F*:

1- Frictional moment about A:

$$
M_f = \int f dN(r - a\cos\theta) = \frac{fbrp_{\text{max}}}{\sin\theta_{\text{max}}} \int_{\theta_1}^{\theta_2} \sin\theta (r - a\cos\theta) d\theta
$$

2- Normal force Moment about A:

$$
M_{N} = \int dN(a\sin\theta) = \frac{brap_{\text{max}}}{\sin\theta_{\text{max}}}\int_{\theta_{1}}^{\theta_{2}}(\sin\theta)^{2} d\theta
$$

3- Summing moment about A

$$
\sum M_A = Fc - M_N + M_f = 0 \implies F = \frac{M_N - M_f}{c} \implies (self\text{-energizing})
$$

If $M_N = M_f \implies F = 0 \implies (Self\text{-}locking)$ No actuating force is required.

In Automotive application, brake must be strongly self – energizing while staying away from self-locking.

$$
\Rightarrow \qquad M_N \ge M_f
$$
 recommended value : $M_N = (1.25-1.5) \quad M_f$
Frictional Torque:

$$
T = \int dF_f r = \int f r dN = \frac{fbr^2 p_{\text{max}}}{\sin \theta_{\text{max}}} \int_{\theta_1}^{\theta_2} \sin \theta \, d\theta = \frac{fbr^2 p_{\text{max}} (\cos \theta_1 - \cos \theta_2)}{\sin \theta_{\text{max}}}
$$

Reaction at hinge A:

$$
\sum F_h = 0 \implies R_x = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (A - fB) - F_x
$$

$$
\sum F_v = 0 \implies R_y = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (B + fA) - F_y
$$

Drum rotating *ccw***:**

The friction force is opposite to the direction of rotation

$$
\sum M_A = Fc - M_N - M_f = 0 \qquad \Rightarrow \qquad F = \frac{M_N + M_f}{c} \qquad \Rightarrow (Self-de-energizing)
$$

\n
$$
R_x = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (A + fB) - F_x
$$

\n
$$
R_y = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (B - fA) - F_y
$$

where:

$$
A = \int_{\theta_1}^{\theta_2} \sin \theta \cos \theta \, d\theta = \left(\frac{1}{2} \sin \theta\right)_{\theta_1}^{\theta_2}
$$

$$
B = \int_{\theta_1}^{\theta_2} \sin^2 \theta \, d\theta = \left(\frac{\theta}{2} - \frac{1}{4} \sin \theta\right)_{\theta_1}^{\theta_2}
$$

Note: the reference is always in the center of the drum. The positive x-axis is taken through the hinge. The positive y-axis is always in the direction of the shoe.

Internal Shoe Drum Brake:

- Normally used in automotive rear wheel
- Energizing and de-energizing characteristics are determined by:
	- 1- Noting the direction of friction force acting upon the shoe surface

2- Determining if this force tends to bring the shoe into or out of contact of the drum For the left figure shown below:

Left shoe: self – energizing

Right shoe: self-de-energizing

In automotive brakes \rightarrow self-energizing is desired \rightarrow decrease pedal force But self-locking must be avoided

Improved Design:

The shoes are inverted and each one is actuated by a separate cylinder.

This arrangement will increase the self- energizing action

 \rightarrow Both shoes are self-energizing in forward car motion.

 \rightarrow This arrangement is used in automotive front wheels.

Long Shoe Drum Brake with External Shoe:

Consider the external brake shown in the figure. We have proved in previous sections that:

$$
p = \frac{p_{\text{max}}}{\sin \theta_{\text{max}}} \sin \theta
$$

1- Drum rotating *cw*:

Summing moment about A:

$$
\sum M_A = Fc - M_N - M_f = 0
$$

\n
$$
\Rightarrow F = \frac{M_N + M_f}{c}
$$
 (Self-de-energizing)

Large force is required to balance these moments (friction moment does not assist the force to produce the brake).

Where M_N is the moment of normal force:

$$
M_{N} = \int dN(a\sin\theta) = \frac{b\,rap_{\text{max}}}{\sin\theta_{\text{max}}}\int_{\theta_{1}}^{\theta_{2}} (\sin\theta)^{2} d\theta = \frac{b\,rap_{\text{max}}}{4\sin\theta_{\text{max}}} \left[2(\theta_{2} - \theta_{1}) - \sin 2\theta_{2} + \sin 2\theta_{1}\right]
$$

Moment of friction force:

$$
M_f = \int f dN(r - a\cos\theta) d\theta = \frac{fbrp_{\text{max}}}{\sin\theta_{\text{max}}}\int_{\theta_1}^{\theta_2} \sin\theta(r - a\cos\theta) d\theta
$$

Substituting the relation: $\sin\theta\cos\theta = \frac{1}{2}\sin 2\theta$

$$
M_f = \frac{fbrp_{\text{max}}}{\sin \theta_{\text{max}}} \bigg[r(\cos \theta_1 - \cos \theta_2) + \frac{a}{4} (\cos 2\theta_2 - \cos 2\theta_1) \bigg]
$$

Friction Torque:

$$
T = \int dF_f r = \int f r dN = \frac{f b r^2 p_{\text{max}}}{\sin \theta_{\text{max}}} \int_{\theta_1}^{\theta_2} \sin \theta \, d\theta = \frac{f b r^2 p_{\text{max}} (\cos \theta_1 - \cos \theta_2)}{\sin \theta_{\text{max}}}
$$

Reaction forces at hinge A:

Reaction forces is obtained summing forces in horizontal and vertical direction:

$$
\sum F_h = 0 \quad \Rightarrow \qquad R_x = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (A + fB) - F_x
$$

$$
\sum F_{v} = 0 \quad \Rightarrow \qquad R_{y} = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (fA - B) + F_{y}
$$

where:

$$
A = \int_{\theta_1}^{\theta_2} \sin \theta \cos \theta \, d\theta = \left(\frac{1}{2} \sin \theta\right)_{\theta_1}^{\theta_2}
$$

$$
B = \int_{\theta_1}^{\theta_2} \sin^2 \theta \, d\theta = \left(\frac{\theta}{2} - \frac{1}{4} \sin \theta\right)_{\theta_1}^{\theta_2}
$$

2. Drum Rotating ccw:

Summing moment about A:
\n
$$
\sum M_A = Fc - M_N + M_f = 0
$$
\n
$$
\Rightarrow F = \frac{M_N - M_f}{c}
$$
 (Self-energizing)

For *ccw* less force is desired to obtain the brake, the friction moment assists the force to produce the brake.

If $M_f \geq M_N$ \rightarrow self-energizing brake is self-locking

It is often desired to make brake self-energizing, while staying away from self-locking.

 \rightarrow In brake design: $f \ge (25-50\%)$ true value, \rightarrow $M_f \approx M_N$

Hinge Reactions:

$$
\sum F_h = 0 \quad \Rightarrow \qquad R_x = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (A - fB) - F_x
$$

$$
\sum F_{v} = 0 \quad \Rightarrow \qquad R_{v} = \frac{brp_{\text{max}}}{\sin \theta_{\text{max}}} (-fA - B) + F_{v}
$$

Symmetrical External Shoe Drum Brake:

If the pivot P is located at the intersection of the resultant normal force (*N*) and frictional force $(fN) \rightarrow$ the shoe will not rotate around **P**. This is desirable to equalize wear.

In practice pivot **P** will move closer to the drum as wear occurs

 \rightarrow increase the tendency of the shoe to pivot around **P**.

Integrating over the symmetrical shoe surface, the intersection point of the normal and friction forces *rf* :

$$
\Rightarrow \left(\int M_f\right)_{rf} = 0
$$

$$
r_f = \frac{4r\sin\left(\frac{\phi}{2}\right)}{\phi + \sin\phi}
$$

where:

*r*_{*f*} : is measured from the drum center. Note that $r_f > r$

 ϕ = total shoe angle.

With the pivot placed at this point, the moment about P is zero. The reactions at P are:

$$
R_x = fN \qquad \longrightarrow \qquad
$$

$$
R_y = N \qquad \bigdownarrow
$$

Friction Torque:

The friction torque, which is equal to the brakeing torque is:

 $T = fNr_f$

where: $r_f > r$, because the resulting frictional force acting on any symmetrical shoe is located above the drum surface.

Example:

Double shoe drum brake with spring force F applied at distance $c = 500$ mm to both shoes. The brake is released by a solenoid. If $f = 0.3$ and $P_{max} = 446$ kPa, $b = 50$ mm. Determine an appropriate value of spring force, and the resulting brake torque and power absorption for 300 rpm drum rotation in either directions.

Solution:

1- Right shoe:

 ϕ = tan ⁻¹(200/150) = 53.13° \rightarrow θ_1 = 8.13° and θ_2 = 98.13°.

2-
$$
a = \sqrt{200^2 + 150^2} = 250
$$
 mm.

3-
$$
\theta_2 > 90
$$
 deg., $\sin \theta_{max} = 1$

4-
$$
M_N = \frac{brap_{\text{max}}}{4\sin\theta_{\text{max}}} [2(\theta_2 - \theta_1) - \sin 2\theta_2 + \sin 2\theta_1]
$$

$$
M_{N} = \frac{(50)(150)(250)p_{\text{max}}}{4 \times 1} \left[2\left(\frac{\pi}{2}\right) - \sin 196.26^{\circ} + \sin 16.26^{\circ} \right] = -1735 \times 10^{3} p_{\text{max}},
$$

Pmax in MPa

$$
5. M_f = \frac{fbrp_{\text{max}}}{\sin \theta_{\text{max}}} \bigg[r(\cos \theta_1 - \cos \theta_2) + \frac{a}{4} (\cos 2\theta_2 - \cos 2\theta_1) \bigg]
$$

$$
M_f = \frac{fp_{\text{max}}(50)(150)}{1} \bigg[150 \big(\cos 8.13^\circ - \cos 98.13^\circ \big) + \frac{250}{4} \big(\cos 196.26^\circ - \cos 16.26^\circ \big) \bigg] = 373 \times 10^3 \, fp_{\text{max}}
$$

6- Brake Torque
\n
$$
T = \frac{fbr^2 p_{\text{max}} (\cos \theta_1 - \cos \theta_2)}{\sin \theta_{\text{max}}} = \frac{(50)(150)^2 f p_{\text{max}} (\cos 8.13^\circ - \cos 98.13^\circ)}{1} = 1273 \times 10^3 f p_{\text{max}}
$$
\n
$$
\sum M_{o1} = Fc + M_f - M_N = 0 \implies F = \frac{M_N - M_f}{c} \text{ (self-energizing)}
$$

 \rightarrow Fs= spring force = 1448 N

7- For left shoe, the spring force will produce the brake pressure. Since, left shoe is selfde-energizing, Pmax will be less than that for right shoe.

$$
\sum M_{o2} = Fc - M_f - M_N = 0 \qquad \Rightarrow \qquad 1448(500) - 1735 \times 10^3 p_{\text{max}} - 373 \times 10^3 (0.3) p_{\text{max}} = 0
$$

pmax= 0.392 MPa

8- Total braking torque

$$
T = T_{RS} + T_{LS} = 1273 \times 10^3 (0.3)(0.446 + 0.392) = 320
$$
 N.m.

9- Power = $T \times \omega$

$$
Power = T \times \omega = 320 \times 300 \left(\frac{2\pi}{60} \right) = 9549
$$
wat (applies for both directions of rotation)

Disk Clutch

Disk clutch operates dry or wet

- 1- Dry clutch: Automotive clutch with manual transmission
- 2- Wet clutch: multi disk clutches used in automotive automatic transmission. The oil serves as a coolant, multiple disks compensate for reduced coefficient of friction.

Estimating the axial clamping force and torque capacity is based on the two basic assumptions:

(a) Uniform pressure:

This assumption is valid for new, accurately manufactured clutches, with rigid outer disks.

The normal force acting on differential ring of radius *r* is $dF = (2\pi r dr)p$

Axial Clamping Force:

$$
\Rightarrow \qquad F = \int_{r_i}^{r_0} 2\pi \, pr dr = \pi \, p \Big(r_o^2 - r_i^2 \Big)
$$
\n
$$
\text{Friction Torque:} \tag{1}
$$

$$
dT = f dF r = (2\pi r) pfr
$$
 f: is assumed to be constant

Total torque:

$$
T = \int_{r_i}^{r_o} 2\pi \, pfr^2 dr = \frac{2}{3} \pi \, p f\left(r_o^3 - r_i^3\right) \qquad \text{(for one driving interface)}
$$

Multiple Clutch interfaces:

For N friction interfaces transmitting torque in parallel \rightarrow Total torque capacity:

$$
T = \frac{2}{3}\pi \ p f \left(r_o^3 - r_i^3\right) N
$$

From eq. (1):

$$
p = \frac{F}{\pi \left(r_o^2 - r_i^2\right)}\tag{4}
$$

Substituting (4) in (2) :

$$
T = \frac{2fF(r_o^3 - r_i^3)}{3(r_o^2 - r_i^2)}N
$$
\n(5)

(b) Uniform Wear:

Wear rate ∞ Friction Work rate Friction Work = Friction Force \times Rubbing velocity For constant f \rightarrow Wear \propto pressure \times Sliding velocity \rightarrow Wear \propto p \times v_e For disk clutch: \rightarrow *v_e* $\propto r$ \rightarrow Wear $\propto p \times r$

 \rightarrow Uniform Wear results from uniform rate of friction work \rightarrow $pv_e = C$ \rightarrow *pr* = *C*

 \rightarrow *p*_{max} at *r*_{min}

For disk clutch with: r_o = outside radius, r_i = inside radius

 \rightarrow *p*_{max} at $r = r_i$

$$
pr = C = p_{\max} r_i
$$

\n
$$
\Rightarrow F = \int_{r_i}^{r_o} 2\pi p_{\max} r_i dr = 2\pi p_{\max} r_i (r_o - r_i)
$$

\n
$$
T = \int_{r_i}^{r_o} 2\pi p_{\max} r_i f dr N = \pi p_{\max} r_i f (r_o^2 - r_i^2) N
$$

\n
$$
\Rightarrow T = fF \left(\frac{r_o + r_i}{2}\right) N
$$
\n(6)

Assumption of uniform wear gives lower clutch capacity than uniform pressure.

Clutch Design: Clutches are designed for uniform wear.

From eq. (6): Max. torque for a given outside radius is:

$$
r_i = \sqrt{\frac{1}{3}}r_o = 0.58r_o
$$

Recommended Range: $r_i = 0.45 r_o - 0.8 r_o$

Disk Brake:

A brake is similar to clutch except that one of the shafts is replaced by a fixed member. This type of brakes is unsatisfactory because of inadequate cooling.

For this reason, *caliper disk brakes* are commonly used.

Drum brake can be designed for self-energizing this has an advantage and disadvantage: Advantage: reduced braking effort

Disadvantage: slight change of friction coefficient (as a result of temperature rise or moisture) will cause a large change in pedal force required for braking.

Disk brakes has no self-energization, hence is not sensitive to changes in friction coefficient.

Caliper disk brake have replaced front drum brakes due to:

- Greater cooling capacity
- High resistance to fade
- Drum brake tends to distort more with heat and large forces than disk brakes.

Cone Clutch and Brakes:

Cone clutch and brake can be considered as the general case of which disk brake is a special case, the cone angle $\alpha = 90^{\circ}$.

Cone clutch normally has one friction face \rightarrow N=1

The effect of the cone angle is to reduce the clamping force.

For the cone clutch shown on the figure:

$$
dA = 2\pi r / \sin \alpha
$$

Normal force on *dA*:

 $dN = pdA = (2\pi rdr)p/\sin \alpha$

Axial Clamping force:

$$
dF = dN\sin\alpha = (2\pi \, r dr)p
$$

Friction Torque:

$$
dT = dNfr = 2\pi pfr r^2 dr / \sin \alpha
$$

(a) Uniform pressure:

$$
F = \int_{ri}^{ro} 2\pi \, pr dr = \pi \, p \left(r_o^2 - r_i^2\right)
$$

$$
T = \frac{2}{3}\pi \, pf \left(r_o^3 - r_i^3\right) / \sin \alpha
$$

$$
T = \frac{2fF(r_o^3 - r_i^3)}{3(r_o^2 - r_i^2)} \frac{1}{\sin \alpha}
$$

(b) uniform Wear:

$$
F = 2\pi p_{\text{max}} r_i (r_o - r_i)
$$

$$
T = \frac{\pi p_{\text{max}} r_i f (r_o^2 - r_i^2)}{\sin \alpha}
$$

$$
T = fF\left(\frac{r_o + r_i}{2}\right) / \sin \alpha
$$

Note:

The smaller $\alpha \rightarrow$ the lower the clamping force \rightarrow the higher the friction torque. If $\alpha < 8^{\circ}$ \rightarrow the clutch tend to grab and become difficult to disengage.

$$
\blacktriangleright \ 8^{\circ} <\!\alpha < 15^{\circ}
$$

Optimum value: $\alpha = 12^{\circ}$.

Band Brakes:

The band is made of steel, lined with a woven friction material

For *cw* drum rotation:

Friction force increases P_1 and decrease P_2 , \rightarrow $P_1 > P_2$ Free-body diagram of Drum:

 $T = (P_1 - P_2)r$ Free-body diagram of Lever: $F = \frac{aP_2}{a}$

$$
F = \frac{c}{c}
$$

Forces acing on an element of the band:

For small angle $d\theta$

$$
\sum F_h = 0
$$

\n
$$
\sum F_h = 0
$$

\n
$$
\sum F_h = 0
$$

\n
$$
\sum M_e = 0
$$

\n(1)

$$
\Rightarrow dN = 2\left(p\frac{d\theta}{2}\right) = P d\theta
$$
\n⁽²⁾

Substituting (2) in (1) :

$$
\blacktriangleleft P = f P d\theta
$$

$$
\Rightarrow \quad \frac{dP}{P} = f \; d\theta
$$

Band force varies [P₁-P₂] between band contact angle $\theta = [0 - \phi]$

$$
\int_{P_2}^{P_1} \frac{dP}{P} = f \int_0^{\phi} d\theta
$$
\n
$$
\Rightarrow \quad \ln \frac{P_1}{P_2} = f \phi
$$
\n
$$
\Rightarrow \quad \frac{P_1}{P_2} = e^{f \phi}
$$
\nBut:
\n
$$
dN = pdA = pbrd\theta
$$
, where: $p = \text{pressure between drum and band.}$
\n
$$
dN = P d\theta
$$
\n
$$
\Rightarrow P = pbr
$$
\n
$$
\Rightarrow P \propto p
$$

*p*_{max} occurs at $P_{\text{max}} = P_1$

at $\theta = \phi$ $P = P_{\text{max}} = P_1$

 \rightarrow at $\theta = \phi$ $P_1 = p_{\text{max}} br$

For *cw* rotation: Self-energizing

c $F = \frac{aP_2}{a}$, where $P_2 < P_1$ [friction force increases P_1 and decreases P_2] For *ccw* rotation: Self-de-energizing

$$
F = \frac{aP_2}{c}
$$
, where $P_1 < P_2$ [friction force increases P_2 and decreases P_1]

Differential Band Brake:

To increase the self-energizing action the differential

$$
F = \frac{(P_2 a - P_1 s)}{c}
$$
, where P₁ < P₂ due to friction force

For self energizing: $s < a$ (to insure that the lever will tighten the band at distance a more than at distance *s*).

Energy Consideration in Brakes and Clutches:

The hoist shown in the figure is required to lower a mass (m)

Assume that the brake is applied at time $= t_1$

At *t*¹ $\overline{\omega} = \omega_1$, $V = V_1$, $h = h_1$

At t_2 the values are reduced

 $\omega = \omega_2$, $V = V_2$, $h = h_2$

during time $(t_2 - t_1)$

Work done by brake $=$ wk_B Rolling friction, Bearing friction, air resistance $= w k_R$ Motor work $=$ wk_M wk_M = Work done by the machine in driving energy consuming device. If the motor drives the machine during braking period \rightarrow wk_M = -ve

Total work done $=$ Change in Energy

$$
wk_B + wk_R + wk_M = \sum \frac{m}{2}(V^2 - V^2) + \sum \frac{I}{2}(\omega_1^2 - \omega_2^2) + \sum W(h_1 - h_2)
$$

the summation is made for different masses at their corresponding speeds and positions.

 wk_B = mechanical energy transferred into heat at the brake.

$$
wk_B = \int_{\psi_1}^{\psi_2} T d\psi = T(\psi_2 - \psi_1)
$$

 ψ = angular displacement of the drum

For constant torque:

If
$$
T = \text{const.} \rightarrow \text{linear deceleration} = a = \text{const.}
$$

\n $\rightarrow \text{Angular deceleration} = \alpha = \text{const.}$

Velocity displacement relation:

$$
V_2 = V_1 - a(t_2 - t_1)
$$

\n
$$
S_2 = S_1 + V_1(t_2 - t_1) - \frac{a}{2}(t_2 - t_1)^2 = S_1 + \frac{V_1 + V_2}{2}(t_2 - t_1)
$$

\nand angular velocity and displacement:

and angular velocity and displacement:

$$
\omega_2 = \omega_1 - \alpha(t_2 - t_1)
$$

$$
\psi_2 = \psi_1 + \omega_1 (t_2 - t_1) - \frac{\alpha}{2} (t_2 - t_1)^2 = \psi_1 + \frac{\omega_1 + \omega_2}{2} (t_2 - t_1)
$$

Clutch Work Energy Relationship:

In the clutching of two masses initially rotated in the same direction with different speeds, the higher speed mass supplies energy to lower speed mass. In general: the work done by friction equal the net change in energy of the system. Consider two masses with *I* and *I'*, rotating in the same direction with initial velocities ω ω'

Assuming that clutch torque, $T = const.$ during engagement

At time, $t_1=0$ $\omega > \omega'$ Left Shaft: *dt* $T = -I \frac{d\omega}{dt}$ Right Shaft *dt* $T = I' \frac{d\omega'}{dt}$ Integrating both equations: *t I T* $\omega = \omega_{1}$ – *t I T* $\omega' = \omega'_1 + \frac{1}{\nu'}$ A *t*=*t*² , relative motion ends (both shaft rotate at the same speed)

$$
\begin{aligned}\n\blacktriangleright \omega_2 &= \omega'_2 \\
\omega_1 - \frac{T}{I} t_2 &= \omega'_1 + \frac{T}{I'} t_2 \\
t_2 &= \frac{\omega_1 - \omega'_1}{T} \frac{II'}{I + I'}\n\end{aligned}
$$

 \rightarrow the time required for engagement is proportional to velocity difference

 t_2 = time required for clutch engagement Subst. t_2 in eq. (1)

 \rightarrow Common velocity:

$$
\omega_2 = \omega_2' = \frac{\omega_1 I + \omega_1' I'}{I + I'}
$$

Displacement after time t₂:

$$
\psi = \int_0^t \omega \, dt = \int_0^t \left(\omega_1 - \frac{T}{I} t \right) dt = \omega_1 t - \frac{T t^2}{2I}
$$

$$
\psi' = \int_0^t \omega' \, dt = \int_0^t \left(\omega_1' + \frac{T}{I} t \right) dt = \omega_1' t + \frac{T t^2}{2I'}
$$

The work done by the clutch after time t:

 $Work = Clutch Torque \times Relative displacement$ $(\omega_1 - \omega_1')t - \frac{T^2(I+I')}{2H}t^2$ $(\psi - \psi') = T(\omega_1 - \omega'_1)t - \frac{1}{2H'}t$ $W_K = T(\psi - \psi') = T(\omega_1 - \omega_1')t - \frac{T^2(I + I)}{2H}$ $=T(\psi - \psi') = T(\omega_1 - \omega_1')t - \frac{T^2(I + I')}{T}$

Clutch work at completion of engagement, $t = t_2$

(1)

$$
w_{KC} = \frac{II'}{2(I+I')}(\omega_1 - \omega_1')^2
$$

 w_{kc} = energy dissipated by the clutch or brake. \rightarrow energy dissipated is proportional to velocity difference squared.

S. I. units: $wkc = E = Joule$

U. S. units: $wkc = E = lb.in.,$ wkc = $E = (lb.in./9336) = Btu.$

Energy Absorption and Cooling:

Heat transfer equation of clutch or brake:

 $H = CA\Delta T = CA(T_s - T_a)$

 $H =$ time rate of heat dissipation (Watt or hp)

C = overall heat transfer coefficient per unit area (W/m² °C, hp/in.² °F)

A = exposed heat -dissipating area (m², in²)

 T_s = average temperature of heat-dissipating surfaces (${}^{\circ}C$, ${}^{\circ}F$)

 T_a = Air temperature

Or

 $E = mC\Delta T = mC(T_s - T_a)$

 $E =$ heat dissipation (Joule or lb.in)

 $C =$ specific heat $(J/m^2 °C, lb.in/in.^2 °F)$

 $m =$ mass of brake or clutch (lb_m, Kg), (Btu = 9336 lb.in)

For steel and Cast Iron: $C = 0.12$ Btu/(lb_m. °F) = 500 J/(Kg. °C)

The rate of heat generation per unit area of friction interface is equal to the product of Clamping pressure, coefficient of friction and rubbing velocity

$$
H = f pV
$$

An emperical values for *pV* is obtained by brake manufacturer and is given below:

The ability of brake and clutch to absorb energy without reaching destructive temperatures can be increased by:

- a- Increasing exposed surface area
- b- Increasing air flow by minimizing air flow restrictions, and maximizing air pumping action of rotating parts.
- c- Increasing the mass and specific heat of contact parts.

Example:

An inertial load is to bring to rest in 10 sec. by a braking torque 2800 lb.in. The initial speed is 1600 rpm, and the heat dissipating surface weight 40 lb. Find the temperature rise.

Solution:
\n
$$
\omega_1 = \frac{2\pi n}{60} = \frac{2\pi 1600}{60} = 168 \text{ rad/s}
$$
\n
$$
\omega_2 = 0
$$
\nbut: $t_2 = \frac{\omega_1 - \omega'_1}{T} \frac{II'}{I + I'} = 10 \text{ sec}$ \n
$$
\frac{II'}{I + I'} = \frac{Tt_2}{\omega_1 - \omega'_1} = \frac{2800(10)}{168} = 166.7 \text{ lb.s}^2 \text{ in.}
$$
\n
$$
w_{KC} = \frac{II'}{2(I + I')} (\omega_1 - \omega'_1)^2 = \frac{166.7(168)^2}{2} = 2.35(10^6) \text{ lb.in.}
$$
\n
$$
H = mC\Delta T
$$
\n
$$
H = 2.35(10^6)/9336 = 252 \text{ Btu}
$$
\n
$$
\Delta T = 252/[0.12(40)] = 52.5 \text{ °F}
$$

Friction Material:

One of the mating material is normally metal (cast iron or steel) it must have:

- 1- Good friction characteristics (which is relatively stable over temp. range)
- 2- Good thermal conductivity
- 3- Good resistance to wear and thermal fatigue
- 4- mooth surface finish to minimize wear of the mating friction material.

The friction material must have the following requirements:

- 1- High dynamic coefficient of friction that is relatively stable over a usable temp range and not sensitive to moisture, dirt and oil
- 2- Static coefficient of friction exceeds the dynamic value by as little as possible to avoid slip-stick chatter and noise.
- 3- High resistance to abrasive and adhesive wear
- 4- Good thermal conductivity
- 5- Good temperature stability or resistance to fade (reduction in friction coefficient at elevated temp.)

Types of friction material:

- 1- Molded: most common and least costly. Used for heavy duty application and drum brakes. Molded asbestos contains asbestos fiber and friction modifiers
- 2- Woven: more flexible (suitable for band brake)

Asbestos lining is used for heavy machinery, perform better when contaminants as mud, grease, and dirt presents.

3- Sintered: made of mixture of copper and iron particles with friction modifiers. Used in clutch and brakes for heavy duty applications.

Tables (16-1,2) list properties of typical friction materials

Example:

The figure shows a band brake used with a punch press. The brake is to be engaged when the crank is 120° past bottom dead center and bring the crank to rest at top dead center. The crank assembly has $I = 12$ N.m s² and rotating at 40 rpm when the brake is engaged. Max. allowed pressure $p = 0.18$ MPa, $f = 0.35$.

- (a) Determine the required band width.
- (b) Determine the required force, *F*
- (c) Would any combination of direction of rotation or coefficient of friction make brake self-locking.

Solution:

(a) Work done by the brake = Change in K.E. of the system
$$
\frac{1}{2}
$$

$$
\Delta K.E. = \frac{1}{2}I(\omega_1^2 - \omega_2^2) = \frac{1}{2}(12)\left(\frac{40 \times 2\pi}{60}\right)^2 = 105.275 \text{ J}
$$

Brake done by brake $=$ Torque \times angular displacement

$$
w_{kB} = T(\psi_2 - \psi_1)
$$

($\psi_2 - \psi_1$) = 180 - 120 = 60° = 1.047 rad

$$
\Delta K.E. = T(\psi_2 - \psi_1)
$$

$$
T = \frac{\Delta K.E}{(\psi_2 - \psi_1)} = \frac{105.275}{1.047} = 100.56 \text{ N.m}
$$

Free body of the drum: bottom dead center

$$
T = (P_1 - P_2)r
$$

\n
$$
\rightarrow (P_1 - P_2) = \frac{T}{r} = \frac{100.56}{0.12} = 837.92 \text{ N}
$$
 (1)
\nBut:
\n
$$
\frac{P_1}{P_2} = e^{f\phi}
$$

\n
$$
\phi = 258^\circ, f = 0.35 \rightarrow \frac{P_1}{P_2} = e^{\left(0.35 \times \left(\frac{258 \times \pi}{180}\right)\right)} = 4.835
$$
 (2)
\nFrom (1) and (2):
\n
$$
P_1 = 218.41 \text{ N}, P_2 = 1056.16 \text{ N}
$$

\n
$$
P_1 = p_{\text{max}}br \qquad b = \frac{P_1}{p_{\text{max}}r} = \frac{1056.16}{(0.18 \times 10^6)0.12} = 49 \text{ mm}
$$

(b) Free body of the lever

$$
\sum M_o = F(370 + 55) - P_2(72) - P_1(55) = 0 \implies F = 173.7 \text{ N}
$$

 $p_{\rm max}r$

d Top dead center

