Spur gear:

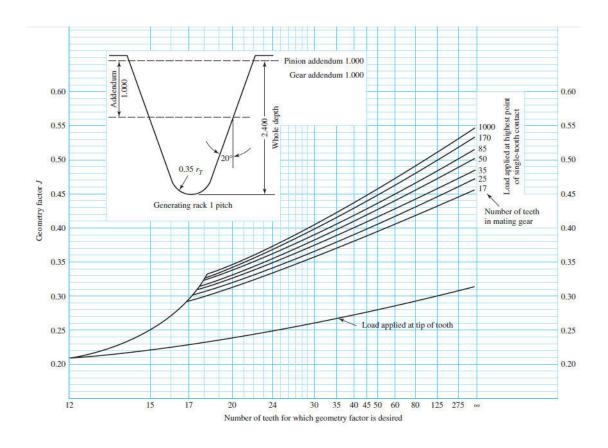

Addendum values (a) for spur gear:

Table 13–1 Standard and Commonly Used Tooth Systems for Spur Gears

Tooth System	Pressure Angle ϕ , deg	Addendum a	Dedendum b
Full depth	20	1/P or m	1.25/P or 1.25m
			1.35/P or $1.35m$
	$22\frac{1}{2}$	1/P or m	1.25/P or 1.25m
			1.35/P or $1.35m$
	25	1/P or m	1.25/P or 1.25m
			1.35/P or $1.35m$
Stub	20	0.8/P or 0.8m	1/ <i>P</i> or <i>m</i>

1-Based on Bending Stress:

geometry factor (J):

Velocity Factor (Kv):

$$K_v = \begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^B & V \text{ in ft/min} \\ \left(\frac{A + \sqrt{200V}}{A}\right)^B & V \text{ in m/s} \end{cases}$$

where

$$A = 50 + 56(1 - B)$$
$$B = 0.25(12 - Q_v)^{2/3}$$

Mounting Factor (Km):

$$K_m = C_{mf} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

Cmc:

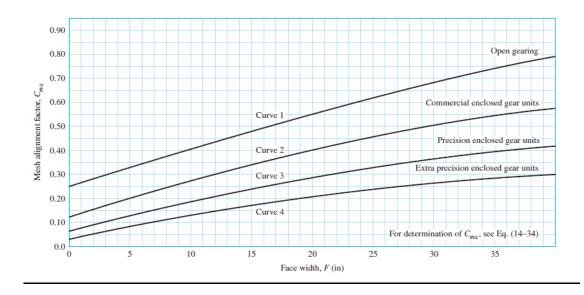
$$C_{mc} = \begin{cases} 1 & \text{for uncrowned teeth} \\ 0.8 & \text{for crowned teeth} \end{cases}$$

Cpf , where F = face width (b):

$$C_{pf} = \begin{cases} \frac{F}{10d_P} - 0.025 & F \le 1 \text{ in} \\ \frac{F}{10d_P} - 0.0375 + 0.0125F & 1 < F \le 17 \text{ in} \\ \frac{F}{10d_P} - 0.1109 + 0.0207F - 0.000 228F^2 & 17 < F \le 40 \text{ in} \end{cases}$$

Cpm:

$$C_{pm} = \begin{cases} 1 \\ 1.1 \end{cases}$$

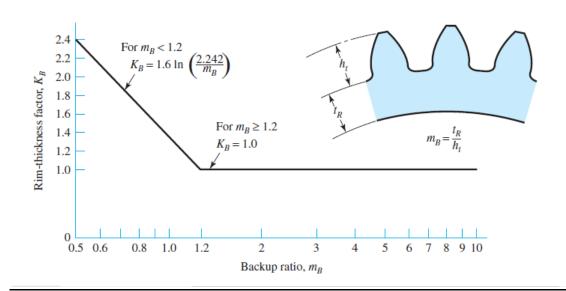

for straddle-mounted pinion with $S_1/S < 0.175$ for straddle-mounted pinion with $S_1/S \ge 0.175$

Cma , where F = face width (b):

$$C_{ma} = A + BF + CF^2$$

Condition	A	В	С
Open gearing	0.247	0.0167	$-0.765(10^{-4})$
Commercial, enclosed units	0.127	0.0158	$-0.930(10^{-4})$
Precision, enclosed units	0.0675	0.0128	$-0.926(10^{-4})$
Extraprecision enclosed gear units	0.00360	0.0102	$-0.822(10^{-4})$

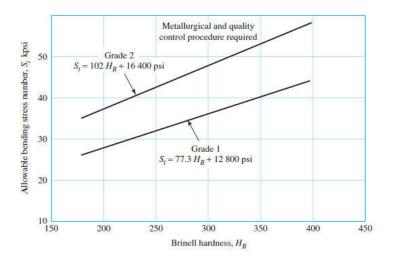
Or we can determine Cma by following figure:



Ce:

$$C_e = \begin{cases} 0.8 & \text{for gearing adjusted at assembly, or compatibility} \\ & \text{is improved by lapping, or both} \\ 1 & \text{for all other conditions} \end{cases}$$

(KB) For Cases with Rim gear only:


$$K_B = \begin{cases} 1.6 \ln \frac{2.242}{m_B} & m_B < 1.2\\ 1 & m_B \ge 1.2 \end{cases}$$

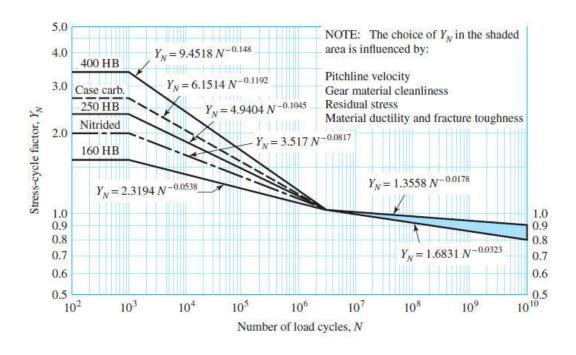

Endueance limit (St):

Figure 14-2

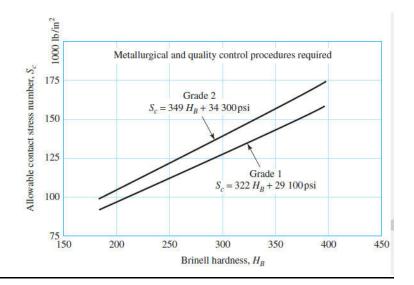
Allowable bending stress number for through-hardened steels, S_t . The SI equations are: $S_t = 0.533H_B + 88.3$ MPa, grade 1, and $S_t = 0.703H_B + 113$ MPa, grade 2. (Source: ANSI/AGMA 2001-D04 and 2101-D04.)

Life Factor (KL):

Reliability Factor (KR):

Reliability	K _R (Y _z)
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

2-Based on Contact Stress:


Elastic Factor (Cp):

					ıl and Modulus , lbf/in² (MPa)		
Pinion Material	Pinion Modulus of Elasticity E _p psi (MPa)*	Steel 30 × 10 ⁶ (2 × 10 ⁵)	Malleable Iron 25 × 10 ⁶ (1.7 × 10 ⁵)	Nodular Iron 24 × 10 ⁶ (1.7 × 10 ⁵)	Cast Iron 22 × 10 ⁶ (1.5 × 10 ⁵)	Aluminum Bronze 17.5 × 10 ⁶ (1.2 × 10 ⁵)	Tin Bronze 16 × 10 ⁶ (1.1 × 10 ⁵)
Steel	30×10^{6}	2300	2180	2160	2100	1950	1900
	(2×10^5)	(191)	(181)	(179)	(174)	(162)	(158)
Malleable iron	25×10^{6}	2180	2090	2070	2020	1900	1850
	(1.7×10^5)	(181)	(174)	(172)	(168)	(158)	(154)
Nodular iron	24×10^{6}	2160	2070	2050	2000	1880	1830
	(1.7×10^5)	(179)	(172)	(170)	(166)	(156)	(152)
Cast iron	22×10^{6}	2100	2020	2000	1960	1850	1800
	(1.5×10^5)	(174)	(168)	(166)	(163)	(154)	(149)
Aluminum bronze	17.5×10^{6}	1950	1900	1880	1850	1750	1700
	(1.2×10^5)	(162)	(158)	(156)	(154)	(145)	(141)
Tin bronze	16×10^{6}	1900	1850	1830	1800	1700	1650
	(1.1×10^{5})	(158)	(154)	(152)	(149)	(141)	(137)

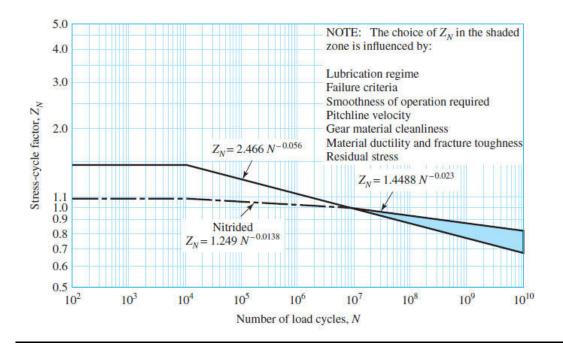
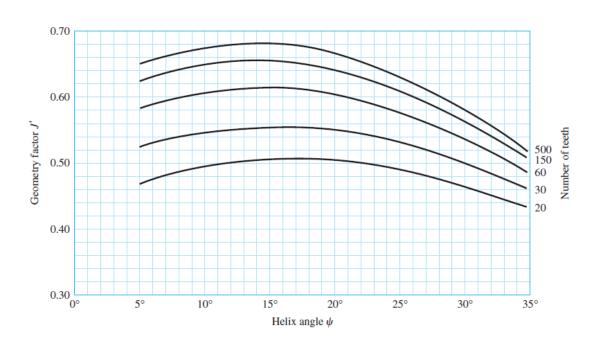

Fatigue Strength (Sc):

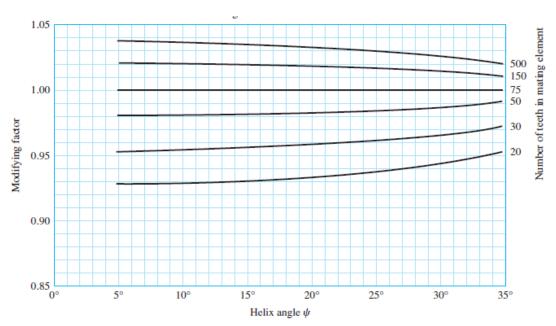
Figure 14-5

Contact-fatigue strength S_c at 10^7 cycles and 0.99 reliability for through-hardened steel gears. The SI equations are: $S_c = 2.22H_B + 200$ MPa, grade 1, and $S_c = 2.41H_B + 237$ MPa, grade 2. (Source: ANSI/AGMA 2001-D04 and 2101-D04.)

Life Factor(CL):



2- Helical gear:


geometry factor (J):

J = J' * KJ

<u>J':</u>

Bearing:

For Ball bearing:

Table 11-1
Equivalent Radial Load
Factors for Ball Bearings

		F _a /(VF _r) ≤ e	F _a /(VI	r) > e
F _a /C _o	e	<i>X</i> ₁	Yı	X ₂	Y ₂
0.014*	0.19	1.00	0	0.56	2.30
0.021	0.21	1.00	0	0.56	2.15
0.028	0.22	1.00	0	0.56	1.99
0.042	0.24	1.00	0	0.56	1.85
0.056	0.26	1.00	0	0.56	1.71
0.070	0.27	1.00	0	0.56	1.63
0.084	0.28	1.00	0	0.56	1.55
0.110	0.30	1.00	0	0.56	1.45
0.17	0.34	1.00	0	0.56	1.31
0.28	0.38	1.00	0	0.56	1.15
0.42	0.42	1.00	0	0.56	1.04
0.56	0.44	1.00	0	0.56	1.00

^{*}Use 0.014 if $F_a/C_0 < 0.014$.

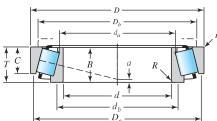
For Ball bearing:

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

		Fillet Shoulder					Load Ratings, kN							
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep (Groove	Angular	Contact					
mm	mm	mm	mm	ds	dн	C ₁₀	C _o	C ₁₀	C _o					
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12					
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05					
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65					
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75					
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55					
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65					
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0					
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0					
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6					
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2					
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8					
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5					
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5					
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5					
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5					
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0					
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0					
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0					
90	160	30	2.0	104	146	95.6	62.0	106	73.5					
95	170	32	2.0	110	156	108	69.5	121	85.0					

For cylindrical Roller bearing:

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings


		02-S	03-Series								
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ing, kN			
mm	mm	mm	C ₁₀	Co	mm	mm	C ₁₀	Co			
25	52	15	16.8	8.8	62	17	28.6	15.0			
30	62	16	22.4	12.0	72	19	36.9	20.0			
35	72	17	31.9	17.6	80	21	44.6	27.1			
40	80	18	41.8	24.0	90	23	56.1	32.5			
45	85	19	44.0	25.5	100	25	72.1	45.4			
50	90	20	45.7	27.5	110	27	88.0	52.0			
55	100	21	56.1	34.0	120	29	102	67.2			
60	110	22	64.4	43.1	130	31	123	76.5			
65	120	23	76.5	51.2	140	33	138	85.0			
70	125	24	79.2	51.2	150	35	151	102			
75	130	25	93.1	63.2	160	37	183	125			
80	140	26	106	69.4	170	39	190	125			
85	150	28	119	78.3	180	41	212	149			
90	160	30	142	100	190	43	242	160			
95	170	32	165	112	200	45	264	189			
100	180	34	183	125	215	47	303	220			
110	200	38	229	167	240	50	391	304			
120	215	40	260	183	260	55	457	340			
130	230	40	270	193	280	58	539	408			
140	250	42	319	240	300	62	682	454			
150	270	45	446	260	320	65	781	502			

Load application factor (Ka):

Type of Application	Load Factor
Precision gearing	1.0-1.1
Commercial gearing	1.1-1.3
Applications with poor bearing seals	1.2
Machinery with no impact	1.0-1.2
Machinery with light impact	1.2-1.5
Machinery with moderate impact	1.5-3.0

Timken Cataloge:

SINGLE-ROW STRAIGHT BORE

						cone cup										
bore	outside diameter	width	500 r 3000 h	ng at pm for ours L ₁₀	fac- tor	eff. load	part nu	mbers	max shaft fillet	width	back shou diam	ılder	max hous- ing	width	sh	cking oulder meters
,			one- row radial	thrust N	**	center	cone	cup	radius		,	,	fillet radius	G		
d	D	Т	lbf	lbf	K	a ^②			R®	В	d _b	d _a	r ^①	С	D _b	D _a
25.000 0.9843	52.000 2.0472	16.250 0.6398	8190 1840	5260 1180	1.56	-3.6 -0.14	♦30205	♦30205	1.0 0.04	15.000 0.5906	30.5 1.20	29.0 1.14	1.0 0.04	13.000 0.5118	46.0 1.81	48.5 1.91
25.000 0.9843	52.000 2.0472	19.250 0.7579	9520 2140	9510 2140	1.00	-3.0 -0.12	♦32205-В	♦32205-В	1.0 0.04	18.000 0.7087	34.0 1.34	31.0 1.22	1.0 0.04	15.000 0.5906	43.5 1.71	49.5 1.95
25.000 0.9843	52.000 2.0472	22.000 0.8661	13200 2980	7960 1790	1.66	-7.6 -0.30	♦ 33205	♦ 33205	1.0 0.04	22.000 0.8661	34.0 1.34	30.5 1.20	1.0 0.04	18.000 0.7087	44.5 1.75	49.0 1.93
25.000 0,9843	62.000 2.4409	18.250 0.7185	13000 2930	6680 1500	1.95	-5.1 -0.20	♦ 30305	♦ 30305	1.5 0.06	17.000 0.6693	32.5 1.28	30.0 1.18	1.5 0.06	15.000 0.5906	55.0 2.17	57.0 2.24
25.000 0.9843	62.000 2.4409	25.250 0.9941	17400 3910	8930 2010	1.95	−9.7 −0.38	♦ 32305	♦ 32305	1.5 0.06	24.000 0.9449	35.0 1.38	31.5 1.24	1.5 0.06	20.000 0.7874	54.0 2.13	57.0 2.24
25.159 0.9905	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07096	07196	1.5 0.06	14.260 0.5614	31.5 1.24	29.5 1.16	1.0 0.04	9.525 0.3750	44.5 1.75	47.0 1.85
25.400 1.0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	07196	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.0 0.04	9.525 0.3750	44.5 1.75	47.0 1.85
25.400 1.0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100-S	07196	1.5 0.06	14.260 0.5614	31.5 1.24	29.5 1.16	1.0 0.04	9.525 0.3750	44.5 1.75	47.0 1.85
25.400 1.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44642	L44610	3.5 0.14	14.732 0.5800	36.0 1.42	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44643	L44610	1.3 0.05	14.732 0.5800	31.5 1.24	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	51.994 2.0470	15.011 0.5910	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	07204	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.3 0.05	12.700 0.5000	45.0 1.77	48.0 1.89
25.400 1.0000	56.896 2.2400	19.368 0.7625	10900 2450	5740 1290	1.90	−6.9 −0.27	1780	1729	0.8 0.03	19.837 0.7810	30.5 1.20	30.0 1.18	1.3 0.05	15.875 0.6250	49.0 1.93	51.0 2.01
25.400 1.0000	57.150 2.2500	19.431 0.7650	11700 2620	10900 2450	1.07	-3.0 -0.12	M84548	M84510	1.5 0.06	19.431 0.7650	36.0 1.42	33.0 1.30	1.5 0.06	14.732 0.5800	48.5 1.91	54.0 2.13
25.400 1.0000	58.738 2.3125	19.050 0.7500	11600 2610	6560 1470	1.77	- 5.8 -0.23	1986	1932	1.3 0.05	19.355 0.7620	32.5 1.28	30.5 1.20	1.3 0.05	15.080 0.5937	52.0 2.05	54.0 2.13
25.400 1.0000	59.530 2.3437	23.368 0.9200	13900 3140	13000 2930	1.07	-5.1 -0.20	M84249	M84210	0.8 0.03	23.114 0.9100	36.0 1.42	32.5 1.27	1.5 0.06	18.288 0.7200	49.5 1.95	56.0 2.20
25.400 1.0000	60.325 2.3750	19.842 0.7812	11000 2480	6550 1470	1.69	-5.1 -0.20	15578	15523	1.3 0.05	17.462 0.6875	32.5 1.28	30.5 1.20	1.5 0.06	15.875 0.6250	51.0 2.01	54.0 2.13
25.400 1.0000	61.912 2.4375	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15101	15243	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	2.0 0.08	14.288 0.5625	54.0 2.13	58.0 2.28
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15100	15245	3.5 0.14	20.638 0.8125	38.0 1.50	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15101	15245	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28

Figure 11–15 (Continued on next page)

Catalog entry of single-row straight-bore Timken roller bearings, in part. (Courtesy of The Timken Company.)

SINGLE-ROW STRAIGHT BORE

										ne			сир			
bore	outside diameter	width	500 r 3000 h	ng at om for ours L 10	fac- tor	eff. load center	part nu	mbers	max shaft fillet radius	width	back shou diam	ılder	max hous- ing fillet	width	sho	cking oulder meters
d	D	Т	row radial N lbf	thrust N lbf	K	a ^②	cone	cup	R®	В	d _b	d _a	radius r①	C	D _b	D _a
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	-5.8 -0.23	15102	15245	1.5 0.06	20.638 0.8125	34.0 1.34	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
25.400 1.0000	62.000 2.4409	20.638 0.8125	12100 2730	7280 1640	1.67	-5.8 -0.23	15101	15244	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	1.3 0.05	15.875 0.6250	55.0 2.17	58.0 2.28
25.400 1.0000	63.500 2.5000	20.638 0.8125	12100 2730	7280 1640	1.67	-5.8 -0.23	15101	15250	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	1.3 0.05	15.875 0.6250	56.0 2.20	59.0 2.32
25.400 1.0000	63.500 2.5000	20.638 0.8125	12100 2730	7280 1640	1.67	-5.8 -0.23	15101	15250X	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	1.5 0.06	15.875 0.6250	55.0 2.17	59.0 2.32
25.400 1.0000	64.292 2.5312	21.433 0.8438	14500 3250	13500 3040	1.07	-3.3 -0.13	M86643	M86610	1.5 0.06	21.433 0.8438	38.0 1.50	36.5 1.44	1.5 0.06	16.670 0.6563	54.0 2.13	61.0 2.40
25.400 1.0000	65.088 2.5625	22.225 0.8750	13100 2950	16400 3690	0.80	-2.3 -0.09	23100	23256	1.5 0.06	21.463 0.8450	39.0 1.54	34.5 1.36	1.5 0.06	15.875 0.6250	53.0 2.09	63.0 2.48
25.400 1.0000	66.421 2.6150	23.812 0.9375	18400 4140	8000 1800	2.30	-9.4 -0.37	2687	2631	1.3 0.05	25.433 1.0013	33.5 1.32	31.5 1.24	1.3 0.05	19.050 0.7500	58.0 2.28	60.0 2.36
25.400 1.0000	68.262 2.6875	22.225 0.8750	15300 3440	10900 2450	1.40	-5.1 -0.20	02473	02420	0.8 0.03	22.225 0.8750	34.5 1.36	33.5 1.32	1.5 0.06	17.462 0.6875	59.0 2.32	63.0 2.48
25.400 1.0000	72.233 2.8438	25.400 1.0000	18400 4140	17200 3870	1.07	-4.6 -0.18	HM88630	HM88610	0.8 0.03	25.400 1.0000	39.5 1.56	39.5 1.56	2.3 0.09	19.842 0.7812	60.0 2.36	69.0 2.72
25.400 1.0000	72.626 2.8593	30.162 1.1875	22700 5110	13000 2910	1.76	-10.2 -0.40	3189	3120	0.8 0.03	29.997 1.1810	35.5 1.40	35.0 1.38	3.3 0.13	23.812 0.9375	61.0 2.40	67.0 2.64
26.157 1.0298	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	-5.8 -0.23	15103	15245	0.8 0.03	20.638 0.8125	33.0 1.30	32.5 1.28	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
26.162 1.0300	63.100 2.4843	23.812 0.9375	18400 4140	8000 1800	2.30	-9.4 -0.37	2682	2630	1.5 0.06	25.433 1.0013	34.5 1.36	32.0 1.26	0.8 0.03	19.050 0.7500	57.0 2.24	59.0 2.32
26.162 1.0300	66.421 2.6150	23.812 0.9375	18400 4140	8000 1800	2.30	-9.4 -0.37	2682	2631	1.5 0.06	25.433 1.0013	34.5 1.36	32.0 1.26	1.3 0.05	19.050 0.7500	58.0 2.28	60.0 2.36
26.975 1.0620	58.738 2.3125	19.050 0.7500	11600 2610	6560 1470	1.77	-5.8 -0.23	1987	1932	0.8 0.03	19.355 0.7620	32.5 1.28	31.5 1.24	1.3 0.05	15.080 0.5937	52.0 2.05	54.0 2.13
† 26.988 † 1.0625	50.292 1,9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44649	L44610	3.5 0.14	14.732 0.5800	37.5 1.48	31.0 1.22	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
† 26.988 † 1.0625	60.325 2,3750	19.842 0.7812	11000 2480	6550 1470	1.69	-5.1 -0.20	15580	15523	3.5 0.14	17.462 0.6875	38.5 1.52	32.0 1.26	1.5 0.06	15.875 0.6250	51.0 2.01	54.0 2.13
† 26.988 † 1.0625	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	-5.8 -0.23	15106	15245	0.8 0.03	20.638 0.8125	33.5 1.32	33.0 1.30	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
† 26.988 † 1.0625	66.421 2.6150	23.812 0.9375	18400 4140	8000 1800	2.30	-9.4 -0.37	2688	2631	1.5 0.06	25.433 1.0013	35.0 1.38	33.0 1.30	1.3 0.05	19.050 0.7500	58.0 2.28	60.0 2.36
28.575 1.1250	56.896 2.2400	19.845 0.7813	11600 2610	6560 1470	1.77	-5.8 -0.23	1985	1930	0.8 0.03	19.355 0.7620	34.0 1.34	33.5 1.32	0.8 0.03	15.875 0,6250	51.0 2.01	54.0 2.11
28.575 1.1250	57.150 2.2500	17.462 0.6875	11000 2480	6550 1470	1.69	-5.1 -0.20	15590	15520	3.5 0.14	17.462 0.6875	39.5 1.56	33.5 1.32	1.5 0.06	13.495 0.5313	51.0 2.01	53.0 2.09
28.575 1.1250	58.738 2.3125	19.050 0.7500	11600 2610	6560 1470	1.77	-5.8 -0.23	1985	1932	0.8 0.03	19.355 0.7620	34.0 1.34	33.5 1.32	1.3 0.05	15.080 0.5937	52.0 2.05	54.0 2.13
28.575 1.1250	58.738 2.3125	19.050 0.7500	11600 2610	6560 1470	1.77	-5.8 -0.23	1988	1932	3.5 0.14	19.355 0.7620	39.5 1.56	33.5 1.32	1.3 0.05	15.080 0.5937	52.0 2.05	54.0 2.13
28.575 1.1250	60.325 2.3750	19.842 0.7812	11000 2480	6550 1470	1.69	-5.1 -0.20	15590	15523	3.5 0.14	17.462 0.6875	39.5 1.56	33.5 1.32	1.5 0.06	15.875 0.6250	51.0 2.01	54.0 2.13
28.575 1.1250	60.325 2.3750	19.845 0.7813	11600 2610	6560 1470	1.77	-5.8 -0.23	1985	1931	0.5 0.03	19.355 0.7620	34.0 1.34	33.5 1.32	1.3 0.05	15.875 0.6250	52.0 2.05	55.0 2.17

 $^{^{\}circ}$ These maximum fillet radii will be cleared by the bearing corners.

Figure 11-15

587

²⁰ Minus value indicates center is inside cone backface.

 $[\]dot{\uparrow}~$ For standard class ONLY, the maximum metric size is a whole mm value.

^{*} For "J" part tolerances—see metric tolerances, page 73, and fitting practice, page 65.

[◆] ISO cone and cup combinations are designated with a common part number and should be purchased as an assembly. For ISO bearing tolerances—see metric tolerances, page 73, and fitting practice, page 65.