
Digital Design

M. Morris Mano
Emeritus Profemr of Computer Engineering

Callfornio Stote University, Los Angeles

Michael D. Ciletti
Department of W r i c o l and Conputor Engineering

University of Colomdo at Cd~adO Springs

PEARSON 4 L
Upper Saddle River, Nl07458

Ahmad
Typewriter
UPLOADED BY Ahmad Jundi

Contents

Preface ix

1 Digi ta l Systems and Binary Numbers 1

1.1 Digital Systems
1.2 Blnan Numbers
1.3 b umber-Bare Conversions
1.4 Octal and Hexadecimal Numben
1.5 Complement9
1.6 Signid Binary Numbers
1.7 Binary Coder
1.8 Binary Storage and Registers
1.9 Binary Logic

2 Boolean Algebra and Logic Gates 36

2.1 Introduction
2.2 Basic Definition! .
2.3 Axiomatic Definlhon of Boolean Algebra
2.4 Basic Theorems and Pmpemier

of Boolean Algebra
2.5 Boolean Functions
2.6 Canonical and Standard Farms
2.7 Other Logic Operations
2.8 Digital Logic Gates
2.9 Integrated Circuit9

3 Gate-Level M i n i m i z a t i o n 70

3.1 intmductio~l 70
3.2 The Map Method 70
3.3 Four-Variable Map 76
3.4 FNeYariable Map 81
3.5 Pmduct-of-Sums SlmpliRcation 83
3.6 Don't-Care Conditions 86
3.7 NAND and NOR implementation 89
3.8 Other Twplwel ImplementaUonr 96
3.9 DLcIus~V~OR Function 101
3.10 Hardware Descriwon Language 106

4 Combinat iona l Logic 722

4.1 Introduction 122
4.2 Combinational Circuit3 122
4.3 Analyds Pmcedure 123
4.4 Design Pmcedure 126
4.5 BinaryAdder-Subtractor 130
4.6 Decimal Adder 139
4.7 Bhary Multiplier 142
4.8 Magnitude Comparator 144
4.9 Decoden 146
4.10 Encoders 150
4.1 1 Multiplexen 152
4.12 HDL Models of Combinational Circuits 159

5 Synchronous Sequent ia l Logic 182

5.1 lnvodunion 182
5.2 Sequential Circuits 182
5.3 Storage ElemenD: Latches 184
5.4 Storage Uemenk: FlipFiops 188
5.5 Analvrir of Clocked SeawnUal Circuits 195 - -

5.6 ~~n&erirable HDL M&S of Sequential
Circuits

5.7 State Redudon and Aulgnment
5.8 Design Pmcedure

6 Registers and Counters 242

6.1 Registers 242
6.2 Shi f t Registen 245

6.3 Ripple Counten 253
6.4 Synchmnous Counters 258
6.5 Other Counten 265
6.6 HDL for Registen and Counters 269

7 Mernorv and Proararnrnable Loaic 284

intmduction
Random-Access Memory
Memory Decoding
Error Detection and Correction
Read.Oniv Memow
Prcgrammanle Logic Array
Programmaole Array Logic
Sequentai Programmable Devices

8 Deslgn a t t h e Rcglster
Transfer Level 334

8.1 intrcduction
8.2 Register Transfer Lwei (Rn) Notation
8.3 Register Transfer Lwei in HDL
8.4 Algorithmic State Machines (ASMs)
8.5 Design Example
8.6 HDL Dexription of Design Example
8.7 Sequential Binary Multiplier
8.8 Control Logic
8.9 HDL Description of Binary Multiplier
8.10 Design with Multiplexen
8.11 Race-Free Design
8.12 Latch-Free Design
8.13 Other Language Featum

9 Asvnchronous Seauentlal Leaic 415

introdunion
Analysis Pmedun
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example

vl Contents

10 D i g i t a l I n t e g r a t e d Clrcuits 471

10.1 introduCfion
10.2 Special Characteristicr
10.3 Bipolar-Transistor Char~terirticr
10.4 Rnand DTLCircuits
1.5 Transistor-Transistor Logic
10.6 Emitter-Coupled Logic
10.7 Metal-Oxide Semiconductor
10.8 Complementary MOS
10.9 CMOS Transmission Gate Circuits
10.10 Switch-Lwel Modeling wiVl HDL

11 Labora tory Exper iments
w i t h S tandard ICs a n d FPGAs 51 1

11.1 Introduction to Experiments
11.2 Experiment 1: Binary and Decimal Numbers
11.3 Experiment 2: Digital Logic Gats
11.4 Experiment 3: Simplification of Boolean

Functions
115 Experiment4: Combinational Circuits
11.6 Experiment 5: Code Converters
11.7 Experiment 6: Design with Multiplexers
11.8 Experiment 7: Addersand Subtractors
11.9 Experiment 8: FiipFiopr
11.10 Experiment 9: Sequentiai Circuits
11.11 Experiment 10: Counters
11.12 Experiment 11: Shift Registers
11.13 Experiment 12: Serial Addition
11.14 Experiment 13: Memory Unit
11.15 Experiment 14: Lam Handball
11.16 Experiment IS: ~ioc f -~u lse Generator
11.17 Ex~eriment 16: Parallel Adder and

~icumulator
11.18 Experiment 17: Binary Multiplier
11.19 Exlleriment 18: I\rynchmnous Sequential

Cikuits
11.20 Verilog HDLSimulation Experiments

and Rapid Prototyping with FPGh

12 Standard Graph ic Symbols 559

12.1 Rexang~Ia-Snape Symbols
12.2 Qualnynng Symwls
12.3 Dependency (uota~on

12.4 Symbols for Combinational Elemen6
12.5 Symbols for Flip-Flops
12.6 Symbols for Registers
12.7 Symbols for Counten
12.8 Symbol for RAM

Answers t o Selected Problems

I n d e x

Preface

L) l p l s l c ~ ~ ~ 1 ~ 1 n ~ ~ d F C I I p ~ . ~ p l s y a . ~ u l s m a r r r n m -
puma, bu xnm & drplW &wear. OPS &splsyr PDd mmy m k r m- pod-
~CB~~crrsmdwcinfolnarimmsdialplfomurllus~mvoU~.b.slcm~t

a b e b v i d model of the circuit's f m c d o ~ , and lhcn nym&iziq thnt dcseription inm
a hardware realiitioo 111 % pudd.r tshnology, c.g... CMOS intcgmd Eirsuia or field-
pgmmmblcgare unya (FRl48). No longor s wvelw, Y, &+ Itmk me noar rrrdily
~ W b l c m m i n i ~ a i t i ~ . and src m i w e in a -pic wnv fmm mduue kvcl nuricula

M &ink, as o d h m p l . hdbr&. PDd logic d y m l ~ e ~ w pVidll of
c-. u, Ibb histion of & mu addr a m aniglt lo& u s s o f i m d w n ducriplioo Inn-

in d C L i ~ & ~ r a l c ~ ~ l u t s ~

hadwan w*. 'Phlu, an main s k.m@ mml dsomthuid sod qusnri.l logic
&vices. h m d hip pmxim uc pcumsd and W! d m &re - pad rim those ob-
oind vnh a HDL-based @gm. mu ve am pmrntins. hovevu. is a shiR 111 emphaair

on how hniwam u &signcd, a sshiftthat, we Umk, bener pqm.? s stodmt far a c- m
today's industry, where H D L - k d d 4 g n p t i m ate prsvalmt.

FLEX1,BILITY

The wqueme of topics in the t e a can aecommodatcmvrses thatadbne to uaditiooal, manu-
al-bed,aatmmuafdigital~gn.comsthat~dcsignusioganHDL, andco-that
m in hansition beween or blendthe two sppmachcs. Because mob synthesis tmls a t +
m a t i d y paform logic minimhion, Kamaugh maps and rrLslrd topics in oplimirarioncan
kpnnentcdat~beginniogof aueatmmt ofdigitaldesign, orthey canbe-otedaftecci-
a i rs and their applicaions areexmind, designed. and simulatedwith anHDL. The w i n -
d h both manual and HDL-bwd dcsigo uampln. Our md-ofchapta pnobicmr funher
faelhtau~s ncxihhly b) ms-refcmmgproblems tha addrrssa m d e o d ald d e s w
task a tth acornparum problem that uwr an HDLta aecompluh the I& A d ~ P o ~ y , we Id
manuai and HDL-bled annoark bv maenan* m n a l e d renuled~mulstlonr to the err ~ ~~~ . . ~~~ ~ ~ , P~ ~~~ - - ~~~ ~ ~~ ~

in a n r u a lo &red problems u the end of the n*. and in ihe rolutionrmaoual.

WHAT'S NEW?

Tbc previous edition of Ulis W t magni2ed the impartMoe ofhard- dcsedptioo langoages
io the design of digitalcincuiu, and incmpRtednew matuial mduampkr intmducing rm-
~to theWoglaoguagDasdef iocdby~Sfandard l364 -1~5 .~rev i ionupdatss
and expaads that mamen1 by:

misi~ HDL-based e m p l n 10 presentthe ANS1.C like SynW that was adopted in the
stm& IEEE 1364-2001 a o d I E a 13W2005 - enr~tbatsllHDLuampicndmto~-aEnpcdpraetiecsformWgdig-
ital cima . proyiding a ~yswmtic muhodology for deigning a datapslb eonmlla . -ting sclcnedcxercires and aolvtims m md-ofcbsptcr problems in Verilog IS95
and Verilog Z W l W 5 synm . introducing an imponant design taal -the algorithmic sratc machine and datapath
(ASMD) EbM - wising the end-ofshaptv p b l e m and urnding the s t of p b k r m by including
o v u 75 additional problems
pviding swdenu with fully developed mwcrs m selcnedpmblems, including simu-
Istion m u l e - providing smdena with a CD-ROM containing simulator-dy HDL aolutionr of an-
S W ~ to selwtedpmbkm . upanding the lteament of p m p m m b k logic devices to indude FPOAs

. revising the sclutions manval and web-band materials and msudng that &lions d
HDL-based exercises wnfmm lo indumy praE6-l for modelling with an HDL
b s a i n g and demonsm@ Ihe i m p m n c c of lcst plaoa for vrrifying HDL models of
EireviD
pmviding iwtrucm with vedficd simuhlopready soume code ad ndr hbe.chcs for all
omd.of ch.pmproblcm - maki"8.U figares, mbb, and HDLsrmples available to i m m fordownloading
in PDF formar fmm the publisha
inelu~withhebcoka~.ROMwith~alsadsimulnorsforhe~lP95and
EEB-2OOl SIawhds dthcVerilo8lsnguagc

In addi6-m m th above Mbanscmcou, the m t incmponfcs more m h i d material m bee
tcr rene l u m a who sle micnted Wsrd agraphid d u r n Annowedgraphical ~ r u l t s ad
a p l m t i o ~ i of ~ ~ r n are prrscnld to help snulcou undmtsnd d i g i d cirmis and lo fa-
nliufc c1l~ssm.m dismsdmu olthcm. -ugh map. me p n x m d with a d d i t i d graphics.

DESIGN METHODOLOGY

dtion of thc l e a exen& thpmioud editiw's m m n t of &ou6 hnifc m t e ma-
s h by pucnua a sysQmaoc memodology fadeqmg amfc marhmne mmnml hedata-
@of a d ~ g i d ryrwrn M m v a . the h e w m k la uhrh thlr malmal ,s pmmled -Ihr
rraluoc unuum rn w k h thc m m U m YVI 61W horn Ih dmmIh e thc %v$mm has fed-
b a ~ k % methc-~ogyis qp l i ce i e to ma.& and ~ ~ ~ r t m e d & r s x c h e s to 'bzgn

HDL-bASED APPROACH

It is not r u f f i c ~ f o r a. inhodunion lo HDLs to dwell on ian@agc syorar. We present only
thMc elements d t h c Veriloe lanewe that am marched to the level and rsooe of Ws ten.
Abo. -1 syntax d a s noLgun&& that a model mssrs a flmetiod specik~cation or that
it can h synthctivd inlo phystcal hardware We inrmduse students to .dlxtpbncd use of
i oduswbaaedpc t im for moogmadcls locnrwe Ihal ahha\ioral dnolptioo can h s y o -
thesued ,nu, ~ h v % n l bardwsrr. and thsr Ue hhavnn d the aolhewcd cku i t will mash

diti- in he HDL madelsbf wrh m 0 1 : k . m e conditi&r in the tcstbeoeh used lo verify
Ihem. md n rnmrmatch h w m the terults of srmulaoq a h c h s v i d model and 1% rynlhe
w c d p h y r e d m v r p u r Slrmlmly,fmkurm.hdcby (nduslripmakesmay lud todwps
t h s s~mulsle e m e d v . hm whtheh have bard- lsrchcr tha~ M lnrmduccd mm he &sum
aetidcnWy sa a e & ! s e ~ &he modelling rwlcuscd by he higno. inmulw-b&d
msrnodology wcpcv.r I& m -.Gee and I&-Geeduiglrr 11 ii im-1 hat afvdmts
leam and foUw indusoy -cn u d o g HDL models. indepndcnt of luhclma smtudcnt'r
cmkulum has m u lo synthuir tarlr.

xli Prehce

VERIFICATION

h~,si~teffeatisup~wv~WIhe~~naliityofa~uitiscomnYu
nnmuchatmrionis nivmtovaific~onininMduclory~~~digi81~Sign, w h c r c I h e h
is on design irxlf, ond =dog is viewed as a secondary uodarling. Our is
that this view can lead to pemme declmtim that "thc Ehnrit works beauWy? Likewise.
indusqgsinsrepeated~o11i~~inv~tmenfinonHDLmode1by ~~udngtbat i IUmdabIc ,
mmbleandr~usablP. W e 6 $ r m % u a s d b andIhehsu&of~-. W e a l n o ~ m
;idc s s t benches for all of the solutions and &-s to (1) vedfy tb; function& of Gdr-
cuih (2) uodsnsore the importanceof thnough mting, and (3) hmduce sludcar toimpMan1
m n s s p t b . ~ u r h a, 3dfshccl;mg tea bcnchc5 Advmaung and ~ U ~ s m g ihc drvclopmcnt nf s
rerrplan u, gut& the hcdsvslopmuu of a test bcmb. ac m b s c I k m m me W i l and a@
ihcm in the wluuvnr manual and m thc h c w m u, r c l d pmbl-a Ik a d of lbs ic*

HDL C O N T E N T

This e d i h of the text ~pdates and expands its tl~armsnt of the Vnilog Hard- Dsscrip
tion Laogoage @DL) and exploits key eobanccmem available in IEEE Standards 13M2M1
and 13643005. Wehahave a r d mar all-pla in the t u r and all m s m in the salutiao
manual conform to accented indvsuv d ~ c 8 for modelioe diaital hardardarr As in the or-
Yiow edition, HDL m&al in inr&d in inwpas aectim;so;t con be covered or skip&
a. &iced. docs not diminish treatment of manual-based design, and does nndiEtas Ihe ss-
quence of p-ntatioo. Tbe aaatment in ar a level suitable for beginoing stude0ts fa are
icamiog di#tal circuib and a hardware d~w;nption language at Ihe same lime. The mtpn
pans nudents to work on significant iodepeodent design pmjccts md to s u e d in 1 later
C O W S C O I O p U W ~ h i ~ . . Digital circuit8 a,,$ intmduced iD Chapthapt 1 lhmugh 3 with an inmduction U, vaiiog

HDLin Sedon3.10. . fuaba discussion of mAelh8 with HDLs m u r s io Section 4.12 f o U o d the s M y
ofsombin81id circuits.
sequential c h ~ i t s arc c o v d in Chapm 5 and 6 with cornpondin8 HDL a a m p h
in Sectione 5.6 and6.6. . ThcHDLdesdption of memory is prercntedio Section 72. . ThcRnsymbols usedin Vwilog arc i n a u c e d i n Sections 8.3. . Examples af RTLandsrmctmJmodelr invedlog are pmvidedin Seetiona 8.6 and 8.9.
Chapter 8 also-1s a new. somprehennivc hwtmcnt of HDLbased design of a data-
path rnnmUET.
W o n 10.10 cover8 switch-lcvclmadeling ~onn@gto CMOS c-U.
S d o n l1.20 s u p p i m t s thc hard- upwimenb ofchapfer 11 with HDL urpcd-
men*. Now me cimits designed in U l e ~ ~ con be cbsrcd by modeling &em lo
v & g o n d a i m ~ g ~ b e h a ~ o r . T h c n ~ ~ a o b e s y n h ~ a n d ~ ~ e d w i t h
on PPOAO" a pmtoryping b a a .

HDL SIMULATORS

Tbc CD-ROM in the beck of thc bmk M ~ N thc V d o g HDL M)WC cods files for me ex-
amples in Gx k& and two rimvlatm provided by SpaptiCAD. Tbc tint sirnulaor is
&dhggerpm. atnditionalVwilogrimularm~tsan beussdmaimula!sthc HDLa.mpks
in the bmk and IO M i f v Gx mlutiom d H D L m b l m . Tbis simulstm -t$ Ibc rvmax of
the IEFE-1995 stsn& sod w i ~ te useful m bass who hsvc ieg.ey modeti. A* snintcrae-
tivc rimulamr, ~ I D ~ ~ C I ~ ~ ~ ~ I M , aoupu mc ryntu oflEE32Wl as well ar IEEE-1995, d-
I ~ t h c d w i g n a m r i m u (a (c and analyze &rign idem bcfm a complete simulatirm m d d
m schematic is avabbls. lbir lsbwlagy is p- thlsr ly usdnl formdcnm, bccaurc they can
quickly e m Boolean end D fhipflop n latch input q d m s m e h d oquivdenoy m m m-
pcrimcm wim fipflq end 1a1ch -I.

INSTRUCTOR RESOURCES

lnsmstms om download the foUowing chsmom-ready IWWCS fmm the publisher
(v w - w . ~ . ~ m l m m) : - Same c& sod tw h m k s forall VaitDg HDL uamplcs In thc m . All fig- and tabla in the 10x1 . so- c& dclm au HDL &la in me m ~ u t i m m u d

A mlutim m u d in typd h d m p y forma wiIh graphic*, suihble for dassmam p e n -
mtim dl & te pmmided immmnr.

CHAPTER SUMMARY

Ihc following is a brief sllmmsry ofthe mplm that an mved in a h chap-.
1 p s m m ihc vnious binary s y r w ruihbk forrepsmbw mfmmm

. .
' in dig-

ital aysfrms.Tbc~nvmbcrsprutlisexpllinedaodbinarycDdcs anUlurmtcd.Examplea
a~ Bivm fm additionad sub(raction ofrimed b i n w nwahn end d d d nmitsn in BW.

cbapm2 inmduccs the basic pwrulawof Boolean Qcbnand show thecmla6oabc-
tvccn Bmlcsn cxpesrimr and lh&cwsapoodinp logic d i a m All po~ublc Ions opsra-
tiom fm w o vsnsblcs an i n v e t i d and horn Lbr lhc mast useful l o w ml uud in Ibr

is done in Chaprsr 10.
Ch.plw3 ;oren thc mapmnhd for rimphfp"p Bml- cxpertionr. The map mnhnd

s ~ "red IO simp@ digiw -uiu ~ m t w t e d WD~AND-OR NAND. or NOR gstas. w
odm nanblc avo-kvcl m e circwts am mns~dmd end their method of imolemuuon is =~~~~~~
Upup&. ~ w i l q ~ ~ ~ C i n m c d n c a ~ t o ~ wim empk g w ~ s v e ~ modsli& erampln.

Cbapte.4 ouIliocn thc larmal p d m for Ibe saslysis sod desigo of mmbinational cir-
cuit$. Some h i c snnpomns vscd in the d r r i o f digital n y r m . such ar adders and cadc

m v m , are iafroduced as design examples. Frequently used digital logic functims such as
parallel adders and submtors, dec@ders, endem and multiplexm arc explained, aud their
use in the dmign of combhational Wts is illustmted. HIlL examples given in d~ gate
level, M o w , and behavioral modeling to show the alternative ways available for describing
combinational circuits in Verilog HDL. The procedure for writing a simple test bench to pro-
vide stimulus to an HDL. &sign is presented.

Chapter 5 outlines the formal procedures for the analysis and design of cloclced (synctuo-
n m) sequential circuits. The gate structure of s e v d trpes of flipflop is presented togeth-
er with a discussion on the differera between level and edge triggging. Specific examples are
used to show the derivation of the st& iable and state diagram when and* a sequential
circuit, A number of design examples are presented with emphasis on sequential circuits tbat
use D-type Kiflops. Behavioral r d e b g in Verilog HDL for s q e d d c k d b is explained.
HDL Examplea are given to illustrate Mealy and Mwre rn& of sequential circuits.

Chapter 6 deaIs with various sequential circuits components such as regisma, shift peghers,
and counters. These digitd compnents are the bwii building bl& frmn which more cdmplwc
digital systems are c o m ~ HDL M p t i o m of sbtft r@tm and counter are p-anted

CbpW 7 d d s with random access memory (RAM) and p-le logic devices.
Memory decoding and ermr d m schemes are discussed Combidmal and sqwtthl
programmable devices are presenred such as ROMs. PLAs, PALs, CP& and FPGAs.

Chapter 8 deals with the register transfer level (KIT,) representation of digital sysiem~.
The algorithmic state machine (ASM) chart f iatmduced. A number of examples demoastrate
the use of the ASM chart, kSMD chart, 'iRTL tion on, and HDL descriprion in the de-
sign of digital systems. The design of a finite state machine to control a datapath is presented
in dettlil, including the realistic situation in which status signals fKlm the datapath are used by
the state machine that controls it. This chapter is the most importaat chapter in in bmk as it
provides the student with a systematic approach to more advanced h i g n projects.

Chapter 9 presents formal p d u r e s for the analysis and design of asynchronous se-
quential circuits. Methods arc outtined to show how an asynchronous squentid ckuit can be
impbmented as a m b W o n a l circuit with fedback. An ahemate implmatatioa is also dc
scribed that uses SR latches as the storage elements in asynchmnous s e y e n h l circuits.

Chapter 10 presents the m s t commw h f e m circuit digital logic families. The elecmk
circuits of the common gate in each family are aaPyZaa using elecaical chuit &myyzaa Abasic
knowledge of electronic circuits is necessary to fulIy understud the material in this c w r .
Examples of Venlog switch-led ~ p t l o l i s demonstrate the ability to simulate M t s con-
smcted with MOS and CMOS h-ansistors.

Chapter ll outlines experiments that can h performed in the l a b o m with hardware
that i s d y available commercially. The -tion of the imgmed circuits used in the ex-
p r h c n t s is explained by refenkg to diagrams of Mar components introduced in previous
chapters. Each experiment is pmented Informally and the student i s expected to produce the
circuit diagram and formulate a procedure for checking the operation of the circuit in the lab-
oratory. The last section supplements the experiments with correspwding HDL experiments.
Instead of, or in addition to, the hardware consbuctioa, the student cap use the V d o g HDL
software provided on the CD-ROM to simulate and verify the design.

CJmpter 12 presenls the standard graphic symbols for logic functions recommended by
an ANSMEE Standard. These graphic syrnbls have been developed for SSI and MSI

components so that the user can recognize each function from the unique graphic symbol
assigned. The chapter shows the standard graphic symbols of the integrated circuits used in
the laboratory cxperhmnts. The various digital components that are represented through-
out the book are similarto mmmercial integrated circuits. However, the text docs not men-
tion specific integrated circuits except in Chapters 11 and 12. Doing the suggested
experiments in Chapter 1 1 while studying the theory presented in the text will enhance the
practical application of dijgitaI design.

LAB E X P E R I M E N T S

The h k may be used in a strtnd-alone course or with a compwion lab based on the lab ex-
periments included with & text, T b lab c x p r b n t s can be uswl in a stand-alone manner too,
and can be accomplished by a eaditional appnmh with a and TTL circuits, or with
an WDUsynthesis qqmmch using =As. Today, softwm for synthesizing an HDL model and
implementing a circuit with an FPGA is available at no cost from vendors: of =As, aIlowing
students to conduct a significaut amount of work in their perstwal environment before using
pmtotyping boorrds and 0th r e m in a Lab. Circuit bards for rapidly prototyping elmits
with FPGAs are available at nominal cost, and typically include push buttons. swirehes, and
seven-segment displays, E D s , keypads and other y0 devices. W I ~ these mmmes, d e n t s
can work lab exucises or their own projects and get results immediately.
The opwation of the integrate4 circuits u s d in the experiments is explained by referring to

diagrams of similar components introduced in previous chapters. Each apcrhent i s present-
ed informally and the studeat is expected to pladuce the circuit diagram and formulate a pro-
cadm for veriwg the operation of the circuit in the laboratory, The Iast section suppbmts
the urpexime~ts with correspdhg HDL q d m c n ~ ~ . Instead of. or in addition to, the hard-
ware comwction, the student can use the VeriIog HDL &are provided on the CD-ROM to
simuiatc and check the design. Synthc& toals can then be used to implement the circuit in an
FPGA on a promtyping board.

Our thauks go to the editmi J team at Prentice Hall for codt t ing to this timely revision
of the text M y , we are grateful to our wives, Sandra and Jdynn. for encouraging ourpur-
suit of this ptoject

M. MORRIS MANO
Emen'w Pmfesmr of Computer Eirgiwring

CaMfomia Slate University, ImJ AngeIes

~A~
Depamtaent of Electrid and Computer Engineering

Uniwrsiv of Cdorado at Cotorado Springs

Chapter 1

Digital Systems and Binary Numbers

1.1 DIGITAL SYSTEMS

Digiul systems haw mob a pnominmt role in everyday life !bat wc & lo fcre pwcnttC&
nological puiod as the digital age. Digital system ur used in mmmuniEatio% business mas-
dons. m d k muul. s- midam. medical uedmen wcaIhcf monifoim thc InmnQ and
&y n b c r c o m m r c ~ in&-soid. a& scimLilic cnlq-. wc haw tcleph-, dip-
iml ulcviaioo. digiul v d discs. digiul camcnn, handheld &vice& and, of wunr, digi-
Irlccmnmten. T h c m t n r i l d a a m o f the digital mmpuferisits gwmdity. It can follow
a & ofhmnions. called a m o m ih.L &ram & dven d&. The vaor can specify
and odbaoge tk prom or tk da&ac&&g lo I& sp i r i c ictd ~ecausc of this IlGbiliG,
ged-plrpwe digitel compulua can @am n vrriefy of infomMimpmassinp laGu that
noge over a wide s p m u m of appl i ia t i~~~s~

Onc charaneriotic of digital sysums is mcir ability lo m p m t and msnipvllD diacma cl-
rmmts of information. Any wr that is rrshicted to a &iu numbcr of elements ronuins dir-
mete infomatino. Examples of disacu sets ur the 10 decimal digits. the 26 lcths of tho
alph.bet, thc 52 playing card% and the 64 aq- of a chessboard. Early digital compuDrs
werc used fornumnic compuwim. In this case, tk d i m e elemem rverr the digita Rom
this mlicaiiw. the tmn dinitalcomoutw wncncd. Diawe elemcns of infomation ur rcP- ~ = = - ~
mcmd in a &ml sysum by phy&d quan$cp called sipnalr. Bleetnd signals such k
whagesand cummarc tho mm comma. Bleeaonic &vices called ~ i s u n ~ m
in tk circuitry that implemnu tbuc si@. The br@s in mom ruescat-day eloermoic dig-
iul s r n s w just & d i m t e values and ur herefom add to be blnnq A A- digit
d c d a bit. has k o values: 0 and I. Discme elemcnb of information arc r rp~ca led wilh
.pups of bib called binary d s . FW example, the decimal digits 0 khmugb 9 kc nprucncd
in a digital system with a code of tow bits (e.g., the number 7 is represented by 0111).

Through various techniques, groups of bits can be made to represent discrete symbols, whch
are then used to develop the system in a digital format. Thus, a digital system is a system that
manipulates discrete eIements of information represented internally in binary form.

Discrete quantities of information either emerge h m the nature of the data being processed
or may be quantized from a continuous process. On the one hand, a payroll schedule is an in-
herently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, and so on. An employee's paycheck is processed by means of discrete
data values such as letters of the alphabet (names), digits (salary), and special symbols (such
as $1. On the other hand, a research scientist may observe a continuous pmess, but record
only specific quantities in tabular form. The scientist is thus quantizing continuous data, mak-
ing each number in his or her table a discrete quantity, In many cases, the quantization of a
process can be performed automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a cened processing unit, and input-output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit performs arithmetic and other data-processing operations as specified by the
program. The program and data prepared by a user are transferred into memory by means of
an input device such as a keyboard. An output device, such as a printer, receives the results of
the computations, and the printed results are presented to the user, A digital computer can ac-
commodate many input and output devices. One very useful device is a communication unit
that provides interaction with other users through the Internet. A digital computer is a power-
ful instrument that can perform not only arithmetic computations. but also logical operations.
In addition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons that commwcial products are made with digital circuits.
Like a digital computer, most digital devices are programmable, By changing the program in
a programmable device, the same underlying hardware can be used for many different appli-
cations. Dramatic cost reductions in digital devices have come about because of advances in
digital integrated circuit technology. As the number of transistors that can be put on a piece of
silicon increases to produce complex functions, the cost per unit decreases and digital devices
can be bought at an increasingly reduced price. Equipment built with digital integrated cir-
cuits can perform at a speed of hundreds of millions of operations per second. Digital systems
can be made to operate with extreme reliability by using error-correcting codes. An example
of this strategy is the digital versatile disk (DVD), in which hgital information representing
video, audio, and other data is recorded without the loss of a single item. Digital information
on a DVD is recorded in such a way that, by examining the ccde in each digital sample before
it is played back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of
each digital module, it is necessary to have a basic knowledge of digitd circuits and their lugi-
cal function. The first seven chapters of this book present the basic tools of digital design, such
as logic gate structures, combinational and sequential circuits, and programmable logic devices.
Chapter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal
with asynchronous sequential circuits and the various integrated digital logic families. Chapters
1 1 and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

A major trend in digital design mahodology is the use of a hardware description language
(HDL) mdnrnbe and sirnuhe thc functionality of a digital circuil. An HDLrrscmbles .pro-

- - -
-&nulate a digilal system to verify its operation k i r e hardwarc is built in. It IS also used in
mnjmclion with logic synthesis tools to automale the design proeew. Because it is impman1
lhat students bccamc familiar with an HDL-bawd design methodology. HDL desctiptmna of
dieiral circuiuaretmsented thmuehout ihe bwk. ~h i l e the se examvie; helo illustrate the fen. - -
ums of an HDI- they also demonstrate the hest practicer used by industry to exploit HDLs.
Ignorance of the* partices will kad tocute. but w m h h s . HDL &Is that may dmulm a
~henomcnon, but that carnot be s y n t h d by design tools, or to models th.l wme silicon

As &viouslv stsled. dieitd svstems m&ioukte discrete ouantities ofinfomation that are . ~ - . ~~~~

repreinad in dinary form. w a n d s used for caloulations 'may be expressed in the binary
number system. Other discrete elements, including the decimal digits, are represented in b i
codes. Digital circuits. also refund m as loeic c&uits. m e s s data by means of binary loeic - - . -
elements (logic gwa) ustng binary signals. Quantiuer arc s t u d lo btnary (two-valued) war-
age ekmnt s (flipflops). The purport of this chapter is to inmrlun the various binary m-
ceps as a frsme of r e f m ~ for funher smdy in thc succeeding chaptern.

1.2 B I N A R Y NUMBERS

A decimal number such as 7.392 remsents a auantilv mual to 7 thousands. ~ l u s 3 hundnds,
plus 9 lens. plus 2 unou. lh thourdods. hundids, c;. i e powers of 10 ivied by thc psi-

non of the coeff~nenls in the number. Tu be moreexact. 7.392 e a shonband notswn for what
should be written as

7 x 1 d + 3 x 1 d + 9 x 1 0 ~ + 2 ~ 1 0 ~

However, the convention is lo write only the coefficients and, fmm their position, deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of EQfkicienIs:

lhcoetficicnts aj are any ofthc 10 digits (O,1,2,9). andthc subssrip~ value jgives the
place value and, hence. the power of 10 by which the cocffcient must be multiplied. Thus, the
preceding decimal number can be expressed as

l d a , + lO%q + l d a J + idol + lo'al + loOao + IO-'Q~ + 10-~a-z +
Ihe decimal number svslem is said to be of base. or rodir. I0 because it uses 10 dicits and

the ieflicients arc multiilied by powers of 10. The binmy ~ysnm is a diiTaent numi& sys-
m. The cocfficiem of the binary nmnbe~ system have only Wo poslible valuer: 0 and I.
Each coefficient a i is multiolied bv 2j. and the nsults are sdded lo obtain the decimal equiv-
alent of the numbe; The radix porn; (e g.. the decimal p in t when 10 ir the radix) d ~ s t i n g ~ h u
positive pu.crs of I0 from ncgati\e p o u m of 10. For example, the decunal equ~valent of the

4 Chapter 1 ~ l f y s h m s a n d ~N~

binary number llO10.11 k 26.75, as shown from the multiplication of thc c&6cicmts by pow-
em of 2:

In general, a number expressed in a base-r system has coefficients muhiplied by powers of r:

The coefficients a] range in value from 0 to r - 1. To distinguish between numbers of differ-
ent bases, we enclose the e c i e o t s in -- and write a M p t equal to fhe base used
(exospt someti- for decimal mmbers, where the content makes it obvious that the base is
decimal). An example of a bas5 nnmbes is

The cotfficient values for base 5 can be only 0, 1,2 ,3 , and 4. The octal number system is a
base-8 system that has eight digits: 0, 1,2,3,4,5,6,7. An example of an octal numkr is
127.4. To determine its equivalent decimal value, we expand the number in a power series with
abaseof&

Note that the digits 8 and 9 cannot appear in an octal number.
It is customary to borrow the needed r digits for the coefficients from the decimal system

when the h e of the number is I a s than 10. The 1- of the alphabet am wed to supplement
the 10 decimal digits when the base of the number is gmter than 10. For example, in the
h@x&cW @ase-16) number system, the furst 10 digits am bwrowed from the decimal sys-
tem. Tbe lecttts A, B, C, D, E, aod F musedfortbcdigits 10,11,12,13,14, a d 15, respec-
tively. An example of a hex&chal number is

Asnotedbefmthedigibinab'mnlrmberareabits. Whtllabitisequalto0,itdm.s
not~butetotheslrmd~gtheMmversion.~~theaoovtrsion~binmrrytodec-
i d can bc obtained by adding only ttae numbers wiib powers of lwo oomqmdhg to the bits
that am equal to 1. For example,

There are four 1's in the binary number. The corresponding decimal number is the sum of
the four powers of two. The first 24 n u m h obtained from 2 to the power of n are lhted in
Table 1.1. In computer work, 2'' is referred to as K (kilo), 220 as M (mega), 2m as G -1,
and 240 as T (tera). Thus, 4K = 2'' = 4,096 and 16M = Zz4 = 16,n7,216. Computer ca-
pacity is usually given in bytes. A byte is equal to eight bits and can accommadate (i.e., repre-
sent the code of) one keyboard character. Acomputer hard disk with four gigabm of storage
has a capacity of 4G = 232 bytes (approximstely 4 billion bytes).

Section 1.3 Number-Base Converslonr 5

Table 1.1
POWPI or Tvo

I 2" It 2" " f

0 1 8 256 I6 65536
I 2 9 512 17 131.072
2 4 10 1.024 18 262.144
3 8 I1 2,048 19 524.288
4 16 12 4.096 20 1.C48.576
5 32 13 8,192 21 2,097,152
6 64 14 16.384 22 4,194,304
7 128 IS 32,768 23 8.388.608

Arithmetic o~erationr with n u m k in base r fallow the same rules an for decimal num-
bers.When a bkeotherthan the familiar base 10 is used, one must be careful louse only the
rallowable digits. Examples of addition. subnaction, and multiplication of two binary num-
bers are m follows:

augend: 101101 minuad: 101101 multiplicand: 1011
addend: subtrahend: -100111 multiplier:
sum: 10101OO difference: WOllO 1011

WM)

Thc sum of two b l n q oumben 15 ~alruialcd b) the wme rule5 a ~n dcc~mal. except that
the Wts of me rum m any rrgmliuficant partoon cao be oal) 0 or I Any rarr) a b t u e d m s given
uenoficaa pc>*tlnun I\ u\rul hy thc patr dlpllr unr. wgrufieant povson h~ghur Suhlnuuon ir
slightly more complicated m e rules are still the same as io decimal, except that the barmw in
a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 ton minuenddigit.) Multiplication is simple: m e multiplier digits are always 1 or0:there.
fore, lhe panial pmducts are equal either to the multiplicand or to 0.

1.3 NUMBER-BASE C O N V E R S I O N S

The conversion of a numkr in base r to decimal is done by expanding the number in a power
series and adding all the terms as shown previously. We now present a general procedure for
the reverse operation of convening a decimal number to a number in bax ,: If the n u m k i n -
cludes a radix point, it is necessary to reparate the n u m k into an integer p m and a fraction
pan, skeeachpartmust be canveneddifferently. The convexxion of adecimalinteger to a m -
ber in base r is done by dividing the number and all sucewsivc quotimrs by r and accumulat-
ing the remainders. This procedure is best illusvated by example.

6 Chapter 1 Digltal Systems and B f ~ r y Numbers

Convert decimaT 41 to binary, First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of 4. Then the quotient is again divided by 2 to give a new quotient and
The process is continued until the integer quotient becomes 0. The coeficie#s of the desired
binary number are obtained from the remainders as follows:

Integer
Quotient

4112= 20
20/2 = 10

, ..
Therefore, the answer is (41)10 = (aga4a3a2alaO)2 = (101001)2.

The arithmetic process can be manipulated more conveniently ar3 fobws:

0
1

0

1 101001 = answer

Integer
41
20

10

Conversion from decimal integers to any base-r system is similar ta this example, except l h t
division is done by r instead of 2.

Remainder

I
0

EXAMPLE 1.2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in-
teger quotient of 19 and a remainder of 1. Then 19 is dividsd by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 ia divided by 8 to give a quotient of 0 and o remainder of
2. This process can be conveniently manipulated as follows:

The con~err~on of r decimal fmoron m binaq IV rccompl~rhed b) r methud .#rnllar m IBI
a c d for lntrgcn Hnur\cr. mulupl,rat~on is "red in-read of d~vlrion. and lnvgen inntad of
~malnderr arc srcumulated hgam. the method is best cxpliuned b) crmpl r

Convcn (0.6875)10 to binary. Firs< 0.6875 ia multipiied by 2 to give an integer and a fraction.
Thctl the new fraction is multiplied by 2 to gives new integer and a new freetion. The pmcers
is continued mtii the fraction becomes 0 or until the number of dipits have sufficient accuracy.
The cafficicntr of the binary number are obtained fmm the hregers as follows:

Therefore, the answer is (0.6875)10 = (0.0-lo-20-30-4)2 = (O.lO1l)l.
To conven a decimal fraction lo a number cnprcrwd in baw r, a similar procedure is used.

However, mulliplication is by r instead of 2. and the coefficients found fmm the intsgm may
range in value fmm 0 ro r - I instead of 0 and I

0.513 x 8 = 4.104

0.104 X 8 = 0.832

0.832 X 8 = 6.656

0.656 X 8 = 5.248

0.248 X 8 = 1.984

0.984 X 8 = 7.872

The answer. w seven significant figures, is obtained from the integer pan of the products:

(0.513)10 - (0.406517...)8

8 Chapter 1 Digital Systems and Elnary Plumbers

The conversion of decimal numbers with both integer and fraction parts is done by cm-
verting the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1.1 and 1.3, we obtain

(41.6875)10 = (101001.1011)2
From Examples 1.2 and 1.4, we have

(153.513)10 = (231.406517)g

1 .4 OCTAL AND H E X A D E C I M A L N U M B E R S

The conversion from and to binary, mtal, and hexadecimal plays an impartant role in digital
computers. Since = 8 and z4 = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The first 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1 -2.

The conversion from binary to octaI is easiIy accomplished by partitioning the binary num-
ber into groups of three digits each, starting born the binary point and proceahng to the left
and to the right. The corresponding octal digit is then assigned to each group. The following
exampIe illustrates the procedure:

(10 110 001 101 011 111 100 000 110)2 = (26153,7406)8
2 6 1 5 3 7 4 0 6

Table 1.2
Numbers with DiiYerent Bases

Decimal Blnay Octal Hexadecimal
(base 10) (base 2) (base 81 (base 161

Section 1.5 Complements 9

Conversion h m binary lo huadaclmal is similar.ucept thu the binary number isdivided into
gmups of&, digits

(10 11OO 0110 1011 . 1111 OO1O)r = (2C6B.R)16
2 C 6 B F 2

The conesponding hexadecimal (or octal) digit for each group of binary digits is earily n-
membered from the valves Usled in Table 1.2.

Convenion fmm wlnl or hcudecimrl lo b~llary is done by revetsing the preccdin~ porr
d m . Each octal digit is mnvmed lo i o W g i t binary equivalent. Sirmlarly. each hem-
dacdmal digit is convened lo nr fou~digil b i a q equiralcnl. 7 % ~ p&. is illunwral ia
the following examples:

(673.3.124)s = (110 111 011 . 001 010 lW)z
6 7 3 1 2 4

and

(306.D)t6 = (0011 MOO 0110 . i101)2

3 0 6 D

Binary numbers are difSeull m warl; with because they q u i r e Uuee or four ti- as many
digits as Wi daclmal equivalents. Panample. the binary n u m k 111111111111 is equiv.lmt
lo decimal 4095. Howeva, digital computm UM binary numbers, aod it h sometimcr nsessary
forthe humanoprstormus~tommmvoicatedi~ftly withthehehine bym~ansofswhnum-
ben. Orr scheme that rains the b i i systemin the computer, but reduces the numbaafdig-
its the h u ~ n must caasider, "utilizes the relationship b e e n the b i number ryrrem .Ild lk
d or Mxdccimnl r m m . 87 this mnhd ibc humam thinks in lums of ostalabu&mal
nvmbers and prf- the q u i d rrmwrsion by i n s w o n whsn direct mmmoniFdm with
the machins is necessary. Thus the b i i number 1111111 11111 bas 12 digits and is uprrssed
in octal as 7777 (4 dig~ts) or in hexadecimal as EFF (3 digits). During mmmtmication behvecn
H e (aboutbbq numbur in the computed. the octal or hexadecimal-sentltion h mne
deshbk because it can be expeared mare mmpscdy with a third or a qvafer of the n v m k of
d' i ts qui red for tbe equivalent binary numbrr. n u s , m m corngum murls use citba arml
or hexadecimal n u m k to specify b i i quanlities. The choice between &em is arbitrary.
although hsiladecimaltendr to win out, since it can represent a byte wah tarodi@fs.

1 . 5 C O M P L E M E N T S

Complements are used in digital romputem lo simplify the submaion oprraton and for log-
ical maoipulation. S i m p w g openuions leads lo simpler. less erpnsive c h i t s foimplnneot
the operations. mere are hvo types of complements for each base.? system: the radir com-
plement and the diminished radix mplemeot. The fust is ref& to an the 9 s m p l e m m t
and the s d as the (r - 1)'s canplemeat. When the value of the base r i s suMuued in the
namc.thcrarotypesarercfmedroastbeZ'scomplnncntvld I ' s comp lnncn t f ab i i nm-
k and the IO's complemenl and 9's complement for M m a l numbem.

10 Chapter 1 Mgital Systems and Binwy Numbers

Dlmlnlshed Radix Complement:
Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as
(rn - 1) - N. For decimal numbers, r = 10 and r - 1 = 9, so the 9's complement of N i s
(lon - 1) - N. In this case, 1W represents a number that consists of a single 1 followed by
n 0's. 10" - 1 is a number represented by n 9's. For exarnpIe, if n = 4, we have lo4 = 10,000
and lo4 - 1 = 9999. It follows that the 9's compIement of a decimal number is obtained by
rmbtracting each digit from 9. Here ~ IZ some numerical examples:

The 9's complement of 546700 is 999999 - 546700 = 453288.

The 9's cornplement of 012398 is 95999 - 012398 = 987601.

For binary numbers, r = 2 and r - 1 = 1, so the 1's complement of N is (2" - 1) - N,
Again, 2" is represented by a binary number that consists of a 1 followed by n O's, 2" - 1 is
a binary number represented by n 1 's. For example, if n = 4, we have z4 = (10000)2 and
z4 - 1 = (1 1 1 1)2. Thus, the 1's complement of a binary n u m k is obtained by subtracting
e a ~ h digit from 1. However, when subtractiag binary digits from 1, we can have either
1 - 0 = 1 or 1 - 1 = 0, which causes the bit to change from 0 to 1 or from 1 to 0, respec-
tively. Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and
0's to 1's. The following are some numerical examples:

The 1's complement of 1011000 is 0100111.

The 1's complement of 0101101 is 1010010.

The (r - 1)'s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

The r's complement of an n-digit number N in base r is defined as r" - N for N # 0 and as
0 for N = 0. Comparing with the (r - 1)'s complement, we note that the r's complement is
obtained by adding 1 to the (r - 1)'s complement, since r" - iV = [(rn - 1) - N] + 1.
Thus, the 10's complement of decimal 2389 is 76 10 + 1 = 76 1 1 and is obtained by adding 1
to the 9's-complement value. The 2's complement of binary 101 1 OO is 0 1001 1 + 1 = 010100
and is obtained by adding 1 to the 1 's-complement value.

Since 10 is a number represented by a 1 followed by n O's, 10" - N, which is the 10's corn-
piemeat of N, can be formed also by leaving a l l least significant 0's unchanged, subtracting
the first nonzero least significant digit from 10, and subtracting dl higher significant digits
fiom 9. Thus,

the 10's complement of 012398 is 987602

and

the 1 O's complement of 246700 is 753300

Sectlon 1.5 Complements 11

The iO'scomplrmcnt nf the Srn number s ohlniacd by suboaeting 8 horn 10 in the least sig-
~ n c a a position m d submacling all ulherd~gitr fmm 9. The IO'r eompkmcu of ibr -Dd
ovrobn ir obtained by leaving the tuo leas signnfieanl O'r uochanged. rubIrafling 7 fmm 10.
awl subtracting the othcr t h m digits bom 9

Similerl), Ihe TI complement ran be formed b) lea, ~ n g all least sigmfifirant O'r and the tint
I unchanged and replacing 1's ui!h 0'. and 0'1 wtth I'r in all othcr hgher signlfi~ant diglb.
Por -PIC.

theTsmmplemcntof IlOlIMisOOlOlW

and

the Z'rcomplementof01101il is lWiOD1

The 2's complement of the 6m number is oMained by leaving the tuo least signifcant 0's and
Ihe fusr I unchanged and than replacing 1's with 0's and O's with 1's in the o l b u faur m a sig-
nificant digiu. The 2's complement of the second number is obtained by leaving the least rig.
niticattt I unchanged and complementing all other digiu.

In the p v i a u s definitions. it was asrumd that the numberr did n a have a radix pin. If
theoriginal number Nmntains 8 radix point. the p i n t should k removed tcmpanrily in order
w bmt the r's or (r - 1)'s complement.The radix pin t is then &red to &e coiplnnent-
Ed number in the m e relative position. It is also wonh mentioning lhatthcmmplemcnt ofthc
complcment restorer the number to its original value. To see this relationship. note that the r's
complement of N is r" - N, so that the complcment of the complement is
r" - (r" - N) = Nand is equal to the niginal number.

Subtraction wlth Complements
The direct method of rubtraction taught inelementary sehwlsuses the borrow concept. In lhis
mehod. we b a r n a I fmm a higher si&eant position when the minuend digit is r&
than thesubtrahend digit. The method works well w k n pople performsubtranian w i t h w r
andpencil. However. when subaction is implemented with digilal hardware, Ihe mahod is lcrs
efficient than the method that uses complemcnls.

The subtrsction of two n-digit unsigned numbers M - N in base r can be done aa follows:

1. Add the minuend M to the r's complement of the suhtrshend N. Mathcmuically.
M + (r' - N) = M - N + #"'

2. If M m N. the sum will produce anmd carry r". Mich can be discardsd. what is left is
the msult M - N.

3. If M c N. the sum does not pmduce an end carry and is equal m r" - (N - M).
whichis Iher'smmplementof (N - M).Toobraiotheansmr ioafimiBarfotm,takc
the r's mmplement of the sum and place a negative sign in h t .

12 Chapter 1 Digltal Systems and Binary Numbers

The following examples illustrate the procedure:

Using 10's complement, subtract 72532 - 3250.

10' s complement of N = + 96750

Sum = 169282

Discard end carry lo5 = - 100000
Answer = 69282

Note that M has five digits and N has only four digits, Both numbers must have the same num-
ber of digits, so we write N as 03250. Taking the 10's complement of N produces a 9 in the most
significant position, The occurrence of the end carry signifies that M 2 N and that the result
is therefore positive.

rn

Using 10's complement, subtract 3250 - 72532.

10's complement of N = +27468
Sum = 30718

There is no end carry. Therefore, the answer is -(lo's complement of 30718) = -69282.
Note that since 3250 < 72532, the result is negative. Because we are &ding with unsigned

numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, we recognize the negative answer from the absence of the end carry and the
complemented result. When working with papa and pencil, we can change the answer to a
dgmd negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner, using the
procedure outlined previously.

Given the two binary numbers X = 10101M3 and Y = 1000011, perform the subtraction
(a) X - Y and @) Y - X by using 2's complements.

Sectl0nl.S Comp!mkmu 13

(a) x = IOIOIW
2's complement of Y = +-

Sam = IOOlDOOl
Discard end carry 2' = -10000000

An-,: X - Y = WlODOl

(b) Y = 1WM)lI
2's complemmt of X = +

Sum= 1101111

n K ~ i s m e n d c s r r y . T h n c f m , t b e ~ r i r Y - X = -(2'acmnplenwtofl101111) =
-WIwoI.

SubcRnion of unsigned numbcls cso also be done by means of the (r - 1)'s complement.
Remember Ihu the (r - 1)'s complement is one l e s lban the h eomplemeat. Because of
this, the result of addiog tlle minuend to the romplement of the sukmhmdpmducss a sum &at
is one less lhm the c a t diffmnce when an end carry occun. Removing the end carry aod
adding I to the sum is r e f d to as so and-omundca~.

Repat Example 1.7, but this rime using 1's complement.

(a) X - Y = IOIOIW - 1WM)II

X - 10101w

1's complement of Y = +-
sum- lWlWM)

1 Ed-amund carry = +-
Anm'er: X - Y = WIODOI

(b) Y - x = 1000011 - 1010100

Y = l ~ l l

1's com lement of X = +- P
Sum = 1101110

T h n c i s n o m d c a r r y . ~ ~ . b e s o m r w e r i s Y - X = -(l'nmmplencnfof1101110) =
- W 1 ~ 1 .

Notethat thenegative mylt ir obrsincd by taking ihc I'n complement of the sum, since Ibis is
the t y p of eomplmvnt used. T k @urc with end-amund csrry is alw applicsbh to sub-
vaning unsigned decimal numbers wilh 9's complement.

1.6 SIGNED BINARY NUMBERS

Positive integers (including zero) can be represented as unsigned numbers. However, to rep-
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a a g -
ative n u m b is indicated by a minus sign and a positive nmker by a plus sign. Because of
hardwm limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost pition of the number. The convention
is to make the sign bit 0 for positive and 1 for nemve.

It is important to re& that both signed and unsigned binary numbers consist of a string
of bits when represented in a computer. The user determines whether the number is ~igned or
unsigned, If the binary n u m k is signed, then the leftmost bit represents the sign and the rest
of the bits represent ?he number. If the binary number is assumed to be unsigned, then the left-
most bit is the most simcant bit of the number. For example, the string of bits OlOO1 can be
considered as 9 (unsigned binary) or as 4-9 {signed binary) because the leftmast bit is 0. Tbe
string of bits 1 1001 represents the binary equivalent of 25 when consided as au unsigned
number and the binary equivalent of -9 when considered as a signed number. This is because
the 1 that is in the leftmost position designates a negative and the other four bits represent bi-
nary 9. Urnally, there is no confusion in identifying the bits if the type of representation for the
number is known in advance.

The representation of the signed numbers in the 1s t example is referred to as the signed-
magnit& convention. In this notation, the number consists of a magnitude and a symbol (+
or -) or a bit (0 or 1) indicating the sign. This is the representation of signed ntunbers used in
o r d i n q arithmetic. When dthmetic operations are implemented in a computer, it is more
convenient to use a different system, referred to as the signed-complemnr system, for rep=
senting negative numbers. In this system, a negative number is indicated by its complement.
Whereas the signed-magnitude system negates a number by changing its sign, the signed-corn-
plement system negates a number by taking its complement. Since positive numbers always start
with 0 (plus) in the bftmost position, the complement will always start with a 1, indicating a
negative number. The signed-complement system can use either the 1's or the 2's complement,
but the 2's complement is the mast common,

As an example. consider the number 9, represenmi in binary with eight bits. +9 is repre-
sented with a sign bit of 0 in the leftmost @tion, followed by the binary equivalent of 9,
which gives 00001001. Node that all eight bits must have a *, therefore, 0's are hmkd fol-
lowing the sign bit up to the first 1. Although there is only one way to qraenf +9, the= are
three different ways to repsent -9 with eight bits:

signed-magnitude representation:
signed- 1 's-complement repsentation:

In signed-magnitude, -9 is obtained h m $9 by changing the sign bit in &e leftmost position
from 0 to 1. In signed-1's complement, -9 is obtained by complementing alI the bits of +9,
including the sign bit. The signed-2's-complement representation of -9 is obtained by taking
the 2's complement of the positive number, including the sign bit.

Table 1.3
g n r d Wm'y Numbnr

Slgmd-2's Sbmd-1 's S1gn.d
Decimal Compl-nt Compkment Magnkudm

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 OIW OlW OlW
+ 3 WII W11 Wll
+Z 0010 W10 W10
+ I WOI WOI WOI
+O MW MW MW
-0 - 1111 IWO
- I 1111 1110 LWI
-2 1110 1101 1010
-3 LIOl 1100 loll
-4 IIW 1011 1100
-5 1011 LO10 1101
-6 1010 IWI 1110
-7 IWl LWO Ill1
-8 lODO - -

Tuhle I ? Il.!r all powble four-bll .tgncd htnary numhcrs I" the lhrrr rcprescnlalronr
The equtvalcnl dee~mal numhcr 8- dl50 ~ h u u n for rcfcrcnce Nolc that the po,llh\e numberr
~n all three repre.entauonr s e idcnu;al and hair Ora lhc lcflmorl porltlon The slgocd-2's-
complement system has only one representation for 0, which is always positive. The other
two ryrremr have either a positive 0 or a negative 0, something not encountered in ordinary
arithmetic. Nolc t h a all negative numbers have a 1 in the leflmort bit position: lhat ia the
way we disrineuish them from the oositive n u m b . Wilh faur biu. we can remesent 16 binary -
numben. In the stgned-mlgn81ude and #he I'r-complement repre,entauon,. Ihere are eight
posltne numbers and clght negatlvc number,. ~ncludtng lwo zero,. In the l',.cornplement
rcprerentallon, rherr are rnght po~nrnc number,. tncluding unr xru. and eight negative
numbers.
The signed-magnitude system is used in ordinary arithmetic, but is awkward when em-

ployed in cornpuler arithmetic b e c u e of the separatehandling afthe sign and the mapniNde.
Therefm. the signed-complement systemis normally used. The 1's complement i m p % some
diffcullics and is seldom used for arithmetic ooerations. It is useful as s lopical owration. - .
stnee lhe change of I roOorO la I IS cqunalcnt to a l o g ~ a l complement opreuon, ar MU be
shown in the nekl chapter The direurrion of rlgnrd bnnary anlhmatc that follows deals ex-
clustvely u ~ l h !he ngned-2's-complement represenlation of neganve numben. Iiu lhc prc-
cedures can be applied to lhe rigned-l'rsomplement ryslem by including the end-amundcsny
as is done with unsigned numben.

The addition of two numbers in the signed-magnitude system follows the rules of oPdinary arith-
metic. If the signs are the same, we add the two magnitudes and give the sum the common sign.
If the signs are different, we subtract the smaller magnitude from the Iarger and give the differ-
ence the sign of the larger magnitude. For example, (+25) + (-37) = - (37 - 25) = - 12
and is done by subtracting the smaller magnitude, 25, fram the larger magnitude. 37. and
appending the sign of 37 to the result. This is a process that requires a comparison of the
signs and magnitudes and then performing either addition or subtraction. The same procedure
applies to binary numbers in signed-magnitude representation. In contrast, the rule for
adding numbers in the signed-complement system dms not require a comparison or sub-
traction, but only addition. The procedure is very simple and can be stated as follows for
binary numbers:
The addition of two signed binary n u m h with negative n u m h represented in signed-

2'scomplement form is obtained from tfie addition of the two n u m k including heir sign bits.
A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

.T>:/

Note- negarive numb must be initially in 2's-cumplement form and hat if the sum ob-
tained after the addition is negative, it is in 2's-complement form.

In each of the four cases, the operation p e r f w is addition with the sip bit included.
Any carry o& of the gign-bit position is discadd, md negative redts are automatically in 2's-
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number
af bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies
n + f bits, we say that an werflow occurs. When one performs the add&ion with paper and
pencil, an overflow is not a problem, because we are not limited by the width of the page. We
just add another 0 to a positive number or another 1 ta a negative n u m k in the most sifl-
cant position to extend the number to n + 1 bits and then perform the addition. Ovefflow is a
problem in computers because the numbr of bits that hold a number is finite, and a result that
exceeds the fmite value by 1 cannot be accommodated

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system, To determine the value of a negative number in signed-2's comple-
ment, it is necessary to convert the number to a positive number to place it k a more W a r
form. For example, the signed binary n u m k 11 11 1001 is negative the leftmost bit is
1. Its 2's complement is 000001 11, which is the binary equivalent of +7. We thefore m g -
nize the original negative number to be equal to -7.

Scction 1.7 Blnary Codes 17

Subtraction of two signed binary numkrr when negative numbor are in 2's-complement farm
is simple and can be stated as follows:

Take me 2k somplemml of the subVahcnd (ioeludimg the sign bit) md add it la tk minuend
(including tbe sign hit). A c m y o r dthe hcrlgn-bit puatron is discarded.

This pmeedun is adopted because a subtraction operation can be changed to an addition
o p t i o n if the sign of the subtrahend is changed, as is demonstrated by the following
relationship:

But changing a pasitive n u m b to a oegative number is easily d m by taking the 2's comple-
ment of the posi!ive n u m k The reveae is also true, because the cmnplement of a negative num-
ber in complement form pmduces the equivalent positive number. To see this, consider the
subasction (-6) - (-13) = +7. In binary witb eight bits, this opmtion is written as
(1 11 11010 - 11 I IWII) , The s u M m is cbsnged toaddition by taking tk 2's complement
of~subWhend(-l3),giving(+I3).hbin~.~isli111010 + W001101 = iOMMOiIi.
Rem~~theeodcarrv.weobrain~mnea~w~r:OWOOlIl 1+71.

It is ormb mhag binuy numbm in tk si@comple&nt ristem are added and ab
rracvd by ihc same basic addition snd r u b c t i o o rulci as unstgned ~ u m k r r . Thnefurc, cam-
puten need only one commun hardware cnrcuit to handle bath types of mthmcnc. The uuror
pmgrammcr must i n t e r n the results of such addition or subtraction dh%ently, depnding on
whether it is mumd that the r~umbns are signed M unsigned

1.7 B I N A R Y CODES

Digital rystemsose signals that have twodininet values andcircuit clementsthat have tworta-
ble states. Thm is a direct analom amone binan, sieoals. binarv circuit elements. and binarv - . -
dig&. A biiary number of n b g z . for example, may be reprcknted by n b i circuit el=:
mmts. each having an omput signnl quivaknt to 0 u I . Digital systems -rent m d ma-
nipvlalc n n onl) binary numkrr, but also many other discmte ~lcmentr of i a fomt im. Any
dirnete element of information that is distinct among a gmup of quantities can be npnsented
with a binary code (it.. a pmm of O's and 1's). The codes must be in b i w y k a u s c , in
today's technology, only c h i t s h t mpmcnl and manipulate panems of O's and 1's can be
manufactured economically for use in computers. Hawever. it must be realized that b i i
codes mrely change the s y n h h , not the meaning of the dements of information that they r e p
resent. If we inspect the bin of a computer at mr&m we will fmd thPt m t of tk 6m they
m w n t samc Noc of& infamuion mtherthao binarv nnmbns. . .

An n-bll b~aar) code IS a group of n bola that assumes up to 2" dstmn combmat~onr of 1's
and O'r, utth each combtnaltoa reprercnuap o m clement of the set that s betng coded. A net
of four ekmcnts can be & with two bits, with each ekment assigndone of the foUowing
bit combinations: W. 01.10.11. A set of tight e lemnu requires a h e - b i t code and a set of

I 8 Chapef 1 Digltal Systems and Binary Numbers

16 elements requires a four-bit code. The bit combination of an n-bit code is de&mhed h m
the count in binary from 0 to 2" - 1. Each element must be assigned a unique binary bit com-
bina~on, and no two elements can have the same value; otherwise. the c d e assignment will
be ambiguous,

Although the minimum number of bits required to code 2" distinct quantities is n, thm is
no maximum number of bits that may be used for a binary code. For example, tbe 10 decimal
digits can be coded with 10 bits, and each decimal digit can be assigned a bit combination of
nine 0's and a 1 . In t h i s particular binary code, the digit 6 is assigned the bit combination
0001000000.

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve tbis difference is to convert dec-
imal numkrs to binary, perform all arithmetic calculatims in binary, and then convert the bi-
nary results back to decimal. This method requires that we store decimal numbers in the
computer so that they can lx converted to binary. Since the computer can accept only binary
values, we must represent the decimal digits by means of a code that contains 1's and 0's. It is
also possible to perform the arithmetic operations directly on dwimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in the
set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that dis-
tinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible com-
binations remain unassigned. Different binary codes can be obtained by arranging four bits
into 10 distinct combinations. The code most comody used for the decimal digits is the
straight binary assignment listed in Table 1.4. This scheme is called binary-coded &chul and
is commonly referred to as BCD. Other decimal codes are possible and a few of them are pre
sented later in this section.

Table 1.4
#nary-C& CkrfmaI (1KD)

Declmal BCD
Symbol D m

0 0000
1 m1
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 loo0
9 1001

Section 1.7 Binary Codes 19

Table 1 4givt3thc four-n~t urlc k,r uncdecimal h g i t A number with k dcomal dlglt~ will
4t bu c.~i,~,.~ 3% ir rrplrhnlmd ncr, W . I I . 12 hlar ill N,II I(YII 1~1in.

Y ith each eruu~ uf 4 btlb re~rrssntcne one decimal dlell. A dccnmal number in RCD 15 lllr - . - -
same rr irr equivalent b i n y oumbcr whso the nvmbsr is k h s n 0 and 9.ABCD num-
ber greater Ulan lolooks different from its equivalent binary n u m b s even though both con-
tain 1's and O'r. Moreover, the b i n q combinations 1010 thmugh 11 11 are not used and have
no meaning in BCD. Consider decimal 185 and its corresponding value h BCD and b i n q :

(185)10 = (0001 l000OIOl)aco = (IOl1IWL)~

The BCD value has 12 bits to encode the characters of the decimal value, but the equivalent
binary number needs only 8 bits. It is obvious h t the reprereotatian of a BCD number needs
more bits than its equivalent binary value. However. t h e is an advantage in the me of deci-
mal numbers, because computer input and output dam am generated by people who use thedec-
i d system.

It is imporrant to realize that BCD numbers are decimal numbers and not binary numbers,
although they me bits in theirrepresentation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0. 1.2, . . . , 9 and BCD numbers use
the binary code 0000. W01.0010. 1001. Ihe decimal value is exactly the same. Decimal
LO is represented in BCD with eight bits a 0001 0000 and deeimal I5 as W0I 0101. The ca-
responding b'- values are 1010 and 11 11 and have only four bi-.

BCO Addltlon

Consider Ihe addition of nu0 decimal digits in BCD. togctha with a possible carry fmm a pre-
vious less significant pair of digits. Since each digit doer not exceed 9. the sum cannot be
grearcrthan9 + 9 + I = 19, withthe I being apnviouscarry. Suppose wesddtheBCDdig-
iu as if they were binary numbers. Then the binary rum will produce a result in the range
from 0 to 19. In binary, this mnge will be fmm 0000 LO 10011, but in BCD, it is from 0000 to
I 1001. with the first (i.e.. leftmost) 1 k ing s e q and the next four bitrbeingtheBCD sum.
When the hioary sum is equal to or less than 1001 (without a carry), the comsponding BCD
digit ir correct. However, when the binary sum is p a r e r rhan or equal to 1010, the result is an
invalid BCD digit. The additionof 6 = (0110)2 to Ule binary sumconverts it to the comctdigit
and alro produces a carry as required. This is becaurc a c a y in the most significant bit p o b
tion of the binary rum and a decimal carry differ by 16 - 10 = 6. Consider the following
three BCD additions:

4 0100 4 0100 8 IW0
+5 - += +s +m +9 1001

9 1001 I2 1100 17 10001
+OLIO +0110
l W l 0 IOll l

In each care, the two BCD digits arc added as if they were two binary numbers. If lhe binmy
rum is greater than or equal la 1010. we add 01 10 to obtain the comet BCD sum and s carry.
In the fint example, the sum is equal to 9 and is the correct BCD sum. In the second example.

20 Chapter 1 Digital Systems and Binary Numbers

the binary sum produces an invalid BCD digit. The addition of 01 10 produces the correct BCD
sum, OO1O he., the number 21, and a carry. In the third example, the b i i sum pdwes a carry.
This condition occurs when the sum is greater than or equal to 16. AIthough the other four bits
are less than 100 1, the binary sum requires a correction because of the carry, Adding 01 10, we
obtain the required BCD sum 0 11 1 (i.e., the number 7) and a BCD carry,

The addition of two n-digit unsigned BCD n u m b follows the same prwdure. Consider
the addition of 184 t 576 = 760 in BCD:

BCD '1 1
0b01 1000 0100 184

+0101 0111 0110 +576 ---
Binarysum 0111 10000 1010
Add 6 0110 0110 - - - -
BCD sum 0111 0110 0000 760

The fmt, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next pair of digits. The second pair of BCD digits plus a previous carry pruducm a digit
sum of 01 10 and a cany for the next pair of digits. The third pair of digits plus a carry p d u e s
a binary sum of 0 11 1 and does not require a corntion.

The representation of signed decimal numbers in BCD is similar to the repreamtation of signed
numbers in binary. We can use either the familiar signed-magnitude system or the signedcom-
plement system. The sign of a decimal number is usually represented with four bits to conform
to the four-bit code of the dwbd digits. It is customary to designate a plus with four 0's and
a minus with the BCD equivalent of 9, which is 1001.

The signd-magnitude system is seldom used in computers. The signed-complement system
can be either the 9's or the 10's complement, but the 10's complement is the one most often
used. To obtain the 10's complement of a BCD number, we first take the 9's complement and
then add 1 to the least significant digit. The 9's complement is calculated from the subtraction
of each digit born 9.

The procedures developed for the signed-2's-complement system in the previous section
also apply to the gigmd-10's-complement system for decimal numbers. Addition is done by
summing all digits, including the sign digit, and discar- the end carry. This operation
assumes that all negative numbers are in 10's-complement form. Consider the addition
(+375) + (-240) = + 135, done in the signed-complement system:

The 9 in the lehost position of the second number represents a minus, and 9760 is the 10's
complement of 0244. The two numbers are added and the end carry is discarded to obtain
+ 135. Of course, the decimal numbers inside the computer, including the sign digits, must be
in BCD. The addition is done with BCD digits as described previously.

Section 1.7 Binary Codes 21

The subtraction of decimal numbers, either unsigned or in the signed-10's-complement
svstem. is the same as in the binarv care: W e the 10's comnlement of the subtrahend and add
rlto the m r n d Many cornpunk have sp8.d bardware ;o perform anUunelie ualeulatloos
dimUy with decimal n u m b in HCl, lk user of the computer can specify plwogrammed
iosmrtims to prfam the arilhnvtie opratinn witb d e c i d numberr dimly. without having
to convert them to binary.

Other Decimal Coda

Binary codes for decimal digits q t t i l r a minimum of four bitspdigit. Many different codes
can be formulated by arranging four bits into 10 distinct combinatlona. BCD and thme other
repressntative codes sle shown in Table 1.5. Each code uses only 10 out of a possible I6 bit
eombmations that can be arranged with four bib. The other six unused combinations have no
meaning and should be avoided
BCD and hc 2421 code an examples of weighted e d s . In a weigh&&, each bh pmiti'an

h a s s i g n e d a w i ~ g ~ i n a u h a w a y t h a t e a c h ~ t ~ kwaluncdby.ddiihcweights
of an hc 1's in the ccded combilmim. The BCD mdc bar. wights of 8.4.2. and I, which coat-

apandtohcpaver.of-(~~valuerofeach bit.% bit arsigomentOll0, foruample, is luaprrced
bythewei&torrpnMlt&cimal6keau~8 X 0 + 4 X 1 + 2 X 1 + 1 X 0 = 6.Thcbit
mmhinatian 1101, whol weighed by the mpctive digits 2421, giws h d e e i d equivalent of
2 X 1 + 4 X 1 + 2 X 0 + 1 X 1 = 7. Note that nome digits can be coded in hvo prible
ways in the 2421 code. For instance. d s i 4 can be assigned to hit combination OlW or 1010,
sim bMh combinations add up LO a total weight of4.

Table 1.5
F o u r D ~ U n q C o d s (b r h r ~ D ! g I U

0 WOO mm MI1 ow0
I WOI WOl OIM 0111
2 MIO ml0 0101 0110
3 0011 0011 0110 0101
4 0100 OIW 0111 0100
5 0101 loll lMYl 1011
6 0110 1100 IW1 1010
7 0111 11oi 1010 IWI
8 IWO Ill0 1011 IWO
9 IWI 1111 llM llll

1010 0101 WOO WO1
unuwd 1011 0110 WO1 MI0
bit IIM 0111 WIO Dolt
mmbi- 1101 1WO 1101 IIM
nalianr 1110 IW1 1110 1101

1111 1010 1111 1110

22 Chapter 1 Dlgkal Sgrstems and Bkrary Numbers

The 2421 and the excess-3 codes are examples of self-complemmhg &. Such &
have tbe property that the 9's complement of a decbd number is OM directly by chang-
ing 1's to 0's and 0's to 1's (i.e,, by komp1emenlh.g each bit in the pattern). For example, dec-
imal 395 is represented in the excess-3 code as 01 10 1 lDO Im. The 9's complement of 6M
is represented as 100 1 001 1 01 11, which is obtained h p 1 y by complemmhg each bit of h e
code (as with the 1's complement of binary numbers).

The excess3 code has been used in some older computers because of its self-complement-
ing proprty. Excess-3 is an unweighted code in which each coded cumbid011 is obtained from
the corresponding binary value plus 3. Note that BCD code is not self-complemeflting.

The 8,4, -2, - 1 c& is an exmple of assignin# both positive md negative weights to a
decimal code, h this case, the bit combination 0110 is interpreted as k i m d 2 and is calcu-
l a t e d f r o m $ X O + 4 X l + (- 2) X 1 + (- 1) X O = 2 .

Gray Coda

The output data of many physical systems are quantities that are continuous. These data m t
be converted into digital forrn before they are applied to a digital system. Coatiwous or analog
hfonmtiw is converted into digital form by meam of an ana log-Wta l ~oflverter. It is smne-
times convenient to use the Gray d e shown in Table 1.6 to represent digital data that have been
converted from analog data. The advantage of tbe Gray code over the stmight binary number
sequence is that only we bit in the code group changes in going R.om one n u m b to the next.
For example, in going from 7 to 8, the Gray code changes from O1OO to 1100. M y the first bit
changes, from 0 to 1: the other b e bits mmain the sama By contrast, with biaary numbers the
change from 7 to 8 will be from 01 11 to 1000, which causes dl four bits to change values.

Table 1.6
Gray Code

Grqlr Decllrral
Code Equhahm

0000 0
OOO1 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
loo0 IS

S d o n 1.7 Binary Codes 23

The Gray code is uxdin applications in which the normal sequence of binary numbns may
pmducc an error or ambiguity during the transition fmm one number to the next. If binary
numbers are used. achanee. for cxamnle. from 01 11 to IWO mav d u c e an inlwwdiate er-
m-r number 1W1 il ;he value of& righumst bit taker longe; to chanr than do the Val.
ucs of the a k three bits. 7he Gray ccdc cltm~nrter this problem. stm only o w bit changes
its value during any tramition between two numben.

A typical application of the Oray code is the representation of analog data by a continu-
ouo change in the angular position of s rhafi. The shaft is partitioned into segments, and
each segment is assigned a number. If adjacent segments are made to cornspond with the
Gray-code squence, ambiguily is eliminated belween the angle of the shah and the value
encaded by the senror.

ASCII Character Code

Many applications of digital computers require the handling not only of numbers, but also of
other characters or symbols. such as the leners of the alphatxt. For instance. an inuvance com-
m v with thousands of oolicvholders will use acomDutcr lo omcen its files. To reorewe the . . . ,
names and aher pmnnrnt m f m u o n . ,I I\ necessary to fomwlate a bmry code f u the let-
ten of lhe alphabet In dd~tton. the same baary code must reprevnt numerals and qpclal
charaners (such as S). An alphanumeric character set is a set of elements that includes the 10
d a d digis, the 26letvrr of the alphabet, and a numberof special characm. Such a act con-
lains between 36 and 64 elements if only capilal letan arc included, or between 64 and 128
elements if both uppercase and lowercase letters are included. In the first case, we need a bi-
nary code of six bits. andin the second, we need a binary code of seven bits.

The standard binary code for the alphanvmwic characten is the American Standad Code
fw lnfwmation Interchange (ASCII). which uses seven bits to code 128 chsracters. as shown
in Table 1.7. Tlu seven birr of the d c ux designated by bl through b. with b the most sig-
nificant bit. The leuer A. for exsmplc. is repwnted in ASCII a\ IMOOOl (column IW. mw
WOI). The ASCII c d r also contains 94 grdphic characm Ihat can be printed and 34 "an.
printing characters usedfor various conval funcdons. The graphic Characters consist of the 26
uppercase letten (A through Z), the 26 lowercase letten (a through 1). the 10 numerals (0
Ihrovzh 9). and 32 soecial mintable characters. such iu W. *. and S. . . ~ ~

TI; 3 i k n u o l cdaraclcn are &signaled i nkc ASCII tahle with abbreviated nams. They
are listed again below the lable with their boctional names. Thcmnml characten are used for
muting dam and arranging the printed text into a pscribd formu. There are three types of
contmlcharacters: fonnaeffecmn. information m r a t o n . andcommunication-canuol char-
aclen. Format cffccton arc charscm that control the layout of printing. They include the fa-
miliar ward processor and rypewrttcr eonuols such as backspace (BS), horhonul tabulatian
(HT), and carriage reurn (CR). Informtion reparalorn ere uxd to wpmte the datainto divi-
sions such as paragraphsand pages. They include characlerssuch iu recordxpmmr (RS) and
file smamUU IF%. The communication-mud c b m a m me useful donine the uansmisnim -
of lext beween remote termanals. Exmplu of commumcauom-coml characters am STX
tslan of lext) and ETX (end of lextl. whrh arc uscd to ham a text message transmud though

24 Chapter I Digital Systems and B l n q Numb

Table 1.7
Amertcm Standard C&? hf I- I-* (ASCII)

b a d 5
b4b3bdl 000 001 010 011 100 101 110 Ill

0000 NLn, D SP 0 @ P P
- - ‘ OOO1 SOH DC1 I 1 A Q a 9

010 STX DC2 2 3 R b r U

0011 E m DC3 # 3 C s C s - -
0100 EOT DC4 $ 4 D T d. - t

0101 ENQ NAK 5% 5 E U e 11
0110 ACK SYN & 6 F V f v
0111 BEL ETB 7 0 W I w I

1000 BS CAN 8 H X- h x
1001 En EM 1 9 1 Y i Y
1010 LP SUB 1 J z j z
1011 VT ESC + 9 K [k
1100 FF FS < L \ 1
1101 CR 0s - M 1 m - - I.
1110 SO Rs > N A n

1
h.

11'11 SI US ; 7 0 - 0 DBL

Control ctsarrcterr
. -

NUL Null DLE Data-link escape
SOH S m o f hsading DC1 Device conml f

. S T X Startoftext DC2 Dtvlcacontm12
' EI'X Endof text DC3 Devioe control 3
: m Endoffransmhsiw DC4 Dcvloeoon1rol4 *

ENQ Enquiry NAK NepiivcachowMge
ACK Acknowledge SYN Synchmmsidle

" . BEL Bell 6TB Bnd-of-~ss iwbloe lr
BS Backspaet CAN Cancel
HT Horizontal tab EM Endofmedium . :

LF Line fad I SUB Substitute - -.

Y T V M tab ESC Escape
FP Form feed FS File separator < .

CR q- GS -UP-
SO Shift out RS -
SI Shift in US Unit s q a a m
SP SW DEL Delete

ASQI is a seven-bit code, but most computers rnanipulm an eiat-bit quantity as a single
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The extra
bit is sometimes used for other purposes, depending on the appl icah For example, wnae
printers recognize eight-bit ASCII chapdcters with the most sipi6caflt bit s& to 0. An ~~

Section 1.8 Blnay Storage and Registers 25

128 eight-bit characterr withthe most significant bit set to 1 arr used for othersymbols, such
as the Greek alphabet or italic type font

Enor-DetMlng Code
To detect e m n in data communication and processing, an eighth bit is sometimes added to the
ASCU character to indicate i b padry. Aparily bir is an exw bit included with a message lo make
the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:

With even parity With odd parity
ASCII A = IWOOOl OlDwML 1IWOOOL
ASCII T = 1 0 1 0 1 ~ 11010iOO OiOlOlOO

In each care, we inserr an extra bit in the leftmort position of the code to produce an even
number of 1's in the character for even parity or an odd number of 1's in the character for
odd parity. In general, one or the other parity is adapted, with even parity being mare
common.

The parit) bnt is helpful in dcvctinp crron duringthe tr~nsmiss~onoiinfomation fmmone
laauon to another. This function I, handed by grneral~ng an cvco pant) brt at the soding cod
for each character. The eight-bit chamten that include parity bits are transmitted to theirdes-
tinanon. The parity of each character is then checked at the receiving end. If Ule parihi of the
received ch&cter-is not even. then at least one bit has chaneedvalu~dudae the ~ m k s r i a n .
Thrr method detects one. three. or any odd cumb~nat~on ufenorr in each character that I, mnr-
maned An e>m combrnat~on of emn. huuebcr. gw\ undutc~rud. md dduldll~cmd e m dctec-
tion coder may be needed to take care of that possibility.

What is done after an error is detected depends on the particular application. One porri-
bility is to request retransmission of the message on the assumption that the error was ran-
dom and will not occur aeain. Thus. if the receiver detects a aarihr error. it sends back the . ,
ASCU NAK (negati,e acknouledge) control character conrirllng of an crcn-panty wght
bits 10010101. If nc, unur i r dctr.ctcd. the mccivur \und\ hack an ACK (ackno~lzdgu) tun-

Iml character, namely. OW001 10 The rending end uill rrrpood to an NAK by uanrmtung
the message again until the correct parity isreceived, lf,ifier a number of attempts, the
transmission is still in ertor, a message can be sent to the operator to check for malfunctions
in the uansmissiaa path.

1.8 B I N A R Y S T O R A G E A N D R E G I S T E R S

The binary information in a digital computer must haves physical existence in same medium
for storing individual bits. A b i ~ ~ y CCN is a device that possesses two stable states and is ca-
pable of storing one bit (0 or I) of information. The input to the cell receives cxcifatian rig-
nals that set a to one of the two states. The output of the cell is a physical quantity thst
distinguishes between the two states. The information stored in a cell is 1 when the cell is in
one slabie state and 0 when the cell is in the otbn stable state.

26 Chapter 1 Digital 5- and Sinmy Numbtn

Registerr
A register is a group of binary cells. A register with n cells can store any discrete q h t y of
information that contains n bits. The state of a register is an n-tuple of 1's and O's, with each
bit designating the state of one cell in the registet. The content of a regism is a Punction ofthe
interpretation given to the information stored in it. Consider, for example, a 16-bit register
with the following binary cormtent:

A register with 16 cells can be in one of 216 possible states. If one assumes that the content
of h e register represents a binary integer, then the register can store any binary number from
0 to 216 - 1. For the particular example shown, the content of the register is the binmy equiv-
alent of the decimal n u m h 50,12 1. If one assumes instead that the register stores alphanu-
meric characters of an eight-bit code, then the content of the register is any two meaningful
characters. For the ASClI code with an even parity placed in the eighth most significant bit
position. the register contains the two characten C (the h o s t eight bits) and I (the right-
most eight bits), If, however, one interprets the' content of the register to be four decimal dig-
its represented by a four-bit code, then the content of the register is a four-digit decimal
number. In the excess3 code, the register holds the decimal number 9,096. The content of the
register is meaningless in BCD, because the bit combination 1100 is not assigned to any dec-
imal digit. From this example, it is clear that a register can store discrete elements of infor-
mation and that the same bit configuration may be interpreted differently for different types
of data. . .

A digital system is characterized by its registers and the components that perform data pro-
cessing. In digital sy stems, a register transfer operation is a basic operation that consists of
a transfer of binary information h m one set of regbters into another set of registers. The
transfer may be direct, from one register to another, or may pass through data-processing
circuits to perform an operation. Figure 1.1 illustrates the transfer of infomation among reg-
isters and demonstrates pictorialIy the transfer of binary information from a keyboard into
a register in the memory unit. The input unit is assumed to have a keyboard, a control cir-
cuit, and an input register. Each time a key is struck, the control circuit enters an equiva-
lent eight-bit alphanumeric character code into the input register. We shall assume that the
code used is the ASCII code with an odd-parity bit. The information b m the input regis-
ter is transferred into the eight least significant ce1Is of a processor register. After every
transfer, the input register is cleared to enable tbe control to insert a new eight-bit cade
when the keyboard is struck again. Each eight-bit character transferred to the processor
register is preceded by a shift of the previous character to the next eight cells on its left. When
a transfer of four characters is completed, the processor register is W1, and its contents are
transferred into a memory register. The content stored in the memory register shown in Fig. 1.1
came from the transfer of the characters "J," "0.'" "H," and " N after the f a n appropriate
keys were struck - , I

ACUa 1.1
Transfer d lnformatlon m n g r e g l a e n

To pprocess discrete quantities of information in binary form, a compurer must be pro-
vided with devices that hold the data to be processed and with circuil elements that manip-
ulate individual bits of information. The device most commonlv used for holdins data is a

~ ~~ - ~

register. Htnary rar~abler are rnan~pulated by means of dlgitll logic CIR.UI~S Fbgure I.? 11.
luarates the process of adding two 10-bit b~nary numben. The memor) ulut. whtch nor-
mally consists of millions of registers. is shown with only three of its registers. The Dart of
the processor unit shown consisis of three registers-RI.,?~. and ~3-torether with
logic cmuit, that manip~late the blrs 01 ~ i a n d R2 and transisr nnlo ~ j a b ! n q number
equal to thew arithmetic Gum. M c m o ~ rcgl\terr rtorc infc,nnatlun and *re incapable of pro-
cessing the two operands. However, the information stared in memory can be transferred to
processor registen, and the naults obtained in messor reeisten can be transferred back into
a memo? reglsler for storage untd needed aeatn The dlaprdm shows the content, of two
operands tranrfemd from two memoq regtntcn nnlo R l and R2 The dlgntal logrc elrcultr
produce the sum. u hlch IS translemd to reglrter R3 The content* of R j can nau be tran,-
ferred back to one of the memmy registers,
The la51 two examples demvnitralcd the iniurmatlon-nuw capabrltl~es ut a drg~ml r) rum

In a rlmple manner Thc xylslcr\ ofths ,y,tcm arc thr. bauu ~1r . rn r . a~ for stu"ng and holding
the hlnary inf#~matwn. D~yival lc,g~c ccn.utt* Ilrc,ue.\ thc b l n a ~ informatlon stored in rhe

..-
registem, Digital logic circuits and registers are cavered in Chapters 2 6. The m a m y
unit is explained in Chapter 7. The description of register opedons at the register tramfer
level and the design of digital systems are covered in Chapter 8. . 1

1.9 B I N A R Y LOGIC

Binary logic deals with variables that take on two discrete values and with o p d o n a hat as-
sume logical meaning. The two values the variables assume may be called by Merent name
(true and false, yes and no, etc.), but far our p v , it is convenient to thiak in k m s of bits
and assign the values 1 and 0. The binary logic introduced in this sation is equivalent to an
algebra called Boolean algebra. The formal presentation of Bwlem algebra is cwered in more
detail in Chapter 2. The purpose of this section is to i n d u c e Baolean algebra in a heuristic
manner and relate it to digital logic circuits and binary signals.

Sea ion 1.9 Binary Logic 29

B i i logic consists of binary vsriables and a set of logical operatiom. The variables are desig-
nated by leners of thealpha&, such as A, 6. C.x.y, i,etc., with each variable having moaodonly
twodistinnpossibievalues: 1 and0,Them are three bariclogicalaperafionr: AND. OR andNOT

1. AND: This owration is reureseated by a dot or by the absence of an operator. For
. . . ~ . - . . " .

is interpreted to mean t b a r = L if and only if x = 1 and y = 1: otherwise : = 0.
(Remember that x, y, and z are binary variables and can be equal either to I or 0, and
nothing clse.)

2. OR: l t k operationis r e p e n t e d by aplur sign. For example. x + y = ;is read? OR
yisequal toz ,"meaning~t r = l i f x = I o r i f g = lo r i fbothx = land). =].If
bothx = Oandv = 0,thcnz = 0.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For example.
z' = r (or ? = r) is read "not x is equal to 1." meaning that : is what x ir not. In other
words. if x = 1. then r = 0. but if x = 0. Ulen .- = I. The NOT oDerat~an is also re- ~.
fmcdto as the Eomp~cment operation, since it chsages a I to 0 and a o to 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have similar-
ties to multi~lication and addition. resaeetivelv. In fact. the svmbols usedfor AND and OR are
the same as those uud for muluphcauon and adhtton. Houever. b l n q loge should not be mn-
fu ,d wtth binary mthmeuc. Ooc AuulJ reahra thdt an mthmcuc vmablc deugndar a num
ber that may consist of maay digits. A logic variable is alwsys either 1 or 0. For example, in
binsrv atilhmetic. we have 1 + 1 = 10 (read "one olus one is eaual to 2"). whereas in binaw
logic, we have 1 - I = I (read "one OR one is equal to one",

Fur each r'xnh~natrun of the \alms of randy, thcrc IS a saluc ol : rpeclficd b) the defim-
lnonof the lnglcul operaiun. Defin8tiunr of lapcal upcratlunr ma) k I!\tcd in il cumpact form
called tmrh ,able$. A truth able is s [able of all possible combinations of the variables. show-
ine the relation between the valuer that the variables mav take and the result of the owration. -
'lhc lruth tablcr f ~ r the uperaltont AND and OR uilh \ariahlc\ .I and).are ubtalned hy Ilamg
all po<sahle valuesthalthe $mahlc\ may have ahcn romhbned in pair< For eachromb~nat~on.
the result of the operatton is then listed in a reparate rou The truth tables for ASD. OR. and
NOT are given i n ~ a b l e 1.8. These tables cleariy demonstrate the deftnition of the operatiom.

Table 1.8
Truth Toblrr of logic01 Operations

AN0 OR NOT

30 Chapter 1 Mgtlhl Systems and lkrary N u m h

Logic gates are electronic circuits that operate on one or more input signals to produce an
output signal. Electrical signals such as voltages or currents exist as analog signals having
values over a given range, say, 0 to 3 V, but in a digital system are interpreted to be either of
two recognizable values, 0 or 1. Voltage-operated logic circuits respond to two separate volt-
age levels that represent a binary variable equal to logic I or logic 0. For example, a partic-
ular digital system may define logic 0 as a signal equal to 0 volts and logic 1 as a signal
equal to 3 volts. In practice, each voltage level has au acceptable range, as shown in Fig. 1.3.
The input terrninds of digital circuits accept binary signals within the allowable range and
respond at the output terminals with binary signals that fall within the specified range. The
intermediate region between the allowed regions is crossed only during a state transition. Any
desired information for computing or conhl can be operated on by passing binary signals
through various combinations of logic gates, with each signal represeflting a particular binary
variable.

The graphlc symbols used to designate the b e e types of gates are shown in Fig. 1.4. The
gates are blocks of hardware that produce the equivalent of logic-1 or logic-0 output signals

3 I Signal
range for
logic 1

(a) Two-input AND gate @) Two-input OR gate (c) NOT gate or inverter

FIGURE 1.4
Symbols fw dl-l bgic d d t s

" d l 1 1 0 0

0 0 1 1 l k

f i m . ~ ~ 0 o r n o 0

OR:r+y I I 1-

j-,cyrr. 7 0 0 I 1 I

RCWE 1.5
I n p u t a t p u t rlgnals for gates

(a) T%ree.input AND p t (b) Four-Input ORgrte

MUIT 1.6
Gates wlth r n u l t l p Inputs

11 inpa logic q u i r n r r n t s are saorficd The i n p ssgnalr x and , m the AND and OR gates may
curt m am of fow pasthk n m s W. 10.11, or01 Thev mpul ~ ~ g n a l s arc ,houo in Fig 1 5 to-
g& with & &sponding oulput signal for w h g*. The liming d&mm i l l u k the re-
r m o s e o f c s c h e a u l o ~ f w r ~ t sirmalmmbinalim.Theh~2ontalaxisofktiminediam - . - - -
rqrecmts ttme. and tk vmcal mi^ shows the signal as it cnsnges benrnn ihe t ropasr~ble volt-
rp levels. Ihe l w level -nlr lopre 0. the high level l ~ c 1. The AND gate rerpnds wtth
a l*u 1 a u w t signal when bath input signals arc logic I . The OR gnu responds uirh a logic I
o & u t s k d if MY input signal is l&c I. Ihe NOT& is commonly referred toas an inveer. . . -
'& reas& for this n-is a~~ &I the oimal rermnre in Uw &x diaeram. which shows . . - . - -
lhal rhc outplt , ~ g d mvms thc Iupc scmr of the Input s~enal

AND and OR gates may hate more than two inputs. An AND gau wlth t h e lnpuls and an
OR gatc with four inputs arr shown in R g 1.6 The three-input AND gate mrpoodr with logic
I oubut if all three inputs uc logic 1. The output pmduces logic 0 if MY input is logic 0. The
fowinput OR gaususpmds with logic 1 if any input islo@c I: itsoutput bemmcs logic 0 only
when eU inputs uc logic 0.

PROBLEMS

Anr- to p b h r marked wiU1. l p p e ~ at the end of the bmk.

1.1 List the octal sod hexadecimal numben fmm 16 to 32. Using A, 8. and C for the last Ihree
digits. list tk nurnben fmm 8 lo 28 in base 13.

1.F What is the exact number of bytes in a system lhal conrains (a) 32K byler. Ib) 64M bytes. and
(E) 6.4G bytes?

32 Chaptor 1 Dig'rtal Systems and Blnary Numbers

1.3 Convert the following mlmbers with the indicated bases to decimal:
(a)* (4310)s @I* (198)12
(c) (73518 (d) (52516

1 A What is the largeat binary n m k that can be expressed with 14 bits? What are the equivalent dec-
imal and hexadecimal nudnm?

1 J* Determine the base of the numbers in each case for the following opt ions to be correct:
(a) 1412 = 5, (b) 5 4 4 = 13.
(c) 24 + 17 = 40.

1.6* The solutions to the quadratic equatiun x2 - 11x + 22 = 0 are x = 3 and x = 6. What is the
base of the numbers?

1 .I* Convert the hexadecimal number 68BE to b h q , and then convert it from binary to mtd.

15 Convert the deem number 431 to binary in two ways: (a) Convert W y to binary; @) con-
vert fist to hexadecimal and then from hemkciml to binary. Which methd is hkr?

1.9 Express the following numbers in decimal:
(a)* {10110.0101)2 Ibl* (l6-5116
(c)* (26.24)* Id) (FAFA)16
(e) . (1010.1010)2

1 .I 8 Convert the fouowing binary numbers to hexackhd and to dccimak (a) 1.10010, @) 110.010.
Explain why the decimal mwer in (b) is 4 times that in (a),

1.1 F Add and multiply the following numb without convert@ them to decimal.
(a) Binary numbers 1011 and 101.
(b) Hexadecimal numbers 2E aad 34.

1.13 Do the following conversion probIems:
(a) Convert decimal 27.3 15 to binary.
@) Cdcculate the binary equivalent of 1 3 out to eight places. llm convert &om binary to dec-

imal. How close is the resuIt ta 2/31
(c) Convert the binary result in (b) into hexadecimal. Then convert the d to decimal. Is the

answer the same?

1.14 Obtah the 1 's and 2's complements of the following binary numbers:
Ia) l(Mo@mO @) -
(c) 11011010 Id) OlllOllO
(e) lOOOO101 (f) 11111111.

1 .I5 Emd the 9'8 mi3 the 10's complement of tbe following decimal numbers:
(a) 52,784,630 0) 63,325,MW)
(c) aooO,oa() Id) 00,ooo,ooo.

'! \
1.1 6 (a) Find the 16's complement of BZFA. . - -

(b) Convert B2FA to binary.
(c) Find the 2's complement of the result in 0).
(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

Problems 33

1.17 Perform sublnelion on the given uodgned numben using the 10's cdmpiemmnt of the s u b
hold. Where thehcresvlt should benegative. fiod its 1O'~complemenr and affix aminus sign. Ver.
ify yarranswen.
(a) 6,428 - 3.409 (b) 125 - 1.800
15) 2.043 - 6.152 (d) 1,631 - 745

1.18 Perfomsuhrractiononthsgivc. unsignedbinarynvmbenuringihe2'rcomplcmcntofh mh.
Ihcnd. Where the result shouldbe negative, find its 2's complcwnt and affix a minus sign.
la) iW11 - iWOl (b) 1MX)IO - IWOII
lc) IMI - IOIWO ld) 110000 - 10101

1.19 The follov~ngdeclmlnumhrr are shown m r~gn.mngrutudr form -9.286 and -801 Convcn
!hem to sxped.10 5-complcmml lam md Worm the folio-g operatloor lnolc tha the sum
n -10.627 and inlmre, h e dmts ad a samt ~-~ .
(a) (+9,286) + (+801) - (b) (19,286) + (-801)
le) (-9.286) + (+sol) (d) (-9,286) + (-801)

1.20 Conwn decimal +46 and +29 to binary. using the signed-2'a-complemnc rspvnfation and
enough digits to accommodate the numbera. Then perform the binary equivalent of
(+29) + (-49). (-29) + (+49),and(-29) + (-49).Converrhanswersbacktodecirml
and venfy Ular they an correct.

1.21 if the numbera (c9.742110 and (+641)m arc in signed mapirudc format. the i~ sum is
(+10.383)~0 and requires five digits and a rign. Convcn the numbers to signcd.10'6-complc-
men1 f o m d find the followinc sums:
(a) (+9.742) + (+MI) (b) (+9.742) + (-641)
(c) (-9.742) + (+Mi) (dl (-9.742) + (-641)

1.22 Convcn decimal 8.723 lo both BCD and ASCII ecdedes. For ASCII, an even psrily bit is lobe ap-
prided at the kfl.

1.23 Reprevst the unsigned decimal numbm 842 and 537 in BCD. and then show the steps neeeb
wy to form their sum.

1.24 Fmulatc a weighled binary code for tbe decimal digits. using weights

la)*6.3. 1. I

lb) 6.4.2, I

1.25 Repsen1 the decimal number 5.137 in la) BCD. (b) crccnJ code. lc) 2421 code. and ld) s
6311 rode.

1.26 End lhc 9's eomplsmcnt of decimal 5.137 and express il in 2421 code. Show thsl h e nsull is
the 1's complement of Ihe answer lo (e) in Pmbicm 1.25. This demonstrates that the 2421 mie
is self-complementing.

1.n Auigr a b inqcode in someorderly manner lo the 52 pisying 4 s . U% the mulimum number
of bits.

1.26 Wnw the erprraon 'G. B.ulc" ~n ASCII. "rang an c~ghl-h,l LC&. lnclvdc the p o d and the
>pare Trral ihc lcftmurl hhl sf each character a. r pmly hir 1h;h clghr-hl! code should hale
even I)YII~ ~ (~ F o N c BWIL w e a 1% ucntun. malhcmauctan Uwlcan alrebra !omxluced m . . - 0

the next chapter, bean his n n n .)

1 .* Decode the following ASCII code: :;, t

1 m 1 0 1101001 1101100 1101100 1000111 1100001 11101M) 1100101 1110011.

.30_ The following is a string of ASCII characters whose bit pattems have ken converted into h a -
decimal for cornpachess: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits,
the leftmost is a parity bit, The remaining bits are the ASCU code.
(a) Convert the smng to bit form and decode the ASCIL it1 L r

fi) Determine the parity used: odd or even?

1.31* How many printing characters are there in ASCII? How many of them are special cbmcters
(not letters or numerals)?

'C(v
1-3P What bit must be complemented to change an A& letter from capi'tal to hercase and vice

versa?

13p The state of a 12-bit register is 1000100101 11. What is its content if it represents
(a) three decimal digits in BCD?
(b) t h e decimal digits in the excess-3 code? {p, !
(c) three decimal digits in the 84-2-1 c&?
(d) a binary number?

1 List the ASCII code for the 10 decimal digits with an odd parity bit in the l e h t pition.

1.35 By means of a timing diagram similar to Fig. 1.5, show the signah of ib aU@ f and g m Fig. P1.35
as functiom of the tbree inputg a, b, and c. U%e dl eight psible ambidions of a, b. and c.

a b c

4 I:, t

mcum P 1 3 I
I

1.36 By means ofatimingdiagram sirnilat.toFig. 1.5, showthed~afsofkoutputsfarsdghFig.
P1.36 as functions of the two inputs a and b. Use al l four possible combinations of a and b.

References 35

REFERENCES

1. CAV~WW~R. 1. J. 1984. Digit01 CornpwrrArifhrnnic. New Ymk: McCraw-Hill.
2. NO, M. M. 1988. Cornpurer Engineeea8i.g- HotdworeDedgn. EnglewwdCliSs. NJ: Pmtice-

Hall.
3. NELSON. V P, H. T NAGLE. I. D. I R W ~ . and 8. D. CARROLL. 1997. Diginrllogic Circuit Anob-

sis ondDesi8n. L ' p r Saddle River, NI: Rentice Hall.
4. SCHMID. K 1974. Decimal Cornpxlnfhn. New York: lohn Wilcy.

Chapter 2

Boolean Algebra and Logic Gates

2.1 INTRODUCTION

Because binary logic is used in all of today's digital computers and devices, the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the over-
all cost of the design. Mathematical methods that simplify circuits rely primarily w Boolean
algebra. Therefore, this chapter provides a basic vocabulary and a brief foundation in
Boolean algebra that will enable you to optimize simple circuits and to understand the pur-
pose of algorithms used by software tools to optimize complex circuits involving millions
of logic gates.

2 .2 BASIC DEFINITIONS

Boolean algebra, like any other deductive mathematical system. may be &fined with a set of
elements, a set of operators, and a number of lmproved axioms or postulates. A set of elements
is any collection of objects, usually having a common property. If S is a set, and x and y m cer-
tain objects, then x E S means that x is a member of the set S and y e S means that y is not an
element of 5. A set with a denumerable number of elements is specified by braces:
A = (1,2,3,4) indicates that the elements of set A are the numbers 1,2,3, and 4. A binary
operator defined on a set S of elements is a rule that a s s i p , to each pair of elements from S,
a unique element from S. As an example, consider the relation a * b = c. We say that * is a
binary operator if it specifies a rule for finding c h m the pair (a, b) and also if a, b, c E S. How-
ever, * is not a binary operator if a, b E S, if c e S.

The wsNlates of a mathematical system form the basic assumvtions fmm which it is m
sible toheduce the rules. theorems, and properties of the system. lk most common posmiates
used to formulate vsrious algebraic srmcmrer are as follows:

1. Closun. Aset S is closed with respect to a binary operator if, forevery pair of of men@
of S. the b i m m m o r swcifies a dcfmabtainine a uaiauc element of S. For uamvle, . . - .
the set of natural numben N = {I. 2.3.4.. ..) IS closed with respect lo the binary
opasra + by tbs rules of arithmeuc addition. d m . for any a. b s N. them 1s a unique
c E N such lhat a + b = r l k scl of naNral numbers 1s nor closed with respect lo the
binary oprsNr - by the d c s of ~ Ihmct ic sublraction. kcnure 2 - 3 = -I and Z
3€N,bIIt(-l)eN.

Z Asso~i~fiw low. A binary oprsfol * on a set S is said to be arsociuive whenever

(x *) .) * z = X*(Y*Z)~OT~UX.Y.Z.ES

3. Camufotive lmv. A binmy OQeraNr * on a sel S is raid lo be commutative whenevm

4, ldnriry elmrru. A rn S is sud to have an identity element with r e s p n to a binary op
eraoon ' on S if there exists an clement r E S with the p q % q that

Lromplc: The element 0 is anidentity element with respect to the binary operator t on
the set of integers I = { . . . , -3. -2, -1.0, 1.2.3.. . .). since

x + O = O + x = x f m a n y x e t

The set of nsmral numbers, N. has no identity element. since 0 is excluded from the set.
5. Inverse. Aset S having the identity element e with respect to a binary oprstor * is said

to have an invmc whenever, for every x e S, there exists an element y e S such that

E m p l e : In the set of integers. I. and the operalor +.withe = 0, the inverse of an ek-
mento is (-a), since a t (-a) = 0.

6. Dist?ibntiw low. If * and . are lwo binary aprators on a sst S. * is said lo be distdb-
utive over . wbenevec

x " (y . 2) = (x*y).(x*z)

Aficld is an exsmpk of an algebraic srmflun. A field is a set of e k l ~ ~ l ~ , togcthn with lwo
binarv ooentors. each havinn uroDcrties 1 h u g h 5 and both o ~ ~ s t o r s combininp to give
*mp;ry'6. The Ihs of rral nimbe'n, togetha. wi& the binary o&rafms + and . , fomK h e
field of real numbers. The field of red numbers is the basis for arithmetic and ordinary alge-
bra. The opnstors and posmlates have the following meanings:

The binary oprrator + defines addition.
The additive identity is 0.

38 Chapter 2 Bookan Algebra and Logic Gates

The additive inverse defines subtraction,

The binary operator . &fines multiplication.

The multiplicative identity is 1.

For a # 0, the multipIicative inverse of a = l/a defines division (i.e., a l / a = 1).

The only distributive law applicable is that of over +:

2.3 A X I O M A T I C DEFINITION
OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
C. E, Shannon introduced a two-valued Boolean algebra called switching algebra that repe-
sented the properties of bistable electrical switching circuits. For the formal definition of
Boolean algebra, we shall employ the pastulates formulated by E. Huntington in 1904.

Boolean algebra is an algebraic structure defined by a set of elements, 3, together with
two binary operators, + and , provided that the following (Huntington) postulates are
satisfied:

1, (a) The structure is closed with respect to the operator +,
@) The structure is closed with respect to the operator . .

2. (a) The element0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.
. @) The element 1 is an identity element with respect to ; that is, x 1 = 1 x = x.

: . . 3. (a) The structure is commutative with respect to + ; that is, x + y = y + x.
(b) The structure is commutative with respect to - ; that is, x . y = y . x .

4. (a) The operator is dislributive over +; that is, x . (y t z) = (x y) + (x . 2) .

(b) The operator + is distributive over ; that is, x + (y z) = (x + y) . (x + 2) .

5. For every element x c B, there exists an element x' E B (called the complement of x)
such that (a) x + x' = 1 and (b) x x' = 0.

6. There exist at least two elements x , y E B such that x iF y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num-
bers), we note the following differences:

1. Huntington postulates do not include the assmiative law. However, this law holds for
Boolean algebra and can be derived (for both operators) h m the other postulates.

2. The distributive law of + over - (i.e., x + (y z) = (x f y) (x + z)), is valid for
Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multipficative invems; therefore, there are no
subtraction or division operations.

4. Pwulate 5 defines an operam called the cwvIemrn# tbll is not available in ardiaary
algebra

5. O r d i i algebra deals with the real numbers, which consti~tc an infinite set of ele-
mem. Baolesa algebra deals with the as ye8 undefined set of elements. B, but la the
two-valued Baolean algebra defined next (and of intersst in ow subsequent use of that
algebra). B is defuwdas a set with only rwa elements, 0 and I.

Bonleao algebra resembles ordinary algebra in some respee. m e choice of the
symbols 3. and . is intentional, lo facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Allhough one cnn use some lolowledge imm ordinary
algebra to deal with Bmlcan plsebn. the beginrermurt be carrful not to subslitute the mles
of ordinary algebra where they are not applicable.

It is imponant ta distingukb b e e n the c h t s afthe set of an slgebnic struclun and
the variables of an algebraic system. For example. the heclmentsof the field of real numbasam
numbas, whereas varisbla rneh as n, b, c, etc.. used io a d i algebra, are symbok that
stnndforreal numters. Similarly, in Bmlean algebra one defines the elements of the set B, snd
variables rucharx, y, and i ate merely symbols &at mpmrcnt the elements. At this point. it is
important to realize t h . in MdCr to have s Bmlesn dpsbra, one must show thu

1. the clcmcnts ofthe SIB.
2. the rules of operation for the two binary oprators, and
3. the set of elemcne, B. together with the two operators, satisfy the six Huntington

postulates.

ON can fomlulate many Bmlcan algebras. depeodiw on the choice of e l e m u . of B and
tbe rules doperation. In our subsequent u& we deal only with a two-valued Baolw alge-
bra (is.. a Bmiean alpbra dL only rwo ekmnrr). lbo.valued Bmkan algebn bar
cations in set theory (the algebra of clarses) and in pmpasitional lo&. Our interest here is in
the application d ~ a o k a n 3gebra to gabtype circuits

Two-Valued h h . n Alpbra
Atwo-valued Baolean algebra is defmedon a set of two elements. B = {O, I}, with rules fa
tbe rwo binary opemulls + and . as shown la the foll~)-~inp opaW lables (the rule fmthe
complement operator is for vaificalian of poshllate 5):

These rules are exactly the same as the AND, OR, and NOT opmtio~w, respectively, defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set B = (O* 1)
and the two binary operators t and .
1. That the structure is closed with respect to the two operators is obvious from the tables,

since the result of each opation is either 1 or 0 and 1,0 E 3.
2. From the tables, we see that

(a) O + O = O 0 + 1 = 1 + 0 = 1 ;
(b) 1 .1 = 1 1.0 = 0.1 = 0,
This establishes the two identi0 elements, 0 for -!- and I for , as defined by postu-
late 2.

3. The commutative laws are obvious from the symmetry of the binary operator tables.
4. (a) The distributive law x (y + z) = (x y) + (x . z) can be shown to hold from the

oprator tables by forming a truth table of all possible values of x, y, and z. For each
combination, we derive x (y + z) and show that the vaIue is tbe same as the value of
(x . y > + (x - 2) :

@) The dissributive law of + over can be shown to hold by means of a euth tabb sim-
ilar to the one in part (a).

5. From the complement table, it is easily shown that
(a) x + x J = 1 , s i n c e O + O ' = O + I = 1and1+ 1 ' = 1 + 0 = 1 .
(b) x~x'=O,s inceO*O'=O*1 = O a n d l - 1 ' = I . O = O .
Thus, postulate I is verified.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, I and
0, with 1 ;c 0.

We have just established a twevaluedBwlean algebra having a set of two elements, 1 a d 0,
two bimy operators with mIes equivalent to tbe AND and OR opaibns, and a complement op
erator equivalent to the NOT operator, Thus, Boolean algebra has been defined in a f d d-
ematical mmm and has been shown to be equivatent to the binary logic presented lxmdically
in Section 1.9. The heuristic presentation is helpful in understanding the applicafion of Boolean
algebra to gate-type circuits. The formal presentation is necessq for developing the h u r e m

Sectlon 2.4 Bask iheonms and kopcrtles of Boolean Algebra 41

and properties of the algebraic system. The two-valued Bmkan algebra d e f d in this =lion
is&called'"awitchiagalgeWby eogimm. Tocmpbsizek rimiladtiesbenveenIwDvslusd
Bmlean algebra and M h c r b i i syslemr* that algebra war cued "binary logic" in Sstios 1.9.
Fmm h m o n we rhlll dmp the adjective 'hua-v&b' from Boolean algebra in subsequent
discussions.

2.4 B A S I C T H E O R E M S AND PROPERTIES
O F B O O L E A N ALGEBRA

D".llty

h Section 2.3, the Huntinglonposlulater wen listedinpain anddesignated by pan (a) andpan
(bl. One p a l may be obtained fmm the otbcrif the binary operalorn and the identify ekmntr
are intmhanged. This important propmy of Boolean algebra is called lhe du@IIry principle
and s w s ihu every algebraic npmsion deducible from the poplulates of Bodem algebra re-
mains valid if the m t o n and identitv elemntr am internhaneed. In a two-valued Bmleaa
algebra. ihe idcali&elemenls and lhc e - h m l s oflhe u t B are &e -: I and 0. &dAity
Moclple has m y applicariam. If the dual d an algebraic exprerrioo ir desired. we simply
interchange OR and AND o p r a m and replace I'r by O's and O's by I'r.

Table 2.1 lists six theorems of Bwlean algebra and four of its postulates. The notation is sim-
pWed by omitting the binary operator whenever doing so dasnot lead ta confusion. The Ihe-
orems and postulates tistdare ihemost basic relalionshi~in Bmlean almbra. The fheoms.
like the witulates. am listed in Dairs: each relation is i e dual of the on; mired with it. The
postula& am basic d a m s of tk algebraic rrm~turr and need no proof. ihc lheaemp mun
be proven from the poslubles. h f s of the theorems wilh one vuisblc are pesmtcd nut .
At !he nghl is listed lhe number of ihe postulate uhich justifies that particular r(ep of (he

Pos~late 2 (a) x + O = x (b) x.1-x
P0St"laxa 5 (a) x + r ' = I (b) x . x ' = 0
Tb-m I (a) x + x = x (b) x . x = x
Tb-m 2 (a) x + 1 = 1 @) x . o = 0
Narelll3. involulkn [x') ' = x
R"NIue3,rommu~ve (a) I+)-=)+, (b) xy = yr
Tamern4,auociaive I t (+) = [x t y) t z @) ~ (y z) = (xy)a
Powulw4. d~ruibutive (a) x(y + 2) = r y + xr (b) x + yr = (X + Y)(I + I)
TheMua 5. DcMagaa (a) (I +).)' = r'y' (b) (R.)' = x' + y'
Theorem 6, absorption (1) x + XI - x (b) x [x + y) = r

Chapter 2 Bodean dgebra and bgk Gates

Statement

x + x = (x + x) * l
= (X + X) (X + x ')

= X + xx'

= x + O

= X

statement

x w x = x x + 0
= X X + X X '

= x (x + x')
= 8.1

= X

JustIfkatlon

postulate 2(b)

5(a)

4(bI

-. _. 5@) . , . = . I _ 1 -

2(a) . L

postulate 2(a)

5@)

4(a)

5(a)

2 M

Note that theorem 1 (b) is the dual of themem 1 (a) and that each step of the proof in part @)
is the dud of its counterpart in part (a). Any dual theorem can be similarly derived from the
p m f of its corresponding theorem.

Statement

x + 1 = l.(x + 1)
= (x + x ') (x + 1)

= x + x l . l
= X + X'

= 1

THEOREM 2jb): x . 0 = 0 by duality.

Justifimtion

postulate 24b)

5@1

4031

2Cbl

5(a)

THEOREM 3: (x ') ' = x. From postulate 5 , we have x + x' = 1 and x x' = 0, which
together define the complement of x. The complement of x' is x and is also (x ') ' . Therefore.
since the complement is unique, we have (x') ' = x. The theorems involving two or tbree
variables may be proven algebraically h m the postulates and the t h e o ~ that have
already been proven. Take, for example, the absorption themem: . .

Section 2.4 &sic Theorems and Properties of Boolean Algebra 43

THEOREM 6(b): x (x + y) = x by duality.

Tbs Ulcnwns of Bmlcaa Plgebm can be pmven by mans of mth table.% in mth tabla,
bMh s i b of the mlatim arc chsM to see whether they yield idmtical mulls fm dl
possible combinations of Ule vuiablcs involwd. The following mth table v a i f ~ the k t
abrorption rhwnm:

The algebraic proofs of the aswciuive law and DcMomn's lbeorrm src lone and will m
be rhownhm. However, heir validity is easily shown withmth tables. ~ a c & p l e , tbe rm&
table for the first DcMurgan'r theorem. (x r).)' = x'?' . 3s as foUows

0 0 0

Operator Precedence
The operalor precedence farevaluating Boolean cxprc.sionr is (I) parentheses, (2) NOT. (3)
AND, and (4) OR. In nher wada, exprrssim inside parenthew musl be evaluated before
all other operations. The next opcmtion that holds p c e d e n n is thocomplml , and l h fol-
lows the AND and, finally. (bc OR. As an example, sonsidez (bc m t h table for one of Dc-
Morgan's theorems. The left side of ibc expression is (r + y)'. Therrforr, the expasion
inside the parentheses is evalwtcd first and the result then complemcntcd. The right aide of

the expmsion is x'y ', so the complement of x and the complement of y are both evaluated first
and the result is then ANDed. Note that in ordinary arithmetic, the same m c e holds (exce@
for the comp1ement) when multiplication and addition are replaced by AND a d OR, respectively.

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an algebra hat deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or 0. As an example, consider the Bwlean function

The function Fr is equal to 1 if x is equal to 1 or if both yr and z are equal to I . Fl is equal to
0 otherwise. The complement operation dictates that when y' = 1, y = 0. Themfore, Fl = 1
if x = 1 M if y = 0 and r = 1. A Boolean function expresses the logical d a h d i p between
binary variables and is evaluated by deterrniuing the binary value of the e o n for all p s -
sible values of the variables.

A Boolean function can lw represented in a truth table. The number of ruws in the truth
table is 2", where n is the number of variables ia the function. The binary combinations for the
truth table are obtained From the binary numbers by counting from 0 through 2" - 1. Table 2.2
shows the truth table for the function Fl. There are eight possible binary combinations for as-
signing bits to the three variables x, y, and z. The column lakeled Fl contains either 0 or 1 for
each of these combinations. The table shows that the function is equal to 3 when x = 1 or
when yz = 01 and is equal to 0 atherwise.

A Boolean function can be transformed £ram an algebraic expression into a circuit diagram
composed d logic gates connected in a particular strwture. The logic&uit diagram (also
called a &matic) for Fl is shown in Fig. 2.1. There is an inverter for input y to generate its
complement. There is an AND gate for the term y ' z and an OR gate that cornlines x with y'z.
In logic-circuit diagrams, the variables of the function are taken as the inputs of tbe circuit and
the binary variable Fl is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth table. However,
when the function is in algebraic form, it can be expressed in a variety of ways. all of which

Table 2.2
Truth Tables for Fl ond FZ

X Y z I h

have quivalent logic. The panicularexpression used ID Eprercnt the funnian willdictate the
interconnection of gates in the logic-cinuildiagrsm. Here is a key fact that motivates wr use
of Bmkm algebra: By manipulating a Boolunexpssion according to the rules of Boolcan
algebra. it is sometimes p s i b l e tooblain a simplaexprsswn forthesame function and thus
reduce the number of gates in the k i t and the nmnba of inputs to tbc gate. Deignem arc
motivated to reduce the complexity and number of gates bscaux thcireffat can significanlly
reduce the cost of ncircuit. Consider, for uamplc, the following Boolean function:

F2 = x'y'r + x'yi + xy'

A schematic of an implementation of this function with logic gala is shown in Fig. 2.2(a).

Chapter 2 W e a n Algebra a b g I c Gates

Input variables x and y are complemented with inverters to obtain x' and y' . Tbe three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for F2 is listed in Table 2.2. The fundon is equal to 1 when
xyz = 001 or 0 11 or when xy = 10 (irrespective of the value of z) and is equal to 0 otherwise.
This set of conditions produces four 1's and four 0's for F2.

Now consider the possible simpli6cation of the function by applying some of the identities
of Boolean algebra: - . . -

F2 = x'y 'z + x'yz + xyt = xtz(y' + y) + xy' = x'z + xy'

The function is reduced to only two terms and can be implemented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in @) is simpler than the one in (a), yet bth imple
ment the same function. By means of a trutb table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or when
xy = 10. This produces the same four 1's in the truth table. S h e both expressions m e
the same truth table, they are equivalent, Therefore, the two circuits have the same outputs
for all possible binary combinations of inputs of the three variables. Each circuit implements
the same identical function, but the one with fewer gates and fewer inputs to gates is prefer-
able because it requires fewer wires and components. In general, the~e are m y equivalent
representations of a logic function.

When a Bwlean expression is implemented with logic gates. each term requires a gate and each
variable within the term designates an input to the gate. We define a liteml to be a single vari-
able within a term, in complemented or uncomp~ementsd form The function &Fig. 2.2(a) has
three terns and eight Literals, and the one in Fig. 2.213) has two terms and fola liter&. By re-
dwmg the number of terms, the number of literals, or both in e Boolean expmwhn, it is often
possible to abtain a simpler circuit. The manipulation of Boolean algebra d m mostly of m
ducing an expression for the purpose of obtaining a simpler circuit. Functions of up to five
variables can be simplified by the map method described in the next chapter, For complex
Boolean functions, designers of digital circuits use computer ' ' ' $on program that are
capable of producing optimal circuits with millions of logic gates. The concepts intduced in
this chapter provide the framework for those tools. The only manual methad available is a cut-
and-try proudme employing the basic relations and other manipulation tdmiques tbat be-
come familiar with use, but remain, nevertheless. subject to human error. The examples that
follow illustrate the dgebraic manipulation of Boolm algebra. . . ' ^

'J!

I EXAMPLE 2.1 1
Simplify the following Boolean fhxtions to a minimum number of literals.

1. x(x' + y) = xx' + xy = 0 -t xy = xy.

2. x f x'y = (x + x ') (x + y) = l(x + y) = X + y.

3. (x + y)(x + r ') = x + xy + 0' + yy' = r (l + y + y') = x.

4. xy + x'z + yz = xy + x': + yz(x + x ')

= X). + 1'1 + xy* + x'yz

= xy(l + L) + xl:(l + y)

= xy + X'Z.

3. (x + y)(x' + z)(y + 2) = (x + y)(x' + z) , by duality b m function 4.

rn

Functions 1 and 2 are the dual of each other and use dual enpnssions in corresponding slcps.
An easier way to simplify function 3 is by means of pastulate 4(b) from Table 2.1:
(x + r)fx + v'l = x + vv' = x. The fouah function illusmtes the fact the an incrrssc in
the number of lilkralr sorneumrr leads lo a rmpler final expresson Punction 5 is no1 m h -
m u d directly, hul can be derived fntm thr dual of the ,kpr u d to d e " ~ funumo4. F w -
lions 4 and 5 arc together known as the consensus theorem

Complement of a Fundon

The complement of a function F is F' and is obtained from an interchange of O's for 1's and
I's for O's in the value of F. 'Ex complement of a function may be daivedalgebrsically fhmugh
DeMorgan's theonms, listed in Table 2.1 for two variables. DeMorgan's theorems can be ex-
ended to three or mom variables. The the-variable form of the fmt DeMorgan's theorem is
derived as follows, from postulates and theorems listed in Table 2.1:

(n + B + C) ' = (A + x) ' l e r B + C = x

= A'X' by rheorem 5(a) (DeMorgan)

= A'(B + C)' substiruteB + C = x

= A'(B'C') by t h e a m 5(a) (&Morgan)

= A'B'C' by thearem4(h) (associative)

DeMurgw'r theorems fur any numbr.r of \ariablcr rcvmbls the tvo.vanablscarc in form and
can be derived by successive svbsutuuons rimlnr lo the method wed in rhe preceding dcriva-
!ion. These thtmems can be gcneral'ied as follows:

The gcacrabzed farm of DeMonan's theorems stales that the complement of a fUnCtiM is
obtained by inlcrcbangtng AVD and OR aperalon and complcmcnung each lileral

48 Chapter 2 Bodean Algebra rn - and Logic Gates

I
Fmd the complement of the functions Fl = x'yz' + xty'z and 6 = x(y'zl + ye). By ap-
plying DeMorgm's hmrems as many times as v, the complements obtained as
follows:

= x' + yz' + y'z

A simpler procedure for deriving the comphmmt of a function is to take tbe drurl of the f u w
tion and complement each literal. This m e w follows from the g e m d i d farm of War-
gan's theorems. Remember that the dual of a -011 is o b W from the h e d m g e of AND
and OR operators and 1's and 0's.

EXAMPLE 2.3

Find the complement of the M m s F1 and F2 of Example 2.2 by taking nbeir duals a d corn-
plementhg each li&ral. ...

.- '

1. Fl = x'yz' + xlytz.

ThedualofF1is(xf + y + z ') (x l + y' + 2).

Complement each l i d (x + y' + z)(x + y + z') = Pi.

2.6 CANONICAL AND STANDARD FORMS

A b i variable may appear either in its nwmal fonn (x) w in its c o m p h m t form (x ') .
Now consider two binary varhblea x and y combined with an AND opmtba S h each vari-
able may appear in either form, there are four possible combinations: x'y', l'y, xy', and q.
Each of these four AND terms is called a mintem, or a ~ W n l p m d u d , In a shnk manner,

. The 2" Merent mintenns may bC detamid n voai&k can be combined to fonn 2" minterms
by a mehod similar to the one shown in Tabk 23 for three variablers. The binary nllmbtrs
h 1 n O t o 2 ~ - l~ l i s tedm~thenvarirtb1es .Eachmintcrmis~fromaaANDterm
of the n variables, with tach v m 1 e b e i i primed if the m n d i n g bit of the binary num-
beris aOandunprimedifa I,Asyrobolforeacbmintermis also showniathetabledis of

Table 2.3
Mintmnr a d MsrHntu & Tkr Bhnry vmklbks

Mlnterms Mutams

x V z Term Deslgnrtlon Tum Designatlorn

I V z Functlon f, Functlon f,

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 I 1 0 1
I 0 0 1 0
I 0 I 0 I
1 I 0 0 I
1 I I 1 1

the form m,, where the subscriptj denotes the d e W equivalent of the binary number of the
mintum designated.

In a similar fashion, n variables forming an OR term, with each variable being primai or
unorimed amvide 2' wssible combinations. called manarms. or rrmdad sum. me eieht
mdxtem'iorthree vaiebles. together with their symbolic desi&tions. arelistdin Tabk i 3 .
Any Z' maxrsm for n variables may be hermined similarly. It is important to note lhst
(ljeach muterm is obtained from an OR term of then variable.. with eacb variable bein2 m-
;rimed if the comswndin. bit is a 0 and ~rimsd if a 1. and (21 each mterm ia the coiole- " . .
men1 of IS comspondlng mvrm and vice v c n a

A Boolean Iuncuoo can be expressed algbraieally from a @VUI truth table by funning a
minterm for each combination afthe variables that d u r n a 1 in the f u n d m and then tak-
ing the OR of all hose turns. For example. the funilion jl in Table 2.4 is derumined by ex-
peulng the combmtions 001.100, and I I I ar x'y'z. xy'r'. and zyz respetivsly. Smce each
w e of these mintems mula in fl = 1, we have

f i = x'y'z + XY'L' + XYL = ml + m4 + m,

Chapter 2 B d e m Algebra and Logic Gates

Similarly, it may k easily verified that

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of minkmu (with "sum" meaning the ORing of terms).
Now consider the complement of a Boolean function. It may be read from h e truth table by

forming a rninterm for each combination that produces a 0 in the function and then ORing
those terms. The complement of fi is read as

!r
f; = X ~ Y ' Z ' + xryzr + X'YZ + XY'Z I- xyz'

If we take the complement off {, we obtain the function fi:

Similarly, it is possible to read the expression for f2 h m the table:

These examples demonstrate a second property of Boolean algebra: Any Boolean h d o n can
be expressed as a product of maxterms (with ''prcduct" meaning the ANDing of terms). The '
procedure for obtaining the product of maxtmns directly from the truth table is as follows: -.
Form a maxterm for each combhation of the variables that pmluces a 0 in the function, and .
then form the AND of all those maxterms. Boolean functions expressed as a sum of mintemu '"

or product of maxterms are said to be in cmonicalfonn. I

Previously, we stated that, for n binary vmiables, one can obtain 2" distinct &terms and that i
any Boolean function can be expressed as a sum of minkmu. The minterms whose sum &- :
fines the Boolean function are those which give the 1's of the function in a tntth table. Since
tbe function can be either I or 0 for each mintem, and since there are 2" mintams, one can -
calculate all the functions that can be formed with n variables to h 22". It is sometimes con-
venient to express a Boolean function in its sum-of-mintems form. If the function is not in this -
form, it can be made so by first expanding the expression into a sum of AND terms. Each term
is then inspected to see if it contains all the variables. If it misses one or more variables, it k
ANOed with an expression such as x + x', where x is one of the missing variables. The next 1 1

example cladies this procedure. I

. .i
- - 1 EXAMPLE 2.4 1

-

Express the Boolean function F = A + B'C as a sum of mintem. The function bas three .*

variables: A, B, and C. The first term A is missing two variables; therefm,

A = A{B + B') = AB + AB'

Section 2.6 Canonical and Standard Forms 51

This function is still missing one variable, so

A = AB(C + C ') + AB'(C + C')

= ABC + ABC' + AB'C + AB'C'

The second term B'C is missing one variable: hence.

B'C = BIC(A + A') = AB'C + A'B'C

Combining all terms, we have

F = A t B'C
= ABC + ABC' + AB'C t AB'C' + A'B'C

But AB'C appears twice, and according to theorem I (x + x = x), it is possible to remove
one of those occurrences. Rearranging the miniems in ascending order, we finally obtain

F = A'B'C + AB'C + AB'C + ABC' + ABC
= ml + mq + mg + rnb + m,

When a Bmlean function isin its sum-of-minumu form. it is sometimes wnvenient to express
the function in the following brief notation: .

F(A, B, C) = 2(1.4,5,6,7)

The summation symbol 2 stands for the ORing of terms; the numbers following it are the
mintemu of the function. The leners in parentheses following Fform a list of the variables in
the order taken when the minterm is converted to an AND term.

An alternative omedure for derivine the mintems of a Boolean function is lo obtain the
mth table of the k c t i o n directly from-thz algebraic expression and then read the mintem
from the mth fable. Consider the Boolean function given in Example 2.4:

The rmth table shown in Table 2.5 can be derived directly from the algebraic expression by list-
ing the eight binay combinations under variables A, B, and Cand insening 1's under Ffor those

Table 2.5
T ~ t h T a b k f o r F = A + Bc

combinations fcrr which A = 1 a d BC = 01. Prom thtz truth table, we can then read the five
n d n ~ o f t h e W m ~ b e 1 , 4 , 5 , 6 , d 7 .

Product of Maxtwmr
Each of the 22n functions of n binary variables am be also expressed as a product of maxtems.
To express a Boolean function as a product of maxtams, it muRt first be brought into a form
of OR terms. This may be done by using h distributive law, x t yz = (x + y) [x + z).
Then any missing variable x in each OR term is ORed with x x ' . The procedure is cIar5e.d in
the following example.

EXAMPLE 2.5

Express the Boolean function F = xy + x'z as a p d m of maxterms. First, convert h e func-
tion into OR terms by using the dismtme law:

F = xy + x'z = (q f x l) (x y + z)

= (X + x')(Y + x')(x + z) (y + 2)

= (x' + Y)(X + z) (y + 2)

The function has three variables: x, y, and z Each OR term is missing one variable; therefore,

Combining all the terms and removing those which appear more than once, we finally obtain

F = (x + y + z) (x+ y' + z) (x l + y + z) (x ' + y -t r ')
= ~ a M z M f l s

A convenient way to express this function is as follows:

F (x , y, z) = n(O, 2,4,5)

The product symbol, Il, denotes the ANDing of maxterms; the numbers are the maxkrms of
the function,

The complement of a function expressed as the sum of minterms equals the surn of minterms
missing from the original function. This is because the original function is expressed by those
min tem which make the function equal to 1, whereas its complement is a 1 for those mintams
for which the function is a 0. As an example, consider the function

F (A , B, C) = 2(1,4,5,6,7)

This function has a complement that can be expressed as

F 1 (A , B, C) = 2(0,2,3) = mo + mz + m3

Section 26 Canonical and Standard Forms 53

Now. if we take the complsmcnt of F' by DeMa$au'sthemm. we oblsin F in adiffemt f m :

F = (,no + rn2 + ms)' = rn6.mi.m; = M&M, = n (0 . 2 . 3)

Th last m n d o n follows from th delinition ofmintems and maxlenns as s h u n in Table 2.3.
Fmm the tabk it is clear that the fouowing relation holds:

mj = M,

Tba is, the maxterm with subscriptj is scomplement of the minterm with the same subscript
j and vice versa.

Tbe last example demonsrrstas the conversion between a W l i o n expressed in sum-of-
minrermr form and its cauivslent in omduct-of-msntenns form. A similar ar~ument will show ~ ~~ .~~~ .
than the cunvcnion berueen the product of m a x r m and the rum of mlnterms ir similar We
now state a general conversion pmcedure: To coevcn from one canonical form to another. in-
terchmgc the symbols 2 and ll and list thau numbers missing from the original form In
order to-r? thcmiwing termg one mmtmdiz that the total n& of ~ t a r m s a. maxlenns
is 2n. where n is the "&be. of binarv variables in the funclion . ~~~- ~ ~-~~ ~~ ~ ~~~~ ~

A tloolean function can be rmv& ban an algebni~c expression to a pmdwl of max-
t e n , hy m r of a n t h table and the m n i c a l c o n ~ ~ i o n p m r e h . Consider. for exam-
ple. the B o o l a expression

F = X? + X ' L

First, we derive the truth table of the function. a shown in Table 2.6. The 1's under F in the
lable ars determined from the combinationof the variables f a which xy = I I or xz = 01. The
mint-of the function areread horn the w th tabk tobe 1.3.6. and 7.Tbe function expsred
as P sum of minfmnr is

F (r y , z) = X(1 .3 .6 .7)

Sinn lhae is a total of eight miommr or maurnas in a &lion of three variables, we deter-
mine the missing terms to be 0.2.4. and 5. The funniooexpresaed as apmdumof maxtams is

F (. ~ . ~ , Z) = n(o, 2.4. J)

the m e answer as obtained in Example 2.5.

Table 2.6
Truth T&kLU F = xy + x ' l

X I 2 F

0 0 0 0
0 0 1 I
0 1 0 0
0 I 1 I
1 0 0 0
I 0 1 0
1 1 0 1
1 1 1 I

Stadard krmr
I - '

The two canonical forms of Boolaan algebra tire basic forms that one obtains from reading a
given function from the truth table. Thest fwms a~ very seldom the ones with the least num-
ber of literals, because each &term m maxm must contain, by definition, all the variables,
either complemented or uncomplementd

Another way to express Boolean WOIW is in stmmdard fonn. In this configwatio& the
termsthat~thefuactimrnay~oas,two,orrmynumbtidli~.Therearetwotypes
of standardfwms: the sum ofproducts andpducts of m.
The sum of products is a Boolean expression containing AND terms, called product t e r n ,

with om or more literals each. The sum denow tbe ORing of these tern. An example of a func-
tion e x p s e d as a sum of prwlucts is

Fl = y' 4- xy + x'yz'

The expression bas three product terms, witfi one, two, and three literals. Their sum is, in ef-
fect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gaws fol-
lowed by a single OR gab. This co-on pattern is shown in Fig. 2.3(a). Each product bxm
requires an AND gate, except for a term with a single liw. The bgic mun is formed with an
OR gate whose inputs are the outputs a€ the AND gate and the single literal. It is assumed that
the input variables ate directly available in their complements, so invuters are not included in
the diagram. This circuit codgumlion is referred to as a two-lwei hpiemenration.

A pmduct of s u m is a Booisan expressiom containing OR terms, called s u m terms, Each term
may have any number of literah, The procducr denotes the ANDhg of these terns. An exam-
ple of a function expressed as a product of sums is

F2 = ~(y' + z)(x' + y + t ')

Tbis expression has three sum m, with one, two, and three literals. The product is an AND
operation. The use of the words product and sum stems from the simildty of the AND oper-
ation to the arlthtmic product (multiplication) and the similarity of the OR operation to the arith-
metic sum (addition). The gate structure of the product-of-sums expression m i s t s of a gtoup
of OR for the sum terms (except for a single literal), followed by an AND gate, as shown
in Fig. 2.3@). This standad type of expression results in a tw&levd gating structure.

(a) Sum of Prod-
Mum 23
~ d l m p k ~ o n

(b) Rodm of S u m

w o n 2 7 Other Loglc Operatlonr 55

A Boolean function may be expressed in a nonstandard form. Far example, the function

F3 = AB + C (D + E)

ts neither in sum-of~pmdurts nor in pmduct.of.sunu fonn. The implemenlation of this ex-
presuon is shown in Fig. 2 4(a) and q u i m ruo AND gates and ruo OR gaer. Then are t h e
levels of gating in this circuit. It can be changed to a standard form by using the distributive . .
law to remove the parcnlhcses:

F3 = AB + C(D + E) = AB + CD + CE

The sum-of-pmducts expression is imvlemented in Fie. 2.41bl. h eeneral. a two-level imolc
menlalton is preferred because it the learn amount of de iy through the gates when
the signal prqmgates fmm the inputs m the ourplt. However. the number of anpuLr to a goven
gate might tm be practical.

2.7 OTHER LOGIC OPERATIONS

When the b i i opmaors ANDand OR an placed between twovariables,xand y, they form
two Bwlean functions. x . u and x + r. resccctivelv. Reviouslv we slated that there an 2 " . .
fumionr for n b m q variables lltus, fur two ~ariablci. m = 2. md the numberof possible
Boolean functions is 16. l k m f a s . the AND and OR functions am only 2 of a t u d of 16 pos-
sible functioas formed with two binary variables. It would be inrmclive lo lind the m k 14
functions and investigate their properties.

The Uuth tables for the 16 functions formed with two binary variables am listed in Table 2.7.
Each of the 16 columns. Fo to F15. represents a n t h tsbk of one possible function forthe two
variables. x and y. Note thst the functions are determined from the 16 binary combinations lha
ua be assigned lo F. lk I6 luaetions ua be exprrssed algebniully by m a w of B m I m k-
tions, as is shown in the fun column of Table 2.8. The Boolean expressions listed are simpli-
fied to their minimum number of literals.

Although each function can be e x p m d in term5 of the Boolean -tors AND. OR, and
NOT. Ihm ism ~oson one cannot &gn spsisl openlasymbols for e x m g the acbcr func-
tions. Sueh operator symbols an listed in the gcond w h ofTable 2.8. However, of all the new
symbols shorn o n l y h exclusive-OR symbol. (B . h in common use by digital designers.

Tabk 2.8
BmkmExpmsfonsbrik l b F u n d h u r r d 7 k v ~ ~

W e a n Functions S P ~ *ma Comments

Po = 0 Null BinarycwstantO
4 = xy X ' Y APJI) X ~ Y
F2 a xy' . , . Inhibition x, but not y
F3 a x 'ftansfsr x
F4 = x'y r/x lnbibition p but not x
5 = Y lhmfer Y
Fg = xy' + x'y X @ Y ExclualveOR xwy, butnotbotb
f i = x + y x + Y OR X W Y
FS (x + Y) ' x J Y NOR Not- OR
F9 = xy + x'y' (1 @Y)' Equivdonce x Val6 Y
F10 = Y' Y' Complement NHY
Fll = x C y' XCY Imp- Ifp tbmx
F12 = x' x ' Wmt Not x
Frj e X' + y x 3 Y Implicsdon . EX, t h y
F14 ' (xY)' * t ~ NAND Nat- AM)

fis P f Idedttty Binary constant 1

Each of tbe functions in Table 2.8 is listed with an accompanying name and a comment that
explainstht~winsomeway.The16MmslistedcanbesuWi~h~~:

I. Two funotions that produce a constant 0 or I.
2. Four functions with unary operatiom: complement and transfer.
3. Ten functions with binary operators that clefme eight different operations: AND, OR
NAND, NOR, exclusive-OR, equivalence, inhibition, and implication,

Constants for binary functions can be equal to only 1 w 0. The complement function pro-
duces the complement of each of the binary vari8les. A function that is equal to an input vzlri-
ahle has been given the name tmqfer, h a u s e the variable x or y is m f d through the gate
that forms the function without c h g h g its value. Of tlw eight binary opatom, two (inhibi-
tion and i m p ~ r n ~ are wed by logicians, but are ~ I d o r n wed in computer logic. The AND
and OR operators have b#n mentioned in coqjunchn with Boolean algebra. The orher four
fundons are used extensively in the design of digital systems,

S d o n 2.11 Digltal Logic Gates 57

The NOR fnnction is the complement of the OR function and its name is an abbreviation
of nor-OR. Similarlv. NAND is thc comal-1 of AND and is an abbreviation of nor-AND. ~~ ~ ~~~~~

The exclusive.OR. abbreviated XOR. is'similr to OR. but excluder tbe c m b i n a l i ~ of borh
I and ? being qual to I: it holds only wben x and). diKer in value. (It is somerims r e f e d
to as the b i i difference operator.) Eqnivalenec is a fnnction that is 1 when the two b i i
variables are wual (i.e.. when both are Oorboth are 11. The exclwivc-OR andauivalenee func-
uons are the complcmunts of each other. Thrs can be castly \erificd by inspecting Table 2.7
7he vuth lable for exclunrr-OR is F6 and for ~quivslence tr F9. and these t ~ o fmctnm are
the compiemeaL~ of uuh other. For this reason. the equivalence function is called ercluavc-
NOR, abbreviated XNOR.

Boolean algebra, as defied in Section 2.2, bas two binary a p e r n t ~ which wehavecalled
AM) and O R and a unary opraror, NOT (wmpIemmt). Fmm the dctinitions. we haw deduced
a number of propenies of theseoperstors andnow have definedother binary operators in terms
ofthem. There is nothing unique abaut this prccedure. We couldhave just as well started with
the operator NOR (1). for example. and iakrdefined AND. OR. andNOTin terns of it. There
are. nevetthclesr. swd reasons for inhaducin~ Boolean alcebra in the wav it has been intm- - -
duced. The concepts of"and.""'or." and'hot" are familiar and are used by people to expnrs
everyday logical ideas. Mareova. the Huntington poshliakn d e n the dual nature ofthe al-
gebra, emph.riing the symmeuy of + and . with respect lo each other.

2.8 DIGITAL LOGIC GATES

Sin Boolean functions are expressed in terms of AND. OR. andNOT operations, il is easier
lo imDlemnt a Boolean function with these IVW of eater. Still. the mrsibiliw of eommctine .. - -
gatu for the other logic operations is of pnctical interest. Fa~ lun to be wughcd in consider-
iogcbemsrmcrimofahcrlypsofl~cgslesuc(l)lhefeaubilityandamomy of pmducing
the gate with physical components. (2) rhc possibility of extending the gate to mote than two
inputs. (3) the basic pmpenies of the binary operator. such as commutativity and arsociativi-
ty, and (4) the ability af the gate to implement Boolean functions alone or in conjunction with
other gales.

Of the 16 functions defied in Table 2.8, lwo are equal to a constant and four arc npsated.
Them are only 10 functions lefl to be mnsidncd as candidates for logic gates. %D-inhibi-
tion and implbti- not m v e or asociative and Uws are impraclical to we as stan-
dard logic gates. The nher eight--compiement, lransfer. AND, O R NAND. NOR.
exclusive-OR, andequivalence--are used as standard gates in digital design

The graphic symbols and vuth tables of the eight gates are shown in Fig. 2.5. Each gate has
one or hvo binary input variables, designated by x and y, and one binary output variabl+ dcs-
imated bv F. Tbe AND. OR. and inverier cireuitr were defined in Fie. 1.6. The inverter eir- " -
cuil lnvens ik logic wnse of a btnsry vnnable, producing ihe NOT. acomp*menl. funmon.
l h small circle m the aurplt of lbcgraphrc symbolof an tnvuter (R f d toas r bubbl4der.
ignates the logic complement. The &angle symbol by i rr lfdeigmes a buffs cirruit. A M e r
nmduces the nrmsfer function. but dm not oroduee a loeic oouation. since lhe binan, value
bf the output 1% eqial to the b~nar) value of ;he Input 6 s cicutt ir used for poucr amphfi-
Lauoo of the henpal a d rs cqulvalenl to tuo tnvenus connected in cascade

58 C h a p r 2 Brrolem Algebra and Logic Gates

Name
Graphic
symbol

AND

Algebraic
function

Truth
table

X F F = x y
Y

X
F F = x + y

Y T- 1 1 1

Inverter x+$m-F F = x l

Buffer F F = x

6
X

NAND F F = (x y) '
Y

NOR
X F F = (x + y) '
Y

Exclusive-OR x F = x y 7 + x ' y
(XOR) Y = x $ y

Exclusive-NOR F = xy + x'y'
(If = (x @ y) '

equivalence Y

Sectlon 2.8 Dlgltal Logic Gates 59

The NAND function is the complement of Ihe AND function, as indicated by a graphic
symbol that consists of an AND graphic symbol followed by a small circle. TheNOR function
h the complement of the OR function anduses an OR graphic symbol followed by a small cir-
ele. NAND and NOR eater are used extensivelv an standard loeic sates and are in fact far more ~ ~~~~ ~" "
popular than Ihe h c A M) a n d OR gates. This is keausc NAND and NOR easily con-
structed with transistor circuits and because digital circuits can be easily implemented with
them.

The exclusive-OR gate bas a graphic symbol similar to that of the OR gate, except for
Ihe additional curved line on Ihe input side. The equivalence, or exclusive-NOR. gate is the
complement of the eXclusiveOR, an indicated by the small circle on the output side of the
graphic symbol.

Extension to Multiple inputs

The gates shown in Fig. 2.5+ncepr for the inverter and buffer-an be extended to have
more than two innutr. A gale can be extended to have multiole invuts if h e binaw operation it -
wpresenlr is commulauvc and r,,wiativc. The AN> and OK operatlonr. definrd in Boolean
algebra. powrr there tuo properurr. For the OR funct~oo, r e have

x + y = y + x (commutative)

and

(X + y) + i = x + (y + 2) = x + ? + : (associative)

which indicates that the gate inputs can K interchanged and that the OR function can be ex-
tended to three or mare variables.

The NAND andNORfunctiaor arecmutatiw. and theirgates can be errended w have more
than two inpts, provided thatthe defmitioo ofthe operation is modified slightly. The difficulty is
lhsttheNANDaodNORoperatasarenatssraeiative(i.e.. (x 1 p) 1 i # r 1 (y 1 r)) , asshown
in Fig. 2.6 and the following equarionr:

(x 1 y) 6 r = [(I + y) ' + 21' = (x + p)r' = xr' + y:'
x 1 (y 1 z) = [x + (,. + ;)'I' = x'(y + :) = x'y + x'z

To overcome this difficully, we defme the multiple NOR (or NAND) gate as a complemented
OR (or AND) gate. Thus, by definition, we have

'lhc graphte r)mbulr lor the three-lnpe gslcr are shown m l i . 2 7. In wnung carndcd NOR
md NASDaperat~onr. one mua use the corrwt pyrnlherer to signify the proper sequence of
thr gate,. Todrmonrtrate th t \ pnnuiple, consider the iiriult olFig. 2.7(rl. The Baxdcan func-
lioo for the circuit must be wilten as

F = [(ABC)'(DE)'I' = ABC + DE

ACURD 26
Darmmstrating the nmrasdathity of the H6R &perator: [x J y) 1 z + x 1 1 e)

(a) 3-input NOR gate (b) 3-input NAND gate

F = [(ABC)' . (DE)']' = ABC + DE

(c) Cas~aded NAND gates

M U M 2.7
~ultlpls-input and cascaded HOR and NAND gates

The second expression is obtained from one of DeMorgan's theorems. It also shows that an ex-
pression in sum-of-products form can be implemented with NAND gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-OR and equivalence gates are both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input bc r i on is usually consmckd with other
types of gates. Moreover, the defmition of the function muat be modified when exteoded to more
than two variables. Exclusive-OR is an odd function (i.e., it is equal to 1 if the input variables
have an odd number of 1's). The construction of a three-input exclusive-OR function is shown
in Fig. 2.8. This function is normally implemented by cascading two-input gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the output F is equal to 1 if only one input is equal to I or if

Section 2.8 Digital Logk Gates 61

(a) Using 2input palel

all lhrce inpu& arc equal to I tie, whun the total number of I', m the mput vwablcr i s odd,.
(Exclusive-OR gates are dscusscd funher in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs snd outputs of any gate has one of two values, except during
transition. One signal value represents logic 1 and the other logic 0. Since two signal values
are assigned lo two logic values. there exist two different assignments of signal level to logic
value, as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choosing the high-level H to represent logic 1 defmes a positive logic system.
Chwsing lhe low-level L to =present logic I defines a negative logic system. The temposi .
tive and negative are somewhat misleading, s i ne both signals may be positive or bath may
be negative. It is not the actual values of the signals lhat determine the type of logic. but rather
the assignment of logic values to the relative amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as Hand L. It is up to
the user to decide on a positive or negative logic polarity Consider, for example, the elec-
tronic gate shown in Fig. 2.10(b). The mtth table far this gate is listed in Fig. 2.10(a). It
specifies the physical behavior of the gate when His 3 volts and L is 0 volts. The n t h able
of Fig. 2.10(cl assumes a positive logic assignment. with H = 1 and L = 0. This rmth table
is the same as the one for the AND operation. The graphic symbol for a positive logic AND
gate is shown in Fig. 2.10(dl.

0 - L
(a) paiuvc lqic

FIGURE 2.9
Signal assignment and l q i c polarity

Lopic
value

0

1 L
(b) Negative lo@

H H I H

(a) Truth table
witbHandL

(c) Truth table for
positive logic

{b) Gate block diagram

-
(d) Podtivs logic AN:

(e) Truth table for a - ' (f) Negative logic OR gate
negative logic 2; --.

HCURE 210
Pemanstrsthn of end negdwe logk

Now consider the negative logic assignment for the same physical gate with L = 1 and H = 0.
The result is the truth table of Fig, 2.10(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.1qf). The small triangles in the inputs and output designate apo ia~ ty indicator, the presence
of which along a terminal si@es that negative logic is assumed for the signal. Thus, the same
physical gate can operate either as a positive-logic AND gate or as a negative-logic OR gate.

The canversion b m positive logic to negative logic and vice versa is essentially an oper-
ation that changes 1's to O's and 0's to 1's in both the inputs and the output of a gate. Since this
operation produces the dual of a function, the change of dl terminals h m one polarity to the
o ~ e r resnIts in taking the dual of the functioa The upshot is that all AND operations are con-
verted to OR operations (or graphic symbols) and vice versa. In addition, one must nat forget
to include the polarity-indicator triangle in h e graphic symbols when negative logic is as-
sumed. In this book, we will not use negative logic gates and will msume that all gates oper-
ate with a positive logic assignment.

Scctlon 2.9 Integrated Clrcuib 63

2.9 INTEGRATED CIRCUITS

An rnvgraud clrcult tsbbrr\ra~ed IC) tr a s ~ c n n scm~conductor cryrtal. called a rhtp. conranlng
the elecuannc components for conrlrucunp mgltai gales The \anour paler are merconnected
lnslde the chlp to f u m the requ~red artutt. The chlp IS mounted in a cerarmc or plasuc con-
tainer, and connections a n welded to external dns to form the intenrated circuit. The number
of ptns ma) range from 14 on a small 1C package to setera1 thuu,and un J larger package.
b c h IC has a numeric Jcrlgnarlon pnnteJ un lhc wrface or the package for tdcntilicauun.
Vendors pmvlde dau hu~ks, catalog%. and Internet uehsite~ tha contam do~mptiun, und 10-

formation about the ICE that they manufacture.

Levels of lntagratlon

Digital ICs are ohen categorized according to the complexity of their circuits, as measured by
the number of logic gafes in a single package. The differentiation between those chips which
have a few internal gates and those having hundreds of thousan& of gates is made by cus-
tomary reference to apackage as being either a small-. medium-, large-, or very large-scale in-
tegration device.

Small-scale integrarion fSSI) devices contain several independent gates in a single pack-
age. The inputs and outputs of the gates are connected directly to the pins in the package. The
number of gates is usually fewer than 10 and is limited by the number of pins available in
the IC.

Medium-rcole inrrgmtion (MSI) devices have a complexity of approximately 10 to 1 . W
gales in a single package. They usually prform specific elementary digital opratians. MSI dig-
ital functions are introduced in Chapter4 as decoders, adders, and multiplexers and in Chapter
6 as reeirten and counters. ~ ~~ ~~~~ ~~~~~~~~~

Large-scale integration (LSD devices contain thousands of gates in a single package. They
include digital systems such an pmcesson, memory chips, and programmable logic devices.
Some LSI comwnents are mscnted in Cha~ter 7.

VI? l ~ ~ ~ - ~ c (l l e rttrr8rarton (VI.SI) de\Icr.r cunldin hundred of thousand< 01 gates wllhtn
n single pacbgr.. Examples arc large memo9 rnq- a d complex rnicracompurcrchtps. Be-
caureof lhcir small uu md lnu cost. VLSl dc\iccr hr\e rcvolut~oni7ed thecomputer ivrtem . .
design technology, giving the designer the capability to create srmctures that were previously
uneconomical to build.

DigitaJ integrated circuirs ate classified not mly by their camplerity or logical operation, but
also bv the soeeitk circuit technolo~v to which the" belone. The circuit technaloev isnfemed . . -. + -
lo as a digital logic family. Fach logic family has its own basic elecaonic circuit upon which
more complex digital circuits and components are developed. The basic circuit in each tech-
nology is a NAND. NOR, or invener sate. The elntmnic components em~loyed in the con-
strudion of the basic circuit are usually used to name the technology. ~ A i d i f f e r e n t logic

64 Chapter 2 &ofem Ageha and Logic Gates

families of digital integrated circuits have been introduced commercially. The following are the
most popular:

'ITL transistor-transistor logic;
ECL emitter-coupled logic;
MOS metal-oxide semiconductor;
CMOS complementary metal-oxide semiconductor.

'ITL is a logic family that has been in use for a long h e and is considered to be standard.
ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con-
sumption, such as digital c m e m and other handheld poaable devices. Low power consump-
tion is essential for VLSl design; therefore, CMOS has become the dominant logic family,
whiIe TTL and ECL are declining in use. The basic electronic digital gate circuit in each logic
family is analyzed in Chapter 10. The most important parameters that are evaluated and wm-
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its n o d operation. A standard load is usually defined as the amount of cur-
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.
Power dissipation is the power consumed by the gate that must be available from the power

supply.
Propagation delay is the average m i t i o n delay time for a signal to propagate b m input

to output. For example, if the input of an inverter switches from 0 to 1, the output will switch
Trom 1 to 0, but after a time determined by the propagation delay of the device. The operating
speed is inversely proportiond to the propagation delay.

Noise mrg in is the maximum external noise voltage added to an input signal that does not
cause an undesirable change in the circuit output.

Integrated circuits having submicron geometric features are manufactured by optically pm-
jecting patterns of light onto silicon wafm. Prior to exposure, the wafers are coated with a
photoresistive material that either hardens or softens when exposed to light. Removing extra-
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atoms to create a semiconductor material having the electrical properties of bmshton
and the logical properties of gates. The design process kanslates a functional specification or
description of the circuit (i.e., what it must do) into a physical specification or description (how
it must be implemented in silicon).

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impossi-
ble to develop and verify without the assistance of computer-aided design (CAD) tools,

SecUon 2.9 Integrated Ci~uns b5

which canrtn of rartware prugrarns that ruppan computer-ba*ed rcpre<entationr of rircunts
and ald In the development of d~giral hardware by automating the drrtgn process. Elec-
tronic design autornauan (EDA) covers all phases of the design of integrated circuits. A
typical design flow far creating VLSI circuits consists of a sequence of steps beginning
with design enuy (e.g., entering a schematic) and culminating with the generation of the data-
base that contains the Dhotomark used to fabricate the 1C. There are a varietv of oations , .
avallahlc forcreat~ng the physical realwalon 01 a mgilal e,n.uit in sillcun. The devgncr can
choose between an sppl~catlon-spcctfic integrated circuit (ASIC). a field-programmable
gate m a y IFffiA), a programmable logic device (PLD). and a full-ru,tam IC With each
of these devices comes a set of CAD tools Ulat provide the necessary software to facilitate
the hardware fabrication of the unit. Each of these technologies has a market niche deter-
mined by the size of the market and the unit cost of the devices that are required to implc-
men1 a desien. -

Some CAD s)stcmr Include an d u n g program forcreanng and madfying schematic dm-
grams on a camputn r m e n Thls p m e r r a called srhrmnr,~ roprure or r r h e l ~ l f c m r) . With
the aid of menus, keybaard commands, and a mouse, a schematic editor can draw circuit dia-
grams of digital circuits on the computer seen. Comwnentr can be dsced on the screen fmm
a list in aninternal librarv and c& then he connecled with lines [hat remesent wins The ~~ ~~ ~~ , ~ - .~
rhcmattc mo) wftwarr ckater and manages a database eonunlng Ule in fomuon pmduccd
with the rchemalic. Rirmuvc gates and funcnanal b l a b have assa ia td madelr tha allon the
functionalit) 11 c.. logical behavior) and uming of the circuit to be terified. Verification is per.
formed by applying inputs to the circuit and wing a logic simulator to determine and display
the oulputs in lert or waveform format.

An imwnant development in the desien of disital svstems is the ue of a hardware dc- - - ,
vnpuon language (HDL, Such a language rc~rmhlr* a computer pmgramrnlng language.
but is spccif~ally oriented to dcvnbtng h a r d w e It represents logic diagrams and other
Jlgltsl informat~on in textual fonn to describe the fvnct~onalnty and s w e a r c of a elrcuit.
Moreover, the HDL description of a circuit's functionality can be abstract, without reference
to specific hardware, thereby freeing a designer to devote anention to higher level functional
detail (e.e.. under certain conditions the hecircuit must detect a articular aanern of 1's and 0's
tn a -rial hit sueam of data, rather than uan\~-tor-level detatl. HDLha~ud rnulrlr of a cir-
cult or s) rem arc stmulared to check and verify 115 funcrionalxt) before it is subrmttrd to fab-
nratton. thereby reducing the ri$k and waste of maouractunng u unrcuit thn fails to operate
correctly. In tandem with the emergence of HDL-based design languages, tools have been
developed to automatically and optimally synthesize the logic described by anHDLmodel of
a eircuit. These two advances in technolasv have led to an almost total reliance bv indusvv
on HDL-hued synthesis tmls andmethodiiogies for the design of the circuits of co;nplen de-
gital systems. Two hardware description languages-Verilog and VHDL--have been ap-
pmved as standards by the Institute of Eleehonics andElccfrieal Engineers (IEEE) and are in
use by design teams worldwide. The Verilog HDLis introduced in Section 3.10, and because
of its impanance, we include several exerci& and design problems based on Verilog Ulmugh-
out the bmk.

Problem 67

1.13 Draw logic diagrams to implemenl the following Boolean cxpssionr:
la1 Y = A + B + B'(A + C')
(b) Y = A(Bm D) + C'
(c) Y - A + C D + ABC
Id) Y = (A C)' + B
(c) Y = (A' + B') (C + D')
In Y = [(A + B') (C' + D)]

214 lmplemcnt the Boolean fuofuotiin

F = xy t x'y' + y'z

la) with AND, OR. and inverter gates,
IhY with OR and inverter gates,
(c) with AND and irvertefer gates,
Id) with NAND and invens gates. and
(el with NOR and itlvencr gates.

2 1 9 Simplify the followiag Bmlean funuions T1 and T2 to a minimum number oflirerals:

216 me lqgieal rum of all minlerms of a Bmiean function of n vadablea is 1.
(a1 Rove the previous ~rarcmcnt far n = 3.
(b) Suggea s pmcedure for a general proof,

217 Ohlain the m l h [able of the following funelians, sad express csch function in sum-of-mintems
and pmducr-of-martem~ form:
iaY (xy + z)(y + xz) (b) (z + y')(y' + i)
It1 X ' Z + wx'y + wy:' + w'y' (dl (xy + yz' + x ' z) (x + i)

218 Far the Bmlcanfuoc!ion

F = .ry'i + x'),'z + W ' X ~ + W X ' ~ + WXY

(a1 Obtain 1he rmth lahlc of F:
(b) Draw UK logic diagram. using the migins1 Boolean cxprcssion.
(cY Un Boolean algebra to simplify h e function to a minimum numbsr of literals.
(dl Obmb hihe w t h table d t h e fanetian fmm the simplified expression and show that it is the

ram* as the one in pan (a).
(el Draw the logic diagram from the simplified expression, and oompare the total number af

gates with the diagram of pan (bl.

h fohmhg fimctiw as a tmm of mintems and as a product of maxtmm:

the complement of tbe foUowing functions in sum-of-minterms form:
(a) F(A, B,C, D) = 2(3, S,9, 11, 15) 0) F i x , Y , 2) = n(2,4,5,7)

221 Cowm each of the following to the otbcr canonical form:
la) F (x , y , z) = x(2,5,6) ' (b) F (A , B , C , D) = lT(0,1,2,4,7,9,12)
Convert each of the following expressions into s u m of product!+ and product of a m : .. - - ,

(a) (A 3 + C) (B + C'D) (b) x ' + x(x + y t) (y + 2 ')
a? e.2

~3 raw the logic diagram correspwdiag td the foilowing ~oolean expressions withwt simpwing
' '

them:
(a) BC' + AB + ACD :"':&) (A + B)(C f D)(A1 f B + D)
(c) (AB + A'B')(CD' $. C'D) - (d) A + CD -t (A + D')(C' + D)
Show that the dual of the exclusive-OR is equal to its cmplemt .

I

225 By substituting the Boolean e x p s i o n equivalent of the binary operntiom as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither comrnutative nor associative.
@) The exclusive-OR operation is commut&tive and associative.

Show that a positive logic NAND gate is a negative l a ic NOR gate and vice verea. ;

2 . a Write the Boolean equations and dtaw the logic diagram of the circuit whose outputs arc dGfined . '
by the following mth table: . . , -

2- Wrik Boolean expressions and construct the truth tables M b i n g the outputs of rhe cjrcuits i

described by the following logic diagrams:

References 69

REFERENCES

1. Em-. 0. 1854. An Invertigotion of the Law* ofl'houghr. New YorL: Dover,
Z. D m r E a . D. L. 1988. Logic Design of Digitnl S)srems, 3d ed. Boston: AUym and Bacon.

3. H~*m~o~~x.EV,Ss~ofindependentpo~~afarthealgebrsoflo~c.Tmnr.Am.Morh.Soc.
5 11901): 288-309.

4. lEEE Stlrndord Hodlhvorp Deseriotion LMnwrer Bawd on the Veriloa Hadware DIrcriorion . .
Language. Language Referme Manual (LRM). BEE Std.1364-1B5. IB6.2M1.2WS. The
Instimte of Elecuical and Eleetmniea Eopineera. Piualaway. NI.

5. IEEE Standard VHDL Language R@erence Manual (LRM). IEEE Std. 1076-1987. 1988. The
In~tiNte of EIeeQical and Electmnics Engineers. Rrcataway. NJ.

6. &NO. M. M,. and C. R. W. 2000. L q i e m d Co"8puter D ~ r i g n Fuirndo~nmrals. Zd cd. Upper
Saddle River. NJ: Rentice Hall.

7. SHANNON. C. E. A symbolic analysis of relay and switching circuits Rms. AIEE 57 (1938):
713-723.

Chapter 3

Gate-level minimization refers to che design task of finding an optimal gate-level imple-
mentation of the Boolean functions describing a digital circuit. This task is well under-
stood, but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortunately, computer-based logic synthesis tools can minimize a large set of BwIean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to exe-
cute a manual design of simple circuits, preparing you for skilled use of modern design
tools. The chapter will also introduce a hardware description language that is used by mod-
ern design tools.

3.2 THE M A P METHOD

The complexity of the digital logic gaks that implement a Boolean function is directly related
to the complexity of the algebraic expression from which the function is implemented. Al-
though the truth table representation of a function is unique, when it is expressed algebraically
it can appear in many different, but equivalent, forms. Boolean expressions may be simplified
by algebraic maus as discussed in Section 2.4. However, this procedure of minimhation is awk-
ward because it lacks specific rules to predict each succeeding step in the matiipuhtive process.
The map method presented here provides a simple, straightfmard procedure for minimidng
Boolean functions. This method may be regarded as a pictorial form of a truth table. The map
method is also h o w n as the Karnaugh map or K-mup.

Section 3.2 The Map Method 71

A K-map is a diagram made up of squares, with each square represenling one minterm of
the function that is to be minimized. Sinceany Boolean function can be expressed as a sumof
mintermr. it fallows that a Bwlcan funclian is recognized graphically in the map hom the
area enclosed by those squarer whose mintem are included in the function. lo fact. the map
presents a visual diagram of all possible ways a function may be expressed in standard form.
By n e o w g various panemr, the user can derive alternative algebraif expressions for the
same function. fmm which the sirnolest can be releeted.

The 'impllfied cxprer\lon$ produced by the map arc always in one of the two ~tandard
forms: sum of pndun. ur product oi,ums. It w~li k a\.urnrd that the simples algebwc cr-
pression is an algebraic expression with a minimum number of terms and with ~e smaUert
possible number of literals in each term. This expression produces a circuit diagram with a
minimum number of eater and the minimum number of i n ~ u t r to each pate. We will see sub-
sequently that the simplest expression is not unique: It is sarnelimcs possicle to tind twoor more
expressions that satisfy the minimization criteria. In that case, either solution is satisfactory.

Two-Varlable Map

Thenrrrvmahlc map is ,houn~c> big 3 l(a).'lhcrr. srr few mlacrm. fiamrl vanahlcy h e m .
the map conrlrtr oifour sqdarcr, one foreach mntem.The map tr redraun in ibl to show the
relationship between the squares and the two variablesx and y. The 0 and I markedin each row
and column designate the values of variables. Vaiablex appears pdmed inmw 0 and unprimed
in rnw I. Similarly, y appears primed in column 0 and "riprimed in column 1. 1 ,

I 1 ry' ry

(a) (b)

FIGURE 3.1
Tw~vaLable map

If we mark the squares whose m i n t e m belong to a given function. the two.vaiable map
becomes another useful way to represent any oneaf the 16 Boolean functions of two variables.
As an example, the function xy is shown in Fig. 3.2(a). Since xy is equal lo my, a 1 is placed
h i d e the square that belongs to ml. Similarly, the function x + y is represented in the map
of Fig. 3.2(b) by Wee squares marked with 1's. These squares are found fmm the m i n t e m of
the function:

ml + rn* + m) = x'y + xy' + xy = x + y

The bee squares could also have becn determined fmm the inccrsectian of variable x in the
second row and variable y in the second column, which encloses the area belonging to x or y.
In each example, the mintems at which the function is assened are marked with a 1

Chapter 3 Gate-level Mtnlmization

FIGURE 3.2
RepresentatIMi of functlms in the map

*CURE 3.3
The-varlabie map

Three-Vad* Map

A bee-variable map is shown in Fig. 3.3, There are eight rninterrns for three binary variables;
therefore, the map consists of eight squares. Note that the minterms are arranged, not in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in ea@ row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to m~ cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5 , Each cell of the map corresponds to a
unique mintem, so another way of looking at square wm5 = xy 'z is to consider it to be in the
row rnarked x and the column belonging to y 'r (column 01). Note that there are four squares
in which each variable is equal to 1 and four in which each is equal to 0. The variable appears
unprimed in the former four squares and primed in the latter. For convenience, we write the vari-
able with its letter symbol under the four squares in which it is unprimed.
To understand the usefulness of the map in simplifying Boolean functions, we must recog-

nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif-
fer by only one variable, which is primed in one squat and unprimed in the other. For example,
ms and m7 lie in two adjacent squares, Variable y is primed in rn5 and unprimed in na7, where-
as the other two variables are the same in both squares, From the postulates of Boolean algebra,
it follows that the aum of two mintem in adjacent squares can be simplified to a single AND

Section 3.2 The Map Method 73

t em consisting of only two liteds. To clarify this concept, consider the sum of two adjacent
squarer such as mS and m7:

ms + mi = r y ' : + x y r = x:(y' + y) = xr
Hue, the two squares diffa by the variables. whioh can be m o v e d when the sum of the ~ v o
mintems is formed. Thus, anv two miate- in adiacmi souares (verticallv or horizonlallv. but
not dmgonally, adjdccntl thliu.are ORcd togelher u ; ~ c a u s i remoial of th; h m l a r viable.
Tne next tourexamplc~expla~n the p m d w fur rmrumvlng a Bwlr.an funchon 8th u map.

Simplify the Boolean function

F (x . y. 2) = X(2.3.4.5)
First, s 1 is markedin eacb mintem that represents the function. This is shown in Fig. 3.4, io
which the squares for miaenas 010.011, 100, and 101 arr marked with 1's. The next steo is
to fmd possible adiacent souares. Thew we indicated in the maa bv ma nctansles. each en- . , ~ ~~ - ~ ~ ~ . ~~~~ ~ ~~~

closingmo 1's. K;c upper right rectangle rcprevnls the area enclosed by r Y. This area is de-
lermlned by observing that the two-squarc area is in mu 0. com5pondmg to x ' , and the last
two columns, corresponding to g. Similarly, the lower left rectangle cep&rents the pmduct
rem xy' . (The second raw represents x and the two let? columns represent y ' .) The l og id
sum of these two product t m r gives the simplif~ed expression

F = x'y + xy'

- 3.4
Map fw Exmtpk 3.1, €(r, 5 I) = X(2,3.4,5) = x'y + xy'

lo certaio cases, IWO squares in the map are considered to be adjacent cven though they do
not touch each other. In Fig. 3.3, mo is adjacent to m l and m, is adjacent to m6 because the
mintems differ by one variable. mhir difference can be xadily vetitied algebraically:

mo + m2 = x'y'r' + x'yr' = x ' ~ ' (y ' + y) = X ' Z '

m4 + m6 = XY'Z' + xyr' = x:' + 0.' + y) = xr'
Consequently, we must modify the definition of adjacent squm to include this and othersim-
ilarcasa. We do so by considering the map ar being drawn on a surface in which theright and
left edger touch each other to farm adjacent squares.

, - . _ I -.- , .
i , , 74 Cbpter 3 G-Lwel Minimlzatlon , .:

I < - - . ' r . , .-
, - .

I .

-. .
i '
-0 . ' .:

< - - -. . . -..
- C , > L b

. . .. - - . 3
S i b the Boolean function . - , . .

' , -
- ,j

- .. ,
; - .. - - - <-. . ;, . , . ''> jQ

, . . Ibc mqt fm this function is shown in Fig. 3.5. There are four squares rnarkd with '1%. o&$?
1; , foteach minterm of the function. lho adjacent squares we combined in the third column to:;<i?

m . .
t - , , : : . - . give a meliteral term yz. The ~maining two squares with 1's are also adjacent by the new':<

ddhition. These two squares, when combined, give the two-literal tern xz'. The simpmed:,.'.+ .>
ma;., 1 1 - F,? r;z:.>. - . - -. , , . filIMAim then berow , - I ' I , . . . ' ? - , : - - ' , . . ,:*
I . . - - . , .,'.-; ', ..:- I . . -'.... ' L . : . , ,> ' ..I . - ;:li .. , . . - - t r -

*-.
. . , . . F = P + X Z ' , ,a , .. . ,:.

a 7- . -. - ..;. b , . ' :, I:
- -
-

.- . jq
: ; l i

2 , .

, . '1;
4 I. - : . .-;., d > ! . - . . ,'C

:I*: ,:, ' * , - - - - >
' . .

I . " I , I - - . . . 'i: . .., - - . , - -
m 1 :.>, , ,.< ..;-I:. . .- 2 -- , . . I #>

, , . , -> .-
L

. . , .
, . 1' --

.i
- - , ,.-, - - - 3 ., t - .

->bJ

. . . ir
, '.. 4 . , '!

;?

:':
. . , , , JL

. -
, . . Nore: xy'z' f xyr' = XZ' I./

, <+
..,

BbuIIp3-S - . . -. .
~Map'f&kam@s 3.2, F(x, y, Z) = 2;13,4,6 77) = yz + m' .- i

' ~onsider'now any combination of four adjacent squares in the threevariable map. Any such
combination represents the logical sum of four mintems and results in an expression with only '

one Literal. As an example, the logical sum of the four adjacent mintems 0,2,4, and 6 reduces
to the single literal term 2 ' : - ' ? x

, .+ - . ;7 . 0 - ' >,y

A'. mo f ?2 + mq + mg = x'y'z' + x'yz' + xy'z' + xgz'
I -: .

A =
.* -- . : t' . . . - , = xtz'(y' + y) +xz'(yt + y)

= x'z' + xz' = z'(x' + X) = 2'

The number of adjacent squares that may be combined must always represent a number
that is a power of two, such as 1,2,4, and 8. As more adjacent squares are combined, we ob- A

tain a product term with fewer literals. -

One square represents one mintem, giving a term with three literals.

Two adjacent squares represent a term with two literals. , .
G

Four adjacent squares represent a term with one literal. . 2; :,
I,:

Eight adjacent squares encompass the entire map and produce a function that is always ,..,
I . . , m ' r

equal to 1. ,:- -- ,-<.-J -
L: . - -

. P
8 ,":, ; .yi

>+',: < - , . - , , ,i

I, - A',
<

L ' 7 ,

Seaion 3.2 The Map Method 75

Simplify the Bwlean function

F (x , y. z) = X(O,2.4.5,6)

The map for F i r shown in Fig. 3.6. First, we combine the four adjacent squares in the f i t and
larr columns m give the single Literal tern 2'. The remaining single square, rrpnocntingminterm
5, is combined with an adjacent square that has already teen used once. This is not only pr-
misribie. but rather dcEirable, because the two adjacent squares give the t w o - l i d urn xy'
and the single square represent8 the three-iiural minlerm xy'i. The simplified function is

F = Z' + ry'

If a function is not expressed in sum-of-mintem form, it is possible to use the map to ob-
tain the mintem of the function and then simplify the function to an expression with s mini.
mum number of t e rn . It is necessary, however, to make sure that the algebraic e rpss ion is
in sum-of-produce form. Each product tern can be plotted in the map in one, ovo, or more
squares. The mintems of the function are thenread directly from the map.

Let the Boolean function

F = A'C + A'B + AB'C + BC

(a) Express this function sr a sum of mintemx
(b) Find the minimal sum-of-products expression.

T k product terms in the expression have two literals and are repffinted in a Lhree-variable
map by two squares each. The two squares companding to the he1 tcnn. A'C, are found in
Fig. 3.7 from the coincidence of A' (firrt row) and C(two middle columns) togive q w e s 001

::.
i::

-

. 76 Chapter 3 Gate-Level Mlnlmixatton

Fmm 3.7
Map for Example 3.4, A T -t At& + AB'C + K = C + A'P

and 01 1, Note that, in marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A ' 3, which has 1's in squares 01 1
and 01 0. Square 0 11 is common with the fmt term, A'C, though, so only one 1 is marked in
it. Continuing in this fashion, we determine that the term AB 'C belongs in square 101, corre-
sponding to mittterm 5, and the term BC has two l 's in squares 01 1 and 1 11, The function has
a total of five minterms, an indicated by the five 1's in the map of Fig. 37 . The mintmu are
read directly from the map to be 1,2,3, 5, and 7. The function can be expressed in swuqf-
mintems form as

The sum-of-products expression, as originally given, has too many terms. It can be s i m p M d ,
as shown in the map, to an expression with only two terms:

F = C + A'B

3 . 3 FOUR-VARIABLE M A P

The map for Boolean functions of four binary variables is shown in Fig. 3.8. In (a) are listed
the 16 mintem and the squares assigned to each. In (b), the map is redrawn to show the re-
lationship between the squares and the four variables, The rows and columns are numbered in
a Gray code sequence, with only one digit changing value between two adjacent rows or
columns. The minterm corresponding to each square can k obtained from the c w c m t i o n
of the mw number with the column number. For example, the numbers of the third mw (11)
and the second column (011, when concatenated, give the binary number 1101, the binary
equivalent of decimal 13. Thus, the squue in the third row and second column represents
minterm ~9113.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges, as
weU as the right and left edges, touching each other to form adjacent squares. For example,

1.)

RGUW 31
Fow-variable map

Y i
Y

W x W 01 11 10
II. I", I.. Im. I

ma aod m2 formadjaceIUsqms, as do m, andmt~. Thecombination of adjacent squarer that
u useful during the simplifidon process is easily dctsrmincd from iospection of the f a w
variable map:

One square represents one mintem, giving a tern with four litaals

l b o adjacent squares represent a rerm with Uuec Lilerals.

Four d j a m t squares nprrwnl a term with two literals.

Eight adjscent squares reprrwal a t m with one literal.

Sixteen adjacent r g u ~ p m d m a function ihu is always equal to 1.

No other mmbihation of s q m s cao simplify the function. Tbc next two uamph show
the pmccdurs used to simpIify four-vadable B w l w functions.

Simplify the Bwlcsn function

Since the M o n has four vmiablcs, a four-variable map must be used Tbc minterms listed
in the sum are m k e d bv 1's in the mm of Fie. 3.9. EiM adiscent muarer marked with 1's - .
em be combined to f- the one livGterm ,'. The rrmsininp Uuec'l's m the right c m m
be combined to give nsimplifiedm; they must be combined m two or four adjacent squarer.
The larger the number of s q m s combineb the smalla is the n u m b of literals in thc fsrm.
In this crmple, the top two 1's on the right are combined with the top IWO 1's on the lch to
give the term w'r'. Now that it is permissible to use the same square more than once. We are

ivoce: w'y'z' f w'yz' = w'z' .' .
xy'z' + qz' = xt' , I .

a .. now left with a square marked by 1 in the third tow h d fourth column (square 1110). Instead
of taking this square alone (which will give a-term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middlerows and the two end columns, giving the tern xz' . The simplified function is

o m I ~ Simplify the Boolean function

The area in the map covered by tbis hc t ion consists of the squares nuked with.l% inFg, 3,lQ
The function has four variables and as expressed, consists of thee tuWw& N k m b ehh
and one term with four literals. Each tern with three BteraIs is represented in the map by two
squares. For example, A'B'C' is represented in squares 0000 and Wl. The function can be sim-
plified in the map by taking the 1's in the four corners to give the term B'D'. This is possible

..because these four squares are adjacent when the map is drawn in a surface with top and bot-
tom edges, as well as left and right edges, touching one another. The two left-hand 1's in the top
;TOW are combined with the two 1's in the bottom row to give the term B'C'. The remaining 1
may be combined in a two-square area to give the term A'CD'. The simplified function is

Section 3.3 Four-Variable Map 79

RCUlE 3.10
Map fw Example 3.6. A'B'C' + B'CD' + # E D ' + M'C' - B'D' + B'C' + A'CD'

In chwsing adjacent squares in a map, we must ensure that (1) all the mintem of h e func-
tion are covered when we combine the rauaren. 12) the number of terms in the exmession is
m m ~ m r d , and (3) t h ~ w am no redundmt sm. (1.e . mioterm, already covered by "her terms).
Sumetirnus thcrc may be tuu or mure cxprcsrh>nr that ,rurfy the rimplificativn unteria. TbL:
pmcedure for comb in in^. s g m s in the &P may be made mare systematic if we understand
the d g of two special ryps of t e rn . Aprbne implicant b aproduct term obtained by c m -
bining the &urn possible number of adjacent squares in the map. Ifa mintem in a squpn
is covered by only one prime implieant, that prime implieant is said to be e~senri111.

The p h implicants of a function can be obtained from the map by combining all p s i -
ble &urn numbers of squarer. This means that a single I on a map represents aprimc im-
plicanl ifil is not adjacent ro any other 1's. Two adjscenl 1's forms prime implieant, provided
that they are not within a gmup of four adjacent squares. Four adjacent 1's form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The esrcntial prime
implicants are found by looking at each square marked with a I and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the mintem

Consider the following four-variable Bwlean function:

F(A, B,C, D) = X(O,2,3,5.7,8.9. LO, 11. 13, 15)

mintem of the function are &d with 1's in the maw of Fie. 3.11. 'h ~ m t i d mao (m - . -
(a) of me figure) shows nuo essential prime implicants, each fnmcd by coll~pshg fovr cells into
a term having only two literals. One term is essential because t h m is only m way to include

Note: A 'B'C1D' + A'B'CD' = A'B'D'
ABf C'D' + AB'CD' = AB'D'
A'B'D' + AB'D' = BfD'

(a) Essential prime impliwts
BD and B'D'

HCW6 3.1 1
Slmplificatlon uslng prima implicants

@) Prime implicants CD, B'C,
AD, and AB'

mintem pno within four adjacent squares. These four squares define the term BID'. Sjmilarly,
there is only one way that minterm mg can be combined with four adjacent squares, and this gives
the second term BD. The two essential prime implicmts cover eight mintem. The three mintem
that were omitted from the partial map (m3, m, and mil) must be considered next

Figure 3.1 1 (b) shows dl possible ways that the three mintems can be covered with prime
implicants. M i n m pn3 can be covered witb either prirne impiicant CD or prime iqlicant
B'C. Minterm ms can be covered with either AD or AB'. Minterm r n l l is covered with any one
of the four prime implicants. The simplified expression is obtained fmm the logical sum of the
t ~ r , essential prime implicants and any Wo prime implicants that cover mintems na 3, mg, and
mil. There are four possible ways that the function can be expressed with four product terms
of two literals each:

= ED + B'D' + CD + AB'
= BD + B'D' + B'C -t AD
= BD + B'D' + B'C + AE'

The previous example has demonstrated that the identification of tbe prime implicmts in the map
helps in determining the alternatives that are available for obtaining a simplified expssion.

The procedure for fmding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained h c u the log-
ical sum of all the essential prime implicants, plus other prime irnplicants that may lx needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares, and each combination may p d u c e an
equally simplified expression.

Section 3.4 Ftve-Variable Map 81

3.4 FIVE-VARIABLE M A P

Maps for more than four variables are not as simple to use as maps for four or fewer variables.
Afive-variable map needs 32 sauares and a six-variable mao needs M sauaren. When the num- ~ ~ ~

br.r of variables become5 l q r . t k number uf ,qum becomes cxceslvc and the geometry lor
comhining adjacent squms hecomes more involved
The fiw-vanable map is shown in Fig. 3.12. 11 consists of 2 four-vanable maps ulth van-

ables A. B. C, D, and E. VarisbleA distinguishes bemen the two maps, as indicated at the top
of the diamam. The left-hand four-variable man remesents the 16 souares in which A = 0. . . -.
and the other four-vanable map =presents the squares in whch A ='I. Mintrrms 0 &ougb
15 belong with A = 0 and mintcms 16 through 31 with A = I. Each four-variable mapre-
tains the prcviourly defined adjacency when taken separarely. In addition, each square in the
A = 0 map is adjacent to the unresponding square in the A = I map. For example. mintem
4 is adiaceot to mintem 20 and mintem 15 m 31. The best wsv la visualire thir new ride fnr . ~~ ~-~~ ~

adjacent squares is to consider tbc two half maps as being one on top of the other. Any hvo
squares that fall one over the other are considered adjacent.

By following the procedure used for the fivevariable mao, it is wssible to consmct a six-
winhle map ulth 4 four-vanablemap toobun the rcqumd & uluks . Maps wnh rix or more
\ariablcr nezd too many squarer and me hpract!cat la use. The alrernsuve rr to employ com-
puter programs rpccificdl) wnnen to iaclLtate the simplficat~on of Boalean funcuonr wth a
large number of variables.

BY inspection, and Liking iato account the new d e f ~ t i o n of adiacent mares. it is wssible
to show &at any 2' adlacent squares, fork = (0, 1.2.. . . . n) in n-v&ble map. ;ill np
mwnr an amthat glvcs atermofn - k heralr. For thir aaremcnt m have any meanmg. hou-
ever, n murl be larger than k. When n - k . the cnllrc area nt b e map tr combined to 0 ° C Ulc

F I C M 3.12
F lw-vutde map

Table 3.1 : f
r r # k h t b m h i p ~ t k H m b u b ~ M t S q w r r * ~ d t t r O ' ' - '

N W n b d M h t k T e n n

Number of
Adjacent Number of Llkrals
Squares In a Tern In an n-vrrlable Map

i&ntiq functian, Table 3.1 shows the relationship between the number of adjacent squares
and the number of liteds in the term, For exampl, eight adjacent squares combine an m a in . ' the five-varihle map to give a term of two literals. - 4 -

.y' . '.; - . , - 'I

The five-vwiabl map for this function is shown in Pig, 3.13. There are six minterms h m .
0 to 15 that belong to the part of the map with A = 0. The other five m i n t e m belong with
A = 1. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'B'E'. Note that it is necessary to include A' with the term because all the squares are as-
sociated with A = 0. The two squares in column 01 and the last two rows are common to
both parts of the map. Therefme, &ey constitute four adjacant'squares and give the t h t -
litetal term BD'E. Variable A is not included here because the adjacent squaree belong to
both A = 0 and A = 1. The term ACE is obtained from the four adjacent squares that are
entirely within the A I map, The simplified function is the logical sum of the three
t$*:
mII_ _ . .: .' -

I . _

F = A'B'E' + BD'E -+ ACE

H C W 3.13
Map for Example 3.7, F = A'II'E' + BD'E + ACE

3.5 PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Bwlean functions derived from the map in all previous examples were ax-
pressed in sum-of-pmducts form. With aminar mditication, theproduct-of-sums form can be
obtained.

The prwedure for ohaining a rninim1,cd funct8on in praduct-of-\urnr i n n follour from
the haw pmpenles vf Bwlean functions. The I ' 5 placed in the square, of the map reprerent
the minnrms of the function. The mintsrms not incfndedin the srandard sum-of-pmdueis farm
of a function denote the complement of the function. Fmm this observation, de see that the
complemenr of a function is represented in the map by the squares not marked by 1's. Ifwe
mark the empty squares by 0 ' s and combine them into valid adjacent squarer. we obtain a
simplifted expression of the complement of the function (i.e.. of F'). The complemcnr of
F' gives us back the function F. Because of thegeneralized DeMorgan's theorem, the func-
tion so obtained is automatically in pmduct-of-sums form. The best way to show this is by
examph.

L ..
D

- .

1,-4-.

No& BC'D' + BCD' - BD' 5 . , , . -
A14

, . , M ~ ~ - ~ ~ ~ ~ . $ F (A , & C , D) = Z (O , ~ , ~ , & ~ , ~ , ~ D) - F P + B ' C + A ' C ' D =
(A' + F)(CL + D')(B' + 0) . -

EXAMPLE 3.8

Simplify the following B o o l a function into (a) sumsf-products form and (6) --of- ,.

sums form: , .. , I ., r ' I . .' . ' I

Th= 1's 'barked in the map of Fig, 3,14 represent all the minterma of the function. The
squares marked with 0's represent the mintcrms not included in F and therefore denate the '-I
complement of F. combining h squares with 1's gives the simplified function in sum-of- $
products form: I . ., . - . ., , - --... A :' , : I

(a) F = B'D' + BIG' + A'C'D ' .
, . .

If the squares m k e d with 0's are combined, as shown in the dislgram, Re & ;I.
- .

8 - - - . m r t simpfified comp@mted . ,.- function: ,:,- - . . " - , .,.,,,P,. :!!'.' .- . " - -,; - -. , -: ' . . F' = AB + CD -k BD'
I . Applying DeMorgan's themem @y talciag the dual and complementing & literal as de

scribed in Section' 2,4), we obtain the simplified @ction bj pmle-of-sums form: ". - : * .,.,:-,, :-,,.>, L ! - . . : . - - . , I.
-I

. I ' . ,,; ' ,, ,(b) F = (A' + B'J(C1 t D 1] (B ' + D) , -, .-., .: :; , -: . r , , - . . - . , - . a , 'd,
I , , - ' - - , :-. - -

, 8 . . , ,:--;<:+..,: 8: = - - .
.I

, ..' , - - - - _._.. .. - , - .. > - - , . , . ._ . . .# , . . - L - . ' -- . . , ,8 . , . .: :. . . :<. '. . : .. * - 3
- . . - ,. . '

The implementation of the simplified expressim obtained in Exmple 3.8 is shown in . . 2
Fig. 3.15. The gum-of-products expression is implemented in (3 with a goup sf AND gates, .:
one for each AND term. The outputs of the AWD gates are connected to the inputs of a sin- .'
gle OR gate. The same function is implemented in (b) h its product-r-of*sums forin with a I-.:

group of OR gates, one for each OR term. The outputs of the OR gates are connected to the 2
inputs of a single AND gate. In each case, it is assumed that the input variables are directly i)

..::..~.
D'

C' D' :~:,:<:; :
F

.. ~:... :~..::.:... ..: . ~ . ~ .. ~
D <:;.:;.:~.

(a) f = BID' + B'C + A'C'D (b) f = (A' + 8') (C' + D') (8' t D)

FIGURE 3.15
Gate irnpkmemations of the lvnNon of Example 3.8

Table 3.1
Truth Tabk of Fun& F

x v 1 I F

available in their camplemcnt, so inverters are no1 needed. The configuration panern errah-
lished in Fie. 3.15 is the general form bv which anv Bmlean function is imolcmeaed when . -
cxpresed in one of the standard farms AND gales are co~c.led lo a btngle OR gate uhen
In sum-of-prdurt, form. OK gates arc ~onnecled lo a slngle AND gate uhro m produrt.uf.
s m form. Either configuration forms two levels of gates. Thus, the implemenmtion of a
function in a standard f o k is said to be a twrrlevel im~lementation.

.

Example 3.8 showed the pmedure for obtaiaing the praduct-of-sums simplification when
the function is originally expressed in rhe sum-of-mintems canonical form. The pmcedw is
also valid when the function is originally expressed in the product-of-marterms canonical
form. Consider, for example. the n t h table that definer the function F in Table 3.2. In sum-
of-minterms form. this function is expressed as

F(x,y, r) = X(l. 3,4,6)

In pmduct-of-maxterms form, it is expmssed as

F(=,y. Z) = y o . 2.5.7)

ln other words, the 1's of the function represent the minterms and h e 0's represent the max-
t e r n . The map forthis function is shown in Fig. 3.16. One can stan simvlifying the function
by fmt marking the 1's for each minterm that the function is a 1. The remaining squares are

marked by 0's. If, instead, the product of maxtam is initially given, one can start marking U's
in those squms listed in the function; the ~maining squares we then marked by 1's. On& the
1's and O'a ace marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the 1's to obrain

F = x'z + &a' , . L

For the produci of sums & comb& the 0's to obtain the heplified compleme~~& function -

which shows that the axclusive-OR function is the complement of the equivalence function
- {Section L61, W n g the complement of F', we obtain the simpwed funcdun in plwt-of-

, .
9- forhi: &'-.;;$;+ ;,. - ,< *, i:.., . - , -. ' , - -. -v-r,, , 4<:.,..,1 :'

- .

/, : , , : , ,., % ..+ -,:; ,, , : <:*a: . -- , -

- : . , c ,,:: F;,,*.,q :,.p-:.. :h - ;:,:', r n . 6 + - a ..-.,:.-:(,<&~*fi-\ ;,t:;j:A-Jn:*'."L...: :--.. A,!!v&p rz ,: 4 x ~ + ~ ') (x C ,) -,
,:' , ., .._ . . i .*

<<.\ ,<? ,..., ;, ,.,,, 8 , .. , '. - : : .:.: , ; , ? r , , ,

:& k t & a fn;l'dti& ~ ~ s ~ (i n @uctdf-sm form h$o thk mstp, use the compl~ment of the :;
W o n - t o fmd the- squares that afe to be marked by 0'0's. For- example, the W o n

, . .
,--., .,; - < F . . ' F = (A' + B' ;t C t) (B . + Dl ' . . - ;?.,.,-. '- ' 1

, . . r
.. .'.,.,,.,: : '-2..-: <!.<;, 9 . . ,
canbe entered into the map by &s(taking ifs complemegi, namelyZ ,

'

F' .= ABC + B'D' A

. A

and then marking 0's in the squares representing the of F'; he remaining squares ';
are m w k 4 with 1's.

3 . 6 DON'T-CARL CONDITIONS

The logical sum of the mintems associated \Kith a Boolean function specXes the conditions J.L

under which the function is equal to 1. Tke function is aqua1 to 0 for the rest of the m i n m .
This pair of conditions asgumes that dl the combinations of the valuea for the variables of tbe
function are valid, In practice, in sonie applications the function is not specifid for certain
combinations of the variabl~, As an example, the four-bit b i n q code for the decimrrl digits
.-has six combinations that are not used and consequently me consiclmd to be m@fied.

* ,, "F+YL ,.. .v*~+--,,~-zy,-. ,. -. - . <. . . , ,, , , ,.. .
;. - . .

Sectlon 3.6 Don't-Care Condltlons 87

Funcrions that have unspecified oulpurs for some input combinations are called iwomplctely
rpccifredfunctions. In most applications, we simply don't care what value is assumed by the
function for Ihe uns~eeified minterms. For this reason. it is customam to call the unsoecified
mmrerms of a funct~on don>-core rondittonr. These don'tsac conditions ran be used on a
map to pro\idc funhcr stmplrfirstton oi lhe Bwlean expression.

Adon'waremintermis acornbination of variables whoselagical value is not specified. Such
a minterm cannot be msrlted wilh a I in the map, because it would require that the function al-
ways k a l for such a combination. Likewise. ~uUinn a 0 on the s a w m u i n s the function . -
to 0. To distinguish the don't-care condtton from I'r and O'r, X is "red Thus, an X in-
s~de a square in the map lndicdter that u.e don't can uhelher the >aluc of 0 or 1 is asvpncd to
F for the particular mintem,

la choosing adjacent squares to simplify the function in a map, the don't-cm mintems
mav be assumed 10 be eilherO or I. When rim~lifvine the function. we can chwse to include
each don't-care minwrm with either the 1's or b e b's:depending on which combination gives
the simplest expression.

S i l i f y the Boolean function

F(w.x.y.z) E(I.3,7.11.15)

which has the don'tsare conditions

d(w,, x , y . 2) = E(O.2.5)

The minterms of F are the variable combinations that make the function qua1 to I. The
minterms of d are the don't-care mintem that may be assigned either 0 or 1. The map sim.
plification is shown in Fig. 3.17. The mintem of F are marked by I'E, those of dare marked

(a)F-): + w i '

FIGURE 3.17
Example with don't- conditrans

88 Chapter 3 GabdeveI Mhlrnkatbn

by X's, a d tbe mmhiug aqwms we fiUed with 0's. To get the simplified expression in sum-
of-pducSs fam, we must b h d e all five 1's in the map, but we may or may not include any
of ib X's, depeadmg oa ih way tbt fnaction is s@W. The term yz covers the four rninterms
in the third cdwm. The remaining minm ml, can be combined with rninterm mg to give
the three-literal term w'x'z. However, by h i d i a g one or two adjacent X's we can combine
four adjacent squares to give a two-literal term. In part (a) of the diagram, don't-care minterms
0 and 2 are included with the l's, mulling in the simpWed function

F = yz + w'x'

In part (b), don't-care rninterm 5 is included with the 1's. and the simplified function is now

F = yz + w'z

Either one of the preceding two expressions satisfies the conditions stated for this example.

The previous example has shown that the don't-care rainterms in the map are initially marked
with X's and are considered as being either 0 w 1. The choice between 0 and 1 is made de-
pending on the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obtained will consist of a sum of rninterrns that includes those min~erms
which were initially unspecified and have been chosen to be included w i ~ the 1's. Consider
the two simplified expressions obtained in Example 3.9:

F(w, x, y, z) = yz + w'x' = Z(0, 1'2'3'7, 11, 15)

F(w, x, y, z) = yz + w l z = Z(1,3 ,5 ,7 ,11 ,15)

Both expressions include minterms 1,3,7 , 1 1, and 15 that make the function F equal to 1. The
don't-care minterms 0, 2, and 5 are treated differently in each expression. The first expression
includes minterms O and 2 with the 1's and leaves rninterm 5 with the 0's. The second expres-
sion includes minterm 5 with the 1's and leaves mintems 0 and 2 with the 0's. The two ex-
pressions represent two functions that are not algebraically equal. Both cover the speciiied
mintems of the function, but each covers different don't-care mintems. As far as the bcom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of F for the don't-care mintem.

It is also possible to obtain a simplified product-of-sums expression for the function of
Fig. 3.17. In this case, the only way to combine the 0's is to include don't-care mintems 0
and 2 with the 0's to give a simplified complemented function:

Taking the complement of F' gives the simplified expression in product-of-sums form:

In this case, we include mintems 0 and 2 with the 0's and min@rrn 5 with the 1's.

Section 3.7 NAND and NOR lrnpkrnentation 89

3.7 NAND AND NOR IMPLEMENTATION

Didtal circuits am frequently cansvvcted with NANDorNOR gates rather than withAND and
OR gates. NAND and NOR gates are easier to fabricate with electronic camwnents and an
the basic gakr used in all IC digital Ionic families. Because of the ~mminence of NAND and
NOR eat& in the desien of di~ltal cireiits. rules and omcedurer been devela~ed for the
conversion fmm Bwican funitions given in terms af AND. OR. and NOT into iquivalmt
NAND and NOR logic diagrams.

NAND Clrcults

The NAND gate is said to be s universal pate because anv digital svrtem can be imdemented . " , . ~ ~-

wth it To E h o ~ that any Boulcan fun~"& can be lmplcmented ~ n t h NAND gaw\. uc n u d
only show tha the logical opnuionr ofAND. OR andcompicmnt can k obmned unh N . W
gates alone Thlr s udgd shown In Fig 3 18 The cunbpkeca operation 8 % obtatned fn,m a unc-
input NANDgate that behaves exactly iike an inverter. The~NDoperation requires taro NAND
gates. The fmt produces the NAND operation and the seeondinvens the logical sense ofthe sig-
nal. The ORopcrationir achieved thmugh aNAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain the rim-
plif~edBmlean function in terms of Bwlean operaton and then convertthe function to NAND
logic. The conversion of an algebraic expression from AND, OR, and complement to NAND
can be done by simple circuit manipulation fechniques that change AND-OR diagrams to
NAND diagrams.

To far~htate the ron\r.na,n s, NANI) logic. 11 IS conven#<nt s, dcfinz an ~lrernatlvr graph~c
symbol farthe gate.Twoequivalmt graphic symbols forthe VASDgate r show m Fig 3 19

AND :*V

mcua 3.18
L q l k opratims with NAND gates

(a) AND.mv.n (b) I n v s n . 0 ~

RCLN 3.19
Two graphic symbols fn the NAND gate

~ ~ ~ ~ ~ ~ ~ y a n d r o n s i s t s o f a n A N D ~ s y m b o l f d - i

-by a d ckkwgadrn-htibtm refex& to as a bubble, Alternatively, it is p s i i l e to
~ ~ M ~ ~ a ~ ~ @ t s a t i s ~ b y a b u b b l e i n e r e c b i n p u t The
inv&ta-1 for the NAND gate foIlom lkMmgds tbemm and the oonventim that the
n@m i&atm h t w cmq- T h two gmp& symbols' l.epremtatiw6 are use-
ful h the d y s i s and design of NAND &cub, - both symbols are rnixed in the same
~ t h e c i r c l r i t i s s a i d t o ~ i n ~ ~ . .

* 1.'. .

. . The implementation of Boolean functions with NAND gates requires that ihe functions be in
- sum-of-products form. To see the relationship between a sumsf-product expression and its

equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3.20. All three
I.,. diagrams are equivalent and impIernent the function

I - # 8 . . 4 .

1 : . F = A B + C D ,r, .
- .- . . - -

The function is implemented in (a) with AND and OR gates."~ (b), the AND gate.~ are lo
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graphic
symbd. Remember that a bubble denotes complementation and two bubbles along th same
line represent double complementation, so both can be removed. Removing the bubbles on the
gates of @) produces the circuit of (a). Therefore, the two diagrams implement the same func-
tion and are equivalent.

In Fig. 3.20(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either (b) or (c) is acceptable. The

+

.. I - .I ..- , . . , . -
I - I J

Section 3.7 NAND and NOR Implementation 91

one in (b) is in mired notation and represents a more direct relationship to the Boolean
expression it implements. The NAM) implementation in Fig. 3.2Wc) can bc verified alge-
braically. The function it imdcments can easily be convened to sum-af-products form by
~ e ~ o r g a n ' r theorem:

Implement the following Baalea function with NAND gates:

F (X , Y . z) = (I . 2 . 3 . 4 . 5 . 7)

The fmt step is to simplify the function into sum-of-products farm. This is done by means of
the map of Fig. 3.21(a). from which Ule simplified function is obfained:

F = xy' + x'y + r

The tw+level NANDimplemenmtimis shown in Pig. 3.2lm) inmixed notation. Note thatinp.t
z must have a one-input NAND gate Inn inverter) to compensate for the bubble in the second-
level gate. Aa alternative way of drawing the logic diagram is @en in Fig. 3.21(c). Here, all
the NAND gates are drawn with the same graphic symbol. Thc inverter with input z ha been
removed. but the input variable is complemented and denoted by r'.

RGURE 311
Solution to hunple 3.10

I - 11 1 The &scribed hi the example indicates that a Boolean function can be
implmmttd with two levels of NAND pa. The procedure for obtaining the logic diagram '

h a Boolean function. is as follows:

1, Simplify the function and express it in sum-of-products form.
2. Draw a NAND gate for each product term of the expression that has at least two literals.

The inputs to each NAND gate are the literals of the t am. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the f i s t level. However, if the single literal 1 .I
is complemented, it can be connected directly to an input of the second-level NAND gate.

The standard form of expressing Boolean functions results in a two-level iinplementatioa.
There are occasions, however, when the design of digital systems results ia gating structures
with three or more levels. The most common pmedure in the design of multilevel circuits is
to express the B wlean function in twms of AND, OR, and complement operations. The func-
tion can then be implemented with AND and OR gates. After that, if necessary, it can IE con-
verted into an all-NAND circuit. Consider, for example, the Bwlem function

F = A(CD + 3) + BC'

Although it is possible to remove the parentheses and reduce tbe expression into a standard sum-
of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the cir-
cuit, The fxst level has two AND gates. The second level has an OR gate followed by an AND
gate in the third level and an OR gate in the fourth level. A logic diagram with a pattern of d-
temating levels of AND and OR gates can easily be converted into a NAND circuit with the
use of mixed notation, shown in Fig. 3.22(b). The procedure is to change every AND gate to
an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there are two bubbles along
the same line. The bubble associated with input B causes an extra complementation, which
must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND-OR diagram into an all-NAND di-
agram using mixed natation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic aymhls.
2, Convert all OR gates to NAND gates with invert-OR graphic symbols.
3. Check dl the bubbles in the diagram, For every bubble that is not compensated by an-

other s m d circle along the same line, insert an inverter (a one-input NAND gate) or
complement the input Literal.

As another example, consider the multilevel Boolean function

F = (AB' + A'B)(C + D')

(b) NAND gates

At= 3.22
lrnplementlng F = A(CD + I) + BC'

ThcAND4R imolementation of lhis fmction ls shown inFie. 3.23(al with thrse levels of eat- - . . "
ing. The conversion to NAND with mxcd notation ir prcrrnvd in pan (b) of the diagram. The
taro additional bubbles ssroctated with inpuu Cand D' cause these two lirnalr to be mmple-
menfed to C' and D. The bubble in the &t~ut NAND gate com~lemenu the oumut value. so -
we need to insen an inverter gate at the output in order to complement !he signal again and get
the original value back.

NOR Implementation

The NOR o p t i o n is the dual of theNAND opemtion. Thersfors, a l l pmxdurss ad rules fw
NOR loeic ax the duds of the cornscandine nocedores and rules &vcload for NAND lopio.
The NO^ gae is another univmal ;ate thayean be used to implement &y Boolean function.
The implementation of the complement. OR, and AI\D opalions with NOR gales is shown
in Fig. 3.24. The complement operation is obtained fmm s me-input NOR gate that behaves
e w i v like an invenk. The ~ ~ - o o n a t i o n m u i m taro NOR nater. and the AND owmtim is
o b w i d ulth a NOR gale that h i inverters ib each mpul

"

The two grapluc symbols for the m~xed notauon are shown in Fig. 3 25. The OR-lnvm
symbol definer the NOR opmtim as an OR followed by a ewnplnnea. The invm-AND
rimbol complements each'mput and then performs an AND o&rstion. The two symbols
desngnate the same NOR operauon and are logtcally ident~cal because of DcMorgan's

(b) NAND gates

FIGURE 3.23
lmplementlng F = (AB' + AIB) (C + 0')

AND (x' + y')' = xy

Y

FIGURE 3.24
Logk operations with NOR gates . -

F l W 3.25
Two graphic syrnbok for the NOR gate

(b) Invert-AND

Sectlon 3.7 NAND and NOR ImplemmtaUon 95

A nvo-level implementation with NOR gates requires that the function be simplified into
productof-sums fom. Remembcr that the simplified prcduct-of-sums e x p s i o n is obtained
horn the map by combining the 0's and complement in^. A prcdwt-of-sums exmessionis im-
plemented w i i a first levi of OR gates that prcduce-the ium terms followed by a second-
level AND gate to pmduce the product. lbe vansfomation from the OR-AND diagram to a
NOR diagram is achieved by changing Ulc OR gates to NOR gates with OR-inven graphic
symbols ad the AND gate to a NOR gate with an invert-AND graphic symbol. A single literal
term going into the second-level gate must bc complemented. Fig. 3.26 shows the NOR im-
plementation of a function expressed as a pmdun of sums:

F = (A + B)(C + D)E

Tk OR-ANDpnem can easily bc detected by the removal of the bubbler along the same line.
Variable Eis complemented to campsate far the rhird bubble a t h e input of the second-level
m e . ----.

lbe pmeedwr for convening a multilevel W R diagram to an &-NOR diagram is
similar m the me presented for NAND gates. Forthe NOR case. we must convcn each OR gate
to an OR-invm svmbol and each AND pate to an inven-AND svmbol. Anv bubble that Is not
compensated by Lother bubble along the Eame line needs an inverter. or th; complementation
of the inpnt literal.

The vansformation of the A W R diagram of Fig. 3.23(s) into a NOR diagram is shown
io Fig. 3.27. The Bwlean function for tbis circuit is

F = (AB' + A'B)(C + D')

"

FIGURE 3.26
lmplcmmtlq F = (A + B)(C + O)t

FIGURE 3.27
IrnpknUng F = (AS' + A'B)(C + W) d h NOR gates

-.
;: L ; ' 5

, I; . % Chapter3 M f d m W o n
+*

I ' I ' b e e@v&ht m R diagram can be recognized from the NOR diagram by removing all
:\I
,I! . the b W h . To umrpmk for the bubbles in four inputs, it is necessary to complement the
I ' -inputiitdR ' ? # . -

0 . - r11 "I

3 . 8 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates mmt often f w d in integrated circuits are NAND and NOR gates. For this
mson, NAND and NOR logic implemntadons are the most important from a practical point
of view. Some (but not all) NAND or NOR gates allow the possibility of a wire connection be-
tween the outputs of two gates to provide a specific logic function. This type of logic is cdled
wired logic. For example, open-collectPr TIZ NAND gates, when tied together, perform wired-
AND logic. (The open-collector TTL gate is shown in Chapter 10, Fig. 10.11 .) The wired-
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the Lines going through the center of the gate to distinguish it from a mvent iod
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained h m the indicated wired connection. The logic function implemented by the circuit
of Fig. 3.28(a) is

F = (AB)'-*.(CD)' = (A B + CD)' = (A' t B')(C' + D')
and is called an ANWOR-INVERT function.

Similarly, the NOR outputs of ECL gates (see Figure 10.17) can be tied together to perform
a wired-OR function. The logic function implemented by the circuit of Fig. 3.28@) is

F = (A + B)' + (C + D)' = [(A + B)(C + D)]'

and is called an OR-AND-INVERT fmctidn. ., .

A wired-logic gate does not produce a physicd second-level gate, since it is just a wire con-
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.28 as
two-level implementations. The fist level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-
ted in ~ubsequent discussions.

(a) Wmd-AND in open-wBctor
TTL NAND gate*.

(b) Wad-OR in ECL stes

[OR-i4NwrwVERT)

F- [(A + 8) (C+ Dl]'

FIGU.W 3 .a
Wred hglc
(a) Wld-AND logk with two NAHD gates
(h) WlmddR In emhter-coapl@d logic (ECL) B B M

SecUon 3.8 Other Two-Level lmplementatlons 97

Nondylcmrate Forms

It urll k inruucu\c from a thcomucal pornt of \leu to r i d out hau man) two-lesel comb,-
muons of gam am p ~ ~ ~ h l e We conrldn tow t)pe+ ui gate\ AND. OR. NAND. and NOR
If uc asrhgn one type of gate far the Rrst level and one typc far the second level, we find that
them are 16 &bk combinations of wo-kvel forms. he same tyDe of gatc can be in the fm1
and s a d kvels, as in ~NAND-NAND implunentation.) Eight ofrhese&&ations are said
to be degencrare forms because they degenerate to a single operation. This can be Kcn from
a circuit with AND gates in the fmt level and an AND gate in the second level. The ouQut of
tbeheuit is mcnly the AND functionaf all input vatiables. The remaining eight mndegcnemte
forms produce an implementation in mm-af-prcducb form or product-af-rum form The eight
nondegenmte forms are as fallows:

A N W R OR-AND
NANDNAND NOR-NOR
NOR-R NANWAND
OR-NAND AND-NOR

The Rlnt gate ltrted in each of the forms constiruter a fmt level in the ~mplementaPon. Tne uc.
ond gate lt\ud is a ungle garr p l w d i n k w n d level. Nor< that any w o forms hrtedonthe
same Line are duals of each other.

The ANIYIR and OR-AND forms are the basic two-level forms discusred in Section 3.4.
The NAND-NAND andNOR-NOR foms were prescntedin Section 3.6. The remaining four
forms m'c investigated in h i s section.

AND6R4NWRT ImplementatIan

The two form N A m A N D and AND-NOR are muivalent and can be mated together. Both
p d o m the AND-OR-INVERT function, as shown in Fig. 3.29. The AND-NOR form re-
sembles the -R fann, but with an inversion done by the bubble in the wQut of the
NOR gate. It implwnents the function

F = (A8 + CD + E)'

!+ : A

B

C

D
F F

D D

E E E

(a) AND-NOR lb) AND-NOR (s) NAND-AND

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.29m). Note that the &@e variable E is not complemented, because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
mind of the second-level gate to the output t e m h d a of the first-level gates. An inverter is need-
ed for the single variable in order to compensate for the bubble, Alternatively, the inverter can
be removed, provided that input E is complemented. The circuit of Fig. 3.29(c) is a
NANWAND form and was shown in Fig. 3.28 to implement the AND-OR-INVERT function.
An AND-OR implementation requires m expression in sum-of-products form. The

m R - I N V E R T i m p ~ m e ~ o n is similar, except for the inversion. Therefore, if the comp-
l e m t of the function is simpMed into sum4podwts form ('by combining the 0's in the map),
it will be possible to implement F' with the AND-OR part of the fundon. When F' passes
through the always present output inversion (the INVERT part], it will generate the output F
of the function. An example for the AND4R-INVERT implementation will be shown
subsequently.

The OR-NAND and NDR-OR forms perform the OR--INVERT function, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubbIe in the NAND gate. It implements the function

F = [(A + B)(C + D)E]'

By using the dtemative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gats The circuit of Fig. 3.w~) is a NOR4R
form and was shown in Fig. 3.28 to implement the OR--INVERT function.

The OR--INVERT implementation requires an expression in product-af-sums form.
If the complement of the function is simplified into that form, we can implement F' with the
OR-AND part of the function. When F ' passes tbrough the INVERT part, we &ah the cmn-
plement of F' , or F, in the output.

(a) OR-NAND 0) OR-NAND (c) N O R 4 R

W o n 3.8 Other Two-Lml Implemsntltlons 99

Implements *@@ To Get
th. P an Ompn

Into

AND-NOR NAND-AND ANDOR-INERT Sum.of-products
form by combining
O's in the w. F

OR-NAND NOR-R OR-ANlLlNWm Roduet-of-sum.
farm by cornbinins
I'n in the map mi

F

*Form lb) require8 aa h w c r for a single U l e d mm.

Tabular Summary and Example
Table 3.3 summarizes the procedwes for implementing a Boolean luaction in my one of the
four 2-level forms. Because of the INTERTpan in each case. it is convenienl to use the sim-
plification of F' (the complement) of the function. When F' is implemented in one of these
forms. we obtain b e complement of the hc t i on in the ANPORor OR-AND form. The fow
2-level f m s inven Ulis function. giving an output r h r is the complement of F'. This is ihc
n d output F.

lmplemcnt the funulion of Fig 3.3lta) uith the fow 2-levcl forms Listed in Table 3.3.
The complement of the function is slmpl~fied lnta sum-af.pmducts fonn b) combtning the O's
in the map:

The n d wtpvl for this fmclion can k expressed 83

F = (x'r + xy' + r) '

whichis in the ANPOR-WVERTfm. The AND-NOR &NAND-AND implemenls*ionr
arc shown in Fig. 3.31(b). Note that a one-input NAND, or inverter, gate is needed in the
NAND-AND implementation. but not in the AND-NOR m e . The invena can be m v e d
if we apply the input variable r' iowead ofz

The OR--INVERT forma require a simplified exprrssion of the complement of the
function in pmdm-of-wunr form. To dmh this expession, we fint mmbine th 1's i n k map:

F = r'y'i' + xyz'

z
(a) M s p M s p t i n n in sum of products

OR-NAND

z+
NAND-AND

@) F = (x'y + xy' + 2)'

NOR-OR

(c) F = [(I + y + 2) (x' + y ' + z)]'
FlGUIlE 3.31
Other h - f e v e l Irnplwnentatiom

Then we take the complement of the function:

F' = (x + y -t z) (x l + y' t z)
The normal output F can now be expressed in the form

F = [(x + y + z) (x ' f y' + z)]"
which is the OR--INVERT form. From this expression, we can implement the function
in the OR-NAND and NOR-OR forms, as shown in Fig. 3.3 1 (c).

H

Sectton 3.9 ExduriwOR Functlon 101

3.9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol @ , *a logical operation that p f o m the
fallowing Boolean operation:

x 8) y = xy' + x'y

The cxclu+ive.OR is ulual lo I if onl) r i s equal to I or donly , is uqdal to I (i .~ . . 1 and y dif-
fer in value), but na u hen balh arc equal to I or uhcn bath ate equal to 0 The rrclunvc-
NOR. also Lnuun a, quiralence, perfimn, the fullouinp Boolean operaoon:

(x e y) ' = xy + x'y'

The exclusive-NOR is equal to I if bathx and y are equal to 1 or if both are equal to 0. The ex-
clusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth
table or by algebraic manipulation:

(xC3.v)' = (xy' + x'y)' = (x' + J)(S +?I.') = xy + x'y'

The following identities apply to the exclusive-OR operation:

x e o = x

~ r n l = X'

x e x = 0

X ~ X ' = 1

x e y s = x ' e y = (x e y) '

Any af these identities can be proven with a rmth table or by replacing the @ operation by its
equivalent Bmlean expression. Also. it can be shown that the exclusive-OR operatian is both
commutative and associative; that is,

A @ B = B @ A

and

(A e B) e C = A @ (B @ C) = A @ B @ C

This means that the two inputs to an exclusive-OR gate can be interchanged withwt affecting
I& o p t i o n . It also meam that we can evaluate a tlnec-variable exclurive4R operation in any
order, and for this ream, t h m a m a m variables can be exptessed without parrnthww. This
would imply the possibility of using exclusive-ORgates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even atwo-
input function is usually constructed with other types of gates. A hvo-input exclusive-OR func-
tion is consmcted with convenlionsl gates using two inverters, two AND gates, and anORgate,
as shown in'Fig. 3.32(a). Figure 3.32(b) shows the implementation of the exclusive-OR with
four NAND gates. The fmt NAND gate pedorms Ute operation (xy)' = (x' + y'). The other
two-level NAND circuit prcduces the sum of products of its inputs:

(x' + y')x + (2' + y')y = *y' + x'y = r e y

(a) With W R - N O T gates

@) With NAND gat=

Only a limited number of Bwlean functions can lx expressed in terms of exclusive-OR
operations. Nevertheless, tbh f k d o n emerges quite often during the design of digital sys-
tems. It is particularly useful in adthmetic o p a h m and mw detedon and d o n circuits.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the $ symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:

A @ B G3 C = (AB' t AfB)C' + (A B + A'B')C

= AB'C' t A'BC' + ABC + A'B'C
= 2(1 ,2 ,4 ,7)

The Boolean expression clearly indicafes hat the *variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all thee variables are equal to 1. Contrary to the two-
variable case, in which only one variable must be equal to 1, in the case of three or more vari-
ables the requirement is that an odd number of variables k equal to I . As a consequence, the
multiple-variable exclusive-OR operation is defined as an odd function,

The Bmlean function derived fiom the three-variable exclusiveOR o p d m is expressad
as the logical sum of four minterms whose binary numerical values are 001,010, 100, and
11 1. Each of these binary numbers has an odd number of 1's. The remaining four mintemis

Section 3.9 ExclusMR Function 103

not included in the function arc WO, 011.101. and 110, and hey have an even number of 1's
in their binary numerical values. In general, an n-variable exclusive-OR function is an odd
function defmed as the logical sum of the 2"R mintems whose binary numerical valuer
have an odd number of 1's.

Tne defnition of an odd function canbe clarified by ploning it in amp. Figure 3.33(a) shows
the map for the three-variable exclusive-OR function. The four mintems of the function are a
unit distance man fmm each other. The odd function is identified from the four mintem
whose binarv ;dues have an odd number of 1's. The comalemcnt of an odd function i s an .~~~~~~~ ~~ ~~ ~ ~ - - ~~~~~~~~~ ~ ~-

eren funct~oo. As shown in Fig. 333(b). h e three-vanable even functnon is equal to I uhcn
ane\m number of its \.ariabler is equal to I (tncluding the condn8on that noneof the variables
is qua l to I).

Tbe thrre-input odd function is implemented by m c m of wbinput exclusive-OR gates, as
shown in Fig. 3.34(a). The complement of an odd function is obtained by replacing the output
gate with an exclusive-NOR gate, as shown in Fig. 3,34(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation, we can
obtain the sum of mintems for this function:

a eaeceo = (a e ' + A ' B) ~ (c D ' + C'D)
= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)
=~(1 ,2 .4 .7 .8 ,11 ,13 ,14)

There are I6 mintems forafour-variable Bmleanfunctim. Halfof the minterms have b i i
nvmcrical values with an odd number of 1's: the other half of Ule mintems have binary numerical

(a)OddhurrtionF=AfBBBC (b) Even luocbon F = (A @ BfB C)'

FIGURE 3.33
hlro for a thrrcmiabk erdushre-OR tunctlon

c 2
(0) 3-input cddfunction

RCURE 3.34
Logic diagnm d odd and m n tunRions

c-
(b) 3-input cvm runrtlon

-
00 M - 1 1 l o . , ' 1

I , . ,
& 4 % "5

00 1 1

"4 m5 =l %
01 1 1 :d ' L .

"11 "'la "% mnr,

1 1

Q mp m,, % "mt'p. '
10 1 1

D 2 : * - - -.:I+
(a) Odd function F = A $ B @ C O D i - '

D . 3 .

@) Even function F = (A O B C@ Dl' mzi
mw 3.3s
M q for a four-vdle e x d u M R frmtkn

values with an even number of 1 's. In plo#ing b e fPoction in the map, the brnary numerid value -.
for a mintem is determined from the TOW and mhm numkrs of the square that represents the ,

mintem. The map of Fig. 3.3S(a) is a plot of tbe four-variable exclusive-OR function. This is .'
an odd function because the binary value8 of dl b &terms have an odd n u d m of 1 's. The
complmmt of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to 1 when an even nnmber of its variables is equal to I .

P&y -m anal QlecWng
- .

ExcJusive-OR functions are very useful in sy~tems requiring error d e w o n and correction .. :
codes. As discussed in Section 1 -7, a parity bit is used for the purpose of detecting errors dur- L-

ing the transmission of binary information, A parity bit is an extra bit included with a binary' ,;
nmsage to make the number of I 's either odd or evea The message, including the parity bit, ;''
is transmitted and then checked at the receiving end for errors, An error is detected if the -:
checked parity does not correspond with the one transmitt& The circuit t b t generatRf the pw- ;.:
ity bit in the bansmitter is called a parity genembor. The circuit that checks the parity in the
receiver is called a par& checker;

As an example, consider a three-bit message to be transmitted together with an even parity
bit. Table 3.4 shows the truth table for the parity generator. The three bits-x, y, and z-
constitute the message and are the inputs to the circuit. The parity bit P is the mQut. For even
parity, the bit P must be generated to make the total number of 1's (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to 1 for aose
mintems whose numerical values have an odd number of 1's. Therefore, P cm be expressed -
as a threevariable exclusive-OR function: ' '

- .. ' ,' 7

P = x $ y $ z

The logic diagram for the parity generator is shown in Fig. 3.36(a).

Section 3.9 Exduslvc-OR Function 105

Table 3.4
Eurrr*(;andor Trvm T0bk

(a) 3-bit even parity ~cncrator (b) e b ~ t even parity checker

Flcm 3.36
Logk dbgm of a parity generator a d rheckn

The three bits in the message, together with the pMty bit. arc transmined to their dcstina-
tion. when they me applied to apdty-checkcrcircvit to check for pwsibls m r s in the m s -
mission. Since he infarmation was oaosmined with even miN, he four biu neeived must have
an even number of 1's. An e m r occun during the vrnrkission if the four bits received have -
an add number of I'r, indicattng that one bit ha. changed in valueduiq Vdmmirsian.The m-
put of the padry checker, denoted by C. u lli be equal to i if an cmncccurr-tha is, ifthe folur
bits received have an oddnumbsrof 1's. Table 3.5 is the n t h table for the even-padtychccker.
Fmm it, we see that he funetion Ceonsiws of the aehl miorams with b h w numoiul val-
ues having an odd number of 1's. The table coms&ds to the map of id. 3.35(~), which
re-Is an add function. The parity checker can be implemted with exclusive-OR gstcs:

C = x (B y @ l (B P

The logic diamam ofthc ~ari tv checker is shown in Fin. 3.36Ib).
It iskunh-&ting lhat the gcocworuan be i m p i h l c d w i t h thc c i r c u ~ t o f ~ ~ . 3.36(b)

iflhe input P ir m n l e d to logic0 and theoutput is &ed with P . W is becaw z (BO = 1.
causing the value ofzto pass duough the p unchanged. &advantage of this snategyis lhat
the same circuit can be used for bath parity generation and checking.

Table 3.5
E w ~ - w - C k k t T d T&

Faur B h s Parlty Error
Recch.ed Check

It Is obvious fMm the foregoing example that parity generation and checking circuits always
have an output function that includes half of the mjnterms whose numerical v f ues have either
m odd or even number of 1'5;. ks a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im-
plemented with exclusive-OR gales, except that the gate associated with the output must be an
exclusive-NOR to provide the req* complementation.

3.10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic cirmits are feasible only when the circuit is small. For any-
thing else (i.e., a practical circuit), designers use computer-based design tools. Coupled with
a correct-by-construction meth&1ogy, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design. Prototype integrated
circuits are too expensive and t h e consuming to build, so all modern design twls rely on a
hardware description language to describe, design, and test a circuit in software before it is
ever manufactured,

A hurdwam description language (HDL) is a computer-based language that descrik the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. It can be used to represent logic diagrams, truth tables, Boolean

Section 3.10 Hardware Lkscription Language 107

expressions, and complex abswactions ofthe behavior of adigital system. One way to view an
HDL is to observe that it describes a mlationshi~ between sinnalr that arc the in~ut r to s cir-
cult and the s~gnals that ate outputsofthec~rcull'~or example. an HD~dercnpooiof AND
gatedescnber how the lo@c \due ofthe gate's output IS detcrmtncd by the loglc values oflts
inputs.

As a doeumenrarion lanwaee. an HDL is used to revresent and document dieilal svstsms - .
In a form that can be read b; bbth humans and computirs and is suitable as an excbange lan-
guage between designers. The language contmt can be stored, remcved. emled, and uanrrmt.
ted easily and processed by computer roflware in an efftcient manner.

HDLs are used in several major sBps in the design flow of an integrated circuit: design
enuy, functional simulation or verification. logic synthesis, timing verification, and fault
simulation.

Dcrign entry creates an HDL-baxd description of the functionality that is to be imple-
mented in hardware. Depending on the HDL, the description can be in a vnriely of forms:
Bmlean logic equations truth tables, a netlist of intercomectedgates. or an abshact behavioral
madel. The HDL model mav also rearerent a aanition of a Lareer circuit into smaUm intm- "
comccted and interacting functional units.

Logic sirnulorion displays h e behavior of a digital system lhmugh the use of a compuw A
simulator interprets the HDL description and either producer readible output, such asa time.
ordered seauence of inout and oumut sirmal valucs. ordisolavs waveforms of the s i d s . The . - . , "
rlmulation of a emult predicts how the MWBTU W I I I ~ C ~ U Y E hefun 11 i. actually fahriunted.
S~mulalion d l o w the detectton of f~nctional mm in a design uithout hating m phydeally
mate and operate the circuit. E m s that are detected during a simulation can k corrected by
modifvion the aooro~riate HDL statements. The stimulus (i.e.. the lodc valves of the inouts to . - .. . -
ackruitr that vrtr the funcltonality ofthedesign iscalleda (err bench 'lhur. torimulate adrg-
~lsl system. the des~gn ir firit dewnbed in an HDL and then venfied by h~mulating the dcrign
and chcrktng it with a t o t bench, wh~ch IS also written in the HDL. An altemal!ve and m m
complex a p h a c b rcUcs on formal mathematical methods to pmve tha a circuit is function-
all" correct. We will focus exclurivclv on simulation.

Log,< rwrherir is the proccrr ofdrnvrnp a h t of physical components and lheu intercon-
nectiuos (called a nrrldrrr frum the mudel of a digital ,)stem k r c n b d in an iDL. Tnc ncrlist
can be used to fabricate anintegrated circuit orto lay out a prinfed circuit board with the hard-
ware countemam of the gates in the list. Loeic svnthesir is similar to comniline a nmeram in - - , .
aeoavenuonal hagh-le>cl language The difference is ~hat, andead of prcducing an abject cod+
loge r)ntheots prcduecl a database dercnbrng the elements and s m c l m of aclreuu The data-
base specifies haw to fabricsteaphysical integrstedcirmit that implements in silicon the func-
tionality described by statements made in an HDL. Logic synthesis is based on formal exan
pmcedures that implement digital circuits and addresses that panaf adigitaldcsign whichcan
be automated with computer safiwsn. The design of loday's I-, complex circuits is made
possible by logic synthesis soitware.

Rnting verijie(~rion confirms that the fabricated integrated circuit will operate at a spwi-
fied soeed. Because each logic eats in a circuit has a orooazation delav. a s i m l transition at " " . . - , -
the input uf a c~ruuit cannot tmmedtately cau* a change in the logic valus nfthe tnttput of a
circuat. Ropaguon delays ulumatcly limn1 the speed at whach a circuit ran operate. T~rmng

108 Chapter 3 Gate-Level Minimbtlon

verification checks e d signal @to verQ that it is not compromised by propagation delay.
This step is done after logic s p t b h m e s the actual devices that will compose a circuit
and More the circuit is re lad for w o n .

In VLSI circuit design, f d t s h u h f h compares the behavior of an ideal circuit with the
behavior of a circuit that contains a -6-induced flaw. Dust and other particulates in the
atmosphere of the clem rwm can cause a circuit to be fabricated with a fault. A circuit with
a fault will not exhibit the same fandmdily as a fault-free circuit. Fault simulation is used
to identify input stimuli that can be used to reveal the difference between the faulty circuit and
the fault-free circuit. These test p t t e m s w i l l be used to test fabricated devices to ensure that
only good devices are shipped to the customm Test generation and fault simulation may occur
at different steps in the design process, bnt they are always done before production in order
to avoid the disaster of producing a circuit whose internal logic cannot be tested.

Companies that &sign integrated c h i t s use proprietary and publc HDLs. In the public
domain, there are two standard HDLs that are supported by the IEEE: VHDL and Verilog.
VHDL is a Department of Defenemandakd language. (The V in VHDL stands for the first
letter in VHSIC, an acronym for very high speed integrated circuit.) Verilog began as a
proprietary HDL of Cadence Design Systems, but Cadence transferred c~ntrol of Verilog to
a consortium of companies and universities known as Open Verilog International (OW) as a
step leading to its adoption as an IEEE standard. VHIILis more difficult to learn than Verilog.
Because Verilog is an easier language than VHDL to describe, learn, and use, we have eho-
sen it for this book. However, the VeriIog HDL descriptions listed throughout the book rn not
just about Verilog, but also serve to intdnce a design methodology based on the concept of
computer-aided modeling of digital systems by means of a typical hardware description
language. Our emphasis will be on the modeling, verification, and synthesis (both manual
and automated) of Verilog models of circuits having specified behavior. The Verilog HDL
was initidly approved as a standard HOL in 1995; revised and enhanced versions of the Ian-
guage were approved in 2001 and 2005. We will address only those features of Verilog,
including the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Module Declaration

The lansage reference manual for the Verilog HDL presents a Byntax that describes preckly
the constructs hat can be used in the language. In particular, a Verilog model is composed
of text using keywords, of which there are about 100. Keywords are predefined lowercase
identifiers that define the language constructs. Examples of keywords are module, end.
module, input, output, wire, and, or, and not. For clarity, keywords will be displayed in
boldface in the text in al l examples of code and wherever it is appropriate to call attention
to their use. Any text between two forward slashes I//) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model. Multiline comments
begin with /* and terminate with *I. Blank spaces are ignored, but they may not appear with-
in the text of a keyword, a user-specified identifier, an operator, or the representation of a num-
ber. VeriIog is case sensitive, which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT), The term module refers to the text encIosed

Section 3.10 Hardware Description Language 109

RCm 3.37
Omdl to demonstrate an HDL

by the keyword pair module . . . endmodule. Amodule is the fundamental descriptive unit
in theVeriloglanguage. It isdeclared by Ihe keywordmodule andmust always be t d a t e d
bv the keyword endmodule.
' ~ombkatiord lo@c can be dernhed by a vhematlc wnnecbon of gates. b) a ut of Bmlean

equauons. or by a mth table Each t l p of dernptron can bc developed m Venlog We will
demonsmate each style, bepinning with a simple example of aVe&g gate-level description to . .
illustrate some as~ei ts of the lankaxe.

T h e ~ ~ ~ d e w h ~ t i o n o f the&wtof F I ~ . 3.37 irchaunin HDl.Fmple 3.1.The fimt lineof
ur t u a wmmrnr i o p o d) pmsidtng uwful mfcm&on rothc W. The %codhe begw w h
thc keyxordmodvle and suns thc dslaraoon (de*tion~af the module: the l e t h e wmplevs
lhe dslaraIion with the keywonl endmodule. The keyword moduleis follmved by a name anda
lkl of eons. The he [~inh,le Circuit in rbis exmle-1 is aniddflm. Identifiers a& names eiva . . -
to d u l e r , vanabler (c g.. a s i p l . . and &r elements of the language lo thsl they eaa b; ref.
ercnccd in the deugn. Ln general. n c chmw meanrngful -s for modules. Idenufien are wm.
posed of alphanumeric characters and the underrore 0, and are case sensitive. ldcntifm must
sm wilh an alphabetic c b m r or an underscore, but they c m o t $ran with a number.

HDL Example 3.1 (Combiit iood loplc modeled ailh primllisa)

1, Venlop mod* 01 ctrun of Figure 3 37 EEE 13-1985 Syntsx

module Slmple-Circuit (A. 0. C. D. E);
output D, E;
Input A. B. C:
win wl:

and Gf (wl. A, B); I1 OpUonal gals lnslsnw name
not G2 (E, C):
M 03 (0, w l , Ek
endmodule

The pm list of a m h l e is the interface between the module and iir environment. la this
example. the ports are the inputs and OutpnU of the circuit. The logic values of the inputs to
a circuit are determined bv the environment: the Ionic values of the ournuts an determined , -
within the ulrcuil and result fwm the acuon of tbc inpula un the rlrcuit. The pon list is en-
closed in pannthcrcr. and comma$ am used to separate elemenls of the list. Tbe statement

is terminated with a semicolon (;), In our examples, all keywords (which must be in lower-
case) are printed in bold for clarity, but that is not a requirement of the language. Next, the
keywords input and output specify which of the ports are inputs and which are outputs. In-
ternal connections are declared as wires. The circuit in this example has one internal con-
nection, at terminal w l , and is declared with the keyword wire. The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descriptive key-
word (and, not, or). The elements of the list are referred to as instantiations of a gate, each
of which is referred to as a gate instance. Each gate instantiation consists of an optional
name (such as G I , 452, etc,) followed by the gate output and inputs separated by commas and
enclosed in parentheses, The output of a primitive gate is always listed first, followed by
the inputs. For example, the OR gate of the schematic is represented by the or primitive, is
named G3, and has output D and inputs w l and E, (Note: The output of a primitive must be
listed first, but the inputs and outputs of a module may be Iisted in any order.) The module
description ends with the keyword endmodule, Each statement must be terminated with a
semicolon, but there is no semicolon after endmodule.

It is important to understand the distinction between the tern declarradun and hsi?miatim.
A Verilog module is declared. Its declaration specifies the input+utput behavior of the hard-
ware that it represents, Predefmed primitives are n ~ t declared, because their defhition is spec-
ified by the Imguage and is not subject to change by the user, Primitives are used (i,e.,
instantiated), just as gates are used to populate a printed circuit board. We'll see that oaoe a d-
ule has been declared, it may be used (instantiated) within a design. Note that Simple-Cixuir
is not a computational model iike hose developed in an ordinq progfamming language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A Verihg model is a descriptive model. Simple-Circuit describes what primitives form a cir-
cuit and how they ape connected, The inputatput behavior of the circuit is implicitly speci-
fied by the description because the behavior of each logic gate is defined. Thus, an HDL-based
model can be used to simglate the<c*@ that it Fpresepp.

.- . . .

- e m
All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an output. When an HDL model of a circuit is simulated, it is sometimes neces-
sary to specify the amount of delay from the input to the output of its gates. In Verilog, the prop-
agation delay of a gate is specified in terms of tim units and is specified by the symbol #. The
numbers associated witb time delays in Verilog &re dimensionless. The association of a time
unit with physical time is made with the 'thescale compiler directive. (Compiler directives
start with the (I) back quote, or grave accent, symbol.) Such a directive is specified before the
declaration of a module and applies to all numerical valaes of time in the code that follows. An
example of a timescale directive is

tlmescale 1 ns11 Oops

The first number specifies the unit of measaremat for h e delays. The second number spec-
ifies the pmision for which the deIays are rounded off, in this case to 0.1 ns. If no rimescale
is specifled, a simulator may display dimensionless values or default to a certain time . < . unit,
usually 1 ns (= sw). Our examples will use only the default time unit.

Section 3.10 Hardware Derniptlon language 11 1

Table 3.6
output Of c o t s after May

lnpvt o~tpvt TilmUnlts -
(nr) ABC f w l D

lnili~l - 0 0 0 1 0 1
change - 111 1 0 1

10 11 1 0 0 1
20 111 0 0 1
30 111 0 1 0
40 1 1 1 0 1 0
50 1 1 1 0 1 1

W L Example 3.2 repeats the description of the simple circuit of Example 3.1, hut with
propagation delays specified for each gate. The and, or, and not gates have a time delay of 30.
20, and 10 ns, respectively. If the circuit is simulated and the inputschange fromA, B, C = 0
to A, B. C = 1, the outputs change as shown in Table 3.6 (calculated by hand or gemrated by a
simulator). The output of the inverter at Echanges from 1 to0 after a 10-ns delay. The ourput of
rhc AND gate at wl changes from 0 to 1 after a 30-11s delay. Tl output of the OR gate at D
changes from 1 to 0 at t = 30 ns and rhcn changes back to 1 at t = 50 ns. In bath cases. the

~ ~ ~~~ ~ ~ ~~ ~~~ ~~.
change in lkoutput of he OR gaw rc\xln fmm a ihangc m nu inputs 20 nr earliur It is clear from
!his result tlm although output D evcnlunlly return\ to a final \due of 1 dtsr the input changes.
he gate delay, pmduce a nzgartve spke that lasts 20 ns before the t i ~ l value is reached.

BDL Example 3.2 (Gate-level model nlth pmpagptloa deleys)

N Verilog model of simple circuit with pmpagation delay

module Simple_Cirwitgmp-delay (A. 0. C. D. E):
output D, E:
input A. 0, C
win w l :

and X(30) G I (wl. A, 0):
not W10) 0 2 (E, C):
or W20) 03 (D, wl . E):

endmdule

In order to simulate a circuit with an HDL. it is necessary to apply inputs to the circuit so
that the simulator will generate an outputresponsc. An HDLdcEniption thal provides the stim-
ulus to a design is called a test bench. The writing of test benches is explained in more detail
at the end of Section 4.12. Here, we demomuate the procedrne with a simple example witi-
out dwellingoo too many details. HDLExample 3.3 shows a test bench for simulating thecir-
cuit with delay. (Note the distinguishing name Simple-CircuitpmpPdeI~y.) In its simplest

fmn, a mt kwh is a module CMI- a Bignal gemrator and an instantiation of the model
that is to be verifiad. Note tbat tBe Wt beneb CtSiqob-Cirruit~rop,delay) has no input or
mQut ptq,.kause it d k not intemt wftfi its tseavironment. In general, we prefer to name
the test k c h with the pdix t, wmSambQd ~4th the name of the module that is to be tested
by the tm h c h , but that choice is left to the dr&m. Within the test bench, the inputs to the
c e t 831: ~~ with keyword reg d the outputs are declared with the k e y w d wire. The
module S h p l - C i r c u i t g m p is instantiated with the instance name MI. Every instan-
tiation of a module must include a unique instance name. Note that using a test bench is sim-
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probes (wires) to the outputs of the circuit. (The interaction between the signal g a -
erators of the stimulus module and the instantiated circait module is illuseate. in Fig, 4.33.)

MIL Example 3 3

I f Test bench for Simple-~rcuitgmp-delay

module t-SImpledCircult_prop-delay;
wlre D, E;
w A, B, C;

Slmple~Circult~rop~deI~y~Ml (A, B, C, D, E); /I Instance name requlred

lnitlal
begin
A = l'bO; 5 = l'bO; ,C = l'bO;
#100A= l'bl; El = l ' b l ; C = l 'bl;

end

Hardware signal generators are not used to verify an WDL model: The entire simulation ex-
ercise is done with software mcd~ls executing on a digital computer: The wavefotms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initld keyword is used with a set of statements that begin executing when
the simulation is initialized; InlW terminates execution when the last statement has hished
executing. initial statements are commonly used to &scribe waveforms in a test b h . The
set of statements to be executed is called a block statement and consists of several stakments
enclosed by the keywords begin and end. The action specitied by the statements begins when
the simulation is launched, and the statements are executed in sequence, from top to bottom, :
by a simulator in order to provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C
are each set to I'M], which signifies one binary digit with a value of 0.) After 100 ns, the in-
puts cbange to A, B, C = 1. Ma another 100 ns, the simulation termhales at time 200 ns. A -

second initial statement uws tlre $fMh system task to specify termination of the simularion. -7

If a statement is preceded by a delay value te.g., #100), the simulator postpnes executing the 4,
statement until the spfied time delay has elapsed. The timing diagram of waveforms that result .'.

Section 3.10 Hardware Desctiptlon Language 113

F K i U a 3.Y
Slmlation output of HDL Dimple 3.3

from the slmulanon is shuun m Flgm 3 38. The lolal s~mulauun takes 203 ns Toe Inputs A.
B, and Cchangc frumO lo I arvr 100nr. Oulpul L is unknown for the Curt 10 nr (denoted by
shading). and wtput Dis unknown for the tint 30 ns. Output E g a s fmm 1 to0 at 110 ns. Out-
put D g a s from 1 to 0 at 130 ns and back to 1 at I50 ns. just as we predicted in Table 3.6.

Boolean Expressfons
Boolean equations describing combinational logic are specified in Vedog with a conlinuous
assignment statement consisting af the keyword ssdgn followed by a Boolean cxpnssion. To
distinguish arithmetic operators from logical operators, Verilog u ~ s the symbols (a), (I), and
(-) for AND, OR, and NOT (complement), respectively. Thus, to describe the simple circuit
of Fig. 3.37 with a Boolean expression, we uw the statement

assign D = (A 8 B)I-C:
HDLExample 3.4 describes a circuit that is specified with & following two Boolean expressions:

E = A + BC+BfD
F=B 'C+BC 'D '

The equations specify how the logic values E and F are determined by the values ofA. 8. C,
and D.

HDL Exnmple3.4 (Cumbinatiunal logic modeled with Bod- rguallaos)

11 Venlog mode C~rsu~t wth Booleen exprerr on8

modul* Clrcult-Boolean-CA (E. F, A, 6 , C, D):
oulput E. F;
Input A. B, C, D:

The circuit has two outputs E md F and four inputs A, B, C, and D. The two ndgn state-
men& d d b e b e B d c m equations. The values of E and F during simulation are determined
dynamidy by the values of A, B, C, and D. The simulator demts when the t& bwch changes
a value of one or morr: of the inputs. When this happens, the simulator updates the v a l m of E
and F. The continuous assignrraent mechomism is so named because the relationship between
the assigned value and the variables is p m m t n t . The mechanism acts just like combhation-
a1 logic, has a gate-level equivalent circuit, and is referred to as impki t cornbinatioml logic,

We have shown that a digital circuit can be desmibed with HDL stakments, just as it can
be drawn in a circuit diagram or specified with a Boolean expression, A third alternative is to
describe combinational logic with a truth table.

The logic gates used in Vailog descriptions with keywords sod, or, ctc., nk e e d by the sys-
tem and are referred to as qstm primitives. (Caution: Other languages m y use these words
difewntiy, y,) The user can create additional prhitives by def'ning them in tabular f o m These
types of circuits are referred to as uer-defldprimitives (UDPs). One way of w i n g a dig-
ital circuit in tabular form is by meam of a truth tabb. UDP descriptions do not use the key-
word pair module . . . emhoduie. Instead, they are declared with the keyword pair primitive
. . , endprimithe. The best way to demonshate a UDP -on is by means of an example.

HDL Example 3.5 defines a UDP with a imth table. It pmcwds,wiccording to the following
general rules: , : i - -

* It irs declared with the keyword primitive, followed by a name and port list.
There can be only one output, and it must be listed first in the port list and declared with

,- ' ' keyword output. ' ' .

'here can be my numbex of inputs. The order in which they are k h d in the hput
declaration must conform to the order in which they are given values in the table that
follows.
The truth tabb is enclosed within the keywords table and endtabIe.
The values of the inputs are listed in order, ending with a colon (:). The output is always
the last entry in a row and is followed by a semico1on (:).

. I.

The declaration of a UDP ends with the keyword endprlmidve.

Note that the variables listed on top of the table are pmt of a comment and are shown only
for clarity, The system recognizes the variables by the wder in which they are listed in the
input de&ratim. A user-defined primitive can be instantiated in the construction of other mod-
ules (digital circuits), just as the system primitives are used. Far example, the declaration

Circuit-with-UDP-0247 (E, F, A, B, C, D);
wi l l produce a circuit that implements the hardware shown in Figure 3.39.

Although Verilog HDL uses this kind of description for UDPs only, other HDLB and
computer-aided design (CAD) systems use other pmxdures to specify dipid circuits in tab-
ular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design. None of Verilog's predefined primitives describes squential logic. The

Section 3.10 Hardware Dedptlon language 115

HDL Example 35

11 Verib model: Uwr-defined PrimUive

primitlva UDP-02487 (D. 4 B. C);
output 0
Input A. B. C:

//Truth table for D = f (A. 6, C) = z (0,2,4.6.7):
able
I I A B C : D IlColumn header wmment

0 0 0 1;
0 0 1 0:

11 instantiate primitive

modute Circu~-wiii--UDPU02487 (0.1, a, b, o, d);
OUtPUt 0. r:
input a, b. c. d:

UDP-02467 (0, a, b. 0):
and (f, e, d): 11 Option gate instance name omitted

endmodula

Chapter 3 Gate-tewl Mhrhnlzrvtion

m d l of a ~equential UDP r q h that Iu output be & l a d as a reg data type, and that
a column be added to the truth table to b r i b e the next state. So the columns arc organ-
izes as inputs : state : next state.

In this mtion, we W u d the Verilog HDL and presented simple examples to illustrate
al-vcs for model@ combbtimal lo&. A rnm detailed pentation of Verilog HDL
~anbefounainhnextchap.Thereaderfamiliarwith~binational~cango~y
to Section 4.12 to contlnue with this subjdct.

_ = .. 2' ,

PROBLEMS

Answers to problems marked with * I* st of the bwk,

3.1' Skllplify tho following B o o b functions, using thra-variable maps:
(a) F(x, y, t) = Z(O,2,6,7) 01 F (x , y, t) = X(0,2.3,4,6)
(c) F(x, y. r) - X(O.1, Z 3.7) (dl F(x , y, z) = BC3,S. 6 7)

3.2 Simplify the folio* Boolean fuactim, using three-varinbla maps:
(aYC FIX, g, e) = 2 (0, I , 5.7) @Y F (x . y, z) = 8(1,2.3,6,7)
(c) F (x , y , z) = Z(O,1,6,7) (d) P (x , y, z) = P (4 1,3,4,5)
le) F (x , y, z) = XI1,3,5,7) (0 F(x, y. z) = P(1,4.5.6,7)

3.3* Simplify the following Bwla ezpsshns, using thra -vhbb maps:
(ay F(x,y,z) = xy + x'y'z' + x'yz' IbY F(x,y.z) = x'y' + yz + *'ye'
Icy F (x , y, r) = x'y + yz' + y'z' (d) F(x, y, z) = xyz + x'y'e + xy'z'

3.4 Simplify the following Boolorn funcdons, using Ku:ansa&gcgk mapn:
(a)W F (x , y, 2) = 2(2,3, & 7) (bp F(A, B, C, D) = 2(4,6,7,15)
(c)*F(A ,B ,C ,D) = E(3,7,11,13,14,15) (d)*F(w,x ,y , z) = E(2,3,12,13,14,15)
(el F(w,x ,y , z) = X(1,4,5,6,7,13) (0 F(w, x, y, r) = X(O, 1,5,8,9)

3 3 Simplify the follow@ Bwlertn function6, using fowvariabla maps:
(aY FF(, x, y, z) = 2(1,4,5,6,12,14,15)
0 F (A , B , C , D) = X(1,5,9,10,11,14,15)
(cl F(w, x , y , e) X(O,1,4.5,6,7,8,9)
(dy F(A, B, C, D) = X(O,24.5,6,7,8,10,13,15)

3.6 Simplify the following Boolean qmssions, using fwr-variable map:
(ar A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D
(by x'z + w'xy' + w(x'y + x y ')
(c) A'B'C'D' + A'CL)' + AB'D' + ABCD + A'BD
(d) A'B'C'D' + AB'C + B'CD' + ABCD' + BC'D

3.7 Simplify the followhg Boolsan eqmdons, using fow-variable maps:
(ap w'e + xz + x 'y -t wx'z
(b) C'D + A'B'C + ABC' + AE'C
(cp AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) xyz + wy + wxy' + x'y

3 Find the mintsrms of tho following Bwleaa -S by first plotting each function in a q:
(ar xy + yz + xy'z (by C'P + ABC' + ABD' + A'B'D
(c) wyz f W'X' + WXZ' (d) A'B + A'CD + B'CD + E D '

3 . 1 Draw n laic diagram using only t w d r p t NOR to implement the following fanction:

F(A, 8, C, D) = (A $ B)' (C 0)

3,f 9 Simplify tha following hctions, d impkmmt them with tw+level NOR gate dmtits:
(a)*F = wxt + y'zr + w'yz'
@) F(w, x, y, z) = X(1,2,13,14)
Ic) F(x.y. r) = [(x + y)(x l + z)l'

f ,ZO Drsw the multi-level NOR and multi-he1 NAND circuits for the following expression:

3X l k w the multi-level NAND Circlrit for the following expssim:

3 a Convat the logic &apm of the circuit shown in Fig. 4.4 into a multipbhvd NAND circuit.

3.23 hqiement tha following Boolean function F, togetha with tha don't-- ~onditims d, using no
, . . ' , -

more than two NOR gate#: > . . . ' 1

F(A,B.C.D)=2(2.4,6,10.12) -#.,

d(A, 8, C, D) = X(0,8, 9.13) *. . . 5 . . :

- .
Assume that both h e normal and complsmtnt iapurs arc available. ..

3 Implement ths following Boolean function F, using the two-level f k of logic (a) NAND-
AND, @) AND-NOR, .@) OR-NAND, a d (d) NOR-OR .:, ; 1 "

3.m tistd;eetgh'tdsgrmetatew1~f-~~tbst~~sdwtoasinsleolpuation.~xplrin
how the degwmte tw+lavtl fmms em be used to exttnd the numba of inputs to a gate.

3.26 With the use of maps, fhd the simplest sum-of-products farm of the function F = f g, where

f = ak', + c'd .+ a'cd' + b'cd'

and .' - -
- - - , . - .

g = (a + b + e' + d')(b' + c ' + d)(a ' + c $ d ')

3.27 Show that the dual of the ~chs ivo -OR Is also its mplemant.

3 Dwive the circuits for a three-bit parity generam and four-bit parity checker using an odd
parity bit.

3.29 Impkmat tke following four Boolean uxpradons with three half adders -
l i ..

D = A O B B C
E - A'BC + A3'C

F = ABC' + (A' + 3')C

G = ABC ..

3-36. Implement the following Boolean w c p w s h with exclusive-OR md AND gates:

F = AB'CD' + A'BCD' + AB'C'D + A'BC'D

rlnpolupus
:(a 'PI wu
v ' 6 WU

x j m
: K Z) JO

!(a'z 'M) pus
!(3'* x) pus

:(P '3 '8 'x) pue
!P 'S '2 % 'X 'M PIIM

:A Uldlno
:a '3 'a 'V w d u ~

:(j 'a '3 'a 'v) v -qmJg elnpoim R)

:m$ww 8 0 ~ 3 ~ r m w o ~ ?m ~q FWWJS i ! w a I~.@!P =II JO ~ J % V =II *w WE

L eu~i II ~alnpouyopua
Q aun N :(3 :a '3) 80
s eun 11 '(3 'v 'a) wu
r aun 11 :(a 'a 'v) ~6 PUQ
E eull N a vnchno
z eu!i 11 '3 'a mdmo '3 'a 'v W ~ U I
L eun 11 (4 'a '3 'a 'v)e-ldwx3 e ~ n ~ o u l

: ~ v o g &
UP sal88 on!lrmud lo& samo 1.q) aiou) ruo!rorspap Su!mo!~oj aqr o! s o l l a muA9 aqa p u ! ~ &T.S

'xo!nsqq s. i !n~~!~ 31 mmlnug pue q ~ u q aa B apfi

.va + (8 + av)3 = c " D
(,a + V)(B.J + 38V + ,8J) = <1n0

.#(a + ,vKs + 3) = rime
:"opu", wqma b!

-WIOJ 31 rcq p w d s 1 1 n q ~ ~ J O uopdumap %IP~A = nw h m d ! s m monu!loo~ a"!= WE

' (a) usd u! rlmrva aql LJPA 01 I!">
-naaq ae[nm!s pw'(('c ~I~X~~(THOIJVI~I g ~ ~ q > n i o "v!) qnpou sn lnwr s a"fi ($1

'sLe~apaw Smpnpu! ' W J ~ J n p j o uogdu~rap p ~ q - d a o l u a ~ e apfi (4)
'ruK = r o l o ~ ~ u r m l ~ q ~ ~ i) ~ o l ~ ~ a q ~ m s ~ s q l a ~ (u)

' lo - ,ix ol = rr
moq sw8 i!nwa a q JO lndm w 'mil M 20) Lqap so 01 B we 'am% aw ne IOJ islap
sm 8 B 'JOY%+ M 10) OU p JO BI'P B W!m mq (B)iE'E 'SH ;I0 i!n3Jp 1I@Pn!S"IJXo aW.

LZ'E'S'J UJ 973 'S'J (a) (q)ECE .)!rl (P)
(r1n.c '8% (3) (~)zz 'z 'Z!A (41 (~)ZZ'C '$3 (8)

m omoqr i!ou!l a q j o w q d ~ ~ a p a o p ~ s huamal8le luawa!rrc rnon+moJ B+sn r r . ~

120 Chapter 3 Gate-Lwei M@l.mlzqtion

(b) module Clrcul~B (A H . A-B, A-eqBl AO, A1,80, B l);
output w, A-& A--6;
Input AO, All BO, Bl;
nor (A*, k m * A-wB);
or (A-lt8, w l , HR, w3);
and (A-eqB, d, W51;
and (wl, w6, B1);
and (w2, w6, w7, BOK
and (w3, w?,BO, 61);
not (w6,Al);
not (w7, AO);
xnor (w4,Al,81);
mar (M, AO, 60);

ondmodub

(c) module Circuit-C (output y t , Input a, b, output y2);
asslgn y l = a & b;
or (y2, a, b);

andmodule
3.37 A majority logic famhn is a B d a n W o n &st is equal to 1 if the majority of the vmiabk

am qusl to I, equal to 0 otherwise. Wtt a &dog --&in& phitiye for a four-bit m@i-
ty fulCtiDrI.

3.3% Simulate the behavior of Cilrult~witR,UDP,M&7, using the sdmulus waveform shown in
Fig. P3.38.

RGURE P3.38
Stimulus' wadoms . , 'for Pmbm 3.38

References 121

R E F E R E N C E S

1. Blwsm, J. 1997. A Vrrilog HDLPrimer: AUcnlown. PA! Slat Galaxy Rela.
2. C m , M.D. 1999. Modeling. Synrksis nndRopidPmlofyping with the Vetiiog HDL Uppr

Saddle River, NI: Rentice Hall.
3. Hru. F. 1.. and G. R. -ON. 1981, lnrmduetion lo Swirching Ihro?yond LogieoiDcsign, 36

cd. New York! Jobn Wilcy.
4. IEEE Srandnrd Hamban Deseripfion Langungc Brrrrd on lhr Ven'iog Hombon Descripflon

Language (IEEE Std 1364-1595). 1995. New Yarlr: The InotiNtc of Electrid and Elccvonics
Endncen.

5. KARri~uas. M. A Map Methcd far SynUrris of Combationsl Logic Circuiu. h s o c t l o n s of
AIEE, Comnmication Md Eirelmnics. 72. pan I (Nov. 1953): 593-59.

6 Komn. 2.1978. Swirrhing ondAuromolo 7luav. 2d ed. New Ymk McOraw-Hill.
7. Mm0.M.M.. andC.R. Khn. 2W4.bgicondCanllulerDesign F u h m t a k , 3rded. Upper

Saddle River. NI: Rentice Hall.
8. MCCLUJIEY. 8. J. 1986. Logic Design Principles. Englewood Cliffs. NI: Renlicc.Hal1.
9. P m . S. 19%. Vctiiog HDL: A Gulde 10 Digild Design ond Synrhestr. Mountai. View.

CA: SunSofl Rers (a Rentice Hall title).

Chapter 4

Combinational Logic

4.1 INTRODUCTION

Logic M t s for digital syems may be combinational or sequential. A combinational circuit
consists of logic gates whose outputs at any time ace determined from only the w e n t combi-
nation of inputs. A c o ~ o n a l circuit performs an operation that can k qecifd logidy
by a set of Bmlm functions. In conuast, sequential circuiki employ storage elements in addi-
tion to logic gntes. Their outputs are a function of the inputs and the sm of the storage elements.
Because the state of the storage elements is a function of previous inputs, the outputs of a sc-
qusntial cirmit depnd not only on present v a l w of inputs, but also on past inputs, and the cir-
cuit behavim must be specfled by a time saquence of inputs and internal statcs. Sequential
circuits are the building blmks of digital systems and are discussed in Chqms 5.8, and 9.

4.2 COMBINATIONAL CIRCUITS

A cmbimtid circuit consists of input variables, logic gates, and output v-lcs. h-
ti& lo& gates react to the values of the signals at thtir inputs and produce the value of the out-
put signal, rransfwming binary information from the given input data to a r equ id output dais.
A block dagmn of a combinational circuit is shown in Fig. 4,1, The n input binary variables
come h m an external source; the m output variables are produced by the intend combhahnal
logic circuit and go to an external destination. Each input and output variable exists physically
as an analog signal whose values are htqreted to be a b i i signal that qmmts logic 1 and
logic 0. (Note: bgic gicslmula show only 0's and I's, not the actual analog signals.) In many
application& the source and destination am storage registers. If the re&m are included with the
combinational gates, then the total c W must be considered to be a q d a l circuit.

RCUII 4.1
~ d ~ * f ~ r k u I t

F a n input variables, there are 2' possible b inw inout combinations. For each wssible invut
cctmbinatt&. thcrc 15 unepu*rible o"tput value. Thu>:a romb~nattonal ;muit cd k spectied
wtth a n t h table that llur the output valuer for each combtnatiun uf input vuiahlei. Aeom-
htnational circuit al,o can hc dewnbed b) m Bcdean functions. one kr each nutput vanable.
Each output h c t i o n is expressed in terms of then input variables.

In Chapter 1, we learned about binan, numbers and binan codes that remesent discrete ~ ~~~

quantltlerof nnformation. The btnary van.ohle% m mprcuntcdph)~irally hy ;lecmc toltages
or some other type of 5hgnal. The signal\ can he mantpulated in digital lopdc pates to perform
requ~md funcuons. In Chapter 2. we ~nvodvced Roolean alrehra a< a ua\ to exoress lodc
functions algebraically. In chavter 3. we learned how to simolifv Bwlcan h;nction; to achieve . .
economtral ir~mplerl gate implemcnmrron~ The purpose of the c m n t chapter IS to uu the
knowledge acqumd In prcvlous chapten to formulate rystematlc anal)rs and deslgn proce-
dures for combinational circuits. The solution of some typical enamdes will ~mvidc ausefil
catalog of elementary functions that are imwnant for the understandins ofd i~ i t s l rvrtems. - - ,~~~
We'll dJdrcsr three &ks: 111Anal)re the bel;a\rorafa@vcn logtc clrcuit. (2) syntherireac~r-
cuil that ill have a gnen kha\.ior. and (3) wile HDL models for some common circuits.

There are several combinational circuits that are employed extensively in the design of d ig
iral systems. These circuits are available in internled circuits and are classified as standardcorn. ~

poneits. They perform specific digital functions commonly needed in the design of digital
systems. In this chapter, we intrcduce the most important standard combinatiooal circuits, such
as adders, subtractors, compa~dfors, decodes, encoders, and multiplexers. T h e s e c o m ~ are
available in integrated circuits as medium-scale inteeration (MG) circuits. Thev & also used

r r a h r d cells in complex very lqe-scale invgrated (\I.SIJ cmuit, ruch as opplicauon-
specific integrated circuia IASICsl. The >timdard cell funcnons are lnvrconneeted within the
VLSl orcuit in the same nay that the? an wed in multiple-IC MSI der~gn.

4.3 A N A L Y S I S PROCEDURE

The analysis of a combinational circuit requires that wedeternine the function that the circuit
implements. This task starts with a given logic diagram and culminates with a set of Boalean
functions, a m th table, or, wssiblv, &I cxoliation i f the circuit meration. If the loeic diaeram - -~ ~~

to be anal)md 15 sccompan~cd h) a function n u or an explima~on o i what 11 ii arwmcd u,
accompl~rh. then the analysis problem reduces to a renfiuation of the staled functn,n. The
analysis can hc performed manually b) linding the Roolcln functinnp or tmrh tableor b, u m e . -
a computer simulation program.

The frrst step in the analysis is to make sure that the given circuit is c o m ~ ~ and not
sequential. The d i m of a combinational circuit hw logic gates with no fedhack paths or
memory elements. A fedback path is a cmwdon from the output of one g a to the input of
a ~ g a t e t h a t f o r m s ~ o f h i o p a t t o ~ h g a t e . F ~ k p a t h s i n a ~ e a l ~ t d e -
fine a quential circuit and must be aualyzcd according to prooodures outEiaed in Chapter 9.

Once the logic diagram is verified to be that of a combinational &mait, one can proceed to
obtain the output Boolean functions or tbc rmth table. If the -011 of the circuit is under in-
vestigation, then it is - to in- the operation of the circuit from the Mved 3 w h
functions or truth table. Tbe succm of such atl invesiigatbn is enbauced if one bas previous
experience and fmihrity with a wide variety of digital circuits.
To o w n the output Bwlean functions from a logic diagram, we pmed as folIows:

1. Label dl gate outpub that are a function of input variabks with symbols-but
with meaningful names. Determine the Boolean functions for each gate wtput.

2. h b d the gates that are a fun& of input variables and previously labeled gates with
other arbifmy symbols. Find the Bmlean functions for these gates.

3. Repat the process outlined in step 2 until the outputs of the cirmit am obtained.
4. By repated substitution of previously d e h d functions, obtain the ouQut Boolean fun&

tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4.2 illustrates the propad procedure. We
note that the circuit has three binary inputs-A, B, and C--and two binary outpubFf and F2.

RtLIRE4.2
Logic diagram for analysis example

Section 4.3 Analysis Procedure 125

The outputs of various gates are labeled with intermediate symbols. The outputs of gates that
are a function only of input variables are TI and fi. Output F2 can easily be derived fmm the
input variables. The Boolean functions for these h e outputs are

Fz = AB + AC + BC

T , = A + B + c

7, = ABC

Next, we consider outputs of gates that are a function of alnady defmed symbols:

T3 = F;Tl

F, = T3 + fi
To obtain FI as a function of A. B, and C , we form a series of rubstirutioas as follows:

F1 = T3 + T2 = FiT, + ABC = (A B + AC + BC)'(A + B + C) + ABC

= (A' + #) (A' + C')(B' + C ') (A + B + C) + ABC

= (A' + B'C')(AB' + AC' + BC' + B'C) + ABC

= A'BC' + A'B'C + AB'C' + ABC

If we want to pursue the investigation and determine the information vansformation fask
achieved by this circuit, we can draw the circuit from the derived Bmlean expressions and try
to monniEe a familiar oocration. The Bmleanhmctions for fi and F, ima lmn t acircuit dia- , . , ~~~~~~~ ~~~~~~~~ -~ -
curred in Section 4 5. Merely finding a Boolean reprerentationof acirrult doesn't pror~de in-
si%t intoits behav~or, but in this example ue will obseneiha the Boolcanequsuons andmth
table for FI and F* match those describmg the functionallly of what u e call a full adder.

The derivation-of the Vuth table for acircuit is a svaiihffomard omcess once the out~ut -
Boolean functions arc known. To ubmn the mth table J~rectly from the logic magram with-
out guing through the denvation. uf the Boolean funa~onr. we proceed a, follows.

I. Detemune ihe number of input vanabler in the ckunl. Far n inputs. form the 2" powible
input combtnationr and list the b l n ~ numberr from0 to 2" - 1 in a table

2. Label the outputs of selected gates with arbitrary symbols.
3. Obtain the VuIh table for the outputs of those gales which are a function of the input

variables only.
4. h e e d w obmn the mlh table f a the outpuu oithose gavs which are a funcuon of prs-

viously defined values until the columns fur all oulpuU an detedned

ThIS pmceps is tllvslralcd utih ihe clrcurt of Fig 4 2 In Table 4.1. wc fom the erght porn.
ble combtnauonr for the three input \anables The mth tablc for fi lo d c u m e d dvecd) from
the values of A. B, and C, with F2 equal to 1 for any combination that has two or thm inputs
equal to 1. The rmth fable for Fi is the com~lement of that of h. ThermUl tables for Z and T,
a= the OR and AND functiunr uf the loput ;anable. rospe.li\r&. The vduca for T, a n d c n v c i
fmm T, and F i : TI ir yual to I when both T, and F; muqunl U, I, and TI is qua1 to0 other-
wise. Fmally. F, i, cqud to I for t h o ~ combination\ In uhlch nther T2 or TI or both an qua1

Table 4.1
Truth Tmbkibrthe L o g k D # q m m JFb. 4 2

A B C

to 1, Inspection of the tnrth table combinations for A, 3, C, Fl, and F2 shows that it is identical
to the truth table of the full adder given in Section 4.5 for x, y, z. S, and C, m v e l y .

Another way of analyzing a combinational circuit is by means of logic simulation. This is
nor practical, however, because the number of input patterns that might be needed to pera te
meaningfd outputs could be very large. But sirnulation has a very practical application in ver-
ifying that the functionality of a circuit actually matches_ its specification. In Section 4.12, we
demonstrate the logic simulation and verification of the circuit of Fig. 4.2, using Verilog HDL.

4.4 DESIGN PROCEDURE

_,. . .. - The design of combinational circuits starts from the specification of the design objective and
culmittates in a logic circoit diagram or a set of Boolean functiow&om which the logic dia-
gram can be obtained. The procedure involves the following steps: ::.

1. From the specifications of the cimrit, determine the q u h d n u d m of inputs and outputs
and assign a symbol to each.

2. Derive the truth table that defines the requicd relationship between inputs and outputs.
3. Obtain the simplified Boolean functions for each output as a function of the input variables.
4 Draw the logic diagram and verify the correctness of the design (manually m by simMon).

A truth table for a combinational circuit consists of input columns and ouqut columns. The
input columns are obtained from the T binary numbers for the n input variables, The binary
values for the outputs are determined kom the stated a ~ a t i o n s . The output functions spec-
ified in the wth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table, as they afe often incom-
plete, and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method,
such as algebraic manipulation, the map method, w a computer-based simplification program.
Frequently, there is a variety of simplitled expressions from which to choose. In a particular

aPPlication, ccnain criteria will sewe as a guide in fhe omess of chwsine an imolcmcntalion. . . - "
Apractical design must consldrr such cansm~nt* as the number of gates, number of Inputs to
a p. popagauon ume of the signal thmugh the pa-. number of tnterco~ections. hitanona
of thc driving rapabtliry of each gate lie.. the number ofgater to which the output of the cir-
cuit may be connected), and various other criteria that must be taken into consideration when
designing i n t eped c h i t s . Since the impatsnce ofeach cmslnint is dictated by Ur psnicular
amlication, it isdifficult I0 d e P =nerd statement about what mnrlimlu annccearsble im- ~ ~~~ .~ ~

piemcotation. In mon cases. the s~iplificatim begins by satisfying an elementary objective.
rvch PI producing lhe simplifai Boolean funcuons im a slaodanl form. Then ihs rimplf~ation
pmceds with funher steps to meet other prform~ee criteria

Code Conmrlan Cxunpk
The availsbility of a luge variety of codes for he m e d i w elements of information re-
sults in the use of different mdes by di&rent didtal systrms. It is sometima necasarvtousc
theoutput of one syslsm as the inpttoannlhec ~convenioncireuitmunbe inselted &ween
the two systems if each uses different wdes forthe same information. Thus. a cnde converter

~ ~
is acircuir thm m a ~ s Ur two systems wmpaIjblc even though each uur a d i ~ c n m biwy mdc.

Toconven fmm binar) code A to h l n q code 8. the tnput lies must supply thc bit rombi-
nation of elcmenu sr rpectficd b) code A and the output hnrr mun generate the wmrponding
bit combination ofcnde 8. Acambinational circuit performs this uansformation by means o?
logic gates. The design pmedwe will be illustrated by an example that converts binary coded
decimal IBCD) to the excess4 code for the decimal disits.

The btr camb~nauons srs!gneJ to the BCD and sxurs~3mdrr am lrsai m Table 1.5 (Scnim
1.71. Sinceeach code uses four bits la rtprtrent adcrlmal digit. there must be four tnput vari-
ables and four output variables. We deugnale the four input blnary vanabler b) the symbols
A. 6. C. and D, and the four output variables by W.X.Y. and z. The k t h table relating thc input
and output variables is shown in Table 4.2. The bit combinations for the inputs and their

Table 4.2
Truth TaMe for Codr-Cmmxim FZamJe

Input K D Output Excess-3 Code

A # C D w x v z

0 0 0 0 0 0 1 1
0 0 0 I 0 1 0 0
0 0 I 0 0 1 0 1
0 0 I I 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 I 0 I 0 0 1
0 1 I 1 1 0 1 0
I 0 0 0 1 0 1 1
1 0 0 1 I 1 0 0

corresponding outputs are obtained directly kom Section 1.7. Note that four binary variables
may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combina-
tions not listed for the input variables are don't-care combinations. These v h have no mean-
ing in BCD and we assume that they will never occur. Thedore, we are at likrty to assign to
the output variables either a 1 or a 0, whichever gives a simpler circuit.

The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs.
Each one of the four maps represents one of the four outputs of the circuit as a function of
the four input variables. The 1's marked inside the squares are obtained from the minterms
that make the output equal to 1. The 1's are obtained from the truth mble by going over the
output columns one at a time. For example. the column under output z has five 1 's; therefore,
the map for z has five l's, each being in a square corresponding to the mintam that makes
z equal to 1. The six don't-care minterms 10 through 15 are marked witb an X. One possi-
ble way to simplify the functions into sum-of-products form is listed under the map of each
variable, (See Chapter 3.)

D
x = B'C + B'D + BC'D'

RGURE 4.3
Maps for KPtcr-acesr-3 code converter

b
y = CD + C'D'

Section 4.4 Derlgn Procedure 129

A w ~ l e v e l logic diagram may be oblsiaeddmdy Lmmlk Bookan expsnons duived b m
the map. There arc various othn poar~brl~uer for a loglc &agram that lmplmvnts Ib clmdt.
% ecxprrssions obrained in Ag. 4.3 may be manipulated algebraically for fhc purpor of using
mmm mm for ovo or mom oumu.Tbilbis mani~ulation, shown next. i l lunms the flexibility
&+aid kith multiple-output sys&r when impi~mented with three or- levels of gatcs:

; = D'

y = C D + C ' D ' = C D + (C + D) '
x = B'C + B'D + BC'D' = B'(C + D) + BC'D'

= B'(C + D) + B(C + D)'
w = A + B C + B D = A + B (C + D)

The logic diagram that impkmcnts Urse expressions is shorn in Fig. 4.4. Note Ulat the OR
gaO whxe OUQU~ is C + D has been us4 to implemeot pnially each of tPrss outputs.

Not wu&g input invenen, the implrmentaticm in sum-af-pmiucts f o m quires seven
AND mtes and thrre OR nates. The imDlementafiw of Fin. 4.4muirn four AM) gatcs. four
OR Ger. and one hvenerlf only the nbrmal inpuU are s k ~ l e . &e bc t imp lmcr i~on will
q u i r e invencrr for vmblcr 8. C. and D, aod the second implcmcnmtion wi l l require in-
vervs for variables B and D. Thus, the thne.levei logic circuit requires fewer gaIer, all of
which in Nm q u i r e no more than two inputs.

130 Chapter 4 Comblmtimal Loglc

4.5 BINARY ADDER-SU 0T.RACTOR

Digital computers perform a variety of information--sing mih. Amwg the functions en-
countered are the wious arihnetic operations. The most basic arithmetic opsration is the ad-
dition of two binary digits. This simple &ition oonsists offour possible el- e o n s :
0 + 0 = 0 , 0 + 1 - 1 , I + O = 1,andl 4- 1 = 10.Thefmtthrceoperatiomproducaa
sum of one digit, but when both augend and addand bits are equal to 1, the binary sum con-
sists of two digits. The higher signiscant bit of this result is c a d a carry. When the augend
and addend numbers contain more s w c a n t digits, the cany obtained from the addition of two
bits is added to the next high order pair of siplicant bits. A combinational circuit that p#-
forms the addition of two bits is called a h a l f d r . One that performs the addition of three
tits (two significant bits and a previous c m y) is afull &r. The names of the cMta stem
from the fact that two half adders can bt employed to implement a full adder.

A b i i addm+ubmctor is a combinational circuit that performs the ui-c optaims
of addition and subtraction with binary numbers. We will develop this circuit by meam of a hi-
erarchical design. The haif adder design is carried out first, from which we develop the full
adder. Connecting n full adders in cascade W c e s a b i adder for two n-bit numbers. The
subtraction circuit is included in a compIemmting circuir.

From the verbal explmtion of a half adder, we find that this circuit n#ds two binary inputs
and two binary outputs. The Input variables designats the augend and addend bits; the output
variables produce the sum and carry. We assign symbols x and y to h e two inputs and S (for
sum) and C (for camy} to the outputs. The truth table for the half adder is listed in Table 4.3.
The C output is 1 only when both inputs arc I , The S output q m c n t s the least sigdic~int bit
of tbe sum.

The simpMd Boolean functions for the two outputs can be obtained diiectly from tk truth
table. The simplified sum-of-products exprewions are

S = x ' y + ley'

C = xy

The logic diagram of the half W implemented in sum of pmha i k shown in Fig. 4.5(a).
It can be also implemented with an exc1usiveOR and an AND gate w shown in Fig. 4.5(b).
Thisformisdtoshow hat twohalfadderscanbe dtown#ruccafullwkh.

Table 4.3
Huff Adder

Section 4.5 Elruuy Adder-Subtractor 131

AfuUaddrrisammbi~tiDnal~~ilUlstformshearilhmaiesumolthrccbits.8eonsislsofthrcc
inputs and two outputs. Woof the input variabies denoted by x and y, represea Lhe two signs-
cant bits lo be added. The thirdinpub :, repesents the ewy from lhe pvious lower rigniflePat
@lion.kau~arensa~arybsavrcthe~~mofthreebiinarydigitsmgain~
fmm 0 to 3. and binary 2 or 3 needs two digits. The two outputs arc designated by the symbols S
for sum and Cfor cany. The binary variable Sgiver the value of the leas signifEant bit of lhe sum.
The binary variable Cgives the aurputcarq. The huth fable of the full adder islisted in Table 4.4.
The eight rows under the input variables designate all pmsible combinations of the hm vari-
ables. The outwt variables are determined from he arithwlic sum of the inDut bits. When all ~~~ ~ ~ ~ ~

mputbiusrr<theoutput is0 TheSoutputnrcqual lo I whenonl) one nnplttr&ual to I orwhen
allrhrceinputsarequalml lkCautputhasocilnyofI ifluoorrhrce~npvtsarequaltol

The ~nput and output bits uf the cumh!nr~onal elwutt have diKmnt interpmarions at rar-
iovr stagesof the problem. On lhe me hand, physically. the b i i signals of the inputs arrmn-
sidered binary digits to be added a r i h e t i d l y to form a twa-digit sum at the output. On the
other hand. the same binvv values arr considmd as variables of Bmlean functions when ex-
pressed in the vulh tabk n when thecircuit is irnplcmcnted wnth logic giues. The maps fordte
outputs of lbc full adder am rhowo m Fng. 4.6. Ihe simplified expressions arc

FIGURE 4,Q
Maps far full adder

S = x'y'z 4- x'yz' f xy'z' + xyz

C = x y + x z + y z

logic diagram for the full adder implemented in sumd-produds farm is shown h Fl. 4.7.
Itcanalsobehnplementedwithtwohalfadders andone ORgate, wshownin~4.8.'IheSautput
from the second half adder is the exclusive-OR of z and Ihe output of tbe first half adder,

s = z @ (x @ y)

= zr (xy ' + x ' y) + z(xy' + x'y)'
= zr(xy ' + x ' y) + z(xy + x'y')
= xy'z' + x'yz' + xyz f x'y'z

The carry ourput is

C = z(xy' + x'y) + xy = Xy'z + x'yz + xy

F IWRE 4.7
lmphntddon of fufl adder hi sum-of-products form

Sectlon 4.5 Binary Adder-Subtractor 133

H G W 4.8
lmplementatlon of full adder with hvo half adden and an OR gate

Binary Adder

A binary adder is a digital circuit that produces he hearithmetic sum of huo binary numhrs. It can
be consuucted with full addm conneeledin cascade. with the output cany from csch full adder
c o m m d to thc inwtcami of thc next full a& in the chain. WWF 4.9 shows tix i n m o d o n
of f w full-adder (FA) elrkib lo pmvide a four.bit b m q rippie rany adder. The augend bib uf
A and the added bitr of B are designated b) ~ubsn ip numkm fmm Dght to lee, with subrcnpt
0 denoung the lest significant bit. The caries are connected in B chain l h g h the full adden.
The input cany to the adder is Co. and it ripples through the full adders to the output cany C4.
The S o u m b generate the mired sum bb. An n-bit adder muires n full addm. with each out-
put can) k n k l c d to the inbt cany of the heerr higkr ordn'full adder

To demonsmte with a jpectfic example. consider ihc two bt~ary numben A = 101 1 and
B = WI I . Their rum 5 = I1 10 ir formed with the four-bll adder a\ follows:

Input cury 0 1 1 0 C,
Augend 1 0 1 1 A,
Addend 0 0 1 1 B,

Sum 1 1 1 0 S,
Outpulcany 0 0 1 1 Gill

The bib are added with full adders, staning from the least signirkant position (sokript O), to
form the sum bit and c a w bit. The innut canv Cn in the les t s i d c ~ o t waition must be 0.
The value of C,.. , ins gtvin significan; positi& is-the output c& of the &i1 adder. m s value
is m s f e m d inw the lnpul cany of the full adder that adds the bib one higher signtficanl po-
sition to he left. The sum bitr are thus generated s d n g fmm the dghmsr poJitionand are
available as ocon as h e cornspondinn pnvious cam, bit is aencaaled. AU the cardes must bc
nenerated for the c o m t sum bits to an.- at the o&uts. - - . .

The four.b~t adder i r a ryptcai example of a rmdard component It can be used m many ap.
phcanons rnvolv~ng anthmeuc operaoons Obwne that the desdgn of tlus circlut by the clas-
sled method would rcqulre a vuih table wlth Z9 = 512 enmes, slnce then an tune lnpuu to

the circuit. By using an iterative method of cascading a standard function, it - is - possible . , - to ob- - -
tain a simple and straightfornard implementation.

The addition of two binary numbers in parallel implies that all the bits of the augend and addend
are available for computation at the same time. As in any combinational circuit the signal must
propagate through the gates before the mmct output sum is available in the output terminals. The
total propagation time is equal to the propagation delay of a typical gate, times the number of gate
levels in the circuit. The longest propagation &lay time in m adder is the time it takes the carry
to propagate through the full adders. Since each bit of the sum output depends on the value of the
input carry, the value of Si at any given stage in the adder will be in its steady-state h a l value
only after the input cany to that stage has h e n propagated. En this regard, consider output S3 in
Fig. 4.9. Inputs A3 and B3 are available as soon as input signals are applied to the adder, How-
ever, input carry C3 does not settle to its find value until C2 is available from the previous stage.
Similarly, C2 has to wait for C1 and so on down to Co. Thus, only after the carry propagates and
ripples through all stages will the last output S3 and carry C4 settle to their final cmrect value.
The number of gate leveb for the carry propagation can be found from the circuit of the full

adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience. The input and

Section 4.5 Blnay Adder-Subtractor 135

output variables use the subsnipt i to denote atypical stage of the adder. ' h e signals at 9 and
G, Ynle to their steadv-state values after they omoarate thmueh their resDective nates. These ,. . . tie rIgnalr arc cornman ro d l full dJden and depd only on thy. mput au&d andaddmd bnt.
Thc s~gnal from the henput earr) C to the output cany C , pmpagavs h u g b an AND gate
and an OR gate. which constitute two gate levels. If there are four full adders in the adder. the
output carry C4 would have 2 x 4 = 8 gate levels From Co to CI. For an n-bit adder, there are
2" rate levels far ~ c m to ornoawe hnm inout to outnut ~r~ ~ , . . -

The carry propagation time IS an important attribute of the adder because it llmilr the speed
with which two numkr, are added. Althuugh the adder-,, for that maner. an) cornhima-
tianal circuit-will always have some value at its output terminals, the outputs will not be cor-
rect unless the signals are givcn enough time m propagate through the gates connected fmm
the inouts to the outouts. Since all other srithmetic ooeratioas are imnlemented bv successive
additiLnr. the umc ianrumcd dunng the addition rr mucal'An obviou;soluton for
reducing thecarry ppagdion delay time 8 , toemploy fartcr gale< withrcduddclays. Hor -
ever, physical circuits have a limit to their capability. Another solution is to increase the com-
~ 1 ~ x 1 ~ i f the eaui~ment in such a way tha the car& cic~sv lime is reduced. There are s e v m ~
trchniquer for reducing b e cany propagation ume in a parallel adder The mow uidcly used
technique cmployi the principle of cam. loohhead lo~ le .

Conrider the circuit of the full addu shown in Fig. 410 Uwc dethe two new b i q vaiable,

Pi = A# (B Bi
G . = *.B.

8 4 r

the output sum and carry can respectively be expressed as

S: = P, (B C,
C,+, = Gi + P,Cj

G. is called a corm te,terme, and it itnxluces a c a m of I when both Aj and Bi are 1, regard-
leis of the input c G CI. 9 is called; eorrypmpag~tr, because it dercnnines whether a carry
into stage i wi l l propagate into stage i + I (is., whether an assertion of C, will pmpagav to
an assenionof C,,,).

We now writc the Boolean functions for the carry outputs of each stage and subsfitute the
value of each C; hnm the previous equations:

C, = input cany
C, = Go + POCO

C2 GI + PICl = GI + P,(Go + POCO) = G I + PIGO PtPoCo
C3 = GI + PzC2 = G2 + P ~ G I + PZPIGO = P2PtPaCo

Since tk Boolean W o n f a each wtput csny is expressed in sum-of-pmduetr f m each funF-
tioa can be implemented with one Level of AND gates foUowed by an OR gale (or by a wa-level
NAND). The thm Bmlean functions for CI. C,. andC3 ueimplewntedin the lookahead

shown in Fng. 4.11 Note W ~lts;&it can & in 1;s umc bsawc C, &.s na hare
to wot far C? and C , to propagate: ~n faa. C3 is pmpagavd a ihe same time as C, and C2. Thls
gun in s p e d of opemuon is acbrved s the expense of additional compleuty (hanhwarc).

The construction of a four-bit adder with a carry lwkahead scheme is b w n in FG. 4.12.
Each sum output requires two exclusive-OR gates. The output of the f h t exclusiveOR gate
generates the 8 variable, and the AND gate generates the GI variable. The carries are propn-
gated through the carry lwkahead generator (similar to that in Fig. 4.11) and applied as inputs
to the second exclusive-OR gate. AlI output carries are generated after a delay through two
levels of gates. Thus, outputs S1 through S3 have equal propagation delay h. The twelevel
circuit for the output carry C4 is not shown. This circuit can easily be derived by the equation-
substitution method.

Binary Subtractor

The subtadon of unsigned binary numbers can be done most mveniently by meam of wm-
plements, as discussed in Section 1.5. Remember that the subtraction A - B can k. done by
taking the 2's complement of B and adding it to A. The 2's complement can be obtained by tak-
ing the 1's complement and adding 1 to the least significant pair of bits. The 1's complement
can be implemented with inverters, and a 1 can be added to the sum though the input carry.

The cirrwt for subtracting A - B constsu of an adder with inverters plaeed klwca each
d m input B and the cm-p input of the full sdda. Thc input cany Co must be rqud In
I whcd subunction is &&ed. Th;occ&nn thus & o d becnnes~. DIUS thc 1's c u m
a k m n t of B. ollu 1. ihis is c a u l I o ~ i l u s the 2's citnolemnt d B . ~or&~ned numbers.

~ ~ . , ~ ~ ~ ~

rhsrgiver A - B WA 2 ~n&2 'acobp le rnn to f (5 - A) ifA < 5. ~or8ipnodnumbur.
the result is A - 8, pmvnded that Lhnc IS no overllow. (See Sstion 1.6.)

The addition 4 subvaction opcralions can be combined into one circuit with one unnmon
binarv adder bv ioeludine an cxclusiveAR natc wilh uch full adder. A fow-bit addcr-suhcm
circit is sho& in ~ i g . 4.13. The mode i&ut ~ m a o l s thc o p n u i m When U = 0, the cir-
cuit is an adder, and when M = I. the circuit becomes a submaor. Each olclusiveOR gate
receives input M and one of the inDuls of B. When M - 0, u e have B @ 0 = 8. The full adden
mcivc th; value of B, the input ;any is 0, and the circuit performs A plus B. When M = I,

138 Chapter 4 CornbInutbwl Logk

33 A3 B2

we have B $1 = B' and Co = 1. The B inputs are all complemented and a 1 is added through
the input carry. The circuit performs the operation A plus the 2's complement of B. (The ex-
clusive-OR with output Via for detectixlg an overflow.)

It is worth noting that binary numbers in the signed-complement system are added a d sub-
tracted by the same basic addition and subtmctiw rules as are unsigned numbers. Therefore,
computers need only one common hardware circuit to handle both types of adhmetic. The
user or programmer must interpret the results of such addition or subtraction differently, &-
pending on whether it is assumed that the numbers are signed or unsigned.

When two numbers with n digits each are added and the sum is a number occupying n + 1 dig-
its, we say that an overflow occurred. This is true for binary or decimal numbers, signed or un-
signed. When the addition is performed with paper and pencif, an overflow is not a problem,
since there is no limit by the width of the page to write down the sum. Overflow is a problem
in digital computers because the number of bits that hold the number is finite and a result that
contains n I- 1 bits cannot be acmmndated by an n-bit w d For this reason, many compum
detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop is set that
can then be checked by the user.

The detection of an overflow after the addition of two binmy numbers depends on whether the
numbers are considered to be signed or unsigned. When two unsigned numbers are added, an
overflow is detected from the end carry out of the most significant position. I0 the case of signed
numbers, two details are important: the Ieftmost bit always r e p e n t s the sign, and negative

Section 4.6 h c l d Adder 139

numben me in 2's-complement fonn. When two signed numbers are added, the sign bit is
mated as part of the number and the end carry does not indicate an oveflow.

An overflow cannot oecur after an addition if one number is wsitive and the other is me- "
atne. stnce addung a plrltwc number to a negatlve number produces a n ruh u h o v magn~tude
Ir smaller lhao tne larger of the two ori@aal numben An overflou may occur dthe ouo num.
bm add& are bofh positiveor Wnegat ive. To see how this can happeq considerthe following
example: Two signed binaty numbers, +70 and +SO, are stond in two eight-bit registers. The
range-of nvmbei that each register can aceommadate is fmm binary +i27 to binary -128.
Since the sum of the two numbers is +[SO. it exceeds the capacity of an eight-bitngirter This
is also me for -70 and -80. The two additions in b i i are shown next, together with the
last two carries:

carrier: 0 1 carries: 1 0
+70 0 lWOll0 -70 1 0111010

Note that the eight-bit result that should have been positive has a negative sign bit (i.c., the
8-th bit) and the eight-bit result that should have been neeative has a wsitive r i m hit. If. how- - - -
ever. the carry out of lhe sign h ~ t p,\~uan ir laken n\ the \~gn htt of the nrult, then the olne.b~t
answer ,o obta~ned vtll be correct But rtnce the anrucr cannot be accommadaled u l h n ctght
bits, we ray that an overnow has occumd.

An overtlow condition can be detected by observing the carry into the sign bit positionad
the cam out of the sign bit wsition. If these hua amies are not equal. anavertlow has occuned.
This is indicared in the e x k ~ i c s in which lhe two carrier me eklicitlv shown. If the ouo car- . ,
nc\ rn qpllcd to m incclu.#\r OK gale .m o\erfl<,w 15 detected whm the output of the gale
Is qua1 la I For h r method to nark camctly. the 2's camplcmca of a ncgaure number must
be computed by faking the 1's complement andadding 1. This takes care of the condition when
the maximum negativi number is cornplcmented.

The binarv adder-rubtractor circuit with outouts C and Vis shorn in Re. 4.13. If the two
btnary n u m d n a n ron3,dered to be unngncd. ;hen the C bnt delcctr a carryWalter addluon or
a ~ O M U after r ~ b t r ~ t ~ ~ n If the numbcn arc cunr~dered tu hr. vgncd. then the V bnt d c m h
an overflow. If V = 0 after an addition or subtraction, then no overtlow occumd and then-
bit result is c o r n . I fV = 1, then the result of the operation contains n + I bits. but only the
rightmost n bits of the number fit in the space available, so an overnow has occumd. The
(n + 1)th bit is the actual sign and has been shifted out of position.

4.6 D E C I M A L A D D E R

Computen or calculators that ptfann sriUvncticoprations d i i l y in the decimal number sys-
tern reoresent decimal numbers in binarv coded form. An adder for such a mmwtermust em-
plo) anlhmcuc crrculu that accept coded decimal numbers and present results in ihe same code.
For hinary addntion. ir i v ~uficlent toconstder a par of rlgmGuant brts tugsthw with a prev~ous
carry. A d e c i i l adder requires a minimum of nine inputs and five outputs, since four bits arc
required to mde each decimal digit and the circuit must have an input and output carry. There

i~ a wide vdety of possible d e c u adder circuits, depending upon the code wed to represent
the decimal digits, Here we examine a decimal adder fw the BCD aode. (Sm Section 1.7.)

I '

E D Adder
Consider the arithmetic addition of wo decimal d@ts in BQ), together with an input carry from
a previous stage. Since each input digit dues not exceed 9, the output sum m o t be great= than
9 + 9 + 1 = 19, the 1 in the sum being an hput carty. Suppose we apply two BCD digits to
a four-bit binmy adder. The adder will form the sum in binary and produce a result that ranges

- from 0 through 19. These binary numbers are listed in Table 4.5 and are W e d by symbols
K, Z8, Z4, Z2, and Z1, K is the carry, and the subscripts under the letter Z r e p w i t the weights
8,4,2, and 1 that can be assigned to the four bits in the BCD code. The c o l ~ under the bi-
nary sum list the binary value that appears in the outputs of the four-bit binary adder. The out-
put s u m of two decimal digits must be qrmcnttd in BCD and should appear in the form listed
in the columns under "BCD Sum." The problem is to h d a rule by which the binary sum is
converted to the correct BCD digit representation of the number in the BCD sum.

In examining the contents of the table, it becomes apparent that when the binary mrm is
equaltoorlessbhan 1001,thecosRspondingBCD numkis identacal ,and~w>convasion
is needed. When the binary sum is greater than 1001, we W n an invalid 3CD representation.

hble 4.5
 ati ion of K D Adder

Blnary Sum BCD Sum . DQdnml

Sectton 4.6 Decimal Mder 141

The addition of binary 6 (0110) to the binary sum convens it to the comci BCD rrpnsnna-
tion and also prcduces M outpur cany as wuired.

The losic circuit that detect8 the ncrrnsarv correaion can be dcrivedfmmlhe entries in the ~~-~~ ~

table. It nsobvious that a -"on i~ n s d d when ihe binary rum hsr an output c ~ r y K - 1.
7 h c n t e r d x c o m b i n & o n s f m m l 0 1 0 ~ I I I I i h m ~ a e m t n i m h p v e a I i n f l m
t. Tadirtin~~ish them horn b i i laX)aod lml . which also have* I in poailim &. wcspe-
if; further &at either Z4 m Z? &st have r I. Ihe condition for a constioa and M output
cany em be expressed by the Boolean function

C = K + Z & + Z 8 &

When C = 1, it is necessary add OLIO mthc binary sum and provide an ourput cany for thc
next stage.

ABCDaddrr~M&woBCDdigitsandpmducesssvmdigitin~isrhovminFig,4.14.
The two deeimsl digits. mgnher with the input cany. an first added in thc top four-bit adder
poduccthcbinary~m.WhmthewtputonyiscqudmO.nMbiagissddedwthcbinuysum.

R6UIC4.14
~lodr diagram of a BCD adder

Section 4.7 Binary Multiplier 143

products. Note that the least significant bit of the product dacs not have to go through an adder.
since it is formed bv h e oumut of the first AND .ate. "

A comb~natlonal clrcutt binary multtpl~er with mom b~t r can bc canslrvcvd in a iirmlar
farluon A btt uf the multipltcr t i ANDed uilh cavh bll of the rnultiplncand in as man) levels
as here are bits in the multiplier. The binary ournut in each level of AND nates is added with
the ~ a n i a l Dmduct of h e oivious level to form new oanial omduct. meiast level ~roduces . .
the product. For J multiplier bits and K multiplicand bits, we need (J X K) AND gates and
(J - 1) K-bit adders to produce a product of J + K bits.

As a second example. consider a multiplier circuit mat multiplies a binary number represented
bv four bits bv a nvmber mr-ted bv thrrebitg Let Ih muni~lieand be m m t e d bv B>&B,&, ,
ad ih. mul<plm b) A ? A , A ~ . in$^ = 4 aod J = 3. winced 1 2 & ~ g m v and 2 four-b~t
addas t o p u l u r podut of w e n bits. The logicdiagram ofthe multlpl'i s shown m Fig. 4.16.

FIGURE 416
Fwr-bii by %bit Mrury multiplier

4.8 MACPllTUDE COMPARATOR

l k a o m ~ a f t w o l u u n b c r s i s a n ~ o n ~ ~ whetheronenumbsrisgracr
h, leas than, or equal to the other number. A +iu& cortrparaurr is a cmhhtional cir-
cuit that compares two numbers A d B and detemims their relative ~~. The outcome
of the comparison is spacifled by three binary variables that indicate whether A > B, A = B,
or A < B,
On the one hand, the circuit for comparing two n-bit numbers bas 2& enbk in the truth

table and becomes too cumbersome, even with n = 3. On the other baud, as om may sus-
pect, a comparator circuit possesses a csrEaia amount of regularitp; Digital firnctibas chat
possess an inherent well-defined regularity can usually k designed by means of an a l p
rithm--a prccdure which specifies a flnits set of steps that, if followed, giw the solution
to a problem. We illustrate this method here by deriving an algorithm for the design of a
four-bit magnitude comparator,

The algorithm is a direct egplication of the p r o d m a pmon uses to compare the relative
magnihda of two numbers. Consider two numbers, A and B, with four d i e each. Write the
cwfficbnts of the numbers in descending ordm of simcancs:

1 . .. - I I - ..?
A - A3A2AlA0 . . - .

B = B3B2B1Bo
Each subscripted letter mpmmrs we ofthe digits in the number. The two numbers are equal
if all pain of significant digits rn equal: A3 = B3, A2 = 82, A, = El, and A. = &. When
the numbers are binary, the digits are either 1 or 0, and the quality of each pair of bits can ix
ecpresd logically with an exclusive-NOR function as

. I .*:+
, , . . . <

' '_
- . . , xi = AjBi -I- A{@ for i = 0,1,2,3

where q = 1 only if the pair of bits in position i me equal (i.e., if both are 1 or both art: 0).
The equality of the two numbers A and B is displayed in a combinational clrcuit by au

output binary variable that we designate by the symbol (A = B) . This binary variable is
equal to 1 if the input numbers, A and 8, are equal, aud is equal to 0 othemise. For equal-
ity to exist, all xi varibla must be equal to 1, a condition that dictates an AND operation
of all variables:

Thebiiwryv&bb(A = B)issqualtoldyifa l l~ofdigi~ofbt~ormmbessareequal .
To detemk whether A is greater or less than B, we inspect the relative magnitdm of pairs

of signilicant digits, stmhg fmm the m t sigdicaut pition. If the two digits of a pair are
equal, we compare the ncxt lower sigd&ant pair of digits, The comprison continues until a
paG. of unequal digits is reached. If the camponding digit af A is I and that of 3 is 0, we con-
clude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < 3. The
sequential comparison can be expressed logically by the two Boolean f adons

Section 4.8 Magnihlde Comparator 145

The symbols (A > B) and (A < B) are binav output variables that are equal to I when
A > Band A C 8, respectively.
The gate imolementation of the three o u t ~ u t variables iun derived is rimaler than it seems - . ~ ~ ~~~~~r~~~ ~~~~~~ ~~~~~~~

because it involves a certain amount of repetition. The unequal outputs can use the same
gates that are needed to generate the equal output. The logic diagram of the four-bit magni-
tude comparator is shown in Fig. 4.17. Thc four x outpuls are EencraIed with exclusivc-NOR
circuits and are avolied to an AND gate to give t h e o u t ~ u t binarv variable (A = BI . The . . - -
other ma outouu use the x variables to generate the Boolean functions listed oreviourlv.

v ~~ ~~ ~~ ~ - r~ ~~~,
This is a mult~lrvel implementnuon and has a regular pattern. Thc proeedurc for ohlalnlng
magnitude comparalor circuits far binary numbers with more than four bltr is ob\tour from
this example

UGUm 4.17
Four-bit magnitude rwnprator

thapaer 4 Comblnationd Logic

4.9 DECODERS

Discrete quantities of information are represented in digital systems by binary codes, A binary
code af n bits is capable of representing up to 2" distinct elements of coded information. A k c -
oder is a combinational circuit that converts binary information from n input lines to a maxi-
mum of 2" unique output lines. If the m-bit coded information has unused combinations, h e
decoder may have fewer than 2" outputs.

The decoders presented here are called n-bm-line decodes, where m I 2". Their purpose
is to generate the 2" (or fewer) mintems of n input variables. The name decoder is also used
in conjunction with other code converters, such as a BCD-to-seven-segment decoder.

As an example, consider the three-todght-he decoder circuit of Fig. 4.18. The three inputs
are d d e d into eight outputs, each representing one of the mintem of the lime. input variabb.
The three inverters provide the complement of the inputs, and each one of the eqht AND gates
generates one of the minterms. A particular application of this decoder is b i n a r y - t o 4

Table 4.6
Trvlh T0bk of 0 Thm-to-Elghl-lk -r

Inputs outputl

X Y Z Do Dl h D% D4 Ds D6 DI
0 0 0 L 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 l 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
L O O 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

convmion. TN invut variables r e ~ m c n t a b i n w number. and the ovt~uts mmesent the cipht
dngils of a number>n h e anal numkr system ~ o u c v r r , a bee-to-eight-I& dcdercdcr can-te
urd for decdng on, thm-b~t codc to pmvnde e~ghl outpub, onc fur each clrrncnt of the c&.

Thc operwi'm of the decoder may be clarified by thc uuth tahlc liold in Table 4.6. For each
possible input combination, there are seven outputs rhat an equal ta 0 and only one tbat is
eaual to I. The out~~ur wbosc value is eoual to 1 remeseats the mintcm eauivdcnr of the bi-
nary number currenll) available 111 the tnput I ~ N I .

Some k & n are consrmctcd ulth NAND gates. Smcr a NAND gau pmlucer the ANDop.
eration with an mverted output, it becomes more economical to generate the decoder minternu
in lheir comvlemenled fom. Fmhmm. decoders include one or more emble in~uts to can-
aol thecvcu;t apemuon A twbtbfour.lme dccader uith an enable mpvl consrmcted Lath NAND
gates 8% shown m brg 4 19 TN CIKUII oprates wth complem~ntcd outputs and a mmplemenl

(a) Logic diagram lb) h t h table

enable input. The de~oder is enabled when E is e q d to 0 (i.e., active-low enable). As indicated
by the truth table, ody one output can be equrtl to O at any given the; all other outputs are equal
to 1. The output whose value is equal to 0 repmats th minterm selected by inputs A and B. The
circuit is disabled when E is q u d to 1, legmiless of the values of the other two inputs. When
the circuit is disabled, none of the outputs am equal to 0 and none of the minterms are selected.
In general, a decoder may operate with wmphmtd or uncomplemented outputs. The enable
input m y be activated with a 0 or with a 1 signal. Some decoders have two or more enable in-
puts that must satiffy a given logic condition in order to &1e the circuit.

A decoder with enable input can function as a &tnttitipkxer- circuit that receives infor-
matiw from a single Line and directs it to one of2" possible ouput lines, The selsctim of a spe-
cific output is controlled by the bit cornbimiion of n selection lines. The decoder of Fig. 4.19
can function as a one-to-fouf-line demultiplexer when E is taken as a data input line and A and
B are taken as the selection inputs. The single input variable E has a path to ail four outputs,
but the input information is directed to only one of the output lines, as s m e d by the binary
combination of the two selection lines A and B. This feature can be verified from the truth
table of the circuit, For example, if the s M w h e s A3 = 10, output % will be the same as
the input value E, while a l l other outputs are r n ~ ~ at 1. Became decoder and demulti-
plexer operations are obtained from the same circuit, a decoder with an enable input is referred
to as a decod@r4muEtipkxer,

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Figwe 4.20 shows two 3-to-8-lim decoders with enable inputs connected to form a 4-to-16-
line decoder. When w = 0, the top decuder is enabled and the other is disabled. The bottom
decoder outputs all O's, and the top eight outputs generate mintem 0000 to 0111. When -
w = 1, the mable conditions are reversed: The bttom decoder outputs generate mintem

+ - IOU0 to 1111, while the outputs of the top decoder are all Us. This example demonstrates the
I usefulness of enable inputs in decoders and other wmbinatitio~ logic components. In gweral,

enable inputs are a convenient feature for interconnecting two or more standard components
for the purpose of combining them-intoa s i m h function with more inputs and outputs. . -

,.. 1 ~2 , . ' .

Section 4.9 Decodm 149

ComMnatlonal Loglc Implementation

A deeoderprovides the 2" mintems of n input variables. Each asselred output of the decoder
is associated with a unique pattern of input bits. Since any Boolean function can be expressed
in mm-of-mintems form. adcoder that eenerates the minterms of the function. toeethmwith
an external OR gate that forms lncrr logical rum, pravtdrr a hsrdu are unplcmcntauon of the
functton In tlus u,ay. any comb~nauonal cmurt ulth n lopus and m outputs cm be imple-
mented with an n-to-2"-line decoder and rn OR gates.

The procedure far implcmcnling a cmbinstionsl circvit by means of a decoder and OR
gates requires that the Boolean function far the circuit be expressed as a sum of minterms. A
decoder is then chosen that senerater aU the mintems of theiarmtvariables. The innuts to each -
ORgate are \clrctr.d from thcde;uller outpurr according h, the list ofrnin!rmr ufuach fun'-
tion f i r pmcedure will be illusmated by an ciamplr that implements a full-adder cirrult

Fmm the truth rablc ot the full adder (\w Tahlu 4.4). we abliun ihr. funrunn* for the com-
binational circuit in sum-of-mintems fom:

S(X,Y, z) = 2(1,2,4, I)

C(x, Y, z) = Z(3.5,6,7)

Since there are three inputs and s total of eight m i n m s , we need a thm-lo-eight-line &-
coder. The implementation is shovmio Fig. 4.21. The decoder generates the eigbt mintems for
r.y, and i. The OR gate for output S form the logical sum of mintem 1.2.4, and 7. Tbc OR
gate for output Cf-s the logical sum of mint& 3.5.6. and 7.

A function with a lone list of minvms reovins an OR sate with a lame n u m k of inouts. - - -
A function having a list of k mintem can be expressed in its complemented fonn F' with
2" - k mintems. If the number of mintem in Ihe function is greater than 2"/2. then F' can
be expressed with fewer minremr. In such a case, it is advantageous to use a NOR gate to
sum the mintem of F'. The output of the NOR gate complements this sum and generates the
normal output F. If NAND gates are used for the decoder, as inFig. 4.19, then the external gates
most be NAND gates instead of OR gates. This is because atwo-level NAND gate cirFuit im-
plements s rum-of-mintems function and is equivalent to s two-level AND-OR circuit.

FIGURE 4.11
ImplementaUon of a full adder wlth a decoder

4.10 ENCODERS

An encoder is a digital circuit that @performs the inverse operation of a decoder. An encoder has
Zn (or fewer) input lines and n output lines. The output lines, as an aggregate, genmte the bi-
nary code corresponding to the input value, An example of an encdcr is the wtal-to-binary
encoder whose truth mblc is given in Table 4,7. It has eight inputs (one for each of the octal
digits) and three outputs that generate the corresponding binary number. It is assumed that only
one input has a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are determined directly from
the truth table. Output z is equal to 1 when the input octal digit is 1.3,5, or 7. Output y is 1 for
octal digits 2,3,6, or 7, and output x is 1 for digits 4,5,6, or 7. These conditions can be ex-
pressed by the following Boolean output functions:

z = Dl + D3 + DS + D7
y = Dz + D3 + D6 + D7
x = D4 + D5 + D6 + 0,

The encoder can be implemented with three OR gates.
The encoder defined in Table 4.7 has the Limitation that only one input can be active at any

given time. Tf two inputs are active simultaneously, the output produces an undefined combi-
nation. For example, if 4 and D6 are 1 simultaneously, the output of the encoder will be 111
because all three outputs are equal to 1. The output 11 1 does not represent either binary 3 or
binary 6. To resolve this ambiguity, encoder circuits must establish an input priority to ensure
that only om input is cnccrdod. If we establish a higher priority for inputs with higher subscript
numbers, and if both 4 d Dg axe 1 at the same time, the output will be 110 because & has
higher priority than 4.

Another ambiguity in the octal-to-binary encoder is that an output with all 0's is generated
when all the inputs are 0; but chis output is the same as when is equal to 1. The discrep-
ancy cm be resolved by providing one more output to indicate whether at least one input is
equal to 1.

Table 4.7
Truth T&e of an OduI-to-81mry Enowkr

Inputs OWm

& D2 h D4 5 n6 h x Y z

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

Inputs Outputs

4 4 4 4 = v v
0 0 0 0 x x o
1 0 0 0 0 0 1
X I 0 0 0 1 1
X X I 0 I 0 1
X X X 1 I 1 1

Prlodty Encoder

Apriority encoder is an enccder circuit that includes the priority function. The operation of the
priority enccder is such that if nvoormac inpurs an qua1 to 1 at the m e time. the input hau-
ins the hixhest rrrioril~ will take mcedcncc. The uulh table of a four-inwt ~rioritv encoder is
g i en m fable 4.8. Gadditioo id the two outpuer and). the cucun has a ;turd ohtput desig-
nated b) V. tlu, is a wlrd bit ldicator that is x t lo 1 uhcn onc or more lnputr are equal tu I
If all inpulr are 0. there is no vabd tnput and V 1% equal to 0. The uthcr IW" oulpuls are nu1 in.
s w t e d when Vequals 0 and are m i h e d as don't&re conditions Note that whereas X's in
outnut columns r&resent don't-e&c conditions. the X's in the inout columns are useful for
rrprrunung a vulh table in candcn5cd form inaread of llstlng all 16 rmnlerms of four vanablcr.
the n t h table ureq an X to represent ellher I or 0 For example. XI00 repn\cntr the rulo
mintems 0100 and 1100.

According to Table 4.8. the higher the subscript number, the h iber the priority of the input.
Input @ has the highest priority, so, regardless of the values of the other inputs, when this

D,
= = D : + D ,

MUM 4.U
Mapsfor a priamy encoder

AGUM a
Four-Input prlotity encoder . . ,,, *. .,

input is 1, output for xy k 1 1 (binary 3), 4 has the next priority level. The output is 10 if
4 = 1% provided that @ = 0, regardless of the values ofthe other two lower priority inputs.
The output for Dl is generated only if higher priority inputs are 0, and so on down the priority
levels.

The maps for simplifying outputs x and y are shown in Fig. 4.22. The mintems for the
two functions are derived from Table 4.8. Although the table. has only five rows, when each
X in a row is replaced first by 0 and then by 1. we obtain all 16 possible input combinations. ,

For example, the fourth row in the table, with inputs XX 10, represents the four mintems ,

0010, 0110, 1010, and 11 10. The simplified Boolean expressions for the priority encoder
are obtained from the maps. The condition for output Vis m OR function of all the input vari-
ables. The priority encoder is implemented in Fig. 4.23 according to the following Boolean , .

functions:

. - MULTIPLEXERS

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is contro1led
by a set of selection lines. Normally, there are 2' input Sines and n selection lines whose bit com-
binations determine which input is selected.

A two-toane-he multiplexer connects one of two 1 -bit sources to a common destination,
as shown in Fig. 4.24. The circuit has two data input lines, one output line, and one selection
h e S. Whw S = 0, the upper AND gate is enabled and lo has a path to the output. When
S = I, the lower AND gate is enabled and Il has a path to the output, The multiplexer acts like

Section 4.11 Mu@lplexers 153

,

:>;. .:~.;~.:. .~~ :..~ ~~
11

1,
. ,

S 5

(a) Log diagram (b) Block dlagrm

HamE 4 3 4
T-bone-lime multlplexu

an elecvnnic switch *ill rrlccts onc of tvu wsrces The black diagram of a muluplcxer is
\omclhmes dep~cted by a u.edgc-shaped qmhol. as shounin Fig. 4 24(b). It RugpiLr i?sullly
hou a vlccled one of muluplc dm sources is direcvd into a single destinalioe. The mulupkxer
is often labeled "m in-blmk diaerams, -

A four-lo-one.lme mu111plcir.r I, shown in F I ~ 4 25 Each uf tlu fuw roputs. 4, thmugh
I,. Ir appllcd to one ~npul of an AND gale Selecuon Ilneq S, and Sb are dccoded to selects

S"
(a) W diwrsm (b) Function table

particular AND gate, The outputs of the AND gates are applied to a single OR gate that pro-
vides the one-line output. The function table lists the input that is passed to the output for
each combination of the binary selection values. To demonstrate the operation of the circuit,
consider the case when SISo = 10. The AND gate associated with input I2 has two of its in-
puts equal to 1 and the third input connected to 12. The other t b m AND gates have at least
one input equal to 0, which makes their outputs equal to 0. The output of the OR gate is now
equal to the value of 12, providing a path from the selected input to the output. A multiplexer
is also called a data selector, since it selects one of many inputs md steers the binary infor-
mation to the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,
they decode the selection input lines. In general, a 2R-to- 1 -line multiplexer is constructed from
an n-to-2" decoder by adding 2n input lines to it, one to each AND gate. The ourputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2"
of its data input lines and the single output line. The n selection lines are implied h m the 2"
data hes . As ia decoders, multiplexers may haw an enable input to control the operation of
the unit. When the enable input is in the inactive state. the outputs are disabled, and when it is
in the active state, the circuit functions as a normal multiplexer.

Multiplexer circuits can be combined with common dection inputs to provide multiple-bit
selection logic. As an illustration, a quadruple 2-to- 1 -line multiplexer is shown in Fig. 4.26. The
circuit has four multipIexers, each capable of selecting one of two input lines. Output can be
selected to come from either input A. or input Bo. S h i h l y , output Yl m y have the value of
At or B,, and so on. Input selection line S selects one of the lines in each of the four multi-
plexers. Thc enable input E must be active (i.e., asserted) for normal operation. Although the cir-
cuit contains four Zto- 1-line multiplexers, we are more likely to view it as a circuit that selects
one of two 4-bit sets of data lines. As shown in the function table, the unit is enabled when
E = 0. Then, if S = 0, the four A inputs have a path to the four outputs. If, by contrast, S = 1,
the four B inputs are applied to the outputs. The outputs have all 0's when E = 1, regardless of
the value of S.

In Ssction 4.9, it was shown that a decoder can be used to implement Boolean inctio11s by em-
ploying external OR gates. An examhadon of tbe logic diagram of a multiplexer reveals that
it is essentially a decoder that includes the OR gate within the unit. The mintems of a func-
tion are. generated in a multiplexer by the circuit associated with the selection inputs, The in-
dividual minterms can be selected by the data inputs. thereby providing a method of
implementing a Boolean function of n variables with a multiplexer that has n selection inputs
and 2" data inputs, one for each minterm.
We will now show a more dc i en t method for implementing a Boolean hction of n vari-

ables with a multiplexer that has n - 1 selection inputs. The first n - 1 vatiables of the func-
tion are connected to the selection inputs of the multiplexer. The remaining single variabIe of the
function is used for the data inputa. If the single variable is denoted by t , each data input of the
multiplexer will be z, z', 1, or 0. To demonstrate this pracedure, consider the Boolean function

F (x , y, z) = Z (1,2,6,7)

Section 4.1 1 Multiplexers 155

Thnr function of three vanahlcs can he nmplemenvd wlih a four-twne-line mult~plexcr ar
shown in Fig 3.27. The two vwiahler x and y am applied to ihe wlmtion ltner in that order. ,
is connected to the S, input and y to the So inpa. The values for the data input liner are deter-
mined fmm the uuth table of the function. When xy = 00, output F is equal to : because
F = 0 when : = 0 and F = 1 when : = I. ?his requires that variable i be applied to data
input 0. The operation of the multiplexer is such that when xy = W, data input 0 has a path to
the output, and that maker Fequal tor. In a similar fashion, we can determine fhe required input
to data liner 1. 2, and 3 from the value of F when x? = 01, 10, and 11, respectively. This
particular example shows all four passibilities that can be obtained for the data inputs.

(a) Tnltb table

PI- 4,27
Implementing a Boolean fundm

The general p r o d m for implemndng any Boolean function of n v&bIes with a multi-
plexer with n - 1 selection inputs and 2"-' data inputs follows €mm tbe previous example.
To begin with, Boolean function is listed in a truth table. Then 6rst m - 1 variables in the table
a~% applied b the selection inpuEs of themdtipkwz For each combi~timof the sddori v&-
abla, we evaluate tht output as a function of the last variable. This function can be O,1, the
varhbia, or the complement of the variable, Tbese values are then applied to the data inpuu in
the proper order.
As a m o d e~amp16, consider tk implementation of the Boolean function

Thii function is implemented with a multiplexer with three seleccim inputs as shown in -
Fig. 4.28. Note that tbe W v&le A must be connected to selection input S2 so that A B,
and C cotrespond to s e l h inputs S2, S1, and So, +veIy. The values for the data inputs
are detmninecl from thc: troth table Win the figure. The comspding data line number is
&&mined from the b i i conhimiw-of ABC. For example, the mbIe shows thru when
AhEC - 101, F = D, so ?be input vadabIe D % appIied to data input 5. The binary constants
0 and 1 comspond to two fixed signal values. When integrated M t s are used, logic 0 cor-
responds to signal ground and logic 1 is equivalent to the power signal, depending on the tech-
nology &.&, 5 voles).

Amultiplexer mbeconsIru~ with t h r e e s t a t e m a circuits exhibit three states.
lbo of the stam am signals equivalent ta logic 1 and logic 0 as in a conventional gate. The
third state is a high-impedaance state in which (1) the logic behavts like an o p c e t , which
means that the output qpem to be di6cowemd, (2) the circuit has no logic dgMicanec, and

A B C D F

0 0 0 0 0 F = D
0 0 0 1 1

0 0 1 O O F - D
0 0 1 1 1

0 1 0 0 1 F = D .
0 1 0 1 0

0 1 1 0 0 p = o
O l l l O

1 0 0 0 0
1 0 0 1 0 F = O 3

Section 4.1 1 Multiplexers 157

FIGURE 4.7#
lmplenirnmg a,four-input fundion with a multiplexer

(3) the circuit connected to the output of Ihe three-state gate is not affected by the inputs to the
aate. Three-srate eatel may wrform any conventionill loxic, such ar; AND or NAND. However,
;he one mu\t commonly usfd is Ihe buffer gate

The graphic s)mbol for a three.aate buffer gate rr shown in big. 4.29. It is Ji,tinguished
fmm a normal buffer by an Input control Loe entenng the boltom of Ihc r)mbol. The buffer
has a normal innut. an~outou;. and a control inout that determiner the state of the outout.
When the control Input IS equal to I. b e output r , enabled and the gate bchaves llkc a con-
venuonal buffer. ~ 8 t h the output equal lo the normal input \Vhcn the control lnput ts 0, lhc
ontour is disabled and the gate goes to a bi~h-impedance state, regardless of the value in - - - .
the normal roput. The hlgh-~mpcdancc stale of a thrcc.,tdts gak pruvde, d spcclal feature
not avanlahle in other gates Because of Ihls f c a ~ r c , a large a u m k r of three-state gate out-
puts can be connected with wires to form a common line without endangering loading
effects.

No-1 input A Output Y = A if C = 1
High-irnpcdanes ifC = 0

Control input C
maw 4.29
Graphic symbol for a three-state buffer

The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30. Part
(a) of the figure shows the construction of a two-to-one-Iine multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output line.
(Note that this type of connection cannot be made with gates that do not have three-state out-
puts.) When the select input is 0, the upper buffer is enabled by its control input and the bwer
buffer is disabled. Output Y is then equal to input A. When the select input is 1, the lower buffer
is enabled and Y is equal to 3.

The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b). The ou@ts of
4 three-state buffers are connected together to form a single output line. The conmol inputs to
the buffers determine which one of the four nwmal inputs lo through I3 will be conne.cted to
the output line. No more thm one buffer may be in the active state at any given time. The con-
nected buffers must k controlled so that only 1 thee-state buffer has access to the output while
all other buffers are maintained in a high-imNance state. One way to ensure that no more than
one control input is active at any given time is to use a decoder, as shown in the diagram. When
the enable input of the decoder is 0, all of its four outputs are O and the bus line is in a high-
impedance state because dl four buffers are disabled. When the enable input is active, w e of
the three-state buffers will be active, depending on the binary value in the select inputs of the
decoder. Careful investigation reveals that this circuit is another way of constructing a four-to-
one-he multiplexer,

(a) 2-to-1-line mux (b) Ctc-1-line mux

mu# 130
Muktplexers wlth three-state gates

Section 4.11 HDL Models of Combinational Clrcultl 159

4.12 HDL MODELS OF COMBINATIONAL
CIRCUITS

The Verilog hardware description language @DL) was innodoced in Section 3.10. In the cur-
rent rcctian. we present more elaborate examples and compare alternative descriptions of com-
binational circuits in Verilog. Sequential circuits are presenled in the next chapter. As mentioned
pmviausly, the module is the basic building hloek far modeling hardware with the Veriiog
HDL. The logic of a module can be described in any one (or a combination) of the following
modeling styles: . Gatc-level modeling using instantiations of prrdched and userdefmed primitive gates. - Dataflow modeling using continuous assignment statements with the keyword .ssip.

Behavioral modeling using procedural assignment rtatemenrs with the keyword always.

Gate-level (srmchral) modeling describes acirenil by spectfying its gates and how they hey con-
nected with each other. Dataflow modeling h usedmostly for describing theBoolean equations
of combinational logic. We'll also consider here behavioral modeling Ihat is used to describe
combinational and &uential circuits st s higher level of ahsuaction~Them is one other mod- -
rltng uyle. called suiluh-level modclmng It is <omctimes . ~ d in the r~mulauonof MOS uw-
s~slorc~rcurt models. bur no1 in loglc synthesrs. We conr~der suitch.lcvcl modelnng bcicfl) ~n
section 10.10.

Gate-Level Modelhg

Gate-level modeling was introduced in Section 3.10 with a simple example. In lh is type of
remesentation. acircuitis soecified hv its loeic eates aodtheirinte~connstions. Gate-level mod- , - -
cling pm, ides a lexrual dcrcnpuon of a whrmatlc diagram. The Vcnlog HDL includes 12 baste
gates m predefined pnmiti\es. Four of these pnmiti,c g a t s arc of rhe bent-state bpe The olher
eight are the same as the ones l~*ted m Section ? 8. They are all declared with the lawrrca$e
keywords and, nand, or, nor. nor, mor, not, and buf. Primitives such as and are n-inpur
primitives. They can have any number of scalar inputs (e.g.. a the- input and primitive). The
bufand not primitives are n-output primitives. A single input can drive multiple output lines
distinm~ishd hv their identifen.

~ ~- , - ~~~ ~~~~

The Verilog language includes a funcuonal description ufeach type of gate, too. The logtc
of each gate is bared on a four.valucd s)stem. When the g a e i are simulated. the simulator
assigns ooe value to the output of each gate at any instant. In addition to the two logic val-
ues of 0 and 1. there are two other values: u n b m and high imprdnnce. An unknown value
is denoted by x and a high impedance by 2. An unknown value is assigned during simula-
tion when the logic value of a signal is ambiguous-for instance, if it cannot be detennined
whether its value is 0 or 1 (e.g.. a flip-flop without a reset condition). A high-impedance
condition occurs at the output of three-state gates that are not enabled or if a wire is inad-
vertently lcfl unconnected. The four-valued logic tluth tables for the and, or. xor, sad not
primitiveanre rhawa in Table 4.9. The w l h table far the other four gates is the same, except
that rhc outputs are complemented. Note that for the and gate, the output is 1 only when
both inputs an 1 and the output is 0 if any input is 0. Otherwise. if one input is x or 2 , the

Table 4.9
Truth Table Ibr Prrede8fd Prfmitht Gates

0 x X X H l X X

0 x * x x l x x

not input output p
X K X X X X H
z x x x x e x

output is x. The output of the or gate is 0 if both inputs are 0, is 1 if any input is 1, and is x
otherwise. *

When a primitive gate is listed in a module, we say that it is instantiated in the module, In
general, component instautiations are statements that reference lower level components in the
design, essentially mating unique copies (or instances) of those components in the higher
Bvel module. Thus, a module that uses a gate in its description is said to instuntiate the gate.
Think of instantiation as the HDL counterpart of placing and connectjag parts on a cirmit
bard.

We now present two examples of gate-level modeling. Botb examples use identifiers baving
multiple bit widths, cded vectors. The syntax specifying a vector includes within square brack-
ets two numbers separated with a colon. The following Verilog statements specify two vectors:

OW [a: 31 D;

wire [7: 01 SUM;

The first statement declares an output vector D with four bits, 0 through 3. The second de-
clares a wix vector SUM with eight bits numbered 7 through 0. (Note: The k s t (leftmost)
number (array index) listed is always the most significant bit of the v m ,) The individuaI
bits are specified within square brackets, so DL21 specifies bit 2 of D. It is atso possible to ad-
dress parts (contiguous bits) of vectm. For example, SUM[2: 01 specifies the three least sig-
nificant bits of vector SUM.

HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder. (See
Fig. 4.19.) This decoder has two data inputs A and B and an enable input E. The four ouiputs
are speczed with the vector D. The dre declaration is for internal co~ectiom. Three not
gates produce the complement of the inputs, d four nand gates provide the outputs for D. Re-
member that the output is ahays listedfirst in t h port list of aprimitive, followed by the in-
puts. This example describes the decder of Fig. 4.19 and follows the procedms established
in Section 3.10. Note that the keywords not and nand are written only once and do not have
to be repeated for each gate, but commas must be inserted at the end of each of the gaks in the
series, except for the bst statement, wbich must be terminated with a semicolon.

Section 4.12 H.DL Models o f Cambinational Cjrcuk 161

/I Gate-level description of twptwfour-line demder
I/ Refer to Fig. 4.19 with symbol Ereplaced by enable, for clarity

module deccder-Zx4jates (D, A, 6, enable):
output [O: 31 D:
Input A, 8:
Input enable:
w l n A-not. 0-not, enable-not;

not
G1 (A-not. A).
0 2 (6-not. 6).
0 3 (enable-not, enable):

nand
0 4 (D[O]. A-not, 0-not, enable-not),
0s (D[l], A-not, 6, enable-not).
G6 (D[21, A, 6-not, enable-not).
07 (D[3], A, 6, enable-not):

endmodule

Two or more modules can be combracd to butld a hlcrarchlcsl dercnptlon or a design
There arc two base t) p r of desrgn methadologas lop down and bottom up. In a top-down
design, the top-level block is deflned and then the subblocks necessary to build the top-
level block are identified. I n a bottom-uo desien. the buildine blockr are first Identified and . - -
then romhined to build the lop-lexel block. Take. for rmmple. the binary adder af Flg. 4.9.
It can be considered a, u [up-blockcomponent hut11 u i th four full-addcr blocks. while each
full adder i, bud1 ui th tuo halt.nddelcr bluvk,. Ln a topdown dcnpn. the four-bit adder is de-
fined first, and then the two adders are described. In a bottom-up deugn, the hay adder is
defined, then each full adder is const~cted, and then the four-bit addw is butlt from the full
adders.

A bottom-uo hierarchical descri~tion o f a four-bit adder is shown in HDL Example 4.2.
The half adder ir defined hy in\t=ntiaring primiti\e gate\. The next module describe% the
full adder by tnrtantiattng t un half adden. The third module dewribes the four-bit adder by
tnslanuauny fuw fdll adders Note tha thc firs1 chardcler of an identifim cannot be a num.
ber. but canbe an underscore. so the module name -4bitadder is valid. An alternative name -
[hat r, mcanmghl. bul does not require a lcadlng undencorr. rr addtr-4-btl The tnslanu-
alronrr done by ustng lhe name of the module that rr mstanr~alcdtogcther wtth a neu (or the
same) set of port names. For example, the half adder HA1 inside the full adder module is in-
stantiated with pons S1, CI . x, andy. This produces s half adder with outputs S1 and CI and
inputs x and p.

Section 4.12 HDL Models of Combinational Circuitr 163

HDL Example 4.2 illusmates Verilag 2001,2005 syntax. which eliminates exua typing of
identifiers declarinrina the mode kg . , output), type (reg), and declmtion of a vs tor range (e.g..
13: 01,. The fmst veiion of the st~ndardii995j"ses Gnarate statements for these declarations. . ..

Note that modules can be instantiated (nerted) &hm other modules, but module declara-
tions cannot be nested: that is, a module deffition (declaration) cannot be placed within an-
other module declaration. In other words, a module deffition cannot be iascned into the text
between the module and endmodule keywords of another module. The only way one module
definition can be incamorated into another module is bv instantiating it. Instantiating modules ~ ~ ~~ -
ulthm olhcr mdulc, rrcate, a hlerarclucal decomphiuun uia Jestgn. Adercnpn#,n "fa m d -
ule i~ sdld 10 be u r,rurruml dc.cnplton if it is compo,cd of in\hnua#un\ of other modules.
Note aka that irrshlnce names must be specified when defined modules are instantiated (such
as FA0 far the fmt full adder in the third modulc), but using s name is o~tionsl when instanti-
altng pnrmtnre gales Module r,pplr-ror~-4-bi1-ad&r a composed of in\tantlecd and in-
terconnected 1LU adder,. cachof uhich is llvlf complsed of half adders and romeglur IOXIC
The n,p lc\<I, ur p a n t module, 01 the design h l m h) ir h, mc&le ~pple-cam,t-4-htr_uddrr
Four cbpier off;ll_&r are its childm&lules, etc. CO is aninput of the cell faming the leas1
significant bit of the chain, and C4 is the output of the cell faming the most significant bit.

Three-State Gates
As mentioned in Seetion 4.11, a ke-s la te gate has o contml input that can place the gate into
a high-impedance stale. The high-impedance state is symbolized by r in Verilog. There are f o u
types of three-state gates, as shown in Fig. 4.31. The bufifl gate behaves like a normal buffer
if control = 1. The output goes to a high-impedance state z when control = 0. The buSm
rate behaves in a nmilarfashioa erceor that the hi&-imoedance state wcun when control = 1. - - .
The two not paler qmatc in a <lmllar manner. erccpl th.1 lhc aulput is the complcmcnl of
the lnput uhen the gate is no1 in a high-nmpedance ,late The gates arc instanl~ated with the
sta~ernent

gore name iotdtp~r. input. collrml):

in y ""I

eontrot --J
nolifl

FIGUR€ 4.31
Three-state gates

The gate name can be that of any 1 of the 4 three-state gates. In simulation, b e output can re-
sult in 0, 1, x, or z. &o examp1es of gate instantiation are

buflfl (OUT, A, control);
notlOO (Y, B, enable);

In the ftrst example, input A is mferred to OUT when control = 1. OUT goes to r when
control = 0. In the second example, output Y = a when entable = 1 and output Y = B' when
enable = 0.
The outputs of three-state gates can be connected together to form a common output line.

To identify such a connection, Vcrilog HDL uses the keyword W (for tristate) to indicate that
the output has multiple drivers. As an example, consider the two-to-oneline multip1exer with
thcee-state gates shown in Fig. 4.32.

The HDL description must use a bci data type for the output:

I1 Mux with threeatate output
module mux-M (m-out, A, B, select);
output m-out;
Input A, B, select;
tri - m-out;

bum1 (m-out, A, select);
b u m (m-out B, select);

rndmodule
The 2 three-state buffers have the same output. In order to show that they have a common con-
nection, it is necessary to declare no,o~t with the keyword tri.

Keywords wire and tri are examples of a set of data types calted nets, which represent con-
nections between bardware elements. In simulation, their vdue is deternzined by a continuous
assignment statement or by che device whose ouqut they represent. The word ne; is not a key-
word, but represents a class of data types, such as wire, wor, wand, trl;, mpplyl, d suppIy0.
The wire deckation is used most fresuently. In fact, if an identifier is used, but not declared,
the language specifies that it will be interpreted (by default) as a wire. The net war models the
h d w m implementation of the wired-OR configuration (emitter-coupled logic). The wand
models the wired-AND configuration (open-collector technology; see Fig. 3.28). The nets
supply1 and supply0 represent power supply and ground, respectively. They are used to hard-
wire an input of a device to either 1 or 0.

FIGURE 4.32
hvo-toondine multiplexer with -sfate buffan

Sectlon 4.12 HDL Models of C m b i n a t l o n d Circuits 165

Dataflow modeling of combinational logic user a number of operators that act on operands to
pmluce desired results. Verilog HDLprovides abu t 30 dSerenf o p m . Tabh4.10listssome
of there nwrarars. their svmbolr. and lhe -ration that lhev aerfnm. (A com~lete lia of on. , .
erator, ruppuncd by Vcnlog 21UJ1.2W5 ;an be found in'l'abir 8.1 in Srcooo 8.2.) It 1s neces-
sary lo distingu~& herueen ailhmm: and loglc oyrartom, u, diflerenl $ymhals a e used for
each. The plus symbol (t) indicates the arithmetic o p t i o n of addition: the bitwire logic
AND operation (conjunction) uses the symbol &. There are special symbols for bihvise logi-
cal OR (disiunctionl. NOT. and XOR. The eaualitv svmbol uses two eouals sims (without
spaces dtw& the i j to distinguish it from thekquaia sign used with the k i g n stateient. T k
bitwise operators operate bit by bit on a pair of vecfor operands. 'Ihe concatenation operator
provides a mechanism for appending multiple operands. For example, two aperands with two
birr each can be concatenated to fonn an operand with four bits. The conditional operator acts
k e a multiolexer and is exolained lam. in coniunction with HDLExamole 4.6.

Daraflow modeling uses contiauous assignments and the keyword ad@. Acontinums as-
signment is a statement that assigns a value to a net. The data type family ner is used in Ver-
ilog HDL to represent a physical connection between circuit elements. A net is declared
ex~ l i c i t l ~ by a kevword (e.s.. wim) or bv decladnn an identifier to be an outwt non. The . . . - . .
logic \due nsoocialed with anel ~ i d e t c m c d by ahat the net is uonnccledto I f the net iscon-
neclcd lo an ourput of a talc. the net ir raid tu bednvm hy the ciltc. and the logic value of th~.
net 1% detemuned by the loglc \dues of the inputs to the gate and the rmlh table ofthe gale If
the identifier of anet is the leff-hand side of a continuous assignment statement or apmedural
assignment statement. the value assigned to the net is soecitied bv an exoression that uses - -
operands and operators. As an example, assuming that the variables were declared, a two-to-
one-line multiplexer with data inputs A and B. select input S. and output Y is described with
the continuous assignment

assign Y = (A & S) I (B & -S):

Table 4.10
some Verilog HDL Operotom

Sylnbol Opcrstlon

+ binary #&tiem - binary rubvactian
& bitwiee AND
I bitwise OR

bitwise XOR - bitwise NOT
-- -- cquahty
> grealec than
< less than
{ } eoneatcnatior~
?: conditlanal

The relationship beixm Y, A, B, and S is declad by the keyword adgw followed by the tacget
o u p t Y and an equals sign Following the equals sign is a Boolean expressim Jn hardware terms
W assignment would be equivalent to connecting the output ofthe OR (I) gate to wire Y.

The next two examples show the dataflow models of the two previous gate-level examples.
The dataflow description of a two-to-four-line decoder is shown in HDL Example 4.3. The cir-
cuit is defined wih four continuous assignment statements using Boolean expressions, one for
each output. The dataflow description of the four-bit adder is shown in HDL Example 4.4. TZle
addition logic is described by a single statement using the operators of additim and concatena-
tion. The plus symbol (+) specifies the binary addition of the four bits of A with h c four bits of
B and the me bit of CJn. The target output is the concatmtion of the output carry C-out and
the four bits of Sm. Concatenation of operands is expressed within braces and a comma sepa-
rating the operands. Thus, [C-out, Sm) represents the five-bit result of the addition aperation.

HDL Example 4 5

I t Dataflow description of two-to-four-line decoder

I/ See Flg. 4.19. Note: The figure uses symbol E, but the
I/ Verllog model uses enbb/@ to dearly Indlcab funetlonality,

module decoder-2x4-df (
output [0: 31 D,
input A B,

enable
1;

I/ Verilog 200 1, 2005 syntax

awlgn D[O] = -(-A & -5 & -enable),
D[1] = -(-A 8 8 & -enable),
D[a] = -(A & -B & -enable),
D[3] = -(A & 8 & -enable);

endmodule

HDL Example 4.4

I / DaMow description of four-blt adder

I! Verllog 2001,2005 module port syntax

module binary-adder (
output [3: 01 Sum,
output C-out,
input [3: 01 A, 6,
Input C-In

1:
assign {C-out, Sum) = A + B + C-in;

endmodule

Section 4.12 HDL Models of Comblnatlonal Clrculti 167

Datdow HDL models describe combinational cirtuits by theirfiefion rather than by thcu
 ate srmcture. To show how &tatlow &Eeriptim facilitate digital design, consider the 4-bit mag-
&de comrrarator described in HDLExample4.5. Themcdule specifies two 4-bitinputs A and
Band ihn;aumus. One oumut (A it BI iiloeic 1 if A is Less thin B. a seurnd outout (A x r m . - -
Br l a g ~ ~ 1 rfA ir greater lhan 8. and a th~d output m-rq-B, 1, l a g ~ ~ I tfA is equal to B Note
that quaint) (~ b n t ~ ~) 11s qmbollred ulth two equal< s~gn, (= =) I,, di\t~ng~u\b the apemuon
h m lhat of the heassignment operator (=). A Veritag HDL synthesis compiler can accept this
mcdule description as input, execute synthesis dgorithmr. and provide sn output netlist and a
schematic of a c~rcuit equivalent to Ihe one in Fig. 4.17, all uithout manual intervention!

HDL Example 4.5

N Dataflow description of a four-blt mmparator IN2W1.2005 syntax

module mag-mmpam
(output A-11-0, A-W-0. AJtLO_B.
Input [3: 01 A, B

J;
asrlgn A-11-0 = (A < 8):
.u lgn AJCB = (A > 0);
assign A - q B = (A == 8);

endmodule

The next example uses the conditional operator (? :).This operatar lakcs three operands:

condirion ? true-expression :falnsxprersion:

me condition is evaluated. If the result is logic I. the me expression is evaluated, If the result is
logic 0, the false expressionis evaluated. The two conditions together an equivalent to an if-else
c&dition. HDL ~x&le 4.6 d e s d x s atwet-one-line multi&exer using& cconditinnal wer- .
ator TIE continuous assipnent

assign OUT = select 7 A: 8:

specifies the condition that OUT = A if selecr = 1, else OUT = B if sclecr = 0.

ADL Example 4.6

N Dataflow description of twc-twne-line muitlplexer

module mux-2x1-df(m-out, A, 0, select):
output m-out:
input A. 8:
input select;

assign m-out m (select)? A : 8;
endmodule

~ehrrviont madew-~dictli~ll u a functional rod k~cl. rt i~d
r n o s r l y m ~ b e w q u t n t i P l ~ b u t m ~ k U B d d t O ~ ~ c i r c u i t r .
H e r t , w ~ v t t w o r i m p k ~ ~ t ~ ~ r o i a c r o d u o c r h e # r ~ B c b w i o n l
~ i r ~ i n m o r e d d h S s c d o o 5 , 6 , a f t e r t h e W y o b ~ c t r m i t r .

~ v i o n l d e s c r i p t i a m u s c r b e ~ J r r r J a . f a ~ b y r p ~ e v e a t ~ e x -
p w o l o n m d a h o f ~ w i g n u m t ~ T k e v e p t ~ m p a s i m s p c i 6 a
~ t h e ~ w i l l e k e c u l o . ' I l m ~ a d p t o f ~ ~ ~ ~
b s d k ~ d r r t a r y p p , ~ m t h c r r l r e d u r t y p c . ~ t b e ~ ~ t d r a r r -
dpnmt my k miowwrrly updated, r rep thta type maim its rrlw until a new vrhw h
= k d

HDL Example 4,7 shows the khrvid dawriptlon of a twet~oab-llac multiplexer.
(Comprrr it with WDL EMmple 4.6.) S b v a l e m-our L r ~llsget wtplt. it must bt &-
elurd u data (in r p b d i k to tbe ortpllt dcclmtion). The procsdunl awignment st~&-
~ W t h t . I r r q . n W r r e n c r * l r r A q P l m M h r ~ h ~ o f t b e v ~
Li~lftertht8nymboi.~~rbu~irwsedcoloa(;)w~eadob~drryr~~
mtat.) lo thfs case, tbm vadabk &re rbt faprrt uufabk A, B, md a e k Tbe statemenrr
e*ecure if A. B. a deci changes vnluc. Nore Ihu Ibe k e p d w, i m 06 the bitwise
logical OR -tor "Iu, is wed betwan variables. Tbe cadhiad rtptamtpt f i 4 m p
v idesaWo~basedupoatheva lueo i tbedminp l t ,Tb tY~crpbtwr i~ r rhh-
out tb quallty symbol:

moddo m ~ Z x 1 , W t (mout, A, 6, -1;
output m-aut;
input 40,-
m m-wt:

Section 4.12 HDL Models of Combinational Clrcults 169

the fmt item that matches the case expression is executed. In the absence of a match, no
statement is executed. Since releer is a two-bit number, it can be equal to W. 01.10. or 11. The
rpse items have an im~lied ~rioriw because the list is evaluated from too to bottom. . . .

The list is called a re,tsiliviry lisr IVerilag 2001.2005) and is equivalent to the mcnt con-
rmi expnrrion (Verilog 1995) famed by "ORing" the signals.

N Behavioral description of four-to-one ilne rnulflplexer

I/ Verilog 2001,2005 porl syntax

module mux-4x1-beh
(output ng rn-out,
Input in-0, in-1, in-2, i n g ,
Input [I: 01 select

1:
always @ (in-0, in-1, in-2, in-3, select) 11 Verilcg 2001,2005 syntax
case (select)

TWO: m-out - in-0;
?MI: m-out . In-1:
2'blO: m-out = in-2:
Yb11: m-out = in-3;

e n d u s e
endmodule

Binary numbers in Verilog are specified and interpreted with the letter b preceded by a
prime. The size of the number is wrinen first and ha its valm. Thus, 2'WI specifies a two-
bit bina~y number whose value is 01. Nwnben are stared as a bit pattern in memory, but they
can be referenced in decimal. octal, or hexadecimal formats with the letters 'd. '0, and 'h. re-
rpeeu\el) If the br*e of the number i s nor 5peclfied. 11% interpretallon dcfaultr to decimal If
the w e ut the nunlber 15 not rpcctfied. the s)rtema,sumc. thdt the ,rreaf the number is at least
32 bits; if a host ~imularor has a larger word length-say, 64 bits-the language will use that
value to rtorc unsized numbers. The integer data type (keyword integer) is rt&d in a 32-bit
representation. The underscore 1-1 may be inserted in a number to improve readability of the
code 1e.g.. 16'b010L1110~0101L0011). It has no other effect.

The case construct has two important variations: cesex and epse2. The fmt will treat as
don't-carer any bits of the case expression or the caw item that have logic value x or z. The
casez consuuct mats as don't-cares only thelogic value z, for the purpose of detecting amatch
benvcen the case exorerrion and a w e itcm.
U the 11,t of case item< does not tnciude all posstblc bat panemr ofthc cascexpress~on, no

match can be detected L'nllsted case items. 1.r . brt pancms that an not expllc!tly decoded
can be rreared by using Ule default Leyword as the, last item in the list of case items. The as- . .
sofiated statement will execute when no other match is found. This feature is useful. for ex-
ample u hen there are more po.stbir. stas c d e s ma aqurnttal ma~hlnc than arc aetuall) used
t inmy d d~faultcaw lfem let* thcdcvgncr map 311 of thc unwed staws to adc~lred next state
withoa having to elaborate each individual state, rather than allowing the synthesis tool to ar-
bitrarily assign the next state.

Apertbcaehiam~Lpropramused~W~aad~r~wtomHDL.modet
oiacfficultinard##rt~irmdobDemttr~d~simulrtion.~bcaceercaabe~
~ x r a d ~ y a n d m r y ~ f w s e t t ~ d m l o p t h a n B t ~ r h r t i r o w c e d m r e r u h r
d a m # O B f Y ~ ~ a O d # t b e t e w ~ t h r t i s u s o d m o e # r ~ C l m ~ k ~ t o
wri#sddhatwi l l ~ a ~ t ~ , t l t c r d s i ~ $ I o f t h e ~ ~ t h r t r n

Howcver, the w kwh caasid#rd bcre m nladvely dmprk k c the dmiu we
w a a t b m i m p l ~ t w l y ~ l o g i c . T h c e @ e l r e ~ b ~
~ ~ f ~ d H D t ~ ~ , C t r a p o e r 8 ~ o # r b e n d r # k g r m m d e p b r ,

I n a d d i c i o a t o c m p l ~ ~ r h r q r w r a e m e p t , m ~ u ~ t b e l d e b l ~ m e ~ t ~ ~
v k r s d m u l u s # ~ l f i e c i r e u i t b e h g o e # s d . W u # r b e t # m ~ ~ ~ ~ ~ . ~ -
ally, dm@ is a Verila Ian- canrcruct how tbe a8datd Matrmcnt is to
e x m u (mbw to h e event cmm1 exp#dm), The dwap mmmt errecuow Fcpotedly in
aloophTbeWm#mentexscumoaly oaa, stardgsfromrimphhdmt0,admry
m d w t w i t h a o y o p e n d ~ ~ s t b e t a r e d e l a y s d b y a ~ a ~ o f h u n f t a ~ ~ b y
tk symbd #. For example, coasld# tbt W block

Sectlon 4.12 HDL Models of C o m b l n a t J o ~ I Cim~l t c 171

N Generate stimulus, using Initial and always statements.

N Dlsptay me output response (text or graphics (or both)).

endmodule

A lest module is written like any other module, but it typically has no inputs or outputs. The
signals that are applied as inputs to the design module for simulation are declared in the stim-
ulus module ss local reg dam tpe. The outputs of the design module that sn displayed for teat-
ine declared in Ihc stimulus module as local wim dam ww. The module under lest is then - , .
insmuaud. usmg the local idrnrifius in its pon list. Figure 4.33 clarifies this relationship.
The stimulus module generates inputs for the design module by dcclanng local identifiers r A
and r-B as mg type and checks the output of the derign unit wsth the vim identifier r-C. The
local identtfien are then used to instan~ia~e the design module king tested. The simulator as-
roc~aus the (acrual) local Identifiers within the unt knch. r A , 0, and LC, wnth the formal
identifiers of the module (A, B. 0. The associauon shown here is based on position in the pon
lib[. which is adwuale for the examples that we uill consider. The reader should now, however.
that Verilog pro;ides a more flexile name association mechanism for connecting pons in
larger cireuiu.

The resoonse to the stimulus eenerated bv the lnltial and rlwaw blocks will anwar in text - . &

format as standard output and as waveforms (timing diagram) in simulators having graphical
oumut capability. Numerical outputs sn dis~layed by usina Veriloe wsrem r&. These are built- . .
in sysum functions that sn recognized by keiwords backgin with the symbol 8. Some of the
system tasks that are useful for display are

Wisplay--display a one-time value of variables or suings with an end-of-line return.
$writ+same as Wisplay, but without going to next line.

Smonitor4isplay variables whenever a value changes during a simulation run.
S t i m d s p l a y the simulation lime,

$finish-terminate the simulation.

FIGURE 4.33
InteratIan behmn rtlmulur and derign moduks

The syntax for $display, $wdte, aad !$monitor is of the form

Task-- @mmt ~ ~ 1 o r t , agumenr list);

The format specification uses the symbol % to specify the radix of thc numbers that me dis-
played and m y have a striag eraclosad in quotes ("). The base may k binary, Q e c d htxa-
dechal, m d , idenMdwiththesymbols%& %d,%h, and %,-tively (FBB, &D, BH,
and %O are valid too). For example, tlae mtement

Misplay (%d %b %b", C, A, B);

specifies the display of C in dscimat and of A and B in bin&ty. Note that there art no commas
in the format specification, chat the fama s p c W o n and argument Ust arc stprated by a
comma, and that the arpnent list has commas between the variables. An example rbar. spec-
ifics a string *nclosed in quotes m y look like the statement

d will produce the display

where (time =), (A =), and (B E) arc part of the ~tring tO bG di5playd. The format spifiers
%O& %b, and %b specify the base for $ h e , A, and B, m w v e l y . In displaying time vd-
ues, it is better to use the format %Od instsad of %d, This provides a display of the sigaificmt
digits without the leading spaces that %d will include, (%d will disphy about 10 leading spaces
hause time is calcdad as s 32-bit numb.)

An example of a stimulus modult i s shown in HDt Example 4.9. The circuit to ?x tested is
the two-to-om-line muldplextr dwrikd in b m p l e 4.6. The module tm2xI-dfhas no
portrs. The inputs for th mux am dbclared with a byword and the outputs with a wire
keyword. Tbe mux is instantiated with tbe lmal variable. The IniW block specifies a se-
quence of b i vatues to be applied thing the simulation. The output mipow is checked
with thc $monitor system task. Every time r variable in its argument changes value, the sim-
ulator dispiays the inputs, output, and h e . The result of the s ~ a t i o n is listed under the sim-
ulation log in the example. It shows that m-out = A when select = 1 md m-out = B when
select = 0, verifying the -tion of tk. multipker.

HDL Example 4.9

11 Tesi b- with s~tnulm f u murrmx2x11df

module Lmu~Zxl-df;
wlm tmux-out;
rea t h LB;
w t w l a
parameter stop-time n 50;

Inlllal# &p-Ume ((inhh;

lnltlal -In
I-*= l;t-A=o:I-B=l;

#lo 1-A = 1: 1-6 = o:
n o I-*= o:
#lo 1-A-o:t-6-1:

md

InlUaI b.pln 11 R w p o n ~ manllw
I1 WhW C Urn Select A B m-ow):
I1 k n o n k (Wtna,, ' %b %b %b %b'. t-wlect, LA, LB. t-m-outk
*nonuor (Tms;;'. SUmm., " ~ l e c l = %b A = %b B = %b OUT = %b",
1-wlect. 1-4 1-B, l-muyout);

and
endmodule . , -,

11 Dstallow da&pUon of lwc-twrdlne muMplexer

11 from ExetnP 4.6
modub mu-Zxl-df (m-out. A, B. seled):
Qwut m-M:
input 4 B:
lnput =W

Lngic simulation la a fast, accurate method of analyziq combiaationol circuits to vdfy
lhlt they optepr0paly. T k e are two types of verifioaion: t u n n i d and timing. Infunc-
t i o ~ l verification. we sNdv thc circuit l o ~ c a l omt i on inde&Uv of timinn ~ h -
tions. This can be done b; deriving rhe k t h i b l e of the cdmbinatikwJ h i t u r . In riming
verification. we sNdy thc cirtuit's opntion by including the e h t of delays thmub the
gates. This can be done by observine lhe waveforms a the out~ue of tbe &ICS wh& lhev
&pond lo a given input. AD example of 8 circuil with gue ds~b vu prosklcd in
3.10 in HDL Bumple 3.3. We aexr l o w an HDLexampk Ihl Lt tbe thc n b k 01
a combinational circuit. A Elllonltor system task dimlays thc C&UI a d by the given
stimulus. A commented slIemtitive s & m t having i $&play I& would neatc I bider
l b t d d be used with 8 Sledtor s u ~ l to elimirule the nptitim of ounc6 on each
h e Of OUQUI.

l l w analysis of combinaional dreuiu was c o v d in Seotion 43. Amultilevcl circuit of a
f~ll adder rvkc a m ~ y r ~ d , and its rmth table was dcrim~ by iqxairn.m ~WICWI ~ p d o n
of Ibis circuit is sbown in HDL h p l e 4.10. The circuit has three inpuu, tao outputs, and

n i n e g a p e s , T h c d e s c t i ~ m d r h e ~ t f o U o w r k h ~ b a w e e n t h e ~ r -
to tbe schematic d i m of Pig. 4.2. The sdmulu for cb circuit b W fn ck ssc-

ondmoduk*Thtiapltsfor&~breMtarrapsciasdwlhathrw-bitrrp~D.
D[2]hcguivdattoinpwA, D [l] t o ~ B , a P d D [O] t o I n p l t C . T b e ~ d t h e ~
f i d & u t d e c l r r r s d m I r t r r . T b e ~ o f ~ i s a r m s d ~ J m ~ a ~
ipQlsrry~ceforde~tkoamplemeatdasl~(~drppadinO~).Thia
procsdurrfoII~rbt~wtliwdhFig.4.33.Therrpsdloopprovld#~seveablnrry
~ r f t # 0 0 0 ~ t b e w t b t a b l c , ~ n r u h a F t t W r i m u l a d o a ~ ~ a u p r t t n r t b E l M e
~~withtheemmpk,~trwbuMeWrbowsrbrttbcc~uaMrdder,

/ l O 1 B d s v d ~ d d r a r l t d F @ , 4 , 2
moduk w o l I F k 4 3 (A B. C, Fl, F2):
mil A,B,C:

Fl, F2:
win n , n + r s , m - b , ~ i , m , m

g?(T l ,kB ,C) ;
ind@CM,A,B,C);
ndp3(El,A,Bk
ad 94 (€2, A, C);
nd gb (E3,B, Cl;
w g6 (F2, E l , €2, €3);

g? (F2-b, RR
ad 08 m, Tl , R-b);
ar g9(F1 ,nnn) :

lndmokrk

/I sdfwlrw to matym ms drcu#
-mdreult;
ng I?: q 0;
wln F1, F2;
-d--42 M-F4-32 @m, Dtll, 0101, F1, m);
w
kghr
0.-
np#t(f)P10O=O+l'bl;

.nd
b a d
kr#ntW(%RC.9b&Fl m 9 C b f 2 - M a , D,Fl,F2);

rndmoduk
8lmuWbg: ABC.000F1 wOF2.O
ABe=W1Ft~1F210ABC-O10F1=1F2rO
ABC.011 F1 =OR=lABC-lWFl =I M 4
ABC.101 F1 ~OF2~1A0C-110FI = O R = 1
ABC.111Fl = 1 f 2 = 1

P R O B L E M S

~ m ~ m u l i r d v i l h * l p p a r r W h s d o f h b m k W b u e a p p m p i . l c . a b @ & ~

I . o d i l l m w H D L m O d c l i o ~ ~ I c m u c e m ~ ~
4.1 %si& lbc mmbhtimd drmiLI s h in Fu. W, 1 (HDL- sea Problem 4.49).

rimdtbefmminputr
(I) L i u m a m a h u h l c s r i ~ 1 6 b i a Y y ~ ~ W f m m i a p u ~ u * b I s r , T h a ~ ~ (h s b i ~

n u , v d u u f m T l t h ~ T r . n d a u ~ L I F I m d F 2 i . h u b l c .
(E) P1mhBmlC.OO~~fund~~~bput(b)m-.od~thatlbcrimp~

B m b +m M e4UI"dmt w lho DllCT OM in pan (a).

4.3 PaUu~trhombAg,4426(SIE6m4411),
(a) W l i k h B m l C . 0 ~ s t i D m f m t b c ~ m t p v D i ~ t e r n u o f W l n p l t ~ .
o.UW~dltbU~f.dh~rmth~k,hmm~llymarrdcolmnruwldtknbsintk

.able?

4.1* ~ i g n ~ f O U C . b l t ~ C f r C l l j l f ' l e o l a p k m e a l c r . (T k m p t ~ ~ Z ' ~ ~
~ d t h e i a p l ~ M n r t y ~) S b o k r ~ ~ ~ t c m b a ~ w I t b e x e l u r i v d l R
~ C I P y o u p ~ ~ t h O a a p n t b D F t i O e r ~ f o r n B w - b i t 2 ' r ~

4.11 U ~ i a t r W . ~ ~ - 1 s e P i P b k m 4 , 5 2) ,
(a) ~ a f & e o l p # n r t i o a r l M t i a F l r m e o t e r (r f i t I & r & l m a f ~ b i t b

Y -1.
Ib) D w i # n a t o u & i t ~ ~ d s n r a Y a r a r (m e b # l k t h w h w s 1 k a m r f a w

Mt Wnrry numkr).
412 (a) -rbrtf--cbruitwihiaWxradprPdorupuuWrPdBe*w

wbmnrkbirrx - y d p ~ b ~ h ~ d t b e b o r r o w i a 3 , ,

(b)'Daslgnsfonavbmao~~81 W b I i x t e ~ ~ . ~ , K B , , . ~ ~ I w o o u ~ D ~ ~ B ~ ~
~m~~ - Y - 4 1 . w h C T r 4 1 ~ t b s ~ p ~ t b m o v . 8 , r r t b s ~ ~ t ~ , d
Dvfnr Ibe d i f l a m a .

M A B
(a) 0 Olll 0110
(b) 0 IWO lWl
(c) I 1103 l w o
(d) I OLOI 1010
(a) I CW2 OCOl

h ~ c u + & ~ ~ c v e l ~ ~ ~ a f t k f a u r S U M m r p u U @ c a r r y C , m d ~ w V . ~ ~
ut Pmbkms 4.37 lad4.40.)

4.lc ~ W t k ~ ~ ~ I u r i i v o O R g a a ~ ~ ~ t I o n d & y o f 10-s
have a pmp~ation &lay of 5 as. W h t is tk toul propagation &by time in in f-blt lddcr
of Fip. 4.12?

4.15 osiwtk TUO-kwl B r n l e p a u ~ a n f u @ w ~ ~ a n y C 1 m i n t k I r n w e a y p -
ullor of Fig. 4.12.

4.16 D e ~ t h c ~ a n y p n o p a e u e m d e a y ~ a s

.? 'A,+&
GI - AtB,

rcrpscively. Show W hu tbept carry ad ovtplt rumof. full adder bemmcr

c,,, = (Ci'G,' + P i) '
s, = (PO,') e c,

Tbc logic dilpnm d hu fint stage ofa &bit parallel adda as impbmwd in IC ryp. 74283
is shown in Kg. F'4.16. Identify tbs P,' and C,' tsrminalall lad show that the oirmit implnnena a
m e .

(1) Us* AND g a m Pad Wauy rddsrr (me FI. 4.16). ddgn the Wf
(b) W d t t m d m i f y a ~ ~ m & l d t & ~ t .

Dnrv the logic d i q m of A w f a w - i a c &uh uhy (a) NOR oaly. and (b) NAND
~ d y . ~ l u d e r a c a r M e i a p u t .

I m p W t rbe c i d t with r & c d z #rarauetcd with NAND gw# (rimitr 10 fig. 4.19) rad
NANDrnANDqmmmrbc-*.Uaerbkelt-f#tbem.W
~tbe~umktaf iaprtrhrhtcxsemrlgrtf f .

(rl FI = x'y ' t ' + xz
Fl - xy't' + X'Y

FJ = x'y'z f xy
Cb) PI = (y' + x):

F2 = yet ' + ry' + yz'
FJ = (x' + y)z

UI Dasis a fmu-iqut fim-ity erimda with inplrs as in Tabk 4.8, k with input Do having the
him piaity and inpuf @ the lowst primlly. (H D M Roblem 4.57.)

~ ~ ~ ~ ~ ~

4.- S p E i f y Ulc UWh Ubk of an a : W . t ~ b i n q pdm-ity mc0d.r. Rovide rn outplt Vm indiuto Uut
u h t me of the in* is pment. lk iqu t with tbc highen sublerip numbs ha8 the highest
Wtyty~taillbcthcvdwofthcfovrovmutsifinmDamdD~m l a f h w n e h ? . .

4.31 C m m n 16 X 1 multiplcra with Tuo 8 X 1 and one 2 X 1 multiplexers. Uac bloek din.
m a .

4.u Implement thc followIns B w h fu~fim wiih I multiplcm @ID- Roblcm4.46>

(a) F (h 8.C.D) = 'E(O.2.5,7.11.14)
(b) F(A. B. C. D) - n(3. a , 12)

4.33 Implaaent a fuU .dda with two 4 X 1 d p l - .

4.34 An8 X I m u l ~ I C X O T b u i n p l D A . B , a n d C ~ m i h c ~ m i n p u t l S 2 , & . a n d S a n -
s&vely. The &fa hprs lo b x g h I, m u M o m :

(.) . I , = r , = I , = o : I , = I , = l ; b - I , - D : a n d k = D ' .
(b) 1, - 12 = 0: I, = I, = 1; I, - I, - D; .nd lo - b = D'.

D e d c the Bwlun M m lhst thc muldpkxaimpkmm.

4.3s Implcmt lbc foilowing B m h Wcfion with a 4 X 1 multiplexer andcnlcmal gs~(i ,

(a)*F(A,B.C.D) = X(l.3.4.11. 12. 13.14. IS)
(b) f(A.8.C.D) = T(1.2.4.7.8.9.10.11. 13. 15)

ConneR inputs A and B to the dwion liner. Th. inpvt +men* f a ihc fovr dam linu will
b c a ~ m o f v e i ~ k C a n d D . T h c s s v a l v s . n o W b y e r ~ ~ F ~ a s f u ~ m o f C
andDforeachofthofourcsleswhmM = 00,01,1O,and Il.Tbfunc~smsyhwmbs
implmxnted with eMmal gates and wiwifhcoll~ectiolv m power and @.

4.37 Wnv h HDL patblcvel h i m h i d derripom of a fow-bit adder-rubaarurr f a unsigned bi-
ury mumbm. The cvcvil is simils to Fig. 4.13 b s allborn ourput V You can inrun* the
fou-bit full .dda duaibd in HDL Bumpie 4.2. (Scr Problems 4.13 ad 4M.J

4.- WdD ul H D L b c h v i d description ofa fav-bit eompmm wilb a dr-bit ovlpll n5:4. Bh 5
of Y it f a " ~ d n . " bit 4 is for'Mcqtu1 m." bit 3 Is ior'pruur h," bit 2 18 k"Iua than:'
bit L l a " ~ i h ~ a c q d m . " a n d Y l O f u V s t t v D u & m : '

4.44 U d q the eoaditionrl oprua(7 :), wilt an HDLd.lanow daaipdo. dl hw-MI &a sub-
mew of u&ncd numben. (& Rob- 4.13 d 437.)

4.41 Rcput R o b h 4.40. wing a cyclic bcluvia.

4.42 (a) Write m HDL 8.D-level &pion of Uw BCD-to-ex-3 wnv& cbYit1h0wm in
Fa. 4.4 (~ rc Roblm 4.22).

(b) W ad.raflosv ~ o f C ~ e B c D - ~ 3 ~ , ~ ~ m C B m I m ~ i m
listsd in Pig. 4.3.

f k w k p d ~ u l w r r k b r v k n l d d r ~ h u t ~ b P ' r ~ o l r B Q ,
d@t (m Problem 4.18).

*54. Wdteam-@-.I-[mat-mfour-bitmmlocheclriftbsirbit
pmnm match. Tbc v&Is lo which the .uw is msde is to equal1 if tbe numben mwh
.ndoomsrwiac.

*IT Develop and verify a k b v i r m l m&l of the four-bit priority encoder described in Rob.
lcm 4.29.

4.S Wdw a W o g model of a circuit ah- 31-bit itrput Is fonned by shifting its 32.bit input
thfe positiws lo the right and P I the watd pnitiom with the bit that was in the MSB
bsfm the sh in ~ ~ a e d (m dthmtic ri%ht).

4.59 Write a V d o g model o f s &mit wbolc 32-bit outpllt is by ehifting its 32-bit input
thfe politicxu to tho kfl md Alliag the vacated paltims with OI (shin logicd left).

4.6U Write a Veflog r n d of a BCD-1o-desim.l dcmda oriag the muled fombbtions of the
BCD code as don'tsue ~ n d i t i m (~c. Problem 4.24).

4.61 Using tbepm syntax o f t h a m 1364-Z&lI litmcbd, witend verify agate-level model of
Ibc Cbit c v a parity checker shown in Fy. 3.36.

4.62 Uainpmntinuoos~~mtsm~~imdthepnt~ynwoftbeIEeE 136eZWI smdlrd
wlte and verify an HDLmodel ofthe 4-bit even pacity chccllcr h w u in Fig. 3.36.

REFERENCES

1. B- 1.1997.A Uriloog HDLPl(nn: AUcmDm PA: Stu ~y mr.
2 B l u a r a . 1.1998. U d q HDL $nr(usu. AUct tWm PA: Stu O h x y Rrn.

- ~ .. .
dlc Rivu. NI: Remice Hall.

4. oplslerm, D. L. 1988. h a w Desnrgn o/D@&ol S ~ J M . 3d d. Bolus Ally. B r m
5. O m a . D. D. 1597. Pl(m,plr~ of Di~itol Des~gt~ Uppr Saddle fiver. NJ: Rmdw H.U.
6 HA^. I. P. 1993. hrmdmdm m Dwirdlo8icI)rrwn R d m g . MA: ~ W u l e y .
7. Un. R. H. ZOOS. Contmpomry log& Design, saddle River, NI: P-II Raorirr

mu.

r i r M d L k l g n 8 n p l c a r m d a u p * N J : ~ W
lo. PAWITTAR. S. 19%. wri lo~ H D ~ A w m ~ l g ~ r m orm mu in Vim,

CA:SIIIISoffRw.(sRonhHall~),
11. Ram C. H. 1992. F Y ~ & qFLog& Dedgn, 4th ed St RuL MN: =,L
12 MOW. D. E, ad P. R. Mrma~. 1998.77~ Uribg H&re Dm@llon Lmrgmage. 4th cd.

Berm KlnwarAe&mic P u b b a .
13. W-Y. J. P. 2Ma. Digid IXsiogtc Prlmip*~ Md h-, 34 d. U r n SaWc Rivm, NI:

PIcmicC Hall.

Chapter 5

Synchronous Sequential Logic

~ d ~ c i r c u i r s - i d e r s d h u s k h r e h c a m b i d ~ b k W w t p r t r m ~
on the cumnt inputs, Al- mry digital sy- b Likely to hm some nwbi*

l l r r d o n r l ~ i k 8 . s ~ ~ k p r a e d e e d s o i a e l u d e ~ t l e m e a t a w h i E h
~ t b r a t h e s y r p e m b e ~ ~ i a o # m r o f # g u m r d a t l o ~ & * F i n t w e o # d m ~
wh#difflngui~~uaut&ll&fmmcambiardonrI~.

S.2 SEQUENT l A L CIRCUITS

Section 5.2 SequeMial Circuits

storage elements, determine the b w value of the outputs. These external inputs also deter-
mine the condition for changing the state in the storage elements. The block diagram demon-
strates that the outputs in a sequential circuit are a function not only of the inputs, but also of
the present state of the storage elements, The next state of the storage elements is aIso a func;
tion of external inputs and the present state. Thus, a sequentid circuit is specified by a time
sequence of inputs, outputs, and internal state$. In contrast, the outputs of combinational logic
depend only on the present values of the inputs.

There are two main types of sequential circuits, and their classification is a function of the
timing of their signals. A synchronous sequential circuit is a system whose behavior can be
defined from the knowledge of its signals at discrete instants of time. The behavior of an a q n -
chronous sequential circuit depends upon the input signals at any instant of time and the order
in which the inputs change. The storage elements commonly used in asynchronous sequential
circuits are time-delay devices. The storage capability of a time-delay device varies with the
time it takes for the signal to propagate through the device. In practice, the internal propaga-
tion delay of logic gates is of sufficient duration to produce the needed delay, so that actual delay
units may not be necessary. In gate-type asynchronous systems, the storage elements consist
of Iogic gates whose propagation delay provides the required storage. Thus, an asynchronous
sequential circuit may be regarded as a combinational circuit with feedback. Because of the feed-
back among logic gates, an asynchronous sequential circuit may become unstable at times.
The instability problem imposes many difficulties on the designer. Asynchnous sequentid cir-
cuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elements at only dis-
crete instants of time. Synchronization is achieved by a timing device called a clock genera-
tor, which provides a clwk signal having the form of a periodic train of clockpulses. The clock
signal is commonly denoted by the identifiers clock and elk. The clock pulses are distributed
throughout the system in such a way that storage elements are affected only with the arrival of
each pulse. In practice, the clock pulses determine when computational activity will occur
within the circuit, and other signals (external inputs and otherwise) determine what changes will
take place affecting the storage elements and the outputs. For example, a circuit that is to add
and store two binary numbers would compute their sum from the values of the numbers and
store the sum at the occurrence of a clock pulse. Synchronous sequential circuits that use clock
pulses to control storage elements are called clocked sequential circuits and are the type most
frequently encountered in practice. They are called synchronous ccircuits because the activity
within the circuit and the resulting updating of stored values is synchronized to the occurrence
of clock pulses, The design o f synchronous circuits is feasible because they seldom manifest
instability problems and their timing is easily broken down into independent discrete steps,
each of which can be considered separateIy.

The storage elements (memory) used in clocked sequential circuits are calledflip-flops. A
flip-flop is a binary storage device capable of storing one bit of information, In a stable state,
the output of a flip-flop is either 0 or I . A sequential circuit may use many flip-flops to store
as many bits as necessary. The block diagram of a synchronous clocked sequential circuit is
shown in Fig. 5.2. The outputs are formed by a combinational logic function of the inputs to
the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop
when the clock pulse occurs is also determined by the inputs to the circuit or h e values presently

5.3 STORAGE ELEMENTS: LATCHES

Section 5.3 Storage Elements: Latches 1s

not practical for use in synchronous sequential circuits. Because they are the building blocks
of flip-flops, however, we will consider the fundamental storage mechanism used in latches be-
fore considering flip-flop& in the next section.

SR Latch
The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates,
and two inputs labeled S for set and R for reset. The SR latch consaucted with two cross-
coupled NOR gates is shown in Fig. 5.3. The latch has two useful states. When output Q = 1
and Q' = 0, the latch is said to be in the set state. When Q = 0 and Q' = 1, it is in the m e t
state. Outputs Q and Q ' are normally the complement of each other. However, when both in-
puts are equal to 1 at the same time, a condition in which both outputs are equal to 0 (rather
than be mutually complmentary) occurs. If both inputs are then switched to 0 simultaneous-
ly, the &vice will enter an unpredictable or undefined state or a metastable state. Consequently,
in practical applications, setting both inputs to 1 is forbidden.

Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
changed. The application of a momentary 1 to the S input causes the latch to go to the set state.
The S input must go back to 0 before any other changes take place, in order to avoid the oc-
currence of an undefined next state that results from the forbidden input condition. As shown
in the function table of Fig. 5.3@), two input conditions cause the circuit to be in the set state.
The first condition (S = 1, R = 0) is the action that must be taken by input S to bring the cir-
cuit to the set state. Removing the active input from S leaves the circuit in the same state. After
both inputs return to 0, it is then possible to shift to the reset state by momentary applying a 1
to the R input. The 1 can then be removed from R, whereupon the circuit remains in rhe reset
state. Thus, when both inputs Sand R are equal to 0, the latch can be in either the set or the reset
state, depending on which input was most recently a 1.

If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0, This action pro-
duces an undefined next state, because the state that resuIts from the input transitions depends
on the order in which they return to 0. It also violates the requirement that outputs be the com-
plement of each other. In normal operation, this condition is avoided by making sure that 1's
are not applied to both inputs simultaneously.

The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4. It operates with
both inputs normally at 1, unless the state of the latch has to be changed. The application of 0

... :,..- .:.: ::::. - ... :.:.<
S (set) .,.I:::.'

Q '

(a) Logic diagram (b) Function table

ACU& 5.3
SR latch wfth NOR gaws

Q = 0; reset state

(a) Logic diagram
,I , , - : , I ,

{b) Function table

RtCH& 5.6
0 latch

En = 1. Xn either case, when En returns to 0, the circuit remains in its current state. The con-
troI input disabIes the circuit by applying 0 to En, so that the state of the output does not change
~ g a d e 6 s of the values of S and R. Moreover, when En = 1 and both the S and R inputs are
equal to 0, the state of the circuit does not change. These con&tions are listed in the function
table accompanying the diagram.
An indeterminate condition murs when d three inputs are equal to I. This condition places

0's on both inputs of the basic SR latch, which puts it in the undefined state. When the enable
input p s back to 0, one cannot concIusively determine the next state, because it depends on
whether the S or R input gaes to 0 first. This indeterminate condition makes this circuit diffi-
cult to manage, and it is seldom used in practice. Nevertheless, it is an important circuit kcause
other useful latches and flip-flops are constru~ted from it.

One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to
. _ ensure that inputs S and R are never equd to 1 at the same time. This is done in the D latch,

shown in Fig. 5.6. l h s latch has only two inputs: D (data) and En (enable). The D input goes
directly to the S input, and its complement is applied to the R input. As long as the enable input
is at 0, the cross-coupled SR latch has both inputs at the 1 level and tke circuit cannot change
state regardless of the value of D. The D input is sampled when En = 1. If D = 1, the Q out-
put gms to 1, placing the circuit in h e set state. If D = 0, output Q goes to 0, placing the cir-
cuit in the reset state.

The D latch receives that designation from its ability to Bold dafa hi& hi& storage. It
is suited for use as a temporary storage for binary id& behwtm a wi t and its environ-
ment. The binary information present t the data input of tb D Wh k lxmdhd to the Q out-
put when the enable input is asserted. The output fdows c h p in'h &a input as long as
the enable input is assert&. This situation provides a path from input D W the ontput, and for
this reason, the circuit is often called a hmnqmwnt latch, When the enable input signal is de-
asserted, he binary information that was present at the data input at tbe time the transition oc-
c u r d is retained (i.e., stored) at the Q output until the enable input is asserted again. Note that

5.4 STORAGE ELEMENTS: FLIP-FLOPS

nnnn
(a) Response to positive level

nnnn
, t . -

RGUW 5.a I .
oock n~panse in latch and'fllpfhp 7 . - # . A I - - ,< b ; :, I

+ -. . , 71, _. 1 .
, -- I . ..

cloek pulse stays at logic 1. The key to the&pn beration of a fIip-flop is ta trigger it only
during a signal tmnsi~on. This can be accomplished by e l ~ t b q the feedback path that is
inherent in the operation of the sequential circuit using latches. A clwk pulse goes through
two transitions: h m 0 to 1 and the return from 1 to 0. As shown in Fig. 5.8, the positive tran-
sition is defined as the positive edge and the negative transition as the negative edge. There are
two ways that a latch can h modified to form a flipflop, One way is to employ two latches in
a special codguration that isolates the output of the flip-flop and prevents it h m being af-
fected while the input to the flip-flop is changing, Another way is to produce a flip-flop that
l ~Qgm only during a signal transition (from 0 to 1 or from 1 to 0) of the synchronizing signal
(clock) and b disabled during the rest of the clock pulse. We will now proceed to show the h-
plementation of both types of flip-flops.

The construction of a D flip-flop with two D latches and an inverter is shown in Fig, 5,9, The
k t I&& is died the master and the second the slave. The circuit samples the D input and changes
its output Q anly at the negative edge of the synchronizing or mrrolling clock (designated as

., 2 % . * - +

CIk). Whea tbe cioelt is 0, tk wtpui of th hwntr is 1, Tbe slave latch is enabled a d Its wt-
put Q ia q W 1 to tbe mnster wrprt Y. Tbe mm&r latcb ir disabled &muse CIk * 0. \krhtn th
input puk ehanp to dK logic-l level, rhe dsEI frnm the mtcrnrl D input ate trrrnsfrmd to
tht mur, lbe $lave. however. is didkd m long as thc clock *mains at bK 1 level. kau#
its cMMC i apt b s ~ u a l to 0. Any cbarqte in tbe ieput c h v rhc master output at Y. but rra-
aaPffectIhe steveoutput Whcatbcelockpkrt~urna to0,tbcm~stetirlsabkdandisi~
la td from tbe D inpu. At tbt spmc time, tbe stave i s caabkd and the value of Y is transfmbd
wcbcorupulddKfllp-flopaQ,'Ibw,acwinthcwtpr~ofIbeflipflopcankhm
amlybyMddur iagIbe~ i t imof tbec~kfmm t too,

Tbe behavior of h e mmter-shw @-8op jut tkwdkd dim& that (1 1 de outpit may
c&ngc oalyw. (2) actrsagc hthcmtptis tdgged by Ibc n e f l v t d g e d6reclock. rad
(3) the chtrap may occur d y during clock's negatiw kwl, The value dru is prodwed a
dK~~(pltdtbtNpflqbthtwluetbr#wrsdmtbcmswsr~immcdiruelybtforc
the negative edge a u d . It Is dm posrlbtc to ksip tbc circuit w tlw tbt flpllop q w t
c~oa~podti~e~dlheclockThb~InaPUprfloptbatbraaddiWh-
v c n c t ~ t b e C l k ~ P a d & f t l a c d o a k w w c n t b t o r b e r i n m r a d f n p r t E n o T h
maser latch; Such a flipflop is triggered with a acgotiw pulse, so that tfe ncg#fvc sdge of the
cfoek d l h tbc m e t a& the positive edge nffccls rhc slave md bK outpit tendid,

A m h conswctim of an ~-~ D flipflop ISM three SR htehtd as shown in
Fig, 5.10, ?kro Lalefts respond to tbs tlr#mal D (data) and Cik (cbk) laputs. The third lstcb
provider tbe outputs for tbe flipflop, Tbt S and R laputa of tbe wrprt latch rtr maiacPinsd u
Ibc l+l lewl w h Clk - 0. Thlrcau~$Ibe wrrplt tomuin in iu p e n t gta~e. Input D

may be equal to 0 or 1. If D = 0 when Clk beeoms 1, R changes to 0. This causes t h ~ flip-
flop to go to the. reset state, d i n g Q = 0. If thm is a change inthe Pinput while Clk = I,
teEminal R remains at 0 because Q is 0, Thus, the flip-flop is locked out and is unresponsive to
M a changes in the input. When the clock returns to 0, R goes to 1, placing the output latch
in the quiescent condition without changing the output. Similarly, if D = 1 when Clk goes
from 0 to 1, S changes to 0. This causes the circuit to go to the set state, making Q = 1. Any
change in D while Clk = 1 does not affect the output,

In sum, when the input clock in the positive-dgstriggered flip-flop makes a positive tran-
sition, the value of D is transfemd to Q. A negative transition of the clock (i.e., from 1 to 0)
does not Sect the output. nor is the output affected by changes in D when Clkis in the steady
logic-l level or the logic-0 level. Hence, this type of fif-flop responds to the transition from
0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and to the cbck must be taken into
consideration when one is u h g edge-triggered flip-flops. There is a minimum time called the
setup time during which the D input must be maintained at a constant value prior to the oc-
currence of the clock m i t i o n Similarly, there is a minimum time called the hold time dur-
ing which the D input must not changkaffer the hpplication of the positive transition of the clock
me propagation delay time of the'flip'flop is defined as the interval between the trigger edge
and the stabilization of the output to a new state. These and other parameters are specified in
manufacmrs* data books for specific logic farmlies.

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5 , I 1. It is similar to
the symbol used for the D latch, except for the arrowhedike symbol in front of the letter Clk,
designating a dynamic input, The dynamic indicator denotes the fact that the flip-flop responds
to the edge transition of the clock. A bubble outside the block adjacent to the dynamic indica-
tor designates a negative edge for triggering the circuit, The absence of a bubble designates a
positiveedge response.

,.>',., , >- T,, ,-

Very fargescale integration circuits contain thousands of gates witbin one package. Circuits are
conslructed by interconnecting the various gates to provide a digital system. Hach flip-flop is m-
structed fmm an interconnection of gates. The most economical and efficient flip-flop con-
structed in this m m r is the edgetriggered D flipflop, & u s e it requires the smallest number

O i ~ , ~ ~ o f f l f p f l ~ c r a k ~ b y ~ I b c D ~ d ~ ~ .
'IkwBip~hwidetyuasdmb~ddlgi~s~mhJKmdTflpBopa
~ m ~ o p r r t l a a r t b # ~ b e ~ w i & a ~ ~ : S c r i t p o l , m i t m Q a

eomplePlwtimoutpla.Wlrhwlyr~inpot,rt#Dflip.aoperamormhaurput,do
p d i q o n ~ ~ o f t b e D ~ b a r r r r o d i . u ? l y k j g n d ~ f b e l c t r m r i d o 9 . ~ b y
r e b E k ~ , t h e J K f l l p 8 a p h w o ~ r a d ~ r l l W ~ T b t ~ b i -
~ofaJKNgflop~wirbaDClip.ilop&~ir~inP~5.12(r).Tbt
J i n p r a ~ t h e ~ B o p ~ o i , t b e K i a p o t r # e r r i r # ~ O , m d w b c a ~ ~ r r c m e b l c d . ~
oltrprrrL~kdThfrankvatfbd~~gPttagthcchdtrpplied~theDiqm

D - JQ* + K'Q

WbraJ - 1mdK - O,D - Q' + QA- l,#bpcxtchksdgemd~omp#to1.Wbm
J = O d K 1,D = o , m l b c l # x t ~ * ~ I h t o r t l p u P o 0 . w h m J - K - 1
d D = Q 1 , d w n e x t c l o c L d p ~ t & a u c p # . W h b p l h J - K - O d D - Q,
t b c c l o c l c ~ l e ~ ~ t h e ~ ~ T h e ~ f i y m b d f o r t h b J d l ~ t l o p b I h o w n
inFig.5.1~).ItLri~#rb~rymboldtbsD~~cxcsp~wwtheb
pmrremrr l tsdtdd

m~OwWwf)opba - ' k g f l i p f l a p a d c m b ~ d r o m r J K i l i p
flop when inputs J a d K arc dsd -. T%h in rborvn in E#. 5.11a). Wban
T - O (J = K = O) , a c ~ k ~ ~ m ~ ~ ~ t ~ T - i (J ~ K = 1).
a c l & ~ ~ t b e o l t t p l t . T h e ~ t i n g & f k p i r d f o r W ~ b i -
asry-.

~ T f l i p 8 o p c p a b e ~ w h b a D f l i p f l o p a n d m a t u d w S 1 R ~ ~ ~ i p
Fig. 5.13@).Tbt~sriollfortbC DInpttir

D = T @ Q - TQ' + T'Q
WhtnT - Q D = Qdtherrirn~chgthtbC~~tpLWbT~ l , D m Q ' d t h e a -
p t ~ ~ l . T b t O F l p h l c r y m b d f # r h i r f l i p f l o p b r T P) l m b s l h t b e ~ t .

Section 5.4 Storage Elements: Flip-Flops 193

(b) From D flipflop

Charactdstir tables

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5.1,
They define the next state (i.e., the state that results from a clock transition) as a function of
the inputs and the present state, Q(t) refers to the present state (i t . , the state present prior to
the application of a clack edge). Q(t + 1) is the next state one clock period later. Note that the
clock edge input is not included in the characteristic table, but is implied to occur between
times t and t + 1. Thus, Q(r) denotes the state of the flip-flop immediately before the clock edge,
and Q(t + 1) ¬es the state that results from the clock transition.

The characteristic table for the JK flip-flop shows that the next state is q u a 1 to the present
state when inputs J and K are both equal to 0. This condition can be expressed as
Q(t + 1) = Q(t), indicating that the clock produces no change of state, When K = 1 and

Table 5.1
Flip-flop CharactiJ tic T a b k

]K Fllp-Flop

I K l ~ (t + l i

D Fllp-Flop T Flip-Flop

. -.

0 0
0 1 0
1 0 1
1 1

P Q (t + 1)

Reset

Q(t) No change
Reset
Set

~ ' (t) Complement

No change
Q' (t) Complement

I = 0, tbe clock m u rbe flipflop d Q(r + 1) - 0. With f - f and R 0, tk fipm
s a s d Q (t + I) - I , ~ ~ J d K m e p u a l ! o l . t & m x t ~ c ~ m r h e ~
plement ofthe p m t su#, a trdtiw h t mu k e x p d u P(t + 1) = Q'(I) .

T b e n e x t m t e o f a D i l i p f l o p i s ~ d y o n t b e D h p t m d i a ~ t ~ f t h
pr#cntmte.This#nbeertprsrssduQ(t + 1) = D . I t ~ t b u d m m x t ~ v a l u e b s q u r
~~vrl~dD.PJbtetb#~Dfllpilap~wthPvea~~~.Sucha#~cl.
d I t i a n e a n b e ~ ~ ~ d ~ b y ~ t h e c t o c k o r b y a p c n d n O t b e c l o c k b y b r ~
taoutpuof the iiipflop-htotbe Dinpu, Eitlwr@affWiw!ycirculatm Iht
wrplt of th flipflop when rhe sm &the flipflop must tcmrin u h g d

T b e c b a r a e t e r i r t i c t o B l e o f t k T t l i p f b p ~ o a l y ~ ~ W b c n T =O,theclocCt~
d m m e ~ t k r t a & ; w h e a T - 1,theckekdgecorapkmeatrtk~dtbefpfIap.

whichmwrtcsrbrttbet~dk0utprtwiUkqdt6kvrlucdinprtDintht~
at W. 'Ibe chamtetistk squrtion h the JK flipflop cmt k Mved fran the c h a m k r b
t i c ~ # f r o m t b e c i ~ l d f l g . S ~ 1 2 . W e o b u i a

Q(t + 1) JQ' + K'Q

w h e Q is the vduc of the flipflop ortlplt +to rhe appli#don of r c k k edge. 'I& ehr-
mwie equation for the T flipflop is o h i d &om the c h i t of Pig. 5.13:

Q(i + 1) = T e Q - TQ' + T'Q

Someflip.f lopshswmyacbtwKwinpi~lt&t~u~to~$Kllipfloptoaputiculrr
state idqmdmtly of tlw celack, T h hpt th m~ the flipflop to 1 Is called pmscr or d i m
scr. Tk input lhat clean the flipthp #r 0 b called clcurr or dImt rrjer, Wb#l power is hwed
oninsdi&ital system. t h c ~ o f t k R i p f l o p s i s u n k n o w n . ' f b e ~ h p u a ~ d fm
klnghq all flpflop in the sys#m to a kmwn m t h g s w prior to dw cl&ed opmiao.

A piti-@ D flip- with rctIwh asphama tmu b dmm in FQ. 5.14,
Tbe circuit diagram in the same u ths we in Fig. 5.10, ex- for ik sdditioarl M inplt ow-
d0111wrhr#NAND~,Wbenk~Input i rO, i t fawroutpuQ' to#ryat I , w W
h t u m , c l c a r s ~ t Q m O , t h u s ~ L h c O J g ~ . M ~ e 0 n r # e t i o a l ~ t h e r w e t
ioplt emme that tk 5 iaplt of tbe third SR htcb stays at logk 1 while the met inplt is at 0,
ie#rrdlearoftherrluesoPDmdCUr.

n#onphicsymbolhhDtiip@wi(hrWwb.nddirionrlinplrmarlrsdwith
R, The krbble almg the Iaplt Miam dw tbe rew Is aetive u the lo&-O MI. Flipflops
witha- wt wethesymbdSfmtfiemync~ssctiaprt.

T l m ~ u b k s ~ t b ~ o f ~ c i m r i t . W b e n R - 0,tbeattpltismatoO.
Thisru#LIndepndtn~dthtvdmoPDorCfi.Normrlcloclc~mcm~dy

Section 5,s Analysis of Clocked Sequentla1 Ckults 195

(a) C i d t diagram

(b) Function table

FIGURE 5*14
D flip-flop wlth asynchronous reset

after the reset input goes to logic 1. The clock at Cik is shown with an upward arrow to indi-
cate that the flip-flop triggers on the positive edge of the clock. The value in D is transfend
to Q with evexy positive-edge clock signal, provided that R = I .

5.5 ANALYSIS OF CLOCKED
SEQUENTIAL CIRCUITS

Analysis describes what a given circuit will do under certain operating conditions. The be
havim of a clocked sequential circuit is d e t d e d h m the inputs, the outputs, rmd the state
of its flip-flops. The outputs and the next state are both a function of the inputs and the present

of two D flip-flops A and B, an input x and an output y. Since the D input of a flip-flop deter-
mines the value of the next state (i.e., the state reached after the clock transition), it is possible
to write a set of state equations for the circuit:

A state equation is an algebraic expresshn that specifies the condition for a flip-flop state wan-
sition. The left side of the equation, with (s + 11, denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres-
ent state and input conditions that make the next state equal to 1 . Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (t) after
each variable for convenience and can express the state equations in the more compact form

A(t + 1) = Ax + Bx
B(t + 1) = A'x

The Boolean expressions for the state equations can be derived directly from the gates that
fonn the combinational circuit part of the sequential circuit, since the D values of the cornbi-
national circuit determine the next state. Similarly, the present-state value of the output can be
expressed algebraically as

~ (f) = [A (t) + B(t)1xJ(r)

By removing the symbol (t) for the present state, we ob'tain the output Boolean equation:

y = (A + B)x'

State Table

The t h e sequence of inputs, outputs, and flip-flop states can be enumerated in astute table (some-
times called a m i t h table)). The state table for the circuit of Fig. 5.15 is shown in Table 5.2.

Table 5.2
5m Tab& far the Chuiit of Fig. 5. IS

Present Next
State Input -- State Output - -

The table condm of f a r &at~ WHW p n c m ~lure, h p ~ , nca s w , d orrrput. T&
~ ~ n e c t l a a & o w r t b e ~ O P N p ~ A d B r t m y ~ v c e d m e t . T b e i n p u r c c -
d w ~ v c l a ~ d ~ t g f ~ f a w h ~ b l e p r e # a t ~ . T b t p e x t ~ l s e t i a a ~ k # ~ # r
oftbetlip-~4aeclmkcyckW,stcimet + 1 . T h t ~ d o a ~ v e r t h e v d u c o f y u
dmetfmcrchprtaeat s t w d i n p t d d m

T & d t r i v a t i o a o f a J t r r # ~ b k r a q u i r e s ~ r l l p o s s i b k b i n v y ~ ~ P ~
~ d l a p r t o . I n r h i s c a # . w s h v e ~ t b i a a y ~ ~ 1 ~ 0 0 0 l 0 l l l . ' f b e # 1 c t ~
~ v l r l u t s n r r r h e a & ~ E r o m r h e l o g i c ~ o r f r r n n ~ ~ ~ , T h e o c ~ t
WIeofflip8opAmustdrq(tbe~equrcim

Tbe ncxr -mc section in the sta& tabk Im&r column A has thm 1's w k r c tbe pmml
o f A r r a d i n p r t x a r c M ~ t o 1 mtbe-tstateofBdinpltxucMequrlto I .
SimilPrly, tk mxt m e of flipflop B b &rived from dtc sure sqwtioa

radissqualpl w h e n t h e ~ ~ d A i s O d i a p n x b ~ e o 1 . T b e o l l t p t t c o l u r n a
is Wwd fmd~ tbe ourput squadoa

y - Aw' + Bx'
'Ibt~Esbkdaq~cllruhwhh+flipflopsir~byhsumpnz#drtrr

owlind in tht previous example. ta g d , r ~ n d d circuit with m flip* and n iaputs
~ s s d r P ~ " r o w r i n t h c ~ ~ l b l e . T b d b i a r r y r w r n k r s h O ~ ~ + " - I a r c W
rradcP tk pwnt-stak pad inplt alumas. Tbe autt-state sccdan hr m cdmm, om for erch
~ i r o p . T b e b i a v y r n l u w f a r h ~ t r t r t e r r r ~ w d ~ y ~ L b e ~ q ~ , n l e
output d m as m y c o l ~ as rhcrr are output v u h b h . Its h b y d u e is derived
Eromthe&uitor&omthcBoa~fCmcrioah~samema~trularmttbtrbk,

It is m m h ~ cwvcniePt to e m rbc swt table h a slightly difParrnt form haviu only
~ ~ s : p r r s e o t ~ , m x t ~ , d o u t p n T h t h p u t c o n d i c i ~ s r r ~ l t a d c t
the#xt-~aadoutputdm.TbemuMcdTabie53is~fn'hMe5.3htbir
~ ~ F o r e r c b p r # c n t ~ t b e r r ~ t w o ~ b l e n # t t & l o e s ~ w r p u r s , d e p c a d i n g o a
tbevJutdtbeiaplt,OnehmqrbeprritraWembW,depeadingmIberpplicrdoa.

- hnt- -
s- x - 0 *= l x - O *-I

Settion 4.5 Anakyds of Clodred Sequential Circuits 199

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

State Dlagtani
The information available in a state table can be represented graphically in the form of a state
diagram. In this type of diagram, a state is represented by a circle, and the (clock-triggered)
transitions between states are indicated by directed lines connecting the circles. The state dia-
gram of the sequentid circuit of Fig. 5,15 is shown in Fig. 5.16. The state diagram provides the
same information as the state table and is obtained directly from Table 5.2 or Table 5.3. The bi-
nary number inside each circle ident5es the state of t h ~ flipflops. The drrected lines are la-
beled with two binary numbers separated by a slash. The input value during the present state is
labeled first, and the nnmber after the slash gives the output during the present state with the given
input. (It is important to remember that the bit value listed for the output along the directed line
mcllrs during the present state and with the indicated input, and has nothing to do with the tran-
sition to the next state.) For example, the directed line from state 00 to 01 is labeled 110, mean-
ing that when the sequential circuit is in the present state 00 and the input is 1, the output is 0,
After the next clock cycle, the circuit goes to the next state, 01. If the input changes to 0, then
the output becomes 1, but if the input remains at 1, the output stays at 0. This information is ob-
tained from the state dragram along the two directed lines emanating from the circle with state
0 1. A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram, except in the manner of rep-
resentation. The state table is easier to derive from a given logic diagram and the state equa-
tion. The state &agram follows directly from the state table. The state diagram gives a pictorial
view of state transitions and is the form more suitable for human interpretation of the circuit's
operation. For example, the state diagram of Fig. 5.16 clearly shows that, starting from state
00, the output is 0 as long as the input stays at 1. The first 0 input after a sning of 1 's gives an
output of 1 and transfers the circuit back to the initial state, 00. The machine represented by
the state diagram acts to detect a zero in the bit stream of data.

FllpFlop Input Equations

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnections
among the gates form a combinational. circuit and may be specified algebraically with Boolean

expressions. The howledge of the type of flip-flops and a list of the Boolean expressions of
the combinational circuit provide the inf-tian needed to draw the logic diagram of the se-
quential circuit. The part of the combinetional circuit that generates ex- outputs is de-
scribed algehaicaliy by a set of Boolean functions called output ccp#hs. The pxt of the
circuit that generates the inputs to flipflops is described algebraically by a set of Boolean func-
tions called flip-flop input equations (or, sometimes, excitation eq&'om). We will adopt the
conventioq of using the flip-flop input symbol to denote the input quation variable and a sub-
script to designate the name of the flip-flop output. For example, the following input equation
specifies an OR gate with inputs x and y connected to the D input of a flip-flop whose output
is labeled with the symbol Q: . -

D Q ' x + y

The sequential circuit of Fig, 5.15 consists of two D flipflops A and B, an input x, and an
output y. The logic diagram of the c h d t can be expressed algebraically with two flipflop
input equations and an output equation:

. . DA = AX + BX > , '

' - D, = A'x
y = (A f B)x l

The three quatiom provide the necessary i n h a t i o n for drawhg the logic diagram of the
sequential circuit. The symbol DA speciAe~ a D flip-flop labeled A. DB specifies a second D
flipflop labeled B. The Boolean expressions associated with these two variables and the ex-
pression for output y specify the cdir@onal circuit part of the sequential cjrcuit.

The flip-flop input equations constitute a convenient algebraic form for specifying the logic
diagram of a sequential circuit. They &ply the type of flip-flop from the letter symbol, and they
fully specify the combinational circuit that drives the flip-flops. Note that the e x m o n for
the input equation for a D flip-flop is idenricd to the expression for ik corresponding state qua-
tion, This is because of the charactdslic equation that equates the next state to the value of the
Dinput: Q(t + 1) = DQ. ' i', ..,

. .

We will summarize the procehe for analyzing a clocked squenlial circuit with D £lip-flops by
means of a simple example. The circuit we want to analyze is b T b e d by the input equation

The DA symbol implies a D flip-flop with output A. The x and y v d l e s arc the inputs to the
circuit. No output equations are given, which impliea that the output comes frum the output of
the flip-flop. The logic diagram is obtained from the iaput equation and is drawn in Fig. 5.171a).
The state table has one column for the pmmt state of flipflop A, two colamns for the two in-

puts, and one column for the next state of A. The trinary mh &Axy me listed h n 000
through 1 1 1 as shown in Fig. 5.17@). Tbe next-state values ate o w e d from the state equation

Section 5 5 Analysis of Clocked Sequential Clrcults 201

Present Next
state Inputs state

(a) Circuit diagram (b) State table

{c) State diagram

The expression specifies an odd function and is equal to 1 when only one variable is 1 or when
all three variables are 1. This is indicated in the column for the next state of A.

The circuit has one flip-flop and two states, The state diagram consists of two circles, one
for each state as shown in Fig. 5.17(c). The present state and the output can be either 0 or I, as
indicated by the number inside the circles. A slash on the directed lines is not needed, because
there is no output from a combinational circuit. The two inputs can have four possible combi-
nations for each state, 'Pwo input combinations during each state transition are separated by a
comma to simplify the notation,

Analysis with IK Flip-flops

A state table consists of four sections: present state, inputs, next state, and outputs. The
first two are obtained by listing all binary combinations, The output section is determined
from the output equations. The next-state values are evaluated from the state equations. For
a D-type flip-flop, the state equation is the same as the input equation. When a flip-flop other
than the D type is used, such as JK or T, it is necessary to refer to the corresponding char-
acteristic table or characteristic equation to obtain the next-state values. We will illustrate
the procedure first by using the characteristic table and again by using the characteristic
equation.

202 Chapter 5 Synchronous S e q u m t h l ~ ~ ~ c

The next-state values of a sequential circuitthat uses JK- or T-type flip-flops can be derived
as follows: : . , -

1. Determine the flip-flop input equatiotls in terms of the present state and input variables.
2. List the binary values of each inpat equation.
3. Use the comsponding flipflop characteristic table to determine the next-state values in

the state table.

As an example, consider the ~ u e n t i a l circuit with two JK flip-flops A and B and one input
x, as shown in Fig. 5.18. The circuit has no outputs; therefore, the state table does not need an
output column. (The outputs of the fliprflops may be considered as h e ou~uts in this case.)
The circuit can be specified by the flip-flop inpyt equations

JA = B KA = Bx'

J B = X' iK8z A'x + A X ' = A @ x

The state table of the sequential circuit is shown in Table 5.4. The present-state and input
columns list the eight binary combinations. The bhary values listed under h e columns labekd
flip-flop inputs are not part of the s tak bbk, but they are needed for the p q m e of evaluating
the next state as specified in step 2 of the procedure, These binary values are obtained di-
rectly from the four input equations in a manner similar to that for obtaining a mth table
from a Boolean expressi~n. Tkt: neXt state of each flip-flop i~ evaluated from the correspon-
ding J and K inputs and the characteristic table of the JK flipflop listed in Table 5.1. There
are fout cases to consider. When J = 1 and K = 0, the next state is 1. When J = 0 and

4' - >.
,<+ . 3 - ' . ,

1

FKURE 5.18
Sequential clrcult wlth IKflipRep

Section 5.5 Analysis of Clocked Sequentid Circults 203

K = 1, the next state is 0. When J = K = 0, there is no change of state and the next-state
value is the same as that of the present state. When J = K = 1, the next-state bit is the com-
plement of the present-state bit, Examples of the last two cases occur in the table when the
present state AB is 10 and input x is 0. JA and KA are both equal to 0 and the present state of
A is 1. Therefore, the next state of A remains the same and is equal to 1. In the same row of
the table, JB and KB are both equal to 1. Since the present state of B is 0, the next state of B
is complemented and changes to 1 .

The next-state values can also be obtained by evduating the state equations from the char-
acteristic equation. This is done by using the following procedure:

Table 5.4
State Table for Sequentlo/ CIrcult with jK Flip fhps

1. Determine the flip-flop input equations in terms of the present state and input variables.
2. Substitute the input equations into the flip-flop characteristic equation to obtain the state

equations.
3. Use the corresponding state equations to deternine the next-state values in the state table.

Present Next
State Input State

A B x A 8

0 0 0 0 1
0 0 1 0 0
0 1 0 1 1
0 1 I 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

The input equatiom for the two JK flip-flops of Fig. 5.18 were listed a couple of paragraphs
ago. The characteristic equations for the flip-flops are obtained by substituting A or B for the
name of the flip-flop, instead of Q:

Flip-Flop
Inputs

IA KA la KB

0 0 1 0
0 0 0 1
1 1 1 0
1 0 0 1
0 0 1 1
0 0 0 0
1 1 1 1
1 0 0 0

A(t + 1) = JA' + K'A

B(t + 1) = JB' + K'B

Substituting the values of JA and KA from the input equations, we obtain the state equation for A:

A(t + 1) = BA' + (B x 1) ' A = A'B 4- AB' + Ax

The state equation provides the bit values for the column headed "Next State" for A in the state
table. Similarly, the state equation for flip-flop B can be derived from the characteristic equa-
tion by substituting the values of JB and Kg:

B (t $ 1) = x'B' +- (A $ x) ' B = B'x' + ABx t A'Bx'

1

The state equation provides the bit vdws for the column headed 'Next State" for B in the state
table. Note that the columns in Table 5A headed TlipFlop Inputs" are not needed when state
quatiom are used,

The state diagram of the sequentid circuit is shown in Fig. 5.19. Note that since the h i t
has no outputs, the directed lines out of the circles are marked with one binary number only,
to designate the value of input x.

~nabsb Wt.. r Flip-Flops: -

The analysis of a sequential circuit with T flip-flops follows the s m e procedure outlined for
JK flip-flops. The next-state values in the state table can be obtained by using either the char-
acteristic table listed in Table 5,l or the characteristic equation

@ (t t 1) = T@ Q = T'Q + TQ'
Now consider the sequential circuit shown in Fig. 5.20. It has two flipflaps A and 3, m e input"
x, and one output y and can be described algebraically by two input equations and an output
equation:

The state table for the circuit is listed in Table 5.5. The values for y are obtained from h e out-
put equation. The values for tbe next state can be derived frum the state equations by substi-
tuting TA and TB in the charamrhtic equations, yielding

A(b + 1) = (Bx)'A + (Bx)A1 = AB' + Ax' + A'Bx

B(s + 1) = xG3B

Section 5.5 Analysis of CIacked Sequential Circuits 205

Clock reset

(a) Circuit diagram (b) State diagram

FIGWE 5.24
Tequential h i t with Tflip-flops

The next-state values for A and B in the state table are obtained from the expressions of the two
state equations.
The state diagram of the circuit is shown in Fig. 5.20@). As long as input x is equal to 1,

the circuit behaves as a binary counter with a sequence of states 00,O 1, 10, l l , and back to 00.

Table 5,s
State To& Br 3- C I M k W h T F&F&J

Present Next
State Input State Output

When x = 0, the circuit remains in the same state, Output y is equal u> 1 when the present
state is 11. Here, the output &pen& m the present state only and is independent of the input.
The two dues inside each circle and separated by a slash are for tk present state and ouqut.

Mealy and Moore Models of Flntte St- Madmhes
The most general mode1 of a squential circuit has inputs, outputs, and internal states. It is cus-
tomary to distinguish between two models of sequential circuits: the Mealy model and the
Moore model. Both are shown in Figure 5.2 1. They differ only in the way he output is gener-
ated. In the Mealy model, the output is a function of both the present state and the input. In the
Moore model the output is a fundon of only the present state. A circuit may have both types
of outputs. The two models of a sequenljd ci~uit are commonly d d to as a finite state ma-
chine, abbreviated FSM. The Mealy mdel of a sequential circuit is ref& to as a Mealy
FSM or Mealy machine. The M o m model is referred to as a Moore FSM w M m machine.

An example of a Mealy model is given in Fig. 5.15. Output y is a function of b t h input x
and the present state of A and 3. ?he corresponding state diagram in Fig. 5.16 shows both the
input and output values, separated by a slash along the directed lines between the states.

An example of a Moore mdel is given in Ag. 5.18. Hem, lh o q t is a fimction of the pres-
ent state only. The corresponding state diagram in Fig. 5.19 bas only inputs marked along the

Inputs

Inputs -

FIGURE J.11
Block diagrams d M d y a d M h rtatt m&hs

Section 5.6 Synthesizable HDL Models of Sequential Circuits 207

directed lines, The outputs are the flip-flop states marked inside the circles. Another example
of a Moore model is the sequential circuit of Fig, 5.20. The output depends only on flip-flop
values, and that makes it a function of the present state only. The input value in the state dia-
gram is labeled along the directed line, but the output value is indicated inside the circle bgether
with the present stale.

In a Moore model, the outputs of the sequential circuit are synchronized with the clock, be-
cause they depend only on flip-flop outputs that are synchronized with the clock. In a Mealy
model, the outputs may change if the inputs change dwing the clock cycle. Moreover, the out-
puts may have momentary false values because of the delay encountered from the time that the
inputs change and the time that the flip-flop outputs change. In order to synchronize a Mealy-
type circuit, the inputs of the sequential circuit must be synchronized with the clock and the
outputs must be sampled immediately before the clock edge. The inputs are changed at the in-
active edge of the clock to ensure that the inputs to the flip-flops stabilize before the active edge
of the dock occurs. Thus, the output of the Mealy machine is the value that is present imme-
diately before the active edge of the clock.

SYNTHESIZABLE HDL MODELS
OF S E Q U E N T I A L CIRCUITS

The Verilog hardware description language (HDL) was introduced in Section 3.10. Combina-
tional circuits were described in Section 4.12, and behavioral modeling with Verilog was in-
troduced in that section as well. Behavioral models are abstract representations of the
functionality of digital hardware. Designers write behavioral models to quickly describe how
a circuit is to operate, without having to first specify its hardware. In this section, we continue
the discussion of behavioral modeling and present description and examples of flip-flops and
sequential circuits in preparation for modeling more complex circuits.

Behavioral Modeling

There are two kinds of abstract behaviors in the Verilog HDL. Behavior declared by the key -
word iniU is called singb-pass behavior and specifies a single statement or a blmk statement
(i.e., a list of statements enclosed by either a begin . . , end or a fork . . . join keyword pair).
A single-pass behavior expires after the associated statement executes, In practice, designers
use single-pass behavior primarily to prescribe stimulus signals in a test bench-never to model
the behavior of a circuit-because synthesis tools do not accept descriptions that use the initial
statement. The always keyword declares a cyclic behavior: Both types of behaviors b e p ex-
ecuting when the simulator launches at time t = 0. The initial behavior expires after its state-
ment executes; the always behavior executes and reexecutes indefinitely, until the simulation
is stopped. A module may contain an arbitrary number of initla1 or always behavioral state-
ments. They execute concurrently with respect to each other starting at time 0 and may inter-
act through common variables. Here's a word description of how an always statement works
for a simple model of a D fip-flop: Whenever the rising edge of the clock occurs, if the reset
input is asserted, tile output q gets 0; otherwise the output Q gets the value of the hput D. The
execution of statements triggered by the clock is repeated until the simulation ends. We'll see
shortly how to write this description in Verilog,

Chapter 5 Synchrhus SeqmM&l bgk

An initial behavioral statement executes only once. It begins its execution at the sm of sim-
ulation and expires after all of ,fits statemnts have completed execution. As mentioned at the
end of Section 4.12, the initial statement is useful for generating input sipals to s i m u a de-
sign. In simulating a sequential circuit, it is necessary to generate a clock source for agering
the flip-flops. The following are two possible ways to provide a free-running clock that oper-
ates for a specified number of cycles:

initial
begln
clock = I'bO;
repeat {30)
#I 0 clock = -clock;

end -.
-

Intlal
begln
clock = l'bO;

end
,. - -

initial 300 $finish;
always #10 dock = -clock;

In the first version, the initid block c&&s two statements enclosed within h e begin and end
keywords. The first statement sets dock to 0 at time = 0. The second statement specfies a loop
that reexecutes 30 times to wait 10 time units and then complement the value of clock. This pro-
duces 15 clock cycles, each with a cycle h e u f 20th units. In the secwdversim, the &tinit.
id behavior has a singIe statement that sets clock to 0 at time = 0, and it d m expires (causes
no further simulation activity). The second single-pass M u r d e c k a stopwatch for the sim-
ulation. The system task finish causes the simulation to terminate unwnditiondy after 300
time units have elapsed, Because this behavior has only one statement associated with it there
is no need to write the begin , . . end keyword pair. After 10 time units, h e a l w a ~ statement
repeatedly complements clock, providing a dock generatur having a cycle time of 20 time units.
The three khavioral statements in the second example can be written in any order.

Here is another way to describe a free-running clock:

initial begin clock = 0; forever #10 dock = -clwk; end

This version, with two statements on one line, initializes the clock and then executes an in-
definite loop (forever) in which the clock is complemented after a delay of 10 time steps. Note
that the single-pass behavior never finishes executing and so daes not expire. An- behav-
ior would have to terminate the simulation.

The activity associated with either type of behaviwal statemat can be conmUed by adelay
operator that waits for a certain time or by an event corn1 operator that waits for c& con-
ditions to become true or for specified events (changes in signals) to occur. delays spec-
ified with the # delay control operator are commonly used in single-pass behaviors. The delay
control operator suspends e x d m of statements until a specifled time has elapsed. We've al-
ready seen examples of its use to specify signals in a test bench. Another WM. @, is called
the event control operator and is used to suspend activity until an event occurs. An ewnt can
be an unconditional change in a signal value (eg., @ A) or a specilied lmmitiw of a signal value
(e.g ., @ (p e e clock)). The g e n d form of this type of statement is

always @ (event control expression) bggin
I/ Procedural assignment statements qat execute when the condition is met

end

Section 5.6 Synthedzabie HDL Models of kquentlal C I ~ u l t s

The event control expression specifies the condition that must occur to launch execution of the
procedurd assignment statements. The variables in the left-hand side of the procedural state-
ments must be of the reg data type and must be declared as such. The right-hand side can be
any expression that produces a value using Verilog-defined operators.

The event control expression (also called the sensitivity list) specifies the events that must
occur to initiate execution of the procedural statements associated with the always block. State-
ments within the block execute sequentially from top to bottom. After the last statement exe-
cutes, the behavior waits for the event control expression to be satisfied. Then the statements
are executed again. The sensitivity list can specify level-sensitive events, edge-sensitive events,
or a combination of the two. In practice, designers do not make use of the third option, because
this third fonn is not one that synthesis tools are able to translate into physical hardware. Level-
sensitive events occur in combinational circuits and in latches. For example, the statement

always @ (A or B or C)

WIU initiate execution of the procedwal statements in the associated always block if a change
occurs in A, B, or C. ln synchronous sequential circuits, changes in flip-flops occur only in re-
sponse to a transition of a clock pulse. The transition may be either a positive edge or a nega-
tive edge of the clock, but not both. Verilog HDL takes care of these conditions by providing
two keywords: posedge and negedge, For example, the expression

always @(posedge clock ar negedge reset) 11 Verilog 1995

will initiate execution of the associated pracedural statements only if the clack goes tbrough a
positive transition or if reset goes through a n~gative transition. The 2001 and 2005 revisions
to the Verilog language allow a comma-separated List for the event control expression (or sen-
sitivity list):

aiways @(po~edge clock, negedge reset) 11 Verllog 2001, 2005

A procedural assignment is an assignment of a logic value to a variable within an initial or
always statement. This is in contrast to a continuous assignment discussed in Section 4.12
with dataflow modeling. A continuous assignment has an implicit level-sensitive sensitivity list
consisting of all of the variables on the right-hand side of its assignment statement. The updating
of a continuous assignment is triggered whenever an event occurs in a variable listed on the
right-hand side of its expression. In contrast, a procedural assignment is made only when an
assignment statement is executed within a behavioral statement. For example, the clock sig-
nal in the preceding example was complemented only when the statement clock = -clock
executed; the statement did not execute until 10 time units after the simulation began. It is im-
portant to remember that a variable having type reg remains unchanged until a procedural as-
signment is made to give it a new value.

There are two hnds of procedural assignments: blocking and nonblocking. The two are
distinguished by the symbols that they use. Blocking assignments use the symbol (=) as
the assignment operator, and nonblocking assignments use (<=) as the operator. Blocking
assignment statements are executed sequentially in the order they are listed in a block of
statements. Nonblocking assignments are executed concurrently by evaluating the set of
expressions on the right-hand side of the list of statements; they do not make assignments
to their left-hand sides until all of the expressions are evaluated. The two types of

310 Chapter 5 Synchronous SequlentkI b g k

assignments may be better undentood by means of an illustration. Consider these two pro-
cedural blocking assignments: + ,- . - '.,

: L . . . B = A - . - .
C=B+l

The F i t statement transfers A into B. The second statement k m e n t s the value of B and
transfers the new value to C. At the eonqdetion of the assignments, C contains the value of
A + 1.

Now consider the two statements as nonblcking assignmepiq;

When the statements are executed, the expressions on the m-hand side are evaluated and
stared in a temporary location, The v a b of A is kept in one stofage location and the valne of
B + 1 in another. After all the expressilrns in the block are evaluated and stored, the assign.;
meat to the targets on the left-hand side is made. In h i s case, C will cwrain the original valut:
of B, plus 1. A general rule is to use blocking assignments w h sequential ordering is imw- -
ative and in cyclic Ixhavior that is level msitive (i.e., in combinational logic). Use nonblding
assignments when modeling wncument execution (e.g., edge-sensitive behavior such rts syn-
chronous, concurrent register transfem) and when mdeling latched behavior. Nonblocking as-
signments are imperative in dealing with register transfer level design, as shown in Chapter &,
They model the cancurrent operations of physical hardware s y n c h r o ~ by a common clock.
Today's designers are expected to know what features of an HDL are useful in apmctical way'.
and how to avoid featurns that are not. Following these rules will prevent conditions that lead
synthesis tools astray and create mismatches between the behavior of a model and tbe behau-'
ior of physical hardware that is produced by a synthesis tool.

. . .
Fl tpflops and Latches - .

HDL Examples 5.1 tbrough 5.4 show bescriptions of various flip-flops and a D latch. The 4
latch is transparent and responds to a change in data input with a change in output, as long as
the enable input is a s d . The m h I e description of a D latch is h w n in HDL Example 5.1.
It has two inputs, D and enable, and one output Q. Since Q is evaluated in a procedd state-
ment, it must be declared as reg type. Latches respond to input signal levels, so the two inputs
are listed without edge qualifias in the event enable expression following the @ symbol in the
always statement. There is only one bl- procedural assignment stamntmh and it m e s
the transfer of input D to output Q if enable is true (logic 1). Note dm this statement is exe-
cuted every time there is a c h q e in D if enable is 1.

A D-type £lipflop iqbe simplest example of a seq& machine. HDL Example 5.2 &-
scribes two positiveedge D flip-flops in two d e s . The first respwds only ro tbe clock, the
second includes an asynchronous reset input. Ootput Q must be declared as a reg data type in
addition to being listed as an outpW Tbis is k a m e it is a target cutput in a procedrrral assign-
ment statement. Thekeywordprreedse~thatthe transferof inputDinto Qis synchronized
by the positive-edge transition of Clk A cbauge in D at any other t h e does not change Q.

Section 5.6, Syntheslzable HDL Models of Ssquentlal Clrtults 21 1

ADL Example 5.1

/ I Description of D latch (See Fig. 5.6)
module D-latch (Q, 0, enable);
output Q;
Input D, enable;
reg Q ;
always @ (enable or D)

If (enable) Q 4= D;
endmodule

I1 Same as: If (enable == 1)

11 Alternative syntax (Verilog 2001, 2005)
module D-latch (output reg Q, input enable, D);
always @ (enable, D)
If (enable) Q <= D; I1 No action if eneble not asserted

endmodule

HDL Example 5.2

I1 D flip-flop without reset
module D-FF (Q, D, Clk);
output Q;
input D, Clk;
reg Q;
always @ (posedge Clk)

Q <= D;
endmodule

I / D flipflop with asynchronous reset (V2001, V2005)
module DFF (output reg Q, input D, Clk, rst);
always @ (posedge Clk, negedge rst)
If (-rst) Q <= I'bO; I / Same as: if (rst == 0)
else Q <= D;

endmodule

The second module includes an asynchronous reset input in addition to the synchronous
clock. A specific form of m if statement is used to describe such a flip-flop so that the model
can be synthesized by a software tool. The event expression after the @ symbol in the always
statement may have any number of edge events, either posedge or negedge. For modeling hard-
ware, one of the events must be a clock event. The remaining events specify conditions under
which asynchronous logic is to be executed. The designer knows which signal is the clock, but
clock is not an identifier that software tools automatically recognize as the synchronizing sig-
nal of a circuit. The tool must be able to infer which signal is the clock, so you need to write the
description in a way that enables the tool to infer the clock correctly, The rules are simple to fol-
low: (1) Each if or else if statement in the procedural assignment statements is to correspond to

21 2 Chapter 5 Spchroms Sequential Logk

an asynchronous event, (2) the last else statement cornponds to the clock event, and (3) the
asynchronous events are tested fiFsC. Thm am two edge events in the second d u k of HDL
Example 5.2. The negedge rst (met) event is asynchous, since it match the I (-rst)
statement. As long as rsb is 0, Q is cleared to 0. If CZk hiis a positive transition, its effect is
blocked Only if rst = 1 caa the pwdge cloEk event sygcIwwoudy eansfer D into Q.

Hardware always has a reset signal. It is strongly recommended tlm aU models of edge-
sensitive behavior include a reset (or preset) input signal; the initial state of the flip
flops of the sequential circuit cannot be determined. A sequential circuit cannot lx tested with
HDL simulation unless an initial state can be assigned with an hput signal.

IIDL Example 5.3 describe3 the construction of a Tor JK flipflop a D flipflop and
gates. The circuit is described with the cbackxistic equations of tbe fIipflops:

Q(r + 1) = Q @ T for a T flip@
Q (t + 1) = J Q r + K ' Q foraJKfbpflop

The fitst module, TFF, &describes a T flipflop by instantiating DFF. (bamamn 0 * is explained
in Section 4.12.) The declared w h , DT, is assigned the cxclusive-OR of Q and T, as is requid
for budding a Tfipflop with a D flipflop. The hstanMm w i h h value of DTrepIac'ing D
in module DFF produces the required T flipflop. The JK flipflop is m e d in a h d a r mm-
ner by using its c h a r m t i c equation tn define a ~ p k c m m t for D in the immhkd DFF.

/IT flip-flop from D Rlp-flop and gates
module TFF (Q, T, Clk, rst);
output Q;
input T, Clk, rst;
wire DT;
assign DT=Q A T ;

11 Instantiate the D flip-flop
DFF TF1 (Q, DT, Clk, rst);

endmodule

fl JK fllp-Rop fmm D fllpltop and g a b (V2001,2005)
module JKFF (output reg Q, Input J, K, Clk, rst):
wlm JK;
assign JK = (J & 4) I (-K & Q);

It Instantlate 0 flipflop
DFF JK1 (Q, J, K, Clk, rst);

endmodule .- .

I1 D Rip-llop (WOO1, V2ME)
module OFF (output reg Q, tnpul D, Clk, mt);
ahaYs @ aka neOedQe rst)
If(78f)Q <= lW
else Q D;

endmodule

W o n 5.6 Synthsizabk HDL Models of Sequential Circuits 213

HDLExample 5 4 shows mother way to describe a JK flip-flop, Here, we choose to describe
the flip-flop by using the characteristic table rather than the characteristic equation. The
&way branch condition checks the two-bit number obtained by concatenating the bits of J
d K. me c a ! ~ expression ({ J , K)) is evaluated d cornpad with the values in the list of
statements that follows. The f h t value that matches the aue condition is executed. Since the
cw~mtenation of J and K pruduces a twc-bit number, it can be equal to 00,01,10, ox 11, The
first bit gives the value of J and the second the value of Kg The four possible conditions spec-
ify the value of the next state of Q after the application of a psitive-edge clwk.

I1 Functional description of JK flipflop (V2001,2005)
module JK-FF (Input J, K, Clk, output reg Q, output Q-b);
assign c b = - Q ;
always @ (p-edge Clk) - ({JNI

TWO: Q <= Q;
2'bol: Q <= I'M;
2'blO: Q <= l 'bl;
2bl1: Q <= -Q;

rndeoon
endmodule

State -ram

An HDL -1 of the operation of a sequential circuit cap be based on the format of the cir-
cuit's state diagram. A Mealy HDL model is presented in HDL Example 5.5 for the state ma-
chine described by the state diagram shown in Figure 5.16. The input, output, clock, and reset
are declared in the usual manna. The state of the flipflops is declared with hkdfiers state and
nexfsrate. These variables hold the values of the present state and the next value of the se-
quential circuit. The state's binary assignment is done with a parameter statement. (Verilog
aIlows constants to be defined in a module by the keyword parameter.) The fow states SO
through S3 are assigned binary 00 through 11. The notation S2 = 2'blO is preferable to the al-
ternalive S2 = 2. The former uses only two bita to store the consrant, whereas the latter results
in a binary number with 32 (or 64) bits.

HDL ExamnIe 5.5

/I Mealy FSM zero detector (See Fig. 5.1 6)
module Mealy-ZeroJetector (
output n g y-out,
Input x-in, do&, =set

1;
reg [I : 01
parameter

V d b g 2001,2005 syntax

state, next-state;
SO = 2'b00, S1 = 2'b01, S2 = 2'bIO, $3 = 2'bl I ;

Section 5.6 Syntheslznble HDL Mdds of Sequential Circuits 21 5

The Veriog model in HDL Example 5.5 uses three always blacks that execute concurrently and
interact through common variables. The first always statement resets the circuit to the initial state
SO = 00 and spec5es the synchronous clocked operation. The statement state < = next-state
is executed only in response to a positive-edge transition of the clck. This means that any change
in the vdue of next_state in the second always block can affect the value of s&te only as a result
of a paedge event af clock. The second always blwk determines the value of the next state tran-
sition as a function of the present state and input. The value assigned to state by the nonblocking
assignment is the value of next-state immediately before the rising edge of clock. Notice how the
multiway branch condition implements the state transitions specifd by the annotatsd edges in the
state diagram of Fig, 5.16. The third always block specifies the output as a function of the pres-
ent state and the input. Although this blcck is listed as a separate behavior for clarity, it cuuld be
combined with the second block. Note that the value of output y-out may change if the value of
input x-in changes while the circuit is in any given state,

So let's summarize how the model describes the behavior of the machine: At every rising
edge of clock, if reset is not asserted, the state of the machine is updated by the first always
blwk; when state is updated by the fist always block, the change in state is detected by the
sensitivity list mechanism of the second always block; then the second always block updates
the value of next-state (it will be used by the first always block at the next tick of the clock);
the third always block also detects the change in state and updates the value of the output. In
addition, the second and thud always blocks detect changes in x-in and update next-state and
y-ouf according1y. The test bench provided with Mealy2ro_Petectar provides some wave-
f m s to stimulate the model, producing the results shown in Fig. 5 -22. Notice how t j - o u t

\I /
valid Mealy output Mealy glitch

FIGURE 5.22
Slmulrtlon output of Mm~/y-Ztm~Detuctor

Ch-5 Synchronous S q d r l Legk

responds to changes in both tbt state and ttae iaput and has a glitch (a lnmsiat logic value).
T h waveform dmxiption uses the fork. . . joln construct. Stakmn&i within the fork. . . jobn
b l d execute in pardel, so the time &lays are relative to a common reference oft = 0. It is
usually more convenient to use the fork. . .join block instead of the begin.. . end block in
describing waveforms. The waveform of w e t is triggered "on the flyn to demonsmate that the
machine recovers from an unexpected reset condition dudng any state.
How does our Verilog model Mealy-Zem>tector correspond to hardware? The &st

always block corresponds to a D flipflop imphmat&on of the state ~gis ter in Fig. 5.21; the
second Jwap block is the comtriaabml logic Block desaibiag th next state; the third always
block describes the output c o m b i n a ~ logic of the aemdehthg Mealy machine. The reg-
ister operation of the state transition w s the nonbbcking assignment operator (< =) bscause
the (edpsensitive) nip-flops of a sequential machine are updatad ~ ~ t l y by a common
c l d . The second and third always blocks -be c o m b h i d logic, wbkh is level semi-
tive, so they use the blocking (=) as~igumnt operator. Their tmdivity lists include both the
state and the input because their logic must respond to a change in either or botb of them.

Note: the modeling style illustiated by Mealy,&m-Detector is commonly used by de-
signers. Notice that the reset signal is usaciated with the fm always block It is modeled here
as an activ8-low reset. By including the m e t in the model of the state fmm&n, &ere is no need
to include it in ahe combinational logic that smts the next state d tbe output, producing
a simpler and more readable description.

The behavior of the Moore PSM having the state diagram shown in Fig. 5.19 cau k &led
by the Verilog description in HDL Example 5.6. This examp4 shows that it is psi i le to describe
the state transitions of a clwM sequential mwhine with only one always bl& Tbe present state
of the circuit is identified by the variable state. The smte inmitiom an miggmd by h M i
edge of the clock according to the &tiom listad in the uwx statements, The ambhtiunal
logic that implicitly demmhm the next state is included in the mdddbg arkgmmt to stute.
In this example, the output of the cktcuitis independent of h input and is taken d h d y the
outputs of the flip-flops. The two-bit output y-out is specified with a mtinum (adgal statement
and is equd to the value of the present state vector. F i 5.23 shows some sidalion results for
M ~ ~ ~ o d e l J i g ~ 5 ~ 1 9 . Notice that tbe mQut of the Moom m a d k does nut have glitches.

HIlL Example Sb

I1 Moore model FSM (see Fig, 5.19)
module Moore-Model-Fa51 9 (
output 11 : 01 Y-out,
input kin. dodr, M

);
rea (1: 01
parameter

Ver ib 2QO1,2005 syntax

a l w w @ (wedge clock, negsdge reset)
if (met == 0) state <= 90: /I InHSza to a t e SO
else case (state)

Section 5.6 Synthesizabk HDL Models of Sequential CircJts 21 7

SO: if (-xJ) state c= S1; else state c= SO;
S1: if (x-in) state <= S2; else state <= S3;
52: if (-x-in) state <= S3; else state <= S2:
S3: if (-x-In) state <= SO; else state <= S3;

endcase

asslgn y-out = state; I / Output of flip-flops

endmodule

REURE 5.23
Simulation wtput of HDL: Exampie 5,6

Structural Description of Clocked Sequential circuits
Combinational logic circuits can be described in VeriIog by a connection of gates (primitives
and UDPs), by dataow statements (continuous assignments), or by level-sensitive cyclic be-
haviors (always blocks). Sequential circuits are composed of combinational logic and flip-
flops, and their HDL models use sequentid UDPs and behavioral statements (edge-sensitive
cyclic behaviors) to describe the operation of flip-flops. One way to describe a sequential cir-
cuit uses a cornhination of dataflow and behavioral statements. The £lip-flops are described
with an always statement. The combinational part can be described with assign statements
and Boolean equations. The separate modules can be combined to form a structural model by
instantiation within a module.

The structural description of a sequential circuit is shown in HDL Example 5.7. We want
to encourage the reader to consider alternative ways to model a circuit, so as a point of
comparison, we first present Moore-Model-Fig-520, a Verilog behavioral description of
the machine having the state diagram shown in Fig. 5.20. This style of modeling is direct.

218 Chapter 5 Spchronous Saguon#d togk

An alternative style, used in Moore_Mode l .CTRJig~20 , is to rrpreseot the structure
shown in Fig. 5.2qa). This style uses two modules. Tbe h t descritm the c h i t of Fg. 5.2qa).
The second describes tbe Tap-flop hat will be used by rhe circuit. We also show two ways
to mwlel the T flip-flop. Tbe h t asserts that, at every clock tick the value of the output
of the flip-flop toggles if the toggle input is asserted. The second m d l describes the be-
havior of the toggle flip-flop in terms of its characteristic equation. The first style is at-
tractive because it does not require the reder to remember the characteristic equation,
Nonetheless, the models are iatercbgeablt and will synthesize to the same hdware cir-
cuit. A test bench module provides a stirnutus for verifying the functionality of the circuit.
The sequential circuit is a two-bit binary counter controlled by input x-in. The output,
y-out, is enabled when the count reaches binary 11. Flip-flops A and B are included as out-
puts ia order to check their operation. The flip-flop input equations and the ourput equation
are evaluated witb continuous assignment (assign) statements having the corresponding
Boolean expressions. The instantiated Tflip-flogs use TA and TB as defmed by the input
equations.

The second module describes the T flip-flop. The reset input mets the flipflop to 0 with
an active-low signal. The operation of the flipflop is specified by its characteristic equation,
Q(t + 1) = Q @ T a

The test bench includes both models of the machine. The stimulus module provides com-
mon inputs to the circuits to Qimultamusly display their output responses. The first initial
block provides eight clock cycles with a period of 10 as. The second Inlblal b h k s-es a
toggling of input x j n tbst occurs at the negative edge transition of the clock The r e d of the
simulation is shown in Fig. 5.24. The pair (A, B) goes through the binary sequence 00.01, 10,
11, and back to 00. The change in the cwnt is m e r e d by a positive edge of the clock pro-
vided ?bat x-in = 1 . If x - = 0, the count does not change. y-out is equal to 1 when both A
md B arc equal to 1. This verifies the maia functiwality of the circuit, but not a recovery from
an unexpected reset evant,

I1 State-diagram-bassd model (V2001,2005)
m d u h M0or-MpdrlJii5~20 (
output Y-W~
Input x-in, clock, reset

);
w [I: 01 sw
parameter SO=rWO.Si=2Wl,S2=TblO.S9=~11:

always @I @o8adw do& m@ge reset)
If (W == 0) slate <= SO; 11 Initialize to state SO
elm caaw (state)

SO: i f (x_ ln)s ta tecS l ;ebg fa fe~QO;
S1: If (x-In) at@ <= 52; dee a t e c= Sf;

Sectlon 5.6 Synthesizable HDL Models of Sequential-Circuits
- 4 .La,. - r .I_ _ . -

S2: if (xln) state <= S3; else state <= 52;
53: if (x-in) state <= SO; else state <= S3;

endcase

assign y-out = (state == 213);
endmodule

I/ Output of flip-flops

/I structural model
module Moore-ModeLSTR-Fig-5-20 (

output y-out, A, B,
Input x-in, clock, reset

1;
wlre TA, TB;

I1 Flip-flop input equations
assign TA = x-in & B;
assign TB = x-in;

11 Output equation
assign y-out = A & 6;

/I Instantlate Toggle fltp-flops
Tqgle-flip-flop-3 M-A (A, TA, clock, reset);
Toggle-flip-flop-3 M-0 (0, TB, clock, reset);

endmodule

module Toggle-flip-flop (Q, T, CLK, RST-b);
output Q;
input T, CLK, RST-b;
reg Q;

always @ (w e d g e CLK, negedge RST-b)
if (RST-b == 0) Q <= I 'bO;
else If (T) Q <= -Q;

endmodule

I/ Alternative model using characterlstlc equation
/I module Tcqgle-flip-flop (Q, T, CLK, RST-b);
11 output Q;
11 input T, CLK, RST-b;
I1 reg Q;

/ I always @ (posedge CLK, negedge RST)
/I If (RST-b == 0) Q <= l'bO;
/I else Q <= Q T ;
I/ endmodule

module t-Moore-Fk5-20; , *.. .:
. . , .

Are ty-out-2, ty-OM-I ;
JW Lin, t-GI&, t-mset

Initial NO0 $finish;
lnlttal begin

t-resel= 0;
t-clock = 0;
#5 t-met = 1;

repeat (lo)
#5 t-clock = -t_clock;

end
I n k 1 begin

t-x-in = 0;
#l5 t-x-In = 1 ;

w = t (8)
#I 0 t - ~ l n = -t-%-In;

end
emtmodule

Name 0 50 100 150
I L I I I I I L I I I I I I I I I L I I l I L t I I I I I I I L

F#;URE s a
Sirnulalion output of MK Example 5 7

Section 5,7 State Reduction and Assignment 221

5 .7 STATE REDUCTION A N D ASS,ICNMENT

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table
or diagram. The design (synthesis) of a sequentid circuit starts from a set of specifications and
culminates in a logic diagram. Design procedures are presented in Section 5.8. Two sequen-
tial circuits may exhibit the same input-output behavior, but have a different number of inter-
nal states in their state diagram. The current section discusses certain properties of sequential
circuits that may simplify a design by reducing the number of gates and flip-flops it uses. In
general, reducing the number of flip-flops reduces the cost of a circuit.

State Reductton

The reduction in the number of flip-flops in a sequential circuit is referred to as the stete-
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external, input-output requirements un-
changed. Since na fhp- flops produce 2m stales, a reduction in the number of states may (or may
not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing the
number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may require
more combinational gates.

We will illustrate the state-reduction procedure with an example. We start with a sequential
circuit whose specification is given in the state diagram of Fig. 5 -25. In our example, only the
input-output sequences are important; the internal states are used merely to provide the re-
quired sequences. For that reason, the states marked inside the circles are denoted by letter
symbols instead of their binary values. This is in contrast to a binary counter, wherein the bi-
nary value sequence of the states themselves is taken as the outputs,

SIGURE 5.25
State diagram

Chapter 5 Synchronous Sequ#ltld bgk

There are an infinite number of input sequences that may be applied to the circuit; each re-
sults in a unique output sequence. As an example, consider the input Bequence 010101 101 00
starting from the initial state a. Each input of 0 or 1 produces an wcput of 0 w 1 and causes
the circuit to go to the next state. From the state diagram, we d h ~ dme wtgut and state sequence
for the given input sequence as follows: W1th the circuit in initial state a, an inpnt of 0 W c e s
an output of 0 and the circuit remains in state a. With present state a aod an h p t of 1, the out-
put ir 0 and the next state is b. With present state b and an input of 0, the output is 0 and the
next state is c. Continuing this procese, we fTnd the complete sequence to be as follows:

state
input
output

a b c d s f f
1 0 1 0 1 1 0
0 0 0 0 1 1 0

In each column, we have the present state, input value, and output value. The next state is writ-
ten on top of the next column. It is important to re& that in l h i s circuit the states themselves
are of secondary importance, because we are interested only in oup t sequences d by input
sequences.

Now kt us assume that we have found a sequential circuit whose state diagram bas fewer
than seven states, and suppose we wish to compare this circuit with the circuit whose state di-
agram is given by Fig. 5.25. If iderrtical input sequences m applied to the two W t s and iden-
tical outputs occur for all input segumces. then the two circuits are said to be equivalent (as
far as the input-output is concerned) and one may be replaced by h e 0 t h ~ The problem of stak
reduction is to find ways of reduciq the number d states in a sequential circuit without altering
the input-output relationships.

We now proceed to reduce the nnmber of states for this example. Fmt. we need the state
table; it is more convenient to apply prmdms for state reduction with lhe use of a table rather
than a diagram. The state table of the circuit is listed in Table 5.6 and is obtained directly from
the state diagram.

The following algorithm for the state reduction of a compMy specdied state table is given
here without proof: ''Tho states are said to be equivalent if, for each member of the set of in-
puts, they give exactly the same output and send the cjircuit either to the same state or to an

Table 5.6
State Tabk

~ext State OutpR

Werent State x = O x = l x = O x = l

Section 5.7 State Reduden snd Assignment 223

Table 5.7
Rcdr#ing*SfrrtcTabk

Next Stmte Output

Present State x = O x = l x = o x = l

a a b 0 0
b c d 0 0
c u d 0 0
d I9 f 0 1
+? a f 0 1
f t? f 0 1

equivalent state." When two states are equivalent, one of them can be removed without alter-
ing the input-utput relationships.

Now apply this algorithm to Table 5.6. Going through the state table, we look for two pm-
ent states that go to tbe same next state and have the same output for both h u t mmbinatioas.
Statts g d e me two such states: They both go to states a and f and have outputs of 0 d 1
for x - 0 and x = 1, mpcctively. Therefore, states g and c are equival- and one of t h m
states cm be removed, me @ure of removing a state and replacing it by its equivalent is
demonstrated in Table 5.7. The row with present state g is removed, and state g is replaced by
state e each time it occurs in the oolumrrs headed "Next State."

Present state f now has next states e and f and outputs 0 and 1 for x = 0 and x = 1, re-
spectively. The same next states and ourputs appear in the row with present state d. Therefore,
states f and dare equivalent, and state f can be xernoved d replad by d The final reduced
table is shown in Table 5.8. 'Ihe state diagram for the reduced table consists of only five states
and is shown in Fig. 5.26. This stale diagram satisfies the original input4utput spcikations
d will prOdllce the required output sequence for any given input sequence. The following list
derived from the state diagram of Fig, 5.26 is fw the input sequence used previously (note that
the same output sequence results, although the state sequence is different):

state @ a b c
input 0 1 0 1
output 0 0 0 0

Table 5.8
R d d Shte Tabla

Next State Output

Present State x = O x = l x = O % = I

224 Chapter 5 Synchmew Seqwntld Lagk

FIGURE 5.#
Reduced state dlagram

In fact, this sequence is exactly thc same as that obtained for Fig. 5.25 if we replace g by e and
f by d-

Checkhg each pair of states for equivalency can be d m rystematidy by means of a p m
cedure that employs an implication table. which consists of squares, one for every suspected
pair of possible equivalent states By judicious use of the table, it is possible to dckmhe all
pairs of tquivalen~ states in a state table. The use of the implication table for reducing the num-
ber of states in a state table is demoflstrated in Section 9.5.

The sequential circuit of this example was reduced h m seven to five states. In general, re-
ducing the number of states in a state table may result in a circuit with less equipment How-
ever, the fact that a state table has been reduced to fewer stales docs not guarantee a saving in
the number of flip-flops or the n u m k of gates.

State Assignment

In order to design a sequential circuit wilh physical components, it is necessary to assign unique
coded binary values to the states. For a circuit with m s t a k q the oodes must contain n bits, where
2" 2 m. For example. with three bits, it is possible to assign mks to eight smtcs, denoted by
binary numbus 000 through 11 1, If the state table of Table 5.6 is used, we must assign binary
values to seven states; the remaining st& is d. If the state table of Table 5.8 is used, only
five states nccd binary assignment, and we are icft with k u n d states. Unused states ate
mafed as don't-care conditions during the design. Since don't-care conditions usually help in
obtaining a simpler circuit, it is m m W y tha the circuit with five states will require fewer
combinational gates than the one with seven states.

The simplest way to code five states is to use the 6rst five integers in binary counting order,
as shown in the fmt assignment of lhble 5.9. Another similar assignment is the Gray code
shown in assignment 2. Hete, only me bit in the oode grwp changes w h going 6wn OM num-
ber to the next. This code make# it easier for the Boolean functions to be placed in the map for
simplification. Another possible assignment often used in the design of state machines to con-
trol data-path units is the one-hot assignment. This codqymtion uses as many bib as there are

Section 3.8 Deslgn Procedure 225

TaMe 5.9
Thm -Me Binary S t t l t e ~ ~
-- -.

Assignment 1, Assbnment 2, Asstgnment 3,
State Binarv Grnv Code One-Hot

Table 5.10
R s d d Strrte 3We w;Etk BkKuy Assignment I

uext Stmtt Output

Present State x = 0 x = 1 x = O x u 1

000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 f

states in tbe circuit. At any given time, only one bit is equal to 1 wbile dl others are kept at 0.
This type of assignment uses one flipflop per state, which is not an issue for register-rich field-
programmable gate mays. (See Chapter 7.) One-hot encoding usually leads to simpler de-
coding logic for the next state and output. One-hot machines can be faster than machines with
sequential binary encoding, and the silicon area required by the extra flip-flops can be offset
by the ma saved by using simpler decoding logic. This m a d e 4 is not guaranteed, so it must
be evaluated for a given him

Table 5.10 is the reduced state table with biruuy assignment 1 substituted for the letter sym-
bols of the states. A different assignment wiIl result in a state table with different binary val-
ues for the states. The binary form of the state table is used to derive the next-state and
output-forming combinational logic part of the sequential circuit, The complexity of the corn-
binational h i t depends on the binary state assignment chosen.

Sometimes, the name transition t d l e is used for a state table with a binary assignment.
This convention distinguishes it from a state table with symbolic names for tfie states. In this
book, we use the same name for both types of state tables.

5.8 DESIGN PROCEDURE

Design procedures or methdologies specify hardware. tha~ will implement a desired behavior.
The design effort for small circuits may be manual, but industry relies on automated synthesis

Chapm S Synchronous Ssqwnd.l Logk

tools for designing massive integrated circuits. The building block used by synhesis tmls is
the D flip-flop. Together with additional logic, it can implement the behavior of JK and Tflip
flops. In fact, designers generally do not concern themselves with the type of flipflop; rather,
their fwus is on correctly describing the sequential functionality that is to be implemented by
the synthesis tool. Here we will illuslmte manual methods using D, JK, and T flip-flops.

The design of a clocked sequential circuit starts from a set of spcikations and culminates
in a logic diagram or a list of Boolean functions from which the logic dingam can be obmined.
In conuast to a combinational circuit, which is fully specified by a truth table, a sequential cir-
cuit requires a state table for its specification. The kst step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state diapm.

A synchronous sequential cirmit is made up of flip-flops and combhatiwal gates. The de-
sign of the cirmit consists of choosing the flip-flops and then finding a d h t i o n a l me shut-

ture that, together with the flip-flops, produces a circuit which W s the stated s@cations.
The number of flip-flops is determined from the number of states needed in the circuit. The
combinational circuit is derived h n n the state table by evaluating tbe flipflop input eqwjions
and output equations. In fact, once the type and number of £lipflops are detemhed, he design
process involves a transformation b n a sequential chruit problem into a combinational circuit
problem. In this way, the techniques of combinational circuit design can be applied.
The procedure for designing synchronous sequential circuits can be s lbyalistof

recommended steps:

1. From the word description and specifications of the desired operation, derive a state
diagram for the circuit.

2. Reduce the number of states if necessary.
3. Assign binary values to the states.

4. Obtain the binary -coded stak table.
5, Choose the type of flip-flops to be used.
6. Derive the simplified fip-flop input equations and output equations.
7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar with
digital logic terminology. It is necessary that the designer use intuition and experience to ar-
rive at the correct interpretation of the circuit specifications, beclluse w d descriptions may
be incomplete and inexact. Once such a, specification has been set down and the state diagram
oWed, it is possible to use hown synthesis gmedum to complete the Mp. Although there
are formal procedures for state reduction and assignment (steps 2 and 3). they are seldomused
by experienced designers. Steps 4 though 7 in the design can be implemented by exact algo-
rithms and therefore can be automated. The part sf the design that follows a welldefined pro-
cedure is refmed to as synthesis. Designers using logic synthesis twls (software) can follow
a simplified process that develops an HDL description directly from a state diagram. letthe the.
synthesis tool determine the circuit elements and structure that implement the dewriprim.

The first step is a critical part of the process, because suuxdng steps depend on b We
will give one simple example to demonstrate how a state diagram is obtained from a word
specification.

Settion 5.8 Deslqn Procedure 227

RGURE 5.27
State diagram for sequence detector

S u p p we wish to design a circuit that detects a sequence of three ormore consecutive 1"s
in a sbing of bits coming through an input line (i.e., the input is a serial bit stream), The state
diagram for this type of circuit is shown in Fig. 5.27. It is derived by starting with state So, the
reset state. If the input is 0, the circuit stays in So, but if the input is 1, it goes to state S1 to in-
dicate that a 1 Was detected. If the next input is 1 , the change is to state S2 to indicate the ar-
rival of two consecutive l's, but if theinput is 0, the state goes back to So. The third consecutive
1 sends the circuit to state S3. If more 1's are detected, the circuit stays in Sj. Any 0 input sends
the circuit back to So. In this way, the circuit stays in S3 as Iong as there are three or more con-
secutive 1's received. This is a Moore model sequential circuit, since the output is 1 when the
circuit is in state S3 and is 0 otherwise.

Synthprls Uslng R flip-flops

Once the state diagram has been derived, the rest of the design follows a straightforward syn-
thesis procedure. In fact, we cm design the circuit by using an HDL description of the state di-
agram and h e proper HDL synthesis tools to obtain a synthesized netlist, (The HDL description
of the state diagram will be similar to HDL Example 5.6 in Section 5.6.) To design the circuit
by hand, we need to assign binary codes to the states and list the state table. This is done in
Table 5.11. The table is derived from the state diagram of Fig. 5.27 with a sequential binary as-
signment. We choose two D flip-flops to represent the four states, and we label their outputs
A and B. There is one input x and one output y. The characteristic equation of the D flip-flop
is Q{t + 1) = on. which means that the next-state values in the state table specify the D input
condition for the flip-flop. The flip-flop input equations can be obtained directly from the next-
state columns of A and B and expressed in sum-of-mintems form as

228 Chapter 5 Synchrqws Squentlal L@c

Table 5.1 1
State Tabk lbr Sequmce lMdw

Present Next
S t a t e 1nPUt Stat* OW-

where A md B are the present-state values of flipflops A and 3, x is the input, and DA and DB
are the input equations. The rninterms for output y are obtained from the output column in the
state table.

The Bwlean equations are simpW~ed by means of the maps plotted in fig. 5.28, Th sim-
plified equations are

The advantage of designing with D flip-flops is that the Boolean equations W b h g the in-
puts to the flip-flops can be obtained directly from the state Software tools automatidy
infer and select the D-type flip-flop from a properly written fIDL model. The schematic of the
sequential circuit is drawn in Fu. 529.

FIGURE &a8
Maps for ssqumce d,-

M o n S8 Resign P M u m 229

RGURE kaP
logic diagram d sequence detector

The design of a sequential circuit with flip-flops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table. When
D-type flip-flops m empIoyed, the input equations are obtained directly from the next state,
This is not the case for the JK and T types of flip-flops. In order to determine the input qua-
tions for these flipflop, it is necessq to derive a functional relationship between the state table
and the input equations.

The flipflop charactsristic tables presented in Table 5.1 provide the value of the next state
when the inputs and the present state are known. These tables are useful for analyzing sic-
quentid circuits and for defining the opedon of the flip-flop. During the design p m s , we
usually know the transition from the present $?am to the next state and wish to find the flip-flop
input conditions that will cause the wired transition. For this reason, we need a table that lists
the required inputs for a given change of state. Such a table is c a w an arcitation tdk.
Table 5.12 shows the excitation tables for the two flipflops. Each table has a column for

the present state QIr), a column for the next state Q(t I- 1), and a column for each input to show

Table 5.12
Fib-Fl~p E ~ c I t d O n TUbk

how the required transition is achieved. There are four possible bansitions from the present state
to the next state. The required input conditions for each of the four transitions are derived from
the information available in the characteristic table. The symhl X in the tables represents a
don't-care condition, which means that it does not matter whether the input is 1 or 0.

The excitation table for the JK flip-flop is shown in part (a). When both present state and next
state are 0, the J input must remain at 0 and the K input can be either 0 or 1. Similarly, when both
present state and next state are 1, the K input must remain at 0, while the J input can be 0 or 1.
If the flip-flop is to have a transition from the O-state to the 1-state, J must be equal to 1, since
the J input sets the flip-flop. However, input K may be either 0 or 1. If K = 0, the J = 1 con-
dition sets the flip-flop as r e q d , if K = 1 and J = 1, the flip-flop is complemented and
goes from the 0-state to the 1-state as required. Therefore, the K input is marked with a don't-
care condition for the 0-to- 1 Wition. For a transition f m the 1-state to the 0-state, we must
have K = 1, since the K input clears the flip-flop. However, the J input may he either 0 or 1,
since J = 0 has no effect and J = 1 together with K = 1 complements the flipflop with a re-
sultant transition from the 1 -state to the 0-state.

The excitation table for the Tflip-flop is shown in part (b). From the characteristic table, we
find that when input T = 1, the state of the flip-flop is complemented, and when T = 0, the
state of the flip-flop remains unchanged. Therefore, when the state of the flipflop must re-
main the same, the requirement is that T = 0. When the state of the flip-flop has to be com-
plemented, T must equal 1 .

Synthesis Usi,ng I K HipFlops
The manual synthesis procedure for sequential circuits with JK flipflops is the same as yith
D flip-flops, except that the input equations must be evaluated from the present-state to the next-
state transition derived h m the excitation table. To illustrate the pmxdure, we will synthe-
size the sequential circuit specified by Table 5.13. In addition to having columns for the present
state, input, and next state, as in a conventional state table, the table shows the £lip-£lop input
conditions from which the input equations are derived. The flip-flop inputs are derived from
the state table in conjunction with the excitation table for the JK flipflop. For example, in the
first row of Table 5.13, we have a transition for fipflop A from 0 in tbe present stale to 0 in
the next state. In Table 5.12, for the JK flip-flop, we find that a transition of states from pres-
ent state 0 to next state 0 requires that input J be 0 and input K be a don't-care. So 0 and X are

Section 5.8 Design Produre 231

Table 5.1 3
Stute Tabk and jK Flip- Flap lnputr

Present Next
State Input State Fllp-Flop Inputs

A B x A B IA KA IB Ka

0 0 0 0 0 0 x o x
0 0 1 0 1 x 1 x
0 I 0 1 0 1 X X 1
0 1 1 0 1 0 X X O
1 0 0 1 0 X O O X
1 0 1 1 1 X 0 1 X
1 1 0 1 1 X O X 0
1 1 1 0 0 X 1 x 1

entered in the first row under JA and K A , respectively. Since the first row also shows a transi-
tion for flip-flop B from 0 in the present state to 0 in the next state, 0 and X are inserted into
the first row under JB and Kg, respectively. Tne second row of the table shows a transition for
flip-flop B from 0 in the present state to 1 in the next state. From the excitation table, we find
that a transition from 0 to 1 requires that J be 1 and K be a don't-care, so 1 and X are copied
into the second row under JB and Kg, respectively. The process is continued for each row in
the table and for each flip-flop, with the input conditions from the excitation table copied into
the proper row of the particular flip-flop being considered.

The flip-flop inputs in Table 5.13 specify the truth table for the input equations as a func-
tion of present state A, present state B, and input x. The input equations are sirnpllfied in the
maps of Fig. 5.30. The next-state values are not used during the simplification, since the input
equations are a function of the present state and the input only. Note the advantage of using JK-
type flip-flops when sequential circuits are designed manually. The fact that there are so many
don't-care entries indicates that the combinational circuit for the input equations is likely to be
simpler, because don't-care minterrns usuaLly help in obtaining simpler expressions. If there are
unused states in the state table, there will be additional don't-care conditions in the map.

The four input equations for the pair of Jlr: flip-flops are listed under the maps of Fig. 5.30.
The logic diagram (schematic) of the sequential circuit is drawn in Fig. 5.3 1.

Spthesb Uslng T Flip-Flops

The procedure for synthesizing circuits using T flip-flops will be demonstrated by designing
a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from
0 to 2" - I . The state bagram of a three-bit counter is shown in Fig. 5.32. As seen from the
binary states indicated inside the circles, the flip-flop outputs repeat the binary count sequence
with a return to 000 after 11 1, The directed lines between circles are not marked with input
and output vaIues as in other state diagrams. Remember that state transitions in clocked se-
quential circuits occur during a clock edge: the flip-flops remain in their present states if no
clock is applied. For that reason, the clock does not appear explicitly as an input variable in

Chapter 5 Synchronous Sequential L o g i c

Section S,L Design Procedure

FlCURE 532
State diagram of three-bR bhary counter

a state diagram or state table. From this point of view, the state diagram of a counter does not
have to show input and output values along the directed lines. The only input to the circuit is
the dock, and the outputs are specified by the present state of the flip-flops. The next state of
a counter depends entirely on its present state, and the state transition occurs every time the
clock goes through a transition.

Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are sym-
bolized by A2, A l , and Ao. Binary counters are constructed most efficiently with T flip-flops
because of their complement property. The flip-flop excitation for the T inputs is derived from
the excitation table of the Tflip-flop and by inspection of the state transition of the present state
to the next state. As an illustration, consider the flip-flop input entries for row 001. The pres-
ent state here is 001 and the next state is 010, which is the next count in the sequence. Com-
paring these two counts, we note that A2 goes from 0 to 0, so TA2 is m k e d with 0 because
flip-flop A2 must not change when a clock occurs. Also, A l goes from 0 to 1, so TA1 is marked
with a 1 because this flip-flop must be complemented in the next clock edge. Similarly, A.
goes from 1 to 0, indicating that it must be complemented, so TAO is marked with a 1. The last
row, with present state 111, is cornparedwith the first count 000, which is its next state. Going
from all 1's to all 0's requires that all three flip-flops be complemented.

Table 5.14
State Tabk for Three-Bit Counter

Present State Next State Fllp-Flop lnputs

Chapter 5 Synchronous Sequential Loglc

FIGURE 5.33
Maps for three-bit binary counter

Clock

1

Fl]tUAe 5.34
Logk diagrm of th-blt blnrty mu*.

The flip-flop input equations are simplified in the maps of Fig. 5.33. Note that TM bas 1 's
in all eight mintems bwause the least significant bit of the counter is complemented with
each count. A Boolean function that includes all mintwrns defines a constant value of 1. The
input equations Iisted under each map specify the combinational part of the counter, In-
cluding these functions with ths three flipflops, we obtain the logic dia- of the count-
er, as shown in Fig. 5.34. For simplicity, the reset signal is not shown, but be aware that
every design should include a reset signal,

P R O B L E M S

Answers to problems merrkEd with appear at the end of the hok. Whm m t e . a logic design
and its rslated HDL modeling problem am cross refem&.
Note: For each problem that quires writing and vmifying a HDL &I. a test plan should be written
to identify which functional featuras are to be 4 during the simulation a d bow tbey will be mted.
For example, a reset on the fly could be teded by asserting the rtstt sw while the simulated
r ~ ~ b h c Is in a state other than ths nsbt stah The test plan is to guide the dcwhpmcnt of a test bench
that will impkmmt the plan. Simulate the model, using the test bench. ad v e d y tba the behavior is

Problems

correct. If synthesis tools and an ASIC cell library are available, the Verilog descriptions developedfor
Problems 5.34-5.46 can be assigned as synthesis exercises. The gatelevel circuit prduced by the
synthesis tools should be simulated and compared with the simulation results for the presynthesis
model.

5,1 The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the fol-
lowing three other ways for obtaining a D latch, and in each case draw the logic diagram and
verify the circuit operation:

(a) Use NOR gates for the SR latch part and AND gates for t!ae other two. An inverter may be
needed.

01) Use NOR gates for all four gates. Inverters may be needed.

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output
of the upper gate in Fig. 5.6 (the gate that goes to the SR latch) to the input of the lower gate
(instead of the inverter output).

5.2 Consauct a JK flip-flop, using a D flip-flop, a two-to-one-line multiplexer, and an inverter.
(HDGsee Problem 5.34.)

5.3 Show that the characteristic equation for the complement output of a JK flip-flop is

4 APN £lip-flop has four operations, clear to 0, no change, complement, and set to 1, when inputs
P and N are 00,01, 10, and 11, respectively.

(a) Tabulate the characteristic table.

(c) Tabulate the excitation table.

@)*Derive the characteristic equation.

(d) Show how the PN flip-flop can be converted
to a D flip-flop.

5.5 Explain the differences among a truth table, a state table, a characteristic table, and an excitation
table. Also, explain the difference among a Boolean equation, a state equation, a characteristic
equation, and a flip-flop input equation.

5.6 A sequential circuit with two D flip-flops A and B, two inputs x and y, and one output z is speci-
fied by the following next-state and output equations (HDL-see Problem 5.35):

A(# + I) = x'y + xi9

B (t + 1) = x l A + xB

(a) h a w the logic diagram of the circuit.
@I List the state table for the sequential circuit.
(c) Draw the corresponding state diagram.

5.P A sequential circuit has one flip-flop Q, two inputs x and y, and one output S. It consists of a full-
adder circuit connected to a D flip-flop, as shown in Fig. P5.7. Derive the state table and state
diagram of the sequential circuit.

S . F Derive the state table and the state diagram of the sequential circuit shown in Fig. PS. 8. Explain
the function that the circuit performs. (HDL-see Problem 5.36.)

- .
%6 Chapter s ~ynchromws Squentiat ~ogk

U A squential circuit has two JK flipfl-A and 3 and . one . . . ingut -. x. T k . T h e t A- is de&i'bed by the
following flip-flop input equations:

(a } i~ve thes tab@ons~(t + l) d B (r + l) b y ~ M m g t h e i t t p u r e q u a r i ~ ~ l ~ f ~ t h ~
J md K miablt~.

@) DWW the state diagram of tk Mi. r:

5.10 ~ ~ d d ~ i ~ i t h ~ t ~ o ~ ~ ~ ~ ~ a o d ~ , ~ ~ ~ u x ~ ~ , ~ ~ ~ ~ t i ~ ~
flop input equations and circuit output quaiion am .;

'.>

J A 3 B x + B ' y ' K A = B 1 q r -4

JB = A'% Kg = A + xy'
.,

z = Ax'y' + Bx'y' -

3

Problems 237

(a) Draw the logic diagram of the circuit.

(b) TabuIate the state table.

(cj* M v e the state equations for A and B.
5.11* Starting from state 00 in the state diagram of Fig. 5.16, determine the state transitions and

output sequence that will be generated when an input sequence of 0101 101 1101 1110 is
applied.

5.1s Reduce the number of states in the following state table, and tabulate the reduced state table:

Next State Output

Present State

5.1 P Starting from state a and the input sequence 01 1 100 100 11, determine the output sequence for
(a) the state tabb of the previous problem and
(3) the reduced state table from the previous problem. Show that the same output sequence is ob-

tained for both.

I Substimte binary assignment 2 h m Table 5.9 to the states in Table 5.8, and obtain the binary state
table.

5 .IS* List a state table for the JK flip-flop, using Q as the present and next state and J and K as in-
puts. Design the sequential circuit specified by the state table, and show that it is equivalent to
Fig. 5.12(a),

5.16" Design a sequential circuit with two D flip-flops A and B and one input x-in.

(a) When x- in = 0, the state of the circuit remains the same. When p i n = 1, the circuit goes
thro~lgh the state transitions from 00 to 0 1, to 11, to 10, back to 00, and repeats.

(b) When x- in = 0, the state of the circuit remaim the same. When x- in = 1, the circuit goes
through the state transitions from 00 to 11, to 01, M 10, back to 00, and repeats. (H D k e e
Problems 5.38.)

5.17 Design a one-input, one-output serial 2's complementer. The circuit accepts a string of bits from
the input and generates the 2's complement at the output. The circuit can be reset asynchronously
to start and end the operation. (HDL-see Problem 5 -39.)

Chaptw 5 Synchronous Setpentip! Lmgk

ale kigtlag~quentidcircuitwithtpm~flip~A~BdcwoinputsEsndF.EE = athe
circuit remrtins in the same state r e g d b s of tbe value of F. Whea E = I aud F = 1, the cir-
cuitgoes~ghtbestate~tionsfrwn00toOl.to1O.tolI.~to00,aadrrpearaWhen
E = I a n d F = O,Ihecirmitgoes~thes~k~tions~00toll,to10,toOl.back
to 00, and repeats. (HDL-ace Problem~5.40.)

hl9 A sequential circuit has three flipflops A, B, aad C. one input U; and one output yqut. l k
~ d ~ g r r u n i s s b o w n i n F i g . P 5 . 1 9 . ~ ~ t i s t o ~ ~ b y ~ g t b e d s r a t c s
asdon't~-careMmditi~llg.Analyzetbe~oQtairmed~thc~m~~Fffectof
the unused states. @ID- M k m 5.41.)
(a)* Use D f l i p - f l q in the dssfgn.
(b) Use JK flipflops in tht desigu

S.a Design the sequential circuit specified by the state diagram of Fig. 5.19. using T €lip-flops.

%a Draw the waveform gemmed by the following statements:

(a) Inltlal begin
w = 0 ; #15w=1; #80w=0; W w = 1 ; #40w=0;

end
(b) lnitlal fork

w=O; #t5w=.f ; #80w=0; #25w=1; #40w=0;
joln

SAP Comider the following smmmrs. u s w i n g that RegA contains €~IC value of 30 iniMy:

5 . a Write and verify an HDL behavioral description of a positive-Bdg+stasitim D flipflop with
(a) active-low asynchmnaus preset and clear. ms type of flipflop is shown in Fig. 11 -13.1
(b) activebw syucbronous ~TWA and clear.

S A special positive-dge-hi=& flipflop has two inputs D1 and 0 2 and a control input t h t
chooses between the two. Write and verify an HDL behavioral description of this flip-flop.

5 Write and verify an HDLbthaviod &&pfion of the JK flip8 op, uuhg an if-tlse s u m e n t b a d
on the value of the present state.

!a)*Considcr the cbmcmistic equation when Q = 0 or Q = 1

0) Consider how th J and K inputs a f k t the output of tbe fiip-flop at each clmk tick.
5.27 Rewrite and verify the M p t i o n of HDL Example 5.5 by combining the state musitions aad

output into we always block.

5 a Simulate the sequentid circuit shown in Fig. 5.17.
(a) Write the HDL kcription of the stab diagram 0.e.. a behavid model),
(b) Write tbt HDL dedption of the circuit diagram be. , a structural model),
(c) Write an fIDL stimulus with the sequence 00,01, 1 1 , l O of inputs. Verify that the response

is the same for both descriptions.

Write a behavioral U p t i a m of the staa machine described by the 6 m diagram shown in
Fig. PS. 19. Write a test bmeb a d vwify the functionality of the description.

P . W Drew the logic diagram far the wquendd circuit de&W by the following HDL rn-
module SeeCkt (Input A, 5, C, CLK, output reg Q);
WJ E;

always @ (posedge CIA);
begin
€ < = A & &
Qc=EIC;

end
endmodule

What changes, if any, must bc kduded in the c h i t If the last two statements use blwkhg ia-
stead of nonbloclring ssignment?

1.31* How should the description ia Problem 5.30 be written so that the chuit has the same hhavior
when the assignments art made with = instead of with <= ?

5.32 U&g an tnUlal statement with a begin . . . end btaek, write a W I o g dascriptb of the wave
forms shown in fig. F5.32. Repeat using a fork . . . join block

533 Explain why it is important that the stimulu~ signals in a test bench be synchronized to the inac-
tive ddge of the clock of the squential circuit that is to be tested '

5.34 Using bahavioral madels for the D flipflop and the inverter, write and verify au HDL -1 of
the 3-K flip-flop described in Rotrlem 5.2.

S . Write and verify an HDL model of the sequential circuit &W in Problem 5.6.

enable 1
A 1
B I 1 I 1

3.34 Write and verify an HDL structural description of the macbiac having the circuit diagram
(schematic) shown in Fig. P5.8.

5.37 Write and verify HDL. behavioral descriptions of the state machines shoum in Fig. 5.25 and
Fig. 5.26. Write a test bench to comgm the state sequenoes and laput-ourput bebavio~ of the
two mschines.

s.38 W r i ~ and verify an HDL bchaviord desdption of the machine &scribed in Problem 5.16,

5.39 Write and verify a behavioral description of the mhine specified ia Problem 5.17.

5.40 Write and verify a behavioral W p t i o n of the macbine specfied in Pmblem 5.18.

5.41 Write and verify a behavioral description of the machine spacified in Problem 5.19. (Hint: See
the discussion of the default case item preceding HDL Example 4.8 in Chaprer 4. r

b . 4 . Write and verify an HDL smctural &scrippian of the circuit shown in Fig. 5.19.

5.43 Write and verify m HDL h h a v i d dewripti011 of the thee-bit binary muter shown in Figure
5.34.

5A4 Write and verify a Verilog made1 d a R flipflop having synchronous reset.

5.45 Write and verify an HDL behavioral &scription of the sequence detector dewibcd ixl Figure
5.27

R E F E R E N C E S

1. BHASKER, J, 1997, A brilog HDL Primer: Alluntown, PA: Star Galaxy Press.
2. BHASKER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

C m m , M. D. 1999. Modeling, Synthesis, &Rapid PmmQping with Rr&g HDL Upper Sad-
dle River, NJ: hemlice W
Dnmmm. D. L. 1988. Logic Design ofDigital System, 3d ed. Bostw: AUyn Bacon.
GAJSKI, D. D, 1997. Pri~ciples of D i g i t D d g r ~ Upper Saddle River, NJ: Mtice MI.
HAYES, J, P, 1993. Introduction to Digital Logic Design, Reading, MA: Addison-Wesly.
KAE, R. H. 2005. C o n t m p o ~ l y Logic Desiga Upper Saddle River, NJ: hnt icu HdL
MANO. M. M.. and C. R. KLMB. 2005. Logic a d Cmputer Design Fu&menfals d5 Xilirax 6.3
Student Edirion, 3rd ed. Upper Saddle River, NJ: Rentice Hall.
Nnsow, V. P., H. T. NAG- I. D. IRWN, and B. D. CARROLL 1995. Digital hg ic Cimif Andy-
sis and Design, Elnglewaod CBffs, NJ: Prentice Hall,
P m w , 5. 1996. Erilog HDL: A Guide to Dtglral Dssigrs and Synthesis. Mountain View,
CA: SuaSoft Press (a mticc Ce title).
R m , C. fI, 2004. Fu&med of Logic Desiga, 5th ed St. Paul, MN: BrookslCole.
'IkOMAS, D. E., and P. R. MOORBY, 2002. Tkg krilog H a m Description Language, 6th ed
Boston: mwer Academic Publishers.
WAKEPLY, J, F. 2006. Digital Design: Principles and Pracfices, 4th ed, Upper Sad& River, NJ:
Prentict Hall.

Chapter 6

ters and Col

4.1 R E C l S f ERS

A clccked sequential circuit consists of n group of £lip-flops and combinational gates con-
nected to form a feedback path. The flip-flops are essential because. in their absence, the
circuit reduces to a purely combinational circuit (provided that there is no feedback among
the gates). A circuit with flip-flops is considered a sequential circuit even in the absence of
combinational gates. Circuits that include flip-flops are usually classified by the function
they perform rather than by the name of the sequential circuit. Two such circuits are regis-
ters and counters.

A register is a group of flip-flops, each one of which is capable of ssroring one bit of
information. An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In addition to the flip-flops, a register may have combinational gates
that perform certain data-processing tasks. In its broadest definition, a register consists of
a group of flip-flops together with gates that affect their operation. The flip-flops hold the
binary information, and the gates determine how the information is transferred into the
register.

A counter is essentially a register that goes though a preduermined sequence of binary
states. The gates in the counter are corutectGd in such a way as to d u c e the prescn'bed se-
quence of states. Although counters are a special type of register, it is common to differentiate
them by giving them a different name.

Various types of registers are avdable commercially. The simplest register is one that con-
sists of only flip-flops, without any gates. figure 6.1 shows such amgister constructed with four
D-type flipflops to form a four-bit data storage register. The common clock input triggers all
flipflops on the positive edge of each pulse, and the binary data available at the four inputs are

Seabn 6. I Registers 243

I t-
Clock Clmr

transferred into the register. The four outputs can be sampled at any time to obtain the binary
idonnation stored in the register. The input Clear-b goes to the active-law R (reset) input of
all four flip-flops. When this input goes to 0, all flip-flops are reset asynchronously. The Clear-b

Chapter 6 Registers and Counten

input is useful for clearing the register to all 0's prior to its clocked operation, The R inputs must
be &mined at Iogic 1 during nonnal clocked operation. Note that, b n d i n g on the flipflop,
either Clear, Clear-b, reset, or met-b can be used to indicate the transfer of the register to an
all 0's statc.

R w t t r wtth Parallel Lond
Synchronous digital system have a master clock generator chat supplies a continuous train
of clock pulses. The pulses are applied to all flip-flops and registers in the system. The
master clock acts like a drum that supplies a constant beat to all parts of the system. A sep-
arate control signal must be used to decide which register operation will execute at each
clock pulse, The transfer of new information into a register is referred to as loading or up-
dating the register. If all the bits of the register are loaded simultaneously with a common
clock pulse, we say that the loading is done in parallel. A clock edge applied to the C in-
puts of the register of Fig. 6. t will load all four inputs in parallel. In this co~guration, if
the contents of the register must be left unchanged, the inputs must be held constant or the
clock must be inhibited from the circuit. In the first case, the data bus driving the register
would be unavailable for other traffic. In the second case, the clock can be inhibited from
reaching the register by controlling the clock input signal with rtn enabling gate. However,
inserting gates into the clock path is ill advised because it means that logic is performed with
clock pulses, The insertion of logic gates produces uneven propagation delays between the
master clock and the inputs of flip-flops. To fully synchronize the system, we must ensure
that all clock pulses arrive at the same time anywhere in the system, so that all flip-flops
trigger simultaneously. Performing logic with clock pulses inserts variable delays and may
cause the system to go out of synchronism. For this reason, it is advisable to control the
operation of the register with the D inputs, rather than controlling the clock in thc C inputs
of the flip-flops. This creates the effect of a gated clock, but without affecting the clock path
of the circuit,

A four-bit data-storage register with a load control input that is directed through gates and
into the D inputs of the flip-flops is shown in Fig. 6.2, The additional gates implement a two-
channel mux whose output drives the input to the register with either the data bus or the out-
put of the register. The load input to the rogister determines the action to be taken with each
clock pulse. When the load input is 1. the data at the four external inputs are tmsfcrred into
the register with the next positive edge of the clock, When the load input is 0, the outputs of
the flip-flops are connected to their respective inputs. The feedback connection f m output
to input is necessary because a D flipflop does not have a 'a0 change" condition. With each
clock edge. the D input determines the next state of the register. To leave the outpur un-
changed, it is necessary to make the D input equal to the present value of the output (i.e.: the
output circulates to the input at each clock pulse). The clmk pulses are applied to the C in-
puts without interruption. Tha load input determines whether the next pulse will accept new
information or leave the information in the register intact. The transfer of information h m
the data inputs or the outputs of the register is done simultan8ously with all follr bits in rcspow
to a clock edge.

Load

FIGURL 6.2
Four-bit reglsier with parallel load

6 . 2 SHIFT R E G I S T E R S

A register capable of shifting the binary information held in each cell to its neighboring cell,
in a seIected direction, is called a shift register The logical configuration of a shift register
consists of a chain of flip-flops in cascade, with the output of one flip-flop connected to the input
of the next flip-flop. All flip-flops receive common clock pulses, which activate the shift of data
kom one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig, 6,3. The
output of a given fhp-flop is connected to the D input of the flip-flop at its right. This shift reg-
ister is unidirectional. Each clock pulse shifts the contents of the register one bit position to the

Chaptqr 6 Registers and Caunters

Scrial Scaal
Input o u p t

CLK

b G U M 6.3
F8w-blt *in rtglstw

righ~. The configuration does not support a left shift. The sertrrl input det-es what p s inlo
the leftmost flip-flop during the ~kift, The serial output is taken h m the output of the ri-ost
flip-flop. Sometimas it is necessary to control the shift so that it occurs only with certain pulses,
but not with others. As with the data register discussed in the previous section, the clock's sig-
nal can be suppressed by gating the clock signal to prevent the register from shrfting . A preferred
alternative in high-speed circuits is to suppress the clock action, rather than gare the clock sig-
nal, by leaving the clwk path unchanged, but recirculating the output of each register cell back
through a two-channel mux whose output is cormected to the input of the cell When the clock
action is not suppressed, the other channel of the mux provides a data path to rhe cell.

It will be shown later that the shift operation can be comolled -ugh the D inputs of the flip-
flops rather than through the clock input If, however, the shift regism of Fig. 6.3 is used the shift
can be mtro11ed with an input by connecting the clock thmugh an AND gate. Note that the sim-
plified schematics do not show a reset signal, but such a signal is requid in practical designs,

Serial Transfer

A digital system is said to operate in serial mode when information is transfemd and manip-
ulated one bit at a time. Information is eansfcmd one bit at a time by sbifthg the bits out of
the saurcc register and into the destination register. This type of transfer is in contrast to par-
allel transfer, whereby aU the bits of the register are transferred at the same time.

The serial transfer of infmmation from register A to register B is done with shift registers, as
shown in the block dhgram of Fig. 6.4(a). The serial output (SO) of registerA is connected to the
serial input (SI) of register B. To prevent the loss of infomation stored in the source regism the
information in register A is made to circulate by connecting the serial ourput to its serial input.
The initid content of register B is sbifted out through its swial output and is lost unless it is mu-
f e n d to a third shift register. The dift contml input detednes when d how many & the reg-
isters are shifted. For illustration hae, this is done with an AND gate that allows clock pulses to
pass into the CLK terminals only when the shifl control is active. (This pc im em be problem-
atic because it may compromise the ~1mk path of the circuit, as discussed earlier.)

Suppose the shift registers have four bits each. Then the control unit that supervises the
transfer of data must be designed in mcb a way that it enables the shift registers, through the
shift control signal, for a fixed time of four clmk pulses. This design is shown in the timing
diagram of Fig. 6,4(b). The shift control signal is synchronized with the clock and changes
value just after the negative edge of the clock. The next four clock pulses frnd the shat control
signal in the active state, so the output of the AWI, gate connected to the CLX inputs pduces

Section 6.2 Shift Reglsten

Clock
Shift

CLK CLK

control

(a) Block diagram

Clock

Shift
control

CLK nnnn TI T2 T3 T4

(b) Timing diagram

FlCUM 6.4
Serial transfer f r m reglsrer A to register B

four pulses: TI , T2, T3, and T4. Each rising edge of the pulse causes a shift in both registers. The
fourth pulse changes the shift control to 0, and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B is 0010. The se-
rial transfer from A to B occurs in four steps, as shown in Table 6.1. With the first pulse, TI,
the rightmost bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost
position of A. At the same time, all bits of A and B are shifted one position to the right. The pre-
vious serial output from B in the rightmost position is lost, and its value changes from 0 to 1.
The next three pulses perform identical operations, shifting the bits of A into B, one at a time.
After the fourth shift, the shift control goes to 0 and registers A and 3 both have the value
1011. Thus, the contents of A are copied into B, so that the contents of A remain unchanged.

Table 6.1
Serldfranskr Exampk

Tlming Pulse Shlft Realster A Shlft Reglster B
/ -

/<

Initial value
After TI
After Tz 1 1 1 0 1 1 0 0
After T3 0 1. , 1.- -T 0 1 1 0
After T4 c - 0 1 1, 1 0 1 1

Chapter 6 Regirterr and Counttrs

The difference between h e serial and the parallel mode of operation should be apparent
from this example. In the pmllel mode, infomation is available fmm dl bits of a register and
alI bits can be transferred simultmously during one clock pulse. In the serial mode, the reg-
i s m have a single serial input and a single serial output. The infomation is ~~ one
bit at a time while the registers are shifted in the same dimchi.

Operations in digital computers are usually done in parallel became that is a faster mode of op-
eration. Serial operations are slower because a data-path o m o n takes several clmk cycles,
but serial operations have the advantage of requiring fewer h a h a r e components. h ViSI
circuits, they require less silicon area on a chip. To demonshate the serial mde of opt ion ,
we present the design of a serial adder. The parallel comtqwt was presented in Section 4.4.

T h e t w o b i n a r y n u m b e r s b b e ~ ~ y a r e s t o r e d i n t w o s h i f t ~ B c g i n n i a g w i t h
the least significant pair of bits, the circuit adds one pair at a time through a single full-adder
(FA) circuit. as shown in Fig. 6.5. The carry out of the full adder is musfend to a D £lipflop,
h e output of which is then u s d as the carry input for the next pair of sipiiicaot bits. The sum
bit from the S output of the full adder could be dd into a third shat register. By shift-
ing the sum into A while the bits of A are shifted out, It is possible to use m e register for stor-
ing both the augend and the sum bits. The serial input of register B can be used to hmsfer a
new binary number while the addend bits are shifted out dming ~e addition.

Shift
mnml

CLK

Stria1
input

W o n 6.2 Shift Registers

The operation of the serial adder is as follows: Initially, register A holds the augend, regis-
ter B holds the addend, and the carry flip-flop is cleared to 0. The outputs (SO) of A and B pro-
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift control enables both registers and the carry flip-flop, so at the next
clock pulse, both registers are shifted once to the right, the sum bit from S enters the leftrnost
flip-flop of A, and the output carry is transferred into flip-flop Q. The shift control enables the
registers for a number of clock pulses equal to the number of bits in the registers. For each suc-
ceeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and both
registers are shifted once to the right, This process continues until the shift control is disabled.
Thus, the addition is accomplished by passing each pair of bits together with the previous carry
through a single full-adder circuit and transferring the sum, one bit at a time, into register A.

Initially, register A and the cany flip-flop are cleared to 0, and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through
its serial input. The second number is then added to the contents of register A while a third
number is transferred serially into register 3. This can be repeated t o perform the addition of
two, three, or more four-bit numbers and accumulate their sum in register A.

Comparing the serial adder with the parallel adder described in Section 4,4, we note ~ v e r a l
differences. The parallel adder uses registers with a parallel load, whereas the serial adder uses
shift registers. The numbr of full-adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serid adder requires only one full-adder circuit and a
carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the
serial adder is a sequential circuit which consists of a full adder and a flip-flop that stores the out-
put carry. This design is typical in serial operations because the result of a bit-time operation may
depend not only on the present inputs, but also on previous inputs that must be stored in flip-flops,

To show that serial operations can be &signed by means of sequential circuit procedure, we
will redesign the serial adder with the use of state table. First, we assume h a t two shift regis-
ters are available to store the binary numbers to be added serially. The serial outputs from the
regirtera are designated by x and p The sequential circuit to be designed will not include the
shift registers, but they will be inserted later to show the complete circuit. The sequential cir-
cuit proper has the two inputs, x and y, that provide a pair of significant bits, an output S that
generates the sum bit, and flip-flop Q for storing the carry. The state table that specifies the se-
quential circuit is listed in Table 6.2. The present state of Q is the present value of the carry.
The present carry in Q is added together with inputs x and y to produce the sum bit in output
S. The next state of Q is equal to the ourput carry. Note that the state table entries are identical
to the entries in a full-adder truth table, except that the input carry is now the present state of
Q and the output carry is now the next state of Q.

If a D £lip-flop is used for Q, the circuit reduces to the one shown in Fig. 6.5. If a JK flip-
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to the
excitation table (Table 5.12). This is done in the last two columns of Table 6.2. The two flip-
flop input equations and the output equation can be simplified by means of maps to

P m n t State Inputs Nextstate Output RIpAop Inputs

Q X Y Q S IQ Up
Y' :

0 0 0 0 0 0 X -
0 0 1 0 I 0 X
0 t o 0 3 0 X
0 1 1 I 0 1 X
I 0 0 0 1 X 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0

Shift
WnLrol

CLK

Stria1
input

The circuit diagram is shown in Fig. 6.6. The circuit consists of tkee gates d a JK flip-flop.
The two shift registers are included in the diagram to show the complete serial adder. Note
that output S is a function not only of x and y, but also of the present state of Q. The next state
of Q is a function of the p e n t state of Q and of the vahes of x and y that come out of the se-
rid outputs of the shiR registers.

t.:

Un-l Shift R e g l s t u

If the flip-flop outputs of a shift register ate accessible, then information mered serially by shift-
ing can be taken out in parallel from the outputs of the flip-flops. If a parallel load capability
is added to a shift register, &hen data entered in pardel can be taken out in serial fashion by
shifting the data stored in the regism.

Section 6,2 Shift Registers

Some shift regism provide the necessary input and output terminals for parallel transfer.
They may also have both shi-right and shift-left capabilities. The most general shift register
has the following capabilities:

1. A c l a r control to clear the register to 0.
2. A clock input to s y n c h ~ ~ the operations.
3. A slu'fr-right conlrol to enable the --right -on and tbs serial inpui and odput lines

associated with the shift right.

4. A shif-lefr control to enabIe the sh&-left operaQon and the srnal rnpuf and output
associated with the shift left.

5, A parallel-bad contioI to enable a pmllel transfer a d the n input lines associated with
Ihe parallel transfer.

6. n parallel output lines.
7. A control state that leaves the information in the register unchanged in response to the

clock. Other shift registers may have only some of the preoeding functions, with at lemt
one shift operation.

A register capable of shifting in one direction only is n unidiwctionuI shift register. One
that crtn shift in hth directions is a bidirectional shift register. If the register has botb shifts and
parallel-load capabilities, it is referred to as a universal sh@ registex

The block diagram ~ymbol and the circuit diagram of a four-bit universal shift register that
has dl the capabilities just listed are shown in Fig. 6.7, The circuit consists of four D flip-flops
and four multiplexers. The four multiplexers have two common selection inputs sl and sg. Input
0 in each multlpltxw i s sehtcd when also = 00. input 1 is selected whon slso = 01, md sim-
ilarly for the other two inputs. The selection inputs control the m d e of aperation of the regis-
ter a c c d h g to the function entries in Table 6.3. When slso = OO, the present value of the
register is applied to the D inputs of the flipflops. This condition forms a path from the output
of each flipflop into the input of the same flipflop, so tbat the output re&da& to the input
in this mode of qm&m 'Ibe next clock edge tt-dnsfers into each flip-flop the binaq value it held
previously, and no change of state occm. When slso = 01, t e d d I ofthe multiplexer inputs
has a path to the D inputs of the flip-flops. Tbis causes a shift-right operation, with the s d
input t r a t t s f d into flip-flop A3. When slso = 10, a shlft-left operation results, with the other
serial input going into flip-flop Ao. Finally, when slso = 1 1, the binary information on the par-
allel input lines is txmsfsmd into the register shultaneou8ly during the next clock edge. Note
that data enters M S B A for a shift-right opedon and enters LSB* for a shift-left opedon.

Shill registers are often wed to interface digital systems situated remotely from each other.
For exampk suppose it is necesmy to tramnit an n-bit quantity between two points. If the
distance is far, h will be expensive to use n lines to hmmit the n bits in parallel. It is more eco-
nomical to use a siagle lime and transmit the infomaion serially, one bit at a time. The tiam
mi- accep?s the n-bit data in parallel inm a sbift register and then transmits the data serially
dong the common line. The receiver a a q t t ~ the data seriaIly into a shift register. When all n
bits are received, they can be taken from the wtputs of the register in parallel. Thus, the trans-
mitter perf- a parallel-to-send conversion of data and the receiver does a serial-bpardlel
conversion.

FIGURE 6.7
Four-bit universal shift register

Table 6,3
Function Table for the Register of Fig. 6.7

Mode Control

51 so Register Operation

0 0 No change
0 1 Shift right
1 0 Shift left
1 1 Parallel load

6.3 RIPPLE COUNTERS

Aregister that gms through a prescribed sequence of states upon fhe application of input pulses
is called a counter, The input pulses may be clock pulses, or they may originate from some
externd source and may occur at a fixed interval of time or at random. The sequence of states
may follow the binary number sequence or any other sequence of states. A counter that follows
the binary number sequence is called a binary counter. An n-bit binary counter consists of a
flip-flops and can count in binary from 0 through 2" - 1.

Counters are available in two categories: ripple counters and synchronous counters. In a
ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops. In
other words, the C input of some or all flip-flops are triggered, not by the common clock pulses,
but rather by the transition that occurs in other flip-flop outputs. In a synchronous counter, the
C inputs of dl £lip-ff ops receive the common clock. Synchronous counters are presented in
the next two sections. Here, we pment the binary and BCD ripple counters and explf n their
operation.

Blnauy Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops, with
the output of each flip-flop connected to the C input of the next higher order flip-flop. The
flip-flop holding the least significant bit receives the incoming count pulses. A compb-
menting flip-flop can be obtained from a JK flip-flop with the J and K inputs tied together
or from a T flip-flop. A third possibility is to use a D flip-flop with the complement output
connected to the D input. In this way, the D input is always the complement of the present
state, and the next clock pulse wilt cause the flip-flop to complement. The logic diagram of
two Cbit binary ripple counters is shown in Fig, 6.8. The counter is constructed with com-
plementing flip-flops of the T type in part (a) and D type in part (b). The output of each flip-
flop is connected to the C input of the next flip-flop in sequence, The flip-flop holding the
least significant bit receives the incorning count pulses. The 7 inputs of all the flip-flops in
(a) are connected to a permanent logic 1, malung each flip-flop complement if the signal in
its C input goes through a negative transition. The bubble in front of the dynamic indicator
symbol next to C indicates that the fhp-flops respond to the negative-edge transition of the

I -1

Reset

(a) With T fJjp-flop

FW;CRLE 6.8
Fow-bk binmy rlppk counter

Section 6.3 Ripple Counters 255

Table 6.4
Binary Corm t 5equme

A3 A2 A1 A0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0

input. The negative transition occurs when the output of the previous flip-flop to which C is
connected goes from 1 to 0.

To understand the operation of the four-bit binary ripple counter, refer to the first nine binary
numbers listed in Table 6.4. The count starts with binary 0 and increments by 1 with each count
pulse input. After the count of 15, the counter goes back to 0 to repeat the count, The least sig-
nificant bit, Ao, is complemented with each count pulse input. Every time that AO goes from
1 to 0, it complements Al . Every time that A l goes from 1 to 0, it complements AZ. Every
time that A2 goes from 1 to 0, it complements AS, and so on for any other higher order bits of
a ripple counter. For example, consider the transition from count 001 1 to 0100. A. is comple-
mented with the count pulse. Since A. goes h m 1 to 0, it triggers A and complements it. As
a result, A l goes from 1 to 0, which in turn complements A2, changing it from 0 to 1. A2 does
not trigger A?, because A2 produces a positive transition and the flip-flop responds only to
negative transitions, Thus, the count from 001 1 to 0100 is achieved by changing the bits one
at a time, so the count goes from 00 11 to 0010, then to 0000, and finalIy to 0 100. The flip-flops
change one at a time in succession, and the signal propagates through the counter in a ripple
fashion from one stage to the next.

A binary counter with a reverse count is called a binary countdown counter. In a count-
down counter, the binary count is decremented by 1 with every input count pulse. The count
of a four-bit countdown counter starts from binary 15 and continues to binary counts 14, 13,
12, . . , . 0 and then back to 15, A list of the count sequence of a binary countdown cowter shows
that the least significant bit is complemented with every count pulse. Any other bit in the
sequence is complemented if its previous least significant bit goes from 0 to 1. Therefore, the
diagram of a binary countdown counter looks the same as the binary ripple counter in Fig. 4.8,
provided that all flip-flops trigger on the positive edge of the clock. (The bubble in the C in-
puts must be absent.) If negative-edge-triggered flip-flops are used, then the C input of each
flip-flop must be connected to the complemented output of the previous flip-flop. Then, when
the true output goes h m 0 to 1, the complement will go from 1 to 0 and complement the next
flip-flop as required.

256 Chapter 6 Registers and Counters

A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. Such a
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit
is represented by a binary code with at Last four bits. The sequence of states in a decimal
counter is dictated by the binary code used to represent a decimal digit. If BCD is used. the se-
quence of states is as shown in the state diagram of Fig. 6.9. A decimal counter is slrmlar to a
binary counter, except that the state after 1001 (the code for decimal digit 9) is 0000 (the code
for decimal digit 0).
The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6.10. The

four outputs are designated by the letter symbol Q, with a numeric subscript qual to the bi-
naty weight of the corresponding bit in the BCD code. Note that the output of Ql is applied to
the C inputs of both Q2 and Qg and the output of Q2 is applied to the C input of a. The J and
K inputs are connected either to a permanent 1 signal or to outputs of other £lip-flops.

A ripple counter is an asynchronous sequential circuit, Signals that affect the flipflop tran-
sition depend on the way they change h m 1 to 0, The o p t i o n of the counter can be ex-
plained by a list of conditions for flip-flop transitions. These conditions are derived from the
logic diagram and from howledge of how a JK flip-fhp operates. Remember that when the
C input goes from 1 to 0, the flip-flop is set if J = 1, is c l d if K = 1, is complemented if
J = K - 1, and is left unchanged if J = K = 0.

To verify that these conditions result in the sequence required by a BCD ripple counter, it
is necessary to verify that the flip-flop transitions indeed follow a sequence of states as spec-
Xed by the state diagram of Fig. 6.9. Q3 changes state after each clock pulse. Q2 complements
every time Ql goes from 1 to 0, as long as Qs = 0. When Q8 becomes 1, Q2 remains at 0. Q4
complements every time Q2 goes from 1 to 0. Qs remains at 0 as long as Q2 or is 0. W e n
both Q2 and become 1, Qs complements when Ql goes from 1 to 0. Q8 is c l d on the next
transition of Ql.

The BCD counter of Fig. 6,10 is a decade counter, since it counts from 0 to 9. Tu count in dec-
imal from 0 to 99, we need a twodwade counter, To count from 0 to 999, we need a thedecade
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade,
one for each decade. A threedecade counter is shown in Fig. 6.11. The inputs to the second and
third decades come from Q8 of the previous decade. When Q8 in me dmade goes from 1 to 0, it
~ g g e r s the count for the next higher order decade while its own decade goes fmm 9 to 0.

H C W 6.10
BCD ripple counter

258 Ow* 6 Reglsten and Cmntats

id digit 10' digit

RCUW 6.1 1
Block diagram of a th- d d d 3CD rounttr

6.4 SYNCHRONOUS COUNTERS

lo0 digit

Synchronous counters are different from ripple counters in that clwk pulses are applied to the
inputs of all flip-flops. A common clack triggers al l flipflops simultanemsly, rather than one
at a time in succession as in a ripple counter, The decision whether a flipflop is to be
complemented is determined from the values of the data inputs, such as Tor J and K at the t ime
of the clmk edge. If T = 0 or J = K = 0, the flip-flop b s not change state. If T = 1 or
J = K = I , the flip-flop complements.

The design pmcedure for synclmnous coun&rs was presented in Section 5.8, and the design
of a three-bit binary counter was carried out in conjunction with Fig. 5.31. In this section, we
present some typical synchronous counters and explain their operation.

The design of a synchronous binary counter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter, the flip-flup in the least sig-
nificant position is complemented with every pulse. A flip-flop in any other position is com-
plemented when all the bits in the lower significant positions are eqwl to 1. For example, if
the present state of a four-bit counter is A3A2A lAo = 001 1, the next count is 0 100. A. is al-
ways complemented, A l is comglemented because the ~t state of A. = l. A2 is cornple-
mated because the present state of AIAo = 11. However, A3 is not complementmi because
the present state of A2A 1Ao = 01 I, which dms not give au all-1 's condition.

Synchronous binary counters have a regular pattern and can be constmcted with comple-
menting flipflops and gates. Tbe regular panem a t ~ be seen horn the four-bit wunm depicted
in Fig. 6.12. The C inpub of all flipflops are connected to a common clmk The comkr is
enabled with the count enable input. If the enable input is 0, aII J and K inputs am equal to 0
and the clwk does not change the state of the munter. The first stage. A,,, has its J and Kequal
to 1 if the counter is enabled. The other J and K inputs are equal to 1 if dl previous least sig-
nificant stages are equal to 1 and the count is enabled. The chain of AND gates genccates the
required logic for the J and K inputs in each stage. The counter can be exmded to any num-
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an
ourput of 1 if all. previous flip-flop outputs are 1.

Section 6.4 Synchronous Counterr 2!39

Count enable

..'-I-.--:- ..
-;.:::;:.A

,?.:. .:;- 1 y-- --::- -.::: -next stage

CLK

RCURE 6.12
Four-bit synchronolu binary counter

Chapter6 Registers and Countem

Note that the flip-flops trigger on the positive edge of the clmk. The polarity of the clock
is not essential here, but it is with the ripple counter. The synchronous counter cau be niggered
with either the positive or the negative clock edge. The complemmhg £lipflops in a binary
counter can be of either the JK type, the Ttype, or the D type with XOR gates. The +vdmcy
of the three types is indicated in Fig. 5.13.

A synchronous countdown binary counter gms through the binary states in reverse order, h m
1 11 1 down to 0000 and back to 11 1 1 to repeat the count. It is v i l e to design a countdown
counter in the usual manner, but the result is predictable by inqxdun of tbe downward binary
count. The bit in the least simcant position k complemented with each pulse. A bit in any
other psitiun is complemented if all lower s i ~ c a f l t bits we egual to 0. For example, the next
state after the present state of 01 00 is 001 1. The least significant bit is always complemented.
The second siflcant bit is complemented because the first bit is 0. The third si-t bit
is complemented because the fitst two bits are equal to 0. But the fourth bit dws not change,
because not all lower significant bits ~IZ equal to 0.

A countdown binary counter can be constructed as shown in Fig. 6.12, except that the in-
puts to the AND gates must come from the complemented outputs, instead of the normal out-
puts, of the previous flip-flop. The two oprations can be combined in one ckui t to form a
counter capable of counting either up or down. The circuit of an updown binary counter using
T flip-flops is shown in Fig. 6.13. It has an up contra1 input and a down conlrol input. When
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values
of the previous normal outputs of the lXpflops. When the down @t is 1 and the up input is
0, the circuit counts down, since the oomplemented outputs of the previous flip-flops are ap-
plied to the T inputs. When the up and down inputs are both 0, the circuit does not chmge state
and remains in the same count. When the up and down inputs are both I, the circuit counts up.
This set of conditions ensures that only m e operation is performed at any given h e . Note that
the up input has priority over the down input.

BCD Cwnter

A BCD counter counts in binqooded decimal fram 0000 to 1001 a d back to 0000. Because
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern, d i k e a
straight binary count. To derive the circuit of a BCD synchronm counter, it is necesssty to go
though a sequential circuit design procdm.

The state table of a BCD counter is listed in Table 6.5. The input umditiws for the Tfipflops
are obtained from the present- d next-* con&ions. A h shown in ~IE imble is an output y,
which is equal to 1 when the prasent state is 1001. In this way, y can enable the count of tk. next-
hi* significant decade while the same pulse switches the pmmt d e d e from 1001 to 0000.

Tbe flipflop input equations can be simpMed by means of maps. The unused states for
minterms 10 to 15 are taken as don't- terms. The simplified functions are

Down

Section 6.4 Synchrmus (Cohnters 261

Table 6.5
s m f ! hr M D c-

Present State Next State output fl@mlW-

% b & Q 1 % % & & y a t % m Z m l

0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 1 0 0 1

Y = QBQI
The circuit can eady be drawn with four T flip-flops, five AND gates. and one OR g a ~ ~

Synchronous BCD counten can be m d e d to form a m u t e r €or decinaal numbas of my
length. The d g is done as in Fi 6.11, except that output y must be cwnected to the oaunt
input of the next-higher significant decade.

Counters employed in digital systems quite often require a paralld-load capbility for tram-
f d g an initial binary number into the counter prior to the aunt operatiw. F w 6.14 shows
the top-level blwk diagram symbol d the logic d i m of a f a - b i t register ttaat has a par-
allel load capability and can o m as a cmmkr. W h equal to t, tbe input lmd cunlrol dis-
abIeg the count operation and causes a transfer of data h the four data iaprds into k four
flip-flops. If both control inputs are 0, clock pulses do not change the state of the register.

The carry output becomes a 1 if dl the flip-flops are equal to I while &e count input is en-
airled. This is the condition for complementing tbe figflop holds the next signifimt bit.
Thecarry outputis use l l for~gthecountertomwethaafow~.Thespeedoftbe
collnter is increased when the catry is gmmtcd M y h m the outputs of all four flip-flops,
because of the reduced deIay for gemx&g the a n y . In going from state 11 11 to 0000, only
~gate&hyoccnrs,whereasfour~~soccurhtheANDgatechainshownhFig.6.12.
Similarly, each flip-flop is as- with an AND gate that receives all pviws flipflop
outputs directly instead of connachg the AND gates in a chain.
The -tion of the counter is smmari& in Table 6.6. The fwr control i n p H c a r ,

CLK, h a 4 and C a m + k d n e the tux& state. The C h r input is asynchnmous and, when
equal to 0, causes the counter to be c l d regadless of the of clock p k s w other

Settkn 6,4 Synchronous Cwntters 263

Count

Clear
CLK

M U R E 6.14
Four-bit binary taunter wlth parallel load

Table 6.6 .
Fu-n T a k Rsr the €atnt;ar of 6;14

Clear CLK load Count F u n c t h

0 X X X Cltartoo
1 t 1 X
I ? 0 1 Count ma binary state
1 T o o NO change

inputs. Tbis relationship is indicated in tbe table by the X eatria, wbich symbolize don't-care
conditions for the other inputs. The Clear input must be in the 1 state for all other optrations.
With the h a d and Cusuzt inputs both & 0, the outputs do not change, even when clock pulses
are applied, A Load input of 1 causes a m f e r from inputs io-Z3 into the register during a pos-
irive edge of CLX. The input data are l d into the register regmlless of the value of the
Counr input, because the Count input is inhibited when the toad input is enabled The Lead
input must be 0 for he. Cum? input to control the o@on of the comer.

A countw with a pmllel load can be used to generate any h i r e d cwnt qumce. Figure 6.13
shows two ways in which a counter with a parallel load is I& to generate BCD count. In each
case,theCoruucon~lis~to1todk~count~tbeCM~~.~thatthe
L o Q d ~ l w i n h i b i t s ~ w u n t a r a d t h a t t b e ~ ~ i s ~ t o f o t b e r ~ i a p u t s .

The AND gate in FG. 6.15Ia) d e w the oceufieoce of sta& 1001. The wunter is hhklly
c I e ~ m O , a t a d ~ n t h e ~ m r d ~ i n ~ m s e t t o I , s o ~ c o u n t e r i s d v e a t a I I ~ .
ks long as the output of the AND gate is 0, each positive-edgc clmk immnmb the counter by 1.
Wtsentheautputreaches tkowntd100I, bothAomdAj kmme 1 , ~ t h t ~ o f t h e
A E J D g a t e q u a l t o l . T h i s ~ ~ ~ ~ L o a d i n p p d ; t h a e f o r e , a n ~ ~ c l o c k ~ h
1 1 : ~ h n o t c o p m t , b u t i s l o & d ~ ' a s f m ~ . S i n c e ~ f o u r i a p l t s a r e ~ m l o g i c
0, an dl-0's value is 1- into the regiter following the cormt of 1001. Ths, the c h i t g m
through the count from OW through 1001 and back rn 0000, as is required in a BCD countex

In Fig. 6.15@), h e NAND gate &tee& zfie count of 1010, but as soon as this count W C ~ ,

the register is clcarsd. The count 1010 has no chance of staying on for any appreciable time,

cow-1

Clear = 1

c m

hpts have no ef6ect
(a) Using the load input (b) Using the dear input

CH;UICt 4.1s
A m w a y s t o r c h i ~ a 6 C D t a r r t a r u r l n g a ~ ~ ~ M

Sectfon 6.5 Othu Counters 26s'

because the register goes immediately to 0. A momentary spike occurs in output A. as the
count goes h m 1010 to 101 1 and immediately to 0000. The spike may be undesirable, and for
that reason, this configuration is not recommended. If the counter has a synchronous clear
input, it is possible to clear the counter with the clock after an occurrence of the 1001 count.

6.5 OTHER COUNTERS

Counters can be d e s i i to generate any desired saquence of states. A divideby-N comer (also
known as a modulo-N counter) is a counter that goes through a repeated sequence of N states.
The sequence moly follow the binary count .tor may be any other arbitrary sequence, Counters
are used to generate timing signds to control the sequence of operations in a digital system.
Counters can also be constTucted by means of shift registers. In this section, we present a few
examples of nonbinq counters.

Countar with Unused States

Acircuit with n flip-flops has 2' binary staies. There are occasions when a sequentid c h i t uses
fewer than this d m u m pmible n u m k of states. States that are not used in specifying the
sequential circuit are not listed in the state table. In simplifying the input equations, the unused
states may be treated as don't-care conditions or may be assigned specific next stam. Once ?he
circuit is designed and constructed, outside interference may cause the circuit to enter one of the
unused states. In that case, it is necessary to ensure that the circuit eventually goes into one of
the valid states so that it can resume normal opation. OtheMrisa, if the s e q u d cirmit cir-
culates among unused states, thm will be no way to bring it back to its in tend s a q m of
state Wtions. If the unused staw are keated as don't-care conditions, then once th8 circuit
is designd, it must be investigated to &ermine the effect of the unused states. The next state
from an unused state can be detedned from the anaIysis of the circuit sifter it is designed.

As an illustration, consider the counter spd6ed in Table 6.7. The ownt has a q m k d sequence
of six w, with flipflops B and C repting the b i count 00,01,10, and flipflop A alter-
nating between 0 and 1 every three countf. - count sequence of the counter is mrt $might bi-
naty,andtwostata,Oll aad 111,mnotincl~inthecountThechoicedJKflipflops~ts
in the flipflop input conditions listed in thelab1d. Inputs Kg and KC have only 1's and X's in their

Table 6.7
State Tabk for Counter

Prosent State Next State HipFlop Inputs

A B C A B C)A KA KB Kc

0 0 0 0 0 1 O X Q X l X
0 0 1 0 1 0 O X l X X l
0 1 0 1 0 0 l X X 1 O X
1 0 0 1 0 1 X O O X l X
1 0 1 1 1 0 X O I X X l
1 1 0 0 0 0 X l X I O X

Clock
(a) Logic diagram

RCURE 6.16
Counter wIth unused stater

(b) State diagram

columns, so these inputs are always equal to 1, The other flipflop input eqahns c m be sim-
plified by using mintems 3 and 7 as don't-cm conditions. The simplified @OILS are

J A = B K A = B

J B = C K B = l

Jc = 3' Kc = 1

The logic diagram of the counter is shown in Fig. 6.1 Ha). Siace there are two mused srates,
we analyze the circuit to determine their effect If the &t happens to b in state 01 1 kause
of an error signal, the circuit goes to state 100 after the appliatim of a clack puke. This action
may be determined from an inspectiw of the logic diagram by wting that when B = 1, the
next clock edge complements A and clears C to 0. and when C = 1, the next clock edge com-
plements 3. In a similar mamer, we can evaluate the next s t ' from w t state 11 1 to be 000.

The state diagram including the effect of the unused states k shown in Fig. 6.16@). If the cir-
cuit ever goes to one of the unused states because of outside interference, h e next count pulse
imnsfers it to one of the valid s m and tbe circuit continues to cwnt d y . Thus, tk counter
is self-correcting. In a s e l f - c ~ counter, if the counter happens to be in one of the unused
states, it eventually reaches the normal count sequence after one or more clock pulses. An
alternative design could use additional logic to direct every unused stare to a specific next state.

Section 6.5 Other Counters 267

Ring Counter
Timing signals that control the sequence of operations in a digital system can be generated by a
shift register or by a counter with a d d e r . A ring counter is a circular shift register with only one
flip-flop being set at any particular time; all others are cleared. The single bit is shifted h m one
flipflop to the next to produce the sequence of timing signals. F i 4.17(a) shows a four-bit

Shift
right

-

(a) Ring-counter (initial value = 1000)

cLK K

(b) Sequence of four timing signah

Count
enable

(c) Counter and decader

FSUCIL 6.1 7
Generation of timing dgnats

Chapter 6 Registers and Caurltje~s

shift register connected as a ring counter. The initial value of the register is 1OOO and quires
PresetlClear flip-flops. The single bit is shifted right with every clock pulse and circulates back
from T3 to To. Each flip-flop is in the 1 state once every four clock cycles and d u c e s one of
the four timing signals shown in Fig. &17(b). Each output becones a 1 after the negative-edge
transition of a clock pulse and remains 1 during the next clock cycle.

For an alternative &sign, the timing signals can be generated by a twebit counter that goes
through four distinct states. The decoder shown in Fig. 6.17(c) decodes the four states of the
counter and generates the required sequence of timing signals.

To generate 2" .timing signals, we need either a shift register with 2" flipflops or an n-bit binarym
counter together with an n-to-2"-line decoder. For example, 16 timing signals can be g e n d
with a 16-bit shift register connected as a ring counter or with a Cbit binary counter and a 410-16-
line decoder. In the fmt case, we r e d 16 flipflops. In the second, we need 4 flipflops and 16 four-
input AND gates for the decoder. It is is possible to generate ik timing signals wiih a combhation
of a shift register and a decoder. That way, the number of flipflops is h than tha~ in a ring counter,
and the dec&r requires only twdnput gates. This combination is called a Johm comer.

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable
states. The number of states can be doubled if the shlft register is connected as a witch-tail ring
counter. A switch-tail ring counter is a circular shift register with the complemented output of
the last flip-flop connected to the input of the first flip-flop. Figure 6.18!a) shows such a shift

CLK
(a) Four-stage switch-tail ring counter

Flip-flop outputs
Sequence AND gate reqnired
number A B C E for output

1 0 0 0 0 A'E'
2 1 0 0 0 Ai? '
3 1 1 0 0 BC'
4 1 1 1 0 CE'
5 1 1 1 1 AE
6 0 1 1 1 A' B
7 0 0 1 1 B ' C
8 0 0 0 1 C'E

(b) Count sequence and required decoding

Stctlon 6.6 HDL for Registers and Counters 269

~gister. The circular connection is made h m the complemented output of the rightmost flip
£lop to the input of the leftmost flipflop. The register shifts its contents once to the right with
every clock pulse, aad at the same time, the complemented value of the E flpflop is transferred
into the A flipflop. Starling from n cleared state, the switch-tail ring counter goes through a
sequence of eight states, as listed in Rg. 6.18@). In general, a k-bit switch-tail ring counter will
go through a sequence of 2k states, Starting from all O's, each shift operation inserts 1's from
the left until the register is filled with all 1's. In the next sequences, 0's are inserted from the
Mt until the register is again filled with all 0's.

A Johuson counter is a k-bit switch-tail ring counter with 2k ded ing gatw to provide out-
puts for 2k timing signals, The decoding gates are not shown in Fig. 6.18, but are specified in the
last column of the table. The eight AND gates listed in the table, when connected to the circuit,
will complete the construction of the Johnson counter. Since each gate is enabled during one par-
ticular state sequence, the outputs of the gates genmte eight timing signals in succession.

The decoding of a k-bit switch-tail ring counter to obdn 2k timing signals follows a regu-
lar pattern The all-0's state is decoded by talring the complement of the two extreme flip-flop
outputs. The all-1's state is decoded by taking the normal outputs ofthe two extreme flip-flops.
All other states are decoded from an adjacent 1,O or O , 1 pattern in the sequence. For exam-
ple, sequence 7 has an adjacent O,1 pattern in flip-flops B and C. The &mdd output is then
obaained by takiag the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6.18(a) is that if it finds itself in an unused s m , it
will persist in moving from one invalid state to another and never find its way to a valid state.
The difficulty can be cariected by r n o m n g the circuit to avoid this undesirable condition. One
correcting pmdure is to disconnect the output from flip-flop B that goes to the I) input of flip
flop C and instead enable the input of flip-flop C by the function

Dc = (A + C) B

w b Dc is the flip-flop input equation for the D input of flip-flap C.
Johnson counters can be construckd for my number of timing sequences. The number of

flip-flops needed is one-half the number of timing signals. The number of decoding gates is
equal to the number of timing signals, and only two-input gates are needed,

6.6 HDL FOR REGISTERS AND COUNTERS

Registers and counters can be described in V d o g at either the bebavid or the structural level.
Behav id modeling describes only the operations of tbe register, as prescribed by a frmctim
table, without a preconceived structure, A stmctud-Ievel description shows the circuit in terms
of a collection of components such as gates, flip-flops, and multiplexers. The various compo-
nents are instantiated ta form a hierarchical dmrription of the design similar to a representation
wf a logic diagram. Tbe mmple..s in tbis d o n will illustrate both types of descriptions.

ShWt Reglster
The universal shift register presented in S d o n 6.2 is a bidirectiond shift register with a par-
aller load. The four clocked operations that am performed with the register are specified in
'Pable 6.6. The register dsa can be cleared asynchronously, O u r chosen name for a behavioral

description of the four-bit universal shift register shown in Fig. 6.7(a), the name
ShjFJPegisrer-4Jeh signifies the behavioral model of the interaal detail of the toplevel
block diagram symbol and distinguishes that model from a s ~ t u r a l one. The behavioral
model is presented in HDL Example 6.1, and the stluctml m d is giwn in HDL Example
6.2. The top-level block diagram symbol in Fig. 6.71a) indicates that the &bit universal shift
~gister has two selection inputs (sl, SO). two serial inputs (~h@~It=fr , shij?-right). a four-bit par-
allel input (]jar), and a four- bit pdJe1 output (u r) . The elements of vector I1parf3: 01
comepond to the bits 13,. . . , b in Fig. 6.7, and similarly for Aqar[3: 01. The always block

the five operations that can be performed with the register. The Clear input clean the
register asynchronously with an activelow signal. Cieur must be high for the mgister to wnd
to the positive edge of the clock The four clocked opmtions ofthe ~gis&er arc &tedned horn
the values of the two select inputs in the case statement. ($1 md sO are concatenated into a
-bit vector and are used as the expression argument of the case statement.) The shifting
opation is specified by the concatenation of the serial input and three bits of the register. For
example, the statement

specifies a concatenation of the serial data input for a right shift c p d c m (MSB-in) with bits
AcparC3.. I] ofthe output &fa brrs. A reference to a contiguous range of bits within a vector
is r e f e d to as a parl sehct. The fim-bit result of the concatenation is msfecred to register
A s r [3: 01 when the clock pdse lriggers the option. This transfer produces a shift-right
opration and updates the register with new information. The shift operation ovem~ites the
contents of A-pr[O] with the conteats of Q m [l J . Note that only the functionality of the
circuit has ken W r i k l , irrespective of any pmthhr hardware. A s y n k i s tool would crp
ate a netlist of ASIC cells to impkrnent the shift register.

BDL Example 6.1

I/ Behavlod deswfptlon of a 4-bit unlverserl shift register
I1 Fig. 6.7 and Table 8.3
module Sh i~g l%bf f4+beh (/I V2001,2005
output reg P: 01 A m . 11 R e g i i r output
input (3: 01 b a r j I/ Parallel input
Input $1, a, // select inputs

MSB-in. LSB-in, I/ Serial inputs
CLK, Clmr I/ C M c and Clear

1;
always @ (posdge CLK, negedgo Clear) I / V2001,2005
If (-Clear) A g a r <= 4'WWO;
else - ({sl dl)

2'bOO: A g r /I No change
2'Wl: Afir C= {MSB-in. A m : In; / I W i right

Section 6,6 HDL for Registers and Counters

/ I Shift left
I1 Parallel load of input

2'bjO: A g a r <= {A-par[2: 01, LSB-in);
2'bI 1: A ~ a r c= I g a r ;

endcase
endmodule

Variables of type reg retain their value until they are assigned a new value by an assignment
statement. Consider the following alternative case statement for the shift register model:

case ({sl , SO))
I1 2'bOO: A-par <= A j a r ; I1 No change
2'bOl: A-par *= {MSB-in, A j a r [3: I]); 11 Shift right
2'bIO: A-par *= {A-par [2: 01, LSB-in}; I1 Shift left
2 'b l I : A-par c= I-par; 11 Parallel load of input

endcase
Without the case item 2'b00, the case statement would not find a match between {sl, SO)

and the case items, so register A j a r would be left unchanged.
A structural model of the universal shift register can be described by referring to the logic

diagram of Fig. 6.7(b). The diagram shows that the redster has four multiplexers and four D flip
flops. A mux and flip-flop together are modeled as a stage of the shift register. The stage is a
strucimal model, too, with an instantiation and interconnection of a module for a mux and another
for a D flip-flop. For simplicity, the lowest-level modules of the structure are behavioral models
of the multiplexer and flip-flop. Attention must be paid to the details of connecting the stages cor-
rectly. The structural description of the register is shown in HDL Example 6.2. The top-level
module declares the inputs and outputs and then instantiates four copies of a stage of the regis-
ter. The four instantiations specify the interconnections between the four stages and provide the
detailed constsuction of the register as specified in the logic diagram. The behavioral description
of the flipflop uses a single edge-sensitive cyclic behavior (an always block). The assignment
statements use the nonblockmg assignment operator (< =), the model of the m u employs a
single level-sensitive behavior, and the assignments use the blocking assignment operator (=).

HDL Example 6.2

I/ Structural description of a Cbit universal shift register (see Fig. 8.7)
module Shift-Register-4-str (I1 V2001, 2005
output [3: 01 A-par, It Parallel output
Input [3: 01 I j a r , 11 Parallel input
Input s l , SO, 11 Mode select
Input MSB Jn, LSB-in, CLK, Clear I! Serial inputs, clock, clear

) :

/I bus for mode control
asslgn [l : O I select = {sl , SO);

I / Instantiate the four stages
stage ST0 (AgarIO], A-par[l], LSB-in, I_par[O], A-par[O], select, CLK, Clear);
stage ST1 (Agarf l] , A_par[2], A-par[O], I_par[l], A-par[l], select, CLK, Clear);

stage ST2 (Ajar[21, A-parP1, A-parf11, I_par[2], A_parIq, Wect, CLK, Clear):
stage ST3 (A>@], MSB-in, A_paqZ]. lpr [3] , Agar[3]. selgct. CLK, Clear);

endmodule

11 One stage of shifi reglster
module stage (iO,il, i2,i3, Q,.sebct. CLK, Clr);
input i0, I! cl.~ulation blt selection

il, /I data kom laR neighbop or serlal Input for shii-right
12, /I data from right neighbor or saial Input for s h i - M
i3; I1 date from parallel input

output Q; 4

input 11: 01 select; /I stage made conbd bus
Input CLK, CB; I/ Clock, Clear for Ripflop
wire mux-out; .

,-. ' ;.

I/ instantiate mux and Rip-flop
MUX-4-X-1 MO (mux-out, 10,11,12,13, select);
D-flip-flop MI (Q. mux-out, CLK Clr);

endrnodu le

I1 4x1 multiplexer I1 bhavloral model
module Mux-4-x-I (mux-out, iO,H, i2, R, select);
output mux-out
input iO,i4, i2, i3;
Input [I: 01 select;
reg mux-out;
a h y s @ (select, i0, i l , i2, i3)

caae (select)
2'bOO: mu#-out = 10;
2'bOl: mux-out = i i;
2'blO: mux-out = 12;
2'bl l : mux-out = 13;

endcase
endmodule

I/ Behavioral model of D flip-fbp
module D-flip-flop (Q, D, CLK, Clr);
output Q;
input 0, CLK, Clr;
r%g Q;

always Q (posedge CLK, negedge Clr)
If (-Clr) Q s= l'bO; else Q C= D;

endmodule

Section 6.6 HDL for Registers and Counters 273

The above examples presented two descriptions of a universal shift register to illustrate
the different styles for modeling a digital circuit. A simulation should verify that the mod-
ds have the same functionality. In practice, a designer develops only the behavioral model,
which is then synthesized. The fnnctllon of the synthesized circuit can be compared with the
hhavioral description from which it was compiled. Eliminating the need for the designer
to develop a structural model produces a huge improvement in the efficiency of the design
pmcess.

HDL Example 6.3 presents Binary-Counter-4-Par-bad, a behavioral model of the syn-
chronous counter with a parallel load from Fig. 6.14. Count, Load, CM, and Clear are inputs
that determine the operation of the counter according to the function specified in Table 6.6. The
counter has four data inputs, four data outputs, and a carry output, The internal data lines (13,
I2,I l , I@ are bundled as Data-inl3: O] in the behavioral mdel. Likewise, the register that holds
the bits of the count (A3, A2, AI, AO) is L c o m t [3 : 01. It is good practice to have identifiers
in the HDL model of a circuit correspond exactly ta those in the documentation of the model.
That is not always feasible, however, if the circuit-Itvel identifiers are those found in a hand-
bwk, for they are often short and cryptic and do not exploit the text that is available with an
HDL. The top-level block diagram symbol in Fig. 6.14(a) serves as an interface between the
names used in a circuit diagram and the expressive names that can be used in the HDL model.
The carry output C-out is generated by a combinational circuit and is specified with an assign
statement. C-out = 1 when the count reaches 15 and the counter is in the count state. Thus,
C-our = 1 if Count = I, Load = 0, and A = 1 1 1 1 ; otherwise C-out = 0. The always block
specifies the operation to be performed in the register, depending on the values of Clear, b o d ,
and Count. A 0 (active-low signal) at Clear resets A to 0. Otherwise, if Clear = 1, one out of
three operations is triggered by the positive edge of the clmk The K else if, and else statements
establish a precedence among the control signals Char, Load, and CouM corresponding to the
specification in Table 6.6. Clear overrides Laad and Count; Laad overrihs Count, A synthe-
sis tool will produce the circuit of Fig. 6.14(b) from the behavioral model.

HDL Example 6.3

I! Four-blt blnary counter wlth parallel load (V2001, 2005)
/I See Figure 6.14 and Table 6.6
module Binary-Counter-4-Par_LPad (
output reg [3: 01 A-count, 11 Data output
output C-out, /I Output a n y
input [3: 01 Data-in, 11 Data input
Input Count, 11 Active high to oount

Load, 11 Actlve hlgh to load
CLK, / I Positive-edge sensl tlvs
Clear / I Actlve low

Ch* 6 kg3rtwz and Cau-

asslgn C-out = Count & (-Load) & (A-munt == 4b111 l);
always @ (posedge CLK, neged~e Clear)

If (-Clear) A-wunt <= 4b0000;
else If (Load) A-mnt <= data-in;
else If (Count) A-cant <= A-cant * l 'bl;
else A - a n t c= A-ant ; /I redundant statement

endmodule

The structural description of a ripple counter is shown in HDL Example 6.4. The fiTst module
instantiates four internally complementing flipflops defined in the second module as
Corn-Dflipflop (Q, CLK. Reset). The clock (input CLX) of the first flipflop is conuected
to the external control signal Count. (Count replaces CLK in the port list of instance FO.) The
clock input of the second flip-flop is connected to the output of the first. (All replaces CLglin
instance FI.) Similarly, the clock of each of the other flipflops is connected to the output of
the previous flip-flop. In this way, the flip-flops are c h d together to create a ripple counter
as shown in Fig. 6.8(b).
The second mcdule describes a complementing flip-flop with delay. The circuit of a com-

plementing flip-flop is constructed by connecting the complement output to the D input. A
reset input is included with the flip-flop in order to be able to initialize the counter. otherwise
the simulator would assign the u h o w n value (x> to the output of the flip-flop and W c e use-
less results. The flip-flop is assigned a delay of two time units from the time that the clock is
applied to the time that the flip-flop complements. The delay is specifled by the statement
Q < = #k2 -Q. Notice that the delay operator is placed to the right of the nonbIocking assign-
ment operator. This form of delay, called intra-assignment delay, has the effect of postporn
the assignment of the complemented value of Q to Q. The effect of modeling the delay wdl be
apparent in the simulation results. This style of modeling might be useful m simulation. but it
is to be avoided when the model is to be synthesized. The results of synthesis depend on the
ASIC cell library that is accessed by the tool, not on any propagation delays that might appear
within the mdel that is ta be synthesized.

HDL Example 6.4

/ I Ripple counter (See Fig. 6.8(b))
!timescale 1 no 1 I00 ps
module Ripple-Counter-4bit (A3, A2, A l , AO, Count, Reset);

output A3, A2, A l , AO;
input Count, R~set;

Il Instantiate complementing flip-flop
Comp-D-flip-flop FO (AO, Count, Reset);
Comp-D-flip-flop F l (A1, AO, Reset);
Comp-D-fll p-Aop F2 (A2, A1 , Reset);

Scctfon 6.6 HDL for Registers and Counters 275

Camp-D-flip-flop F3 (A3, A2, Reset);
endmodule
/I Complementing flip-flop with delay
It lnput to D flip-flop = Qt
module Cornp-D-fflp-flop (Q, CLK, Reset);

output Q;
Input CLK, Reset;
reg Q;
always @ (n ~ e d g e CLK, pooedge Reset)
If (Reset) Q c= f 'bO;
elre Q <= #2 -Q; I1 Intn-assignment delay

endmodule
I1 Stimulus for testing ripple counter
module t-Ripple-Counter-4bit;

r%g Count;
reg Reset;
wire AO, Al , A2 A3;

/I Instantiate ripple oounter
Rippte-Counter-4Mt MO (A3, A2, At, AO, Count, Reset);

always
#5 Count *I -Count;

lnltial
bqin
Cwnt = 1'bO;
Reset = l 'bl;
#4 Reset = l'M;

end

inltlal#170 $firtiah;

endmodu k

The test bench module in HDL Example 6.4 provides a stimulus for simulating and verify-
ing the functionality of the ripple counter, The always statement generates a free-running clock
with a cycle of 10 time units. The flip-flops trigger on the negative edge of the clock, which
w u r s at t = 10,20,30, and every 10 time units therafter. The waveforms obtained from this
simulation are shown in Fig. 6.19. The control s i g d Count goes negative every 10 ns. A0 is
complemented with each negative edge of Count, but is delayed by 2 ns. Each flip-flop is conl-
plemented when its previous flip-flop goes from 1 to 0. After t = 80 ns, all four flip-flops
complement because the counter goes from 0111 to 1000. Each output is delayed by 2 ns, and
kause of that, A3 goes from 0 to I at t = 88 ns and fmm 1 to 0 at 168 us. Notice how the
propagation delays accnmulab to the last bit of the counter, resulting in very slow counter a e
tion. This limits the @cal utility of the countw.

Reset

Count

t = 88ns
(a) From 0 to 18a ns

(b) From 70 to 98 ns

FIGURE 6.19
Simulation output of HDL Example 6.4

P R O B L E M S

Answers to problems marked with ' appear at the end of the book. Where appropriate, a logic design
and its related HDL modeling problem are cross referenced.
Note: For each problem that requires writing and verifying a Verilog description. a test plan should
be written to identify which functional feams are to be tested during the simulation and bow they
will be tested, For example, a reset on the fly could be tested by asserring the reset signal while the
simulated machine is in a state other than the reset state. The test plan is to guide the development of
a test bench that will implement the plan. Simulate the model, using the test hnch. and verify that
the behavior is correct. If synthesis tools and an ASIC cell library or a field-programmable gate array
(FPGA) am available, the Verilog descriptions developed for Problems 6.344.5 1 can be assigned as

Problems y7

synthesis exercises. The gate-level circuit produced by the synthesis tools should be simulated and
compared with the simulation results for the presynthesis model. (Be aware that in some of the WDL
problems there may be a need to deal with the issue of unused states; see the discussion of the default
case item preceding HDL Example 4.8 in Chapter 4.)

6.1 Include a two-input NAND gate In the register of Fig. 6.1, and connect the gate outpu to the C
inputs of all the flip-flops. One input of the NAND gate receives the clock pulses h m the clock
generator, and the other input of the NAND gate provides a parallel load control. Explain the
operation of the modified register. Explain why this circuit might have operational problerna.

6.2 Include a synchronous clear input in the register of Fig. 6.2, The modified ~gistm will have apar-
allel-bad capability and a synchronous clear capability. The register is cleared synchronously
when tfic clwk goes through a positive transition and the clear input is qua1 to 1, (HDL-6ee
Roblem 6.35(a), (b).)

6.3 What is the difference between serial and parallel transfer? Explain how to convert serial data to
parallel and parallel data to seriaL What type of register is needed?

6e The contents of a four-bit register are initially 1011. The register is shifted six times to the right,
with the serial input being 101101. What are the contents of the register a k r each shift?

6.5 The four-bit universal shift register shown in Fig. 6.7 is enclosed within one IC package.
(a) Draw a block diagram of the IC, showing all inputs and outputs. Include two pins for thc

power supply.
(b) Draw a block diagram, using two ICs, to produce an eight-bit universal shift register.

6A Design a fow-bit shift register with a parallel load, using D flip-flops. Thm are two control in-
puts: skip and load, When shift = 1, the contents of Ihe register are shifted by one position.
New data are transferred into the regisler when load = 1 and shift = 0. If both control inputs
are equal to 0, the contents of the register do not change. @DL- Bee Roblem 6.35(c), (dl,)

6.7 Draw the logic diagram of a a - b i t regism with four D flip-flops and four 4 X 1 multiplwrag with
mode selection inputs st and so. The register operates according m the following function table
(JXDLsee Problem 6.35(e), (0.)

0 1 Complement the four outputs

1 0 Clcar registsr to 0 (a y n c W u u with the clock)

1 1 hd p d l d data

6 B The serial adder of Fig. 6.6 uses two four-bit registers. Register A holds the binary number 0 101
and register 3 holds 01 11. The carry flip-flop is initially reset to 0. List the binary values in reg-
ister A and the carry flip-flop after each shift.

6.9 Two ways to implement a serial adder (A + 3) are presented in Section 6.2. It is necessary to
mDdify the circuits to convert them to serial subtrrictors (A - B) .
(a) Using the circuit of Fig. 63, show the changes needed to perform A + 2's complemnt of

3. (HDL - see Problem 6.35(h).)
@)' Using the circuit of Fig. 6.6, show the changes needed by modifying Table 6.2 from an adder

to a subator circuit. (See Problem 4.12.) (HDL - see Problem 6.3S(i).)

Chapter 6 Registers and Cwmttrs

Design a serial 2's complernentw with a shiftregister and a flipflq. The binary n u m k is shift-
ed out h r n one side and its 2's complement shifted into the o k side of the shift register. (HDL
- see Problem 6.35(j).)

6.1 1 A binary rippie counter uses flipflop that trigger on the positive edge of the clak. What will be
the count if
(a) the normal outputs of the flip-flops are connected to the clock and
(b) the complement outputs of the flip-flops are connected to the clock?

&I 2 Draw the logic diagram ~f a fm-bit binbinary ripple countdown -, using
(a) flip-flops that trigger on tk positive edge of the clock and
@) flip-flops that trigger on the negative edge of the clock

&I3 Show that a BCD ripple awn& WI be constructed from a four-bit binmy ripple cwmer with asyn-
chronous clear and a NAND gate that detects the occurrence of count 1010. (HDL- see h b -
lem 6.35(k).)

6,lW How many flip-flops will be cam@- in a 10-bit b i i ripple counter to m c b the mxt count
after the following counts? , , " " .
(a) 1001100111 .., 8, , ,. .
(b) 0011111111 . -,-.
(c) 1111111111

. .
, .

&lp A flip-flop has a 3-11s delay from the time the clock edge occm to the time the output is corn
pIemented. What is the maximum May in a 10-bit binary ripple counter that llses this type of flip-
flop? What is the maximum frequency the counter can operate with reliably?

The BCD ripple countem showh in Fig. 6.10 has four flip-flops and 16 states, of which only 10
are used. Analyze the circuit. and determine the next state for each of the other six unused states.
What will happen if a noise signal sends the circuit to one of the unused states?

&. 1 Design a four-bit binary s y n c h o w counter with D flip-flops.

1 $ What operation is performed in the up4own counter of Fig. 6.13 when botb the up and down in-
puts are enabled? Modify the circuit so that when both inputs are equal to 1. the counter does not
change state. (I-IDL - see Problem 6.350).)

6 1 9 The £lip-flop input equations for a BCD counter using T flip-flops are given in Section 6.4. Ob-
tain the input equations for a BCD counter that uses (a) JK flipflops and (b)* D £lipflop. Com-
pare the three designs to determine which one is the most eEcient.

Enclose the binary counter with parallel load of Fig. 6.14 in a block diqmm, showing all inputs
and outputs.
(a) Show the connections of fom such blocks to produce a 16-bit m t e r with a pallel load.
(b) Construct a binary counter that counts from 0 through binary 64.

621* The counter of Fig. 6.1 4 has two controI inputs-LoQd (L) and Count (C)--and a data input, li.
(a) Derive the flip-flop input equations for J and K of the first stage in terms of L, C, and I.
(b) The logic diagram of the h t stage of an integrated chmit (74161) is s h in Fq. P6.21.

Verify that this circuit is equivalent to the one in (a).

For the circuit of Fig. 6.14, give three alternatives for a mod-12 munter
(a) using an AND gate and the load input.
(b) using the output carry.
(c) using a NAND gate and the asynchronous clear input.

Problems 279

Count (C)

Data (I)

-

CLK

-

FIGURE W.21

6.23 Design a timing circuit which provides an output signal that stays on for exactly eight clock cy-
cles. A start signal sends the output to the 1 state, and after eight clock cycles the signal returns
to the 0 state. (HDL - see Problem 6.45.)

6.W Design a counter with T flip-flops that g ~ s through the following binary repeated sequence: 0,
1,3,7,6,4. Show that when binary states 010 and 101 are taken to be don't-care conditions, the
counter may not operate properly. Find a way to correct the design. (HDL- see Problem 6.53.)

6.z It is necessary to generate s i x repeated timing signals To through T5 similar to the ones shown in
Fig. 6.17(c). Design the circuit, using IHDL - see Problem 6-46),
(a) flip-flops only.
(b) a counter and a decoder.

6.W A digital system has a clock generator that produces pulses at a frequency of 80 MHz. Design a
circuit that provides a clock with a cycle time of 50 ns.

6.27 Design acounter with the following repeated binary sequence: 0, 1,2,3,4,5,6. Use JK flip-flops.
(IIDL - see h b l e m 6.51.)

6 s Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops.
(HDL - see Problem 6.5 1 ,)

6.29 List the eight unused states in the switch-tail ring counter of Fig. 6.18(a). Determine the next
state for each of these states, and show that if the counter finds itself in an invalid state, it does
not return to a valid state. Modify the circuit as recommended in the text, and show that the count-
er p d u c e s the same sequence of states and that the circuit mches a valid state from any one of
the unused states.

1.30 Show that a Johnson counter with n flip-flops produces a sequence of 2a states. List the 10 states
produced with five flip-flops and the Boolean terms of each of the 10 AND gate outputs.

1 Write and verify the HDL behavioral and shctural descriptions of the four-bit register of Fig. 6.1.
6.33 (a) Write and verify an HDL behavioral description of a four-bit register with parallel load and

asynchronous clear.
(b) Write and verify an HDL structural description of the four-bit register with parallel load

s h o w in Fig. 6.2. Use a 2 X 1 multiplexer for the flip-flop inputs. Include an asynchronous
clear input.

(c) Check both descriptions, using a test bench.

1.33 The following program is used to simulate the binary counter with parallel load described in HDL
Example 6.3:

I/ Stimulus for testing the blnary counter of Example 6.3
module testcounter:

reg Count, Load, CLK, Clr; ,., ' . ,

reg [3: 01 IN; , . .
8 -

wlre CO;
wlre [3: 01 A;
counter cnt (Count, toad, IN, CLK, Clr, A, CO);
always
#5 CLK = -CLK; b e ..: - .

lnltlal . . .,

begln .,,_. .
Clr = 0;
CLK = 1; . a ' ,
Load = 0; Count = I ; --:
#5 Clr= I;
#30 Load = I; IN = 4'131 100;
#20 Load = 0;
#60 Count = 0;

, , ,.; : #20 $tlnlsh; . . a . . - .
end ., -

.I I

endmodule

Go over the program and predict what would be the output of the counter and the carry o q t from

r = 0 to t = 155 ns.
&w Write and verify the HDL behavioral description of a fow-bit sbift register (see Fig. 6.3).
6.35 Write and v e f y

(a) a structural BDL model for the register d&bed in Problem 6.2
(b)* a behavioral HDL model for the register described in Problem 6.2
(c) a struct:ural HDL model for the register described in Problem 6.6
(d) a b e h a v i d HDL model for the regism described in Problem 6.6
(e) a structural EDL model for the register described in Problem 6.7
(f) a behavioral HDL model for the register descrihl in Problem 6.7
(g) a behavioral HDL model of the binary counter dmcribed in fig. 6.8(b)
(h) a behavioral description of the d subiractor d e s c n i in Problem 6.9(a)
(i) a behavioral description of the senal subtractor described in Problem 6.9Ib)
Ij) a behavioral demiption of the mid 2's complementer described in Problem 6.10
(k) a behavioral description of the BCD ripple counter described in Problem 6.13
(1) a behavioral desaiptim of the up-down counter described in Problem 6.18
Write and verify the HDL behavioral and Btructural descriptions of the four-bit updowm counter
whose logic diagram is dewriled by Rg. 6.13, Table 6.5, and Table 6.6.
Write and verify a behavioral hcripiion of the countcr dewxibed in Problem 6.24.
(a) using an if . .. eIse statement
(b) using a case statement
(c) a finite state machine.

6.38 Write and verify the HDLbeharioral desniption of a four-bit updown counter with p d e l load
using the following conml inputs:
(a)* The counter has ibrce conmi inputs for the three v t i o n s Load, Up, and Down. The order

of precedence is Load, Up, and Down.

Problems

(b) The counter has two selection inputs to specify four operations: Up, D m , Load, and no
cbange.

&39 Write and venfy HDL behavioral and structural descriptions of the counter of Fig. 6.16.
B a Write and verify an HDL description of an eight-bit ring counter similar to the one shown in

Fig. 6.17(a).
6.41 Write and venfy the HDL description of a four-bit switch-tail ring (Johnson) counter (Fig. 6.1 gal.
6AP Tbe c m e n t with the last clause of the if statement in Bimry_Co~nter-4~Par~Load in HDL Ex-

ample 6.3 notes that the statement is redundant. Explain why this statement can be removed with-
out changing the behavior implemented by the description,

6.43 The scheme shown in Fig. 6.4 gates the clock to control the send transfer of data from shift reg-
isterA to sluft register B, Using multiplexers at the input of each cell d the shift registers, develop
a structural model of an alternative circuit that does not alter the clock path. The top level of the
design hierarchy is to instantiate the shift registers. The module describing the shift register is to
have instantiations of flip-flops and muxes. Describe the mux and flip-flop modules with behav-
ioral models. Be sure to consider reset Develop a test bench to simulate the circuit and demon-
skate the transfer of data.

6.44 M o w the design of the serial adder shown inFig. 6.5 by removing the gated clock to the D flip-
flop and supplying the clmk signal to it directly. Augment the D flip-flop with a mux to recircu-
late the contents of the flip-flop when shihng is suspended and to provide the carry out of the full
adder when shifting is active. The shift registers are to incorporate this feature also, rather than
use a gated clock. The top Ievd of the design is to instantiate modules using behavioral models
for the shift registers, full adder, D flip-flop, and ma. Assume asynchronous reset, Develop a test
bench to simulate the circuit and demonstrslte the transfer of data.

6.49 Write and venfy a behavioral description of a finite state machine to implement the counter de-
scribed in Problem 6.24.

4.46 Problem 6.25 specifies an irnplementalim of a circuit to generate timing signals using
(a) only flip-flops and
@) a counter and a decoder.
As an alternative, write a behavioral description (without cwsideratiw of the actual hardware)
of a state macbine whose output generates the timing signals To h u g h Ts.

6.4 Write a behavioral description of the circuit shown inFig. P6.47, and verify that the circuit's out-
put is asserted if successive samples of the input have an odd number of 1's.

6.48 Write and verify a behavioral description af the counter shown in Fig. P6.48(a); repeat for the
counter in Fig. P6.48(b),

6.49 Write a test plan for verifying the functionality of the universal shi f t register described in HDL
Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1.

6-58 Write and verify a kbvioral model of the counter described in
(a) Problem 6.27
(b) Problem 6.2 8

651 Without requiring a state machine, and whg a shift register and additional logic, write and ver-
ify a model of an alternative to the sequence detector described in Figure 5.27. Compare the
implementations.

reset +

count p: 01 wmt p: 01

R E F E R E N C E S

BHASKER, J. 1997. A Verfkog HDL Primer Allentown, PA: Star Galaxy h s .
BHASER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.
C m , M. D. 1999, Modelirlg, Synfhesis, and Rapid Prototyping with Verilog HDL. Upper Sad-
dle River, NJ: h n t i c e Hall.
C m , M. D. 2003. Advanced Digital Design with the Verdlog HDL. Upper Saddle River, NJ:
Prentice Hall.
m, M. D. 2004. Smrterk Guide to Verihg 2001. Upper Saddle River, NJ: Prentice Hall.
DIETIUIEYER, D. L. 1988. logic Design of Digital Systems, 3d ed. Boston: AUyn Bacon.
GAJSKI, D. D. 1997, Principles of Digital Desigm. Upper Saddle River, NJ: Prentice Hall.
HAYES, J. P. 1993, Introduction to Digital Logic Design. Reading, Addison-Wesley.
Kmz, R H 2005. Conte~nporayv Logic Design. Upper Saddle River, NJ; Preniice Hall,
W o , M. M., and C. R. Kmfe. 2005. Logic an$ Computer Design Fundamentals & XiLinx 6.3
Student Edition, 3rd ed. Upper Saddle River, NJ: Prentice Hall.
NELSOW. V. P., H. T. NAW, J. D. hm, and B. D. CARROLL. 1995. Digital Logic Circuit Anuly-
sis and Design. Englewood Cliffs, NJ: Pcentice Hall.
PALNITKAR, S. 1996. Verilog HDL: A Gfiide to Digital Dssign and Synthesis. Mountain View,
CA: SunSoft Press (a b n t i c e Hall title),
Ronr, C. & 2004. Fulahmntals of logic Design, 5th ed. St. Paul, MN, BrmkslCole.
THOMAS, D. E., and P. R. Moomu, 2002. The Verilog Hardware Dcscrbtion Language, 6th ed.
Boston: Kluwer Academic Publishers.
WAKFRLY, J. F, 2006. Digital Design: Principks und Practices, 4th ed. Upper Saddle River, NJ:
Prentice Hall.

Chapter 7

Memory and Programmable Logic

7.1 INTRODUCTION

A memory unit is a device to which binary information is transferred for storage and from
which information is retrieved whea & for processing. When data processing takes place,
information from memory is transferred to selected registers in the processing anit. Interme-
diate and final results obtained in the processing unit are transferred back to be stored in mem-
ory, Binary information received from an input device is stored in memory. and information
transferred to an output device is Wen from memory. A memory unit is a collection of cells
capable of storing a large quanlity of b i i information.

There are two types of d e 8 that are used in digital systems: mndommcess memory
(RAM) and read-only memory (ROM). RAM stores new information for later use. The process
of storhg new infomation into memory is referred to as a menmy wrife e o n . The process
of transferring the stored information out of memory is referred to as a memory read opera-
tion. RAM can perform both write and read operations. ROM can perfom only the read op-
eratim. This means that suitable binary information is already stored inside memory and can
be retrieved or read at any time. However, that information cannot be altered by writing,

ROM is a pmgmmabk logic W e (PLD). The binary information that is stored within such
a device is specified in some fashion and then embedded within the hardwam in a process is
r e f d to as p m g m i n g the &vice. Tbe word "pro%ramming" h m refers to a hardware pm
cedure which specifies the bits that me inserted into the hardware cwfigumlio11 of the device.

ROM is one example of a PLD. Otber such units are the programmable logic array (PLA),
programmable array logic (PAL), and the field-programmable gate may (FPGA). A PLD is an
integrated circuit with internal logic gates connected through electronic path that khave sim-
ilarly to fuses. In the original state of the device, all the fuses ue intact+ Programming the
device invoIves blowing those fuses along the paths that must be removed in ordm to obtain

Section 7.2 Random-Aaesr Memory Z35

(a) Conventional symbol (b) Array logic symbol

HtURE 7.1
Conventional a d m a y logic diagrams for OR gate

the particular conjiguration of the desired logic function In this chapter, we introduce the con-
figuration of PLDs and indicate procedures for their use in the design of digital systems. We
also present CMOS FPGAs, which are configured by dawnloading a stream of bits into the de-
vice to dgure transmission gates ta establish the internal connectivity required by a speci-
fkd logic function (combinational or sequentiaI).

A typical PLD may have hundreds to &ms of gates interconned through hundreds to thou-
sands of internal paths. In order to show the internal logic diagram of such a device in a concise
form, it is neoessary to employ a special gate symbology applicable to array logic. Figure 7,l shows
the conventional and array logic symbols for a multiple-input OR gate. Instead of having multi-
ple input lines into the gate, we draw a single line entering the gate. The input lines me drawn per-
pdiwIar to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will k used throughout the chapter in array logic diagrams.

7.2 RANDOM-ACCESS MEMORY

Amemory unit is a collection of storage cells, together with associated circuits needed to trans-
fer information into and out of a device. The architecture of memory is such that information
can be seldvely relrieved from any of its internal locations, The time it takes to transfer in-
f m t i o n to or from any d e s M random location is always the same-hence the name mdom-
access mmty, abbreviated RAM. In contrast, the time required to retrieve information that
is stored on magnetic tape depends on the location of the data.

A memory unit stores binary information in groups of bits called words. A word in memo-
ry is an entity of bits that move in and out of storage as a unit. A memory word is a group of
1's and 0's and may represent a number, an insbuction, one or more alphanumeric characters,
or any other binary-coded information, A group of 8 bits is called a byte, Most computer mem-
ories use words that are multiples of 8 bits in length. Thus, a 16-bit word contains two bytes,
and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated as
the total number of bytes that the unit can store.

Communication between memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direction of transfer. A
blmk diagram of a memory unit is shown in Fig. 7.2. The n data input lines provide the infor-
mation to be stored in memory, and the pa data output lines supply the information coming out
of memory. The k address lines specify the particular word chosen among the many available.
The two control inputs specify the direction of transfer &sired: The Write input causes bina-
ry data to be transferred into the memory, and the Read input causes binary data to be -6-

ferred out of memory.

286 €hapter 7. Memory and Progammle Leglc

I n data input lines

k address h-s,

Read

Wrire

The memory unit is specified by the number of words it contains and the number of bits
in each word. The address lines select one particular word. Each word in memory is assigned
an identification number, called an address, starting horn 0 up to zk - I , where k is the
number of address lines. The selection of a specific word h i d e memory is done by apply-
ing the k-bit address to the address lines. An internal decoder accepts this address and opens
the paths needed to select the word specified. Memories vary greatly in size and may range
from 1,024 words, requiring an address of 10 bits, to z3' words, requiring 32 address bits. It
is customary to refer to the number of words (or bytes) in memory w i h one of the letters K
(kilo), M (mega), and G (giga). K is equal to 21°, M is equal to 220, and G is equal to Z3O.
Thus, 64K = 216. 2M = 221, and 4G = 232.

Consider, for example, a memory unit with a capacity of 1K words of 16 bits each. Since
1 K = 1,024 = 2'' and 16 bits d t u t e two bytes, we can say that the memory can accom-
modate 2,048 = 2K bytes. Figure 7.3 shows possible contents of the k t three and the last

Memory address

Binary W m a l Memory content

Section 7-2 Randm-Access M e m q 287

three words of this memory. Each word contains 14 bits that can be divided into two bytes. The
words are recognized by their decimal address from 0 to 1,023. The equivalent binary address
consists of 10 bits. The first address is specified with ten 0's; the last address is specified with
ten l 's, because 1,023 in binary is equal to I1 1 1 1 1 1 11 1. A word in memory ia selected by its bi-
nary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The 1K X 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 216)
and each word will consist of 10 bits. The number of address bits needed in a memory is de-
pendent on the total number of words that can be stored in the memory and is independent of
the number of bits in each word. The number of bits in the address is determined from the re-
lationship 2k 2 rn, where m is the total number of words and k is the number of address bits
needed to satisfy the relationship.

Write and Read Operations

The two operations that RAM can perform are the write and read operations. As alluded to
earlier, the write signal specifies a transfer-in operation and the read signal specses a transfer-
out operation, On accepting one of these control signals, the internal circuits inside ?he mem-
ory provide the desired operation.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Apply the data bits that must be stored in memory to the data input lines.
3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word
specified by the address Lines.

The steps that must be taken for the purpose of transferring a stored word out of memory
are as follows:

1. Apply the binary address of the desired word to the address lines.
2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines, The contents of the selected word do not change after
the read operation, i.e., the word operation is nondestructive.

Commercial memory components available in integrated-circuit chips sometimes provide
the two control inputs for reading and writing in a somewhat diffexent configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: One input selects the unit and h e other determines the oper-
ation. The memory operations that result from these control inputs are specified in Table 7.1.

The memory enable (sometimes called the chip select) is used to enable the particular mem-
ory chip in a multichip implementation of a large memory. When the memory enable is inac-
tive, the memory chip is not selected and no operation is performed When the memory enable
input is active, the readwrite input determines the operation to be performed.

Chapter 7 Memory and P-grammable Logic

Table 7
Contnol Inp~ o Memory Chip

Memoq Enable Read/Wr' Memory OprrrtCon
- - - <

0 X None
1 0 write to selected word
1 1 Read from selected word

Memory Description In HDL

Memory is modeled in the Verilog HDL by an array of registers. It is declared with a reg key-
word, using a two-dimensional array. The first number in the array s@es the number of
bits in a word (the wond bngth) and the second gives the number of words in memory (mem-
ory depth). For example, a memory of 1,024 words with 16 bits per word is declared as

reg[15: 0] memword 10: 70231;

This statement describes a two-dimensional array of 1,024 registers, each containing 16 bits,
The second array range in the declaration of mernword specifies the total number of words in
memory and is equivalent to the address of the memory. For example, m w o d [5 l 2] refers
to the 16-bit memory word at address 5 12.
The operation of a memory unit is illustrated in HDL Example 7.1. The memory has 64

words of four bits each. There axe two control inputs: Enubk and R e f i r e . Tbe DataIn and
DataOut lines have four bits each. The inputAddress must have six bits (since z6 = 64). The
memory is declared as a two-dimensional array of registers, with M m used as an idenaer that
can be referenced with an index to access any of the 64 words. A memory operation requires
that the Enable input be active. The Readwrite input determines the type of operation. If
ReadWrite is I , the memory performs a read operation symbolized by the statement

DataOut c Mem [Address];

Execution of this statement causes a transfer of four bits from the selected memory word spec-
ified by Address onto the Dataout lines, If Rendwrite is 0, the memory performs a write op-
eration symbolized by the shtement

Mem [Address] t Dataln;

Exewion of this statement causes a d e r from the four-bit Danrln into the memory word
8 e l M b y d d ~ s s . When Enabk is equal to 0, the memory is disabled a d the mlpls are assumed
to be in a high-impdance state, indicated by the symbol z. Thus, lhe mamnry has *-stale omputs.

l3DL Example 7.1

11 Read and write operations of memory
// Memory size is 64 words of four bits each.

modula memory (Enable, ReadWrlte, Address, Dataln, Dataout);
Input Enable, ReadWrite;
Input [3: 01 Dataln;

Input 15: 0] A d d m
output p: o] Dataout;
reg 13: 01 Dataout;
rag 13: 01 Mem [O: 631;
ahnays @ (Enable or ReadWrib)

R (Enable)
If (RmdWrlte) Dataout = Mem [Address]; I1 Read
elsm Mem [Address] = Dataln; I / Wrlts

else Dataout = 4'bz; 11 High impedanca state
endmodufe

// 34 x 4 memory

Ttmtng Wavmforms

The opation of the memory unit is collmlled by an external devioe such as a central processing
uait (BU). The CPU is usually symhmid by its own clock The memory, however, does
not employ an internal clock. Instead, its read and write operations a ~ e specified by control in-
puts. The access time of memory is the time required to select a word and read it. The cycle
sim of memory is the time required to complete a write operation. The CPU must provide the
memory contTol signals in such a way as rn synchroonize its internal clocked operatiom with
the read and write options of memory. This means that the tlccess time and cycle time of
the memory must be within a time equal to a fixed number of CPU clock cycles.

Suppose as an exampIe that a CPU operates with a dock frequency of 50 MHz, giving a pe-
riod of 20 ns for one clock cycle. Suppose also that the Crm communicates with a memory
whose a m time and cycle t h e do not exceed 50 ns. Tbis means that the write cyclc termi-
nates the storage of the selected word within s 50-ns intervaf and that the red cycle provides
the output data of the seleckd word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the BU cycle is 20 ns, it will be necessary to devote at least two-
and-a-haff, and possibly three, clock cycles for each memory -st.
The memory timing shown in Fq. 7.4 is for a CPU with a 50-MHz clock and a memory with

50 os maximum cycle time. l b write cycle in part (a) shows three %mi- cycles: n, 22, and T3.
For a write aperation, the CPU must provide the addmss and input data to the msmpry. This is done
atthebeghuhgofT1. ~ e m l i n e g t h a t m s e e a c h ~ i n ~ e ~ ~ a n d ~ w a v e f o m d e s -
igaate a paaible chatlge in value of the multiple lines.) The memory enable and the redwrite sig-
n a l s m ~ b e d v ~ a f f e r t h e ~ i n t h e ~ s s ~ m ~ l e h o r d e r t o a v o i d ~
data in o t b memory m. lb memory enable signal switches to the hi& level and the d h w i t e
signal ~witches to the low level to indicate a wdte -ation. The two control dgds must stay d v e
f o r a t l e a s t 5 0 n ~ . T h e ~ s a n d ~ s l g n a L s n r m s t ~ s ~ l e f o r a & ~ ~ ~ t b e ~ -
~ p i ~ ~ ~ ~ ~ ~ A t h c ~ m p l ~ o f t h e W ~ l a c k c y c l e , t h e m e m o r y ~ o p e r a t i o n
is completed and the CPU can access h memwy again with the next TI cycle.

The read cyclc shown in Fig, 7.4Ib) has an address for the memory provided by the CW.
The mommy-enable and read/wri& signals must be in their high level for a read operation.
The memory places he. data of the word selected by the address inw the output data lines with-
in a 5bns interval [or less) h n the time that the memory enable is a c t i d . The CPU can
transfer the data into one of its intefnerl regism during the negative @ansition of T3. The next
T'l cycle is available for another memory request,

TPO Chapter 7 Memmy and Programmable Logk

Clock

Memory
address Address valid

Memory 2

Data
input Data valid

(a) Write cycle

Clock

Memory
address Address valid

enable Initiate read

Readl
Write

Data Data valid
output

7.4
M m w y rydt timtng WamfUms

The mode of access of a memory system is determined by the type of components used. In a
random-access memory, the word locations rnay be thought of as being separated in space,
each word occupying o m particular hation. In a sequential-access memory, the information
stored in some medium is not immediately xcessible, but is available only at certain intervals
of time. A magnetic disk or tape unit is of this type. Each memory location passes the read and
write heads in turn, but information is read out only when the quested word has been reached.

S d a n 7.3 Memory Decudlng B1

In a random-access memory, the access time is always the same regardless of the particular lo-
cation of the word. In a sequential-access memory, the time it takes to access a word depends
on the position of the word with respect to the position of the read head; therefore, the access
time is variable.

Integrated circuit RAM units are available in two operating modes: static and dynamic, Sta-
tic RAM (SRAM) consists essentially of internal latches that store the binary information. The
stored information remains valid as long as power is applied to the unit. Dynamic RAM
(DRAM) stores the binary information in the form of electric charges on capacitors provided
inside the chp by MOS transistors. The stored charge on the capacitors tends to discharge with
time, and the capacitors must be periodically recharged by refreshing the dynamic memory. Re-
freshing is done by cycling through the words every few railliseconds to restore the decaying
charge. DRAM offers reduced power consumption and larger storage capacity in a single mem-
ory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is turned off are said to be volatile.
CMOS integrated circuit RAMS, both static and dynamic, are of this category, since the binary
cells need external power to maintain the stored information. In contrast, a nonvolatile memo-
ry, such as magnetic disk, retains its stored information after the removal of power. This type of
memory is able to retain information because the data stored on magnetic components are rep-
resented by the direction of magnetization, which is retained after power is turned off. ROM is
another nonvolatile memory. A nonvolatile memory enables digital cornputas to store programs
that will be needed again after the computer is turned on. Programs and data that cannot be al-
tered are stored in ROM, while other Iarge programs are maintained on magnetic disks. The lat-
ter progams are transferred into the computer RAM as needed. Before the power is turned off,
the binary information from the computer RAM is wansferred to the disk so that the informa-
tion will be retained.

7.3 MEMORY DECODING

In addition to requiring storage components in a memory unit, there is a need for decoding cir-
cuits to select the memory word specified by the input address. In this section, we present the
internal construction of a RAM and demonstrate the operation of the decoder. To be able to in-
clude the entire memory in one diagram, the memory unit presented here has a small capacity
of 16 bits, arranged in four words of 4 bits each. An example of a two-dimensional coincident
decoding arrangement is presented to show a more efficient decoding scheme that is used in
large memories. We then give an example of address multiplexing commonly used in DRAM
integrated circuits.

Internal Construction

The internal construction of a RAM of m words and n bits per word consists of in X n binary
stwage cells and associated decoding circuits for selecting individual words. The binary stor-
age cell is the basic building block of a memory unit, The equivalent logic of st binary cell that
stores one bit of information is shown in Fig. 7.5. The storage part of the cell is modeled by an
SR latch with associated gates to form a D latch. Actually, the cell i s an electronic circuit with

292 ~hapter.7 Memory and Programmable Logic

Select

Output
Input

(a) Logic diagram (b) Block diagram

FIGURE 7.5
Memory cell

four to six transistors. Nevertheless, it is possible and convenient to model it in terms of logic
symbols. A binary storage cell must be very small in order to be able to pack as many cells
as possible in the small area available in the integrated circuit chip, The binary cell stores one
bit in its internal latch, The select input enables the cell for reading or writing. and the
readwrite input determines the operation of the cell when it is selected. A 1 in the readwrite
input provides the read operation by forming a path from the latch to the output terminal, A
0 in the readlwrite input provides the write operation by forming a path fmm the input terminal
to the latch.

The logical construction of a small R A M is shown in Fig, 7.6. This RAM consists of four
words of four bits each and has a total of 16 binary cells, The small blocks labeled BC repre-
sent the binary cell with its three inputs and one output, as specified in Fig. 7.505). A memory
with four words needs two address lines. The two address inputs go through a 2 X 4 decoder
to select one of the four words. The decoder is enabled with the memory-enabIe input. When
the memory enable is 0, all outputs of the decoder are 0 and none of the memory words are se-
lected, With the memory select at 1, one of the four words is selected, dictated by the value in
the two address lines. Once a word has been selected, the readwrite input determines the o p
eration. During the read operation, the four bits of the selected word go through OR gates to
the output terminals. (Note that the OR gates are drawn according to the array logic estab
lished in Fig. 7.1.) During the write operation, the data available in the input lines are trans-
ferred into the four binary cells of the selected word. The binary cells thar are not selected are
disabled, and their previous binary values remain unchanged. When the memory select input
that goes into the decoder is equal to 0, none of the words are selected and the contents of all
cells remain unchanged regardless of the value of the readwrite input.

Commercial RAMS may have a capacity of thousands of words, and each word may range
h m 1 to 64 bits. The logical construction of a large-capacity memory would be a direct ex-
tension of the configuration shown here. A memory with 2k words of n bits per word requirw
k address lines that go into a k X 2k decoder. Each one of the decoder outputs selects one word
of n bits for reading or writing.

SectIan 7.3 Memory Decoding 293

A decoder with k inputs and 2k outputs requires 2k AND gates with k inputs per gate. The total
nurnber of gates and the number of inputs per gate can be reduced by employing two decoders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
two kl2-input decoders are used instead of one k-input decoder. One decder performs the row
selection and the other the column selection in a two-dimensional ma& configuration.

The two-dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K-word memory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders, With the single
decoder, we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with 5 inputs in each. The five most significant bits of the address go to
input X and the five least significant bits go to input Z Each word within the memory array is
selected by the coincidence of one X line and one Y line. Thus, each word in memory is selected

294 Chapter 7 Memory and Programmable toglc

L
b i n a ~ address
01100 10100 --
X If

by the whcidedce.betwew 1 bf 32 rows and 1 ~f32c~l~mn8, for a tata3 of 1.024 a d . Nore
that ea& intersection iepsents a word that m q have m y number ofbits

& zua ermple, ~oasider th w a d whose: addam js 404, The 10-bit bhq~equk*t of
is (11100 ID100, This m . X = MI00 (binmy 12) a d Y = 10100 (bm 20). The n-bil
word &at f selcmd lies ia the Xdwsder ontput mmbef 12 a d &e Y decdaoutput number
2D,), the bit8 of the ward am 8 e W far 'mdhg Qt writing.

T b PdWM memory d l m&ed in Fig" 7.5 ~ I d 1 y ' m ~ s . s i x ~~* IJl Order to buiid
with s t y , itis mxmswy to duae the number of tramistors in a cell. The

DRAM mlt contains a WIe M W tmsisbr md q wpitaf. Tbe Q- mmd w the c a p -
iW &chges with the, .wd ae mmmy cells must be @adidly ndmrged by-rehsbinp
thememq. Because nf.fb&sbple W strudmt~, DRAMs typidly have four-times ktw-dm-
dty of SRAMs, Thi~ allow fbw times z r ~ much mmry cqwity t~ be placed on a given size
of chip. The wst per bit csf DRAM star&kkis b e e to four 1- thm that of SRAM Wr-
age. A furlher cast satrings itt realized because of t l 5 ~ lawm power quiimml of DRAM e&.
These dvmb&es rnalrb DRAM the WfWed techolow for 1-e mmories in p e r s d dig-
it$ cornputas. D W chips rn available h capcities from 64K to 256M bits, Must DRAMS
have a l-b?f ,word sjw so $weal chips haw to bpwhined to a bger d size,

Section 7.3 Memory Decoding

Because of their large capacity, the address decodmg of DRAMS is manged in a twa-
dimensional array, and larger memories often have multiple arrays. To reduce the number of pins
in the IC package, designers utilize address multiplexing whereby one set of address input pins
acmmmdates the address components. In a two-dimensional array, the address is applied in two
parts at different times, with the row address k t and the column address second. Since the same
set of pins is used for both parts of the address, the size of the package is decreased significantly.
We will use a 64K-word memory to illustrate the address-multiplexing idea. A diagram of the

decoding configuration is shown in Fig. 73, The memory consists of a two-dimensiond array of
cells arranged into 256 rows by 256 columns, for a total of 2' X 28 = 216 = 64K words. There
is a single data input line, a single data output line, and a read/write control, as well as an eight-bit
address input and two address strobes, the latter included for enabiing the row and column address
into tbeirrespective registers. The row address strobe (R A S) enables the eight-bit row register, and
the column address strobe (CAS) enables the eight-bit column register. The bar on top of the name
of the strobe symbol indicates that the registers are enabled on the zero level of the signal.

-
CAS

-
RAS

I
Data Data
in out

FIGURE 7.8
Address muklplexlng for a 64lC DRAM

296 Chapter 7 Memory and PregramrtfaMe Logk

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially, ,both
strobes are in the 1 state. The &bit row address is applied to the address inpub and RAS is
changed to 0. This loads the row address into the row address register. RAS also enables tlxe row
decoder so that it can decode the row address and select one mw ofthe array. After a the equiv-
alent to the settling time of the row selection, RAS goes back to the I level. The &bit column
address is then applied to the addre~s inputs, and CAS is driven to the 0 state. 'Ilris &en the
column address into the column ~gistm and enables the column decoder. Now the two parts of
the address are in their respective registas, the decoders have decmkd them to select the one cell
corresponding to the row and column d r e s s , and a read or write opxlion can be perf& on
that celI. CAS must go back to the 1 level before initiating an& memory +on.

7.4 E R R O R DETECTION AND CORRECTION

The dynamic physical interaction of the electrical signals affecting the data path of a memory
unit may cause occasional errors in storing and retrieving the b i i information. The reliability
of a memory unit may be improved by employing error-detecting and ermr-~omcfing codes.
The most common error detection scheme is the parity bit. (See Section 3.9.) Aparity bit is gen-
erated and stored along with the data word in memory. The parity of the word is checked after
reading it from memory. The data word is accepted if the parity of the bits read out is correct.
If the parity checked results in an inversion, an error is detected, but it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with h e data
word in memory. Each check bit is a parity over a group of bits in the data word When the word
is read back from memory, the associated parity bits are also read b m memory and compared
with a new set of check bits generated from the data that have been read lf the check bits are
correct, no error has occurred. If the check bits do not match the stored parity, they generate a
unique pattern, called a syndrome, that can be used to identify the bit that is in error. A single
error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write or read op-
eration. If the specific bit in e m is identified, then the error can be corrected by comple-
menting the erroneous bit.

Hammlng Code

One of the most common error-correcting codes used in RAMS was devised by R. W. Ham-
ming, In the Hamming code, k parity bits are added to an n-bit daw word forming a new word
of n + k bits, The bit positions are numbered in sequence from 1 to n + k. Those positions
numbered as a power of 2 are reserved for the parity bits, The remaining bits are the data bits.
The ccde can be used with words of any length. Before giving the general chamzkdics of the
code, we will illustrate its operation with a data word of eight bits.

Consider, for example, the %bit data word 11000100. We include 4 parity bits with the
8-bit word and arrange the 12 bits as follows:

Bitposition: 1 2 3 4 5 6 7 8 9 10 11 12
P ~ P , 1 P 4 1 O 0 p 8 O 1 0 0

Sectfon 7,4 Error Detection and Cofrectibn

The 4 parity bits, PI, Pa, Pb and 6. are in positions 1,2,4, and 8, respectively. The 8 bits of
the data word am in the remaining psitiom. Bacb parity bit is calculated as follows:

6 = XORofbits (3,5,7,9,11) = 1 a1 $ 0 @ 0 8 0 = 0

Reme* that the excIusiveOR o@on perfonns tbe odd function: It is e q d to 1 for an odd
number of 1's in the variab1a and to 0 for an even number of 1's. Thus, each parity bit is set so
that the total number of 1's in the checked positions, including the parity bit, is always even.

The &bit data word is stored in memory together with tha 4 parity bits as a 12-bit compw
ite word. Substituting the 4 P bits in their proper positions, we obtain the 12-bit corn@&
word stored in memory:

0 0 1 1 1 0 0 1 0 1 0 0
Bitposition: 1 2 3 4 5 6 7 8 9 10 I1 12

Whenthe 12bitsmreadfromme~,theyare*@nkm.%@tyiscbecked
over the sam combination of bits, including the parity bit. The 4 check bin are evaluated as
follows:

C1 = XOR of bits (1,3,5,7,9, 11)

C2 = XOR ofbits (2,3,6,7,10,11)

C4 = XOR of bits (4,5,6,7,12)

c8 = XOR of bits (8,9,10,11,12)

A 0 check bit hignaw even parity over the checked bits and a 1 dc&pWs odd parity. Since
the bits w m st& with even parity, the result, C = C$4CtCl = 0000, indicaks that no error
has occurred. However, if C # 0, then the &bit binary number formed by the check bits gives
the position of the erronebus bit. For example, consider the following thne cases:

Bitpsition: 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 1 1 0 0 1 0 1 0 0 No-
1 0 1 1 1 0 0 1 0 1 O O E m w i n b i t l
0 0 1 l o o 0 1 0 1 0 0 Errorinbit5

In the first case, there is no error in the 12-bit w d , In the second case, there is an error in bit
position number 1 became it changed h m 0 to 1. The third case shows an error in bit posi-
tim 5, with a change from 1 to 0. Evaluating the XOR of the corresponding bits, we determine
the 4 check bits to be as follows:

C8 c4 c2 Cl
For no mr: 0 0 0 0
With error in bit 1 : 0 0 0 1
With error in bit 5: 0 1 0 1

298 Chapter 7 Memory and Programmabk Logic

Thus, for no e m , we have C = 0000, with an error in bit 1, we obtain C = 0001; and with
an error in bit 5, we get C = 0101. When the binaty n u m b Cis not equal to 0000. it gives
the position of the bit in error, The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in w e of the parity bits.

The Hamming code can beused for data words of any length. In general, the Hamming cade
consists of k check bits and n data bits, for a total of n + k bits. The syndrome value C consists
of k bits and has a range of zk values between 0 and zk - 1. One of these values, usually zero,
is used to indicate that no error was detected, leaving 2k - 1 vah~es to indicate which of the
n + k bits was in error. Each of these 2k - 1 values can lx used to uniquely describe a bit in
error. Therefore, the range of k must be equal to or greater than n + k. giving the relarionship

Solving for n in terms of k, we obtain

This relationship gives a formuIa for establishing the number of data bits that can be used in
conjunction with k check bits. For example, when k = 3, the number of data bits that can be
usedisn 5 (23 - 1 - 3) = 4.Fork = 4, w e h a ~ e 2 ~ - f - 4 = 11,givingn I 11.The
d a t ~ word may be Iess than 11 bits, but must have at least 5 bits; otherwise, ody 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam-
pIe. Ranges of n for d o u s values of k are listed in Table 7.2,

The puping of bits for parity generation and checking can be dekmhed from a list of the
binary numbers from 0 through 2k - 1 . The least significant bit is a 1 in the binary numbers 1,3,
5,7, and so on. The second significant bit is a 1 in the binary n u m h 2,3,6,7, and so on. Com-
paring these numbers with the bit positions used in generating and checkjng p&y bits in the Ham-
ming code, we note the relationship between the bit groupings in the code and the position of the
1-bits in the binary count sequence. Note that each group of bits starts with a number that is a
power of 2 1,2,4,8, 16, etc. These numbers are also the position numbers for the parity bits,

Single-Emr Correction, Double-Ermr Detection
The Hamming code can detect and cmect only a single error. By adding another parity bit to
the coded word, tbe Hamming code can be used to correct a single m r and detect double
errors. If we include this additional parity bit, then the previous 12-bi t coded word kames
001 11001 0100fi3, where fi3 is evaluated from the exclusive-OR of the other 12 bits. This

tabla 7.2
RangedhtaBIErIbrkChdElts

Number of Check Blts, k Range of Data Bitr, n

3 2 4
4 5-11
5 12-26
6 27-57
7 58-120

Section 7.5 Read-only Memory 299

produces the 13-bit word 0011100101M31 (even parity). When the 13-bit word is read from
memory, the check bits are evaluated, as is the parity P over the entire 13 bits. If P = 0, the
parity is correct (even parity), but if P = 1, then the parity over the 13 bits is incorrect (odd
parity]. The following four cases can arise:

If C = 0 and P = 0, no error occurred.

If C # 0 and P = 1, a single error occurred that can be corrected.

If C # 0 and P = 0, a double error occurred that is detected, but that cannot be comted.

If C = 0 and P = 1, m error occurred in the P13 bit.

This scheme may detect more than two errors, but is not guaranteed to detect all such errors.
Integrated circuits use a modified Hamming code to generate and check parity bits for

single-error correction and double-error detection. The modified Hamming code uses a
more efficient parity configuration that balances the number of bits used to calculate the
XOR operation. A typical integrated circuit that uses an 8-bit data word and a 5-bit check
word is IC type 74637. Other integrated circuits are available for data words of 16 and 32
bits. These circuits can be used in conjunction with a memory unit to correct a singIe error
or detect double errors during write and read operations.

7.5 READ-ONLY MEMORY

A ROM is essentially a memory device in which permanent binary information is stored. The
binary information must be specified by the designer and is then embedded in the unit to form
the required interconnectionpattern. Once the pattern is established, it stays within the unit even
when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig, 7.9. The in-
puts provide the address for memory, and the outputs give the data bits of the stored word that is
selected by the address. The number of words in a ROM is demmined from the fact that k address
input h e s are needed to specify 2k words. Note that ROM does not have data inputs, because it
does not have a write operation. Inregrated circuit ROM chips have one or more enable inputs and
sometimes come with three-state outputs to facilitate the construction of large arrays of ROM,

Consider, for example, a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Figure 7.10
shows the internal logic construction of this ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.

k inputs (address) n outputs (data)

FK;URE 7.9
ROM block dlagrsm

The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits. (See Fig. 6.1 .) Each OR garc must be con-
s i d e d as having 32 inputs. Each output of the decoder is caum3d &o m e of the inputs of each
OR we, Since each OR gate has 32 input connections and there arc 8 OR gares, the ROM con-
tains 32 X 8 = 256 internal connections. In general, a 2k X n ROM will have m internal
k X 2k dcEOdet and n OR gates. Each OR gak has inputs, which are connected to each of
the outputs of the decoder.

The 256 intersections in Fig. 7.10 are progmmable. A programmable connection between
two lines is logically equivalent to a switch that can be altered to be e i b closed (nmeaniag that
the two hes are connected) or open (meaning that the two lines arc disconnected). The pro-
grammable intersection between two lines is sometimes called a cmsspointnt Various phy sicd
devices are used to implement crosspoint switches. One of the simplest technologies employs
a fuse that normally connects the two points, but is o p e d or "blown" by the application of
a high-voltage pulse into the fusa

The i n t d binary storage of a ROM is spacified by a truth table that shows the word con-
tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7.3. The truth table shows the five inputs under which
are listed all 32 addresses. Each address stores a word of 8 bits, wbich is listed in rhe outputs
columns. The table shows only the frrst four and the last four words in tbe ROM. The complete
table must include the list of dl 32 words,

The hadware produce that progums the ROM blows fuse W in accordance with a
given mth table. For example, pm-g the ROM acmdhg to the lruth table given by
Table 7.3 results in the canfiguration shown in Fig. 7, l I . Every 0 listed in the mth table

Section 7.5 Read-Only Memory 301

Table 7.3
ROM Truth Tubie (Partial)

Inputs atpa

b

11

h

13

4

AT & As & da & Ao

HCUE 7.1 1
Programming the ROM a d t n g to Tabk 7.3

specifies the absence of a connection, and every 1 listed spacifies a path that is obtained by a
connection. For example, the table specifies the eight-bit word 101 10010 for pemment star-
age a! address 3. The four O's in the word are programmed by blowing the fuse Ws between
output 3 of the decoder and the inputs ofthe ORgates associated with outputs A6, A3, A2, and
Ao. The four 1's in the word are m k e d with a X to denote a temporary connection, in place
of a dot used far a permanent connection in logic diagrams. When the input of the ROM is
000 11, all the outputs of the decoder are 0 except for output 3, which is at logic 1. The signal

302 Chapter 7 Memory and Programmable Logk

equivalent to lode 1 at decoder output 3 propagates through the connections to the OR gate out-
puts of A7, A5, Ad, and A 1. The other four outputs remain at 0. The result is that rbe stored word
101 10010 is applied to the eight data outputs,

In Section 4.9, it was shown that a decoder generates the 2k minterms of the k input variables.
By inserting OR gates to sum the r n i n t m s of Boolean functions, we were able to generate any
desired combinational circuit. The ROM is essentially a device that includes both the decder
and the OR gates within a single device to form a mintem generator. By choosing connections
for those minterms which are included in the function, the ROM outputs can be progammed
to represent the Boolean functions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpmed in two ways. The fmt interpretation ir that
of a memory unit that contains a fixed pattern of stored words. The second i n w o n is that of
a unit which implements a combinational circuit. From this pint of view, each output t e a is
considered separately as the output of a Boolean function expressed as a sum of mint-. For
example. the ROM of Fig. 7.11 may be considered to be a combimonal circuit with eight outputs,
each a function of the five input variables. Output A7 can be expressed in sum of mint- as

A7(14, 13, f2,11,10) = z(0, 2, 3, . . , 29)

(The three dots represent minterms 4 through 27, which are not specified in the figure.) A con-
nection marked with X in the figure produces a rninterm for the sum. All other crosspints
are not connected and are not included in the sum.

In practice, when a combinational circuit is designed by means of a ROM. it is not neces-
sary to design the logic or to show the internai gate connections inside the unit. All that the de-
signer has to do is specify the particular ROM by its IC number and provide the applichle rmth
table. The mth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the h t b table,

Design a combinational circuit using a ROM. The circuit accepts a three-bit number and out-
puts a binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases. this is
all that is needed, In other cases, we can use a partial truth table for the ROM by u- cer-
tain properties in the output variables. Table 7.4 is the truth table for the combinational circuit.
Three inputs and six outputs are n d e d to accommodate all possible binary numbers. We note
that output Bo is always equal to input AD, SO there is no need to generate Bo with a ROM,
since it is equal to an input variable. Moreover, output B1 is always 0, so this output is a h u w n
constant We actually need to generate only four outputs with the ROM; the other two are read-
ily obtained. The minimum size of ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implemenmtion is
shown in Fig. 7.12. The three inputs specify eight words of four bits each. The truth table in
Fig. 7.12@) specifies the information needed for programming the ROM. The blmk diagram

Sectlon 7.5 Read-Only Memory 303

Table 7.4
Tmth Tobk fw Clrruit of Example 7.1

Inputs Outputs

Decimal

(a) Block diagram

FIGURE 7.12
ROM lmplementatlon of Exampk 7.1

(b) ROM truth table

of Fig. 7.12(a) shows the required connections of the combinational circuit.

The required paths in a ROM may be programmed in four different ways. The first is called m k
programming and is done by the semiconductor company during the last fabrication process of
the unit. The pmedure for fabricating a ROM requires that the customer fill out the truth table
he or she wishes the ROM to satisfy. The truth table may be submitted in a special form pro-
vided by the manufacturer or in a specified format on a computer output medium. The manu-
facturer makes the corresponding mask for the paths to produce the 1's and 0's according to the
customer's truth table. This procedure is costly because the vendor charges the customer a ape-
cial fee for custom masking the particular ROM. For this reason, mask programming is ec*
nomical only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called
programmable read-only memory, or PROM. When ordered, PROM units contain all the fuses
intact, giving all 1's in the bits of the stored words. The fuses in the PROM are blown by the

304 Chapter 7 Memory and Programmable Logic

application of a hgh-voltage pulse to the device through a special pin. A blown fuse defines a bi-
nary 0 state and an intact fuse gives a binary 1 state. This procedure allows the user to program
the PROM in the laboratory to achieve the desired relationship between input addresses and
stored words. Special instruments called PROM programmers are ava~lable mmmercially to fa-
cilitate the procedure. In any case, all procedures for programming ROMs are hardware pme-
dures, even though the word programming is used.

The hardware procedure for programming ROMs or PROMS is irreversible. and once p r e
grammed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been es-
tablished, the unit must be discarded if the bit pattern is to be changed. A third type of ROM
is the erasable PROM, or EPROM, which can be restruchmd to the initial state even though
it has been programmed previously. When the EPROM is p W under a v i a l ultraviolet light
for a gven length of time, the shortwave radiation discharges the internal floating gates that
serve as the programmed connections. After erasure, the EPROM renulls to its initial state and
can be reprogrammed to a new set of values.

The fourth type of ROM is the electrically erasable PROM (EEPROM or E'PROM). This
device is like the EPROM, except that the previously programmed connections can be erased
with an electrical signal instead of ultraviolet light. The advantage is that the device can be
erased without removing it from its socket.

Flash memory devices are similar to EEPROMs, but have additional built-in circuihy to
selectively pragram and erase the device in-circuit, without the need for a special programmer.
They have widespread application in modern technology in cell phones, digital camwas. set-
top boxes, digital TV, telecommunications, nonvolatile data storage, and microcontrollers.
Their low consumption of power makes them an attractive storage medium for laptop and note-
book computers. Flash memories incorporate additional circuitry, too, allowing simultaneous
erasing of blocks of memory, for example, of size 16 Kbytes to 64 Kbytes. Like EEPROMs,
flash memories are subject to fatigue, typically having about lo5 block erase cycles.

Combinational PLDs

The PROM is a combinational programmable logic device (PLD)-an integrated circuit wirh
programmable gates divided into an AND array and an OR a r q to provide an k % i R sum-
of-product implementation, There are three major types of combinational PLDs differing in
the placement of the progrmble connections in the m R m y . figure 7.13 shows the
dguratiw of the three PLDs. The PROM has a fixed AND may construcred as a d a d e r
and a programmable OR array, The programmable OR gatm implement the Boolean functions
in sum-of-mintems form. The PAL has a programmable AND array and a &xed OR array, The
AND gates are programmed to provide the product terms for the Boolean functions, which are
logically mmmed in each OR gate. The most flexible PLD is the PLA, in which both the ANI3
and OR arrays can be programmed, The product terms in the AND anay may be shared by any
OR gate to provide the required sum-of-pducts implementation. The names PAL and PLA
emerged h m different vendors during the development of PLDs. The i m p h t a i i o n of com-
binational circuits with PROM was demonsbated in this d o n . The design of combinational
circuits with PLA and PAL is presented in the next two sections.

Sectlam 7.5 Programmable Logk Array

{a) Programmable read-only memory (PROM)

(b) Programmable may logic (PAL)

(c) Programmable logic array (PLA)

FIGURE 7.1 3
Sksic tonfigurnlion of three PLDs

7.6 P R O G R A M M A B L E LOGIC ARRAY

The PLA is similar in concept to the PROM, except that the PLA does not provide full decod-
ing of the variables stnd does not generate all the mintwms, The decoder is replaced by an m y
of AND gates that can be programmed to generate any product term of the input variables.
The product terms are then connected to OR gates to provide the sum of products for the re-
quired Boolean functions,

The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7,14. Such a
circuit is too small to be useful commercially, but is presented here to demonstrate the typical
logic coaiguration of a PLA, The diagram uses the array logic graphic symbols for complex cir-
cuits. Each input goes through a buffer-inverter combination, shown in the diagram with a com-
pmite graphic symbol, that has both the true and complement outputs. Each input and its
complement are connected to the inputs of each AND gate, as indicated by the intersections be-
tween the vertical and horizontal lines. The outputs of the AND gates are connected to the in-
puts of each OR gate. The output of the OR gate goes to an XOR gate, where th other input
can be programmed to receive a signal equal to either logic 1 or logic 0, The output is inverted
wben the XOR input is connected to 1 (since x $1 = x ') . The output does not change when
the XOR input is connected to 0 (since x $ 0 = x) . The particular Boolean functions imple-
mented in the PLA of Fig. 7.14 are

Fl = AB' + AC + A'BC'
F2 = (AC + BC)'

Chapter 7 Memory and Prugramde Logic

ntum 7.14
FLA wlth three Inputs, fow produa t%mn, and two

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is determined from the inputs whose cmspoints are connected and
marked with a X. The output of m OR gate gives the logical sum of the s e l d product terms.
The output may be complemented or left in its true form, depending on the logic king m&zd

The fuse map of a PLA can be specified in a tabular form. For example, &e propmmirg
table that specif~s the PLA of Fig. 7.14 is listed in Table 7.5. The PLA p r m table con-
sists of three sections. The first section lists the product terms numerically. The second section
specXies the required paths between inputs and AND gates. The third section s- the
paths between the AND and OR gates. For each outpat variable, we may have a T (fm m) or
C (for complement) for p r o ~ ~ g the XOR gate. The p h c t terms listed an the left are
not part of the table; they are included for reference d y . For each pmduct term, the inputs are
marked with 1,0, or - (dash). If a variable in the product tam appears in the form in which
it is true, the corresponding input variable is marked with a 1. If it appears complemented, the
corresponding input variable is marked with a 0. If the variable is absen~ h m the product
term, it is maked with a dash.

S,$@p,? .?&- ~~--rarnmhle Logk Array 307

Table 7.5
PLA Pmgmmmhg Table

outputs
Inputs (T) (C)

ProdudTerrn A 8 C FI F2

AB' 1 1 0 - 1 -
AC 2 1 - 1 1 1
BC 3 - I 1 - 1
A'BC ' 4 0 1 0 1 -

Note: See text for meanings of dashes.

The paths between the inputs and the AND gates are specified under the column head "In-
puts" in the progr-g table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple-
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the
input variable and its complement. It is assumed that an open terminal in the input of an AND
gate behaves like a 1.

The paths between the AND and OR gates are specified under the column head "Outputs."
The output variables are marked with 1 ' s for those product terms which are included in the func-
tion. Each product term that has a 1 in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse, It is as-
sumed that an open terminal in the input of an OR gate behaves like a 0. Finally, aT (true) out-
put dictates that the other input of the corresponding XOR gate be connected to 0, and a C
(complement) specifies a connection to 1.

The size of a PLA is specified by the number of inputs, the number of product terms, and
the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and eight outputs. For n inputs, k product terms, and m outputs, the internal logic of the PLA
consists of n buffer-inverter gates, k AM3 gates, m OR gates, and n XOR gates. There are
2n X k connections between the inputs and the AND array, k X rn connections between the
AND and OR arrays, and m connections associated with the XOR gates.

In designing a digital system with a PLA, there is no need to show the internal connections
of the unit as was done in Fig. 7.14, All that is needed is a PLA programming table from which
the PLA can be programmed to supply the required logic. As with a ROM, the PLA may Ire mask
programmable or field programmable. With m k programming. the customer submits a PLA
program table to the manufacturer, This table is used by the vendor to produce a custom-made
PLA that has the required internal logic specified by the customer. A second type of PLA that
is available is the field-programmable logic array, or FPLA, which can be programmed by the
user by means of a commercial hardware programmer unit.
In implementing a cambinational circuit with a PLA, careful investigation must be under-

taken in order to reduce the number of distinct product terms, since a PLA has a finite number
of AND gates. This can be done by simplifying each Boolean function to a minimum numkr
of terms. The number of literals in a term is not important, since all the input variables are

308 Chapter 7 Memory and Programmable Logk

available anyway. Both the true value and the compiement of each fundon should be simpfi-
fied to see which one can be expressed with fewer product terms aad which one provides prd-
uct terms that are common to other functions.

EXAMPLE 7.2

Implement the following two Boolean functions with a PLA:

f i (A , B, C) = E(O,1,54)

F2(A, 3, C) = X(0,5 ,6 ,7)
The two functions are shpliFied in the maps of Fig. 7.15. Both the aut value and tht com-
plement of the functions arc simpMd hta sum-of-pducts foam. The combination that gives
the minimum number of product terms is

Fl = (AB + AC + BC)'

and
F2 = AB + AC + A'B'C'

This combination giva four distinct product terms: AB, AC, BC, and A'B'C'. The PLA pro-
m table for th combhation is shown in the figure. Note that output Fl is the true out-
put, even though a C is marked over it in the table. This is k u s e Fl is g e n d with an
W R circuit and is available at the output of the OR gate. The XOR gate complements the
function to produce the me Fl output.

PLA piogramminp: table

-rpn@ - W b (C) m - A B C Fl FL

AB 1 1 1 - 1 1
AC 2 1 - 1 1 1
BC 3 - 1 1 1 - - -
A'B'C' 4 0 0 0 - 1 C C - 7.15

S Q k f n b n t o ~ 7 . 2

The combinational circuit used in Example 7.2 is tcu simple for implementing with a PLA.
It was presented merely for purposes of A typical PLA has a large n u m b of inputa
d ~ u c t t e r m s . T h e s i m p ~ o n o f ~ ~ ~ ~ s o m a n y v a r i a b l e s g h o p r l d b e
c a a i e d o u t b y m e a n s o f c 0 m p u ~ ~ ~ m ~ T h e ~ ~ d c s i g n
program simplifies each fwaction and its aomplement to minimum number of temrs. 'X2ae p
pan then selects a minimum nlrmber of product terms that cover all W m s in the fwm in
wbich they are me or in their complemented form The FTA propmmiq table is then gmer-
atedmdthcrequiredfusemap o ~ ~ f u s t m a p i s appl iedtoan~progammer that
goes through the hardware pmdw of blowing the internal fuses in the in-d circuit.

'.. -

'Section 7.7 Progra'm'mable Array Loglc

7 .7 P R O G R A M M A B L E ARRAY LOGIC

Tbe PAL is a programmable logic device with a h d OR array and a programmabie AND array.
B~cause only the AND gates are programmable, the PAL is easier to program tban, but is not
as flexible as, tht PLA. Fqym 7.16 shows the logic configuration of a typ id PAL with four in-
puts a d four outputs. Each input has a be-inverter gate, and & output is geneaated by a
fixed OR gate. Them are fwr sections in the unit, each composed of an B R army that is
t h e wYe, the tenn used to indicate that there are h e progmmmble AND gates in each sec-
tion and one fixed OR gate. Each AND gate has 10 progrmmbIc input c-tions, shown in
the diagram by 10 vertical lines intersecting each horizontaI line. The hwizonta1 line symbol-
izes the multiple-input configuration of the A N gate. One of the outputs is connected to a
buffer-inverter gate and then fed back into two inputs of the AND gates,

Cornrnemial PAL devices contain more g&a than the one shown in Fig. 7.16. A typicai PAL
integrated circuit may have eight inputs, eight outputs, and eight sections, each consisting of an
eight-wide ANIFOR array. The output terminals are sometimes driven by three-state bufFers or
inverten.

In designing with a PAL, the Boolean functio~ls must be simplified to fit into each section.
Unlike ihe situation with a PLA, a product tena cannot be shared among two or more OR gales.
llmdme, tach function can be simpli&.d by itstlf, without regard to conrmon product terms.
The n u m b of product terms in each section is fixed, and if the n u m b of tenns in the func-
tion is too Iarge, it may be necessary to use two sectiow to implement one Boolean function.

As an example of using a PAL in the &sign of a combinational circuit, consider the following
Boolean functions, given in sum-of-mint- form:

Simplifying the four functions to a minimum number of terms results in the fobwing Boolean
fanctions:

x = A + BCD

y = A'B + CD + B'D'

z = ABC' + A'B'CD' + AC'D' + A'B'C'D

= w + AC'D' f A'B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is
equal to w. By using w, it is possible to reduce the number of terms fore from fout to h.
The PAL pxogmmdng tabk h s h i h to tbe one wed fw tha PLA, except tbat only the in-

puts of the AND gates need to be progsmmd, Table 7.6 lists the PAL programming table for
the four Boalem functions, The UbIe is divided into four sections with three product terms in

Chapter 7 Memory and Programmable Logic

AND gaks Inputs

FlCURE 7.16
PAL wlth four Inputs, four outputs, an$ a three-wide AND-OR s t r rcc tu~

Section 7,B Sequentla1 Programmable Devices 31 1

Table 7.6
PAL Progranuning Tabh

AND Inputs

Productterm A 8 C D w Outputs
- -.

1 1 1 0 - - w = ABC' + A'B'CD'
2 0 0 1 0 -

- - - A -

1 - - - - x = A f BCD - 1 1 1 -
- - - - -
0 1 - - - y = A'B + CD + B'D'

- - I 1 -
0 - 0 - - - - - 1 z = w + AC'D' + A'B'C'D

1 - 0 0 -
0 0 0 1 -

each, to conform with the PAL of Fig. 7.16. The first two sections need only two product terms
to implement the Boolean W o n . The last section, for output z, needs four e u c t terms.
Using the output from w, we can reduce the function to t h e terms.
The fuse map for the PAL as specified in the programming table is shown in Fig. 7.17, For

a& 1 or 0 in h e table, we rnsrrlr the corresponding intersection in the diagram with the sym-
bol for an jn?act fuse. For each dash, we mark the diagram with blown fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact, Since
the cmmpwding input receives both the nw value and the complement of each input vari-
able, we have AA' = 0 and the output of the AND gate is always 0.
As with all PLDs, h e design with PALS is faciIitatcd by using computer-aided design tech-

niques. The blowing of internal fuses is a hardware prooadure h e with the help of special else-
tronic instruments.

7.8 SEQUENTIAL P R O G R A M M A B L E DEVICES
I Digital systems are designed with flip-flops and gatea, Since the combinationd PLD consists

of only gates, it is laacesmy to include external flipflops when they are used in the design. Se-
quential programmable &vim- iaclude both gates and flip-flop& In h i s way, the device can
be programmed to perform a variety of sequential-dmit functions, There are several types of
sequential programmable dovi~es available commercially, and each device has vendor-specific
ymiauts within each type. The internal logic of these &vices is tm complex to be shown here.
Therefore, we will describe three major types without going into their dmiM cmstruction:

1. Sequential (or simple) programmable logic device (SPLD)
2. Complex propmmble lo@ device (BLD)
3, Field-programmab1e gate m y (FPGA)

Chapter 7 Memory and Programmable Logic

AND gates inputs

X Fuseinracr

+ Fuse blown

A A' B' B' C C' D D' w w'

Flbm 7.17
Fuse map fm ?M &I sprcfffed in Table 7J

Mirn'7.8 Sequential Programmable Oevices 3'1 3

The sequential PLD is sometimes referred to as a simple PLD to Merentiate it f m the com-
plex PW). The SPLD includes fip-flops, in addition to the A N B O R array, within the integrated
circuit chip. The result is a sequential circuit as shown ia Fig. 7.18. A PAL or PLA is modified
by including a number of flipflop connected to form a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flap outputs in the product terms formed with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed tp support sequential circuit implementation is
the field-programmable logic sequencer (FPLS). A typical FPLS is organized around a PLA
with several outputs driving flip-flops. The flip-flops are flexible in that they can be pro-
grammed to operate as either the JK or the D type. The FPLS did not succeed commercially,
because it has too many programmable connections. The configuration mostly used in an
SPLD is the combinational, PAL together with D flip-flops. A PAL that incIudes flip-flops is
referred lo as a egktered PAL, to signify that the device contains flip-flops in addition to the
A N D 4 R m y . Each section of an SPLD is called a mactvcetl, which is a circuit that contains
a sum-of-products combinational logic function and an optional flipflop. We will assume an
ANPOR sum-of-products function, but in practice, it can be any one of the two-level im-
plementations presented in Section 3.7.

F i p 7.19 shows the logic of a basic macrocell. The ANM3R m y is the same as in the
combinational PAL shown in Fig. 7.16. The output is driven by an edge-triggered D flip-flop
connected to a common clock input and changes state on a clock edge. The output of the flip-
flop is connected to a threes- buffer (or invetter) controled by an output-enable signal
marked in the diagmm as OE. The output of the flipflop is fed back into one of the inputs of
the programmabe AND gates to provide the present-state condition for the sequentid circuit.
A typical SPLD has from 8 to 10 macrocells within one IC package. All the flip-flops are canM
nected to the common CLK input, and all three-state buffers are controlled by the OE input.

In addition to progrmmhg the AND array, a macrocell may have 0th~ pro-g featms.
Typical programming options include the ability to either use or bypass the flipflop, the selection
of clock edge polarity, the selection of preset and clear for the ~ g i s t e r , and the selection of the lme
value or complement of an output. An XOR gate is used to program a ~ c o m p h m t condhi~1.
Multiplexers select between two or fm distinct pahs by programming the selection inputs.

The design of a digital system using PL;Ds often requires the connection of several devices
to produce the complete ~ p ~ c a t i o n . For this type of application, it is more economical to use
a complex pmpnmable logic device (CPLD), which is a c o l ~ o n of individual PLDs on a
single integrated circuit. A programmable interconnection structure allows the PLDs to be cun-
nected to each other in the same way that can be done with individual PLDs.

FIGURE 7.19
Baslc rna~rc~etl logic

FIGURE 7-
Genefat CPLD configuration

Figure 7.20 shows the general configuration of a CPLD. The device consists of multiple
PLDs interconnected through a pgmmmable switch matrix. The input- W) b l o b pre
vide the connections to the IC pins. Each I/0 pin is driven by a thestate M e r and can be
programmed to act as input or output. The switch matrix receiv~rl inpufs fmm the UO b l d and

Section 7.8 Sequential Programmable Devices 31 5

directs them to the individual macrocells. Similarly, selected outputs from macrocells are sent
to the outputs as needed. Each PLD typically contains from 8 to 16 macroceIls, usually fully
connected. If a macrocell has unused product terms, they can be used by other nearby macro-
cells. In some cases the macrocell flip-flop is programmed to act as a D, JK, or T flip-flop.

Different rnanufactmm have taken different approaches to the general architecture of CPLDs.
Areas in which they differ include the individual PLDs (sometimes called function blocks), the
trpe of mamcells, the VO b l ~ k s , and the programmable interconnection structure. The best way
to investigate a vendor-specific device is to look at the manufacturer's literature.

The basic component used in VLSI design is the gate away, which consists of a pattern of
gates, fabricated in an area of silicon, that is repeated thousands of times until the entire chip is cov-
ered with gates. Arrays of m e thousand to several hundred thousand gates are fabricated within a
single IC chip, depending on the technology used. The design with gate arrays requires that the cus-
tomer provide the manufacturer the desired interconnection pattern. The first few levels of the fab-
ricatirm prrxess are common and independent of the final logic function. A d d i t i d fabrication steps
are required to intermmmt the gates according to the specifations given by the designer.

A field-programmable gate array (FPGA) is a VLSI circuit that can be programmed at the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and connected together via program-
mable interconnections. There is a wide variety of internal ~ o ~ g u r a t i o n s within this group of
devices. The performance of each type of device depends on the circuit contained in its logic
blocks and the efficiency of its programmed interconnections.

A typical FPGA logic blwk consists of lookup tables, multiplexers, gates, and flip-flops. A
lookup table is a truth table stored in an SRAM and provides the combinational circuit functions
for the logic block These functions are realized h m the lookup table, in the same way that com-
binational circuit functions are implemented with ROM, as described in Section 7.5. For exam-
ple, a 16 X 2 SRAM can store the n t h table of a combinational circuit that has four inputs and
two outputs, The combinational logic section, along with a number of programmable multiplex-
ers, is used to configure the input equations for the flip-flop and the output of the logic block.

The advantage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memory, The disadvantage is that the memory is volatile and
presents the need for the lookup table's content to be reloaded in the event that power is dis-
rupted. The program can be downloaded either from a host computer or from an onboard
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is turned
off. The device must be reprogrammed every time power is turned on. The ability to reprogram
the FPGA can serve a variety of applications by using different logic implementations in the
program.

The design with PLD, CPLD, or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. Among the tools that are available are schematic
e n q packages and hardware description languages (HDLs), such as ABEL, VHDL, and Ver-
ilog. Synthesis tools are available that allocate, configure, and connect logic blocks to match
a high-level design description written in HDL. As m example of CMOS FPGA technology,
we will discuss the Xilinx PPGA. '
See www.Alter~com for an alternative CMOS FPGA architecture.

Chapter 7 Memory and Programmable Loglc

Xiljnx FPCAs

Xilinx launched the world's first commercial FPGA in 1985, with the vintage XC2000 device
family? The XC3000 and XC4000 families soon followed, setting the stage for today's Spar-
tanTM, and VirtexTM device families. Each evolution of devices brought improvements in den-
sity, performance, power consumption, voltage levels, pin counts, and functionality. For
example, the Spartan family of devices initially offered a maximum of 4UK system gates, but
today's Spartan3E offers 1.6M gates plus block RAM.

Etastc Xilinx Architecture

The basic architecture of Spartan and earlier device families consists of an may of conf~g-
urable logic blocks (CLBs), a variety of local and global routing resources, and input-output
(ID) blocks (IOBs), programmable I/O buffers, and a SRAM-based cwfigmhon memory, as
shown in Fig. 7.2 1.

Horizontal
long line

WURE 7.21
Bask architecture of Xillnx Spartan and predtxessor devices

2 ~ e e www.Xilinx.com for upto-date i d d o n about Xilinx products.

Section 7.8 Squentid Programmable Devlcer 31 7

'infisurabk Loglc Block (CLB)

Each CLB consists of a programmable lwkup table, multiplexers, registers, and paths for con-
trol signals, as shown in Fig. 7.22. Two of the function generators (?? and G) of the lookup
table can generate any arbitrary function of four inputs, and the third (H) can generate any
Boolean function of three inputs. The H-function block can get its inputs from the F and G
lookup tables or from external inputs. The three function generators can be programmed to
generate (1) three different functions of three independent sets of variables (two with four in-
puts and one with three i n p u t ~ n e function must be registered within the CLB), (2) an arbi-
trary function of five variables, (3) an arbitrary function of four variables together with some
functions of six variables, and (4) some functions of nine variables.

Each CLB has two storage devices that can be configured as edge-triggered flip-flops with
a common clock, or, in the XC4000X, they can be configured as flip-flops or as transparent
latches with a common clock (programmed for either edge and separately invertible) and an
enable. The storage elements can get their inputs from the function generators or from the Din
input. The other element can get an external input from the HI input. The function generators
can also drive two outputs (X and Y) directly and independently of the outputs of the storage
eIements. A11 of these outputs can be connected to the interconnect network. The storage ele-
ments are driven by a global setlreset during power-up; the global setheset is programmed to
match the programming of the local S/R control for a given storage element.

blstributd RAM
The three function generatow within a CLB can be wed as either a 16 X 2 dual-port RAM or a
32 X 1 singleport RAM. The XC4W &vices do nat have block RAM, but a group of their CLBs
can form an array of memory, Spartan devices have block RAM in addition to distributed W.

hterconnect Resources

A grid of switch matrices overlays the architecture of CLBs to provide general-purpose inter-
connect for branching and routing throughout the device. The interconnect has three types of
general-purpose interconnects: single-length lines, double-length lines, and long lines. A grid
of horizontal and vertical single-length lines connects an array of switch boxes that provide a
reduced number of connections between signal paths within each box, not a full crossbar switch.
Each CLB has a pair of three-state buffers that can drive signals onto the nearest horizontal lines
above or below the CLB.

Direct (dedicated) interconnect lines provide routing between adjacent vertical and hori-
zontal CLBs in the same column or row. These are relatively high speed local connections
through metal, but are not as fast as a hardwired metal connection because of the delay in-
curred by routing the signal paths through the transmission gates that configure the path. Di-
rect interconnect lines do not use the switch matrices, thus eliminating the &lay incurred on
paths going through a rnatrixn3

See Xilinx humentation for the pin-out conventions to establish local interco-ts between CLBs.

318 Chapter 7 Memory and ProgmmrMble Logle

Interconnect +!!+ path

#CUE 7.23
RAM cell contrdltmg a PIP transmlsslon 'gate

Double-length h e s kaverse the distance of two CLBs before entering a switch matrix, skip-
ping every other CLB. These lines provide a more efficient implementation of intemdiablength
oomections by eliminating a switch mabix from the path, thereby reducing the delay of the path.

Long lines span the entire array vertically and horizontally. They drive low-skew, high-fan-
out conml signals. Long vertical lines have a progarnmable splitter that segments the lines and
allows two independent routing channels spanning one-half of the array, but located in the
same column The routing resources are exploited automatically by the routing software. There
are eight low-skew global buffers for clack distribution.

The signaIs that drive long lines are buffered. Long lines can be driven by adjacent CLBs
or IOBs and may connect to three-state buffers that are available to CLBs. Long Iines provide
three-state buses within the architecture and implement wired-AND logic. Each horizontal
long line is driven by a three-state buffer and can be programmed to connect to a pull-up re-
sistor, which pulls the line to a logical 1 if no driver is asserted on the line.

The programmable interconnect resources of the device connect CLBs and IOBs, either dl-
rectly or through switch boxes. These resources consist of a grid of two layers of metal seg-
ments and programmable interconnect points (PIPS) within switch boxes. A PIP is a CMOS
transmission gate whose state (on or off) is determined by the content of a static RAM cell in
the programmable memory, as shown in Fig. 7,23. The connection is established when the
transmission gate is on (it., when a 1 is applied at the gate of the n-channel transistor), and a
0 is applied at the gate of the p-channel transistor. Thus, the device can be reprogrammed sim-
ply by changing the contents of the controUing memory cell.

The architecture of a PIP-based interconnection in a switch box is shown in Fig. 7,24,
wbich shows possible signal paths through a PIP. The configuration of CMOS transmission
gates determines the connection between a horizontal line and the opposite horizontal line
and between the vertical lines at the connection. Each switch matrix PIP requires six pass
transistors to establish full connectivity.

320 Chapter 7 Memory and ProgmknmaMe bgk

WlmE 7.24
Circuit for a programmable PIP

I/O Black {IOB)

Each programmable IIO pin has a programmable IOB having buffers for c o ~ b i l i t y with TTL
and CMOS signal levels. Figure 7.25 shows a simplified schematic for a programmable IOB.
It can be used as an input, an output, or a bidirectional port. An IOB that is c o n f i p d as an
input can have direct, latched, or registed input. In an output confguration, !he IOB bas di-
rect or registered output. The output buffer of an IOB has skew and slew control. The reds-
ters available to the input and output path of an IOB are driven by separate. invertible clocks.
There is a global &reset.

Internal delay elements compensate for the delay inducd when a cluck signal passes through
a global buffer before reaching an IOB, This strategy eliminates the hold condition on the data
at an external pin. The three-state output of an IOB puts the output buffer in a high-im@nce
state. The output and the enable for the output can be inverted. The slew rate of the output
buffer can be controlled to minimize transients on the power bus when noncritical signals are
switched. The IOB pin can be programmed for pull-up or pullawn to prevent needless power
cmsumption and noise.

The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan stan-
dard. There is an on-chip test access port (TAP) controller, and the I/0 cells can be configured
as a shift register. Under testing, the device can be checked to verify that all the pins on a PC
board are ~ 0 ~ e c t e d and operate properly by creating a sesial chain of all of the I/O pins of the
chips on the board. A master three-state control signal puts all of the IOBs in high-impedance
mode for board testing.

Spartan chips can accommodate emkdded soft cares, and their on-chip dstniuted, dual-prt,
synchronous RAM (SelactRAM) can be used to implement fmt-in, first-out register fles

7.8 Sequential Programmable Devices

WCLK

FIGURE 7.26
Distributed RAM ceU formed from a lookup table

(FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any width and
depth and located anywhere in the part, but their use reduces the CLBs available for logic.
Figure 7.26 displays the structure of the on-chip RAM that is formed by programming a lookup

Chapter 7 Memory and Programmable toqlc

table to implement a sbgbpoxt RAM with synchronous and asynchronous read Each
C L B c a n b e ~ a s a 1 6 X 2or32 X lmemory.

Dud-port RAMS are emulated in a Spartan device by the struetm shown in F'i. 7.27, which
has a single (common) write port and two asynchronous red ports. A CLB can form a mem-
oryhaviagamaxhumsizeof 16 X 1.

Spartan XL chips am a further enhancement of Spartan chips, deing hghm sped and density
(40,000 sysfangsfcs, q p x j m w 4MO of- musable1."dm*, - . .
nmmq~~hcbh~tablesofthedevkscanimplement2 Mafudonsofninpurs .

~ h e ~ n u m b t r o f l o g i c ~ a t w f w a ~ i l i n x ~ ~ ~ i g e n ~ ~ ~ o f t b a m g x i r m t m r m m b w o f l o g i e ~ m * r
wuld b reallzed in I design consl~ting of only loglc functions (no mmay). Logic mpacity is txpntised in
o f ~ a m b e r d t w o - i n p u t N A N D ~ t h r r t d b e ~ m i m p l o m m t ~ ~ u l l m k r p n d r y p e o f l ~
hlka iCW App. More).

2630% of CLBs as RAM,
I bgk ccU = Winput lwkup table + fUp-flop.

Tht XL series is targeted for applications for which low cost, low power, low packaging,
and Iow test cost are imprkmt factors constraining the design. Spartan XL devices offer up to
SO-MHz system performance, depending on the number of cascaded lookup tables, which re-
duce performance by inlducing longer paths. Table 7.7 presents significant attributes of de-
vices in the Spartan XL family.

The architecture of the Spartern XL and earlier devices consists of an m y of CLB tiles
mingled within an array of swish matrices, surrounded by a perimeter of IOBs. These de-
vices support only distributed memory, whose use reducas the number of CLBs that could
be used for logic. The relatively small amount of on-chip memory limits the devices to ap-
plications in which operations with off-chip memory devices do not compromise perform-
ance objectives. Beginning with the Spartan II series, Xilinx supported configurable
embedded block memory, as well as distributed memory in a new architecture.

XlHnx Spartan II FPCAs

Aside from improvements in speed (200-MHz YO switching frequency), density (up to 200,000
system gates) and operating voltage (2.5 V), four other features distinguish the Spartan U
devices from the Spartan devices: (1) on-chip block memory, (2) a novel architecture, (3) sup
port for multiple XIO standards, and (4) delay locked loopsm5

The Spaaaa II device family, manufxmed in 0.2240.18-pm CMOS technology with six
layers of metal for interconnect, h m r p m m co&whle bldc memory in *on to the dis-
tributed memory of the pevious gemations of devices, d the block memory does not redwe
the amount of logic or distributed memory that is available for the application, A luge on-chip
menmry can improve system perf- by eliminating m reducing the need to access offchip
storage*

S m II device do not s u m low-voltage difftrential signaling (LVDS) w low-voltage @ve emi-d
logic (LVPEU) Yo standards.

Chapter 7 Memory and P r o g r ~ b l e toglc

Reliable clock distribution is the key to the synchronous optmion of high-speed digital cir-
cuits. If the clock signal arrives at different times at different parts of a circuit, the device may
fad to operate correctly. Clock skew rrertoces the available time budget of a k n i t by ltngthm-
ing the 8emp time at qisters. It can also shorten the effective hold-* margin of a *flop
in a shift register and cause the register to shift incorrectly. At high c h k ~ c i c s Ishoner
clock periods), the effect of skew is mm sqnihnt because it npesmts a larger hction of
tbe clock cycle time. Bufferad clock are. commonly used to minimize clock skew in FPGAs.
Xilinx provides all-digital delay-1- loops {DLLs) for clmk synchonidon or manage-
ment in high-speed circuits, r lUs e h n h e the clock distribution &lay d provide hqutncy
multipliers, frequency dividers, and clock minors.

Spartan II devices are suitable for applications such as implementing the glue logic of a
video capture system and the glue logic of an ISDN modem. Device atuibutes are ed
in Table 7.8, and the evolution of tEChIWl~gy in the Spartan series is evidwt in tbe data in
Table 7.9.

'2&mofCmftasRAM
* 1 Logic CBU = four-input lookup tablt + apflop.

The top-level tiled architecture of the Spartan I1 device, shown in Fig. 7.28, marks a new
organization structure of the Xilinx parts. Each of four quadrants of CLB s is supported by a
DLL and is flanked by a 4,096-bit block6 of RAM, and the periphery of the chip is lined
with IOB s.

Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown
in Fig. 7.29. has a four-input lookup table, logic for cany and control, and a D-type flip-flop.
The CLB contains additional logic for configuring functions of five or six inputs.

The Spartan I1 part family provides the flexibility and capacity of an on-chip block RAM;
in addition, each lookup table can be configured as a 16 X 1 R4M (distributed), and the pair
of lookup tables in a logic cell can be configured as a 16 X 2 bit RAM or a 32 X 1 bit
RAM.

The 103s of the Spartan I1 family are individually programmable to support the refer-
ence, output voltage, and termination voltages of a variety of high-speed memory and bus

Parts are available with up to 14 blocks (56K bits).

326 Chapter 7 Memory and Programmable Logk

hgic Cell

r

Carrg
and

c.ontr01

Carry
and

Control
Logic

- I I
CLK

L______________

standards. (See Fig. 7.30.) Each IOB has three registers that can function as D-type flip-
flops or as level-sensitive latches. One register (TFF) can be used to register the signal
that (synchronously) controls the programmable output buffer. A second register (OFF)
can be programmed to register a signal from the internal logic. (Alternatively, a signal from
the internal logic can pass directly to the output buffer.) The third device can register the
signal coming from the U 0 pad. (Alternatively, this signal can pass directly to the internal

Section 7.8 Sequential Programmable Devices 327

R C W 7.30
Spartan ll l O l

logic.) A common clock drives each register, but each has an independent clock enable. A
programmable delay element on the input path can be used to eliminate the pad-to-pad
hold time.

The Vutex device series7 is the leading edge of Xilinx technology. This family of devices ad-
dresses four key factors that influence the solution to complex system-level and system-on-chip
&signs: (1) the level of integration, (2) the amount of embedded memory, (3) performance
(timing), and (4) subsystem interfaces. The family targets applications requiring a balance of
high-performance logic, serial connectivity, signal processing, and embedded processing (e.g.,
wireless communications). Process rules for leading-edge Viaex parts stand at 65 nm, with a

' Vlitex, Viaex-a TI Platform. II-Roko X, and Nrtex-5 Multi-Platform F K A .
- . . ,

1-V operating voltage. The rules allow up to 330,000 logic c e b and over 200.000 internal
flipflops with clock enable, together with aver 10 Mb of block RAM, and 550-MHz clock
technology packed into a single die.
The Vmx famiiy i n c o w physical (e l e d d) and protoool support for 20 diffmt VO

standards, hclubg LVDS and L m , with individdy proepmn&le pins. Up to 12 dig-
itaI clwk mmgers provide support for freqwncy syndmh a d phase - in syaehnous
appsicatiom requiring multiple clack domains and high-fresueacy UO. me Virtex archim-
hrre is shown in Fig. 7.31. and its IOB is shown in Fig. 7.32.

FIGURE 7.32
VIrtex 10% block

P R O B L E M S

Answers to problems marked with * appear at the end of the book

7.1 The memory units that follow are specified by the number of words times the number of bits per
word, How many address lines and input-output data lines are needed in each case?
(a) 8K x 16
(b) 2G X 8
(c) 16M X 32
(d) 256K X 64

7 s Give the number of bytes stored in the memories listed in Problem 7.1,

7,3* Word number 723 in the memory shown in Fig. 7.3 contains the binary equivalent of 3,45 1. List
ihe 10-bit address and the 16-bit memory content of the word.

7.4 Show the memory cycle timing waveforms for the write and read operations. Assume a CPU
clock of 1100 MHz and a memory cycle time of 25 ns.

7 5 Write a test bench for the memory described in HDL Example 7.1. The test program stores
binary 5 in address 3 and binary 10 in address 43. Then the two addresses are read to verify
their stored contents.

Chapter 7 Mmwy and hogrrmmW Logk

7 A 16K X 4 memory m r miacident decoding by splitting the intgnal decoder into X - w k t b n
and Y-selecbIon.
(a) Wisthesizedsaehdecodec,aadhow~yN~ar*roqPitadfardecodingW

addms?
(b) D e t e r m i a s t h e X ~ Y ~ n I i n e ~ t s e t a ~ e ~ l e d w h e n ~ ~ t ~ i s ~ ~

equivalent of6,oOO.

7-W (a) How many 32K X 8 RAM chips are needed to prwide a memwy W t y of 256K bym?
(b) I J o w m a n y l i n e s o f ~ ~ ~ b w t o ~ 2 5 B I C ~ ? * r n a n y o f t b e s e k

me c o n n d m t t w d h w -of all chip?
(c) Howmaaylirscsmusth~fwthcebip~l~in~?S~the~d~decodeL

7.W A l Z b i t ~ ~ w c r d ~ 8 U o f d a t a a n d 4 @ ~ W i s r e a d ~ ~ . W h a t
wastbeorigU8-8-t datawardthatwao~htomesrnoryifthe I2-bitwmdnadwtisasfollows:
(a) ~ 1 l l O l O l O
@) l o l l l m l l o
(c) 101111110100

7.3 P How many parity check bh must be kluded with the data word to %ehim s i n g I m cmm-
tion and double-error W o n when the data wad contsrins
(a) 16 bits.
(b) 32 bits.
(c) 48 bits,

7.14 Itis~oformulawtbsZZamming~h~databits4,~,06.d&,~wittr
thretpatirybitaP~,%aadfi.
(a)*Evaluate the 7-W comp& word for tht data wad 0010.
(b) EvaIuate thiee check bits, Ch CZ, and Cl, assuming no tma,
(c) Assume an wrw in bit Q during Writing into v. Show bow the mm~ in the bit i

detedwlaudcmrectd
(d) A d d p W i t y b i t ~ t o ~ ~ ~ d e k d i m i a t k ~ A s w r m e t h a t ~ ~

in bits p% and&. Show~thedoubIeemxisde0octed.

7.lW AROMchipof4,0% X 8WhrrstwochipWwdopetaaesfrornaS-vohpwp.snp
& . H o w m a n y p i n s m n s c d c d E O r h ~ M t ~ ? D r e w a W ~ d W
all input and output termids in the ROM.

- .
Problems

1.17 The 32 X 6 ROM, together with the 2' line, as shown in Fig. P7.17, converts a six-bit binary num-
ber to its couesponding two-digit BCD number. For example, binary 1OOOO1 converts to BCD
01 1 001 1 (decimal 33). Specify the mth table for the ROM

7.1P Specify the size of a ROM (number of words and number of bits per word) tlwt wil l accomms
date the truth table for the folIowing combinational circuit components:
(a) a bbinary multiplier that multiplies two &bit b i n q words,
(b) a 4-bit adder-subtractor,
(c) a quadruple two-tc-one-line multiplexer with common select and enable inputs, and
(d) a BCD-to-seven-segment decoder with an enable input.

7.19 Tabulate the PLA programming table for the four Boolean funl;tions . listed . Mow. Minimize the
numbers of product terms,

7.20 Tabulate the truth table for an 8 X 4 ROM that implements the Boolean functions

D (x , y, z) = X(0 ,1 ,4 ,5 ,7)
Considering now the ROM as a memory, Specify the memory contents at addresses 1 and 4.

Chapter 7 Merrmy and Pmgr-unmable bgk

1 Derive the PLA programing table for the combinatid etrcuit thar q m t s a k - b h n m k
Minimize the number of product terms. (h Fig. 7.12 for the equivalent ROM implemmaion.)

7.22 DerivetheXOMpmgmdngtabkfwtk~ . . ~ ~ ~ a 4 l i t n u m k ~ -

imize the number of p m h t terms.

7.23. List the PLA programming table for the BCD-mctss-3& c o n m whmc BooIean func-
tions are simplified in Fig. 4.3.

7.24 Repeat Problem 7.23, using a PAL.

7 AS* The following is a mtb table of a be input , ~ C ~ U T - O U ~ combinaiional: circuit:
Inpub -

TabuIate the PAL pragramming table for the circuit, and mark the fuse map in a PAL diagram
similar to the one shown in Fig. 7.17.

7- Using the regis- macrodl of Fig. 7.19, show the ftw mtlp for a qmmtial circlrit with two
inputs x and y and one flipfl op A M b s d by the input equation

737 Madify dx PAL, diagram dm. 7.16 by including three cLocked D-typ fbipflqs between tht
OR gates and the outpuas, as in Fig. 7.19. The d i p should conform with ~ I C block diagram
of a sequential c h i t . The modification will q u i r e three additional buffer-invmer gates and six
vertical lines for the flip-flop outputs to be cwneckd to the AND m y though prcpmt&Ie
comections. Using I& m d e d regisrered PAL diagram show ihe fusc map hat &-ill imphmt
a three-bit binary counter with an output carry.

7.U Draw a PLA circuit to implement the functions
Fl = A'B + AC' + A'E
& = [A C + # + B C) '

7.m Develop the programming table for the PLA dacrihd in R a b h 7.26.

References . 333

E F E R E N C E S

HAMMING, R. W. 1950. Error Detecting and Error Correcting Codes. Bell @st. Tech. J. 29:
147-160.
KITSON, B. 1984, Programmable Array Logic Ha~rdbook. Sunnyvale, CA: Advanced Micro
Devices.
Lm, S., and D. J. COSTELLO, IR. 1983. Ermr Conrwl Coding. Englewood Cliffs, NJ: Prentice-Hall.
Memory Components Handbook. 1986. Santa Clara, CA: Intel.
NELSON, V. P., H. T. NAG=, J, D. IRWE-, and B, D, CARROLL, 1995. Digital Logic Circub Analp
sis and Design. Upper Saddle River, NJ: Prentice Hall.
Programm~bb Logic Data Book. 1988. Dallas: Texas Insmmenrs.
The Programmable Logic Data Book, 2d ed. 1994. San Jose, CA; Xilinx, Inc.
T ~ c I , R. J., and N. S . WDMER. 2004. Digital System Principles and Applications, 9th ed. Upper
Saddle River, NJ: Prentice Hall.
TR~MBERGER, S. M. 1994. Field Pmgmmmabk Gate A m y Technalo~. Boston: Kluwer Academic
Publishers.
W ~ Y , J. F. 2006, Digital Design: Principles and Practices, 4th ed. Upper Saddle River, NJ:
hut i ce Hall.

Chapter 8

Design at the Register Transfer Level

8.1 IN'TRODUCTION

A digital system is a sequential logic system constructed wih flipflops and gaaas. SequentiaI
circuits can be specified by means of state tables as shown in Chapter 5. To v i f y a large dig-
ital systern with a state table is very Wcult, bemuse the number of states would be cnor-
mow. To overcome this Mcdty , digital systems am designed via a &ar approach. 'he
systcm is partiriond into modular subsystems, each of which performs some function. The
modules are constructed h m auch digital &vices as registers, decoders, mulfipkxem arith-
metic elements, and control logic. Tha lraxious d u l e s are intmmmckd with daqahs aud
control signals to form a digital system In this chapter, we will in&ahcc a design n d d o l -
ogy for describing and designing large, complex digital systems.

- T R A N S F E R LEVEL (RTL) NOTATION

T t s e n a o d u E e s o f a d i g i t d ~ m b e s t ~ b y a s e t o f ~ a n d h ~ & a ~ e p e a -
f o r m e d o n ~ b i n a r y i n f ~ 0 ~ ~ i n t h r m . E x a m p l e s o f r e g i s t e a 1 ~ ~ a r e ~ ~ , c w m r ,
clear, and load, Registers are a s m d to be the basic c m p m t s d d~ digital system 'Ihc in-
~ m f l o w a n d ~ p e r f c a m a d o p t h e d a t a d i n t h e ~ a r e ~ m ~ ~
~ r ~ . W l I s e e ~ h a M m d e s c d p c i o n ~ h l u d e s o p e r a -
t m s t h a t q d t o t h e ~ W ~ o f a ~ ~ A d i g i t a l ~ i s ~
&atthereg&ertmq&rlevel(EI'L)whenitis ~ b y t b e f o ~ t h m e ~ t s :

1. The set of registas in the system.

Sedon 8.2 Register Transfer Level (RTL) Notatlon

Aregister is a group of flip-flops that stores binary information and has the capability of per-
forming one or more elementary operations. A register can load new information m shift the
information to the right or the left. A counter is considered a register that increments a num-
ber by a fixed value (e.g., 1). A flip-flop is considered a one-bit register that can be set, cleared,
or complemented. In fact, the flip-flops and associated gates of any sequential circuit can be
called registers by this definition.

The operations mecuted on the information stored in registers are elementary operations that
are performed in parallel on a data word consisting of bits during one clock cycle. The data pro-
duced by the operation may replace the binary information that was in the register before the
operation executed. Alternatively, the result may be transferred to another register (i.e., an op-
eration on a register may leave its contents unchanged), The digital circuits introduced in
Chapter 6 are registers that implement elementary operations. A counter with a parallel load is
able to perform the increment-by-one and lod operations. A bidirectional shift register is able
to perform the shift-right and shift-left operations.

The operations in a digital system are controlled by timing signals that sequence the oper-
ations in a prescribed manner. Certain conditions that depend on results of previous operations
may determine the sequence of future operations. The outputs of the control logic are binary
variables that initiate the various operations in the system's registen.

Information transfer from one register to another is designated in symbolic form by means
of a replacement operator. The statement

R2 + R l

denotes a transfer of the contents of register R l into register R2-that is, a replacement of the
contents of register R2 by the contents of register Rl . By defmition, the contents of the source
register R1 do not change after the transfer. They are merely copied to R1. The arrow symbol-
izes the transfer and its direction; it points from the register whose contents are being transferred
and towards the register that will receive the contents. A conbol signal would d e t d t when
the operation actually executes.

The controller in a digital system is a finite state machine whose outputs are the control
signals governing the register operations. In synchronous machines, the operations are syn-
chronized by the system clock

A statement that specifies a register transfer operation implies that a datapath (i.e., a set of
circuit connections) i s available from the outputs of the source register to the inputs of the des-
tination register and that the destination register has a parallel load capability, Data can be
transferred serially between registers, too, by repeatedly shifting their contents along a single
wire. one bit at a time. Normally, we want a register transfer operation to occur, not with every
clock cycle, but only under a predetermined condition. A conditional statement governing a reg-
ister transfer operation is symbolized with an if-then statement such as

If (TI = 1) then (R2 + R l)

where TI is a control signal generated in the control s d o n . Note that the clock is not indud-
ed as a variable in the register transfer statements. It is asmuned that all ~ s f m occur at a clock-
edge transition (i.e., a transition from 0 to 1 or from 1 to 0). Although a control condition such
as TI may become true before the clock transition, the actual transfer does not occur until the
clock transition does.

Chapter 8 Design at the Register Tran$fcr lmel

A comma may be used to separate two or more operations that ate executed at tbe same
time (concurrently). Consider the statement

If (T3 = 1) then (R2 s- Rl , Rl + R2)

This statement specifies a opation that exebanges the c o m t s of two @ten; mwemer,
t 8 e ~ t i o n h ~ ~ ~ t c g s i s t r i g ~ b y d m e ~ c I o c k e d g e , p ~ t h a t T 3 = I-This
simultaneous operation is possible with registers that have edge-triggered flip-flops con-
trolled by a common clck (synchronizing signail. Other examples of register transfers = 9s

folIows:

RI + R1 + R2 Add contents of R2 to Rl (R l gets RI + R2)

El*- R3 f 1 hmment R3 by 1 (count upwards)

Sbift right R4

In hardware, addition is done with a binary parallel adder, incrementing is done with a count-
er, and the shift operation is implemen*d wia a shift mgkm. The type of operations most
often encwntered in digital sys@ms can be classified into four categories:

1. Tiansfex operations, which &er (i.e., copy) data hm one regher to another.
2. Arithmetic o@m, which perform arithmetic on dm in regism.
3. Logic operations, which perform bit mmipuhtiw (e.g., logical OR) of nonnumeric data

in regism.
4. Shift operations. wfiich shift data between regism.

The transfer operation does not change the infomation cmbmt ofthe data being moved from
the m e register to the destination register. The other three operations &mge the infoma-
tion content during the tmsfer. The register transfer notation and the symbols nscd to repre-
sent the v a h s register transfer operations are not standardized. In this text, we employ rwo
types of notation. The notation inttoduced in this sectim will be used informally to specify and
explain digital systems at the regisler transfer kvel. The next section intraduces the RTL sym-
bols used in the Verilog HDL.

REGiSTER T R A N S F E R LEVEL IN H D t

Digital systems can be described at the register transfer level by m a s of a hardware de-
scription language @DL). In Vdog, daaip?ions of RTL ~~ use a c o m b ~ w of
behavioral and datdow constructs and are employed to specify the register opatio~ls and the
ambinational logic h c t i o m implemenaed by hard-. Register W e r s are s p h d by
means of procedural assignment statements within an edge-sensitive cyciic behavia, Combi-
national circuit functions are specitled at the RTL level by ~lleans of cwhmus assignment state-
ments or by procedural assignment statements within a level-sensitive cyclic behavior. The
symbol wed to designate a register d e r is either an equals sign (=) or an arrow (<=) ; ihe
symtml used to specify a combinational circuit function is aa oqulrls sign. S y n c h n h i o n

Sedun 8,3 Register Transfer Level in HDL 337

with the clock is represented by associating with an always statement an event control ex-
pression in which sensitivity to the clmk event is qualified by p d g e or aegedge. The always
keyword indicates that the associated block of statements will be executed repeatedly, for the
life of the simulation. The @ operator and the event control expression preceding the block of
statements synchronize the execution of the statements to the clock event.

The fallowing examples show the various ways to specify a register transfer operation in
V d q :

(a) asslgn S = A + 6;
(b) always @ (A, 0)

S = A + B ;
(Q always @ (negedge clock)

RA = RA + RB;
RD = RA;

end
(d) always @ (negedge clmk)

begin
??A <= RA + RB;
RD <= RA;

end

/I Continuous assignment for additlon operation
I/ Level-sensitive cycllc behavior
I / Combinationat loglc for addition operation
I/ Edge-sensltlve cyclic behavior

/I Blocklng procedural assignment for addition
I / Register transfer operation

I1 Edge-sensitive cycllc behavlor

I / Nonblocking procedural assignment for addition
It Register transfer operation

Continuous assignments are used to represent and specify combinational logic circuits, In
simulation, a continuous assignment statement executes when the expression on the right-hand
side changes. The effect of execution is immediate. (The variabIe on ?he left-hand side is up-
dated.) Similarly, a level-sensitive cyclic behavior executes when a change is detected by its
event control expression (sensitivity list). The effect of assignments made by the = -tar
are immediate. The continuous assignment statement (assign) describes a binary adder with in-
puts A and B and output S. The target operand in a continuous assignment statement (Sin his
case) cannot be a register data type, but must be a type of net, for example, wire. The prwe-
dural assignment made in the level-sensitive cyclic behavior in the second example shows an
alternative way of specifying a combinational circuit for addition. Within the cyclic behavior,
the mechanism of the sensitivity list ensures that the output, S, will be updated whenever A, or
B, or both change.

There are two kinds of procedural assignments: blocking and nonblocking. The two are dis-
tinguished by the symbols that they use and by their operation. Blocking assignments use the
equds symbol (=) as the assignment operator, and nonblmking assignments use the left arrow
(<=) as the operator. Blocking assignment statements are executed sequen~dly in the order
that they are listed in a sequential block; when they execute, they have an immediate effect on
the contents of memory before the next statement can be executed. Nonbl~king assignments
are made concurrentlyy. This feature is implemented by e v a l h g the expression on the right-
hand side of each statement in the list of statements before making the assignment to their left-
band sides. Consequently, there is no interaction between the result of any assignment and the
evaluation of an expression affecting another assignment. Also, the statements associated with
an edge-sensitive cyclic behavior do not execute until the indicated edge condition occurs.

333 Chapter 8 Design at the Rqfster Transfer h l

Consider the two examples given. In the blocking procedural assignment, the fmt statement
transfers the s u m to RA and the second statement transfers the new value of RA into RD. At the
completion of the operation, both RA and RD have the same value. In the nd10cking proce-
dural assignment, the two operations are performed cmmme,ntly, so ththat RD receives the a-
inal value of RA. The activity in both examples is launched by the clwk undergoing a falling
edge transition.
The registers in a system are clocked simultaneously (concurrently). The Dinput of each

flipflop determines the value that will be assigned to its output, indepede~~tly of the input to
any other flip-flop. To ensure synchronous o&om in RTL design, and to ensue a match be-
tween an HDL model and the circuit synthesized from the model. it is necessary that nm-
blocking procedural assignments be used for all variables that are assigned a value within an
edge-sensitive cyclic behavior (always clocked). The nonblocking assignment that appears in
an edge-sensitive cyclic behavior .+, models the khavior of h e hardware of a synchronous se
quential circuit accurately.

HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1. The
arithmetic, logic, and shift operators describe register transfer operations. The logcal and re-
lational operators specify control conditions and have Boolean expressions as their arguments.

The operands of the arithmetic operators are numbers. The + , -, *, and I operators form the
sum, difference, product, and quotient, respectively, of a pair of operands. The expaentiation
operator (**) was added to the language in 2001 and forms a double-precision floating-point
value from a base and exponent having a real, integer, or signed value. Negative numbers are
represented in 2's-complement form. The modulus operator produces the r e d d e r from the
division of two numbers. For example, 14 5% 3 evaluates to 2.

There are two types of logic operators for binary words: bitwise and reduction. The bitwise
operators perform a bit-by-bit operation on two vector operands to form a vector result. They
take each bit in one operand and perform the operation with the corresponding bit in the other
operand. Negation (-) is a unary operator; it complements the bits of a single vector operand
to form a vector result. The reduction operators are also unary, acting on a single operand and
producing a scalar (one-bit) result. They operate pairwise on the bits of a word. from right to
left, and yield a one-bit result. For example, the reduction NOR (- 1) results in 0 with operand
001 0 1 and in 1 with operand 00000. The result of applying the NOR operation on the fmt two
bits is used with the third bit, and so forth. Negation is not used as a reduction opemor. Tmth
tables for the bitwise operators are the same as those listed in Table 4.9 in Section 1.12 for the
corresponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the
same truth table). The output of an AND gate with two scalar inputs is the same as the result
produced by operating on the two bits with the & operator.

The logical and ~lat iwal operators are used to form Boolean expressions and can mke vari-
ables or expressions as operands. (Note: A variable is also an expression.) Used basically for de-
termining true or false d t i o n s , the logical and relational operators evaluate to 1 if tbe condition
expressed is m e and to 0 if the condition is false. If the condition is ambiguous, they evaluate
to x. An operand that is a variable evaluates to 0 if the value of the variable is equal to zero and

Sectlon 8.3 Register Transfer Level in HDt 339

Table 8.1
Vedhg 2001 #Dl Opcruton

Operator Type Symbol Operation Performed

Arithmetic addition
subtraction

multiplication
division
modulus
exponentiation

Logic * negation (complement)
(bitwise & AND
or I OR
reduction) n exclusive-OR (XOR)

Logical 1 negation

&& AND

11 OR

Shift >> logical right shift

<< logical left shift

>a> arithmetic right shift

<<< arithmetic left shift

1 1 1 concatenation

Relational > greater than
c less than

equality

inequality
case equality
case inequality

greater than or equd
C= less than or qual

to 1 if the value is not qua1 to zero. For example, if A = 10 10 and 3 = 0000, then the ex-
pression A has the Boolean value 1 (the number in question is not equal to 0) and the expres-
sion B has the Boolean value 0. Results of other operations with these values are as follows:

11 logical AND
I / loglcal OR
It logical complement
I / logical complement

(A z B) = l I/ k greater than
{A==8)=0 I/ l d ~ w (~uwl

Tberelatioaaloperators === a n d ! = = t e s t f o x b i t w i a e ~ r y (~) a n d ~ t y i n M -
ilogf four-valued logic system. Far example, if A = OxxO rmd B = (IxxO, th A = = = B
would evaluate to me, but the test A == B would evdwte to x.

Verilog 2001 has logical and arithmtic M m. lk logical shifi operators shift a vec-
tor operand to the right or the l& by a sped74 number of bits. The vacated bit p h b n s we
med wid^ zeros. For example, if R = 11014 then the statement

R = R > r 1 ;

shifts R to the right one position. The value of R that result9 from the togical tigbt-dift m m
is 01 101, In contrast, tlx arithmetic right-shift operam fib the vacated cell (!k most s@d%=t
bit~B))~~i~~conteatPwhenthewordisshifbed8o~right.The~leff~
operator ms the vacated dl with a 0 whea the ward is shifted to tthe lek The ari- I$@-
shiftopitofisused when tbe sirnextemion of a n u m b e r i s m H R = 11010, h t h e
SCatement

R ..> 1;

producesthe~sultR = lll01;ifR = 01101, i t~ucesthe~e~ul tR = 00110.Tkebno
dishmion between the logical l&-shift and the aridmetic M-shift operators.

The concare&on -tor prmides a mechanism for appending multiple @. It can
be used to spcify a shift, including the bits transfend into the vacant pitiom. This aspect
of ib operation was shown in HDL Example 6.1 for the shift register.

~ m e v a l ~ f r o m M b ~ a n d t h e i r ~ ~ f r o m M a ~ (w i t h
the exception of the conditional qmtm) m d h g to the p m m h c e dmm in Table 82. For
example, in theexprcssion A + B - C , h v h d B i s addedtoA. d then Cis-
f r r n n t h . ~ t . I n t h c e x ~ ~ ~ ~ A + BIC,bteva l~ofBis&videdbyC,dthentbe~ i s
~ @ A b o c a u s e t h e d i v i s i ~ n ~ (/) h a s a h i g h e r ~ h t b e a d d i t i ~ ~ . o p e r a t o r
(+) . U s e p n k ~ ~ t a b ~ ~ P o r ~ k , ~ e x ~ (A + B)iCismttb
same, as h e expression A +- BIC.

Loop statemum

V e r i l ~ g ~ L ~ f ~ t y p e s o f I ~ ~ ~ ~ ~ ~ f ~ ~ y m ~ , p b t -
m r , while,and@r A I l ~ g ~ ~ m u s t a p p e o l r i a s i d e a a i n t t l l a ~ l l ~ b l o c k .

The v t loop executes the swemem a s m number of times. 'Xbt fol-
lowing is an example ?hat was uscd @dy

initial
Wg In
dock = l'bO;

(16)
=dock=-dodr;

end

This c d e produces eight clock cyck wim a cycle time of 10 time units.

Section 8.3 Regtster Transfer Level in HDL

Table 8.2
Verlhg Operam Precedence

+ - ! - & - &] - 1 A - " A - (unary) Highest precedence

?: (conditional operator)

The forever loop causes unconditional, repetitive execution of a procedural statement or a
block of procedural statements. For example, the following loop produces a continuous clock
having a cycle time of 20 time units:

inltlal
begln
clock = l'bO;
forever
#10 clock = - clock; '

end

3.
0 {OI

The wbile loop executes a statement or a block of statements repeatedly while an expres-
sion is true. If the expression is false to begin with, the statement is never executed. Tbe fol-
lowing example illustrates the use of the wbile loop:

Lowest precedence

integer count:
lnltlal
begln

count = 0;
while (count < 64)
#5 count = count + 1;

end

Chapter 8 Oeslgn at the Register Tnnacr kwl

The d u e of count is incremented frwm 0 to 63. Each inc~~mttlt is delayed by five time units,
and the loop exits at the count of 64.

I n ~ g w i t h l o o p i n g s ~ ~ t s i t i s ~ o o n v e Q i ~ ~ t t o u s t ~ h ~ d a t a t y p e
to index tbe imp. Integers are declared with the keyword m, as in the previous example.
Although it is possible to use a reg variable to index a loop, it is more convenient to
d e c h an integer variable, rather than a reg, for cwnting pltrpo9es. Variables declared as data
t y p e r e g ~ s t o r e d a s u a s i @ r m m b e r s , ~ d e c ~ a s d a t a t y p e ~ m s ~ a s s i g a e d
numbers in 2'keomplement form& ' h e default width of an integer is a minimum of 32 bits.

The for Iwp contains three pans v c d by two semicolons:

An expression ta check for the terminating condition.

An kgDrnent to change the control variable.

The following is an exampie of a for loop:

f b r ~ = O ; j < 8 ; j = j + 1)
w n

/I procedural s&temmts go here
end

The for loop statement repats the execution of the @ural statements eight times. The
cmml variable is j, the initial condition is j = 0, and the loop is repted as long as j is less
than 8. After each execution of the loop statement, the value of j is incremented by 1.

A description of a two-to-fow-line decoder using a for loop is shown in HDL Example 8.1.
S h output Y is e v a l d in a pmdural statement, it must bt de&d as type w. The con-
trol variable for tbe loop is the Integer k. When the loop is e x p d d (unrolled), we get tbe fol-
lowing four conditions (IN and Y a m in b i , and the index for Y is in decimal):

if IN = 00 then Y(0) = 1 ; else Y(O) = 0;

W IN = 01 then Y(1) = ?; else Y(1) = 0;

if IN= 10 then Y(2) = 1; else Y(2) = 0;

if IN= 11 then Y(3)= I ; else 83)=0;

HDL Exampie 8.1

/I Description of 2 x 4 decoder using a for loop statement
module decoder (IN, Y);
Input (1 : q IN; I/ Two binary inputs
O u t p a P:01 Y ; Ii four binary
wl [3: Oj Y;
Integer k; it Control (index) variable for loop

always @ (IN)
for(k=O;k<=3;k=k+ 1)

Section 8.3 Register Transfer Lwei In HPL 343

if (IN == k) Y[k] = 1;
else Y[k] = 0;

endmodule

b k Synthesis

Logic synthesis is the automatic process by which a computer-based program (i.e., a synthesis
tool) transforms an HDL model of a logic circuit into an optimized netlist of gates that perform
the operations specified by the source code. There are various target technologies that implement
the synthesized design in hardware. The effective use of an HDL description requires that designers
adopt a vendor-specific style suitable for the particular synthesis tools. The type of ICs that im-
plement the design may be an application-specific integrated circuit (ASIC), a progrmmtble
logic device (FLD), or a field-programmable gate array (FPGA). Logic synthesis is widely used
in industry to design and implement large circuits efficiently, correctly, and rapidly.

Logtc synthesis tools interpret the source code of the hardware description language and
translate it into an optimized gate structure, accomplishing (correctly) all of the work that
would be done by manual methods using h a u g h maps. Designs written inverilog or a com-
parable language for the purpose of logic synthesis tend to be at the register transfer level. This
is because the HDL constructs used in an RTL description can be converted into a gate-level
description in a swaightforward manner. The following examples discuss how a logic synthe-
sizer can interpret an HDL construct and convert it into a gate structure.
The continuous assignment (assign) statement is used to describe combinational circuits. In

an HDL, it represents a Boolean equation for a logic cirduit. A continuous assignment with a
Boolean expression for the right-hand side of the assignment statement is synthesized into the
corresponding gate circuit implementing the expression. An expression with an addition operator
(+) is interpreted as a binary adder with full-adder circuits. An expression with a subtraction
operator (-) is converted into a gate-level subtractor consisting of fulI adders and exclusive-
OR gates (Fig, 4.13). A statement with a conrlltional operator such as

translates into a two-to-one-line multiplexer with control input S and data inputs In-1 and In-0.
A statement with multiple conditional operators specifies a larger multiplexer.

A cyclic behavior (always . . .) may imply a combinational or sequential circuit, depending
on whether the event control expression is level sensitive or edge sensitive. A synthesis tool will
interpret as combinational logic a level-sensitive cyclic behavior whose event control expression
is sensitive to every variable that is referenced witbin tbe behavior (e.g., by the variable's appearing
in the right-hand side of an assignment statement), The event control expression in a description
of combinational logic may not be sensitive to an edge of any signal. For example,

always @ (In-I or In-0 or S)

If (S) Y = l n-1 ;

else Y = In-0;

translates into a two-to-one-line multiplexer. As an alternative, the case statement may be used
to imply large multiplexas. The casex statement treats the logic values x and z as don't-cares
when they appear in either the case expression or a case item.

Section 8.4 Algorithmic state Machines (ASMS) 345

operation. Its operational features must match those given in the specification for the behav-
ior of the circuit. The test bench provides the stimulus signals to the sirnulator. If the result of
the simulation is not satisfactory, the HDL description is corrected and checked again. After the
simulation run shows a valid design, the RTL description is ready to be compild by the logic
synthesizer. All errors (syntax and functional) in the description must be eliminated before
synthesis. The synthesis tool generates a netlist equivalent to a gate-level description of the de-
sign w, it is represented by the model, If the model fails to express the functionality of the spec-
ification, the circuit will fail to do so also. The gate-level circuit is simulated with the same set
of stimuli used to check the RTL design. If any corrections are needed, the process is repeat-
ed until a satisfactory simulation is achieved. The results of the two simulations are compared
to see if they match. If they do not, the designer must change the RTL description to correct any
errors in the design. Then the description is again compiled by the logic synthesizer to generare
a new gate-level description. Once the designer is satisfied with the results of all simulation
tests, the design of the circuit is ready for physical implementation in a technology. In practice,
additional testing will be performed to verify that the timing specifications of the circuit can be
met in the chosen hardware technology. That issue is not within the scope of this text.

Logic synthesis provides several advantages to the designer. It takes less time to write an
HDL description and synthesize a gate-level realization than it does to develop the circuit by man-
ual enby from schematic diagrams. The ease of changing the description facilitates exploration
of &sign alternatives. It is faster, easier, less expensive, and Iess risky to check the validity of
the design by simulation than it is to produce a hardware prototype for evaluation. A schemat-
ic and the database for fabricating the integrated circuit can be generated automatically by
synthesis tools. The HDL model can be compiled by different tools into different technologies
(e.g., ASIC cells or FPGAs), providing multiple returns on the investment to create the model.

8.4 ALGORITHMIC STATE M A C H I N E S (ASMr)

The binary information stored in a digital system can k classified as either data or control in-
formation. Data are discrete elements of information (binary words) that are manipulated by per-
fwning arithmetic, logic, shift, and other similar data-processing operations. These operations
are implemnted with digital components such as adders, decoders, multiplexers, counters, and
shift ~asters. Control information provides command signals that coordinate and execute the var-
ious operations in the data section in order to accomplish the desired W-processing tasks.

The logic design of a digital system can be divided into two distinct parts. One part is con-
cerned with the design of the digital circuits that perform the data-processing operations. The
other part is concerned with the design of the control circuits that determine the sequence in
which the various actions are performed.
The relationship between the conml logic and the data-processing operations in a digital sys-

tem is shown in Fig. 8.2. The data-processing path, commonly referred to as the datapath unit,
manipulates data in registers according to the system's requirements. The control unit issues a
sequence of commands to the datapath unit. Note that m hternaI feedback path from the data-
path unit to the control unit provides status condtions that the control unit uses togetha with
the external (primary) inputs to determine h e sequence of conml signals (outputs of the control

unit) that directthe~onufthedatapthImit. We'llae l a t e r t h a t ~ ~ h o w t o
model this feedback relationship with an HDL is very hgmtmt

The control logic that generafes tbe signah for sequencing I& o p d o f l s in the hapath unit
is a finite state machine (FSMJ, i.e., a synchronous sequential circuit. The control commands
for the system are pd& by lhe FSM aa functions of the primary inputs, tk stam signals,
and the state of the machine. In a given state, the outputs of the contmller ate the inputs to the
datapath uuit and determine the opxtiofls that it will execute. hgmdbg on status conditions
and other external inputs, the FSM g m to its next state to initiate other operations. The digi-
tal circuits that act as the control logic provide a time s q m c t of signals for initiaring ttme op-
erations in the datapath and a ls~ de temk the next state of the -1 subsystem itself
The control sequence and data@ t a b of a digital system are spdied by m e . of a

hardware algorithm. An alg0r;dnn d s t s of a finite numb of p m d m d steps hu s p a f y
how to obtain a solution b a pblem. A hmdwm algorithm is a pmedm for solving the
problem with a given piece of eqpiprraent. TIE most cbaUenging d d v e part of digital de-
sign is the formulation of h m h r c algorithms for achiwing reqaiFed objectives. The god to
implement the algorithms in @con as an integrated Wt.

A fIowchrt is a convenient way to specify ttae wqumx of steps and deckion p&s
for an algorithm. A flowchart for a hardware dgmithm tmnsks the verbal i n s e w s to an
M ~ m ~ t h a t ~ t h e ~ a f ~ m ~ w i t h ~ c w d i t i 0 ~ 1 6 ~
essary for their execution. A flowchart that has been developsd spcikal ly to d d k digital
hardwan algwithms L called an algoritRmic s t a t e ~ ~ ~ h i r s c (ASM) c W A s m mnchine is
another term for a sequentid circuit, wbich is the basic sbuctm of a digital system.

AJM Qlatt

The ASM chartr;esemblesacun~fbwchart, but is in- sonaewhatdiffkedy.
A conventional flowchart dwxhs k procedural steps and decision paths of an algorithm in

FIG4JRE 8.3
ASM chart state . - box . .

a sequential manner, without taking into consideration their time relationship. The ASM chart
describes the sequence of events, as well as the timing relationship between the states of a se-
quential controller and the events that occur while going from one state to the next (i.e., the
events that are synchronous with changes in the state). The chart is adapted to specify accwakly
the control sequence and datapath operations in a digital system, taking into consideration the
constraints of digital hardware.

The ASM chart is composed of threebasic elements: the state box, the decision box, and the
conditional box. The boxes themselves are connected by directed edges indicating the se-
quential precedence and evolution of the states as the machine operates. There are various
ways to attach information to an ASM chart, In one, a state in the control sequence is indicat-
ed by a state box, as shown in Fig. 8.3(a). The shape of the state box is a rectangle within
which are written register operations or the names of output signals that the control generates
while being in the indicated state. The state is given a symbolic name, which is placed within
the upper left corner of the box. The binary code assigned to the state is placed at the upper right
corner. (The state symbol and code can be placed in other places as well.) Figure 8.3(b) gives
an example of a state box. The state has the symbolic name Sqause, arid the binary code as-
signed to it is 0101. Inside the box is written the register operation R * 0, which indicates
that register R is to be cleared to 0. The name Start-OF-A inside the box indicates, for exam-
ple, a Moore-type output signal that is asserted while the machine is in state S j a u s e and that
launches a certain operation in the datapath unit.

The style of state box shown in Fig. 8.3(b) is sometimes used in ASM charts, but it can lead
to confusion about when the register operation R + 0 is to execute. Although the opemtion is
written inside the state bax, it actually occurs when the machine makes a transition from
Sqause to its next state. In fact, writing the register operation within the state box is a way (al-
beit possibly confusing) to indicate that the controller must assert a signal that will cause the
register operation to occur when the machine changes state. Later we'll inrroduce a chart and
notation that are more suited to digital design and that will eliminate any ambiguity about the
register operations controlled by a state machine.

The declsion box of an ASM chart describes the effect of an input (i.e., a primary, or external,
input or a status, or internal, signal) on the control subsystem. The box is diamond shaped and has
two or more exit paths, as shown in Fig. 8.4, The input condition to be tested is written inside the
box. One or the otber exit path is taken, depending on the evaluation of the condition. In the bi-
nary case, one path is taken if the condition is true and another when the condition is false. When
an input condition is assigned a binary value, the two paths are indicated by 1 and 0, respectively.

.MS Chapter I Dedgn at the RqiW Transfer Wl

t
Exit path

FlGUClE 8,s
ASM c h r t condlthal box

The state and decision boxes of an ASM chart are s b k to those used in conventional
flowcharts. The third element, the dt ional box, is miqm to dx ASM chart. The s- of
the conditional box is shown in Fig. 8.5(a). Its rounded corners -tiate it from the state
lmx The input path to the conditional box must come from oae of the exit patbs of a decision
box. The outputs listed inside the conditional box are generated as Mealy-type signals during
a given state; the register operations listed in the conditional box are associated with a transi-
tion h m the state. Figure S.S(b) shows an exampie with a conditional box. The cootrol gen-
cram the output signal S m wheo in state S-2 a d checks the staRls of input Fhg. If Flag = 1,

Section 8.4 Algorithmic State Machines (ASMs) 349

then R is cleared to 0; otherwise, R remains unchanged, In either case, the next state is S Z . A
register operation is associated with S-2. We again note that this style of chart can be a source
of confusion, because the stam machine does not execute the indicated register operation R + 0
when it is in S-1 or the operation F -+ G when it is in S 2 , The notation actually indicates that
when the contro1ler is in S-1, it must assert a Mealy -type signal that will cause the register op-
eration R + 0 to execute in the datapath unit, subject to the condition that Flag = 0. Likewise,
in state 232, the cmtroller must generate a Moore-type output signal that causes the register
operation F * G to execute in the datapath unit. The operations in the datapath unit are syn-
chronized to the clock edge that causes the state to move from XI to S-2 and from 5-2 to
3-3. respectively. Thus, the control signal generated in a given state affects the operation of a
register in the datapath when the next clock transition occurs. The result of the operation is
apparent in the next state.

The ASM chart in Fig. 8.5(b) mixes descriptions of the datapath and the controller, An ASM
chart for only the cantroller is shown in Fig. 8.5(c), in which the register operations are omit-
ted. In their place are the control signals that must be generated by the cani~ol unit to launch
the operations of the datapath unit. This chart is useful for describing the controller, but it does
not contain adequate information about the datapath (We'll address this issue later.)

ASM Block

An ASM block is a structure consisting of one state box and all the decision and conditional
boxes connected to its exit path. An ASM block has one entrance and any number of exit paths
represented by the strucme of the decision boxes. A ~ ' A S M chart consists of one or more
interconnected blocks. An example of an ASM block is given in Fig. 8.6. Associated with state

1 mfl J. loo

FIGURE a6
ASM bl&k

350 Chapter 8 Deslgn at the R e g , W Trr#lsbcr Lrvd

S-0 are two decision boxes and one d t i ~ n a l box. The diagram distinguishes the block with
dashed lines around the entire stnrcnlre, but this is not usually done, s h the ASM chan
uniquely defines each block h m ita shwture. A state box without any decision or condition-
al boxes constitutes a simple block.

Each block in the ASM chart d e s d b s the slate of the system dwhg one clmk-pulse in-
terval (i.e., the interval between two successive active edges of the c h k) . The opatiom with-
in the state and conditional boxes in Fig, 8,6(a] are initiated by a common clock pulse whw
the state of the controller transitions from S-0 to its next state. The same clwk pulse transfers
the system controller to one of the next states, SJ, 3-2, or S-3, as dictated by the b b q val-
ues of E and F. The ASM chm for the mtroller alone is shown in Fig. 8.W). The Moore-type
signal incrJ is asserted while tbe machine is in S-0; the Mdy-type signal Clear-R is em-
erated conditionally when the state is S-0 and E is asserted. In general, the Moore-typ ouputs
of the controller are generated unconditionally and are indicated w i h h a state box; the Mealy-
type outputs are generated conditionally and are indicated in tbe conditional boxes connected
to the edges that leave a decision box.

The ASM chart is M a r to a state diagram. Each state block is equivalent to a state in a
sequential circuit The decision h x is @vdent to the binary informaiion written along the
directed lines that cwnect two states in a state diagram. As a consequence, it is sometimes
convenient to convert the chart into a state diagram and then use sequential circuit prwdms
to design the mum1 logic. As m illustration, the ASM chart of Fig. 8.6 is drawn as a state di-
agram in Fig. 8.7. The states are symbolized by circles, with their binary values wrimn inside.
The directed lines indicate the conditions that determine the next state. The unconditional and
conditional operations that must be performed in the datapath unit are wt indicated in the state
diagram.

A binary decision box of an ASM chart can be simplified by labeling only the edge corre-
sponding to the asserted decision variable and leaving the other edge without a label. A further
simplification is to omit the edges corresponding to the state muitions tbat occur when a reset
condition is asserted. Output signals that are not asserted am nut shown on the cbaTt; the pres-
ence of the name of an output signal indicates that it is asserted.

Section 8.4 Algorithmic State Machines (ASMs) 351

The timing for all registers and flip-flops in a digital system is controlled by a master-clock gen-
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flipflops in the state machine implementing the contsol unit. Inputs are also synchronized to
the clock, because they are normally generated as outputs of another circuit that uses the same
clock signals. If the input signal changes at an arbitrary time independently of the clock, we
call it an asynchronous input. Asynchronous inputs may cause a variety of problems, as dis-
cussed in Chapter 9. To simplify the design, we will assume that all inputs are synchronized
with the clock and change state in response to an edge transition.

The major difference between a conventional. flowchart and an ASM chart is in interpret-
ing the time relationship among the various operations. For example, if Fig. 8.6 were a con-
ventional flowchart, then the operations listed would be considered to follow one after mother
in sequence: First register A is incremented, and only then is E evaluated. If E = 1, then reg-
ister R is cleared and control goes to state S-3. Otherwise (if E = O), the next step is to eval-
uate F and go to state 3-1 or S-2. In contrast, an ASM chart considers the entire bIock as one
unit. All the register operations that are specified within the block must occur in synchronism
at the edge transition of the same clock pulse while the system changes from S-0 to the next
state. This sequence of events is presented pictorially in Fig. 8.8. We assume positive-edge
triggering of all flip-flops, An asserted asynchronous reset signal (reset-b) transfers the con-
trol circuit into state S-0. While in state 3-0, the control circuits check inputs E and F and
generate appropriate signals accordingly. If reset-b is not asserted, the following operations
occur simultaneously at the next positive edge of the clock:

1. Register A is incremented.
2. If E = I , register R is cleared.
3. Control bansfers to the next state, as specified in Fig. 8.7

Note that the two operations in the datapath and the change of state in the control logic occur
at the same time. Note also that the ASM chart in Fig. 8.6(a) indicates the register operations
that must occur in the datapath unit, but does not indicate the contra1 signal that is to be formed
by the control unit. Conversely, the chart in Fig. 8.6@) indicates the control signals, but not the
datapath operations, We will now present an ASMD chart to provide the clarity and complete
information needed by logic designers.

Positive edge of Clock

Clack k
FIGME 8.8
Transitim between stat-

Chapter 8 DeiZgn at the Register Trader bd

Algorithmic state machine and datapath (ASMD) cham wexe &vela@ to clarify the infor-
d o n displayed by ASM charts armd to provide an effective -1 for k i g i n g a corn1 anit
for a given datapath unit. An ASMD chart Wcrs from an ASM d m in three important ways:
(I) An ASMD chart does not list register operations withia a state b x , (2) the e&p of au
ASMD chart are annotated with register operations that a concumat wih h state transition
indicated by the edge, and (3) an ASMD chart includes oonditiwal boxes identifying the sig-
nals which control the register operations that annotate tbe of the cbart. Thus, MASMD
char4 ms&es mgister operattons wifh sta& tmnsUions rorker rkmr with states.

Wguers form an ASMD chart in a threestep p m hat cream an smnoiared aud com-
pletely specified ASM chart for the controller of a dahpath unit. The st- are to (1) form
an ASM chart displaying only how the inputs to the controller determine its state transitions,
(2) convert the ASM chart to an ASMD chart by annotating the of the ASM chart to in-
dicate the concurrent register operations of the datapath unif and (3) modify h ASMD chart
to identify the control signal8 that rn generated by the conmller and tbat cause the indicated
register operations in the drrtapath unit. The ASMD chart produced by this process c M y and
compleaely specifies the finite state machine of the controller a d iddjieg the register oper-
dons of the given datapath.

One impmmtuse of a state machiaeis to c o n ~ l r e ~ ~ ~ ~ ~ s on adampthinase
quential machine tbat has been padtiod into a cwfroller d a datqab An ASMD chart links
the ASM chart of the conlmlIer to the datapath it controls in s lllanner that sew& as a univer-
sal model representing all synchronous digital hardware design. ASMD charts help clarify the
&sign of a sequential machine by sqmating the design of its dataptb from the design of tbe
controller, d d e maintaining a clear relatiomhip W e e n the two units. Register m o m rba
occur concumntly with state transitions are annotated on a palh of the chart, m&er tban in
state boxes or in conditional boxes on the path, because these registem am noo part of tbe con-
troller. The outputs generated by the contFoller are the signals fht contml the reghem of rhe
datapath and cause the register operations annotated on he MMD chart.

8 . 5 DESIGN E X A M P L E

We will now p m n t a simple example demmmhg the use of the ASMD chat and the regis-
& ttansfer representation. We start h m Ihe W sp&aticms of a system d proceed with
t h e d e v e l ~ o f a a a p p m p r i a o e A S M D ~ f r w n w h i c h t h e ~ ~ i s t h e a d e s i g n e d

The datapatb unit is to consist of two JK f lp - E and F, ',and o r ~ c fwr-bit bimy count-
er AC3: 01. The individual flip-flops in A am dewtcd by A> A2, A d A& with Aj holding
the most significant bit of the count. A signal, Start, initiates the system's operation by clear-
ing the counter A and flipflop F. At each subsequent clock pulse, Uic counter is h m e n t e d
by 1 until the operations stop. Counter bits A2 and A3 determine the sequence of opmions:

IfA2 = 0, E is ckmd to 0 and th count oontinues.
HA2 = 1, Eissetto l;then,ifAg = O , t h e c a u n t ~ ~ ~ e s , b u t i f A ~ = 1, Fissetto
lon~nextclockpulseandthsystemstopscounting.

Section 8.5 Design bample 353

Then, if Start = 0, the system remains in the initial state, but if Start = 1, the opera-
tion cycle repeats.

A blcck diagram of the system's architecture is shown in Fig. 8.9(a), with (1) the registers
of the datapath unit, (2) the external (primary) input signals, (3) the status signals fed back
from the datapath unit to the control unit, and (4) the control signals generated by the control
unit and input to the datapath unit. Note that the names of the control signals clearly indicate
the operations that they cause to be executed in the datapath unit. For example, clr-A-F clears
registers A and F, The name of the signal reset-b (alternatively, reset-bar) indicates that the
reset action is active low. The internal details of each unit are not shown.

ASMD Chart

An ASMD chart for the system is shown in Fig. 8.9(b) for asynchronous reset action and in
Fig. 8Nc) for synchronous reset action. The chart shows the state transitions of the controller
and the datapath operations associated with those transitions. The chart is not in its find form,
for it does not identify the control signaIs generated by the controller. The nonblmking Ver-
ilog operator (< =) is shown instead of the arrow (+) for register transfer operations because
we will ultimately use the ASMD chart to write a Verilog description of the system.

When the reset action is synchronous, the transition to the reset state is synchronous with
the clock, This transition is shown in the diagram, but all other synchronous resetpaths aw omis-
ted for c l a r i ~ . The system remains in the reset state, S-idle, until Stapt i s asserted. When that
happens (i.e., Start = I), the state moves to Sl, At the next clock edge, depending an the
values of Az and A3 (decoded in a priority order), the state returns to S-I or goes to 3-2. From
5-2, it moves unconditionally to S-idle, where it awaits another assertion of Start.

The edges of the chart represent the state transitions that occur at the active [i.e., synchro-
nizing) edge of the clock (e.g., the rising edge) and are annotated with the register operations
that are to Dccur in the datapath. With Start asserted in S-idle, the state will transition to S-1
and the registers A md F will be cleared. Note that, on the one hand, if a register operation is
annotated on the edge leaving a state box, the operation occurs unconditionally and will be
controlled by a Moore-type signal. For example, registerA is incremented at every clack edge
that occurs while the machine is in the state S-1. On the other hand, the register operation set-
ting register E annotates the edge leaving the decision box for P I Z . The signal controlling the
operation will be a Mealy-type signal asserted when the system is in state SJ and A2 has the
value 1. Likewise, the control signal clearing A and F is asserted conditionally: The system is
in state $-idle and Start is asserted.

In addition to showing that the counter is incremented in state S-1, the annotated paths
show that other operations occw conditionally with the same clock edge:

Either E is cleared and control stays in state S-1 (AZ = 0) or

E is set and control stays in state S-I (AaA3 = 10) or

E is set and control goes to state S-2 (AzA3 = 11).

When control is in state S-2, a Moore-type contsol signal must be asserted to set flip-flop F to
1, and the state returns to S-idle at the next active edge of the clock.

Status signals

Note: A3 denot~ A[3],
A2 denotar A[2],
<= &now nonblocking assignment
met-b denotes activ~low reset condition

reset-b

<= 1

WURE 8.9
(b)

(a) Blodr dimgnm for design emmplt
(b) MMD chart for contrdler state tmdlhs, loynchronour m M
(c) MMD chart for contmlkr state mndhs, spdmmus d
(d) ASMD clwrt for a completely qmdfkd -, =yn&rrmau reset

Section 8.5 Deslgn Example 355

The third and final step in creating the ASMD chart is to insert conditional boxes for the sig-
nals generated by the controller or to insert Moore-type signals in the state boxes, as shown in
Fig. 8.9(d). The signal cir-A-F is generated conditionally in state S-idle, incr-A is generated
unconditionally in S-I, clr-E and set-E are generated con&tionally in 3-1, and set-F is gen-
erated unconditionally in S-2. The ASM chart has three states and three blocks. The block as-
sociated with S-idle consists of the state box, one decision box, and one conditional box. The
block associated with S-2 consists of only the state box. In addition to clock and reset-b, the
control logic has one external input, Start, and two status inputs, A2 and A3.

In this example, we have shown how a verbal (text) description (specification) of a design
is translated into an ASMD chart that completely describes the controller for the datapath, in-
beating the control signals and their associated register operations. This design example does
not have a practical application, and in general, depending on ~e interpretation, the ASMD chart
produced by the three-step design process for the contmller may be simplified and formulaTed
differently. However, once the ASMD chart is established, the procedure for designing the
circuit is straightforward. In practice, designers use the ASMD chart to write Verilog models
of the controller and the datapath and then synthesize a circuit directl~fiom the Verilog de-
scription, We will first design the system manually and then write the HDL description, keep-
ing synthesis as an optional step for those who have access to synthesis tools.

Thing Sequence

Every block i n anASMD chart specifies the signals which control ?he operations that are to be
initiated by one common clock pulse. The control signals specified within the state and con-
&tianal boxes in the block are famed while the controller is in the indicated state, and the an-
notated operations occur in the datapath unit when the state makes a lransition along an edge
that exits the state. The change from one state to the next is performed in the control logic. In
order to appreciate the timing relationship involved, we wiIl list the step-by-step sequence of
operations after each clock edge, beginning with an assertion of the signaI Start until the sys-
tem returns to the reset (initial) state, S-idle.

Table 8.3 shows the binary values of the counter and the two flip-flops after every dock
pulse. The table also shows separately the status of A 2 and A3, as well as the present state of
the controller. We start with state S-1 right after the input signal Start has caused the counter
and flip-flop F to be cleared. We will assume that the machine had been running before it en-
tered S-idle, instead of entering it from a reset conbtion. Therefore, the value of E is assumed
to be 1, because E is set to 1 when the machine enters S-2, before moving to S-idle (as shown
at the bottom of the table), and because E does not change during the transition from S-idle to
S-1. The system stays in state S-1 during the next 13 clock pulses. Each pulse increments the
counter and either clears or sets E. Note the relationship htween the time at which A2 be-
comes a 1 and the time at which E is set to 1. When A = (A3 A2 AI Ao) 001 1, the next (4th)
clock pulse increments the counter to 0100, but that same clock edge sees the value of A2 as
0, so E remains cleared. The next (5th) pulse changes the counter h m 0100 to 0101, and be-
cause A2 is equal to 1 before the cbck puke arrives, E is set to 1. Similarly, E is cleared to 0
not when the count goes from 011 1 to 1000, but when it goes 1000 to 1001, which is
when A2 is 0 in the present value of the counter.

356 Chapter 8 Design at the Register Transfer LeveI

Table 8.3
Sequence of Operations fw Design Example

Counter Fli p F l a ps

When the count reaches 11 00, both A2 and A3 are equal to 1. The next clack edge incre-
ments A by 1, sets E to 1, and transfers control to state S-2. Cmml stays in S-2 for only one
clock period. The clock edge associated with the path leaving S-2 sets fipflop F to 1 and
transfers control to state S-idle. The system stays in the initial state S-idle as long as Start
is equal to 0.
From an observation of Table 8.3, it may seem that the operations performed on E are

delayed by one clock pulse. This is the difference between an ASMD chart and a conven-
tional flowchart. If Fig. 8.9(d) were a conventional flowchart, we would assume that A is
first incremented and the incremented value would have been used to check the status of A2.
The operations that are performed in the digital hardware as specified by a block in the
ASMD chart occur during the same clock cycle and not in a sequence of opehorn following
each other in time, as is the usual interpretation in a conventional flowchart, Thus, the value
of A2 to be considered in the decision box is taken from the value of the counter in the
present state and before it is incremented. This is because the decision box for E belongs
with the same block as state S-1. The digital circuits in the control nnit generate the signals
for all the operations specified in the present block prior to the arrival of tk the ccleckpulsc.
The next clock edge executes all the operations in the registers and flipflops, including
the flip-flops in the controller that determine the next state, using the present values of the
output signals of the controller. Thus, the signals that control the operations in the datapath
unit are formed in the controUer in the clock cycle (control state) preceding the clock edge
at which the operations execute.

Section 8.5 Design Example 357

Controller and Datapath Hardware Deslgn

The ASMD chart provides all the information needed to design the digital system-the datapath
and the controller. The actual boundary between the hardware of the controller and that of the
datapath can be arbitrary, but we advocate, fnst, that the datapath unit contain only the hard-
ware asscciated with its operations and the logic required, perhaps, to form status signals used
by the controller, and, second, that the control unit contain all of the logic required to gener-
ate the signals that control the operations of the datapath unit. The requirements for the design
of the datapath are indicated by the control signals inside the state and conditional boxes of the
ASMD chart and are specified by the annotations of the edges indicating datapath operations.
The control logic is determined from the decision boxes and the required state transitions. The
hardware configuration of the datapath and controller is shown in Fig. 8.10.

D ~signZxmnp b
r----C--------------------rr------------1---------1---------------------

i Controlkr
1

I

clock

FlCURE kt9
Datapath and contralter far design e z m p k

Chapter 8 Otsign at the Register Transfer level

Note that the input sign& ofthe control unit am the extend @aimary) inputs [Start, reset- b,
and cluck) and the status signals from the datapath (A2 and A3). The status signals p v i d e in-
fmmtion about the present condition d the datapath. This infomalion, together with the pri-
maty inputs md information about the present state of the machine, is used to fom the output
of the conlroller and the value of the next state. The outputs of the controller are inputs to the
datapath and determine which operations will be executed when the clock underps a transi-
tion. Note, also, that the state of the control is not an output of tbe control unit, even if the en-
tire design is mcapsulated in only one module.
ThecmtrolsubsystemisshowninFig. 8.10withdyits~atwlautputs,w5thnamesmatch-

ing h s e of the ASMD cham The W e d design of h controller is considered subsqumly.
The dampath unit consists of a fow-bit binary wunte~ aad two JK flip-flops, The counter is sim-
ilartotheme shown inFig, 6.12, exmpttbatadditional iateraal arc required fur the syn-
chKnrous clear cpmtion. The is inmemated with every clock puk when the cmtm11er
s ~ i s S , I . I t i s c l e a r e d o n l y w b e n ~ ~ l i s ~ ~ S ~ ~ S w ~ t i s e q u a l ~ 1.Thelogicfor
the signal c1rA-F will be included in the anhvller and requires an AM) gate to pamutee that
both conditions are present. Similarly, we we athipate that the controHer will use AND p e s to
form sigraals serJ and cfrJ. Depeoding oo whether the cmtmUer is in state S-1 and whether A2
i muted, s e t 1 controls flipflop F and is m a t e d unconditionally during state S-2. Note that
alI fbpfl op6 and registers, Muding tbe flipflops in the control unis, use a common clmk

A digital system is represented at he redster transfer level by specifying the registers in the
system, the operations performed, and the control sequence. The register opmtions and con-
trol i n f o d o n can be specified with an ASMD chart. It is convenient to separate the conml
logic and the register operations for the -ti. The ASMD chart provides this separation aad
a char sequence of steps to design a c o d e r for a datapath. The conrtol information and
register bamfeb operations can also be represented separately, as shown ia Fa. 8.11. The state
diagram specifies the control wpme, and the mgister opedons are represented by the reg-
ister transfer notation introdwed in Section 8.2. The state &tion and the signal controlling
the register opwation are shown with the operation. This qmenhtiun is an alternative to the
-on of the system d a c r h d in the ASMD chart of Fig. 8.9(d). Only the ASMD chart
is d y needed, but the state diagram for h conmUer is an a l d v e representation that is
us&l in manual design. The information for the state d i m is taken M y h r n the ASMD
chart. The state names are specified in each state box. ' be conditions that cause a change of
state are specified inside the dhmn&shaped decision boxes of the ASMD chart and are used
to annotate the state diagram. Tfie directed lines between states and the condition associated
with each follow the same path as in the ASMD chart. The register transfer operations for each
of the three states are listed following the name of the state. They are taken from the state
boxes or the annotated edges of the ASMD chart.

Stmte Tabk

The state diagram can k converted into a state table from which the sequential circuit of the
controller can IE designed. Fmt, we must assign binary values to each state in the ASMD
crt. For n flipflops in the control sequential circuit, the ASMD chart can wmnmdak up

Section 8.5 Design Example 359

S i d l e + SJ, ctrJ1J A+ 0, F+"

5-1 S-1, incr-A: A - A + 1

if (A2 = I) then set-E: E + 1
if(A2 = 0) then c1r-E: E + 1)

5-2 + S-idle, set-l? F + 1

(b)

FIGURE 8.1 1
Register transfer-low1 description of dedgn example

to 2" states. A chart with 3 or 4 states requires a sequential circuit with two flip-flops. With 5
to 8 states, there is a need for three flip-flops, Each combination of flip-flop values represents
a binary number for one of the states.

Astute table for a controller is a list of present states and inputs and their corresponding next
states and outputs. In most cases, there are many don't-care input conditions that must be in-
cluded, so it is advisable to mange the state table to take those conditions into consideration.
We assign the following blnary values to the three states: S-idle = 00,s-1 = 01, and S-2 = 1 1.
Binary state 10 is not used and will be treated as a don't-care condition. The state table corre-
sponding to the state diagram is shown in Table 8.4. Two flip-flops are needed, and they are

Table 8.4
State TuMe for the ConkroIIer of Flg. 8.10

Present Next
State Inputs State Outputs

Present-State & > - , *II

Symbol GI Go S t m 1 2 GI Go 8 $ # b k
S-idle 0 0 0 X X 0 0 0 0 0 0 0
S-idle 0 0 1 X X 0 1 0 0 0 1 0
s-1 0 1 X O X 0 1 0 1 0 0 1
s-1 0 1 X I 0 0 1 1 0 0 0 1
S-I 0 1 X 1 1 1 1 1 0 0 0 1
s-2 1 1 X X X O O 0 0 1 0 0

Chapter 8 Design at the Reglster Transfer Lwel

labeled GI and Go. There are three inputs and five outputs. The inputs are taken fmm the wn-
ditions in the decision boxes. The ou@& depend on the inputs and the present state of the can-
tml. Note that there is a row in the Eable for each possl%k mnsition Wmen s~@. Initial state
00 gws to state 01 or stays in 00, depding on the value of input Start. The dm two inputs
are marked with don't-care X's, as they do not deL the next state in this case. MI&. the
system is in binav state 00 with Start = I , the control unit provides an output labeled ctr_A_F
to initiate the required regiskr operations. The W i t i o n h m binary state 01 c k p d s w inputs
A2 and A3. The system goes to binary state 11 only if A2A3 = 11; o i h m h , it mmim in
binary a t e 01. Finally, binary state 11 gms to 00 independently of the input variables.

Control Loglc

The @ure for designing a sequential circuit starting from a state table was presented in
Qlapter 5. If this procedure is applied to Table 8.4, we need to use five-variable maps to sim-
plify the input equations. This is because tbm are five variables listed under the present-state
and input columns of the tabIe. Instead of using maps to simplify the input equations. we can
obtain them directly from the st@ table by inspectioa To design the sequential circuit of the
controller with D flip-flops, it is necessary to go over the next-state c u 1 ~ 31 tbe state table
and derive dl the conditions that must set each flip-flop to 1. From Table 8.4. we note tbat the
next-state colurnn of GI has a single 1 in tbe fifth row. 'Ihe D input of £lip-flop GI must be equal
to I during present state S-I when both inputs A2 and A3 are equal to 1. This condition is
expressed with the D flip-flop input equation

Similarly, the next-state column of has four f 's, and the adition fix settiag this flipflop is

Dm = Stars S-idle + 8-1
To derive the five output functions, we cap exploit the fact that binary state 10 is not wed,-
which simplifies the equation for c l r M and mab1e.s us to obtain the following simpWd set
of output equations:

clr-A-F = Start S-idle

incr-A = 8-1

The logic diagram showing the internal detail of he controller of Fig. 8.10 is dmwo in Fig 8. t 2;
Note that although we derived the output equations from Table 8.4, they can a h be obtained
directly by inspection of Fig. 8.9(d), This simple example illustram the manual design of a con-
troller for a datapath, using an ASMD chart as a starting point. The fact that synthesis tools au-
tomatically m u t e these steps should be appreciated

Section 8,6 HDL Description of Design Exr-de 361

Start

w2

A3
A2

I 1 7

W R E 8.1 2
Logic &gram of the cantpol unit for F g . 8.1 0

8.6 HDL DESCRIPTION OF DESIGN E X A M P L ---A . -

In previous chapters, we gave examples of HDL descriptions of combinational circuits,
sequential circuits, and various standard components such as multiplexers, counters, and reg-
isters. W e are now in a position to incorporate these components into the description of a spe-
cific design. As mentioned previously, a design can be described either at the structural or
behavioral level. Behavioral descriptions may be classified as being either at the register bans-
fer level or at an abstract algorithmic level. Consequently, we now consider three levels of
design: smctural description, RTL description, and algorithmic-based behavioral description.

The strucmral description is the lowest and most detailed bvel. The digital system is spec-
ified in terms of the physical components and their interconnection. The various components
may include gates, flip-flops, and standard circuits such as multiplexers and counters. The de-
sign is hierarchlcauy decomposed into functional units, and each unit is described by an WDL
module. A top-level module combines the entire system by instantiating all the lower level
modules. This style of description requires that the designer have sufficient experience not
only to understand the functionality of the system, but also to implement it by selecting and con-
necting other functional elements.

The RTL description specifies the digital system in terms of the registers, the operations
performed, and the control that sequences the operations. This type of description simplifies
the design process because it consists of procedural statements that determine the relationship
between the various operations of the design without reference to any specific structure. The

362 Chapter8 Wlgn at the Reg mansfer W

RTL description implies a certain hardware configumtim amwg tbe registers. allouing the
designer to m e a design that can be s y n h s h i automatially, rather than manually. into stan-

dard digitaI components.
The a lgor i th ic -hed bshavioml description is the most abstmt level, desmib'hg the func-

tion of the design in a p W W algorithmic fm similar to a programming language. It dow nor
provide any detail on how the design i to be implemented with hardware. Tlae algorithmic-bad
hhavioral description is most a- for s irnWg complex systems in o&r to verify &
sign ideas and explore mdmffs. I h x i p i i o ~ ~ ~ at tbis level are accessibk to nontechnical users
who u m h m d programming languages. Some dgmithms, however, might not be syntkidle.
We will now ilustrate the RTL and mctural descriptions by using the design example of

the previous section. The design example will m e w a model of &g style for future ex-
amples and will exploit alternative syntax options supported by revisions to the Verilog lan-
guage. (An algorithmic-based description is illustrated in Section 8.9.)

Ttre block diagram in Fig. 8.10 describes the design example. An HDL description d the
design example can be writtea as a single RTL denripti011 in a Vedog module or as a top-
level mdule having instantiations of fieparate modules for the controller and the datapath. The
former option simply ignores the boundaries between the functional units: the modules in the
latter option establish the boundaries shown in Fig, 8,9(a) and Fig. 8.10. We advocare the sec-
ond option, because, in general, it disringuishes more clearly between the controller and the data-
path, This choice also allows one to easily substitute alternative controllers for a given datapafh
(e.g., replace an RTL model by a structural model). The RTL description of the design exam-
ple is shown in HDL Example 8.2. The dwcription follows the ASMD chan of Fig. 8,9(d),
which amins a complete degcription of tb mtmllcr, the datapath d the M a c e between
them (i.e., the outpu?~ of the controller a d the status signals). Likewise, our description has
three modules: DesignBample-RTL, ContmlierJTL, and Batqmth-RZ. The descriptions
of the conm11er and the dabpath units are taken direcff y fmm Fig. 8.9(d). DesignJhmpicJwz
declares the input and output ports of the module and instantiates ContmllerJ?TL and
Datapath-RTL. At this stage of the description, it is important to remember to declare A as a vec-
tor. Failm to do so will produce port rnismtch e r m when the &scriptions are compiled to-
gether. Note that the status signah A121 and A131 are passed to the cmmiler. The primary
(external) inputs to the controller are Starf, clock (to synchronizle the system), and reset-b. The
ecrivelow input signal ~ s e t J is needed to initialize the state of h wneoller to S-idle. With-
out that signal, &e cont10Uer could not be placed in at Irnowa initid state.

The controller is descxibed by three cyclic (always) behaviors. An edge-sensitive khavior'
updates the state at the positive edge of the clock, depending on whether a reset condition is
asserted. Two level-sensitive behaviors describe the combinational logic for the next state and
the ourputs of the conmller, as specified by the ASMD chart, Notice that the description in-
cludes default assignments to all of lhe outputs (e.g., set> = 0). This approach allows the
c d e of the case logic to be simplified by mpssing only explicit of the variables
(i.e., values are assigned by exception). Tbe approach also ensures that every path through the
assignment logic assigns a value to every vmhbIe. Thus, a synthesis tool will interpret the

Section 8.6 HDL Description of Pesign Exsnrpk

logic to be combinational; failure to assign a value to every variable on every path of Iogic im-
plies the need for a transparent latch (memory) to implement the logic. Synthesis tools will pro-
vide the latch, wasting silicon area.

The three states of the controller are given symbolic names and are encoded into binary
values. Only three of the possible two-bit patterns are used, so the case statement for the next-
state logic includes a default assignment to handle the possibility that one of the three assigned
codes is not detected. The alternative is to allow the hardware to make an arbitrary assignment
to the next state (next-state = 2 'bx;). Also, the first statement of the next-state logic assigns
next-state = S-idle M guarantee that the next state is assigned in every thread of the logic. This
is a precaution against accidentally forgetting to make an assignment to the next state in every
thread of the logic, with the result that the description implies the need for memory, which a
synthesis tool will implement with a transparent latch.

The description of Datapath-RTL is written by testing for an assertion of each control sig-
nal from Confroller_RTL. The register transfer operations are displayed in the ASMD chart
(Fig. 8.9(d)). Note that nonblocking assignments are used (with symbol <=) for the register
transfer operations. This ensures that the register operations and state transitions are concur-
rent, a feature that is especially crucial during control state S-1, In this state, A is increment-
ed by 1 and the value of A2 (A[2]) is checked to determine the operation to execute at register
E at the next clock. To accomplish a valid synchronous design, it is necessary to ensure that
A[2] is checked before A is incremented. If blocking assignments were used, one would have
to place the two statements that check E first and the A statement that increments last. How-
ever, by using nonblocking assignments, we accomplish the required synchronization without
being concerned about the order in which the statements are listed. The counter A in
Datapath-RTL is cleared synchronously because clr-A-F is synchronized to the clock.

The cyclic behaviors of the controller and the datapath interact in a chain reaction: At the
active edge of the clock, the state and datapath registers are updated. A change in the state, a
primary input, or a status input causes the level-sensitive behaviors of the controller to update
the value of the next state and the outputs. The updated values are used at the next active edge
of the clock to determine the state transition and the updates of the datapath.

Note that the manual method of design developed (1) a block diagram (Fig. 8.9(a)) show-
ing the interface between the datapath and the controller, (2) an ASMD chart for the system (Fig.
8.9(d)), (3) the logic equations for the inputs to the flip-flops of the controller, and (4) a circuit
that implements the controller (Fig. 8.12). In contrast, an RTL model describes the state Wan-
sitions of the controller and the operations of the datapath as a step towards automatically syn-
thesizing the circuit that implements them. The descriptions of the datapath and controller are
derived directly fiom the ASMD chart in both cases,

IIDL Example 8.2

Il RTL description of design example (see Fig. 8.1 1)
module Design-Example-RTL (A, E, F, Start, clock, reset-b);

I t Specify ports of the top-level module of the design
I1 See block diagram, Fig. 8.10
output [3: 01 A;
output E, F;

W Chapter 8 Design at the T m * L e d

Input Start, clock, reset-b;
I/ Instantiate controller and datapath units
Cmtroller_RfL MO (set-€, clr-E, set-F, clr-A-F, Incr-4,A[2J, 431, Start, dock,

reset-b 1;
Datapath-RTL Mi (A, E, F, setE, dr-E, se-F, dr-A-F, inCr-A, dodrh

endmodule
module Controller+RIL (-Et dr-E, *F, dr-A-F, incr-A, A2, A3, Start, dock,
reset-b);
output reg set-€, dr-E, set-F, clr-A-F, incr_A;
Input Start, A2, A3, dock met-b;
mg (1 : Oj state, next-state;
parameter S-idle = 2'bOO, S-1 = 2'bOlt S-2 = 2 b l I : I/ State codes
always @ (posedge dack or negedge re-b) It Sbte &amitions (edge smiWe)
H (reset-b == 0) state c= S-idle:
else state c= next-state;

I1 Code ngxtdte loglc directly from ASMD chart (Fig. 8.M)
always @ (state, Start, A2, A3) begln I1 Next-state logic (level sensitive)
nextstate = S-ldle;
case (state)

S-Idle: If (SQrt) nextstate = S-7 ; else nex!-stab = S-Idle:
3-1 : If (A2 a A3) --state = S-2; e b nextnextstate = S-1;
S-2: next-staka = S-idle:
deFaust: nex-state = $_idle;

endcase
end
I/ Code output logb dlrectly frwn ASMD chart (Fig. 8.W)
a m @ (a te , a r t , A2) I W n
seLE = 0: I/ default assignments; assign by exception
dr-€ = 0;
set-F = 0;
clr-A-F = 0;
incr-A = 0;
case (state)
S-idle:
s-1 :
s-2:

endcase
end

endmodule
module Datapath-RTL (A, E, F, set-E, dr-E, wt-F, dr-LF, Incr-A, clock);
output reg 13: 01 A: 11 reglsbr fm counter
wtputreg E,F: 11 flags
input set-E, clr-E, wt-F, clr-A-F, inck_A, dock;
I1 Code reglster transfer opemtiona directfy from ASMD chart (Fig. 8.9(d))

If (Start) dr-A-F 1 ;
begln in-A = 1 ; if (A2) set-€ = 1; else clr-E =I 1 ; end
set-F = 1 ;

Section 8.6 HDL Description of Design Example 365

always @ (posedge clock) begln
H (set-E)
If (clr-E)
r set-^)
a (clr-A-F)
if (incr-A)

end
endmodule

E <= 1;
E c= 0;
Fc= 1;
begln A <= 0; F c= 0; end
A c = A + .1;

Testing the Design Dcscrlpthm
The sequence of operations for the design example was investigated in the previous section.
Table 8.3 shows the values of E and F while register A is incremented. It is instructive to de-
vise a test that checks the circuit to verify the validity of the HDL description, The test bench
in HDL Example 8.3 provides such a module. (The procedure for writing test benches is ex-
plained in Section 4.12.) The test module generates signals for Ssart, clock, and reset-b, and
checks the results obtained from registers A, E, and F. Initially, the reset-b signal is set to 0 to
initialize the controller, and Start and clock are set to 0. At time t = 5, the reset-b signal is de-
asserted by setting it to 1, the Start input is asserted by setting it to 1, and the clock is then re-
peated for 16 cycles. The $monitor statement displays the values of A, E, and F every 10 ns.
The output of the simulation is listed in the example under the simulation log. Initially, at time
t = 0, the values of the registers are uaknown, so they ar(: marked with the symbol x, The first
positive clock transition, at time = 10, clears A and F, but does not affect E, so E is unknown
at this time. The rest of the table is identical to Table 8.3. Note that since Start is still equal to
1 at time = 160, the last entry in the table shows that A and F are cleared to 0, and E does not
change and remains at I . This occurs during the second transition, from S-idle to S-I.

HDL Example 8 3

I/ Test bench for design example
module t-Design-Example-RTL;
w!3 Start, clock, reset-b;
wlra [3: 0] A;
wlre E, F;
I1 Instantlate design example
Desig n-Example-RTL MO (A, E, F, Start, clock, reset_b);
It Describe stimulus waveforms
lnltlal#500 $ftnlah; 11 Stopwatch
lnltlal
begln

reset-b = 0;
Start = 0;
clock = 0 ;
#5 reset-b = 1; Start = 1;
repeat (32)

#5 clack = - dock; /I C h k werator
end

end
initial
$monitor("A=%bE=%bF=%bfjme=W,A,E,F,$time);

endmodule
Simulation log:
A = x m E=xF=xt ime=O
A=OOOOE=xF=Otime= 10
A=0001 E=OF=Otirne=20
A=OOtOE=OF=Otime=30
A=W11 E=OF=O?ime=40
A=OlOOE=OF=Otime=50
A=0101 E = 1 F=Otlme=Hl
A = 0 1 1 0 E = l f=Olme=70
A=0111 E = l F=Otlme=80
A=lOOOE=l F=Otlme=90
A=1OOlE=OF=Otlme=I00
A=1O1OE=OF=O~nae=110
A = l O l l E=OF=Otim=120
A=1100E=OF~Otime=l30
A=1101 E = 1 F=Otime=140
A = 1101 E = 1 F = 1 time= 150
A=0000E=1 F=Otime=160

-- -

Waveforms produced by a shuhion of Design-eeWZ with the test b e h are shown
in Fig. 8.13. Numerical values are shown in hexadecimal format. The muh are m t e d to call
attention to the relationship h e e n a control Bignal and the O@M that it mws to execute.
For example, the controller asseas s e t 2 for one clock cycle h$uw the clock edge at which E is
set to 1. Likewise, setJ asserts during the clock cycle lxfore the at which F is set to 1. Also,
c l r4-F is formed in the cycle before A and F are cleared. A more thorwgh vedkation of
&dgnJmmpk-Rn, would mfm that ih machine recovers frm a m on the fly (i.e,, a r e w
that is asserted randomly after the machine is operating). Nate that the signals in the output of the
simulation have h e n listed in groups showing (I) clock and ~ s e t J , (2) Stort and the status
inputs, (3) the state, (4) the control signals, and (5) the data@ ngisters. It is strongly morn-
mended hat the state always be displayed, - this information is asmtial for verify& that
the machine is opemting comedy and forckhugging its dedption when it is rn & the chosen
bitlary state code, S-idle = 002 = OH, 3-1 = 012 = lA, andS-2 = 1 l2 = 3".

The RTL description of a design consists of pmcdural statements that d e t ~ tk func-
tional b v i o r of& d&W CW This-type of -on can be compiled by HDL synthesis
tools, from which it is possible to obtain tbe equivalent gatebye1 &mit ofthe design. It is also

F I C W 8.1 3
Slmulrtion results for dss.lgn example

possible to describe the design by its structure rather than its function. A simctural description
of a design consists of instantiations of components that define the circuit elements and their
interconnections. In this regard, a smctural description is equivalent to a schematic diagram
or a block diagram of the circuit. Contemporary design practice relies heavily on RTL de-
scriptions, but we will present a structural description here to contrast the two approaches.

For convenience, the circuit is again decomposed into two parts: the controller and the data-
path. The block diagram of Fig. 8.10 shows the high-level partition between these units, and
Fig. 8.12 provides additional underlying structural details of the controller, The structure of the
datapath is evident in Fig. 8.10 and consists of the flip-flops and the four-bit counter with syn-
chronous clear. The top level of the Verilog description replaces Design-Example-RTL, Conb-
mllerRTL., and DatupathJTL by Design-hmpleJTR, Controller~STR, and DataparhSTR,
respectively, The descriptions of Controller-STR and DatapathJm will be structural.

HDL Example 8.4 presents the structural description of the design example. It consists of a
nested hierarchy of modules and gates describing (1) the top-level module, Design-IhmpIeS???,
(2) the modules describing the controller and the datapath, (3) the modules describing the flip-
flops and counters, and (4) gates implementing the logic of the controller. For simplicity, the
counter and flip-flops are described by RTL models.

The top-level module (see Fig. 8.10) encapsulates the entire design by (1) instantiating the
controller and the datapath moduIes, (2) declaring the primary (external) input signals, (3) de-
claring the output signals, (4) declaring the control signals generated by the controller and con-
nected to the datapath unit, and (5) declaring the status signals generated by the datapath unit
and connect4 to the controller. The port list is identical to the list used in the RTL &scription,
The outputs are declared as wire type here because they serve rnaely to connect the outputs

Chapter U Design at the Register Transfer kvel

of the datapath module to the outputs of the top-level module, with their logic value being de-
t d e d within the datapath module,

The control module W b e s the circuit of Rg. 8.12. The outputs of the nvo flip-flops GI
and GO are declared as wlre dam type. GI and GO cannot be declared as reg data QW because
they are outputs of an instantiated D flip-flop. DGI and DGO arc undeclared identifim, it.,
implicit wires. The name of a variable is local to the module or procedural blmk in $ is
declared. Nets may not be declared within a procedwd block (eg., begin . , . end). The rule
to remember is that a variable must be a d&clared register type (e.g.. reg) if and only if irs value
is assigned by a procedural statenmt (LC, a bloclcing or d h l c i n g assignment statement aith-
in a prodm1 block in cyclic or shgbpass behavior or in the output of a saqmtid LDP].
The instantiated gates specify the c d i ~ t i o n a l part of the circuit. There we m-o nip-flop
input equations and three output equations. The outputs of the flip-flops GI and GO and tht inplrt
equations DGI and DGO replace output Q and inpul D in the insrantiarcd flip-flops. The D
flip-flop is tfien described in the next module. The strucnue of the data@ unit has direct in-
puts to the JK flip-flops. Note the correspondence between the modules of the HDL descrip-
tion and the structures in Figs. 8.9,8,10, and 8.12.

IIDL Example 8.4

I! Structural description of design example (Figs. 8.9(a), 8.92)
module Design-Example-STR
(output [3: OJ A, 11 V 2001 port syntax
output f, F,
Input Start, clock, re-

);

, . Controller-STR MO (dr-i-~i set-E, d&. set-F, i no~A, Start. A[2], A[3], clock,
resetb j;

Datapath-STR M I (A, E, F, elr_A_F, &€, dr_E, set-F, Incr-A, clock);
endmodule

module Controller-STR
{ output clr-A-F, setE. clr-E, s&-F, Incr-A,

lnput Start, A2, A3, clock, reset-b
1;

wire
parameter
wlre

GO, GI;
S-idle = TWO, S-1 = 2'b01, S-2 * 2'bt I;
w i , w2, w3;

not {GO-b, GO);
not (GI-b, GI);
buf (Incr-A, w2):
buf (setF, GI);
not (A2-b, A2);

Section 8.6 HDL Descrlptton of Design Example 369

or (D-GO, w l , w2);
and (wl, Start, GO-b);
and (clr-A-F, GO-b, Start);
and (w2, GO, GI-b);
and (set-E, w2, A2);
and (clr-El w2, A2-b);
and (D-G I, w3, w2);
and (w3, A2, A3);
0-flip-flop-AR MO (GO, D-GO, clock, reset-b);
D-flip-flop-AR M I (GI, D-GI , clock, reset-b);

endmadule

module Datapath-STR
(output [3: 01 A,
output El F,
Input clr-A-F, set-El clr-E, set-F, incr-A, clock

1;

JK-flip-flop-2 MO (El E-b, set-E, clr-E, clock);
JK-flip-flop-2 MI (F, F-b, set-F, clr-A-F, clock);
Counter-4 M2 (A, incr-A, clr-A-F, clock);

endrnodule

I/ ~ounier with synchronous clear

module Counter-4 (output reg 13: 01 A, lnput incr, clear, clock);
always @ (posedge clock)
If (clear) A <= 0; else If (iner) A <= A + 1 ;

endmodule

module D-flip-flop-AR (Q, D, CLK, RST];
output Q ;
input D, CLK, RST;
w Q;

always @ (posedge CLK, negedge RST)
If (RST == 0) Q e= I1bO;
else Q <= D;

endmodule

/ I Deseriptlon of JK flip-flop

module JK-flip-Rop-2 (Q, Q ~ o t , J, < K, , . CLK); .
output Q, Q-not;

370 Chapter 8 Dean at the Reglrtcr Transfer Levrl

Input J, K, CLK;
reg Q;
assign Q-not = -a;
a l w w @ (P-edge

((Jl K))
2'MO: Q c=Q;

2'Wl: Q<=l'bO;
2'blO: Q<=l 'b I ;
2'bll: Qc=-Q;

enduma
endmodule

modu lcr t-Design-Exam ple-STR;
mg start, clock, mt-b;
wire 13: 01 A;
wire E, F;

/ I Instadate design example

Design-Example-SlR MO (A, E, F, Start, dock, m - b) ;

11 W r i b e stimulus waveforms

Lnltial#500 $finish;
inltial
b a n

reset-b = 0;
Shrt = 0;
clock = 0;
#5 reset-b = 1; Start 3 1;
repeat (32)
besin
#5 clock = - clock;

end
end

inlttal
Emonltor ("A = %b E = %b F = %b time = %W, A, E, F, $Wmk

endmodula

i'l stopwatch

I f Clock generatw

~ e s m ~ ~ p t i m w a s ~ ~ ~ t h t ~ ~ ~ ~ ~ R T L ~ p t i 0 1 1
toproducetberesultsshowninFlg. 8 . 1 3 , ' I b e w l y ~ ~ i s t b e r c p ~ o f t h e
instantiation of the example from DesiguJbntpleJTL to DesignJWmpleflR. Tbe sim-
ulation mults for DesignJxampkJlR mntchcd those for D e s i g n - r n However,
acw~lprhnof the two ~ p t i 0 1 ~ 6 i a d i ~ that theKI'Lstyleiseasiatomite andwill lead
to results faster if synthesis tools are available to automatidy syntbiizc the regbtm, the
combinational logic, and their ipkmmwtilions.

Section 8.7 Sequential BInary Multiplier 371

8 .7 SEQUENTIAL B I N A R Y MULTIPLIER

This section introduces a second design example. It presents a hardware algorithm for binary
multiplication, proposes the register configuration for its implementation, and then shows how
to use an ASMD chart to design datapath and its controller.

The system we will examine multiplies two unsigned binary numbers. The hardware algorithm
that was develo@ in Section 4.7 to execute multiplication resulted in a combinational circuit mul-
tiplier with many adders and AND gates, requiring a large area of silicon for the implementation
of the algorithm as an integrated circuit. In contrast, in this section, a more efficient hardware
algorithm results in a sequential multiplier that uses only one adder and a shift register. The sav-
ings in hardware and silicon area come about from a trade-off in the space (hardware)-time
domain. A parallel adder uses more hardware, but forms its result in one cycle of the clock; a
sequential adder uses less hardware, but takes multiple dock cycles to form its result.

The mu~uplication of two binary numbers is done with paper and pencil by successive lie.,
sequential) additions and shifting, The process is best illustrated with a numerical example. Let
us multiply the two binary numbers 10 11 1 and 100 11:

10 1 1 1 multiplicand
1001 1 multiplier
10111

101 11
00000

00000

437 1101 10101 pmduct

The process consists of successively adding and shifting copies of the multiplicand. Succes-
sive bits of the multiplier are examined, least significant bit fust. If the multiplier bit is 1, the
multiplicand is copied down; otherwise, 0's are copied down, The numbers copied in succes-
sive lines are shifted one position to the left from the previous number. Finally, the numbers
are added and their sum forms the product. The product obtained from the multiplication of two
binary numbers of n bits each can have up to 2n bits, It is apparent that the operations of
addition and shifting are executed by the algorithm.
When the multiplication process is implemented with digital hardware, it is convenient to

change the process slightly, First, we note that, in the context of synthesizing a sequential ma-
chine, the add-and-shift algorithm for binary multiplication can be executed in a single clwk cycle
or over multiple clock cycles. On the one hand, a choice to form the product in the time span of a
single clock cycle will synthesize the circuit of a parallel multiplier like the we discussed in Section
4.7. On the other hand, an RTL model of the algorithm adds shifted copies of the multiplicand to
an accumulated partial product, The values of the multiplier, multiplicand, and partial product are
stored in registers, and the operations of shifting and adding their contents are executed under the
control of a state machine. Among the many possibilities for distributing the effort of multiplica-
tion over multiple clock cycles, we will consider that in which only one partial produGt is formed
d accumulated in a single cycle of the clock. (One alternative would be to use additional hardware

to form and accumulate two padid prwlucts in a dock cycle, but t&b wollkl q u h more lugic
~aadeithwhter~Csorad~~~)Insteadofprovidiag~circllitstostoaed
addsimultaumusiy asmanybinary Iwmbersashream l ' s intf ie~i t i s fesgexpensive
to provide only the hardware needed to sum two binary numbers and tbe prW prod-
ucts in a register. Second, instead of abifting the mdtiplicd oo the ldt, th - * being
f o m m e d i s ~ t o t h e F i g h t . T h i s l ~ ~ ~ ~ ~ p r o d u c t a a d ~ ~ ~ i a t h E l a q r d r e d
~~epositicnt~.'Ihini,~~~~tofobemdtiplieris0,~ism,aeed~add
a I l t l l s t o ? h e ~ p r o d u c t , s ~ d a i n g s o w i l f n o t a l ~ i t s ~ ~ .

A block diagram for the sequentid binary multiplier is s b w n in Pig. 8.14(a). a d rbe register
configuration of the datapath is shown in Fig. 8.14fb). The multiplicand is stored in re* B, * ' I

Sectbn 8.7 Sequential Binary Multlpller 373

the multiplier is stored in register Q, and the partial product is formed in register A and stored
in A and Q. Aparallel adder adds the contents of register B to registerd. The C flip-flop stores
the carry after the addition. The counter P is initially set to hold a binary number equal to the
number of bits in the multiplier. This counter is decremented after the formation of each par-
tial product. When the content of the counter reaches zero, the product is formed in the dou-
ble register A and Q, and the process stops. The control logic stays in m initial state until Start
becomes 1. The system then performs the multiplication. The sum of A and B forms the n mod
significant bits of the partial product, which is transferred to A. The output carry from the d-
dition, whether 0 or l , is transfemd to C. Both the partial product in A and the multiplier in
Q are shifted to the right, The least significant bit of A is shifted into the most significant po-
sition of Q, the carry from C ig shifted into the most significant position of A, and 0 is shift-
ed into C. After the shift-right operation, me bit of the partial product is transferred into Q
while the multiplier bits in Q are shifted one position to the right. In this manner, the least
significant bit of register Q, designated by Q[O], holds the bit of the multiplier that must be
inspected next. The control logic determines whether to add or not on the basis of this input
bit. The control logic also receives a signal, Zero, from a circuit that checks counter P for zero.
Q[0] and a m are status inputs for the control unit. The input signal Start is an external con-
trol input. The outputs of the control logic launch the required operations in the registers of
the datapath unit.

The interface between the controller and the datapath consists of the status signals and the
output signals of the controller. The control signals govern the synchronous register operations
of the datapath. Signal L o a d - ~ g s loads the intend registen of the datapath, Sh@-regs causes
the shift register to shift, Add-mgs forms the sum of the multiplicand and register A, and
Deer-P decrements the counter. The controller also forma output Ready to signal to the host
environment that the machine is ready to multiply. The contents of the register holding the
product vary during execution, so it is useful to have a signal indicating that its contents are
valid. Note, again, that the state of the control is not an interface signd between the control unit
and the datapath. Only the signals needed to control the datapath are included in the interface.
Puthg the state in the interface would require a decoder in the datapath, and require a wider
and more active bus than the control signals alone. Not good.

ASMD Chart

The ASMD chart for the binary multiplier is shown in Fig. 8.15. The intermediate form in
Fig. 8.15(a) annotates the ASM chart of the controller with the register operations, and the
completed chart in Fig. 8.15(b) identifies the Moore and Mealy outputs of the controler.
Initially, the multiplicand is in B and the multiplier in Q. As long as the circuit is in the ini-
tial state and Start = 0, no action occurs and the system re& in state S-idle with Ready
asserted. The multiplication process is launched when Start = 1. Then, (1) control goes to
state S d d , (2) register A and carry flip-flop C are cleared to 0, (3) registers B and Q are
loaded with the multiplicand and the multiplier, respectively, and (4) the sequence counter
P is set to a binary number n, equal to the number of bits in the multiplier. In state S-udd,
the multiplier bit in Q[O] is checked, and if it is equal to 1, the multiplicand in B is added to
the partial product in A. The carry fmm the addition is transferred to C. The partial product

374 Chapter 8 Design at the Register Trim* LHcl . - - - ,. . am. A . . . r

I 7 P <= P-l Decrement courcr

(C , A) < = A + B
Add rnultipldcnnd
to shipd sum

[C A, QJ <= {C, A, Q) >> f

&/it by one bit

FlGURE &IS
ASMD chart for Mnrry rnvhiplkr

i n A a a d C i s I e f i u n c h a n @ ~ Q C D J = O . T h e c o l ~ l l ~ P h ~ b y 1 r r g a d e ~ ~ 0 f
the value of Q[#], so D e c r y is foaned in st& S-udd as a Moore output of tbe conefoller.
In 11th cases, the next shte is S;Pk@. fr.gbtm C, A, and Q are ambhd into one compite
register CAQ, denoted by the -' {C, A, Q), and its wnknts arc shifted once to
the right to obtain a new partial pduct. Thie shift opation is qbl i zd in the flowchart
with the Verilog logical right-shift -01, >>. It is equivalent to the following statement
in register transfer notation:

Shift 6at CAQ, C t 0

Section 8.7 Sequential Binary Multiplier

In terms of individual register symbols, the shift operation can be described by the following
register operations:

Both registers A and Q are shifted right. The leftmost bit of A, designated by A,-1, receives
the carry from C, The leftmost bit of Q, or en-,, receives the bit from the rightmost position
of A in A*. and C is reset to 0. In essence, this is a long shift of the composite register CAQ
with 0 inserted into the serial input, which is at C.

The value in counter P is checked after the formation of each partial product. If the contents
of P are different from zero, status bit Zem is set equal to 0 and the process is repeated to form
a new partial product. The process stops when the counter reaches 0 and the controller's status
input Zeru is equal to 1. Note that the partial product formed in A is shifted into Q one bit at a
time and eventually replaces the multiplier. The final product is available in A and Q, with A
holding the most significant bits and Q the least ~ i g ~ c a n t bits of the product.

The previous numerical example is repeated in Table 8.5 to clarify the multiplication process.
The procedure follows the steps outlined in the ASMD chart, The data shown in the table can
be compared with simulation results,

The type of registers needed for the data processor subsystem can be derived from the
register operations listed in the ASMD chart. Register A is a shift register with parallel load to
accept the sum from the adder and must have a synchronous clear capability to reset the reg-
ister to 0. Register Q is a shift register. The counter P is a binary down counter with a facility

Table 8.5
Numerical Example For Blnaty Mulclplkr

Multiplicand B = 101 11 = 1 TH = 2310 Multiplier Q = 1001 1 = 1 3 ~ = 1910

Multiplier in Q
Qo = h a d d B
First partial product
Shift right CAQ
Q0 = 1; add B
Second partial product
Shift right CAP
Qo = Q shift right CAQ
Qo = 0; shift right CAQ
Qo = 1; add B
Fifth p m a l prcduct
Shifi right CAP
Final product in AQ = 01 101 101012 = lb5H

376 Chapter 8 Design at the Register Trarrrficr -1

t o p a r a l l e l l d a b i n a r y c o n s m t . T 2 l e C ~ Q o a ~ t b ~ r a ~ t b e h p u r ~
and have a synchron~us clear. Registers B ad Q need a padel Ioad cqddity in d e r to re-
oeive the multiplicaud and multiplier prior to &e start of tbe multiplidm -

8.8 CONTROL LOGIC
The &sign of a digital system can be divided into two parts: the degign of the regher ~rans-
fers in the datapath unit and the design of the wnwl logic of tk 001lml unit. l b e c~wttnl
logic is a finite state machine; its Mealy- and M m t p outputs control tk @0~18 ofthe
data@ The inputs to the control unit are the primary (external) inputs and tbe i u d sta
tns signals fed back from thedatapshto checoadler. TkThegnoftbegysttmcanbesyn-
c H e s i z e d h m B T 1 , ~ m d e r i v e d f r o m t h e A S M D c h a t t . ~ v ~ , a ~ d e s i g n
must derive the logic governing the inputs to the flipflops holding the state of the ammller.
Tbe idomation needed to form the state diagram of the cmtmk b m m i d in the
A S M D c h a r t , s ~ t h e ~ b ~ d a a t ~ ~ ~ b o x e s a r * t b e ~ o f t h e ~ -
tial circuit. The diamond^ blmh tW designate decision boxas &mk the logical am-
d i t i w s f b r t h e n e x t s t a t e ~ i n t b e ~ d h g m m

As an example, the control statedbgmmforthebinary~pIierdevelqd hthprwi-
ous section is shown in Fig. 8. lqa). The Information for the diagram is Eaken directly from the

StateTdfion

Prom 32

s m
S-idle S4dd
&add s A @

SdkiP

w*-

InilMstatc
A<=O,C<=O,P<=dp~vidak
P < = P - 1
if(Q[OJ)tben(A<=A + B , C < = C a

shiftright {CAP], Cc=O

@I
WUIB 8.16
C - l s p e a Z R c a t i o n r f W b l n q ~

SectJon 8.1 Control logic 377

ASMD chart of Fig. 8.15. The three states S-idle through S-skj? are taken h m the rectangu-
lar state boxes. The inputs Start and Zero are taken from the diamond-shaped decision taxes.
The register transfer operations for each of the three states are listed in Fig. 8. lqb) and are taken
h m the corresponding state and conditional boxes in the ASMD chart. Establishing the stag
transitions is the initial fwus, so the outputs of the controller are not shown.

There are two distinct aspects with which we have to deal when implementing the control
logic: Establish the required sequence of states md provide signals ta control the register op-
d o n s . The sequence of states is specifled in the ASMD chart or the state diagram. The sig-
nals for controlling the operations in the registers are specified in the register transfer statements
annotated on the ASMD chart or listed in tabular format. For the multiplier, these signals are
Load-regs (for parallel loading the registers in the datapath unit), DecrJ (for decrementing
the counter), Add-regs (for adding the multiplicand and the partial product), and Shift-regs
(for shifting register CAQ) , The block diagram of the control unit is shown in Fig. 8.14(b).
The inputs to the controller are Start, Q[], and Zero, and the outputs are Ready, Load-regs,
Decr-P, AdLregs, and Shift-regs, as specified in the ASMD chart. We note that Q[0] affects
only the output of the controller, not its state transitions. The machine transitions from S-add
to S-sh~? unconditionally,

An hprtant step in tbe design is the assignment of coded binary values to the states. The sim-
plest assignment is the sequence of binary numbers, as shown in Table 86. A similar assignment
is the Gray code, according to which only one bit changes when going born one number to the
next. A state assignment often used in conmI &sign is the ow-hot assignment. This assignment
uses as many bits as there are states in the circuit, At any given time, d y one bit is equal to 1
(the one that is hot) while alI others are kept at 0 (all cold). This type of assignment uses a flip-
flop for each state. Indeed, one-hot encoding uses more flipflops than other types of coding, but
it usually leads to simpler decoding logic for the next state and the output of the machine. Because
the decding logic does not become more complex as states are added to the machine, the s p d
at which the machine can operate is not limited by the time required to deccde the state,

Since the controller is a sequential circuit, it can be designed manually by the sequential logic
procedure outlined in Chapter 5. However, in most cases this method is difficult to carry out
manually because of the large number of states and inputs that a typical control circuit may have.
kP a consequence, it is necessary to use specialized methods for control logic design that may
be considered as variations of the classical sequential logic method. We will now present two
such design prwedures. One uses a sequence register and decoder, and the other uses one flip-
flop per state, The method will be presented for a small circuit, but it applies to larger circuits
as well. Of course, the need for these methods is eliminated if one has software that automat-
ically synthesizes the circuit from an HDL description.

Table 8.6
State Assignment fur Control

State Blnaty Gray Code One-Hot

378 Chapter 8 Design at the Rcgirber Transf# Level

The sequence-register-and- (manual) method, as the name implies, uses a register for
themntrols~ksandadecoderto~an~toorrespoadingm~hoftbestates.~
decoder is not needed if a one-hot c d e is used) A register with n flip-flops can hvc up to 2"
states, and an n--2'-line decoda has up to 2n outpts, An n-bit qwace regism is esseatially
a circuit with n fipflops, together with the h a t e d gaw that effect their stabe trmsitim.
The ASMD chart and the state diagram fur lhe controller ofthe binary multiplier have three

states and two inputs. mere ia no need to cmhkx QCOJ.) To implement dx M~gn with a sc
quence register and deooder, we need two Epflups for the register and a ~~+t&our-line de-
coder. The outputs of the decoder will form the Moore-type outputs of the cwmller w y .
The Mealy-type outputs will be formed from the Mwre ou@m& and the inpats.

The state table for the finite state machine of the conmk i shown in 'IBbt 8.7. It is &
rived dircctly from the ASMD chart of Fig, 8.150 or the state diagram of Fig. 8.1qa). We des-
ignate the two flipflops as GI and & and assign the binary statedi 00,01, and 10 to Sjdle ,
S H , and S ~ h i , respectively. Note that the inpllt cdumns have don't-care entrim wbenev-
er the input variable is not used to determine the next state 'We outputs of the -1 circuit
are designated by the names given in the ASMD chm. The pamcular M-type output vari-
able that L squal to f at any given time is demnhed fmm the equivalent binary value of the
pment state. Those o u i p variables are sbadcd in Table 8.7. Thus, when the p m m state is
GIGo = 00, output Ready must be equal to 1, while the other o q m s remain at 0. S i the
Moore-type outputs are a function of only the present sW, they tau be generated with a de-
OOaer~thavingthetwoinput~G~ d~andusingthreeofthedeooderwtputs T,thraugh
T2, as shown in Fig. 8.17(a), which does not include the wiriog for the serate fdhack.

The state machine of the confrolkr can be designed h m rhe state table by means ofthe c h -
sical procedure presented in Chapter 5. Tbis example ha$ a small n u m h of stam and jnputs,
so we could use maps to simplify the Boolean Wens. In most control logic applicatiolls, the

Present Mext
State 1- m

Present-State
1 3 : , t)

symbol cl Gp - wol G Go ha$#
S-idle 0 0 0 X X 0 0 0 0 0 0
s-idh 0 0 1 X X 0 1 1 0 0 0
S# 0 1 x o x 1 0 " O F 0 0
S# 0 1 X 1 X 1 0 0 0
S3h$ 1 0 x x 0 0 6
SAift 1 0 X X 1 0 0 0 0 0 0

QPI

Zero

clock
resetb

S d o n 8,8 Cwtrol Logic 379

Next Sme Logic

clock

FIGURE 8.17
f q i c diagram of control for binary multiplier uslng a sequence reglrter md decQdat

Chrrptw 8 Deslgn at the Reglster Transfer Level

number of stam and inputs is much ma. In general, the application of the classical methad
an excemive amount of w d to obtain the s h p l M e d Input equations for the flipflops

d i s p i o n e t o ~ , T h e d e s i p ~ b e s i m p ~ i f w e ~ ~ ~ ~ m t h F f ~ t t h a t
the decoder outputs me available for use in the design. Inatead of using flipflop outputs as the
present-state conditions, we use the miputs 4th h c d r to nhepmm-m cORdi-
tion of the sequential c i d . Mimmve% hatead of using maps to h p t i f y die flipflap up-
tiom, we can obtain them - by impction of the s- table. For example, from tbe
~ t - ~ d t i ~ 1 1 9 i n h ~ ~ ~ e W t b a t t b e n e x t ~ o f C ; I i s ~ t o 1 w k n t h e
preseatsmi9S~disequal~Owbentl3e~~~S-~orS~niff.~~an-

where is the D input of flipflop GI. ShniMy, the D input of Go k

& = To Start + T2 Zero'

When deriving input equations by inspection from the s w table, we cannot be aiure that the
Boolean functions have been s i m p E d in th best pabb way. (S y n b k tmls & care of
this dstail autwaatically.) In gamd, it is advisable to analyze the circuit to ensurc that the
equations derived do indeed p r o h e the reqPired state transitim.
The logic diagram of the d cimtit is dram in Fi. 8.17@). It cow&& of a re* with

two fipfIops GI and Go and a 2 X 4 decodek 'Ihe ouputs of tbe dtcoda are used to gencr-
ate the input^ to the next-state logic as well as the conml o i q u ~ . The outpub of the aonmller
should be connected to the datapath to sctivate the r a q M re- opdons.

Qndbt Ddgm (One fllp-Flop per State)

Artother method of control logic design is thc one-hot assignment, which in a qum-
tial circuit with one flipflop per Only one oftbe flipflaps wdns a 1 at aoy time, dl
othtrsareresettoO.T&e~lel~~one~Oopmm~updertbe~~~ltrolof
decision logic. In such a conQndon, each flipflap a &a& that is omly
when the control bit is st to it.

This method uses the maximum number d £lipflap for the v t i a l M t . For exrun-
pie, a s q m t i a l circuit with 12 requhs a minimnm dfour flipflw By canea9t, witb
themetbodofmef l ipf lop~state , ihec ircui t~ 1 2 f l i p f l ~ o n e f o r e a c h ~ . A t
f i r s t g t r m c e , i t m a y s e e m ~ t b i s ~ ~ d ~ ~ c o s t , ~ m o r e ~ a o P g m
u s o d . B u t t h e m e t h o d o ~ s w r t e ~ ~ m a y ~ g ~ t k ~ O f P e s d v a n t a g e i s ~
simplicity witb whichthe logic crrnbedtsigdby bpction oftk ASMDchart orthe state
d i a g t a m . N o s t a t e m e x c l ~ ~ ~ ~ ~ i f D - t y p c ~ p f l ~ a ~ e e m p 1 ~ T h e ~
h o t m e t b o d o f f e r s a s a v i n g s i n ~ ~ r m ~ i n ~ d ~ W t y , a t s d a p o s -
sibledecreascin thetotdwmberof gatw,sinceadedu ism needed

' Z l a e d & g n ~ w i l l b e ~ b y o b t a i a i n g t b e ~ ~ ~ b y t k s t a o :
diagram of Fig. 8. Iqa). Since k r e are three staka in tbe stats dhgram, we cboase fhnx D flip-
flops and label their outputs Go, GI, a d Gz, mmpudhg to S k k , S d , and Sqh@, -
tidy, The input equations for r d n g each flipxlop to 1 a determined from tk pnsent stape and

the input amdikions along the corraspondin% diwtd lines going hto the SWL RK exampIe, Dm,
dteinput~ftipflopGo,isset~1ifthemachineisins~~aadStartisnotasserted,wifthe
m c h k is in state Gz a d a m is asserted. Thae conditions are s p d f d by the input equatim:

hO = GO Start' + G2 Zero

In fact, the condition for seaing a flip-flop to 1 is obtained directly from the state diagram,
horn the condition specified in the directed lines going into the corresponding flip-flop state
ANDed with the previous flipflop state.. K h is more than one direct4 line going iuto a state,
ali conditions must be ORed. Using this prodm for the other three flipflops, we obtain the
remaining input equations:

DGl = GO Start + Gz Zero'

Dm = GI

The logic diagram ofthe -hot controller (with one flipflop per stak) is shown in fig. 8.18.
The circuit msists of three D flip-flops labeled through G2, together wiah the associated gates

QPJ

Zem

clock

FIGURE a18
Logk diagram for one-hot state eonhotbr

U Chapter 8 Drdgn at the Register Tramhw Lnnl

specified by the input equations. Initially, flipflop must be set to 1 and all flipflops
must be reset to 0, so that the flip-flop representing the initial state is d i e d . This can lx durn
by using an asynchronous preset on flipfbp and an asynchrunous clear for the oher £lip
flops. Once started, the controller with one flipflop ~r state wil l propagate from one state to
the otber in the proper manner. Only one flipflop will be set lo 1 with each clock edge: all
othm are reset to 0, because thek D inputs are equal to 0.

8.9 HDL DESCRIPTION OF B I N A R Y MULTIPLIER

A second example of an HDL description of an RTL design is given in HDL Example 8.5. The
example is of the binary multiplier designed in Section 8.7. For simplicity, the entire descrip-
tion is ''flattened" and encapsulated in one module, Comments will identify the controller and
the datapath. The first part of the description dec1m.a all of ofthe inputs and ouputs as specrfied
in the blwk diagram of Fig. 8.1qa). The macbine will be for a five-bit &tapah
to enable a comparison bemm its simulation data and the result of the multiplication with the
numerical example listed in Table 8.5. The same model can be wed for a datapath having a
Merent size merely by changing the value of the parameters. The -nd part of the &scrip
tion declares dl registers in the controller and the datapath, as well as the we-hot encdhg of
the states. The third part specifies implicit combinational logic {continuous assignment me-
ments) for the concatenated register CAQ, the Zero status signal, and tlx Ready output signal.
The continuous assignments for &ro and Ready are accomplished by assigning a Boolean ex-
pression to their wire declarations. The next section describes the conml unit, using a single
edge-sensitive cyclic behavior to &acribe the state transitions, and a level-sensitive cyclic be-
havior to describe the combinational logic for the next state and the outputs. Again, note that
default assignments are made to rutstate, Load-regs, DecrJ, Add-mgs, and Skift-mgs.
The subsequent logic of the case statement assigns their value by exception. The state transi-
tions and the output logic are written directly b r n tlw. ASMD chart of Fig. 8.1 S(b).

The datapath unit descrihs the register operations within a separate edgesensitive cyclic
behavior. (For clarity, separate cyclic behaviors are used; we do not mix the description of the
datapath with the description of the controller.) Each control input is decoded and is used to
specify the associated operations. The addition and subtraction operations will be implement-
ed in hardware by combinational logic. Signal L m d s g s causes the counter and the Mher reg-
isters to be loaded with their initial values, etc. Because the cwaoller and datapath have been
partitioned into separate units, the control signals completely specify the behavior of the data-
path, explicit information about the state of the controller is not needed and is not made avail-
able to the datapath unit.

The next-state logic of the controller includes a &fault case item to direct a synthesis tool
to map any of the unused codes to S a l e . The default case irem and the default assignments
preceding the case statement ensure that the machine will recover if it somehow enters an un-
used state. They also prevent unintentional synthesis of latches. @membeb a synthesis tool
will synthesize latches when what was intended to be combinational logic in fact fails to com-
pletely specify the input-output function of the logic.)

S ectlon 8.9 HDL Description of Binary MuttFpller

-la Sequ~~-B~-Mu lUp I l e r (Product, Ready, Multlplleand, Multiplier, Start,
w M - b) :
I1 Mauk eonfigurntion: fiwlt datapath
prnmrtsr dp-width = 5; 11 Set to wldth of dabpath
output [2*dp_wldth -1 : 01 Product;
output Ready;
lnput [dp-wldth -1: Oj Multipllcend, MulUplier;
Input Start, do&, me-b;

BC-size = 3; /I Size of bit wuntw
S-Idle = 3WO1, I1 one-hd code
S-add = 3'Mf 0,
S-uhlff = 3'bI 00;
state, next-state;

A, 8, a; I/ Shed for dabpath
c;
p;
Load-regs, Dm-P, Add-regs, 8hRmgs;

asslgn Product = (A, Q);
wlm a m = (P = 0); I/ taunter is zero

11 Zero = -IF; /I amative
w l n Ready = (state == S-idle); /I controller status

11 control unit
rlwaya @ t~oswlge dock, negedw reset-b)

W (-rwet-b) state c= S-Idle; el- &ate s= next-atate;

rlwmya Q (state, Start, Qp], Zero) h g l n
next-state = S-ldb;
Load-mgS= 0;
Ober-P = 0;
Add_- = 0;
ShHtHtmgB = 0;
w e (st&te)

S-Idle: begln If (Start) next-state = 8-add; Lmd-regs = 1 ; end
S-add: k g l n nestate = S-shift Dew-P = I; If (QIOI) Ack-regs = 1; mnd
S-$hi win Shift-regs = 1 ; if (Zm) ne~state = S-Idle;

else nextstate = S-add; and
d h u k next-state m $-idle;

Chapter 8 Design at the Il'eglster Transfer Level

endcase
end

I/ data path unit
always @ (poredgm clock) begln
H (Load-regs) begin
P c= dp-Am;
A c= 0;
C c= 0;

B <= Mukplknd:
Q r= Multiplier:

end
H (Add-reg81 {C, A) 4- A * 8;
If (Shif-regs) {C, A, Q} - (C, A, Q} ** d;

P (Decr-P) P <= P -1:
end

endmoduk

Testing tha Muhiplief
HDL Example 8.6 shows a test h c h for testing the multiplier. The inputs and wqruts are
the 8ame as those shown in the block diagram of Fig. 8.1 *a). It is naive to conclude that
an HDL description of a system is correct on the h i s of the output it gemrates under the
application of a few input signals. A more ettaagic aQproach to testing and v d c a t i o n
exploits the partition of the design into its datapath and control unit. This partition supports
separate verification of the controller aad the da&apth. A separate test bench can be devel-
oped to verify that the datapa& executes each m t i m and generates status signals cor-
rectly. After the datapath unit is verified, the next step is to verify tha! each conml signal
is formed correctly by the control unit. A sqwak test bench can verify hat the u m t d unit
exhibits the complete functionality specified by the ASMD chart (i.e., that it makes the cor-
rect state transitions and asserts its outputs in response to the e x m a 1 input$ and the stams
signals).

A verified control unit and a v&ed datapath unit together do aot guarantee lbat tbe sys-
temwill~e~y.'IAefiPal~inthedGgign~htohtepthe~mod-
els within a parent module and verify the funceiomlity of the overall machine. TEc ipbrface
h m n the controtler and the datapath must be examined in order to verify that the ports
are connected correctly. For example, rr h m m h in the liskd order of signah may not be

by the compiler. After (he data@ unit and the cmm1 unit have k e n d e d , a
third test bench should verify the sp5fwd functionality ofthe complctt system. In mce,
this requires writing a comprehmsive test plan iden- that functionality. For example,
the test plan would identify the need to verify that the sequential multiplier asserts the sig-
nal Rgady in state S-idle. The exmk to write a test plan is nac academic: The quality and
~ d t h e t e s t p l m & ~ t t h e w o r t b o f t b e ~ ~ & o r c . T h e ~ p h ~ d e s e b e
development of the test bbnch and in- the likelihood that the fina design wil l match
its specification.

Section 8.9 HDL Description of Binary Multlpller 385

Testing and verifying an HDL model usually requires access to more information than the
inputs and outputs of the machine. Knowledge of the state of the control unit, the control sig-
nals, the status signals, and the internal registers of the datapath might all be necessary for
debugging. Forhmately, Verilog pmvides a mechanism to hierarchically de-reference identifiers
so that any variable at any level of the design hierarchy can be visible to the test bench.
Procedural statements can disphy the information required to support efforts to debug the
machine. Simulators use this mechanism to display waveforms of any variable in the design
hierarchy. To use the mechanism, we reference the variable by its hierarchid path name, For
example, the register P within the datapath unit is not m output port of the multiplier, but it can
lx referenced as M0.P. The hierarchical path name consists of the sequence of module identi-
fiers or block names, separated by periods and specZyhg the location of the variable in the
design hierarchy. We also note that simulators commonly have a graphical user interface that
displays all levels of the hierarchy of a design.
The first test bench in HDL Example 8.6 uses the system task $strobe to display the re-

sult of the computations. This task is similar to the $display and $monitor tasks explained
in Section 4.12. The $strobe system task provides a synchronization mechanism to ensure
that data are displayed only after all assignments in a given time step are executed, This
is very useful in synchronous sequential circuits, where the time step begins at a clock
edge and multiple assignments may occur at the same time step of simulation, When the
system is synchronized to the positive edge of the clock, using $strobe after the always
@ (posedge clock) statement ensures that the display shows values of the signal after the
clock pulse.

The test bench module t-Sequntial~inary_Multlplier in HDL Example 8.6 instantiates
the module Sequential BinuryryMultiplier of HDL Example 8.5. Both modules must be included
as source fdes when simulating the multiplier with a Verilog HDL simulator. The result of this
simulation displays a simulation log with numbers identical to the ones in Table 8.5. The code
includes a second test bench to exhaustively multiply fivt-bit values of the multiplicand and
the multiplier. Waveforms for a sample of simulation results are shown in Fig. 8.19. The nu-
merical values of MuEtipkicand, Multiplier, and Product are displayed in decimal and hexa-
decimal formats. Insight can be gained by studying the displayed waveforms of the conml
state, the control signals, the status signals, and the register operations. Enhancements to the
multiplier md its test bench are considered in the problems at the end of this chapter. In this
example, 1910 X 2310 = 43T10, and 17H + ObH = 0ZH with C = 1. Note the need for the
carry bit.

HDL Example 8.6

11 Test bench for the binary multiplier
module t-Sequential-Binary-Multiplier; - .<.
parameter dp-width = 5; I! Set lo width of datapath
wl re [2*dp_width -1 : O] Product; 11 0- from multiplier
wlre Ready;
re Il [dp-wldth -1: 01 Multiplicand, Multiplier; I/ Inputs to multiplier
reg Start, clock, re#-b;

386 Chapter 8 Peslgn at the Register Tra- L e d

RtLlRL 8.19
Slmulatlon waMforms for mw-ht

Man 8 9 HDL Descrlptlon of Binary Multipll& 387

I / Instantiate rnultlpller
Squential-Binary-Mult[plier MO (Product, Ready, Multiplicand, Multiplier, Start, clock,

reset-b);
/ I Generate stimulus waveforms
lnitlal#200 $flnlsh;
Initial
begin
Start = 0;
reset-b = 0;
#2 Start = I; reset-b = 1;
Muttlplicand = 5'blOIl l; Multlpller = 5'bI 001 1;
I 0 Start = 0;

end
lnltlal
begln
dock = 0;
repeat (28) #5 clock = -clock;

end
// Display results and compare with Table 8.5
always @ (poaedga clock)
$strobe ("C=%b A=%b Q=%b P=%b time=%Od",MO.C,MO.A,MO,Q,MO.P, $time);

endmodule

Sirnulatlon log:
C-0 A=OOOOO Q=t 001 1 P-I 01 time=5
C=O A=lOl l l Q=10011 P-100 time=15
C=O A=OlOl I Q=11001 P-100 tlme=25
C=1 A=OOOlO Q=11001 P=011 time=35
C=O A=l0001 Q=01100 P=O1 S time=45
C=O A=lOOOl Q=01100 P=010 time=%
C=O A=OlOOO Q=10110 P=OlO tlme=85
C=O A=01000 Q=10110 P=001 time=75

C=O A=00100 Q=01011 P=001 time=85
C=O A=l I01 1 Q=01011 P=000 tlme=Q5
C=O A=01101 Q=10101 P=OOO tlme=105
C=O A=01101 Q=10101 P=000 time=115
C=O A=01101 Q=10101 P=000 time=125
r Test bench for exhaustive simulation
module t-Sequsntlal_8inary_Mu~plier;
parameter dp-wldtt~ = 5;
wlm [2 * dp-wldth -1: 0] Product;
wire Ready;
WI [dp-width -1 : 01 Multiplicand, Multiplier;
reg Start, clock, reset-b;

It Width of datapath

388 Chapter 8 Design at the mI-r T- -1

Sequential-Binary-Multiplier MO (Product, Ready, Multiplbnd, Multip)i, Start,
c l d , reset-b);

lnstlal #I030000 $finish;
Inltlal begln dock = 0; #5 forever #5 dock = -dock; end
initlal fork
reset-b = 1 ;
#a reset-b = 0;
#3 reset-b = 1 ;

join
lnltial begin #5 Start = 1; end
Inltid begin
#5 Multiplicand = 0;
Multiplier = 0;
repeat (32) #I 0 begln Multiplier = Multiplier + 1 ;
repeat (32) @ (posedge MO.Ready) 5 Multiplicand = Multiplicand + 1 ;

end
end

endmodule
*I

Structural modeling implicitly specities the functionality of a digital machine by W h g
an interconnection of gate-level M w m units. In this form of modeling, a s y n t k h tool per-
forms Boolean optimization and translates the HDL description of a circuit into a netlist of
gates in a particular technology, e.g., CMOS. Hardware design at this level oftea recpim clev-
erness and accrued experience. It is the most tedious and detaiIed form of mdeling. In con-
mt, behavioral RTL maleling specifies functionality abstractly, in in of HDL m o m .
The RTL model does not specify a gatelevel impIementation of h e registers or the logic to con-
ml the operations that manipulate their contents-those task3 are accomplished by a pynthe-
sis tool. RTL modeling implicitly schedules operations by explicitly as- them to clock
cycles. The most abstract fom of b e b i d modeliug M b e s only an ~~ w&mt any
reference to a physical implementation, a set of resources, or a schedule for tkir use. Thus,
algorithmic mdeling allows a designer to explore trade-offs in the space (bardware) and time
domaim, mading processing speed for bardware complexity.

HDL Example 8.7 presents an RIL nmdel and an algdknic model of a binary multiplier.
Both use a level-sensitive cyclic behavior. Ih RTL model expresses ?he f u n c t i d t y of a
multiplier in a single statement. A s y n t b i s tool will m i a t e with tbe muhiplicatiw aperator
a gatelevel circuit equivalent to that shown in Section 4.7. In S i m W w , when either the mul-
tiplier or the multiplicaud changes, the product will be updatd The time requited to form the
@uct will W n d w the delays of h e gates available in the libmy of s tdad
ceb used by h e synthds twl. The secmdmodel is an algodthmic descripeiw o f h mubjplier.
A synthesis tool will unroU the loop d the algorithm and infer the need for a *level circuit
equivalent to that shown in Section 4.7.

Section 8.9 HDL Description af Binary Multiplier 389

Be aware that a synthesis tool may not be able to synthesize a given algorithmic descrip-
tion, even though the associated HDL model will simulate and produce correct results. One
difficulty is that the sequence of operations implied by an algorithm might not EK physically
realizable in a single clock cycle. It then becomes necessary to distribute the operations over
multiple clock cycles. A tool for synthesizing RTL logic will not be able to automatically
accomplish the required distribution of effort, but a tool that is designed to synthesize algo-
rithms should be successful, In effect, a behavioral synthesis tool would have to allocate the
registers and adders to implement multiplication. If only a single adder is to be shared by all
of the operations that form a partial sum, the activity must be distributed over multiple dock
cycles and in the correct sequence, ultimately leading to the sequential binary multiplier for
which we have explicitly desiped the cohtroller for its datapath. Behavioral synthesis tools
require a different and more sophisticated style of modeling and are nm within the scope of
this text.

HDL Example 8.7

11 Behavioral (RTL) descdption of a parallel multiplier (n = 8)
module Mult (Product, Multiplicand, Multiplier);

input 17: 01 Multiplicand, Multiplier;
output reg [15: 0] Product;
always @ (Multlpllcand, Multiplier)

Product = Multlpllcand Mutlplier;
endmodule
module Algorithmic-Binary-Multiplier #(parameter dp-width 5) (

output [2*dp_width -1 : O] Product, Input [dp-width -1 : 01 Multlpllcand, Multiplier);
mg [dp-wldth -4: 01 A, 61 Q; / I Sized for datapath
refa C;
Integer k;
aaslgn Product = {C, A, Q};
always @ (Multiplier, Multlplicard) begin

Q = Multiplier;
B = Multiplicand;
C=O;
A = 0 ;
for(k= 0; k <=dp-width-I; k = k + 1) begin
H(Q[O]) {C, A) = A + B;
{C, A, Q) = {C, A, Q} >> 1;

end
end

endmodula
module t-Algorithmic-Binary-MuI~pIier;
parameter dp-width = 5; 11 Width of data path
wlm [2* dp-width -1: 01 Product;
nrg [dp-wldth -1: 01 Multiplicand, Multiplier;
integer Exp-Value;

W Emr;
A@orithmlc-Binary-Multiplier MO (Product, Multiplicand, Multiplier);

it Error detection
initial# 1030000 finish:
always @ (Product) begin

Exp-Value = Multiplier * Multiplicand;
I1 Exp-Value = Multiplier * Multiplicand +1; I / Inject error to confirm det-n
Error = Exp-Value A Product;

end
It Generate multiplier and multiplicand exhaustively for 5 bi operands

inltlal begln
#5 Multiplicand = 0;
Multlpller = 0;
repeat (32) #I 0 begin Multiplier = Multiplter + 1 ;

repeat (32) #5 Multiplicand = Multiplicand + 1 :
end

end
endmodule

8.10 DESIGN WITH MULTIPLEXERS

The s e q u e n c e - r e g i s t e r - a n d scheme for the design of a controller has three parts: tk flip-
flops that hold the binary state value, the decoder that generates the conml outputs, and tbe gates
that determine the next-state and output signals. In Section 4.1 I, it was shown that a combi-
national circuit can be implemented with multiplexers instead of individd gates. Replacing
the gates with multiplexers results in a regular pattern of three levels of components. Tbe first
level consists of multiplexers that determine the next state of the register. The second level
contains a register that holds the present binary state. The third level has a decoder that asserts
a unique output line for each control state. These thee components are predefmd staadard cells
in many integrated circuits.

Consider, for example, the ASM chart of Fig. 8.20, consisting of four states and four con-
trol inputs. We are interested in only the control signals governing the state sequence. Tbese
signals are independent of the register operations of the datapath, so the edges of the graph are
not annotated with datapath register oprations, and the graph does not identify the output sig-
nals of the controller. The binary assignment for tach state is i n d i a at the upper right comer
of the state boxes. The decision boxes specify the state transitions as a function of the four
control inputs: w, x, y, and z. The three-level conml implementation, shown in Fig. 8.21, con-
sists of two multiplexers, MUX 1 and MUX2; a register with two flipflops, GI and Go; and a
decoder with four outputs-do, dl, d2, and d3, corresponding to S-0, S-I, S-2, and S-3, re-
spectively. The outputs of the state-register flipflops are applied to the decoder inputs and also
to the select inputs of the rnultip1exers. In this way, the present state of the register is used to
select one of the inputs from each multiplexer. Tbe outputs of the multiplexers are then applied
to the D inputs of GI and Go. The purpose of each multiplexer is to produce an input to its cor-
respndiag flip-flop equal to the binary value of that bit of tbe next-state vector. The inputs of

Section 8.1 0 Design wlth Multiplexers

FIGURE 8.20
Example of ASM chart wlth four control inputs

the multiplexers are determined from the decision boxes and state inmihns given in the ASM
chart. For example, state 00 stays at 00 or goes to 01, d e p d h g on fb value of input w. Since
the next state of GI is 0 in either case, we p h a signal equivalmt to logrc 0 ih MLTXl input
O.ThenextstateofGoisOifw = O a n d l i f w = l .S~thenextscateof~ isqurr l tow,
we apply control input w to MUX2 input 0. This means b t when the select inputs of the md-
tipltxers are equal to present state 00, the outputs of the multiplexen provide the binary value
that is transferred to the register at the next clock pulse.

To facilitate the evaluation of the multiplexer inputs, we a table slmwing the input
conditions for each possible state transition in the ASM chart. Table 8.8 gives this W o n
for the ASM cbaa of Fig. 8.20. There are hva transitions h m p m a t state 00 or 01 and b e e
from present state 10 or 11. The sets of transitions are qm&d by bhntal k arxloss the
table The input conditions listed in the table are obtained from &e decision boxes in lk ASM
chart.Forexample,hmFig.8.20,wenote~~s~01willgotone~state10ifx = 1
or to next state 11 if x = 0. In h e table, we n d c t h e input codtiom as x and x', m v e l y .
The two columns under "multiplexer input$' in the table s@fy the input valses that must be
applied to MUXl and MUX2. The muhiplaex input for each pmmt state is detemkd h r n
the input conditions when the next state of the fiipflop is qd to 1. nus, dter present state
01, thenext stateof GI is alwaysequalto 1 andthenextstakofGoisqd totkamplement
ofx.Therefure, theinputofMUX1 ismadeequalto 1 dthatofMUX2tox1 when tbepres-
e n t s c a t e o f t b e r e @ ~ i s O l . h ~ ~ l e , I l f t e r ~ ~ lO, thenext~dC;1rnust
be equal to 1 if the input mditi01~s are yz' or yz Wben these two Bmlm barns are ORed to-
gether and h n simpEd, we obtain the single biaary variable y, as d h t e d m the table. The
nextstateof~isequalto1 i f l h i n p u t ~ m a r e y z = ll.Ifthenexts&ateofC;IrtmainS
at 0 after a given present we place a 0 in the muhiplexer h p t , as shown in present state
OOforMUX1.If~next~ofGlisalways 1, weplacea l i n t h e m u l ~ i q u t , a s s h o w n
in present state 01 for MUXI. The other mtck for MUXl a d MUX2 are derived in a similar

S d o n &I0 Deslgn with Muttiplexers 393

Table 8.8
Muftrplexer Input Conditions

Present Next Input
State State Conditlon Inputs

61 Go GI Go s M U X l MUX2

0 0 0 0 w'
0 0 0 1 W 0 W

0 1 1 0 x
0 1 1 1 x ' 1 x '
1 0 0 0 Y'
1 0 1 0 YZ'
1 0 1 1 Y Z yr' + yz = y YZ

1 1 0 1 Y'Z
1 1 1 0 Y
1 1 1 1 y'z' f y'z' = y i- z'

manner. The multiplexer inputs frum the table are then used in the control implementation of Fig.
8.21. Note that if the next state of a flip-flop is a function of two or more control variables, the
multiplexer may q u i r e one or more gates in its input. Otherwise, the multiplexer input is equal
to the wniml variable, the complement of the control variable, 0, or 1.

Design Example: Count the Number of Ones in a Register

We will demonstrare the multiplexer implementation of the logic for a contml unit by means
of a &sign example--a system that is to count the number of 1's in a word of data. The example
will also demonstrate the formulation of the ASMD chart and the implementation of the data-
path subsystem.
From among various alternatives, we will consider a ones counter consisting of two regis-

ters R l and R2, and a flip-flop E. (A more efficient implementation is considered in the prob-
lems at the end of the chapter.) The system counts the number of 1's in the number loaded into
register RI and sets register R2 to that number. For example, if the binary number loaded into
Rl is 101 11001, the circuit counts the five 1's in RI and sets register R2 to the binary count 101.
This is done by shifting each bit from register R l one at a time into flip-flop E. The value in E
is checked by the control, and each time it is equal to 1, register R2 is incremented by 1.

The block diagram of the datapath and controller are shown in Fig. 8.22(a). The datapath
contains registers R l , R2, and E, as well as logic to shift the leftmast bit of Rl into E. The unit
also contains logic (a NOR gate to detect whether RI is 0, but that detail is omitted in the
figure). The external input signal Start launch the @on of tbe A, Ready indicates
the status of the machine to the external environment l k controI1er has status input signals
E and Zero from the datapath. These signals indicate the wnkmts of a register holding the
MSB of the data word and the condition that the data word is 0, respdvely. E is the output
of the flip-flop. Zero is the output of a circuit that checks the contents of register R l for d l 0's.
The circuit produces an output Zero = 1 when Rl is equal to 0 (i.e., when R1 is empty of 1 's).

394 Chapter 8 Design at the Register Transfer Lewl

clock

count

@I
RtURE 8.22
Block dlagram and ASMD chart for muntof4ner dblt

A preliminary ASMD chart showing the state sequence and the register operations is il-
lustrated in Fig. 8.22(b), and the complete ASMD chart in Fig. 8.22(c). Asserting Start with
the controller in S-idle transfers the state to S-I, concurrently loads register R l with the bi-
nary data word, and a s the cells of R2 with 1's. Note that incrementing a number with all
1's in a counter register produces a number with all O's, Thus, the first @ansition from 3-1 to
S 2 will clear R2. Subsequent transitions will have R 2 holding a count of the bits of data that
have been processed. The content of R1, as indicated by Zem, will also be examined in S-1.
If R1 is empty, Zero = 1, and the state returns to $-idle, where it asserts Ready. In state SJ,
Incr-R2 is asserted to cause the datapath unit to increment R2 at each clock pulse. If RI is not
empty of l's, then Zero = 0, indicating that there are some 1's stored in the register. The
number in R1 is shifted and its leftmost bit is transferred into E. This is done as many times
as necessary, until a 1 is transferred into E , For every 1 detected in E, register R2 is incremented
and register R l is checked again for more 1's. The major loop is repeated until dl the 1's in
R l are counted. Note that the state box of S-3 has no register operations, but the block asso-
ciated with it contains the decision box for E. Note also that the serial input to shift register
R l must be equal to 0 because we don't want to shift external 1's into R1. The register RI in
Fig. 8.22(a) is a shift register. Register R2 is a counter with parallel load. The multipIexer
input conditions for the control are determined from Table 8.9. The input conditions are
obtained from the ASMD chart for each possible binary state transition, The four states are
assigned binary values 00 through 11. The transition horn present state 00 depends on Start.
The transition from present state 0 1 depends on Zero, and the transition from present state 11
on E. Present state 10 goes to next state 11 unconditionally, The values under MUXl and
MUX2 in the table are determined from the Boolean input conditions for the next state of G1
md Go, respectively.

The control implementation of the design example is shown in Rg .8.23. This is a three-level
implementation, with the multiplexers in the first level. The inputs to the multiplexers are ob-
tained from Table 8.9. The Verilog description in HDL Example 8.8 instantiates structural mod-
els of the controller and the datapath, The listing of code includes the lower level modules

Table 8,9
Muttiplsxrr lnput Conditions for Design Example

Present Next Input Multl plexer
State State Condltlons Inputs

GI Go GI Go MUXl MUX2

0 0 0 0 Start'
0 0 0 1 Start 0 Start

0 1 0 0 a m
0 1 1 0 Zero' Zero' 0

1 0 1 1 None 1 I

1 1 1 0 E '
1 1 0 1 E E' E

0

Zero'

1

E'

WCURE 8.23
Control tmplemeMatlon for mmt-d-ones chruA

implementing their structures. Note that the datapath unit does not have a & signal to clear
the registers, but the models for the flip-flop, shift register, and counter have an active-low
reset. This illustrates the use of Verilog data type supply1 to hardwire aose ports to logic vslue
1 in their instantiation within D a ~ h - S l l P . Note dm that the bt bench uses hiemchid de-
referencing to access the state of the controller to make b debug and vdcation rash d r ,
without having to alter the module ports to provide access to the internal signals. Awther de-
tail to observe is that the serial input to the shift register is bardwired to 0. T k lower level
d l are described behaviorally for simplicity.

RDL Example 8.8

module Count-Ones-STR-STR (count, Ready, data, Start, dodr. met-b);
11 Mux - decoder implementation of control logic
//controller is structural
11 datapath Is structural

parameter Rl-size = 8, R2-size = 4;
output [R2-size -1 : 01 cwnt;
o*M

Sectlon 8.1 0 Design with Multiplexers 397

lnput [Rl-size -1 : 01
lnput
wire

data;
Start, dock, reset-b;
Load-regs, ShifLleft, Incr-R2, Zero, E;

Controller-STRMO (Ready, L o a d g s , Shift-left, IncrLR2, Start, E, Zero,
dock, reset-b);

Datapath-STR M I (count, E, Zero, data, Load-regs, Shift-left, Incr-R2,
clock);

endmodule

module Controller-STR (Ready, Load-regs, Shift-left, Incr-R2, Start, E, Zero, clock,
reset-b);
output Ready;
output Load-regs, Shift-left, Incr-R2;
Input Start;
Input E, Zero;
Input clock, reset-b;
~ U P P ~ Y O GND;
S U P P ~ Y ~ PWR;
parameter SO = 2'b00, S1 = 2'b01,S2 = 2'b10, S3 = 2'bI 1; / I Binary code
wlre Load-regs, Sh iff-left, Incr-R2;
wlre GO, GO-b, D-inQ, D-inl, GI, GI-b;
wlre Zero-b = -Zero;
wire E-b = -E;
wire [I: 01 select = {GI , GO};
wlre 10: 31 Decoder-out;
assign Ready = -Decoder-out[Oj;
assign Incr-R2 = -Decoder-out[l];
assign Shift-left = -Decoder-ou t[2];
and (Load-regs, Ready, Start);
mux-4x1-beh Mux-I (D-lnl, GND, Zero-b, PWR, E-b, select);
mux-4x1 -beh Mux-0 (D-in0, Start, GND, PWR, E, select);
D-ftl p-flop-AR-b M I (GI, GI-b, D-in1 , clock, reset-b);
D-fli p-flop-AR-b MO (GO, GO-b, D-inO, clock, reset-b);
decoder-2x4-df M2 (Decoder-out, GI, GO, GND);

endmodu le
.A .

module Data pat h-STR (count, E, Zero, data, Load-regs, Shii-I&, Incr-R2, dock);
parameter Rl-size = 8, R2-$&I = 4; . IIG..:,.

output [R2_size -1: 01 count; 1 .-
output E, Zero; . :
Input [Rl-size -1: 0] data;
Input Load-regs, Shi-left, Incr-R2, clock;

390 Chapter 8 , ~ l g n at the Reglsm Ttr- W

wire [Rl-size-l:O]
wlra
~ u P P W
s ~ P v b 1
asslgn Zero = (R1 == 0);
Shin-Reg M I
Counter M2
D-flip-flop-AR M3
and

endmodule

R1;
zero;
Gnd ;
pwr,
I1 Implidt combinational logic
(Rl , m, Gnd, Shi-leR Load-mgs, CWG Pm);
taw* Load-regs, Inw-R2, dads, Rvr);
(E, w l , clock, Pwr);
(wl , R1 [Rl-sLe -11, Shif-I@);

rnaduk Shif-Reg (RI, data, SI-0, Shii-M, Load--, do& me-b);
parameMr R ls l ze = 8;
output [Rl-sk-1:0] RA;
input (Rl-size -1 : 01 data;
input Sl-0, Shi-Left, M-m;
Input dock, me-b;
rPe [Rl-429 -1 : O] Rt:
a- @ (posedge dock, negedge m-t-b)
e (reset-b == 0) R1 = 0;
eke begln
If (Load-regs) R1 <= dab; else
if (Shift-lefl) R1 <= (R1 [Rl-aim -2: 01, SI-0); end

endmodule
module Counter (R2, Load--, Incr-R2, dock, reset-b);
parameter R2-$Ire = 4;
output [fU-size -1 : 01 R2;
Input Load-regs, Incr-R2;
Input clock, reset-b;
reg [R2-slze -1 : 01 R2;
always @ (posedge clock, n-ge reset-b)
If (resetb == 0) R2 c= 0;
else if (Load-regs) R2 <= (K-size (1 'bl});
else If (Incr-R2 == 1) R2 *= R2+ 1:

endmodule
module D-alp-flop-AR (Q, D, CLK, RST);
output a;
Input Dl CLK, RST;
w Q;
ahnays @ (m d w CUG - RST)
tF (RST == 0) Q <= IW;
etps Q <= D;

endmoduk

Sertl~n 8.1 0 Design with Multiplexers

module D-fllp-flop-AR-b (Q, Q-b, D, CLK, RST);
output Q, Q-b;
input D, CLK, RST;
reg Q;
asslgn Q-b = -Q;
always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= I'bO;
else Q <= D;

endmodule
/ I Behavioral description of four-to-one line multiplexer
I/ Verilog 2005 port syntax
module mux-4x1-beh
(output reg m-out,
Input in-0, in-I, in-2, in-3,
input [1: 01 select

1;
always @ (In-0, In-I, In-2, in-3, select) I / Verilog 2005 syntax
case (select)

2'bOO: m-out = In-0;
2'bOl: m-out = In-I ;
2'bIO: rn-out = in-2;
Z'b11: rn-out = in-3;

endcase
endmodule

I/ Dataflow descrlptlon of two-to-four-line decoder
I / See Fig. 4.19. Note: The figure uses symbol E, but the
I1 Verilog model uses enable to Indlcate functionality clearly.
module decoder-2x4-df (D, A, B, enable);
output [0:3] D;
input A, B;
Input enable;

assign D[O] = -(-A & -B & -enable),
D[l] = -(-A & B & -enable),
D[2] = -(A & -5 & -enable),
D[3] = -(A & 0 & -enable);

endmodule

module t-Count-Ones;
parameter RI-slze = 8, R2-size = 4;
wire [RP-size -1: O] R2;
wire [R2_size -1: O] count;

400 Chapter 8 Design at the Register T r d f e r twel

wl re Ready;
W [Rl-size -1: 0] data;
W Start, clock, reset-b;
wlre [I : 01 state; /I Use only for debug
asslgn state = {MO.MO.Gl, MO.MO.GO);
Count-Ones-STR-STR MO (count, Reedy, data, Start, dock, -0);
Inltlal#550 $fintsh;
Initial begin clock = 0; #5 forever #5 clock = -clock; end
inltial fork
#1 reset-b = 1 ;
#3 reset-b = 0;
#4 reset-b = 1 ;
#27 reset-b = 0;
#29 reset-b = 1;
#355 reset-b = 0;
#65 reset-b = 1 ;
#4 data = 8'Hff;
#I45 data = 8'haa;
#25Start= 1;
35 Start = 0;
#5S Start = I ;
#85 Start = 0;
#395 Start = 1 ;
#405 Start = 0;

joln
endmodule

Testing the Ones Counter

The test bench in HDLExarnple 8.8 was used to produce the simulation results in Fig. 8.24.
Annotations have been added for clarification. In Fig. 8.24(a), reset-b is toggled low at
r = 3 to drive the controller into S-idle, but with Start not yet having an assigned value.
(The default is x.) Consequently, the controller enters an unknown state (the shaded wave-
form) at the next clock, and its outputs we unknown. When reset-b is asserted (low) again
at t = 27, the state enters S-idle. Then, with Start = 1 at the first clock after reset-b is de-
asserted, (1) the controller enters 3-1, (2) Load-mgs causes Rl to be set to the value of
&a, namely, 8'Hff, and (3) R2 is fded with 1's. At the next clock, R2 starts counting from 0.
Shift-left is asserted while the controller is in state S-2, and i n c t s is assem while the con-
troller is in state S-I . Notice that R2 is incremented in the next cycle after incrJP2 is as-
serted. No output is asserted in state S-3. The counting sequence continues in Fig. 8.24(b)
until Zero is asserted, with E holding the last 1 of the data word- The next clock produces
count = 8, and sfate returns to S-idle. (Additional testing is addressed in the problems at
the end of the chapter.)

Seaion 8.1 1 Race-Free DeJgn 401

met-b asserted (low), but Machine begins
Stari unknown countirr~ -

Name 60 90 120
I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,

clock
met-b

Start
Zero
E

Ready
Load~cgs
ShijtJej?
InCrJu

/ \
R2fllled with 1s R1 loaded with data

(a)

M U R E 824
Simuiatlon waveforms for count-of-ones circuit

R A C E - F R E E DESIGN

Once a circuit has been synthesized, either manually or with tools, it is necessary to verify that
the simulation results produced by the HDL behavioral model match of the netlist of the
gates (standard cells) of the physical circuit. It is h p r t m t to m l v e any mismatch, because
the behavioral model was presumed to be correct. 'here are various poOential mmes of mis-
match between the results of a simulation, but we will &&r od'w typically happns in
HDL-based design methodology. Three realities - m i to t&- poblcm: (1) A
physical feedback path exists between a datapa& lmit and a d d t ? b w ingots include
status signals fed back from the dampath unit; (2) M m k d - execute
immediately, and behavioral models simulate wid^ 0 pfqqadm t k & z mat ing
immediate changes in the outputs of combinatid logic its fixpi& change (i-e., changes
in the inputs and the outputs are scheduled in the same iim &&p dth dm&don); and (3) the

Chapter 8 Design at the Register TmnHer Ltvel

Shn
Zero

E

--
Name -
dock
rmt-b

FIGURE k24 (Continued)

R2 holds nuhe r of 1s

order in which a simulator executes multiple blocked assignnmts to the same v&le at a
given time step of the simulation is iadetemimte (i.e.. unpredictable).
Now consider a sequential machine with an HDL model in which all assignments are

made with the blocked assignment operam. At a clock pulse, the register m m in the
datapath, the state transitions in the cantroller, the updates of the next state and output logic
of the controller, and the updates to the s t a h signah in f&e are all scheduled to occur
at the same time step of the sirnulati011 Which emu- &t? S w that when a clock p u h
occurs, the state of the controller changes before the register o@om execute. The changq
in the state could change the outputs of the control unit. The new values of b e outputs would
be used by the datapath when it finally executes its assignments at that mne c l d pulse. TIM

kctlon 8.1 2 Latch-Free Dedgn 4 3

result might not be the same as it would have been if the datapath had executed its assign-
ments before the control unit updated its state and outputs. Conversely, suppose that when
the clwk pulse occurs, the &path unit executes its operations and updates its status signals
first. The updated status signals could cause a change in the vdue of the next state of the con-
troller, which would be used to update the state, The result could differ from that which
would result if the state had been updated before the edge-sensitive operations in the data-
path executed. In either case, the timing of register transfer operations and state transitions
in the different representations of the system might not match. Fortunately, there is a solu-
tion to this dilemma.

A designer can eliminate the somare race conditioos just described by observing the rule
of modeling combinational logic with blocked assignments and modeling state tsansitions and
edge-sensitive register operations with nonblocking assignments. A software race cannot hap
pen if nonblocking operators are used as shown in all of the examples in this text, because the
sampling mechanism of the nonblocking operator breaks the feedback path between a state
transition or edge-sensitive datapath operation and the combinational logic that f o m the next
~tate or inputs to the registers in the datapath unit. The mechanism does this because simula-
tors evaluate the expressions on the right-hand side of their nonblocking assignment state-
ments before my blocked assignments are made. Thus, the nonblocking assignments cannot
be affected by the results of the blaked assignments. In sum, always use the blocking opera-
tor to d l combinational logic, and use the nonblocking operator to model edge-sensitive reg-
ister opedons and state transitions.

It also might appear that the physical structure of a datapath and the controller together cre-
ate a physical {i.e., hardware), race condition, because the status signals are fed back to the con-
troller and the outputs of the controller are fed forward to the datapath. However, timing analysis
can verify that a change in the output of the controller will not propagate through the datapath
logic and then through the input logic of the controller in time to have an effect on the output
of the controller until the next clock pulse. The state cannot update until the next edge of the
clock, even though the status signals update the value of the next state. The flip-flop cuts the
feedback path between clock cycles. In practice, timing analysis verifies that the citcuit will
operate at the specified clock frequency, or it identifies signal paths whose propagation delays
are problematic. Remember the design must implement the correct logic and operate at the
speed prescribed by the clock.

8.12 LATCH-FREE DESIGN

Continuous assignments model combinational logic implicitlyY A f e d k k - h eoatinuous as-
signment will synthesize to combinalional logic, and tk inputsutput ~rdaibuhip of tbe logic
is automatically sensitive to all of the inputs of the c k u k In fiimolatirn tiw aimolatDa mon-
itors the right-hand sides of all continuous assigmwnts, d&cb a c b g c in any of the refer-
enced variables, and updates the left-hand side of an 8fFech.l assigmnent m t . Unlike a
continuous assignment, a cyclic behavior is not n e c e s d y compMy d t i w to all of the
variables that are referenced by its assignments statements. If a level-dt ivt cyclic behav-
ior is used to describe combinatid logic, it is essential that the m v i t y list include every

variable that is referenced on the left-hand ~ i d e of an assignment statement in the behavior.
Jf the list is incomplete, the logic described by the behavior will be synthesiwd with latches
at the outputs of the logic. This implementation wastes silicon area and may have a mismatch
between the simulation of the behavioral model and the synthesized circuit. These difficul-
ties can be avoided by ensuring that the sensitivity list is complete, but, in large circuifs, it is
easy to fail to include wery referenced variable in the sensitivity lisr of a level-sendive cyclic
behavior. Consequently, Verilog 2001 included a new opator ta redm tbe risk of acciden-
tally synthesizing latches.

In Verilog 2001, the tokens 0 and can be combined as @* or a(*) and are used without
a sensitivity list to indicate that execution of the associated statement is d t i v e to every vari-
able that is referenced on the right-hand side of an assignment statement in the logic. In effect,
the operator @* indicates that the logic is to be hte.rpretsd as level-dtive combinational
logic; the logic has an implicit sensitivity list 00mpse.d of all of the d l e s that are refer-
enced by the procedural assignments. Using the @* operstm will prevent &dental synthe-
sis of latches.

HDL Example 8.9
- -

The following Isvebnsltive cyclic khavior wlll synthesize a M a n n e l muitiplex-er

module 1nux-2~V2001 (output mg [3t: q y, Input PI: OJ a. b, input sel);
a*

y = sel 7 a: b;
endmodule

The cyclic behavior has an implicit aensitlvlty 1W &sting of a, b, and sel.

8.13 OTHER LANGUAGE FEATURES

Tlae examples in this text have used only those features of the k k g HDL that ace appropriate
for an intcoductmy course in logic design. V d o g 2001 contains f e a m that we very useful ta
designen, but wbich are not considered here. them are ~~d arrays, variable
~ s e l a c c s , ~ y b i t d p a r t s e l e c t s , s ~ r e g , ~ a n d p w t ~ o n s , s a d l o c a l ~
T h e s e h c e m e n t s a r e ~ i n ~ a d v d t e m u a i a g ~ o g ~ l aadVedlog2005.

PROBLEMS

Amwcrs to problems marked with * q p m at the end of th book.

&I* Explaia in words and w r i ~ HDL for the opakions s p i M by the follow@
ter m f e r notation:
(a) M t R 2 + 1 , R I t R
0) R3+R3 - 1
(c) If(& = I)thGn(RO+RI)ehif(S2 = I) tben(RO+K?)

8.2 Draw (1) a block diagram showing the controller, datapath unit (with internal registers), and s ig -
nals, and (2) the portion of an ASMD chart starting from an initial state. There are two control
signals: x d y. If xy = 01, register R is inmrnented by 1 and control goes to a second state. If
xy = 10, register R is cleared to zero and control goes kom the initial state to a third state. Oth-
erwise, conI101 stays in the initial state. Assume active-low synchronous reset.

8.3 Draw the ASMD charts for the following sta& eansitions:
(a) If x = 1, control goes from state S1 to state S2; if x = 0, generate a conditional operation

R < = R + 2 a n d g o f m S 1 t o S 2 .
(b) If x = 1, control goes from S1 to S2 md then to S3; if x = 0, control goes from S1 to Sj.
(c) S# h m state S1; then if xy = 00, go to S2; if xy = 10, go to S3; and if xy = 01, go to S1;

othemise, g to S3.

8.4 Show the eight exit paths in an ASM block emanating from the decision bxes tiyt check- the
eight possible binary values of three control variables x , y, and z.

8.5 Explain how the ASM and ASMD charts differ from a conventional flowchm Using Fig. 8.5 as
an illustration, show the difference in interpretation.

8.6 Consmct a block diagram and an ASMD chart for a digital system that counts the number of
people in a m m . The one door throu& which people enter the room has a photocell that changes
a signal x from I to 0 when the light is interrupted. They leave the room from a second door with
a similar photocell that changes a signal y fmm 1 to 0 when the light is interrupted. The datapath
circuit consists of an updown counter with a display that shows how many people are in the
room.

8.P Draw a block diagram and an ASMD chart for a circuit with two eight-bit registers RA and RB
that receive two unsigned binary numbers. The circuit performs the subtraction operation

R A + R A - RE

Use the method for subtraction described in Secdon 13, and set a bomw flip-flop to 1 if the an-
swer is negative. Write and verify an HDL model of the circuit.

8.p Design a digital circuit with three 16-bit registers AR, BR, and CR that perform the following
operations:
(a) Transfer two l db i t signed numbers (in 2's-complement representation) to AR and BR.
Ib) If the number in AR is negative, divide the number in AR by 2 and transfer the result to reg-

ister CR.
(c) If the number in AR is positive but nonzero, multiply the number in BR by 2 and transfer the

result to register CR.
(d) If the number in AR is zero, clear register CR to 0.
(e) Write and verify a behavioral model of the circuit.

8.p Design the controller whose state diagram is given by Fig. 8.1 I(a). Use one flipflq per state (a one-
hot assignment). Write, sbnulate, verify, a d - RRTL aod ~euctural models of tk oontroller.

8.10 The state diagram of a wnml unit is shown in Fig. P8.10. It has fwr and two inputs x and
y. Draw the equivalent ASM chart. Write and verify aVerilog m d l , of h e controw.

a1 l* Design the controiler whose state diagram is shown in Elg. P8.10. Use D fhpflops.

8.12 Design the four-bit counter with synchronous clear specified in Rg. 8.10.
8 Simulate Design-hrnple-8TR (see HDL Example 8.41, and verify that its behavior matches

that of the RTL description. Obtain state information by displaying W and GI as a concatenat-
ed vector for the state.

HwM m.10
Control state dingram for Problems 8.10 and 8.1 1

at5 Simulate D e s i g ~ ~ E x m p f s ~ and verify that it rrcwers au umx+ reset condition
during its operation, i.e., a "running metu w a "nset on-the-fly."

&l h e l o p a block diagram and an ASMD chart for a digital circuit it multiph two binary num-
bers by the repeated-addition method. For example, to multiply 5 X 4, tbe digital system evalu-
&theproductby ~themultiplkndfaurtimcs:5 + 5 + 5 + 5 = 2O.Dwignkcircuit.
Let the multiplicand be in eegister BR. the multiplier in register AR. aad th pduct in rtgim
PR.Anaddercirmit&ldsthemnkntsofBR t o P R . A ~ d g u a l h u b m w b w h e r A R
is 0. Write and verify a H o g M a v i d d of the c h i t .

8.1 71 Prove that the multiplication of two n-bit numbsrs gives a pdwt of length Ics than m equal to
2a bits.

&I&* In Fig. 8.14, the Q registsr holds the multiplier and the B register holds the m u l t i p l i d Assume
that each number consists of 16 bib
(a) How many bit6 can be expected in the pradm and w k e is it available?
(b) H o w m y bitsanin~Pcwnter,andwhrrththebinarynumberloadedintoitinitially?
(c) Design the circuit that checks for zero in the P camm.

a19 List the contents of regism C, A. Q, md P in a marmer similar to Tabk 85 drrring the p e g s
of multiplying the two n u m h 11011 (multiphud) and 1011 1 (dfipliet).

8.W Determine the time it takes to proms the muilipkfim a p a t h in the biuq multipk -'bed
in Smion 8.8. Assume that the Q register has n bits and the clock cycle is t nanosecods.

8.n Design the 001lml circuit of thc binary multiplier speeifi#r by the state diagm of FQ. 8.16,
using mdiplexus, a decaler, a d a *.

8.22 Fmm22showsm-ASMD-foragcqumtialbinary-.Wkdvgifym
rntmodelofthesys~em.~this~WihthatdesaibedbyPbtASMD~in~8.1S(b).

8.23 FigurePS.Bshmand~~eASMDchartfara~biDaryd~Writedverifyao
#nmodelafthe s ~ ~ t h i s ~ ~ t h a t d e s a i b e d b y t h e A S M D c h a r t i n F i g . 8.15W

RClllW a22
ASMD chart fw Problem &22

The HDL dmdption of a squential b h a q multiplier given in HDL Example 8 3 tncaps-
thededpoions of t h e o o n t r o l l e r d t h e ~ i a a s i q g l e ~ ~ . Wdoeaadwdify a
model that encapdates the conmlIer and dakqah in mpmtemodilles.

U S The sequcntkd binary multiplier dsscribed by the ASMD chart k Fig. 8.15 dms not camklm
wherberthemultiplicdorthe ~ d t i p k r i s O . ~ m , i t ~ f o r a f i x e d n w n & r
of cfmk cycles, indepadwtly of the data.
(a] Dntvop an ASMa chart for a m Mcient multiph that will M execution as soon

aseitbawdisfouadtobezem~

4U8 Chapter 8 Deslgn at the Register Trader . . lew1 ..

reset

Decrement counter
P < = P - 1

Add muliiuliwnd

IC, A, el<= Ic, A, el>> 1
17-bit regkter shifts to dw
right by one bit

FIG- PB.23
MMB chrrt for Pmbhm LM

@) Write an HDL description of the circuit. The controller d dacqh are to be acqsulated
in separate Verilog modules.

(c) Write a test plan and a test bench, and verify the circuit
836 M d I y the ASMD chart of the queatial binrrry multiplier shown in Fig. 8.15 to add a d shift

in the same clock cycle. Write and v d y an RTL description of the system.
kZI The second test bench given in HDL Frmqk 8.6 geaeretes a p d w t for all passible values of

the multiplicand a d multiplier. Verifyhg that each result is mum d d not be practicat so
modify the test bench to include a stammat that f a the expeaed praduct. Write additional
statements to compare tbe result produced by the RTL desu@tiw with the q t e d result. Your
s i m u l a t i o n i s t o p r o d u c e a n e m a ~ ~ t h e r e s u I t d t h e ~ . R e p e a t f o r ~ s e u c -
ma1 mdel of the multiplier.

8.28 Write the HDL smtural M p t i w of the multipEw desigrsed in S e c h 8.8. Use the blwk dl-
agram of Fig. 8.14a) and the am1101 circuit of Hg. 8.18. Simulate tbe design and verify its func-
tionality by using the test bench of HDL Example 8.6.

Problems 409

8.29 An ASMD chart for a finite state machine is shown in Fig. PS.29. The register operations are not
specified, because we are intere~ted only in designing the control logic.
(a) Draw the equivalent state diagram.
(b) Design the control unit with one flipflop per state.
(c) List the state table for the control unit.
Id) Design the control unit with three D flip-flops, a deccder, and gates.

FIGURE P8.29
ASMD chart for Problem 8.29

410 Chapter 8 Design at the Reghr Transfer lsvd

(e) M v c r table showing the m n l t i p h iaput d t i o n s for the coatzol uuit
(f) D c s i e p & m t r o l r u d t ~ h W m u l t i p W a m ~ d t h ~ @ B ~ a t l d a 3 X 8

dwader.
(g) U>he~of(fl,wriaeaadverifya~~~ftht~mIler~
(h) W r i t e m d ~ a n K I Z ~ ~ o f f h e c o n ~ .

8.00, What is the value of EineaehHDLbloelt, awning that RA = l?
(a) RArRA-1; @) RA-RA-1;

IfIRA-O)E=i: tf(RA==O)E-7:
elm E = 0; W E - 0 ;

8.31. Using the W o g HDL opwstors listed In Table 8.2, assume &at A = 4'bOlIO. B = 4'W010.
and C = 4'b0000 and dm the result oftbe following opmiolls:

A+B;A*B;A-B;*A&&AI&A*&&A;-PC;AII8;AUC;IA;A*B;ArB;
A I- B;

U.32 Consider the followiq always bhk - 0 (W CLK)
If ($1) R 1 c R l + R2;
Ik.H(SZ)RT=RI +'I;
a h R i <= Ri;

Usinga~tcolmterwiLparaILelldforRI (aeh~.6.191daf0ra-bitadda1drawaMoek
diagram showing the ammions of component8 md control signah far e m b l e spWi of
the block.

8.33 Tht multilewl east smumnt is often traaslaasd by a logic syatbeshs into bardwan multiplex-
en. How would you M a t e the followiag - block Into imdwm (assume esters of eight
biw each)?

-(-I
$0: R4=RO;
$1: R4oRI:
82: R4=R2;
83: R4 = R3;

mnd-

6.34 Thsdssignofacimit thatcounts t h e n u m k o f ~ i n a ~ k ~ o l d i a W m 8 . I O .
The block diagram for the b i t k &own h Fig. 8.22(a), a mqlerc ASMD chart fw tbe eir-
cuit in Fig. 8.22(c), and srtnrctrual HDL m&ls of the datapattr and oo~mller are given
inHDL~le8.8.Using~~tim~~~irtdicatedmthtASMDehan,
(a) WriteDa@JM,mRTL,M~ofthe~tmitdtbewes~,Wtiter

t e s t p l a n s ~ ~ ~ W d b e t e s a e d , a a d w r i o e a m b r a e h t o ~ ~
tbeplm.Exmte thekstplen toverify tbe~mditydtbedmpmhmifawlpaodueG
m o t a m i s i m ~ ~ ~ t b e ~ p l e n t o ~ w w e f w m s ~ i n a d m u t a t i r m ,

Ib) Write CmmUerJEH, mi l€lL dscdptim of the control unit of tbe ma eaunm. Writs a
tcstplrrasp6c~gtbeAmctionelity~willbelGgteQdwritta~~mtmpr6-
m e n t t h e p l a n . ~ ~ o e s t p l a n m v f f i f y ~ ~ c y o f r t # # l a a d u a i f a n d p ~ o -
dwe mocated sirnuladon d t s dating the mt plan to the waveforms prOaud in a
~imuIati0~.

(c) Write COW-OnesJEH-BEH, a *level module mqmbthg and hegrating
Conholler-BEH and DrrtapahJEB. Writs a test plan and a tat bench, and vcrify the

Problems 411

description. Roduce annotated simulation resdts relating the test plan to the wa~ef0rILIS pro-
duced in a simuIation.

(d) Write ConttwllrrJEH-IHot, an RTL description of a one-hot controller implementing the
ASMD chart of Fig. 8.22(c). Write a test plan specifying the functimali~ that will be test-
ed, and write a test bench to implement the plan. Execute the test plan and @uce annotat-
ed simulation results relating the test plan to the waveforms produced in a simulation.

(E) Write Count-Ones-BEH-IJYot, a top-level module encapsulating the module
ComllerBEH-1308 and DatapathJEH. Write a test plan and a test bench, and verify
the description. Produce annotated simulation results relating the test plan to the wavefom
produced in a simulation.

8.35 The HIlL description and test bench for a circuit that counts the number of ones in a register are
given in HDL Example 8.8, Modify the test bench and simulate the ckcuit to verify that the sys-
tem operates correctly for the following patterns of data: 8 S'W, 8'hOf, S1hfO, 8'h00,8'haa,
S'hOa, 8 ' M , S'h55, S1h05, 8'hf50,8'ha5, and 8'hSa.

8.36 The design of a circuit that counts h e number of ones in a register is carried out in Section 8.10.
The block diagram for the circuir is shown in Fig, 8.22(a), a complete ASMD chart for this cir-
cuit *pars in Fig. 8.22(c), and shuctural HDL models of the datapath and controller are given
in HDL Example 8.8. Using the operations and signd names indicated on the ASMD chart,
(a) Design the control logic, employing one flip-flop per state (a one-hot assignment). List the

input equations for the four flip-flops.
(b) Write Controller-Gates-IJIot, a gate-Ievel HDL structural description of the circuit, using

the conk01 designed in part (a} and the signals shown in the block diagram of Fig. 8,22(a).
(c) Write a test plan and a test bench, and then verify the controller.
(d) Write Comt-Ones-Gates,l_Ilotm, a top-level module encapsulating and integrating in-

stantiations of ConfmIIer-Gates J J f o t and DatapathSTR, Write a test plan and a test bench
to verify the description. Produce annotated simulation results relating the test plan to the
waveforms produced in a simulation.

8.37 Compared with the circuit presented in HDL Example 8.8, a more eficient circuit that counts the
number of ones in a data word is described by the block diagram and the paltially completed
ASMD chart in Fig. P8.37. This circuit accomplishes addition and shifting in the same clock
cycle and adds the LSB of the data register to the counter register at every clock cycle.
(a) Complete the ASMD chart.
(b) Using the ASMD chart, write an RTL description of the circuit. A top-level VeFilog mod&

Count-of-onesJJteh i s to instantiate separate modules for the datapath and control units.
(c) Design the control logic, using one flip-flop per state [a one-hot assignment), List the input

equations for the flip-flops.
(d) Write the HDL structural description of the circuit, using the mtrdler designed in part (b)
d the blmk diagram of Fig. F8.37(a).

(e) Write a test bench to test the circuit. Simulate the cirmit to the opalion -bed in
both the RTL and the scructaral pgrams.

8.39 The addition of two signed binary numbers in the sigaed-- -on follows the
rules of ordinary arithmetic: If the two numbers have ihe same sign (bth @ti= or both nega-
tive), the two magnitudes are added and the sum has dwi cmwan sip; if the two numbem have
opposite signs, the smaller magnitude is s u W from k largff d tfie result has the sign of
the larger magnitude. Write an HDL behavioral dmmjptirn for adding two 8-bit signed numbers
in signed-magnitude representation and verify. ' h e leftmost bit of the ntlmber holds the sign and
the other seven bits hold the magnihlde.

41 2 Chapter 8 Design at the R e g W Transfer W

I a l

FIGUUE m37
(a) Alternative ckuitfara one^ raunfrr
@) ASMD Chrat for Problem k37

8.W For the circuit desigwd In Problem 8.1 6,
(a) Write and verify a mmnral HDL description of the circuit. The datapab aad conmkr are

to be d e d b a d ia separate anits.
(b) W r i t t a P d ~ a p R n . ~ m o f t h e c i r c u i ~ T b e ~ a n d & e r m t o b t d e

scribed in sepmte wits.

8.40 M d i f y rhe Mock diagram of the qwntial multiplier given in Flg. 8.1qa) aPd the ASMD cbart
in Ap. 8.15(bl to MIX a system hat d t i p k 32-bit but a Wit (bytewide) extee-
n a l ~ t h s . T h e ~ b m ~ ~ h b (i a l t i a l l r e s e t ~ ~ W i s a s s e r r c d , the
machine is to f a h rhe data bytes from a single &bit data bus h clock cycles (multi-
pticand bytes fmr foUowd by m M p k bytla$ last dgmi6mz byte first) and stMe the d&ta in
&tapah registers. Got- is to C a s m d for one cycle of tfw c h k w h th msfer is corn-
plete.Wtaen R u n i s a s s e r t a d , t b e ~ b t o k ~ ~ . D o n e J ~ i s c o beas-
senedforoaecl&~wh~rrmldpUeatiOllis~Whtaa~Sard9maisrtssertad,
each byte of the product is to be placed w an &bit o q u t bus fm ane clock cycle. in w p n c e ,
beginaing with the least signibut byte. T h maehine is to Fetum tD the initial gtate after tbc plod-
u c t k b e e n t f i i n s ~ ~ ~ ~ a s ~ ~ t o ~ w F e a i v e d a t a w h l l e
the pmduct is bciag fwmed. Consider d m other feama tbet might elimiDaae needless multipli-
cation by 0. For exampk do not continrte to d t i p l y if the shifted mdtiplier is empty of 1's.

8.41 The block diagmn d pdal iy complad ASMD chm in Fig. P8.41 -be tbe MOT of a
-stage pipehe that acts as a 2:l decimCm with a parallel Inpn a d wrtpa Dacimators are
wd in digital signal 7 to move dm hrym a damparb with a high cloek ~luc to a data-
~ w i ~ a ~ o w c r c l a e k r a o e , ~ v e r e i n g d a c a f i r o m a ~ I ~ t o a ~ f o r m a t i n t ~
p r o e e s s . h ~ ~ ~ e M i n ~ d d a t a ~ b e r m n s f a r o d i a t o t b e p i ~ a t t w i c e
therateat which t h e e o a t t n r s o f t f i e ~ ~ ~ ~ ~ ~ ~ btdrumpsdintorboldiagregisoerorconsumed
b y s o m e ~ . ~ c o p t # l t s o f b ~ g ~ R O ~ b e ~ m ~ y , t o ~ l i g h

Problems

{PI, PO) <= {O,O)

PO<= PI

FIGURE ~ 8 ~ 4 1
Two-stage plpellne mgister: Datapath utdt and ASMD chart

an overall parallel-to-serial conversion of the data stream. The ASMD c h a t indicates that the
machine has synchmnous reset to S-idle, where it waits until nt is de-asserted and En is assert-
ed. Note h t synchronous transitions which would occur fiom the other states to S-die under the
action of rst are not shown. With En asserted, the machine transitions from S-idle to S-I. ac-
companied by concurrent register ooperations that load the MSByte of the pipe with Duta and
move the content of PI to the LSByte (PO). At the next clock, the state goes to Sfirl l , and now
the pipe is full. If Id is asserted at the next clock, the machine moves to S-1 while dumping the
pipe into a holding register RO. If Id is not asserted, the m a & h enaers S-waif and remains there
until Ld is asserted, at which time it dumps the pipe d returns to S-1 or to S-dle, depending
on whether En is asserted, too. The data rate at Ro is one-half the Tate at which data are supplied
to the unit from an extemd datapath.
(a) Develop the complete ASMD chart.
(b) Using the ASMD chart developed in (a), write and verify an HDL m d d of the datapath.
(c) Wrik and verify a Verilog behavioral d l of the control unit
(d) Encapsulate the datapath and cmmlIer in a toplevel module, and verify the integrated

system

414 Chapter 8 W g n at the R@ster Transfer tcvel

REFERENCES

Amom, M. G. 1999. kri&g Digiral -r Design. Upper Saddtt River, NJ: Rmkc Hall.
B w m . J. 1997. A Mdhg HDL P ~ U W I : Allmtnwn. PA: S ~ a r Galaxy h.
BWKER, J. 1998. Bdhg HDL Synhmis. Allentown, PA: Star Cirlaxy k.
C m , M. D. 1999. Mode&, S-b, MdRapid Pmru&&g w&h Wr&g HDL Uppa Sad-
& River, NJ: Prenda HalL
Cmm, M D. 2003. Mdlhg, -&, a n d ~ h m f y p h g with k&gHDL Upper Sad-
dle Rim, NI: Prantim Hall.
CURB. C. R. 1W1. Dss&uhg Logk Systm~ Using S&& Machbw~. New Ywk: McGraw-Hill.
Hhm. J. P. 1993. InrrrPdwim to Digi#l t o g k Dam R d h g , Mk AiWm-Wdty.
IEEE Stmsdnld H w & m Descrijnh Langttagc Barad wr rlbd Wrilog H ~ H Dcscriph
lnnguage (EEE Std 1364-2001). 2001. New Y& Inshtc of Electrical and Ekmonics
m#-=.
MANO, M. M. 1993. Cumputer System Arrkltechrm, 3d ed. Uppcr Saddle Rim, NY: Rentioe
w.
Mmo, M. M.. and C. R Kraw. UKIO. Logic a d C-r &sign F-, 31d d U~pper
Saddle River, NJ: Renth Wall.
P- S. 2003. Wribg HDL: A G&k to Digid Design d S y n k i s . Moun?aio View,
CA: Sunsoft Ms (a Rentice Hall Title).
S m , D. 1.1996. HDL Chip Derigrr Madim, AL: DooDe Publications.
THOMAS, D, E., md P. R. MOORBY. 2002. The Udbg H a w Description language, 5th ad.
B o w Kluwer A d d c Publisks.
W m m ~ , D., and F. PWOSSB& 1987. Tk Arb of Digifal DRPign, 2d ed. Cliffff N&
PrentbHall.

Chapter 9

Asynchronous Sequential Logic

9.1 INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states, In
synchronous sequential circuits, the change of internal state occurs in response to the syn-
chronized clock puIses, Asynchronous sequential circuits do not use clock pulses. The change
of internal state occurs when them is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip-flops, The memory elements in asynchronous
sequential circuits are either unclocked flip-flops or time-delay elements. The memory capa-
bility of a time-delay device hpends on the finite amount of time it takes for the signal to
propagate through digital gates. An asynchronous sequential circuit quite often resembles a
combinational circuit with feedback.
The design of asynchronous sequential circuits is more difficult than that of synchronous cir-

cuits because of the timing problems involved in the feedback path. In a properly designed
synchronous system, timing problems are eliminated by triggering all flip-flops with the pulse
edge. The change from one state to the next occurs during the short lime of the pulse transi-
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stable condition even though a feedback palh exists.

Asynchronous sequentid circuits are useful in a variety of applications. They are used when
speed of operation is important, especially in those cases where h e digital system must re-
spond quickly without having to wait for a clock pulse. They are more economical to use in
small independent systems that require only a few components, as it may not be practical to
go to the expense of providing a circuit for generating clock pulses. Asynchronous circuits are
useful in applications where the input signals to the system may change at any time, inde-
pendently of an internal dock. The communication between two units, each having its own

Chapter 9 Asynchronous SquentIal Loglc

independent clock, must be done with asyncbrown*r c h i t s , Digital designers produce
a mixed system in whicb some part of the syPchrowus system has the chmtahtics of an asp
chnous circuit. Icnowledge of a s ~ o u s sequential logic behavior is heIpful in verifying
tbat the total digital system i in th p p r maaner.
Figure 9.1 shows the black diagram of an asymhron~ seqwda! circuit that consists of

a combinational circuit and delay elemen& connected to form feedback Imps. There are n
input variables, m output variables, d k in- states. The delay elements cap be v i s d k d
as providing short-term memory for the mpnW cimrit. In a g-type circuit, the pmpga-
tion delay that exists in the combhtimal circuit path h input to wtput provides sufIIcitnt
delay along the feedback 1- so that no w c delay eleme~ts are rtctually hscned iPto the
feedback path. The prcsent4te ltrtd next- variables in asydmmus sequential Wts
are cummarily called seem variabks md m'mion whzbles, m d y . The excita-
tion variables should not be confused with the excitable table used in the of clocked se-
quential circuits.

Sectton 9.2 Analysis Procedure 41 7

When an input variable changes in value, the y secondary variables do not change instan-
taneously. It takes a certain amount of time for the signal to propagate from the input termi-
nals, thruugh the combinational circuit, to the Y excitation variables, which generate new values
for the next state. These values propagate through the delay elements md become the new
present state for the secondary variables. Note the distinction between the y's and the Ys. In
the steady-state condition, they are the same, but during transition they are not. For a given value
of input variables, the system is stable if the circuit reaches a steady-state condition with yi =
for i = 1,2, . . . , k . Otherwise, the circuit is in a continuous transition and is said to be unsta-
ble. It is important to realize that a transition from one stable state to another occurs only in re-
sponse to a change in an input'variable. This is in contrast to synchronous systems, in which
state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a sta-
ble state before the input is changed to a new value. Because of &lays in the wires and the gate
circuits, it is impossible to have two or more input variables change at exactly the same instant
of time without anuncertainty as to which one changes first. Therefore, simultaneous changes of
two or more variables are usually prohibited, This restriction means that only one input variable
can change at any one time and the time between two input changes must be longex than the time
it takes the circuit to reach a stable state. Such operation, defined as fidndmntak mode, assumes
that the input signals change one at a time and only when the circuit is in a stable condition.

9.2 A N A L Y S I S PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
describes the sequence of internal states and outputs as a function of changes in the input vari-
ables. Alogic diagram manifests the behavior of an asynchronous sequential circuit if it has one
or more feedback loops or if it includes unclocked flip-flops. In this section, we will investi-
gate the behavior of asynchronous sequential circuits that have feedback paths without em-
ploying flip-flops, Unclocked flip-flops are called latches, and their use in asynchronous
sequential circuits will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The f i s t ex-
ample introduces the transition tabIe, the second defines the flow table, and the third investi-
gates the stability of asynchronous sequential circuits.

TramMon Tabla
An example of an asynchronous sequential circuit with only gates is shown inFig. 9.2. The di-
agram clearly shows two feedback loops from the OR gate outputs back to the AND gate in-
puts. The circuit consists of one input variable x and two intend states. The intend states
have two excitation variables, 5 and Yz, and two secondary variables, yl and n. The delay as-
sociated with each feedback loop is obtained from the propagation delay h e e n each y input
and its corresponding Y output. Each logic gate in the path introduces a propagation delay of
about 2 to 10 ns. The wires that conduct electrical signals intrduce approximately a 1-ns delay
for each foot of wire. Thus, w additional external delay elements are necessary when the com-
binati~nal circuit and the wires in the feedback path provide sficient delay.

The analysis of the circuit starts with a consideration of the excitation vadables as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the excita-
tion variables as a function of the input and secmdaq variables. e x m o m . readily ob
t h e d from the logic diagram, are

The next step is to plot the Yr and 3 functions in a map, as shown in Fig. 9.3{a) and (b). The
encoded binary values of the y variables are used for labeling the rows, and the input x vari-
able is used to designate the columns, This configuration results in a slightly di€fmmt three-
variable map from the me used in previous chaptkrs, However, it if still a valid map. and such

(a) Map for
Yl = q 1 + ~ ' Y Z

(c) Transition table

FIGURE 9.3
Maps and transition taMt fw the drrust of Fig. 9.2

Section 9.2 Analysls Procedure

a configuration is more convenient in dealing with asynchronous sequential circuits. Note that,
unlike what was done in previous chapters, the variables belonging to the appropriate squares
are not marked along the sides of the map.

The transition table shown in Fig. 9.3(c) is obtained from the maps by combining the binary
values in corresponding squares. The transition table shows the value of Y = YIYZ inside each
square. The fist bit of Y is obtained from the value of Yl, and the second bit is obtained from
the value of in the same square position. For a state to be stable, the secondary variables must
match the excitation variables (it., the value of Y must be the same as that of y = ylyz). Those
enfries in the transition table where Y = y are circled to indicate a stable condition. An uncir-
cled entry represents an unstable state.
Now consider the effect of a change in the input variable. The square for x = 0 and y = 00

in the transition table shows that Y = 00. Since Y represents the next value af y, this is a sta-
ble condition. I f x changes from 0 to 1 while y = 00, the circuit changes the value of P to 01.
This represents a temporary unstable condition, because Y is not equal to the present value of
y. What happens next is that as soon as the signal propagates to make Y = 01, the feedback
path in the circuit causes a change in y to 01. This change is manifested in the transition table
by a transition from the first row (y = 00) to the second row, where y = 0 1. Now that y = Y,
the circuit reaches a stable condition with an input of x = 1 . In general, if a change in the
input takes the circuit to an unstable state, the value of y will change (while that of x remains
the same) until it reaches a stable (circled) state. Using this type of analysis for the remaining
squares of the transition table, we find that the circuit repeats the sequence of states 00,01, 11,
10 when the input repeatedly alternates between 0 and.1.

Note the differ- between a synchronous and an asynchronous sequential circuit, In a syn-
chronous system, the present state is totally specified by the flip-flop values and dms not change
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal
state can change immediately after a change in the input. Because of this rapid change, it is some-
times convenient to combine the internal state with the input value together and call it the total
state of the circuit. The circuit whose transition table is shown in Fig. 9.3(c) bas four stable total
state+ylfix = 000,011,110,and 101--andfourunstabletatalstates401,010,111,and 100.

The transition table of asynchronous sequential circuits is similar to the state table used for
synchronous circuits. If we regard the secondary variables as the present state and lhe exci-
tation variables as the next state, we obtain the state table shown in Table 9.1. This table pro-
vides the same information as the transition table. There is one restriction that applies to the

Table 9.1
State Tubk for the Circuit of Fig. 9.2

k x t State
Present
State x = O x = l

asynchronous case, but not the synchronous case: In the asynchronous transition table, there
usually is at least one next-state entry that is the same as the present-state value in each row.
Othemise, all the total states in that row will be unstable.

The procedure for obtaining a transition table from the circuit diagram of an asynchronous
sequentid circuit is as follows:

1. Determine all feedback loops in the c h i t .
2. Designate the output of each feedback loop with variable I$ and its corresponding input

with yi for i = 1,2,. . . , k, where k is the number of feedback loops in the circuit

3. Derive the Boolean functions of all ails as a function of the external inputs and the y's.

4. Plot each Y function in a map, using they variables for the rows and the external inputs
for the columns.

5. Combine all the maps into one table showing the value of Y = &Y2. - - & inside each
square.

6. Circle those values of Y in each square that are equal to the value of y = ym - . + fi in the
same row.

Once the m i t i o n table is available, the behavior of the circuit can be analyzed by observing
the state transition as a function of changes in the input variables.

Row Table

During the design of asynchronous sequedalcircuits, it is more convenient to name the states
by letter symbols without making specific reference to their binary values. Such a table is
called aj7ow table and is similar to a bansition table, except that the in tmd states are sym-
bolized with letters rather than bimy ninarys. The flow table aIso includes the output values
of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states, des-
ignated by the letters a, b, c, and d. It reduces to the msition table of Fig. 9.3(c) if we assign

(a) Four states with
one input

@)Two stateswithtwo
m e d one outpnt

fwmE 9.4
€namples of Row tabkr

Section 9.2 Analysis Procedure

the following binary values to the states: a = 00, b = 01, e = 11, and d = 10. The table of
Fig. 9.4(a) is called a primiti~e flow table because it has only one stable state in each row,
Figure 9.4@) shows a flow table with more than one stable state in the same row. It has two
states, a and b; two inputs, xl and xz; and one output, z. The binary value of the output vari-
able is indicated inside the square next to the state symbol and is separated from the state sym-
bl by a comma. From the flow table, we observe the following behavior of the circuit: If
xl = 0. the circuit is in state a. If xl goes to 1 while xz is 0, the circuit goes to state b. With
inputs ~ 1 x 2 = 1 1, the circuit may be either in state o or in state b. If it is in state a, the output
is 0, and if it is in state b, the output is 1. State b is maintained if the inputs change from 10 to
1 1. The circuit stays in state a if the inputs change from 0 1 to 11. Remember that in fundamental
mode two input variables cannot change simultaneously; therefore, we do not allow a change
of inputs from 00 to 11.

In order to obtain the circuit described by a flow table, it is necessary to assign a distinct bi-
nary value to each state. Such an assignment converts the flow table into a transition table from
which we can derive the logic diagram. This is illustrated in Fig. 9.5 for the flow table of
Fig. 9.4@). We assign binary 0 to state a and binary 1 to state b. The result is the transition table
of Fig. 9.5(a), The output map shown in Fig. 9.5 (b) is obtained directly from the output values
in the flow table. The excitation function Y and the output function z are simplified by means
of the two maps. The logic diagram of the circuit is shown in Fig. 9,5(c),

(a) Transition table
Y = x1xJ2 + X f l

(b) Map for output
2 = X1X2 y

(c) Logic diagram

ncuw 9.5
Derivation of a cIKuit specified by the flow iable of Ffg. 9.w)

This example demonstrates the prmedue for obtaining the logic dbgm from a given flow
table. Doing that, however, is not always so simple. T h e are severaI Midties m a i a k d with
the b i i state assignment and with the ourput assigned to the unstable states. These problems
m discussed in detail next.

A race condition is said to exist in an asynchronous sequential circuit when two or more bi-
nary state variabIes change value in response to a change in an input variable. When unequal
delays are encountered, a race condition may cause the state variables to change in an unpre-
dictable mauner. For example, if the state variables must change h m 00 to 11, the difference
in delays may cause the first variable to change sooner than the second, with the mdt that the
state variables change in sequence h m 00 to 10 and then to 1 1. If the second variable changes
sooner than the first, the state variables will change fmm 00 to 01 and then to 11. Thus, the order
by which the state variables change may not be known in advance. If the M stable state that
the cirmit reaches does not depend on the order in which the state variables change, the race
is called a noncritical race. If it is possible to end up in two or mom different stable states. de-
pending on the order in which tbe state variable9 change, then the race is a critical race. For
proper qmatiw, critical races must be avoided.

The two examples in Fig. 9.6 illusmate nonmitical races. We start with the total stable state
ylyzx = 000 and change the input from 0 to 1. The state variables must then change from 00
to 11, which defines a race condition. The transitions listed uader each table show three pos-
sible ways that the state variables may change. Either they can cbange simultaneously from 00
to 11, or they may change in sequence fi-om 00 to 01 a d then to 11, or they may chauge in in-
quence from 00 to 10 and then to 11. In a l l cases, the final stable state is tbe same, so the mce
is noncritical. In (a), the final total state is y m x = 11 1, and in (b), it is 011.

(a) P d b l e kmiitim 0) Possible tmdtium
00 - I1 00 + 11 -0l
00 -01 -11 00 -01
00 -10 -11 00 + 10 - 11 - 01

FIGURE 9.6
Exarnptes of rmncritkal races

(a) Possible transitions:
00 -+ 11
00 + 01
00 -10

Section 8.2 Analysis Procedure

(b) Possible transitions:
00 -11
00 - 01 - 11
00 -10

FK;m 9.7
Examples of crWcal rims

The transition tables of Fig. 9.7 illustrate critical races. Here again, we start with the total
stable state y~yzx = 000 and change the input h m 0 to .I. The state variables must then change
from 00 to 11. If they change simultaneously, the final total stable state is 11 1. h the transi-
tion table of part [a), if, kcause of unequal propagation delay, Y2 changes to 1 before Yl does,
then the circuit goes to the total stable state 01 1 and remains there. If, however, Yl changes
first, the internal state becomes 10 and the circuit will remain in the stable total state 101.
Hence, the race is critical because the circuit goes to different stabIe states, depending on the
order in which fhe state variables change. The transition table of Fig. 9.7(b) illustrates another
critical race, in which two possible transitions result in one final total state, but the third pos-
sible transition goes to a different total state,

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at any one time when a state transition occurs in the flow table. The subject of race-he
state assignment is discussed in Section 9.6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change. When a circuit goes through a unique seqne~l~e of unstable states,
it is said to have a cycle. Fig. 9.8 ilIustrates the occurrence of cycles. Again, we start with
ylfi = 00 and change the input from 0 to 1 . The musition table of pmt (a) gives a unique se-
quence that terminates in a total stable state 101. The table in (b) shows that even though the
state variables change from 00 ta 11, the cycle provides a unique tmdtiaa from 00 to 01 and
then to 11, Care must be taken when using a cycle that terminates with a stabb slate. If a cycle
does not terminate with a stable state, the circuit will keep going from one unstable state to an-
other, making the entire circuit unstable. This phenomenon is dmmksimted in Fig. 9.8(c) and
also in the next example.

Chapter 9 Asynchronous S e q u d a l Lagk

(a) State transition:
00+01+11+10

@) State transition:
00-01-11

(c) Unstable
01~11+10-

Because of the feedback connection that exists in asynchrwous sequential c h i t s , care must
be taken to ensure that the circuit does not k a m e unstable. An unstable cmdition wil l cause
the circuit to oscillate between unstable states. The tramdim-table method of analysis can be
useful m detecting the occurrence of instability.

Consider, for example, the circuit of Fig, 9.9(a). The excitation fonction is

@) Transition table

AGUE 9.9
Example of an unstable chwit

S ~ t l o n 9,3 Circuits wlth latches

The transition table for the c h i t is shown in Fig. 9.9(b). Those values of Y which ate equd to
y are circled and represent stable states. Uncircled entries indicate unmble conditions. Note
tIutt column 11 has no stable states. This means that with input X I % fixed at 11, the values of Y
am3 y are never the same. If y = 0, then Y = 1, which caum a transition to the second row of
the table, with y = 1 and Y = 0. This in turn =sea a &tion back to the ht row, with the
mdt that the state variable altumates between 0 and 1 indefinitely, as long as the input is 11.

The instability condition can be detected ditectly from the logic diagram. Let
xl = 1, x2 = 1, and y = 1. Then the output of the NAND gate is equal to 0, and the output
OftheANDgateisequaltoO, ~ g Y q u d i l 0 , w i t h t h a r e s u l t ~ Y # y,Mowify - 0,
the output of the NAND gats is 1 and the output of the AND gate is 1, making Y equd to 1,
with the result that Y # y. If it is assumed that each gate has a prapagation delay of 5 ns (in-
cluding transmission over thc wires), we will find that Y w i l be O for 10 ns and 1 for the next
I0 ns. This will result in a square-wave waveform with a period of 20 ns. The frequency of os-
cillation is the reciprocal of the pied and is equal to 50 MHz. Unless one is designing a
squawwave generator, the instability that m y occur in asyncbmnous sequential circuits is
umhhble and must be avoided.

9 . 3 CIRCUITS WITH LATCHES

Historically, asynchronous circuits were known and used befom synchronous circuits were de-
veloped The first practical digital circuits were constructed with relays, which rn more adapt-
able to asynchronous operations. For this reason, the traditional method of asy nchronous circuit
configuration has been with components that are connected to form one or more feedback
loops. When digital circuits are constructed with electronic components, it is convenient to
employ the SR latch (inidwed io Section 5.3) as a memmy element. The use of SR latches
in agyncbronm sequentid circuits e w e s an orderly pattern in the logic diagrams, with the
m e w elements clearly visible. In this section, we analyze the operation of the SR latch,
using the technique introduced in the previous section. We then show a procdm for imple-
menting asynchronous sequential circuits using SR latches.

The SR latch is a digital circuit with two inputs S and R and two cr;o9s-coupledNOR gates or
two cross-cwpled NAND gates. TIE crosscoupled NOR gate circuit Is showniaHg. 9.10. This
circait and its mth table are taken from Fig. 5.3. In order to analp Ibe chdt by tk mi-
tion-table method, it is i%st d r a w n in Fig, 9.1qc) to see tbe * @ fmm thC output
ofgate 1 toheinput o f g a t e 2 . ~ ~ t Q i s ~ t o t b e ~ v s d a M t Y a n d k
s e c o ~ variable y. The B o o k hmim fur the mtpt it3 . .' n t e c .

P 1 ~ g Y a s i n R g . 9 . 1 0 (d) , w e o ~ ~ ~ m t a b l s f a ~ ~ 1-

We can now investigate the behavior of the SR latch b u Inp- table. The state
withSR = 1 0 i s a s t a b l e s t a t e ~ Y = y = l;-tbs-tRithSR = 01isasta-
bIe state, because Y = y = 0. With SR = 10, the atpat Q = Y = 1 a d the latch is said

426 Chapter9 Asynchronous fequmthl Logk

(a) Crossmupled circuit (b) Truth table

1 0
0 0
0 1
0 0
1 1

(c) Ckcuit showing feedback

1 0
1 0 (AfterSR = 10)
0 1
0 1 (After SR = 01)
0 0

(d) M t i o n table

FIGWE 9.10
SR latch with NOR gates

to be set. Changing S to 0 leaves the circuit in the set state. W~th SR = 01, the output
Q = Y = 0 and the latch is said to be reset. A change of R back to 0 leaves the circuit in
the reset state. These conditions are also listed in the truth table. The circuit exhibits some
difficulty when both S and R are equal to 1. From the truth table, we see that both Q and Q'
are equal to 0, a condition that violates the requirement that these two outputs be the com-
plement of each other. Moreover, from the hausition table, we note that going ftom SR = 11
to SR = 00 produces an unpredictable result. If S goes to 0 h t , the output remaim at 0,
but if R goes to 0 first, the output goes to 1. In normal uperation, we must make sure that
1's are not applied to both the S and R inputs simultaneously. This condition can be ex-
pressed by the Boolean function SR = 0, which states that the ANDhg of S and R must al-
ways result in a 0.

Coming back to the excitation function, we note that when we OR the Boolean expression
SR' with SR, the result is the single variable S:

SR' + SR = S(R1 + R) = S

From this, we infer that SR' = S when SR = 0. Therefore, the excitation function derived
previously, namely,

Y = SR' + R'y

Sectlon 9.3 C i ~ u l t s with Latches

can be expressed in FG. 9.10(d) as the reduced excitation function

Y = S + R'y when SR = 0

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0
holds at alI times. We then use the reduced excitation function to andyz the circuit. However,
if it is found that both S and R can be equal to 1 at the same time, then it is necessary to use
the original excitation function,

The analysis of the SR latch with NAND gates is carried out in Fig. 9.1 1. The NAND latch
operates with both inputs normally at 1, unless the state of the latch has to be changed, The ap
plication of 0 to R causes the output Q to go to 0, thus putting the latch in the reset state. After
the R input returns to 1, a change of S to 0 causes a change to the set state, The condition to be
avoided here is that both S and R not be 0 simultaneously. This condition is satisfied when
S'R' = 0. The excitation function for the circuit in Fig. 9.1 1 (c) is

Y = [S(Ry)']' = St + Ry
Comparing this with the excitation function of the NOR latch, we note that S has been replaced
with S' and R' with R. Hence, the input variables for the NAND latch require the comple-
mented values of those used in the NOR latch, For this reason, the NAND latch is sometimes
referred to as an S'R' latch (or 3-z latch).

{a) Cross-caupled circuit (b) Truth table

Y = Q

Y

(c) Circuit hawing feedback (d)T " table

FIGURE 9.1 1 , r : 0

SR latch with NAND gates

Asynchronous sequentd circuits can be mnstructed with the use of SR latches with or with-
out extend feedback paths. Of course, here is always a f d h c k loop witbin & h c h itself.
The analysis of a circuit with l a t c h will be demmsmted by meam of a s m c example
~ w b i c h i t w i l l b e ~ b l e t o ~ h ~ s t e p s n e ~ e s s a r y t o a a a I ~ o t h e r , s i m -
iIar circuits.

The circuit shown in Fig. 9.12 has two SR latches with outputs Yl and fi. There are two in-
puts, XI and xz, and two external fedback loops giving rise to tk secondary variables, s.1 and
R. Note that this circuit resembles a conventional sequential circuit with latches behaving like
flipflops without clock pulses. The analysis of tbe circuit requires that we first obtain the
Bookan functions for the S and R inprrts in each la&

We then check whether the d t i o n SR = 0 is W e d to enmae ptoper opmian of tbe circuit:

Section 9.3 Clmits wlth Latches

FIC4JRE 9.1 3
Transition table for the ckuit of Fig. 9.12

The result is 0 because xlxi = xzxh = 0.
The next step is to &rive the W i t i o n table of the circuit. Remember that the transition table

specifies the value of Y as a function of y and x. The excitation functions are derived from the
relation Y = S + R' y (see Figure 9.11 (d)) and are

We now develop a composite map far Y = qY2. They variabIes are assigned to the rows in the
map, and the x variables are assigned to the columns, as shown in Fig, 9,13. The Boolem func-
tions Yl and Yz, as just expressed, are used to plot the composite map for Y. The entries of Y in
each row that have the same value as that given to y are circled and represent stable states. In-
vestigating the transition table, we deduce that the circuit is stable. There is a critical race con-
dition when the circuit is initially in total state ylyzxlxz = 1 10 1 (YIQ = 1 1) and xz changes
from 1 to 0 (Y1Y2 = 00). If Yl changes to 0 before G, the circuit goes to total state 0 100 iqstead
of 0000. However, with approximately equal delays in the gates and latches, this undesirable
s ib t ion is not likely to occur.

The procedure for analyzing an asynchronous sequential circuit with SR latches can be sum-
marized as follows:

1. Label tach latch output with I;. and its external feedback path (if any) with y! for
i = 1,2 ,..,, k,

2. Derive the Boolean functions for the Si and Ri inputs m a& latch
3. Check whether SR = 0 for each NOR latcb or whether S'R' = 0 far each NAND latch.

If either of these conditions is not satisfied, t k e is a psiWty* the circait may not
operate properly.

4. EvaluateY = S + R'y foreachNORlarchaY = S' + Ry&&NANDlatch.
5. C o n s ~ a m a p , w i t h ~ e y ' s ~ ~ g h r n w s a n d t h t x ~ ~ t f i e c o h ,
6. Plot the value of Y = Y& . . - & in the map.
7. Circle dl stable states such that Y = y. The remhing q i Q h the transition table.

430 Chapter9 Asynchronous Sequential bgk

The transition table of the SR latch is useful for analysis and for ddhQ the @on of the
latch. It specifies the excitation Y when the s c c d q variable y a d ?he inputs S and
R are known. During the i m p h w i o n 7, the &h table of the circuit is available
andwewish tohndthe valuesofSdR.Farthisreason, weneedatablethat MstherequiFcd
inputs S and R for each of tRt pussible tramitions fmm y to Y. Such a Iist is called an -&on
table.

The excitation table of the SR latch is shown in Frg. 9.14(b). The first two c o b list the
four possible wansitions from y to Y. The next two columns p i f y h e Tequired input values
that will result in the specified transition, For example, in order to provide a mit ion ftom
y = O b Y = 1,itisnecessarytoemthatinputS = 1 andinputR = 0.Thisisshownin
the second row of the W t i o n table.

The reqwed input co~~%tiom for each of tbe fm transitions in the excitation tabk can be
derived directly from the latch mmitiw table of Fa. 9.1Nd) a h removing ttte e k aw-
ditionSR = ll.Fortxample,the~tion~lt~tbatiaorderm~gr:fromy = Om
Y = O , S R c a n b e e i t h e r 0 0 o r O l . ~ ~ ~ S ~ b e l a n d R m a y b e ~ O o r 1 . ~
fore, the first row in the excitation table shows S = 0 md R = X where. X i a don't-cw
condition signifying either a 0 or a 1.

A sequential circuit with SR latches is implenmkd through a procedure for obtaining the logic
diagram from a given transidon table. The @UIC req- that we deteanine the Boolean
functioasfortheSandRinpUtsofesbch~Thelogic~is~~edbybw~
the SR latches and the logic gates tbatjmphmt tbe S and R funaim& To ~ O I I S ~ the pro-
cedure, we will m p t the implementation example of Fig. 95. 'We output circuit remaim the
same and will not be repeated again.

The transition table from Fig. 9.5(a) is @lied in Fig. 9.14(a). From the infomation
given in the transition table and from the latch excitation table ~ ~ o n s in Fig. 9.140, we
can obtain the maps for the S and R inputs of the latch, as &own in Kg 9. lqc) md (d). For
example, the square in the second row and third column (yxlxz = 11 1) in Fig. 9.14() re-
quires a transition from y = 1 to Y = 1. The excitation table specifies S = X, R = 0 for this
change. Therefore, the comsponding square in the S map is nuked with an X and the one in
the R map with a 0. All other s p a r e s are filled wiih values in a similar manner. The maps am
then used to derive the simplified Boolean functions

S = X ~ X ~ a d R = xi

The logic diagram consists of an SR latcb aad the gates required to implamit the S and R
Boolean functions. The c h i t is as shown in Fa. 9.1 4(e) when a NOR latch is used. With a
NAND latch, we must use the v h for S and R:

and

This circuit is shown in Fig. 9.14!f).
The geaeral proccdute for hplefnehg a circuit with SR latches from a given lmisitio31 table

can now be summarized as follows:

(a) Transition table
Y = x1xr2 XLy

(c) Map for S = xp',

(e) Ciwit with NOR btch

(b) Latch excitation table

(d) Map for R = x',

(f) Circuit with NAND latch

FIGURE 9.14
Derivation d a I k h circuit from a transltlon table

1. Given a transition table that specses tbe excitation fumiw Y = Yl& &, derive a
pair of maps for Si and Ri for each i = 1,2,. . . , k. This is dqw by using the conditim
specified in the latch excitation table of Fig. 9.14@).

2. Derive the simplified Boolean functions for each Si and 4. Cam mnst be taken not to
make Si and Ri equal to 1 in the same mintem square.

3. Draw the logic diagram, using k latches together with h gates q u i d to gemale the S
and R Booban functions. For NOR latches, use the Sand R Boolean fadons obtained in
step 2. For NAND latches, use the complemented values d b obtained in stcp 2.

Another useful example of latch implementation is found in Section 9.7.

,, Chapter 9 Asynchronous SqumtW b g i c

Input binary information in a digital system can be generated mual ly by means of mechan-
ical switches. One position of the switch provides a voltage equivalent to logic 1, and the other
position provides a second voltage equivalent to logic 0. Mechanical switches are also used to
start, stop, or reset the dgital system. In testing di@ circuits in the l a h m c q , the input sig-
nals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the otber. the switch contact vibrates or
bounces several times before coming to a 6nal rest. In a typical switch, the contact bounce
may take several milliseconds to die out, causing the signal to oscillate b e e n 1 and 0 h-
cause the switch contact is vibrating.

A debounce circuit is a c h i t which removes the series of pulses that result from a contact
bounce and produces a single smaoth transition of the binary signal from 0 to 1 or h m 1 to
0. One such circuit consists of a single-pole, double-throw switch connected to an SR latch, as
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva-
lent to logic 0. When one of the two contacts, A or B, is not connected to ground through the
witch, it behaves like a logic-1 signal. A resistor is sometimes connected from each contact
to a fixed voltage to provide a firm logic-1 signal. When the switch is thrown from posihon A
to position B and back, the outputs of the latch produce a single pulse as shown. negative for
Q and positive for Q'. The switch is usually a push button whose contact rests in position A.
When the push button is depressed, it goes to position 3, and when released, it returns to po-
sition A.
The operation of the debounce circuit is as follows: Wen the switch rests in psitiond, we

have the condition S = 0, R = 1 and Q = 1, Q' = 0. (See Fig. 9.1 lo).) When the switch is
moved to position B, the ground connection causes R to go to 0, while S h o m e s a 1 h a u s e
contactA is open. This condition in turn causes output Q to go to O and Q' to go to I. After the
switch makes an initial contact with B, it bounces several times, but for proper operation, we
must assume that it does not bounce back far enough to reach point A. The output of the latch
will be unaffected by the contact bounce because Q' remaius 1 (and Q remains 0) whether R
is equal to 0 (contact with ground) or equal to 1 (no contact with ground). When the switch re-
turns to position A, S becomes 0 and Q returns to 1. The output again will exhibit a smmth tran-
sition, even if there is a contact bounce in -tion A.

Section 9.4 Design Procedure 433

9.4 D E S I G N PROCEDURE

The design of an asynchronous sequential circuit starts from the statement of the problem and
cuhhates in a logic diagram. There are a number of design steps that must be carried out in
order to minimize the complexity of the circuit and to produce a stable circuit without critical
r a m . Briefly, the design steps are as follows: A primitive flow table is obtained from the de-
sign specifications. The flow table is then reduced to a minimum number of states. Next, the
states are given a b i n q assignment from which we obtain the transition table. Finally, born
the transition table, we derive the logic diagram as a combinational circuit with feedback or as
a circuit with SR latches.

The design p m s s will be demonstrated by going through a specific example. Once this ex-
ample is mastered, it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures, and these
are discussed in greater detail in the sections that follow,

Design Example

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out-
put Q. Binary infomation present at the D input is ixansferred to the Q output when G is equal
to 1. The Q output will follow the D input as long as G = 1. Wen G goes to 0, the information
that was present at the D input at the time the transition occurred is retained at the Q output. The
gated latch is a memory element that accepts the value of D when G = 1 md retains this value
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q.

As defined previously, a primitive flow table is a flow table with only one stable total state in
each row, Rememh that a total state consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi-
ble total states in the system. This is shown in Table 9.2 for the gated latch Each row in the
table specifies a total state, which consists of a letter designation for the internal stake and a

Table 9.2
Gated-Latch Total Srates

Inputs Output

State P C 0 Commcntr

a 0 1 0 D = Q - G = l
b 1 1 1 D = Q m G = l
C 0 0 0 Afterstatcaad
d 1 0 0 Aatrstatcc
e 1 0 1 Afta state b or f
f 0 0 1 Aftcrstatec ...y-g>m-:--

Chapter 9 Asymhmnwrs kquentlal b g k

possible input combination for D and G. The output Q is also shown for each total state. We
start with the two total states that have G = 1, From the design specifications, we know that
Q = O i f D G = 01 andQ = I i f D G = 1 1 , b e c a u s e D m u s t b e ~ W Q w h e n G = I.We
assign tbese conditions to states a and b, When G goes to 0, the output depends on the last
value of D. Thus, if the transition of DG is from 01 to 00 to 10, then Q must remain 0 beEause
D is 0 at the time of the transition from 1 to 0 in G. If the hausition of DG is from 1 I to 10 to
00, then Q must remain I. This information results in six different total states, as shown in ibe
table. Note that simultaneous h t i o n s of two hput variables, such as h 01 to 10 or from
11 to 00, are not dowed in fundamental-mode opation.

The primitive flow table for the gated latch is shown in Rg. 9.16. It has one row for each
state and w e column for each input combbation. First, we i5ll in one square in each row be-
longing to the stable st& in that row. These entrk are de&mnhed from Table 9.2. For exam-
ple, state a is stable and the output is 0 when the input is 01. This hhmti011 is entered into
the flow table in the fmt row and second column. Similarly, tk other five stable states tm
gether with their output are entered into the corm* input columns.

Next, we note that since both inpub are not dowed to h g e shultmmusly, we can enter
dash marks in each row that differs in two or more variablas from the input variables associ-
ated with the stable state. For example, the h t row in the flow table shows a stable state with
an input of 01. Since only one input can change at any given time. it can change to 00 crr 11,
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually
result in a don't-care condition for the next state and output in this square. Following dx same
pmc&re, we fill in a second quam in each row of the primitive flow table.

Next, it is necessary to 6nd values for two mare s q m in each row. The comments listed
in Table 9.2 may help in deriving the necmsq infondion. For example, state c is asswbld
with input 00 and is reached after a h g e in input from state a or d lhefure, an witable state

Inputs DG

Section 9.4 Deslgn Procedure 435

c is shown in column 00 and rows a and din the flow table. The output is marked with a dash
to indicate a don't-care condition. The interpretation of this situation is that if the circuit is in
stable state a and the input changes from 01 to 00, the circuit first goes to an unstable next state
c, which changes the present-state value from a to c, causing a transition to the third row and
first column of the table. The unstable state values for the other squares are determined in a
similar manner. All outputs associated with unstable states are marked with a dash to indicate
don't-care conditions. The assignment of actual values to the outputs is discussed further, after
the design example is completed.

Reduction of the Primitive Flaw Tabb

The prhtive flow table has only one stable state in each row. The table can be r e d u d to a
smallernumber of rows if two or more stable states are placed in the same row, The grouping of
stable states from separate rows into one common row is called merging. Merging a number of
stable states in the same row means that the binary state variable ultimately assigned to the merged
row will not change when the input variable changes. This is because, in a primitive. flow table,
the state variable changes every time the input changes, but in a reduced flow table, a c h g e of
input will not cause a change in the state variable if the next stable state is in the same row,

A formal procedure for reducing a flow table is given in Section 9.5. In order to complete
the design example in the current section without going through the formal procedure, we will
apply the mergrng pxocess by using a simplified version of the merging rules. lho or more rows
in the primitive flow table can be merged into one row if there are nonconflicting states and
outputs in each of the columns. Whenever one state symbol and don't-care entries are en-
countered in the same column, the state is listed in the merged row. Moreover, if the state is
circled in one of the rows, it is also circled in the merged row. The output value is included with
each stable state in the merged row. Because the merged states have the same output, the state
cannot be distinguished on the basis of the output.

We now apply these rules to the primitive flow table of Fig. 9.16, To see Row this is done,
the primitive flow table is separated into two parts of three rows each, as shown in Fig. 9.17(a).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the four c o l m s . The first column shows state c in all the rows and 0 or a dash for
the output. Since a dash represents a don't-care condition, it can be associated with any state or
output. The two dashes in the first column can be taken to be 0 output to make all three rows
identical to a stable state c with a 0 output. The second column shows that tite d a s h can h as-
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of
the rows, it is also circled in the merged row. §hilady, the third cob can k merged into an
unstable state b with a don't-care output, and the fourth m h mn knrergbd into stable state
d and a 0 output. Thus, the three rows a, c, and d can be merged inin tmz row with three stable
states and one unstable state, as shown in the ikst row of Fig. 9.170. 'Ibe d row of the
reduced table results from the m e n g of rows b, e. d f of tbe pimihe 3 m tabk In this ex-
ample, there are two ways that the reduced table can be drawn. -* lecser symbols for the
states can be retained to show the relationship between th d u d aad p id ive flow tables.
Alternatively, because the two tables have the same OR@&, we m~ d g n r a m m letter sym-
bol to all of the stable states of the merged mws. Thus, stam c anddahrqhed by state a, and
states e and f are replaced by state b. Both alternatives are shown in Pig. 9.17@).

(a) Stam that are eandkbtes for merging

(b) Reduced table (two dtomativc~)

RtUllE 9.17
Man of the prirdtlve Rwv

Transition Table and Logic Diagram
In order to obtain the cirmit described by the reduced flow table, it is necessary to assign
a distinct binary value to each state. This assignment converts the flow table into a transi-
tion table. In the general w e , a binary state assignment must be made to ensure that the cir-
cuit wiU be free of criticai races. T h stateas~ignment problem in asynchronous sequential
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit-
ical races in a two-row flow table; k c f o r e , we can fiaish the design of the gaml latch
@or to studying that saction. M i 0 to state a and 1 to state b in !he reduced flow table
of Fig. 9.17@), we obtain the transition tabIe of Frg. 9.18(a). The mi t ion table is, in ef-
fect, a map for the excitation variable Y. The simpl5ed Boolean function for Y is hen ob-
tained from the map as

Y = DG + G'y

T h w are two don't-cm outputs in the h d reduced flow table. If we assign values to $Le out-
pat as &own in Fig, 9. f 8&), it is W b k to make output Q idemid to the map of he exci-
tation function Y. Altedvely , If we q l a c e the don't-cam by 1 when y = I and DG = 01,
themapdmstoQ = Y.Zfw~~~possiblevd~estottaedon't~raltputs,we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown
in Fig. 9.19.

Section 9.4 Design Procedure 437

\DG

(a) Y = DG+G1y

FIGURE 9.18
T~ansition table and output map fw gated latch

HGURE 9.19
Gated-latch logic diagram

The diagram can aIso be implemented by an SR latch. Using the procedure outlined in
Section 9.3, we h a t obtain the Boolean fimctions for S and R, as shown in Fig. 9.201a). The
logic diagram with NAND gates (see Fi. 5.4) is shown in Fig. 9.20@). Note that the gated latch
is a level-sensitive D-latch, intmluced in Section 5,3 and Fig. 5.6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The un-
stable states have unspecified output entries designated by a dash. The output values for the
unstable states must be chosen so that no momentary fdse outputs mmr when the circuit
switches between stable states. This means that if an output variable is not supposed to
chmge as the result of a transition, then an unstable state that is a kamicnt state between
two stable states must have the same output value as the stable stabs. Consider, for exam-
ple, the flow table of Fig. 9.2 1 (a). A transition from stable state a to stable state b goes
through the unstable state b. If the output assigned to the unstable state b is r 1, then a mo-
mentary short pulse will appear on the output as the circuit shiffs h m an output of 0 in state
a to an output of 1 for the unstable b and back to 0 when the circuit reaches stable state b.
Thus, the output corresponding to un~table state B must be specified as 0 to avoid a mo-
mentary false output,

Chapter 9 Asynchronous Sequential togk

(a) S = DG R = D'G

(a) M ~ p f w S m d R

M U R E 9 . a
CirarTt wfth SR latch

(a) Haw table

RGm 9.21
klgning output v&m tm rmrt.trk #rtRI

Sec#on 9.5 Reddon of State and F I w Tables 439

when the change in output wcurs, we place a don't-care entry for the output associated with un-
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstramg the four
possible combinations of changes in output that can mcur, The procedure for m a h g the assign-
ment to outputs associated with unstable states can be summarized as follows:

1. Assign a 0 to an output variable associated with an unstable state which is a transient state
between two stable states that have a 0 in the corresponding output variable,

2. Assign a 1 to an output variable associated with an unstable state which is a transient state
between two stable states that have a 1 in the correspondhg output variable,

3. Assign a don't-care condition to an output variabie associated with an unstable state
which is a transient state between two stable states that have different values (0 and 1,
or 1 and 0) in the corresponding output variable.

Summary of Deslgn Procedure

The design of asynchronous sequential circuits can be carried out by using the procedure il-
lustrated in the previous example. Some of the design skps need further elaboration and are
explained in upcoming sections. The procedural steps are as follows:

1. Obtain a primitive flow table from the given design specificatioas. This is the most
difficult part of the design, because it is necessary to use intuition and experience to
arrive at the correct interpretation of the problem specifications.

2. Reduce the flow table by merging rows in the primitive flow table, A formal procedure
for merging rows in the flow table is given in Section 9,5.

3. Assign binary state variabIes to each row of the reduced flow table to obtain the transi-
tion table. The state-assignment procedure that eliminates any possible critical races is
given in Section 9.6.

4, Assign output values to the dashes associated with the unstable states to obtain rhe out-
put maps. This procedure was explained previously,

5, Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as
shown in Section 9.3 and also at the end of Section 9.7.

9.5 REDUCTION OF STATE AND FLOW TABLES

The procedure for reducing the number of internal stares in an sequential circuit
resembles the procedure that is used for synchronous c W & . An algorithm for the state re-
duction of a completely specified state table was given in ! k t h 5.7. W will review ibis al-
gorithm and apply it to a state-reduction method that uses an implidon table. The algorithm
and the implication table will then be m d i f d to cover the state mWim of incompletely spec-
ified state tables. The modified algorithm will be used to expk tfie procadare for reducing
the flow table of asynchronous sequential circuits.

Chapter 9 Asynchronous Sequentla1 Logk

Table 9.3
stah? TPbls b h t m w w t s -t stuh

Pmlmt
N d S a oUtplt

State x = 0 w = 1 x = O x r f

hnplicatton Table and Imflfed States

The stat+mhction p m & m for completely spdled sCate EabIes is based on an algoridm that
combines two states in a state table into one, as long as they can be &own to be equivalent.
Two states are equivalent if, for each pa&bk input, they give d y the same output sad go
to the same next smtes or to equivalent next stam. Table 6.6 show an example of equivalent
states that have the same next states and outputs for each ambindm of ingu$. There are oc-
casions when a pair of stam do not have th same next stam but, -less, go to quiva-
lent next states. Consider. for example, the sate table shown in Table 9.3. The present states a
and b have the same output for the same input. 'Iheir next states are e and d for x = 0 and b
mdaforx = l.Ifwecan~~tbepairof~(c,d)meguivalent.~bhtpairaS~
(a, b)will dsobeequivalent,because~willhavethe~or~valentnext~.When
this relationship exists, we say that [a, b) imply (c, d) in the sense ha t if a and b are equiva-
lent then c and d have to be equivalent. Similarly, b m the last two rows of Table 9.3, we 6nd
thatthe pairof state.s (~,d)@kS&pair~f states (a , b) . T h e ~ c o f q u i v ~ s t a t e s
is that if (a, b) imply (c, d) and (c, d) imply (a, b), then both pairs of states are eqniv- that
is, a and b are equivalent, and so are c and d. As a v, the four rows of Table 9.3 can
be reduced to two rows by combining a and b into one state and c and d into a second state.

Tbcheclcingofeachpairof m t c s k r p m 4 b I e o q u i ~ h a t a b l e wiobahgeaumbea
of states can be done systemtically by mtans of an implication table, which is a chart that
consists of squares, one for every posslue pair of staks, that provide s m for listing any
pssibb implied states. By judicious w of h e table, it is p s i b l e to demim all pairs of equiv-
dent states. The state table of Table 9.4 wili be used to illusim~ this p m d m . The in#=-
timEabbisshominFig.9~.On~~~deaEongthtvertid~lrt~aUthe~~
in the state table except the fifst and m s the bottom horhntally are Iisted all the s t a m ex-
cept the last. The msult is a display of all w b l e combhatimu of two states, with a square
p W i n t h e i n ~ m o f amw a n d a w h r m n ~ ~ t w o ~ ~ b e a E s t a d f o r o q u i v -
d e n c e . ~ o s t a m h a v i n g a i f f ~ ~ f o r ~ s a m t ~ t ~ n o t ~ ~

lkro states that are not equivaknt am mzubd with a cross (X) in the cmespding square,
whmas their equivalence is mmkd wich a check mark (4). Some of the s q m have entries
o f h p l i e d s t a t e s t h a t ~ b e h ~ f u r t b e a m ~ ~ t b e y a r e e s U ; v ~ ~
step-by-step procedure of filling iu tbe squares is as follows: Krst, we p b a cross h any
quare corresponding to a pair of seates whose outputs are not equal for way inpat. In I& ease,

Section 9.5 Reduction of State and Flaw Tables

Table 9.4
State Table to Be Reduced

N%xt State Output
Present

State x = O x = l x = O x = l

FIGURE 9.22
Implication table

d , e J

X X

X X X

x x x J

c , d x ' j e X x x x
a , b

x x X d , e J d , s J x

state c has a different output than any other state, so a cross is placed in the two squares of row
c and the four squares of columa c. There are nine other squares in this category in the impli-
cation table.

Next, we enter in the remaining squares the pairs of states that am implied by the pair of statw
representing the squares. We do that starting h m the top square in the left column and going
down and then proceeding with the next column to the right. From the state table, we see that
pair (a, b) implies (d, s), so Id, e) is recorded in the square defined by column a and row b. We
proceed in this manner until the entire table is completed. Note that states (d, e) are equivalent
because they go to the same next state and have the same output. Tfierefore, a check mark is
recorded in the square defined by column d and row e, indicating that the two states are equiv-
alent and independent of any implied pair.

The next step is to makc successive tbrough the table to determine whether my ad-
ditional squares should be mark4 with a cross. A square in &e table is crossed out if it con-
tains at least one implied pair that is not equivdent. For exampk tbe square d e f ~ by a d
f is marked with a cross next to c, d becstuse tbe pair (c, 4 dew a quare that conrains a
cross. This @we is rcpated until no additional squares can lx crossed out. Finally, all
the quarathathave wcfosses~~withcheckmarks.Tbe%esquansdtfinepairsof
equivalent states. En this exampie, the equivalent states are

We now combine pairs of mtca into larger groups of equivalent states. Tbe last three pairs
can be combined into or set of three equivaIent statcs (d, e, g) b u s e each one of the states in
the group is equivalent to the other two. The final partition of the states consists of h equiv-
alent states found from the implication table, mg&a with all the remaining stam in the state
table that are not equivalent to my other state. Thig group consists of

T h u q T a b I e 9 . 4 ~ a n b e ~ u c e d h s e ~ s ~ t o f o u r , o n e f o r e a c h m b u o f ~ ~ -
ing parlition. The. reduced statc table is obtained by repking state b by a and states e and g
by d and is shown in 'Isblc 9.5.

Mmging of tlw Flaw Table
There arc mcasions when the state MIe for a rnguentid c h i t is incomplekly spciried. This
happens when certain combinations of inputs or input sequences never occur because of ex-
ternal or i a d const&&. Ia such a case, the next states a d outputs that should have oc-
c u d if all inputs were possible are never atrained and are r e g d as don't-care conditions.
Although synclmnous sequential circuits may sometimes be q m a e d by iacampIetely spec;
i6ed state tables, our i n m t hme is with asynchrom sequential circuits, fbr which the prim-
itive flow table is always incompletely s-ed.

Incompletely speeifiod states can h combid to reduce the number of states in thc flow
table. Such states cannot be called equivalent, because the f d definition of equivalence re-
quires that 1 1 outputs and next states be m e d for all inputs. Inmead, two hcompktely
spbcified states that can bt combined are said to be compatibb. h states are coqaible if,

Table 9.5
~ u t m d ~ r a b k

Prsrant
m state a p r t

State x = O x = l x = O x 5 l

Section 9.5 Reduction of State and Flow Tables

00 01 11 10

(a) Primitive flow table
b c d e

@) Implication table

FH;UIIE Pa3
Flow and implication tables

for each possible input, they have the same output whenever it is spex2k.d and their next states
are compatible whenever they are specified. All don't-care conditions marked with dashes have
no effect in the search for compatible states, as they represent unspecified conditions,

The p e s s that must be applied in order to find a suitable group of compatibles for the pur-
pose of merging a flow table can be divided into three steps:

1. Determine dI compatible pairs by using the implication table.
2. Find the maximal compatibles with the use of a merger diagram.
3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibIes is then used to merge the rows of the flow table. We will
now proceed to show and explain the three procedural steps, using the primitive flow table
£ram the design example in the previous section,

Compatible Palrs

7he procedure for finding compatible pairs is illumakd in Rg. 9.23. 'ih Wth Qow table in (a)
is the same a Fig, 9,16. The entries in each square the mxt s¶ate d 'Ibe d a s h
represent the unspecfied stam or outputs. The impWm table is u d Bo M cmqmthle states,
just as it is used to find equivalent states in tke compket%y s@kd -lbe m l y diffeFeme is that.
whm~gmws,weareatli~toartjustthedashestofitany~d~

Two states are compatible if, in every column of the wmqnmhg rows in the flow table,
there are identical or compatible states and if there is no conflict in the output vdues, For ex-
ample, rows a and b in the flow table are found to be compatible, bntmws a md f will k corn-
patible only if c and f are compatible. However, rows c and f are not compatible, because they

Chapter 9 Asynchmnws hquenP%11 Logk

have different outputs in the first column. Tbis information is recorded in h e implication table.
A check mark designates a square whose pair of states are coqd i l e . Those states which are
not compatible are marked with a moss. Tbe r;emaining squares are Fecwded with the implied
pairs that need fuaher investigatim

Once the initial implication table has been filled, it is scanned again to cross out the squares
whose implied states are not co@ble. The r e m b h g s q m hat amtain check marks &
fine the compatible pairs. In the example of Fig. 9.23, the compakibk pin am

Maximal Compatibles

Having found all the compatible pairs, the next step i to find larger sets of states that are com-
patible. The -mu1 compatible is a group of compahTb1es that contains all the possible com-
b i o m of compatible states. The maximal cmpfible can be obtained from a m q e r diagmm,
as shown in Fig. 9.24, The merger dhgfm is a graph in which each state is represeated by a
dot placed along the circumference of a circle. Lines are drawn between any two corrwpon-
ding dots that form a compatible pair All possible compalibk can be & a h d h u h e merg-
er diagram by ob&g the geometrical pattems in which states are c m u d to each other.
An isolated dot represents a state that is not compatible with my other state. A h e q m e n t s
a compatible pair. A triangle constitutes a compatible with the s-. An n-state compatible
is repmental in the merger diagram by an n-sided polygon with all its diagwals connected.

The merger diagram of Fi. 9.24(a) is obtained fbm lhe bit o f ~ ~ l e pairs derived £mm
the implication table of Fig. 9.23. There are seven b g h t h Coanectiag the dots, we for
each compatible pair. The lines form a geometrical pattern consisting of two Criaugles con-
necting (a. c, d) and (b, e,fi and a line (a, b). The mttximal compatibles are

(4 b) (a, c, d) (b, e, f)

d

(a) Maximal compatible:
IU, b) (0, c, 4 (b , e,n

FlGUiiL 9.24
Merger diagrams

Section 9.5 Reduction of State and Flow Tables

Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometricd pat-
terns are a rectangle with its two diagonals connected to form the four-state compatible (a, b,
e, f), a triangle (b, c, h), a line (c, 4, and a single state g that is not compatible with any other
state. The maximal compatibles are

The maximal compatible set can be used to merge the flow table by assigning one row in the
reduced table to each member of the set. However, quite often the maximal compatibles do not
necessarily constitute the set of compatibles that is minimal, In many cases, it is possible to find
a smaller collection of compatibles that will satisfy the condition for merging rows.

Clod-Cwering Condition

The condition that must be satisfied for merging rows is that the set of chosen compatibles
must cover all the states and must be closed. The set will cover dl the states if it includes all
the states of the original state table, The closure condition is satisfied if there are no implied
states or if the implied states are included within the set. A closed set of compatibles that cov-
ers all the states is called a closed covering. The closed-covering condition will be explained
by means of two examples.

Consider the maximal compatibles from Fig. 9.24(a). If we remove (a, b), we are left with
a set of two compatibles:

(a3 c, 6) (b, e,f)

All six states from the flow table in Fig. 9.23 are included in this set. Thus, the set satisfies the
covering condition. There are no impLied states for (a, c); (a, 4; (c, dj; (b, e); (b, a; and (e, fi,
as is seen fiom the implication table of Fig. 9.23(b), so the closure condition is also satisfied.
Therefore, the primitive flow table can be merged into two rows, one for each of the compat-
ibles. The detailed construction of the reduced table for this particular example was done in the
previous section and is shown in Fig. 9.17(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9.25(a). The compatible pairs derived from the implication table are

(a, b> (a, 4 (b, C) (c, 4 (c, 4 (d, el

From the merger diagram of Fig. 9.25@), we determine the maximal compatibles:

If we choose the two compatibles

(a, b) (c, d, ee)
. w - -

then the set will cover all five gtates of the origrnaf table. The clomm am&b can be checked
by means of a closure table, as shown in Fig. 9.251~). The implid paiFs Wed for each corn-
patible are taken directly from the implication table. 'ihe implied pair of states for {a, b) is (b,
c). But (b, cJ is not includedin the chosen set of (a, b) (c, d, c), so this set of compatibles is not
closed, A set of compatibles that will satisfy the c l o s e d - c o ~ ~ w t i w is

a b c d
(a) Implication table

Compatibles

(c) Closure table

FIGURE 9.25
Chmslng a set of compathks

The set is covered because it contains all five states. Note that the same state can be repeated
more than once. The closure condition is 6 e . d because &e implied states are (b, c) (d, e)
and (a, d), whicb are included in the set. The original flow table (not shown here) can be re-
duced from five rows to thre rows by m q i q rows a and d, b and c, and c, d, and e. Note d s ~
that an alternative satisfactory choice of closed-oovered wmpatibles would be (a, b) (b, c)
(d, e). In general, here may be more than one possible way of merging rows when reducing a
primitive flow table.

9.6 RACE-FREE STATE ASSIGNMENT

Once a reduced flow table has k e n &ved for an asynchronws sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the
transformation of the flow table into irs equivalent transition table. The primary objective in
choosing a proper binary state assignment is the prevention of critical races. The problem of
critical races was discussed in MOIL 9.2 in conjunction with Fig. 9.7.

Section 9.6 Race-Free State Assignment

Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at my given time when a state transition occurs in the flow table. To ac-
complish this objective, it is necessary that states between which transitions occur h given ad-
jacent assignments. l k o binary values are said to be Macent if they differ in only one variable.
For example, 01 0 and 0 1 1 are adjacent because they differ only in the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test each pos-
sible transition between two stable states and verify that the binary state variables change one
at a time. This is a tedious process, especially when there are many rows and columns in the
table. To simplify matters, we will explain the procedure of binary state assignment by going
through examples with only three and four rows in the flow table. These examples will demon-
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow tables with my number of rows and columns.

Three-Row Flow-Table Example

lh assignment of a single binary variable to a flow table with two rows dws not impose critical
race problems. A flow table with three rows requires an assignment of two binary variables. The as-
signment of binary valm to the stable states may cause critical races if it is not done properly. Cm-
sider, for example, the reduced flow table of Fig, 9.26(a), The outputs have been omitted from the
table for simplicity. Impecdion of row a reveals that there is a msition from state a to state b in col-
umn 01 and from state a to state c in column f 1, This inEormation is kansferred into a hwnsition di-
rrgraa, as shown in Fig. 9.m). The directd lines horn a to b and from a to c represent the two
transitions just mentioned. Similarly, the transitions h the other two rows are repmmted by di-
d lines in the diagram, which is a pictorial reprmatation of all required &tiom betwem~ows.

To avoid critical races, we must find a binary state assignment such that only m e b i i vari-
able changes during each state transition. An attempt to find such an assignment is shown in
the transition d i a v State a is assigned binary 00, and state c is assigned binary 1 1. This as-
signment will cause a critical race during the transition from a to c because there are two
changes in the binary state variables and the transition from a to c may occur directly a pass
through b. Note that the transition from c to a also causes a race condtion, but it is noncritical
because the transition does not pass through other states,

(a) Flow table

FIGURE 9.26
Three-row flow-table example

448 Chapter 9 Asynchrlwi6us Sequential Logic

(a) F b w table (b) Transition diagram

A race-free assignment can be obtained if we add an ex- mw to the flow table. The use of
a fwah row does not increase the number o f b i i state vxhblea, but it allows the famation
of cycles between two stable states. Consider the modified flow W e in Fig. 9.27. l l ~ &st three
rows represent the same conditions as the original three-row table. The fourth row, labeled d,
is assigned the binary value 10, which is adjacent to both a and c. The fmndi(311 from a to e
must now go through d, with the result that the binary variables change from a = 00, to
d = 10, to c = 1 1, thus avoiding a critical race. This is a c c o m p l i ~ b y changing row a, eol-
umn 11, to d ttnd row d, column 11, to c. Similarly, the transition h m c b a is shown to go
through unstable state d even though column 00 represents a nonuitid race.

The transition table corresponding to the flow table with the indicated binary state assign-
ment is shown in Fig. 9.28. The two dashes in row d mpresent um@ed states that can h
considered don't-care conditions. However, care must h taken not to assign 10 to h squares,
in order to avoid the possibility of an unwmted stable state being established in the foPrth row.

AGm 9.m
tnmltion table

Section 9.6 Rare-Fret State Assignment 449

(a) Flow table (b) Transition diagram

FIGURE 929
Four-row flow-table e m ple

. - . . - - - . . .

This example demonstrates the use of an extra row in the flow table for the purpose of
achieving a race-he assignment. The extra row is not assigned to any specific stable state., but
instead is used to convert a critical race into a cycle that goes through adjacent &ansitions be-
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti-
cal races, and it may be necessary to add two or more extra rows in the flaw table. This
possibility is demonstrated in the next example.

Four-Row Flow-Table Example ;
A flow table with four rows requires a minimum of two state variables. Although a race-free
assignment is sometimes possible with only two binary state variables, in many cases the m-
quirement of extra rows to avoid critical races will dictate the use of three binary state variables.
Consider, for example, the flow table and its corre,smg -sition dmgram shown inFig. 9.29.
If there were no transitions in the diagonal direction (from b to d or from c to a), it would be
possible to find an adjacent assignment for the remaining four transitions. With one or two di-
agonal transitions, there is no way of assigning two binary variables that satisfy the adjacency
requirement. Therefore, at least three binary state variables are needed.

Figure 9.30 shows a state assignment map that is suitable for any fm-row flow table,
States a, b, c, and d are the original states, and c, f, and g ue extra states. States placed in
adjacent squares in the map will have adjacent assignments. State b is assignad binary 001
and is adjacent to the other thethree original states. The tmxitioo hm a to d mmt be directed
through the exka state e to produce a cycle so bat only oae binarg at a time.
Similarly, the transition from c to a is directed thwngb g, ~ . ~ t m o & i o n from d to c
goes through f. By using the assignment given by the map, tbeBDgtm labh can be ex-
panded to a seven-row table that is free of critical -. as ddhiF- 9.31. Note that
although the flow table has seven mws. there are only fm staMa -. me uncircled
states in the three extra rows a ~ e there merely to provide a mfnsetmnith between the
stable states.

450 Chapter 9 Asynchronous Sequentid b @ c

(a) Binary wignment
d =I01 f =lll c =011

@) Transition diagram

This example demonstrates a psdble way of 6elechg extra rows in a flow table in order
.

to achieve a race-free assignment. A map similar to the one used in Fig. 930(a)
can be helpful in most cases. Sorneths we a n take advantage of umpaifed entries in the
flow table. Instead of adding rows to the table, we may be able to eliminate critical races by
directing some of the state transitions through the don'tcm entries. The actual assignmat
is done by trial and error, until a satisfactory assignment is found that resolves all critical
races.

Sactlon 9.6 Race-Free State Assignment 43-1

The method for making r a c e h e state assignments by adding extra rows in the flow table, as
demonsmted in the previous two examples, is sometimes referred to as the shawd-tvw method.
A second methd, called the multiple-mw methcd, is not as efficient, but is easier to apply. In mul-
tiple-row assignment, each state in the original flow table is replaced by two or more c ~ w s
of state variables. The stateassignment map of Fig. 9.32(a) shows a multiple-row assignment that
can be used with any four-row flow table. There are two binary state variables for each stable state,
each variable being the logical complement of the other. For example, the original state a is replaced
with two equivalent states al = 000 and ap = 1 I 1. The output values, not shown here, must be
the same in a 1 and az. Note that a 1 is adjacent to bl , cp, and $1, and a2 is adjacent to cl , b2, and
d2, and, shnkly, each sstate is adjacent to three states with different letter designations, The k-
hvior of the circuit is the same whether the internal state is n~ or az, and so on for ae other states.

Figure 9.32@) shows the multiple-row assignment for the original flow table of Fig. 929(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows bl and h, and stable state b is entered in columns 00 and 11
in both rows bl and b2. After all the stable states have been entered, the unstable states are
U e d in by reference to the assignment specified in the map of part (a), In choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map. In the original table, the next states of b are a and d for inputs 10 and 01, respectively, In
the expanded table, the next states of bl are a1 and d2, because these are the states adjacent to
bl. Similarly, the next states of are a2 and dl, because they are adjacent to b2.

(a) Binary assignment

FIGURE 9.32
Multiple-row assignment

452 Chapter 9 Asynchronous Squentlal Logic

In the multiple-mw assignment, the change from one stable state to a n o k will always
cause a change of only one binary state variable. Each stable state has two binary assignments
with exactly the same output. At any given time, only one of the assignments is in we. For ex-
ample, if we start with state a1 and input 01 and then change the inpat to 11,01,00, and back
to 01, the sequence of i n t d states will be al, dl , q, and al. Although the circuit starts starts state
a1 and terminates in state az, as faras the inputmtput relationship is cwceraed, the two stares
a1 and a2 are equivalent to state a of the original £low table.

9 . 7 HAZARDS

In designing asynchronous sequential circuits, cwe must be Wen to conform with certain re-
strictions and precautions to ensure that the circuits aperate p l y . The circuit must be op-
erated in fundamental mode with only one input changing at my time and must be free of
critical races. In addition, there is one more phenomenon, called a hazard, that my cause the
circuit to malfimction. Hazards are unwanted switching msients that may appear at the our-
put of a circuit because different paths exhibit different propagation delays. Hazards occur in
combinational circuits, where they may cause a temporary fak output value. When they occur
in asynchronous sequentid circuits, hazards may result in st W t i o n to a wrong stable state.
It is therefore necessary to check for possible hazards and daemhe w h e w they can cause
improper v t i w s . If so, then st- must be taken to eliminate their effect.

Hazards in Combkrational Cirmlts

A hazard is a condition in which a change in a single variable prcduces a momentary change
in output when no change in output &odd occur. The circuit of Fig. 9.33(a) depicts the oc-
currence of a hazard. Assume that all three inputs are initially equal to 1. This causes the out-
put of gate 1 to be 1, that of gate 2 to be 0, and that of the circuit to be 1. Now cwsider a
change in x2 from 1 to 0. Then the output of gate 1 changes to 0 and that of gate 2 changes to
1, leaving the output at 1. However, the outpld may A '1 y go to 0 if the ppgation &lay
through the inverter is taken into considedom The delay in the inverter may cause the out-
put of gate I to change to 0 before the output of gate 2 changes to 1. In that case, both inputs

X3 = 1

(a) m R circuit

q = l

(b) NAND chit

FKkUIE 9.33
Circuits YVffh hazards

Section 9.7 Hazards

of gate 3 are momentarily equal to 0, causing the output to go to 0 for the short time during
which the input signal from xz is delayed while it is propagating through the inverter circuit.

The circuit of Fig. 9.33(b) is a NAND implementation of the Boolean function in Fig. 9.33@),
and it has a hazard for the same reason. Because gates 1 and 2 are NAND gates, their outputs
are the complement of the outputs of the corresponding AND gates. When xz changes from 1
to 0, both inputs of gate 3 may be equal to 1, causing the output to produce a momentag change
to 0 when it should have stayed at 1.

The two circuits shown in Fig. 9.33 implement the Boolean function in sum-of-products form:

Y = x*xz + x5x3

This type of implementation may cause the output to go to 0 when it should remain a 1. If, how-
ever, the circuit is implemented instead in product-of-sums form (see Section 3 . 3 , namely,

Y = (xl + x $) (x z + xg)

then the output may momentarily go to 1 when it should remain 0. The first case is referred to
as staiic 1-hazard and the second case as ssatic 0-hazard. A third type of hazard, known as
dynamic k a d , causes the output to change three or more times when it should change from
1 to 0 or from 0 to 1. Figure 9,34 ilIustrates the three types of hazards. When a circuit is im-
plemented in sum-of-products form with AND-OR gates or with NAND gates, the removal of
static 1-hazard guarantees that no static 0-hazards or dynamic hazards will occur.

A hazard can be detected by inspection of the map of the particular circuit. To illustrate, con-
sider the map in Fig. 9.35(a), which is a plot of the function implemented in Fig. 9.33. The
change in xz from 1 to 0 moves the circuit from mintem 1 1 1 to mintem 10 1. The hazard exists
because the change in input results in a different product tern covering the two minterrns.

(a) Static 1-hazard

WGUUE 9.34
Types of hazards

(b) Static 0-hazard

(a) Y n x 1 x 2 + x ' ~ x ~

0 -
(c) Dynamic hazard

F l t W 935
Maps Illustrating a hazard and itc removal

f i n

Chapter 9 Asynchronous Sequentla1 Lqic

Minterm 11 1 is c o v e d by the p d u c t term implemented in gate 1 of fig. 9.33, and miatem
101 is covered by the product term implemented in gate 2. whenever b circuit must m e from
one product term to another, there is a possibility of a momentary interval when neither tenn
is equal to 1, giving rise to an ufldeimble 0 output.

The remedy for eliminating a hazard is to enclose the two mintems in question with another
product term that overlaps both gmupings. This situation is shown in the map of fig. 9.35(b),
where the two &terms that cause tbe hazard are combined into one product term The haz-
ard-free circuit obtained by such a contigumtion is shown in Fig. 9.36. The e* gate in the
circuit generates the product term ~1x3. In general, hazards in c o m b h i d cjrcuits can be re-
moved by covering any two minterms that m y produce a h d with a p d m term common
to both. The removal of hazards req- the addition of redundant gates to the circuit.

Hazards in Sequentla1 Circults

In normal cornbinationalcircuit design associated with synchortous sequential circuits, haz-
ards are of no concern, since momentary erroneous signals are not generally troublesome.
However, if a momentary i n m m signal is fed back in an asynchronous sequential circuit, it
may cause the circuit to go to the wrong stable state. This situation is illustrated in Fig. 9.37.
If the circuit is in total stable state yxlxz = 1 1 1 and input xz changes ftom 1 to 0. the next total
stable state should be 110. However, because of the hazard, output Y may go to 0 momentarily.
If this false signal feeds back into gate 2 before the output of the inverter goes to 1, the o u p t
of gate 2 will remain at 0 and the circuit will switch to the inwrrect total stable state 010. This
maIfunction can h eliminated by adding an extra gate, as is done in Fig. 9.36.

Implementation wlth SR Latches

Another way to avoid static buds in uyncbmm~~ sequential circuits is to implement the cir-
cuit with SR latches. A m m m t q 0 signal applied to the S or R inputs of a NOR latch will have
no effect on the state of the circuit. Similarly, a momentary 1 s i g d applied to the S and R in-
puts of a NAND latch will have no effect on the state of the latch In Elg. 9.33(b), we observed

Section 9.7 Hazards 455

(a) Logic diagram

(b) Transition table (c) Map for Y

FIGURE P.3P
Hazard In an a5ynchronous sequential dmit

that a two-level sum-of-products expression implemented with NAND gates may have a static
1-hazard if both inputs of gate 3 go to I, changing the output from 1 to 0 momentarily. But if
gate 3 is part of a latch, the momentary 1 signal will have no effect on the output, because a
third input to the gate w ~ l l come from the complemented side of the latch that will be equal to
0 and thus maintain the output at 1. To clarify what was just said, consider a NAND SR latch
with the folIowing Boolean functions for S and R:

S = A3 + C D
R = A'C

Since this is a NAND latch, we must apply the complemented values to the inputs:

S = (AB + CD)' = (AB)'(CD)'
R = (A'C)'

This implementation is shown in Fig. 9.38(a). S is g a d with EWO NAND @ t ~ and one
AND gate. The Boolean function for output Q is ->&

1 ~ I I L A .

Q = (Q'S)' = @'(AB)'(CD)'I'

This function is generated in Fig. 9.38(b) with two levels of N m E m Q i
to 1, then Q' is equal to 0. If two of die b go . * '":pDD-Z. a NAND gate as-
sociated with output Q will remain at 1 because Q' is m h i a h l d L

Figure 9.38(b) shows a typical circuit thsrt - k rrPad tu m q - 4 v-
tial circuits. The two NAND gates forming the latch wrmrl)y b m W e r , if the

458 Ctmptw 9 Asynchromus Sequential Lqic

FIGURE 9.38
Latch (mplementation

S or R functions contain two or more product terms when expressed as a sum of pducts, then
the corresponding NAND gate of the SR latch will have three or more inputs. Thw, tbe two
terms in the original sum-of-products expmsim for S arc AB and CD, and w h is implemented
with a NAND gate whose output is applied to the input of the NAND latch. In this way, each
state wiable requires a twu-level circuit of NAND gates. The h a level consists of NAND gats
that implement each product tenn in the original Boolean expression of S md R. The second
level forms the cross-coupled connection of the SR latch with inputs that come from the out-
put~ of each NAND gate in the first level.

Essential Hazards

Thus far, we have considered what are known as static and dynamic hazards. Anoher type of
hazard that may occur in asphronous sequential circuits is called an m s d hazard This
typeofhazardiscausedby unequaldelaysdongtwo ormore paths Woriginatefmmthe same
input. An excessive delay through an inverter circuit in wmparison to the &lay associated

SectionR? Deslgn Example 457

with the feedback path may cause such a hazard. Essential hazards cannot be corrected by
adding redundant gates as in static hazards. The problem that they impose can be corrected by
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compared with delays of other signals that originate from the input terminals, This
problem tends to be specialized, as it depends on the particular circuit used and the size of the
delays that are encounted in its various paths.

9.8 D E S I G N E X A M P L E

We are now in a position to examine a complete design example of an asynchronous sequen-
tial circuit. This example may serve as a reference for the design of other, similar circuits. We
wil l demonstrate the method of design by following the recommended procedural steps listed
at the end of Section 9.4 and repeated next. After stating the design specifications,

1. Derive a primitive flow table,
2. Reduce the flow table by merging the rows.
3. Make a race-free binary state assignment.
4. Obtain the transition table and output map,
5. Obtain the logic diagram, using SR latches.

Design SpecIficatlons
It is necessary to design a negative-edge-higgmd T £lipflop. The circuit has two inputs, T (tog-
gle) and C (clock), and one output, Q. The output state is complemented if T = 1 and the clock
C changes from I to 0 (negative-edge triggering). Otherwise, under any other input condition,
the output Q remains unchanged. Although this circuit can be used as a flip-flop in clocked se-
quential circuits, the internal design of the flip-flop (as is the case with all other flip-flops) is
an asynchronous problem.

Prlmltbe Flow Tabk
The derivation of the primitive flow table can be facilitated if we h t derive a table that
lists d l possible total states in the circuil. This table is shown&W.9.6. We s h f L with
the input condition TC = 11 and assign to it state a. Tbe citmitm,)ortrle b radtbt olrt-
put Q is complemented from 0 to 1 when C changes fmm 1 8o T w a 1. An-
other change in the output occurs when the circuit gowr from - c ro mk d In d& case,
T = 1, C changes from 1 to 0, and the output Q is -- 1 w 0,- atber
four states in the table do not change the ompt, is initially
0, it stays at 0, and if it is initidly at 1, it stays a 1, cvm- I-s.
This analysis identifies six totd states. Note that of two input
variables, such as that from 01 to 10, are no! hlu&d, mw*- for fun-
damental-mode operation. - rx;l

458 ~ h a ~ t e r . 9 Aqnchronous Sequentid Logtc

Tabte 9.6
~ O f T o f a l S ~

Inputs Output

State T C 4 Commmts

a 1 1 0 Initial ompm is 0
b 1 0 1 After state a
C 1 1 1 hdtialoutpmisl
d 1 0 0 Afterstater:
I 0 0 0 After state d or f
f o 1 o Aftermema
8 0 0 1 Aftersmkborh
h 0 1 1 ' A f t t r e g m c

The primitive flow table is shown in Fig. 9.39. The infomation for the table can be ob-
tained directly from the mnditims listed in Table 9.6. First, in & row, we fdl in one square
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those
squares whose input M e r s by two fmm tho input to the stable state.
F h d y , we identify the unstable &tiof18 by IXW&I~ the i d d o n listed under the corn-
ments in Table 9.6.

FIGURE P.#
Implication table

Merglng of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9.40. The squares that contain
check marks define the compatible pairs:

(a , f) (b, gl (b, h) (c, h) (d, e) (d,fl (e , f 1 k, h)

The maximal compatibles are obtained from the merger diagram shown in Fig. 9.41. The
geometrical patterns that are recognized in the diagram consist of two triangles and two straight
lines. The maximal compatible set is

(a,f) (b, g, h) Ec, hh) Id, e, f 1
In this particular example, the minimal collection of campatiMesr is also the nmwbd campat-
ible set. Note that the closed condition is satisfied because tht s e t s all* m Q i d dgttt
states listed in the primitive flow table, althwgh states h aadf a o e ~ T l w ~ c m k
dition is also satisfied, because all the compatible pairs have m irml;llr u m bt
from the implication table.

The reduced flow table is shown in Fig. 9.42. 'IbE CpME
- - -. , -@w*m

taiTls the original state symbols, but merges h e ..
. - - : m o d

fare compatible and are merged iato o m row that h- at&
states. Similarly, the other three comp&bIe sctp d m rs-e b
four rows, retaining the eight original 1- sydmh T b w d~
merged flow table is shown in part (b) of & figure. m 4-m-

to all the stable states in each merged m. Thus, the symbol f k replaced by a, g and h are re-
placed by b, and similarly for th other two mws. The second akmafive shows clearly a four-
s- flow table with only four Ietter SyubIs hr the states.

State Asdgnmant and Trondtlsn Tmbk
The next step in the design is to fiad a binary assignment fur the four stable states in
the reduced flow table. In order to h d a suiWle adjacent aasisnment, we draw the d t i w
diagram, as shown in Fig. 9.43. Fbr this exmplt, it is psible to obtain a suitable djacat as-
signment without the n d of extra -, bscapsie there are no dbgoml lines in tb transition
diagram.

Section 8.8 Design Example 461

FIGURE 9.43
Transition dlagram

(a) Transition table (b) Output map Q = y2

00 01 11 10

FIG.URE PA4
Transition table and output map

1 1

Substiming the binary assignment indicated in the transition diagram iato lh mimed flow
table, we obtain the transition table shown in Fig. 9.44. The output map is oWmd h m the
reduced flow table. The dashes in the output d o n are assigned tD tht m h
established in Section 9.4.

togk Diagram

o o o x

1 1 1 1

1

0 0 0 0

The circuit to be designed has two wa&
in Fig. 9.44 shows that Q is e q d to h e
quires two SR Iat&ea, one for d mk
are shown in Fig. 9.45. The map am
table by using the conditions s-
simplified Boolean functions are listed muk ench '

X

Chapter 9 Arynchrotswrs Scqmndd Logk

0 X X

x o x

0 0 0

0 0 0

M) 01 11 10

The bgic diagram of the circuit is shown in Fig, 9.46. Here we use two NAND latches with
two or three inputs in each gale. This imphemlion is amding to the pamn established in
Section 9.7 in conjunction with Fig. 9.38(b). The S and R input fmctiom require six NAND
gates for heir implementation.

The example just presented illustram th complexity involved in desig&g qmhmnous
sequential circuits. It was to go t h ~ ~ @ 10 diagram in ordm to obtain the h a l cir-
cuit diagram. Although most digital circuits are synchronous, th%te are occasions when one
has to &a1 with asynchnmow behavior, Tbe basic pro@= p m t e d in this chapter are es-
sential to a full understanding of the internat khaviw of digital c h i t s .

0 0 0

X X X

X X X O

0 0 0 0

FIGURE 9.46
logic dlagrarn of negatldge-triggmed Tfllp-flop

P R O B L E M S

Answers to problems m a r i d with * ~pptar at the end of the book.
9.1 (a) Explain the difference between ~yuch ronm~~ and spchrwoas qumlial circllirs.

{b) Define fundamental-mode operation.
(c) Explain the difference between stable and unstable -.
(d) What i s the difference bttwtcn an internal state and a total spre?

938 Derive the hasition table for the asynchronous qwtthl cirmit ~MWEI m Fig. F X L I M m u h h
sequence of internal states qG for the following sapm afjmpots ~1x2: m, 10. 11,Ol. 1 1, 10,OO.

464 Chapter 9 Asynchmrlowi Sequ&ntM Logk

9.3 An asynchronous saqucntial circuit is described by the excitation function

Y = x lx$ + (xl + x i)y
and the output function

z = y

(a) Draw the logic diagram of the circuit.
@) Derive the transition table and output map.
(c) Obtain a twestate flow table.
Id)* Describe in words the W v i o r of the circuit.

?:4 An asynchronous sequential circuit has two inmd states and one -t The two excitation
functions and w e output function describing the cifcuit are, reqedvely,

Y1 = ~ 1 x 2 + xly$ +
Y2 = xz + X ~ Y ~ Y Z + X;YI

z = x2 + y1
(a) Draw the logic diagram of the c h i t .
(b) Derive the transition table and output map.
(c)* Obtain a flow table for the circuit.

9.3 Convert the flow table of Fig. P9.5 into a transition table by d& tbe follming binary val-
ues to the states: a = 110, b = 11. and c = 01.
(a) Assign values to the extra f d state to avoid critical rsoes.
(b) Assign outputs to the don'tcare states to avoid momentary f a h outputs.
(c)* Derive the logic diagram of the Circuit.

9.6 Investigate the tramition table of Fig. W.6, and determiae all race conditicus and w k h they
are critical or noncritical. Determine a h w e r there are any cycles.

9.7 Andy, the SR latch with control shown in Fig. 5.5. Obtain tk muition table, a d sbow that
the circuit is unstable when all tbnse inputs are equal to 1.

Modify the diagram of FG. 5.5(a) to convert it into a JK type of latch by insdng two feedback '.
comedons from the outputs to the inputs. Show that the circuit is unstable when J = K = 1
while the conml input C remains in &e 1 state.

9.9 For the asynchronous sequential circuit shown in Fig. P9.9,
(a) derive the Boolean functions for the outputs of the two SR latches Y1 and Y2. Note that the S

input of the second latch is x i y ; .
(b) derive the transition table and output map of the circuit.

466 Chapter 9 Asynchronous Sequential Lagk

9.101 Implement the circuit defined in Problem 9.3 with a NOR SR Iatch. Repeat with a NAND SR
k h .

9.1 1 lmplrment the circuit defind in Roblem 9.4 with NAND SR latches.

9.1 2 Obtain a primitive flow table for a circuit with two inputs, xl and xz, and two outputs, z1 and 22,
that satisfy the following four conditions:
(a) When ~ 1 x 2 = 00, the output is zlzz = 00.
@I Whenxl = 1 andx2chang~hmOto1,theoutputiszlzz = 01.
(c) Whcnxz = 1 mdxl changwfmmOta 1, theoueputiszl~ = 10.
(dl Otherwise, the output h s not chauge.

9.1P A ~ l i g b t i s i n s ~ a t a j u n c t i m o f a ~ d a d T b e ~ ~ ~ I l e d b y t w o s w i t c h -
ea in the rails plaoed I mile apart on e i k side of the jm&(m. A switch is turned cm when the train
is over it and is mned off otherwise. The m c light changes kom green (logic 0) to red (logic 1)
when the beginning of the train is 1 mile h m the junctiw. The light chmp back to gcen when
theendofthe trainis 1 m i l e a w a y f r w n ~ ~ m . A s s u m e t h a t ~ l e n g t h o f t b e t r a i n k I w s ~
2 m h .
(a) Obtain a primitive flow table for the circuit.
@) Show that the flow table can be reduced to fow lows.

9.14 It is necessary to design an asynchronous sequential circuit with two inputs, XI and xz, and one
output, z. Initially, both inputs and output are equal to 0. When xl or x2 kames 1. t becomes 1.
When the second input also becomes 1, the output changes to 0. The output stays at O until the
circuit p s back to the initial state.
(a) Obtain a primitive flow table for the circuit, and show that it can be reduced to tbe £low tabb

shown in Fig, P9.14,
@) Complete the design of the circuit.

FIGURE P9.14

9.1 5 Assign output values to the don't- strltes in the flow tables of Fig. P9.15 in such a way as to
avoid transient output pulses.

i Using the implication-table method show that the state table listed in Table 5.7 carmot be re-
duced any further.
Reduce the number of mes in tbe state table listed in Problem 5.12. Use an implication table.

P Merge each of the primitive f i w table6 shown in Fig. P9.18. hwed as follows:

Problems 467

= Chatmr 9 Asynchronous -entiad Logk

(a) find all compu'ble pairs by means of an implication table.
(b) Fmd the maximal compatibles by ~lmeaas of a merger dia-
(c) Find a minimal set of compatibles that covers a l l the states aud is closed

9.19 {a) Obtain a binary state assignment for the &ed flow table shorn in Fig. P9.19. Avoid crit-
ical race conditions.

(b) Obtain the logic diagram of the c h i t , using NAND latches and gates.
9- Find a critical race& state assignment for the reduced flow table show ia Fig. P9.20.

Ref ererices

9.2.1 Consider the reduced flow table shown in Fig. P9.21.
(a) Obtain the transition diagram, and show that three state variables are needed for a race-free

binary state assignment.
{b) Obtain the expanded flow table, using the multiple-row method of auignrnent as specified

in Fig. 9.32(a).

9.2P Find a circuit that has no smtic hazards and implements the Boolean function

F (A , B , C , D) = X(O,2,6,7,8, 10, 12)

9.23* Draw the logic diagram of the product-of-sums expression

Y = (xl + x ~) (x ~ + x 3)

Show that there is a static 0-hazard when x l and x3 are equal to 5 and x2 goes from 0 to 1. Find
a way to remove the hazard by adding one more OR gate,

P a The Boolean functions for the inputs of an SR latch are

Obtain the circuit diagram, using a minimum number of NAND gates.

9.25 Complete the design of the circuit specsed in Problem 9-13.

R E F E R E N C E

1. BREEDING, K, J. 1989. Digital Design F&cntals. F.u@eWOOd Cli& NJ: Pra&ce-Hd,
2. FRIEDM, A. D. 1986. Fundamentals of LDgic Design am? Swackirpg Thory. RmhiHc, MD:

Computer Science Press.

Chapter 9 Asynchronous Sequentla1 Logk

3. HILL, F. J., and G. R. Pmmm. 198 1. Infrodsctdwz to Switchkg b r y andZogkal Design, 3d ed
New York: John Wiley.

4. KOHAVI, 2.1978. Switching rmd-m TAwv, 2d ed. New Yark: McGiaw-Hill,
5. MCCLUSKEY, E. J. 1986. Logic Design Principles. Englewd CWs, NI: RtntiaEfalL
6. NUON, V, F?, H. T. NAGLE, J. D. Iuwm, and B. D. CARROIL. 1995. Digital Logic Cin:uitsAn&-

xis CUZd Design. Upper Saddle River, NJ: Prentice Hall.
7. UNGER, S. H. 1969. Asynchronous fhptdal Switching Ci&. New Yo* John Wilcy.

Chapter 10

Digital Integrated Circuits

10.1 INTRODUCTION

The integrated circuit (IC) and the digital logic families were introduced in Section 2.9. This
chapter presents the e lmonic circuits in each IC digital logic family and analyzes their elec-
trical operation. A basic knowledge of electrical circuits is assumed.

The IC digital logic families to be considered here are

RTL Resistor-transistor logic
DTL Diodstransistor logic
TTL Transistor-bansistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor
CMOS Complementary metal-oxide semiconductor

The first two, RTL and DTL, have only historical significance, since they are no longer used
in the design of digital systems. RTL was the first w m m d f d y to have been used ex-
tensively. It is included here because it represents a useful starting point for explaining the
basic operation of digital gates, DTL circuits have been replaced by TIL h fad, TTL is a
modification of the DTL gate. The operation of the lTL gate will b &to mksmd after
the DTL gate is analyzed. TI'L, MX, and CMOS have a large af SSI c h x h , as well
as MSI, LSI, and VLSI components.

The basic circuit in each IC digital logic family is a NAND m mm 'hb M dm& is
the primary building block from which dl o t b , mme r e &@d raabtaiaed.
Each IC logic family has a data book ahat lists all h htqmkd -in h h d y . Tbe dif-
ferences in the logic functions available from each f m d y ae not r, d m IIE hwims d u ~

Chapter 10 Digitmi Intcgratd.tkcuitr

they achieve as in the specific elecbical charmeristics of the basic gate from which the circuit
is constructed.

NAND and NOR gates are usually d e u by the Boolean ~ 0 1 1 s that they implement
in terms of binary variables. In analyzing them as electronic circuits, it is necessary to inves-
tigate their input-utput relationships in terms of two voltage levels: a high level, designated
by H, and a low level, designated by L. As mentioned in Section 2.8, the assignment of binary
1 to H results in a positive logic system and the assignment of b i i 1 to L results in a nega-
tive logic system. The truth table, in terms of H andL, of a positive-logic NAND gate is shown
in Fig. 10.1. We notice that the output of the gate is high as long as one or more inputs are low.
The output is low only when both inputs are high. The behavior of a positive-logic NAND
gate in terms of high and Iow signals can be stated as follows:

If any input of a NAND gate is low, the output is high.

If all inputs of a NAND gate are high, the output is low.

The carresponding truth table for a positive-logic NOR gate is shown in Fig. 10.2. The output
of the NOR gate is low when one or more inputs are high. The output is high whenboth inputs
are low. The behavior of a positive-logic NOR gate, in terms of high and low signals, can be
stated sts follows:

If any input of a NOR gate is high, the output is low.

If all inputs of a NOR gate are low, the output is bigh.

These statements for NAND and NOR gates must be remembered, because they will be used
during the analysis of the electronic gabs in tbis chapter.

Inputs Output

X Y 2

FKmE 10.1
P ~ I ~ r NAND gate

FIGURE 10.1
Positive-lagic N O R gate

A bipolar junction transistor (BIT) can be either an npn or a pnp junction transistor. Jn con-
trast, thefield-erect transistor (FET) is said to be unipolar. The operation of a bipolar tran-
sistor depends on the flow of two types of carriers: electrons and holes. The operation of a
unipolar transistor depends on the flow of only one ty p of majority carrier, which may be elec-
trons (in an n-channel transistor) or holes (in a p-channel transistor). The first four hgital
logic families listed at the beginning of the chapter-RTL, DTL, TTL, and E C L u s e bipo-
lar transistors. The last two families-MOS and CMOS-employ a type of unipolar transis-
tor called a metal-oxide-semiconductor field-effect ~ansistor, abbreviated MOSFET, or MOS
for short.

In this chapter, we first introduce the most common characteristics by which the digital
logic families are compared. We then describe the properties of the bipolar transistor and an-
alyze the basic gates in the bipolar logic families. Finally, we explain the operation of the MOS
transistor and introduce the basic gates of its two logic families.

10.2 SPECIAL CHARACTERISTICS

The characteristics of TC digital logic families are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com-
pared are fan-out, power dissipation, propagation delay, and noise margin. We first explain the
properties of these parameters and then use them to compare the IC logc families.

The fan-out of a gate specifies the number of standard loads that can be connected to the out-
put of the gate without degrading its normal operation. A standard load is usually defined as
the amount of current needed by an input of another gate in the same logic family. Some-
times the term loading is used instead of fan-out. The term is derived from the fact that the
output of a gate can supply a limited amount of current, above which it ceases to operate
properly and is said to be overloaded. The output of a gate is usually connected to the inputs
of other gates. Each input requires a certain amount of current from the gate output, so that
each additional connection adds to the load of the gate. Loading rules are sometimes speci-
fied for a family of digital circuits. These rules give the maximum amount of loading allowed
for each output of each circuit in the family. Exceeding the specified maximum I d may
cause a malfunction because the circuit cannot supply the power demanded of it by its loads.
The fan-out is the maximum number of inputs that can be connected to the mtpt of a gate
and is expressed by a number.

The fan-out is calculated from the amount of current available in Ihe afa gaE d
the amount of current needed in each input of a gate. C m d ~ h * ' st*rrwinFig. 103.
The output of one gate is connected to one or more inpnts of* m T h s q of& gate
is in the high-voltage level in Fig. 10.3(a). It pro* a po dl the in-
puts connected to it. Each gate input r e q u k a m n t Zm fOTplopa- S d d y . tk
output of the gate is in the low-voltage level in Fig. 10.3@). It-&- sink IoL for
all the gate inputs connected to it. Each gate input supplies a IIL- The W dtk gate

474 Chapter 10 Digital Integratd C h k s

t
To other
WP

(a) High-level output

t
To other
inputs

is calculated from the ratio IoH/IIH or IOJIIL, whichever is smaller. For example, the standard
'ITL gates have the folIowing values for the currents:

The two ratios give the same number in this case:

Therefore, the fan-out of standard Tl'L is 10. Tbis means that the output of a TTL gate can be
comected to no more than 10 inputs of other gates in the same Iogic famaily. Oihe~~ise, the gate
may not be able to drive or sink the amount d m t needed from the inputs that are connected
to it.

Every electronic circuit requks a certain amount of power to operate. The power dissipation
is a parameter expressed in dliwatts (mW) and represents the amount of power needed by the
gate. The number that represents his panmeter does not iaclude the power delivered from an-
other gate; rather, it represents the power delivered to the gate from tbe power supply. An IC
with four gates will q u k , from its power supply, four times rhe pow= di9sipat.d in each gate,

Section 10.2 Sperlal Characteristics 475

The amount of power that is dissipated in a gate is calculated from the supply voltage Vcc
and the current Icc that is drawn by the circuit. The power is the product Vcc X Ice. The cur-
rent drain frorn the power supply depends on the logic state of the gate. The current drawn
from the power supply when the output of the gate is in the high-voltage level is termed IccH.
When the output is in the low-voltage level, the current is ICCL. The average current is

and is used to calculate the average power dissipation:

For example, a standard TTL NAND gate uses a supply voltage Vcc of 5 V and has current
drains ICCH = 1 rnA and ICCL = 3 mA. The average current is (3 + 1)/2 = 2 mA. The av-
erage power dissipation is 5 X 2 = 10 mW. An IC that has four NAND gates dissipates a
total of 10 X 4 = 40 mW. In a typical digital system, there will be many ICs, and the power
required by each one must be considered. The total power dissipation in the system is the sum
total of the power dissipated in all the ICs.

Propagation Delay

The propagation delay of a gate is the average transition-&lay time for the signal to propagate
from input to output when the binary input signal changes in value. The signals through a gate
take a certain amount of h e to propagate frorn the inputs to the output. This interval of time
is defined as the propagation delay of the gate. Propagation delay is measured in nanoseconds
(ns); 1 ns is equal to lo-' second.

The signals that travel from the inputs of a digital circuit to its outputs pass through a se-
ries of gates. The sum of the propagation delays through the gates is the total delay of the cir-
cuit. When speed of operation is important, each gate must have a short propagation deIay and
the digital circuit must have a minimum number of gates between inputs and outputs.

The average propagation delay time of a gate is calculated from the input and output wave-
forms, as shown in Fig. 10.4. The signal-delay time between the input and the output when the
output changes from the high to the low level is referred to as t p ~ ~ . Similarly, when the out-
put goes from the low to the high level, the delay is t p ~ ~ . It is customary to meas- the time
between the 50 percent point on the input and output transitions. In general, tbe two khys are
not the same, and both will vary with loading conditions. The avemge ppagalimdday time
is calculated as the average of the two delays.

As an example, the delays for a standard 'ETL gate are tm = 7 as a d tpm = 11 us.
These quantities are gven in the TlL data bmk and are with a L8d of
400 ohms and a load capacitance of 15 pF. The average -dew d die TIL is
(11 + 7)12 = 9ns.

Under certain conditions, it is mm imptam a kmw lh
' " j t i e c d a m d x s

than the average value. The TTL data book lists the ' g ! ~ - for a
standard NAND gate: t p ~ ~ = 15 ns a d tpm = 22 rrs. Wbrn amadd- is it is
necessary to rake into account the maxirrmm delay to easrmt p w - I dtbt

478 Chapter t 0 Mgltal Integrated Cbwrltr

Input

FIGURE 10.4
Measurement of propagation delay

The input signals in most digital circuits are applied simultaneously to more than one gate.
All the gates that are connected to external inputs constitute the fmt logic level of the circuit.
Gates that receive at least one input from an output of a first-level gate are considered to be
in the second logic level, and similarly for the third and higher logic levels. The total propa-
gation delay of the circuit i s equal to the propgation delay of a gate times the number of
logic levels in the circuit. Thus, a reduction in the number of logic levels results in a reduc-
tion in signaI delay and faster circuits. The reduction in the propagation delay in circuiw may
be more important than the reduction in the total number of gates if speed of operation is a
major factor.

- Time

~PLH -
Output -

Noise Margin

Spurious electrical signals from industrial and other sources can induce undesirable voltages
on the connecting wires between logic circuits. These unwanted signals are referred to as
noise. There are two types of noise. DC noise is caused by a drift in the voltage levels of a
signal. AC noise is a random pulse that may be created by ocher switcbhg signals. Tbus, noise
is a term used to denote an undesirable signal that is s u ~ ~ upon the normal operat-
ing signal. The noise margin is the maximum noise voltage added to an input signal of a dig-
ital circuit that does not cause an undesirable change in the circuit's o u w ~ The ability of
cirmits to operate reliably in an environment with noise is important in m y applications.
Noise margin is expressed in volts and repmats the maximum noise signal that can be tol-
erated by the gate.

The noise margin is calculated from knowledge of he voltage signal available in tbe out-
put of the gate and the voltage signal r e q M in the input of the gate. Figure 10.5 illustrates
the signals used in computing the noix margin. Part (a) shows the m g e of a p t voltages that
can occur in a typical gate. Any voltage in the gate output between Vcc and Vonr is considered
to be the high-level state, and any voltage h t w e n 0 and Vm in the gate output is considered to
be the low-level state. Voltages ktween Vm and Vm are h m n a t e and do not appear

~ P K L - -

High-state
noise margin

Low-state
noise margin

(a) Output voltage range

FIGURE 10.5
Slgnals for evaluating noise margin

(b) Input voltage range

under normal operating conditions, except during transition between the two levels. The cor-
responding two voltage ranges that are recognized by the input of the gate are indicated in
Fig. 10.5(3). In order to compensate for any noise signal, the circuit must be designed so that
K L is greater than VOL and V J ~ is less than VoH. The noise margin is the difference VoH - VIH
or VIL - VoL, whichever is smaller.

As illustrated in Fig. 10.5, VOL is the maximum voltage that the output can be in the low-level
state. The circuit can tolerate any noise signal that is less than the noise margin (bL - bL) be-
cause the input will recognize the signal as being in the low-level state. Any signal greater than
VoL plus the noise-margin figure will send the input voltage into the indeterminate range, which
may cause an error in the output of the gate. In a similar fashion, a negative-voltage noise greater
than VoH - Ir,, will send the input voltage into the indeterminate range.

The parameters for the noise margin in a standard TTL NAND gate are VOH = 2.4 V,
IfoL = 0.4 V, VIH = 2 V, and = 0.8 V. The high-state noise margin is 2.4 - 2 = 0.4 V,
and the low-state noise margin is 0.8 - 0.4 = 0.4 V. In his csse, both values are h same.

10.3 B I P O L A R - T R A N S I S T O R CHARACTERISTICS

This section reviews the bipolar kmistor as applied to di@d cinaLm- w e
will be used in the analysis of the basic circuit in the fonr bipolsr bsjc W A S d
earlier, bipolar msistors may be of the npn orpnp type. m-'wn-*
with germanium or silicon semiconductor material B * i IC-.-, are IU&
with silicon and are usually of the npn type. ,.. ,.. , . + ' . .

478 Chapter 10 Digital Integrated Circuits

The basic data needed in the d y s i s of digital circuits may be obtained by inspection of
the typicd characteristic curves of a common-emitter npn silicon mistor , shown in Fig. 10.6.
The circuit in (a) is a simple inverter with two resistors and a irmsistot The current madced
I, flows through resistor & and the collector ofthe hxnsistor. Cmmt IB flows dm@ &tor
RB and the base of the transistor. The emitter is connected to ground, and its current
IE = Ic + IB. The supply voltage is between Vcc and ground. The input is between l$ and
ground, and the output is betwem V, and ground.
We have assumed positive directions for the currents as indicated. These are the directions

in which the currents nonnally flow in an npn bansistor. Collector md base currents (Ic and
IB, respectiveIy) are positive when they flow into the transistor. Emitter currwt IE is psitive
when it flows out of the transistor, as i n d i c a by the arrow in the emitter terminal. The sym-
bol VcE stands for the voltage drop from collector to emitter and is always positive. Corre-
spondingly, VBE is the voltage drop across the basetoemitter junction. This junction is forward
biased when VBE is positive and reverse biased when VE is negative.

IL
(a) Common emitter inverter circuit

(c) Transistorallm3or dmacwristic

Sedon 10.3 Bipolar-Translstor Characteristics 479

The baseemitter graphical characteristic is shown in Fig. 10.6(b), which is a plot of VBE ve-
sus IB, If the base-emitter voltage is less than 0.6 V, the transistor is said to be cut of! and no
base current flows. When the baseemitter junction is forward biased with a voltage p t e r than
0.6 V, the transistor conducts and IB starts rising very fast whereas VBE changes very little. The
voltage Vm across a conducting m s i s t o r seldom exceeds 0.8 V.

The graphical collector+mitter characteristics, together with the load line, are shown in
Fig. 10.6(c). When VBE is less than 0.6 V, the transistor is cut off with IB = 0, and a negligi-
bIe current flows in the collector. The collecmr-to-emitter circuit then behaves like an open cir-
cuit. With Ic = 0 the drop across Rc is 0 and V, = Vcc. The output is then said to k pulled
up, In the active region, collector voltage VCE may be anywhere from about 0.8 V up to Vcc.
Collector current Ic in this region can be calculated to be approximately equal to IB laFE, where
hFE is a m i s t o r parameter called the dc current gain, The maximum collector current depends
not on IB, but rather on the external circuit connected to the collector. This is because VCE is
dways positive and its Iowest possible value is 0 V. For example, in the inverter shown, the max-
imum Ic is obtained by maldng VCE = 0, to obtain Ic = Vcc/Rc.

The parameter hFE varies widely over the operating range of the transistor, but still, it is use-
ful to employ an average value far the purpose of analysis, In a typical operating range, hFE
is about 50, but under certain conditions it could be as low as 20. It must be realized that the
base current IB may be increased to any desirable value, but the collector current Ic is limited
by external circuit parameters, As a consequence, a situation can be reached in which hFE IB
is Beater than Ic. If this condition exists, then the transistor is said to be in the saturation re-
gion. Thus, the condition for saturation is determined from the relationship

where Ics is the maximum collector current flowing during saturation. VCE is not exactly zero
in the saturation region, but is normally about 0.2 V, In this condition, V, = VBE = 0.2 V and
the output is said to be pulled down.

The basic data needed for analyzing bipolar-transistor digital circuits are listed in Table 10.1.
In the cutoff region, VBE is less than 0.6 V, VcE is considered to be an open circuit, and h t h
currents are negligible. In the active region, VBE is about 0.7 V, VcE may vary over a wide
range, and Ic can he calculated as a function of IBa In the saturation region, VBE hardly changes,
but VCE drops to 0,2 V, The base current must be large enough to satisfy the inequality listed.
To simplify the analysis, we will assume that VBE = 0.7 V if the transistor is conducting,
whether in the active or saturation region.

-.,+-

- -- - . .

Cutoff ~0.6 Qm &nit I= =-& = 0
Active 0.6-0.7 >0.8 k=hda
Saturation 0.7-0.8 0.2 IB MP@

Digital circuits may be analymd by means of the following prescribed procadure: For each
transistor in the circuit, determine whether its VBE is less than 0.6 V. If so. tben the traasistor
is cut off and the collector-to-emitter cirmit is considered an opw circuit. If VBE is greater
than 0.6 V, the transistor may be in, the active or saturation region. Calculate the base current,
assuming that VBE = 0.7 V. Next, calculate the maximum possible value of collector current
Its, assuming that VCE = 0.2 V. Thw cahhtions will be in terms of voltages applied and
resistor values. Then, if the base c m t is large enough that ZB 2 ICS/hrE. we infer that the
transistor is in the s a d o n region with VCE = 0.2 V. However, if the base m n t is d e r
and the preceding relationship b not salisfied, the transistor is in the active ~ g i m and we
recalculate collector current Zc, uskg the equation Ic = hFEIB

To demonstrate with an example, consider the inverter circuit of Fig. 10,qa) with the fol-
lowing parameters:

Rc = 1 k i l Vcc = 5 V (voltage supply)

RB = 22 kfi H = 5 V (high-level voltage)

L = 0.2 V (low-level voltage)

W1th input voltage = L = 0.2 V, we have VBE < 0.6 V and the transistor is cut off. The
oo11ector-eMitter circuit behaves like an o p circuit, so oarpwt voltage V, = 5 V = H.
W1tb input voltage fi = H = 5 V, we infer that VBB > 0.6 V. Assuming that VM = 0.7.

we calculate the base current:

The maximum collector current, assuming that VCE = 0.2 V, is

We then check for saturation, using ahe condition

whereupon we fmd that the inequality is saMed, since 0.195 > 0.096. W e condude that the
tansistor is saturated and output voltage V, = VcE = 0.2 V = L. Thus, the circuit behaves ss
an inverter.
The procedure just described wiU be wed extensively during the analysis of the circuits in

the sections that fol1ow. We will perform a qmlitative m a l y s m t is, aa analysis that docs
not involve the specific numerical equations. Aquantitative analysis and @c calMIJ.cltioas
will be left as exercises in the "Roblems" section at the end of the chapm

There are occasions when not only trrlasislms, but also diodes, are used in digital circuits.
An TC diode is usually constructed h m a transistor with its c o k t m connected to the base,
as shown in Fig. 10.7(a). The graphic symbol employed for a diode is shown in Fig. 10.7@).
The diode behaves essentidy like the base-emitter j d o n of a hamistor. Its graphical

Section 10.4 RTL and DTL Circuits 481

(a) Transistor adapted for
use as a diode

(b) Diode graphic symbol

MURE 10.7
SUkon diode symbol and characteristic

(c) Diode characteristic

characteristic, shown in Fig. 10.7(c), is similar to the base-emitter characteristic of a transis-
tor. We can then conclude that a diode is off and nonconducting when its forward voltage
VD is less than 0.6 V. When the diode conducts, current ID flows id the direction shown in
Fig. 10.7(b) and VD stays at about 0.7 V. One must always provide an external resistor to
limit the current in a conducting diode, since its voltage remains fairly constant at a fraction
of a volt.

10.4 R T L AND DTLCIRCUITS

Rn Bask Gate

The basic circuit of the RTL digital logic family is the NOR gate shown in Fig. 10.8. Each
input is associated with one resistor and one transistor. The collectors of the hamisms a~ tied
together at the output. The voltage levels for the circuit are 0.2 V for the low h e 1 and fbm 1
to 3.6 V for the high level.

The analysis of the RTL gate is simple and follows mdhedin tk pdau sec
tion. If any input of the RTL gate is high, the mrrespondiag r ' ' is d t h n imo
and the output goes Iow, regardless of the states of the a t k r t ~ - Ifan iqms a r ~ b w at
0.2 V, all transistors are cut off because VBE < 0.6 V and ik mqrpt of tk hdt hi&
approaching the value of the supply voltage Vcc. This cadhmitbe d i n * 103
for the NOR gate. Note that the noise margin fm low signal is 86 - 02 = a4 V.

The fan-out of the RTL gate is limited by a hi& h k lDBded
with inputs of other gates, rn m t is consumed by t h e b L ~ ~ n r ~ t f k w ~ @ ~
the 6 4 0 4 resistor. A simple calculation (see Roblem 102) ~UMS W QYa& dmpa to 20, tb
output voltage drops to about 1 V when the fau-out is 5. Aay 1 V in lh mlpt

482 Chapter 10 Digital Integrated Circulb

FIGURE 10J
Basic RTL NOR gat&

may not drive the next transistor into saturation as required. The power dissipation of the RTL
gate is about 12 mW and the propagation delay avemges 25 ns.

DTL Basic Gates

The basic circuit in the DTL digital logic family is the NAND gate shown in Fig. 10.9. Each
input is associated with one diode. The diodes and the 5-ki'l resistor form an AND gate. The
transistor serves as a current amplifier while inverting the digitd signal. The two voltage lev-
els are 0.2 V for the low level and between 4 and 5 V for the high level.

The analysis of the DTL gate should conform to the conditions listed in Fig. 10.1 for the
NAND gate. If any input of the gate is low at 0.2 V, the corresponding input diode d u c t s

Section 10.4 RTt and OTL Circuits 483

current through Vcc and the 5-kfk resistor into the input node. The voltage at point P is equal
to the input voltage of 0.2 V plus a diode drop of 0.7 V, for a total of 0.9 V, In order for the tran-
sistor to start conducting, the voltage at point P must overcome (i.e., be at least as high as) a
1-Vm drop in Ql plus bvo diode drops across Dl and D2, or 3 X 0,6 = 1,8 V. Since the voIt-
age at P is maintained at 0.9 V by the input conducting diode, the transistor is cut off with no
drop across the 2-kn resistor, and the output voltage is high at 5 V.

If all inputs of the gate are high, the transistor is driven into the saturation region, The
voltage at P now is equal to VBE plus the two diode drops across D l and D2, or
0.7 X 3 = 2.1 V. Since all inputs are high at 5 V and since Vp = 2,l V, the input diodes are
reverse biased and off. The base current is equal to the difference of the currents flowing in the
two 5-kn resistors and is sufficient to drive the transistor into saturation. (See Problem 10.3.)
With the transistor saturated, the output drops to kE = 0,2 V, which is the low level fur the
gate.

The power dissipation of a DTL gate is about 12 mW and the propagation delay averages
30 ns, The noise margin is about 1 V and a fan-out as high as 8 is possible. The fan-out of the
DTL gate is limited by the maximum cutrent that can flow in the collector of the saturated
transistor, (See Problem 10,4.)

The fan-out of a DTL gate may be increased by replacing one of the diodes in the base cir-
cuit with a transistor, as shown in Fig. 10,lO. Transistor Q l is maintained in the active region
when output transistor Q2 is saturated. As a consequence, the modified circuit can supply a
larger amount of base current to the output tlansistor, which can now draw a larger amount of
collector current before it goes out of saturation. Part of the collector current comes from the
conducting dicdes in the loading gates when Q2 is saturated. Thus, an increase in the allow-
able saturated current in the collmtor allows more loads to be connected to the output, increasing
the fan-out capability of the gate.

FIGURE 10.10
Modified DTL gate

Chapter 10 Mgltal Integrated C h w b

10.5 TRANSISTOR-TRANSISTOR LOG

The original basic transistor-transistor logic (nz) gate was a slight improvement over the
DTL gate. As TTL technology progressed, improvements were added to the point where this
logic family became widely used in the design of digital systems. Today, MOS and CMOS
logic, which will be discussed in Sections 10.7 and 10.8, are the dominant tachnologits in
VLSI circuits.

There are several subfamilies or s e r k of the TIZ ttcbnology. The nama and character-
istics of eight TIZ series appm in Table 10.2. CommmM TTL ICs have a nu* M i a -
tion that starts with 74 and follows with a s u f h that ideama the series. Examples are 7404.
74886, and 74ALS161. Fan-t, power &pation, and pmpption delay were &hed in
Section 10.2. The speed-power prodoct is an inqmtmt parameter used in cumparing the var-
ious TIZ series. The procluct of the pqqat i rn delay and power dissipation, the s p d - p w e r
product is measured in picojoules @J). A low vduc for this pamctm is desirable. because it
indicates that a given pmpagsttion delay can be acbieved without excessive power dissipation,
and vice versa.

The standard TTL gate was the first version in the 1TL family. This basic gate was then de-
signed with different resistor values to gates with lower power dissipation or with
higher speed. The propagation delay d a transistor circuit tbat goes into saturation depends
mostly on two factors: storage time and RC time constants. Reducing the storage time de-
creases the propagation delay. Reducing resistor values in the circuit duces the RC time con-
stmts and decreases the propagation delay. Of course, the - is higber power dissipation,
b u s t lower resistances draw more c m n t from the power supply. The speed of the gate is
inverstly proportional to the propagation delay.

in the low-power lTL gate, the resistor values are higher than in the standard gate in order
to reduce the power dissipation, but the propagation delay is incmsed. In the high-speed 'lTL
gate, mistor values are lowered to reduce the propagation delay, but the power dissipation is
increased. The Schottky l T L gate was the next improvement in the techuology. The &ect of
the Schottky uansistor is to remove the storage time delay by preventing the m i s t o r h m

Table 10.2
r n S P r R a r & m & C h ~

F8n- PowerDlsslpPth
HLSsrlesNune Prefix out

SpcsdcPorwt mw) (W W=t@J)

Standard
-PO-
High speed

Law-power Scho#ky
Advanced Schottky
Advanced low-power

S C W
Fast

Seaton 10.5 Transistat-Tmnsistor Logic

going into saturation. This series increases the speed of operation of the circuit without an ex-
cessive increase in power dissipation. The low-power Schottky TI'L sacrifices some speed for
reduced power dissipation. It is equal to the standard TTL in propagation delay, but has only
one-fifth the power dissipation. Further innovations led to the development of the advanced
Schottky series, which provides an improvement in propagation delay over the Schottky series
and also lowers the power dissipation. The advanced low-power Schottky has the lowest
speed-power product and is the most efficient series. The fast TTL family is the best choice
for high-speed designs.
AU lTL series are available in SSI components and in more complex forms, such as MSI

and LSI components. The differences in the TTL series are not in the digital logic that they per-
form, but rather in the internal construction of the basic NAND gate. In any case, TTL gates
in all the available series come in three different types of output configuration:

1. Open-collector output
2. 'Totem-pole output
3. Three-state output

These three types of outputs are considered next, in coqjunction with the circuit description of
the basic 'lTL gate.

Open-Collector Output Gate

The basic TT'L gate shown in Fig. 10.11 is a modified circuit: of the DTL gate. The multiple emit-
ters in transistor Q1 are connected to the inputs. Most of the time, these emitters behave Like
the input diodes in the DTL gate, since they form a pn junction with their common base. The
base-collector junction of QI acts as another pa junction diode corresponding to Dl in the

FIGURE 10.1 1
Open-fotlector mL NAND gate

486 Chapter 10 Digital Integrated Clrcultr

DTL gate. (See Fig. 10.9.) Transistor Q2 replaces the second diode, D2, in the DTL gate. The
output of the TIZ gate is taken from the open collector of Q3. A resistor connected to Vrc
must be inserted externally to the IC package for the output to "pull up" to the high voltage Ievel
when Q3 is off; otherwise, the output acts as an open circuit. The reason for not providing the
resistor internally will be discussed later.

The two voltage levels of the 'ITL gate are 0.2 V for the low level and from 2.4 to 5 V for
the high level, The basic circuit is a NAND gate. If any input is low, the corresponding
base-emitter junction in Q l is forward biased. The voltage at the base of Ql is equal to the input
voltage of 0.2 V plus a VBE drop of 0.7, or 0.9 V. h order for Q3 to start conducting, the path
from Q1 to Q3 must overcome a potentid of one diode drop in the base-collector pn junction
of Ql and two VBE drops in Q2 and Q3, or 3 X 0.6 = 1.8 V. Since the base of QI is maintained
at 0.9 V by the input signal, the output transistor cannot conduct and is cut off. The output
level ulll be high if an external resistor is connected between the output and Vcc (or an open
circuit if a resistor is not used).

If dl inputs are high, both Q2 and Q3 conduct and saturate. The base voltage of Q I is
equal to the voltage across its base-collector pn junction plus two VBE drops in Q2 and Q3,
or about 0.7 X 3 = 2.1 V. Since dl inputs are high and greater than 2.4 V, the base-emitter
junctions of QI are all reverse biased. When output transistor Q3 saturates (providd that it
has a current path), the output voltage goes low to 0.2 V. This confirms the conditions of a
NAND operation.

In the analysis presented thus far, we said that the base-collector junction of 01 acts like
a pn diode junction. This is true in the steady-state condition. However, during the turnoff
transition, Ql does exhibit transistor action, resulting in a reduction in propagation delay.
When all inputs are high and then one of the inputs is brought to a low level. both Q2 and
Q3 start turning off. At this time, the collector junction of Q l is reverse biased and the emit-
ter is forward biased, so transistor Q l goes momentarily into the active region. The collec-
tor current of Ql comes from the base of Q2 and quickly removes the excess charge stored
in Q2 during its previous saturation state. This causes a reduction in the storage time of the
circuit compared with that of the DTL type of input, The result is a reduction in the nunoff
time of the gate.

The open-collector TTL gate will operate without the external resistor when connected to
inputs of other TTL gates, dthough this kind of operation is not recommended because of the
low noise immunity encountered. Without an external resistor, the ouqut of the gate will be an
open circuit when Q3 is off. An oopen circuit to an input of a l T L gate behaves as if it has a high-
level input (but a small amount of noise can change this to a Iow level). When Q3 conducts,
its collector will have a current path supplied by the input of the loading gate through Vcc, the
4-kn resistor, and the forward-biased base-emitter junction.

Open-collector gates are used in three major applications: driving a lamp or relay, perform-
ing wired logic, and constructing a common-bus system. An open-collector output can dnve a
lamp placed in its output through a limiting resistor. When the output is low, the saturated tran-
sistor Q3 forms a path for the current that turns the lamp on. When the output transistor is off,
the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTLgates are tied together with a single external re-
sistor, a wired-AND logic is performed Remembw that a positive-logic AND function gives

Section 10.5 Transistor-Tmristar bgk 487

(a) Physical connection @) Wired-logic grapbic symbol

KURE te.12
Wed-AND of two open-collector (oc) gates, Y = (AB + C a r

a high level only if all variables are high; otherwise, the function is low. With the outputs of
open-collector gates connected together, the common output is high only when all output tran-
sistors are off (or high). If an output transistor conducts, it forces the output into the low state.

The wired logic performed with open-collector TTL gates is depicted in Fig. 10.12. The
physical wiring in (a) shows how the outputs must be connected to a common resistor. The
graphic symbol for such a connection is demonstrated in (b). The AND function formed by con-
necting the two outputs together is called a wired-AND function, The AND gate is drawn with
the lines going through the center of the gate, to distinguish it from a conventional gate. The
wired-- gate is not a physical gate, but only a symbol to designate the function obtained
from the indicated connection. The Boolean function obtained from the circuit of Fig. 10.12 is
the AND operation between the outputs of the two NAND gates:

Y = (AB)' (CD)' = (A B + CD)'

The second expression is preferred, since it shows an operation commonly referred to as an
AND4R-INVERT function. (See Section 3.8.)

Open-collector gates can be tied together ta form a common bus. At any time, all gate o u p h
tied to the bus, except one, must be maintained in their high sm. The 6elected gate may be in
either the high or low state, depending on whether we want to immmit a 1 or a 0 on the bus.
Control circuits must be used to select the particular gate that drives the bus at auy given hlme.

Figure 10.13 demonstrates the connection of four sources tied to a c~mmon bus Iine. Each
of the four inputs drives an open-collector invmter, and the outputs of tk invmezs are tied to-
gether to form a single bus line. The figure shows that three of the impis am 0, - a 1.
or high level, on the bus. The fourth input, I* can now momit hbxmiim dmm@ lk
mon-bus line into inverter 5. Remembm that an AM) aperarion is -in* w i d bgk.
If14 = l , t h e o u t p u t o f g a t e 4 i s O a n d t h e ~ - A N D ~ ~ a O . Y 4 = O , t b e
output of gate 4 is 1 and the wired-AND @on HDdrretg a 1. if dl oltir rn
maintained at 1, the selected gate can bmsmit ia vdm thm@ tbc bOR 7 k w k tramit-
ted is the complement of Id, but inverter 5 at the receiving end m #kb signal
again to make Y = Id.

FIGURE 10.13
Open<ollector gates forming a common bur llm

To~ern-Pole Output

The output impedance of a gate is normally a resistive plus a capacitive load. The capacitive
load consists of the capacitance of the output transistor. the capacitance of the fan-out gates,
and my stray wiring capacitance. When the output changes from the low to the high state, the
output transistor of the gate gms from saturation to cutoff and the total load capacitance C
charges exponentially b m the low to the high voltage level with a time constant equal to RC.
For the open-collector gate, R is the external resistor marked RL. For a typical upratkg value
of C = 15 pF and RL = 4 kfl, the propagation delay of a TTL open~ollector gate during the
turnoff time is 35 ns. With an active pull-up circuit replacing the passive pull-up resistor Rh
the propagation delay is reduced to 10 ns. This configuration, shown in Fig. 10.14. is called a
totem-pole output because transistor Q4 "sits" upon Q3.
The TIZ gate with the totem-pole output is the same as the open-collector gate, except for

the output transistor Q4 and the d i d Dl. When the output Y is in the low state. Q2 and Q3
are driven into saturation as in the opencollector gate. The voltage in the collector of Q2 is
VBE(Q3) + VCE(Q2) . Or 0.7 -k 0.2 = 0.9 V. 'Ihe Output Y = VcE(Q3) = 02 V. Transistor
Q# is cut off because its base must be one VBE drop plus one diode drop, or 2 x 0.6 = 1.2 V,
to start conducting. Since the collector of Q2 is connected to the base of Q-4, the latter's volt-
age is only 0.9 V instead of the required 1.2 V, so Q4 is cut off. The reason for placing the
diode in the circuit is to provide a di& drop in the output path and thus ensure that Q4 is cut
off when Q3 is saturated.

When the output changes to the high state because one of the inputs drops to the low state,
transistors Q2 and Q3 go into cutoff. However, the output remains momentarily low because
the voItages across the load capacitance cannot change instantanmusly. As swn as Q2 turns
off, Q# conducts, because its base is connected to Vcc through the 1.6-khb resistor. The cur-
rent needed to charge the load capacitance causes Q4 to saturate momentarily, and the output

S ~ t i o n 10.5 Transistor-Tramistor Lqk 489

FIGURE 10.14
m gate with totem-pole output

voltage rises with a time constant RC. But R in this case is equal to 130 0, plus the saturation
resistance of Q4, plus the resistance of the diode, for a total of approximately 150 (n. This
value of R is much smaller than the passive pull-up resistance used in the open-colIector cir-
cuit. As a consequence, the transition from the low to high level is much faster.

As the capacitive load charges, the output voltage rises and the current in Q4 decreases,
bringing the transistor into the active region. Thus, in contrast to the other transistors, Q4 is in
the active region when 44 is in a steady-state condition. The final value of the output voltage
is then 5 V, minus a VBE drop in Q4, minus a diode drop in Dl to about 3,6 V. Transistor Q3 goes
into cutoff very fast, but during the initid transition time, both Q3 and Q# are an and a peak cur-
rent is drawn from the power supply. This cument spike generates noise in the power-supply &-
tribution system. When the change of state is frequent, the transient-current spikes hawse the
power-supply current requirement and the average power dissipation of the cjrcuit bmases.

The wired-logic connection is not allowed with totem-pole output circldts. Wbea two tofern
poles are wired together, with the output of one gate high and tbe o q m t of& d gate low.
the excessive amount of current drawn can produce enough hat to tbe r ' ' in tbe
circuit. (See Problem 10.7.) Some lTL gates are constructed to '-' - 4th d m
that flows under this condition fn any case, the dkctm mumt i " P b e bn bc high
enough to move the bansistor into the active region and qm- vh
0.8 V in h e wired connection. This voltage is not a d i d hmy M%km . . @

Schottky TTL Gate

As mentioned before, a reduction in storage time malls Q a- *.
This is because the time needed for a transistor to come at9f-&1-~

of he rransistm fmm h e on d d m to the off condition. Sanaetion can be dimhated by pix-
ing a Schottky diode between the base and wllsctor of each saturated tnmistm in the circuit,
The Schottlsy diode is formed by the junction of a metal and semiconductor, in mm to a wn-
ventional diode, which i fmmd by the junction of p-type a d n-type semiconductor mmial.
The voltage across a O O n d ~ Wottky diode is only 0.4 V, ampard with 0.7 V in a con-
ventional diode. The presence of a Schottky diode bdwem the base and collector prevents the
transistor fKIln going into s a h d o n . The resalting tcansistor L called a Schotfk~ tnmsirtol: The
urn of Schottky transistors in a T T L - m the propagation M a y without sacrificing p e r
dissipation.
The Schottky TTL gate is shown in fig. 10.15. Note the special symbol used for the

Schottky vansistors stnd diodes. The diagram shows all transistors except Q4 to be of the
Schottky type. An exception is made, for Q4, since it does not sanuace, but stays in the active
region. Note dso that mistor values have been redused in order to decrease the propagation
delay further.

In addition to using Wottlq e r v n s i s t o r s a a d ~ ~ ~ ~ v a l ~ ~ , ~ e i r c u i t o f E g ~ 10.15h-
cludes other mdikatiiws not avdable m tbe strmdard gate of Fig. 10.14. ma new &tors,
Q5 and Q6, have been added, and M m k y diodes m ha ted between each input & m i d and
ground There is no diode in the toEm-pole Circuit, Howev~ , the new combination of Q5 and Q4
d @ ~ * ~ v B E ~ ~ ~ ~ t ~ h ~ ~ h e n t b e ~ h l O ~ .
'Ihis cOmbhtio11 ccmstimte,~ adouble emitm-foIlower & a D a r 2 ~ ~ ' r . The Darliagtw

Sect-ion 10.5 Transistor-Transistor Logic

pair provides a very high current gain and extremely low resistance, exactly what is needed dur-
ing the law-to-high swing of the output, resulting in a decrease in propagation &lay.

The diodes in each input shown in the circuit help clamp my ringing that may occur in the
input lines. Under transient switching conditions, signal lines appear inductive; this, along with
stray capacitance, causes signals to oscillate, or '"ring." When the output of a gate switches
from the high to the low state, the ringing waveform at the input may have excursions as great
as 2-3 V below ground, depending on the line length, The diodes connected to ground help
clamp this ringing, since they conduct as soon as the negative voltage exceeds 0.4 V. When the
negative excursion is limited, the positive swing is also reduced. Clamp diodes have been so
successful in limiting line effects that all versions of TTL gates use them.

The emitter resistor Q2 in Fig. 10,14 has been replaced in Fig. 10.15 by a circuit consisting
of transistor Q6 and two resistors. The effect of this circuit is to reduce the turnoff current
spikes discussed previousIy. The analysis of such a clrcuit, whose operation helps to reduce the
propagation time of the gate, is too involved to present in this brief discussion.

ThmState Gate

As mentioned earlier, the outputs of two TTL gates with totem-pole structures cannot be con-
nected together as in open-collector outputs. There is, however, a special type of totem-poIe gate
that allows the wired connection of outputs for the purpose of forming a common-bus system,
When a totem-pole output TTL gate has this property, it is called a three-state gate.

A three-state gate exhibits three output states: (1) a low-level state when the lower transis-
tor in the totem pole is on and the upper transistor is off, (2) a high-level state when the upper
transistor in the totem pole is on and the lower transistor is off, and (3) a third state when both
transistors in the totem pole are off. The third state is an open-circuit, or high-impedance, state
that allows a direct wire connection of many outputs to a common line. Three-state gates e l h -
inate the need for open-collector gates in bus configurations.

Figure 10.14(a) shows the graphic symbol of a three-state buffer gate. When the control
input Cis high, the gate is enabled and behaves like a normal buffer, with the output equal to
the input binary value. When the conwol input is low, the output is an open circuit, which gives
a high impedance (the third state) regardless of the value of input A. Some threestate gates pro-
duce a high-impedance state when the control input is high. This is shown symbolically in
Fig. 10.16(b), where we have two small circles, one for the inverter output and the otber to
indicate that the gate is enabled when Cis low.

The circuit diagram of the three-state inverter is shown iu Fig. 10. iqc). Tmmistm m,
Q7, and Q8 associated with the conml input fotm a circuit sirnilarm tbt -gab.
Transistors QI-Q5, associated with the data input, form a TIL rirclric. Tbe two
circuits are connected together through di& Dl. As in an w ! h i t ,
Q8 turns off when the control input at C is in the low-lwel .P dhk Dl 6un
conducting. In addition, the emitter in Ql c o d to Q8 hs rn '

' "
@L Uader tbis

condition, transistor Q8 has no effect on the operation of th ad q m Y 4mnb
only on the data input at A.
When the control input is high, transistor Q8 turns rn Pnd t8e h n Vcc

through diode Dl causes transistor QB to saturate. The voltage 3t h b dm is m equal

492 Chapter 10 Digital Integrated Circuh

Y = A i f C = h i g h Y=A' i fC=low

ifC=low
C

(a) Threestate buffer gate (b) Thedate inverter gate

Data A
input

Control
input c

(c) Circuit diagram for the threestate inverter of (b)

MURE 10.16
Three-state TTl gate

Section 10.6 Emltter-Coupled Loglc

to the voltage across the saturated transistor, Q8, plus one diode drop, or 0.9 V. This voltage
turns off Q5 and Q4, since it is less than two VBE drops. At the same time, the low input to one
of the emitters of Ql forces transistor Q3 (and Q2) to turn off. Thus, both Q3 and Q# in the
totem pole are turned off, and the output of the circuit behaves like an open circuit with a very
high output impedance.

A three-state bus is created by wiring several tbree-state outputs together. At any given time,
only one control input is enabled while all other outputs are in the high-impedance state. The
single gate not in a high-impedance state can transmit binary information through the common
bus. Extreme care must be taken that all except one of the outputs be in the third state; other-
wise, we have the undesirable condition of having two active totem-pole outputs connected
together.

An important feature of most three-state gates is that the output enable delay is longer than
the output disable delay. If a control circuit enables one gate and disables another at the same
time, the disabled gate enters the lugh-impedance state before the other gate is enabled. This
eliminates the situation of both gates being active at the same time.

There is a very small leakage current associated with the high-impedance condition in a
three-state gate. Nevertheless, this current is so small that as many as 100 three-state outputs
can be connected together to form a common-bus line.

EMITTER-COUPLED LOGIC

Emitter-coupled logic (ECL) is a nonsaturated digital logic family. Since transistors do not sat-
urate, it is possible to achieve propagation delays as low as 1-2 ns. This logic family has the
lowest propagation &Iay of any family and is used mostly in systems requiring very high speed
operation. Its noise immunity and power dissipation, however, are the worst of all the logic fam-
ilies available.

A typical basic circuit of the ECL family is shown in Fig, 10.17. The outputs provide both
the OR and NOR functions. Each input is connected to the base of a transistor. The two volt-
age levels are about - 0.8 V for the high state and about - 1.8 V for the low state. The circuit
consists of a differential amplifier, a temperature- and voItage-compensated bias network, and
an emitter-follower output. The emitter outputs require a pull-down resistor for c~lrrent to £low.
This is obtained from the input resistor R p of another similar gate or from an exkmd resisb~
connected to a negative voltage supply.

The internal temperature- and v o l t a g e c o m p e ~ bias circuit supplies a re- volt-
age to the differential ampWm. Bias voltage VBB is set at - 1 3 V, -is tbe midpoiat of the
signal's logic swing. The diodes in the voltage divider, tq&~~m pmik a cheait l h t

maintains a constant V B ~ value despite changes in kqxxmm wdhg+ AqZI me of
the power supply inputs could be used as grand Hnwmeq YwIlDdt m g m d
and VEE at -5.2 V results in the test noise immmity. - .1qtlf8r *r.

If any input in the ECL gate is high. the -r m d Q.5 is
turned off. An input of -0.8 V causes the t r a a s i s r o r t o c a d a b ~ m S i 8 V m U u z d t -
ters of all of the transistors. (The VBE drop in ECL m i b Vm = -1.3 V.
the base voltage of Q5 is only 0.3 V more positive than its & @ i S M k = m c its VBE

494 Chapter 10 Digital Intepbd timdts

Internal
temperature
and voltage- Emitter-
compensated follower

Differential input a m p a r biasnetwork on~puts

VK2 = GND VcC = GND
0

Ra
245 n

Rc1 11

220 63

I 1

4.98 ka

A B C D

OR
output

NOR
output

FIGURE. 10.17
Basic ECL gate

voltage needs at least 0.6 V to start conducting. The c m t in resistor RC2 flows into the base
of Q8 (provided that there is a load resistor). This c m t is so small that only a negligible
voltage drop occurs a m s s &. The OR output of the gate is one VBE drop below ground, or
-0.8 V, which is the hrgh state. The m n t flowing through Ra and the conducting transis-
tor causes a drop of about 1 V below ground (See Problem 10.9.) The NOR output is one VeE
drop below this level, or - 1.8 V, which i tbe low state.

If all inputs are at the low level, all input mn&m tarn off and Q5 conducts. The voltage
in the common-emitter node is one VBE drop below VBB, or -2.1 V. Since the base of each input
is at a low level of - 1.8 V, each b b t t e r junction has only 0.3 V and all inpux mistor8
are cut off. RC2 draws curtent through Q5 that results in a voltage drop of about 1 V, making
the OR output one VBE drop below this, at - 1.8 V, or the low level. The current in Rcl is neg-
ligible, and the NOR output is one VBE drop below ground, at -0.8 V, or the high level, This
analysis verifies the OR and NOR operalions of the circuit.

The propagation &lay of the ECL gate is 2 ns and the power dkipatiori is 25 mW, giving
a speed-power product of 50, which is about the same as that for the Schmky TT'L. The noise

Section 10,7 Metal-Oxlde Semiconductor 495

C
D

(A t B)(C + D)

{a) Single gate (b) Wired combination of two gates

FIGURE 10.1'6
Graphic symbol and wlred combination of ECL gates

margin is about 0.3 V and is not as good as that in the TTL gate. High fan-out is possible in
th ECL gate because of the high input impedance of the differentia1 amplifier and the low
output impedance of the emitter-follower. Because of the extreme high speed of the signals,
external wires act like tra~lsmission lines. Except for very short wires of a few centimeters,
ECL outputs must use coaxial cables with a resistor termination to reduce line reflections.

The graphic symbol for the ECL gate shown in Fig. 10.18(a). Two outputs are available: one
for the NOR function and the other for the OR function. The outputs of two or more ECL gates
can be connected together to form wired logic. As shown in Fig. 10.18(b), an extemal wired
connection of two NOR outputs produces a wired-OR function. An internal wired connection
of two OR outputs is employed in some ECL ICs to produce a wired-AND (sometjmes called
dot-AND) logic. This property may be utilized when ECL gates are used to form the
OR-AND-INVERT and the OR-AND functions.

METAL-OXIDE SEMICONDUCTOR

The field-effect transistor (FET) is a unipolar transistor, since its operation depends on the
flow of only one type of carrier. There are two types of FETs: the junction field-effect tramis-
tor (JFET) and the metal-oxide semiconductor (MOS). The former is used in l k circuits
and the latter in digital circuits. MOS transistors can be fabricated in less area than bipolar
kansistors.

The basic structure of the MOS transistor is shown in Fig. 10.19. l ' b p h m c l MOS con-
sists of a lightly doped substrate of n-type silicon mated. hmg@mws am kavily doped by
diffusion with p-type impurities to form the soume and draiff The tbe two p
type sections serves as the chunneL The gute is a metal plate w h m u t b e * by an
insulated dielectric of siticon dioxide. A negative voltage (with Oa Ibe -1 .t tbe
gate terminal causes an induced electric field in the dmd that m p t y p t -1
from the substrate. As the magnitude of the negative voltage cm lb PE -, th q i f m

. *
below the gate accumulates more poaitive carrieff, the , - ~ ~ a a d c m % t c a n
flow from source to drain, provided that a voltage m l ' ' ' dbetnaea t b s two
terminals,

Chapter 10 DlgitPl Integrated Clradtr

PE (-1
drain (-) I s o p

I -
(b) n 4 m n @ l

*re are four basic types of MOS struc-. The c h l an bep or n typt,
on whether the majority carriers are holes or electrons. The mode of operation can be ea-
hancement or depletion, depending on the state of the channel region at zero gate voltage. K
the channel is initially doped lightly with p-type impwily (in which case it is called a d m e d
cham[) , a conducting channel exists at zero gate voltage and the device is said to operate in
the dqbrion mode. h this mde, current flows naless the channel is depleted by an applied
gate field. If the region beneath the gate is left initially uncharged, a channel must k induced
by the gate field before m t can flow. TEw, the channel current is d d by the gate volt-
age, and such a device is said to opemte in the enhcement mode.

The source is the terminal through which the majority carriers enter the device, The drab
is the terminal through which the majority carriers leave the device. in ap-channel MOS, the
source terminal is connected to the substrate and a negative voltage is applied to the drain
terminal. When the gate voltage is above B w o l d voltage (about -2 V), c m t
flows in the channel! and the drain-to-source path is like an opea circuit. When the gate volt-
age is sufi7ciently negative below VT, a channel is f m e d and ptype carriers flow h m soum
to drain. p-type carriers are positive and correspond to n positive cmnt flow from some to
drain.

In the n-channel MOS, tbe source terminal is comected to the substrate and a positive volt-
age is applied to the drain terminal. When the gate voltage is below the threshold voltage &
(h u t 2 V), no current flows h the channel. When h gate voltage is sufficiently W t i v e
above to form the channel, n-type carriers flow from sawce to drain. 11-type h a s m
negative and correspond to a positive current flow from dmh w source. The threshold voltage
may vary h r n 1 to 4 V, depending on the particular proem used.

The graphic symbols for the MOS transistors are shown in Fig. 10.20. The symbol for the
enhammefit type is the m e with the broken-line c;o&on ktwem source d drain. In this
symbol, the submaw can be identified d is shown connected to the souroe. An a l t d v e sym-
bol omits the substrate, and instead an arrow is placed in the source terminal to show the di-
d o n of posifiw current flow (from same to drain in the hite el MOS d from draia to
source in the n-cbmel MOS).

Because of the symmebical consm~ction of source and drain, tbe MOS transistor can be
operated as a bilateral device. Although normally o w e d so that d m flow from source to
drain, there are circumstances when it is c o n v ~ n t to allow cauiers to flow fiom dmh to
sourac. (See Problem 10.12.)

Sectfon 10.7 Metal-Oxide Semiconductor

source

(a) p-channel

>&
gate --(+ substrate

7
sowce

(b) n-channel

FIGURE l8.m
Symbols for MOS transistors

One advantage of the MOS device is that it can be used not only as a transistor, but as a re-
sistor as well. A resistor is obtained from the MOS by permanently biasing the gate terminal
for conduction. The ratio of the source-drain voltage to the channel current then determines the
value of the resistance. Different resistor values may be constructed during manufacturing by
fixing the channel length and width of the MOS device.

Three logic circuits using MOS devices are shown in Fig. 10.2 1. For an n-channel MOS,
the supply voltage VDD is positive (about 5 V), to allow positive current flow from drain to
source. The two voltage levels are a function of the threshold voltage V-. The low level is any-
where from zero to VT, and the high level ranges from VT to VDD. The n-channel gates llsually
employ positive logic. Thep-channel MOS circuits use a negative voltage for VDD, to allow pos-
itive current flow h m source to draia The two voltage levels are both negative above and
below the negative threshold voltage VT. p-channel gates usually employ negative logic.

+
(a) Inverter

VDD
0

dr

- VDD
0

-r II

-
4- Y = (AB)'
-

. .

I

-

'.L.NU$ - ..., > - 1
- -

Ib) NAND ~k ,1~1: 7, (4 q* . ., - , , . . - " . , . . J , . .
, , . t

- ' .It
* - 7 . .

T ! . -.
, '15

..I

FIGURE 1l.ZI
rl-thannd MUS Ioglc circuits

Chapter 10 Dlgbl I n t e p W C h i t s

Tbe inverter circuit &own in Fa. 10.21() uses two MOS devices. Ql act^ as the load re-
sistor and Q2 as the active device. The load-resistor MOS has its gate connected to VDD, thus . . . mmtamng it in the conduction state. When the input voltage is low (below Vr), Q2 turns off.
Since Ql is always on, the ouw voltage is about VDD. When tbe input voltage is high (b e
V,), Q2mmson. CurrentfIowsfromVDDthmghtheldresistorQl andinto@. The pan-
etry of the two MOS devices must be such that the re- of @, when conducting, is much
less than the resistance of QI to maintain the output Y at a voltage below 5.

'Xhe NAND gaw shown in Fig. 1031(b) uses transistors m wries. -A and B m m bth
be high for all d s t m to conduct and cause the output to go low. Tf either input is low, the
cortesponding transistor is tumbd off d the output is high. A&, the series resistance farmed
by the two activeMOS I ~ m u s t b e r m m c h l c s s d u m t h e m ~ of thebad-se&mMOS.
TheNORgmshowninFig. 1 0 . 2 1 (c) n s e s ~ i n ~ E f ~ ~ i s h i ~ t h e c o r -
responding tramistor conducts atad the output is low. If all inputs im low, all d v e traasisors
are off and the output is high.

10.8 COMPLEMENTARY MOS

Complementary MOS (CMOS) circuits take advantage of the fact that both n-channel and
p c h d devices can be fabricatsd on the same subs-. CMOS circuits d t of both types
of MOS devices, interconnected to form logic functions. The basic circuit is the inverter, which
consists of one p-channel m i s t o r and one n-chamel mis tor , as shown in Fig. 10.22(a).
Tbe some terminal ofthepchanneldevioe kortVDD, and the ramxtemidof then-chml
d e v i c e i s ~ g r r x m d . T h e ~ o f V D D m y b e ~ f r o m + 3 ~ + 1 % V . T h e t w o v o l t a g e l e v -
eIs are 0 V for the low level and VDD for the high level (typically, 5 V).

To understand the operation of the inverter, we must review the behavior of the MOS tran-
sistor from the previous section:

1. The n-channel MOS conducts when its gate-to-source voltage is positive.
2. The p-channel MOS conducts when its gate-to-source voltage is negative.
3. Either type of device is Rlrned OE if its gate-to-swrce voltage is zero.

Now consider the operation of the inverter. When the input is Iow, both gates at mo po-
tential. The input is at -Vm relative to the source of t h e m &vice and at 0 V relative
to the source of the n-ch-1 dtvioe. The mult is that he. pAmnuel device is turned on and
the n - c h e l device is turned off. U* W conditions, there is a low-impedance path from
VDD to the output and a very high impedaace path h m output to ground. Tbmefore, the out-
put voltage approaches the high lcvtl Vm under normal loading conditions. Whm the input is
high, both gates arc at Vm and the sitdon is r e v 4 The pchannel device is off and the
n - c h e l device is on. The result is that the output approach the low levd of 0 V.
Two other CMOS basic gates are shown in Fig. 10.22. A twdnput NAND gate consists

of two p-type units in parallel and two n-type units in series, as shown in Fig. 10.22(b). If all
inputs are high, bothp-channt1 mmhton turn off and both ~~ m i s b o r s turn on. The
output has a low impdance to ground and mces a low state. If any input is low, the as-
sociated n-channel msistor is turned off and the associated pchannel transistor is turned

Section 10.1 Complementary MOS

+
(a) Inverter

'7
(b) NAND gate

1-

(c) NOR gate

FIGURE 10.22
CMOS logic circuits

on. The output is coupled to VDD and goes to the high state. MdtipIe-input NAND gates may
be formed by placing qua1 numbers of p-type d n-type transistors in p d e l and series, re-
spectively, in an arrangement similar to that shown in Fig. 10.22W.

A two-input NOR gate consists of two n-type units in pmlM and twoptype units in se-
ries, as shown in Fig, I0.22(c). When all inputs are low, both pchannel units are on and both
n-channel units are off. The output is couplcd to VDD and goes to the high state. If my input is
high, the associatad p-chanael tmmistor is tuned off d the associatsd n 4 m n e l mamistor
turns m, c o d n g the output to g r d d cansing a low-level output.

MOS transistors can be consided to be e l d c switches that either conduct or are
open. As an example, the CMOS inverter can be visualized as consisting of two switches as
s h m in Fig. 10.23(a). Applying a low voltage m the iaput causes th upper switch @) to dm,
supplying a high voltage to the output. Applying a high vol- to the input causes the lower
switch (n) to close, connecting the output to ground. Thus, the output V , is the complement
of the input Vh. Commercial applications often use other graphic symboIs for MOS tramis-
tors to emphasize the logical behavior of the switches. The arrows showing the direction of
m n t flow are omitted. Instead, tbe gate input of the p . c b l transistor is drawn with an
inversion bubble on the gate t e rmid ta show that it is enabled with a low voltage. The in-
verter circuit is redrawn with these symbols in Fig. 10.23(b). A logic 0 in the input causes the
upper &mistor to conduuct, making the output logic 1. A logic 1 in the input enables the lower
transistor, making the output logic 0.

When a CMOS logic circuit is in a static seate, its power dissipation is very low. This is k c a m
at least one transistor is dways offin the path between the power supply aud g m d when the
state of the circuit is not chmghg. As a result, a typical CMOS gate has static power tikip-
tion on the order of 0,01 mW, However, whcn the circuit is changing state at the rate of 1 MHz,
the power dissipation increases u, about 1 mW, and at 10 MHz it is a- 5 mW.

(a) Switch m d d

Section 10.9 CMOS Trirnsmlssion Gate t I rcu Its

CMOS log~c is usually specified for a single power-supply operation over a voltage range
from 3 to 18 V with a typical VDD value of 5 V. Operating CMOS at a larger power-supply
voltage reduces the m a t i o n delay time and improves b e n o i s margin, but the power dis-
sipation is inc~eased. The propagation delay time with VDD = 5 V ranges from 5 to 20 ns,
depending an the type of CMOS used. The noise m q i n is usually about 40 percent of the
power supply voltage, The fan-out of CMOS gabs is about 30 when they are operated at a
hquency of 1 MHz, The fan-out decreases with an increase in the frequency of operation
of the gates.

There are several series of the CMOS digital logic family. The 74C series are pin and func-
tion compatible with TTZ devices having the same number. For example, C M O S IC type
74C04 has six inverters with the same pin configuration as TIL type 7404. Tbe hgh-speed
CMOS 74HC series is an improvement over the 74C series, with a tenfold increase in switch-
ing speed The 74HCT series is elwttically compatible with TTL ICs. This means that circuits
in this series can be connected to inputs and outputs of TTLICs without the need of additional
intarfacing circuits. Newer versions of CMOS are the high-speed series 74VHC and its T1Z-
compatible version 74VBCT.
The CMOS fabrication process is simpler thm that of TTL and provides a greater packing

density. Thus, more circuits can be placed m a given area of silicon at a reduced cost per func-
tion. This prom, together with the low power dissipation of CMOS W t s , good noise im-
munity, and monable propagation delay, makes CMOS the most popular standard as a digital
logic family.

10.9 CMOS TRANSMISSION GATE CIRCUITS

A special CMOS circuit that is not available in the other digital logic families is the tmnmksb
gate. The transmission gate is esseatially an electronic switch that is co11wlUed by an input logic
level. It is used to simplify the construction of various digital components when fabricated
with CMOS technology.

Figure 10,24(a) shows the basic circuit of the transmission gate. Whereas a CMOS in-
verter consists of a pchmnel transistor connected fn series with an n-channel kmurdor, a
transmission gate is formed by one n-channel and one p-channel MOS madstor connected
in parallel.

The n&atme.l substrate is connected to ground and the pchannel subsmk f cmm&d to
VDD. WhentheNgab=isat VDDandthe P g a t e , i s a t g r v w d , ~ ~ ~ a n d t h e r e
isacIosedpathbetw~ninputXandoUtpu? Y . ~ t h e N g a t e i s a t g m d d t h e P g a t c i s
at VDD, both transistors are off and there is an open circuit X a Y. Rgm 1QU@)
shows the block diagram of the trammission gate. Note that th w'"dlbn-gPe
is marked with the negation symbor. F i g m 1 W c) --dm-
in terms of positivelogic ~~ with Vm &@* W - a dm-to
logic 0.

The transmission gate is usually c ~ m e ~ t e d EO an uabrrrl 1015- 'ILie
type of arrangement is referred to as a bilat+?J switch TbE #Iml C ir n di-
rectly to the n-channel gate and its inverse to the p-1 m C = 1, * swWm is

closed, producing a path between X and Y. When C = 0, the switch is open, d i s ~ ~ ~ e c t i n g
the path between X and Y.

Various circuits can be c m t m t e d dmt use ttte aansmrssr~n - 0 gate. To demonmate its use-
fulness as a component in the CMOS family, we will show three examples.

The exclusive-OR gate can b constructbd with two mumission gates and two invwtctg,
as shown in Fu. 10.26. Input A controIs the paths 31 the transmission gates and input B is

Section 10.9 CMOS Trannnission Gate Circuits 503

A

A B TGI TG2 Y

0 0 close open 0
Y 0 1 close open 1

1 1 open close 1
1 0 open do& 0

Mum 10.u
Exctuslv+OR constructed with tmnsmlssion gates

connected to output Y through the gates, When input A is equal to 0, transmission gate TGI
is closed and output Y is equal to input B, When input A is equal to 1, TG2 is closed and out-
put Y is equal to the complement of input B. This results in the exclusive-OR truth table, as
indicated in Fig. 10.26.

Another circuit that can be constructed with transmission gates is the multiplexer. A four-
to-one-line multiplexer implemented with transmission gates is shown in Fig, 10.27. The TG
circuit provides a transmission path between its horizontal input and output lines when the two
vertical control inputs have the value of 1 in the uncircled terminal and 0 in the circled termi-
naL With an opposite polarity in the control inputs, the path disconnects and the circuit be-
haves like an open switch, The two selection inputs, St and So, contr01 the kmmhion patb
in the TG circuits, Inside each box is marked the condition for the transmission gate switch to
be closed. Thus, if So = 0 and S1 = 0, there is a closed path from input lo tu output Y tbmgh
the two TGs marked with So = O and S1 = 0. The other three inputs are r" - 4 h m the
output by one of the other TG circuits.

The leveI-sensitive D fip-flop commonly r e f d to as the ptd D latch m bt an-
smcted with transmission gates, as shown in Fig. 10.28. Tbe C - amh& tno maw-
missiongates TG. WhenC = 1, t b e T G c o r m e c r e d t o i n p u t D h r m a L u r r l ~ d l h t ~
connected to output Q has an open path. This mx& *

from input D through two inverters to output Q. Thus, dw iqmt w
long as C remains active. When C switches to 4 tbe first ifG d i f i . m D h *
circuit and the second TG prduces a closed pa& Ihtmm a 1L

Thus, the value that was present at input D at the time that C went from 1 to 0 is r e W at
the Q output.

Amasta-shve D flipflop can be cmmumd with two c h i t s of tbe type shown m Fig. 1028.
The Ikst circuit is the masterandthesecorsdis theshve .~a~&ve D +flopcanbe
c o n s ~ w i t h f o u r ~ o n ~ d s i x i l l ~ .

f d o n 10-1 0 Switrh-kwel Modeling ,with HDL

FIGURE 1 0 d a
Gated D latch wlch.translii1isfon gates

10.10 SWITCH-LEVEL MODELING WITH HDL

CMOS is the dmnbm&gmtiogic hii . *
y u s a Wth i n t e g c a t e d m

is a complementary connection of an NMOS and a PMOS transistor, MOS transistors can be
considered to be elecbnic switches that either conduct or are open. By specifying the con-
nections among MOS switches, the designer can describe a digital circuit consmcted with
CMOS. This type of description is called switch-level moakling in VWog HDL.

The two types of MOS switches are specified in Verilog HDL. with the keywords nmw and
pmors. They ax instantiated by specifying the three terminals of the transistor, as shown in
Fig. 10.20:

nmos (drain, source, gate);
pmos (draln, sourcs, gate);

Switches are considered to be primitives. so the use of an instance name is optional.
The connections to a power source (VDD) and to ground must be specified when MOS cir-

cuits are designed, Power and ground are defined with the keywords ~upplyl and smpp199. They
are specified, for example, with the following statements:

supplyl PWR;
supply0 GRD:

Somes of trpe supplyl are equivalent to Vm and have a vdue of Wc 1. of type
supply0 are equivalent to ground cwnection and have a vdut of logic 0.

The description of the CMOS inverter of Fig. 10.Wa) is sbowa h fiflLExrmple 10.1. Tbe
input, the output, and the two supply s o w are dedared immuiam a
PMOS and an NMOS transistor. The output Y is common b bodr at dwir drain ter-

. .. - .

minds. The input is also common to Wh tmsistws at th5r T& mmc &-
rial of thePMOS tramismis connectbdtoFWR and& s m c e ~ ~ ~ N M O S ~
is connected to GRD, ..I . '

HDL Example 10.1

I1 CMOS inverter of Flg. 10.22(a)
module inverter (Y, A);
Input A;
output y;
supplyl PWR;
suppiyo GRD;
pm0s V, PWR, A); 11 (Drain. sourn, gate)
nmor (Y, GRD, A); 11 (Drain, swm, gate)

endmodule

Tbe second module, set forth in HDLExample 10.2, &'bes the twp.inpw CMOS NAND
chat of Fig. 10.22@). Thtrt are two PMOS transistors connectu3 in paailel, with their sauce
terminalscom~~PWR.T6ereare~twoNMOStran~oonnectedinseriwandwith
a common terminal Wl. The drain of the ibt NMOS is connected to the output, and the some
of ttre sccond NMOS is comeckd to GRD.

11 CMOS two-Input NAND of FIQ, 10.22(b)
module NAND2 v, A, B);
lnput A, 8;
output Y ;
supply4 PWR;
supply0 GRD;
wlre W1; I1 terminal behween two nmos
pmoa (Y, PWR, A); Il source c a n n a to Vdd
pmoa (Y, PWR, B); /I parallel connection
nmos (Y, W1, A); I1 d a l connection
nmor (W1 , GRD, 8); Il source conneebsd b ground

endmodu te

~mnsmlsslon Gate
The on gate is instdated in Verilag HDL witb the keyword cmm. It has an ou~ut,
an input, and two control signals, as shown in Fig. 10.24. It is refured ta as a unm switch. The
dwmt oode is as follows:

cmor (output, Input, ncontral, pcontd): I1 general desaiption

cmos (Y, X, N, P); I1 transmlmion gate of Fig. 10.24(b)

Normally, ncoatrol and pcontrol are the mmplemcnt of each ottrcs. The be switch h not
need power sources, s h m VDD and @ arc mmcc?d to the suMWes of the MOS tramis-
m. 'kansmission gates are useful for building d p I e x e r s and flipflops with CMOS circuits.

Sectton 18.1 0 Switch-Level Modeling with HDL SO7

HDL Example 10.3 describes a circuit with cmos switches. The exclusive-OR circuit of
Fig. 10.26 has two transmission gates and two inverters. The two inverters are instantiated
within the module describing a CMOS inverter. The two cmw switches are instantiated with-
out an instance name, since they are primitives in the language. A test module is included to
test the circuit's operation. AppIying dl possible combinations of the two inputs, the result of
the simulator verifies the operation of the exclusive-OR circuit. The output of the simulation
is as follows:

HDL Example 10.3

IICMOS-XOR wlth CMOS switches, Fig. 10.28

module CMOS-XOR (A, B, Y);
Input A, B;
output Y:
wlre A-b, B-b;
I / instantiate inverter
inverter v l {A-b, A);
inverter v2 (B-b, B);
I/ instantiate cmos switch
cmos (Y, B, A-b, A);
cmos (Y, B-b, A, A-b);

endmodule
I1 CMOS Inverter Fig. 10-22(a)
module inverter (Y, A);

input A;
output Y;
supply1 PWR;
supply0 GND;
pmor (Y, PWR, A);
nmos (Y, GND, A);

endmodule
I/ Stimulus to test CMOS-XOR
module test-CMOS-XOR;
reg A,B;
wire Y;
Illnstantlate CMOS-XOR
CMOS-XOR XI (A, 0, Y);
/I Apply truth table
lnltlal
begln

//(output, input, ncontrol, pcontml)

It (Drain, source. gate)
I / (Drain, source, gate)

A = I'M; B = 1'W;
#5 A = I'bO; B = l 'bl;
#5A = I ' b l ; B = l'b0;
#5A = l ' b l ; B = l 'bl;

end
I1 Display results
lnltlal
$monitor ("A =%b B= %b Y =%b", A, B, Y);

endmodule

PROBLEMS

Answers to problems mafked with * appear at the end of the h k .

Parameter Name Vlkra

vcc Supj~ly voltage SV
ICCH High-level supply current (four gates) 10 mA
ICCL Low-level supply current (four gates) 20 mA
VOH High-level cutput voltage (rnin) 2.7 V
VOL Low-level output voltage (max) 0.5 V
h High-level input voltage (rnin) 2 V
h Low-level input voltage (mm) 0.8 V
IOH High-level onput cment (mu) 1 mA
IOL Low-level onwt cmmt (max) 20 mA
IIH High-level input cuuent (max) 0.05 mA
I ~ L Low-level input current (max) 2 mA
~ P L H Low-to-high delay 31x5

High-to-low &lay 3 as

Calculate the fan-out, power dissipation, pmpagatiw &lay, and noise margin of the Schottky
NAND gate.

10.P (3 Determine h e bigh-leuel output vohage of the RTL gate for a fan*[of 5.
(b) Determine the minimum input voItage required to drive an Rm. ttansistor to saturation

when hFE = 20.
(c) From the results in parts (a) and @), &embe the noist margin of the RTL gate when the

input is high and the fan-out is 5.
1 0 3 Show that the output bansistar of the DTL gate of Fi. 10.9 goes into whuation when all in-

puts are high. Assume that hFE = 20.

Problems 509

Connect the output Y of the DTL gate shown in Fig. 10.9 to N inputs of other, sirniIar gates. As-
sume that the output aansistor is saturated and its base cuuent is 0.44 mA. Let AFE = 20.
(a) CalcuIate the current in the 2-lcn resistor.
(b) Calculate the current coming from each input connected to the gate.
(c) Calculate the total collector current in the output transistor as a function of N.
(d) Find the value of N that will keep the bansistor in saturation.
(e) What is the fan-out of the gate?

Let dl inputs in the open-collector TTL gate of Pig. 10.11 be in the high state of 3 '
(a) Determine the voltages in the base, collector, and emitter of all transistors in the circuit.
@) Determine the minimum hrE of Q2 which ensures that this transistor saturates,
(c) Calculate the base current of Q3 .
(d) Assume that the minimum hFP of Q3 is 6.18. What is the maximum current that can be tol-

erated in the colIector to ensure saturation of Q3?
(e) What is the minimum value of RL that can be tolerated to ensure saturation of Q3?

(a) Using the actual output bansistors of two open-collector TTL gates, show (by means of a
truth table) that, when connected together to an external resistor and Vcc, the wired con-
nection produces an Ah'D function.

(b) Prove that two open-collector TTL inverters, when connected together, produce the NOR
function.

It was stated in Section 10.5 that totem-pole outputs should not be tied together to fwm wired logic.
To see why this is prohibitive, cwnect two such circuits together and let the output of one gate be
in the high stare and the output of the other gate be in the low state. Show that the load current
(which is the sum of the base and c o I I ~ m currents of the samated transistor Q# in Fig. 10.14) is
about 32 mA. Compare this value with the recommended load current in the high state of 0.4 mA.

For the following conditions, list the transistors that are off and the transistors that are con-
ducting in the three-state TTL gate of Fig. 10.1 6(c) (for Ql and Q6, it is necessary to list the
states in the base-emitter and base-collector junctions separately}:
(a) when C is low and A is low.
(b) when C is low and A is high.
{c), when C is hi&.
What is the state of the output in each case?
{a) llalcuIate the emitter current IE across RE in the ECL gate of Fig. 10.17 when at least one

input: is high at -0.8 V.
(b) Calculate the same current when all jnputs are low at -1.8 V.
(c) Now assume that Ic = IE. Calculate the voltage drop across the collector resistor in each

case and show that it is abont 1 V, as required.

Calculate the ndse margin of the ECL gate.

Using the NOR outputs of two ECL gates show that, wbea b la d
resistor and a negative mpply vo lqe , the wired m 08 umL
The MOS transistor is bihtml (i.e., mmt m y fkw frmn L, a h * m
source). On the basis of this property. derive a c k d tb3t ' ' %hRanclr-

using six MOS transistors. . ,

Chsptw 10 Digital Integrated Clmdts

10.1 3 (a) Show the circuit of a four-input NAND gate using CMOS mmimn.
(b) Repeat for a four-input NOR gate.

10.11 Construct an exclusive-NOR circuit with two inverten and two -on gates.

10.1 5 Construct an eight-to-oneline multiplexer using -ion gates and inverters.

18.1 6 Draw the logic diagram of a masta-slave D flipflop using transmission gates and invams.

10,17 WriteatestbenchthatwilltesttheNAND~tofHDL~le10.2.'Ihesim~o11shauld
verify the wth table of the gate.

R E F E R E N C E S

1. CLEITI, M . D ,1999. Modeling, Syluhais, m d Rapid Pmtowing with Veriiug HDL U w Sad-
dle River, NJ: Prentice Hall.

2. CMOS Logic Data Book. 1994. Dallas: Texas Ins-ts.
3. HODCIES, I). A. 2003, .4naiysis and Design of DigiM Inte@ Cimifs, New Ymk: McGraw-Hill.
4. Tocu, R. J . , and N. S. WIDMER. 2004. Diglral Systems: Principles and Applim'ons, % ed.

Upper Saddle River, NJ: Prentice Hall.
5. The l7L Logic Data Book. 1988. DalIas: Taus Instnuncnts.
6. WAKERLY, 1, f. 2006. Digiml Design: Principles and Pmctices, 4th ed. Uppa Saddle River, NJ:

Prentice Hall.
7. WEST& N. E., and K. ESHRAC~HIAN. 2005. Principles of CMOS VLSI Design: A System Peqoec-

tive, 2d ed. Reading, MA: Addison-Wesley.

Chapter 11

Laboratory Experiments
with Standard ICs and FPCAs

11.1 INTRODUCTION TO EXPERIMENTS

This chapter presents 18 laboratory experiments in digital circuits and logic design. The ex-
periments give the student using this book hands-on experience. The digital circuits can be
consmcted by using standard integrated circuits (ICs) mounted on breadboards that are easi-
ly assembled in the Iaboratory. The experiments are ordered according to the material pre-
sented in the book. The last section consists of a number of supplements with suggestions for
using the Verilog HDL to simulate and verify the functionality of the digital circuits presented
in the experiments, If an FPGA prototyping board is available, the experiments can be imple-
mented in an FPGA as an alternative to standard ICs.

A logic breadboard suitable for performing the experiments must have the fallowing
equipment:

1. Light-emitfig diode (LED) indicator lamps,
2. Toggle switches to provide logic-1 and Iogic-0 signals.
3. Pulsers with push buttons and debounce circuits to generate single pulses.
4. A clock-pulse generator with at least two frequencies: a low Wuency of h u t 1 pulse

per second to observe slow changes in digital signals and a higher frequency for ob-
serving waveforms in an oscilloscope.

5. A power supply of 5 V.
6. Socket strips for mounting the ICs.
7. Solid hookup wires and a pair of wire s t r i p for cutting the wires.

Digital logic trainers that include the requhd equipment arc uvnilable from several manu-
facturers, A digital Iogic trainer contains LED lamps, toggle switcbea, phm, a variable clwk,

2 Chapkr I1 b r a t - Expdmmtr

a power supply, and IC socket kps. Some e w t s may require additional switches, lamp,
or IC socket strips. Extended breadboards witR more sol- sockets and plug-in switches
d lamps may be needed.

Additional equipment q u i d is a dud-- o s c i l l v (for JZxgmhsts 1,2,8, and
15), a Iogic probe to be used for &bugging. d a number of ICs. The ICs required for tbe ex-
periments are of the ?TL or CMOS series 7400.

The integrated circuits to lm used in the expwimtnts can k classifid as small-scale inte-
gration (SSI) or medium-scale integralion (Msr) c h i t s . SSI circuits contain individual gates
or flip-flops, and MSI c h i t s perform specific digieal fundions. Tbe eight SSI gate ICs needed
for the experiments-two-input NAND, NOR, AND, OR, a d XOR gates, inverters. and three-
input and four-input NAND gawi-am shown h Fig. 1 1.1. Tbe pin assignments for tbe gates
are indicated in the diagram. The pins are numbered from 1 to 14, Pin number 14 is marked
VCc, and pin munber 7 is marked GND (ground). These are the supply terminals, which must
be connected to a power supply of 5 V for proper operation of tbe circuit. Each IC is recog-
nized by its identification n u m b for example, the two-input NAND gates are found inside
the IC whose number is 7400.

Detailed descriptions of the MSI circuits can b found in data books published by the man-
ufacturers. The best way to q u i r e expience with a 1 MSI circuit is to study its
description in a data book that p r o w complete infomath on the intend, external. and
electrical chacterisrics of intepted circuits. Wow semiamhctor companies publish data
books for the 7400 series, The MSI circuits that art needed for the experiments are intmduced
and explained when they are used for the first time. The o w o n of the eireuit is explained
by referring to similar cireuits in previous chqws. The iaformation given in this chapter about
the MSI: chiu should be sufficient for pxfomhg the experiments adequately. Nevertheless,
reference to a data book will dwap be -le, as it gives more W e d description of tbe
circuits.
We will now demonstrate tbe method of presentation of MSI circuits adopted b. To a-

lustrate, we introduce the ripple counter IC, type 7493. This IC is used in Experiment I d in
subsequent ex-nts to generate a sequence of binary numbers for verifying the opration
of combinational circuits.

The information about the 7493 IC tbat is found in a data book is shown in Figs. 11 l (a) and
(b). Part {a) shows a diagram of the hbmal logic circuit and its d o n to extend pins. All
inputs and outputs are given symbaIic lmm and assigaed to pin numbers. Part (b) shows the
physical layout of the ZC, together with its 14-pin assignment to signal names. Some of the pins
arenot used by the circuitandaremkdas N C { n o ~) . ~ K : i s insenedintoamkt,
and wiresarecollllectedtothevariouspias~ghthe sock^. Wheattrawingsckmat-
ic diagrams in this chapter, we will show the IC in block diagram form, as in Fig. I 1.3~) . The
IC number (here, 7493) is written inside tbe block. All input terminals are placed on the left of
the blmk and all output tednals on the rigk The letter symbols of the signals, such as A. RI.
and QA, are written inside the block, and the u m q m d h g pin numbers, such as 14-2, and 12,

written along the exmnal lines. Vcc and Cl'lbrD atr~ the power tmnhds conmctd to pins 5
and 10. The size of ?he block may vary to a x a w m h all ingut d outgut mmhals- Inputs
wwtputsmay smmthms b e ~ o a t b e t o p o r ~ ~ o f t t t e b l o c k f o r c o o v e n i e n ~ .

The operation of the circuit is s i m k to the tipple counter shown in Fig. 6.8(a) with an asyn-
chronous clear to each flipflop. When input RI or R2 or bath are equal to logic 0 (ground), all
~ynchronous clears are equal to 1 and are disabled To clear all fwr flip-flops to 0, h e output

Sectton 11.1 Intrduakn to Experiments 51 3

2-input NAND GND
7400

Vcc

Inverters GND

2-input NOR GND
7402

vcc

2-input A N D GND
7408

2-input OR GND w m GND
7432 7w

WURE I l .I
Digital gates in I€ packap with IdenOifl~atlon numbarr #d pln lsrfgnmants

A NC QA QD GND QB QC

(a) Internal cirmit diagram

of the NAND gate must be eqaal to 0. This is accomplished by ha* both inputs R1 and R2
atlogic 1 (a b o u t 5 V) . N o t e t h a t t h e J d K i a ~ s h o w n o c w m e c t i o n s . I t i s ~ c o f
TTLcjrcuits thataninputterminalwithnoexarnal cmnectionshastheeffectofpmduchg a
signaIquivalenttologic l.Nmalsothatwtputa4isnotconnectedto-tBMy.

Section 1 1 .I Introduction to Experiments

The 7493 IC can operate as a three-bit counter using input B and fip-flops QB, QC, and QD.
It can operate as a four-bit counter using input A if output QA is connected to input B. There-
fore, to operate the circuit as a four-bit counter, it is necessary to have an external connection
between pin 12 and pin 1. The reset inputs, Rl and R2, at pins 2 and 3, respectively, must be
grounded. Pins 5 and 10 must be connected to a 5-77 power supply. The input pulses must be
applied to input A at pin 14, and the four flip-flop outputs of the counter are taken from QA,
QB, QC, and QD at pins 12,9,8, and 11, respectively, with QA being the least significant bit.

Figure 11.2(c) demonstrates the way that dl MSI circuits will be symbolized graphically in
this chapter Only a block diagram similar to the one shown in this figure will be given for
each IC. The letter symbols for the inputs and outputs in the IC block diagram will be accord-
ing to the symbols used in the data book, The operation of the circuit will be explained with
reference to logic diagrams from previous chapters. The operation of the circuit will be spec-
ified by means of a truth table or a function table.

Other possible graphic symbols for the ICs are presented in Chapter 12. These are standard
graphic symbols approved by the Institute of Elecbical and Electronics Engineers and are given
in IEEE Standard 91 - 1984. The standard graphic symbols for SSI gates have rectangular shapes,
as shown in Fig. 12,l. The standard graphic symbol for the 7493 IC is shown in Fig. 12.1 3. This
symbol can be substituted in place of the one shown in Fig, 11.2(c). The standard graphic sym-
bols of the other ICs that are needed to run the experiments are presented in Chapter 12. They
can be used to draw schematic diagram of the logic circuits if the standard symbls are preferred.

Table 11.1 Lists the ICs that are needed for the experiments, together with the numbers of
the figures in which they are presented in this chapter. In addition, the table lists the numbers
of the figures in Chapter 12 in which the equivalent standard graphic symbols are drawn.

Table 1 1.1
Integrated CIrcuitr R q u i d for the Experimentr

Craphlc Symbl

In Chapter 11 In Chapter 12 IC Number Descrlptlon

Various gates
BCD-to-seven-segment decoder
Dual D-type flip-flops
Dual JK-type flip-flops
Four-bit binary adder
Four-bit ripple counter
8 X 1 multiplexer
3 X 8 d e c d a
Quadruple 2 X 1 mUltipl~xe*l
Four-bit syochronm mmt&I
16 X 4random-acces memory
Bidirectional shift register
Four-bit shift register
Seven-segment LED display
Timer (same as 555)

Fig. 11.1
Fig. 11.8
Fa, 11.13
Fig. 11.12
Fig. 11.10
Fig. 112
Fig. 11 9
Fig. 11.7
Fig. 11.17
Fig. 11.15
Rg. 111.8
Pig. 11.19
Pig. 11.16
Flg. 11.8
Pi. 1121

Fig. 12.1
-

Fig. 12.91b)
Fig. 12.9(a)
Fig. 12.2
Elg. 12.13
fig 12.71a)
Fig 126
Fig. 127(b)

1214
Eg. 1215
Fig I212
Fig 1211 -

The next 18 sections present 18 hardware exgmbnts requiring b e use of digital integrated
circuits. Section 1 I .20 outlines HDL sirnulati011 experiments requiring a Verilog HDL compiler
and simulator.

11.2 EXPERIMENT 1: B INARY A N D D E C I M A L
NUMBERS

This experiment demonstrates the count sequence of binary numbers and the biinarycoded
decimal (BCD) representation It serves as an htdwtiun to the breadboard wed in the lab-
oratory and acquaints the studeat with the -ray d m c a p . Reference material from
the text that may be useful to h o w while perfuming the experiment caa be found in Sdm
1.2, on binary numbers, and Section 1.7, on B(=D rurmbers.

IC type 7493 consists of four flip-flops, as shown in Fg. 11.2. T%ey can be C O M ~ to count
in binary or in BCD. Connect the IC to operate as a fm-bit binary cwnter by wiring the ex-
ternal terminals. as shown in Fig. 11.3, This is done by connecPing a wire from pin 12 (wput
QA) to pin 1 (input 3). lnput A at pin 14 is connected to a pulser that prov ih single pulses.
The two reset inputs, Rl and R2, are connected to ground. The four outputs go to four indica-
tor lamps, with the low-order bit of the counter from QA connected to the righlnmst indicator
lamp. Do not forget to supply 5 V and gcoundm the IC. All connections should be made with
the power supply in the off position.

T h the power on and observe the four indicator lamps. Tk four-bit number in the output
is incremented by 1 for every pulse generated in the push-button pulser. The mmt ggoes to binary

Section 11 3 Experiment 1: Binary and Declmd Numberr 51 7

15 and then back to 0. Disconnect the input of the counter at pin 14 from the pulser, and con-
nect it to a clock generator that produces a train of pulses at a low frequency of about 1 pulse
per second. This will provide an automatic binstry count. Note &at the binary counter will be used
in subsequent experiments to provide the input binary signals for testing combinational circuits.

Orcnloscope Display

Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscilloscope.
Observe the clock output on the oscilloscope and sketch its waveform. Using a dual-trace osciI-
loscope, connect the output of QA to one channel and the output of the clock to the second chan-
nel. Note at the output of QA is complemented every time the clock pulse goes through a negative
transition from 1 to 0. Note also that the clock frequency at the output of the fist fIip-flop is one-
half that of the input clock frequency. Each flip-flop in turn divides its incomiug frequency by 2.
The four-bit counter divides the incorning hquency by 16 at output QD. Obtain a timing diagram
showing the relationship of the clock to the four outputs of the counter, Make sure that you include
at least 16 clock cycles. The way to proceed with a dual-trace oscilloscope is as follows: First,
observe the clock pulses and QA, and record their timing waveforms, Then repeat by observing
and rscwding the wavefom of QA together with QB, followed by the wavefonns of QB with
QC and then QC with QD. Your fmd result should be a diagram showing the relationship of the
clock to the four outputs in one composite diagram having at least 16 clock cycles.

BCD Count

The BCD representation uses the binary numbers from 0000 to 100 1 to represent the coded &c-
i d digits from 0 to 9. IC type 7493 can be operated as a BCD counter by making the exter-
nal connections shown in Fig. 11.4. Outputs QB and QD are connected to the two reset inputs,

Input
pulses

FIGURE 11.4
BCD counter

Chapter 1 1 Laboratory Experimnts

R1 and R2. When both Rl and R2 are equal to 1, dl four cells in tbe counter clear to 0 irre
spective of the input pulse. The counter starts h r n 0, and every input pulse increments it by
1 until it reaches the count of 1001. The next pulse changes the wput to 1010, making QB and
QD equal to 1. This momentary output cannot be sustained, because the four cells immediately
clear to 0, with the result that the output goes to 0000. Thus, the pulse after the count of 1OO1
changes the output to 0000, producing a BCD count.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the four out-
puts to indicator lamps. Verify that the count g a fmm 0000 to 1001.

Disconnect the input from the pulser and connect it to a clock generator. Observe the clmk
waveform and the four outputs on the oscillosqx. Obtain an acclrrate timing diagram show-
ing the relationship between the c l d and the four outputs. Make sure to include at least 10
clock cycles in the osdoscope display and in the composite w g diagram.

Owtput Pattern
When the count pulses inu, the BCD counter am continuous, the counter keeps repeating the
sequence from 0000 to 1001 and back to 0000. This means that each bit in the four outputs
produces a fixed pattern of 1's and 0's that is repeated every 10 pulses. These patterns can be
predicted from a Iist of the binary numbers from 0000 to 1001. The list will show that output
@I, being the least sigaificant bit, pmhces a pattern of alternate 1's and 0's. O u p t QD,
being the most significant bit, produces a pattern of eight 0's followed by two 1's. Obtain the
pattern for the other two outputs and then check all four patterns on the oscilloscope. This is
done with a dual-hace oscilloscope by displaying the clock pulses in one c h e I and one of
the output waveforms in the other cbannel. The pattern of 1's and 0's for the correspwding
output is obtained by observing the output level8 at the vertical positions where the pulses
change from 1 to 0.

Other Cwnts
IC trpe 7493 can be connected to count from 0 to a variety of final m u . This is done by con-
nec- one or two outputs to the reset inputs. RI and R2. Thus, if Rl is connected to QA in-
stead of to QB in Fig. 1 1.4, the resulting count will be from 0000 to 1000, which is 1 less than
l W l @D = 1 and QA = 1).

Utilizq your howledge of how RI and R2 affect the final mt, connect the 7493 IC to
count from 0000 to the following final counts:

(a) 0101

(b) 0111

(c) I011

Connect each circuit and verify its count sequence by applying pulses from the pulser and
observing the output count in the indicator lamps. If the initid count starts with a value greater
than the final count, keep applying input pulses until the ouwt c l m to 0.

Section 11.3 Experiment 2: Dlgltal Logic Gates

11.3 EXPERIMENT 2: DIGITAL LOGIC GATES

In this experiment, you will investigate the logic behavior of various IC gates:

74M3 quadruple two-input NAND gates

74632 quadruple two-input NOR gates

7404 hex inverters

7408 quadruple two-input AND gates

7432 quadmpIe two-input OR gates

7486 quadruple two-input XOR gam

The pin assigmem ta the various gates are shown in Flg. 11.1. "QuadmpIeY' means that
there are four gates within the package. The digital logic gat= and their chamct&tics are dis-
cussed in Section 2.8. A NAND implementation is discussed in Section 3.7.

Use one ga* from each 1C listed and obtain h e truth table of the gate. The truth table is ob-
tained by connecting the inputs of the gate to switches and the output to an indicator lamp.
Compare your results with the truth tables listed in Fig. 2.5.

Waveforms
For each gate listed, obtain the input-utput waveform of the gate. The waveforms are to be
observed in the oscilloscope, Use the two low-order outputs of a binary counter (Fig. 11,3) to
provide the inputs to the gate. As an exmpIe, the circuit and waveforms for the NAND gate
are illustrated in Fig. 11 .S. The oscilloscope display witl repeat this wavefom, but you should
record only the nonrepeiitive portion.

Prapagation Way
Connect tb six invertem h i d e the 7404 IC in cascade. The output wil l be the same as tk
input, except that it will be delayed by the time it takes the signal to pmpqple through an six
inverters. Apply clock plm to the input of the first inverter. Ushg the ~~ detmmb

FIGURE 1 1.5
Weformr for NAND gate

the delay from the input to the output of the sixm invam obe upswing of ttte pulse and
again during the downswing. ?'his k dme with a dual- by applying th input
c l o c k ~ t o o a e o f h ~ d t b e o u t p u t o f t h e ~ i w e r t e r t o t h e d c h a a n e l .
S & h ~ b k n o b t o t h e l ~ t i m e p e r 4 ~ n ~ . ~ r i s e o r f a l l t i m F o f t h e t w o
p u l ~ s h o u l d a ~ o n t b e s e r e e n . D i ~ ~ ~ ~ y b y 6 t o o b t a i n a n a ~ ~ ~
tion delay pr Perinvcrter.

U~tversal NAblD Gate

Using a single 7400 IC, connect a circuit tbat praduw

(a) an inverter.

It>) a two-hput AND.
(c) a two-input OR.

(d) a two-input NOR.
'

(e) a two-input XOR. (See Fig. 3.32.)

In =h w e , verify your circuit by its mth We.

NAND Cirruit

Using a single 7400 IC, construct a circuit with NAND gate6 that implements the Boolean
furdon

1. Dtaw the circuit diagram
2. O b t a i n t h e t r u t h E a b l e h F a s a ~ ~ ~ ~ o f t h e f w r ~ t s .
3. Connect the cirmit and verify the mth table.
4. Reoord the patterns of 1's and 0's for F as inputs A, B, C, and D go firrnn binary 0 to

binary 15.
5. Connect the fwr outputs of the binary m t e r shown in Fig. 1 13 to the fm inputs of the
NAND circuit. Connect the input c l d pulses from the coaata to one channel of a dual-
trace oacillosqe and output F to the other chamel. Observe and record the 1's and 0's
panem of F after each clock pulse, d compare it with the pattan recoded in 4.

11.4 EXPERIMENT 3: SlMPLlFICATION
OF BOOLEAN FUNCTIONS

Section 11.4 Experiment 3: Sirnplificatlon of Boolean Functions 521

The gate ICs to be used for the logic diagrams must be those from Fig. 1 1.1 which contain
the following NAND gates:

7400 two-input NAND
7404 inverter (one-input NAND)

74 10 *input NAND
7420 four-input NAND

If an input to a NAND gate is not used, it should not be left open, but instead should be con-
nected to another input that is used. For example, if the circuit needs an inverter and there is
an extra two-input gate available in a 7400 IC, then both inputs of the gate are to be connected
together to form a single input for an inverter.

This part of the experiment starts with a given logic diagram from which we proceed to
apply simplification procedures to reduce the number of gates and, possibly, the number of
ICs. The logic diagram shown in Fig. 11.6 requires two ICs-a 7400 and a 74 10. Note that
the inverters for inputs x, y , and r are obtained from the remaining three gates in the 7400
IC. If the inverters were taken from a 7404 IC, the circuit would have required three ICs. Note

FIGURE 11.6
logic diagram for Experiment 3

also W, in drawing SSI circuits, the gates are not enclosed in blocks as is done with MSI
circuits.

Assign pin numbers to all inputs d oulquts of the gaw, and connect the dreuit with the
x, y, and z inputs going to three switches and the output F to an indicator lamp. Test the circuit
by obtaining its ttuth table.

O h i n the B o o l a function of the circuit and 8impiify it, using the map me&&. Consmct
the simplified circuit without d b m m d n g dx circuit. Test circuits by applying
identical inputs to each and observing the s e p m e outputs. Show that, for each of tbe eight
possible input combinations, the two circuits have identical outputs. This will prove that the
simplified circuit behaves exactly like the original circuit.

Boolean hlndmns
Consider two Boolean functions in sumsf-mintems fonn:

Simplify thm functions by meam dmp. Obtain a w m p d e logic d&m with four inputs,
A, B, C, and D, and two outputs, Fl and F2. Implement the two fumtim together, using a min-
imum number of NAND ICs. Do not duplicate the same gate if the correspoading term is
needed for both functions. Use any exba gates in existing ICs for inverters when possible.
Connect the circuit and check its e o n . The truth table for Fl and F2 obtained h m the cir-
cuit should conform with the mintems listed.

Complement
Plot the following Boolean function in a map:

F = A'D + BD + B'C + AB'D

Combine the 1's in the map to obtain the simplified function for F in sum-of-products
form. Then combine the 0's in the map to obtain the simplified function for F', also in
sum-of-products form. Implement both F and F' with NAND gates, and connect the two
circuits to the same input switches, but to separate output indicator lamps. Obtain the truth
table of each circuit in the laboratory and show that they are the complements of each
other.

11 .S EXPERIMENT 4: COMBINATIONAL CIRCUlTS

In this e x p h e n t , you will design, c o n m a and test four o o m b ~ o n s l logic dmits. The
first two circuits are to be cmmwed with NAND gaw, the third with XOR gates, and the
fourrh with n decoder and NAND gates. Rdcmce to a parity gemam can be found in Section
3.9. Implementation with a d e c h is dimmed in Section 4.9.

Design Example
Design a combinational circuit with four inputs-A, B, C, and D - a n d one output, K F is to
be equal to 1 when A = 1, provided that B = 0, or when B = I , provided that either C or D
is also equal to 1. Otherwise, the output is to be equal to 0.

1. Obtain the truth table of the circuit.

2. Simplify the output function.

3. Draw the logic diagram of the circuit, using NAND gates with a minimum numkr of
ICs.

4. Construct the circuit and test it for proper operation by verifying the given conditions.

Mrrjority Logic

A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs are
l '6. The output is 0 otherwise, Design and test a three-input majority circuit using NAND gates
with a minimum number of ICs.

Parity Generator
Design, construct, and test a circuit that generates an even parity bit from four message bits.
Use XOR gates. Adding one more XOR gate, expand the circuit so that it generates an odd par-
ity bit also.

A combinational circuit has three inputs-x, y, and z--and three outputs-Fl, F2, and F3. The
simplified Boolean functions for the circuit are

Implement and test the combinational circuit, using a 74155 decoder IC and external NAND
gates.

The block diagram of the decder and its truth table are &own in Fig. 11.7. The 74155 can
be connected as a dual 2 X 4 decoder or as a single 3 X 8 &amk W l m a 3 X 8 k c a k is
desired, inputs CI and C2, as well as inputs GI and G2, must bt m- m &own
in the block diagram. The function of the circuit is nimilar to dmt in Fig. 4.18. G b
the enable input and must be equal to 0 for p r o p operptiap 'b m e am lPbelad
with symbols given in the data book. The 74155 u m NAND .rjth tk d tU th IW

lected output goes to 0 while all other outputs m m h at 1. Tk witb th &
coder is as shown in Fig. 4.21, except that the OR gates mpstb-d d NAND
gates when the 74 155 is used.

- ' 8 :

524 Chapter 11 ~ ~ r y €xpdmmb

Truth hble

Inputs I outputs

11.6 EXPERIMENT 5 : CODE CONVERTERS

The conversion from one binary code to auother is common in digital systems. In this experi-
ment, you will design and construct three combiinational-cjrcuit converters. C d e conversion
is discussed in Section 4.4.

Gray Code to Binary

Design a combinational cimit with four inpnts and four outputs that converts a four-bit Gray
code number (Table 1.6) into the equivalent fouf-bit binary number. Implement the circuit with
exclusive-OR gates. (This can be done wi& one 7486 IC.) Connect dx circuit to four switches
and four indicator lamps. and check for proper operation.

Section 11 -6 Experhwnt 5; C g d ~ Cqnvertcrs

Design a combinational circuit with four input fines that represent a decimal digit in BCD and
four output lines that generate the 9's complement of the input digit. Provide a fifth output that
detects an error in the input BCD number. This output should be equal to logic 1 when the four
inputs have one of the unused combinations of the BCD code. Use any of the gates listed in
Fig. 11.1, but minimize the total number of ICs used.

Seven-Segment Dlsplay

A seven-segment indicator is used to display any one of the decimal digits 0 through 9. Usually, the
decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts a decimal digit in
BCD and generates the corresponding seven-segment code, as is shown pictorially in Problem 4.9.

Figure 11,8 shows the connections necessary between the decoder and the display. The 7447
IC is a BCD-to-seven-segment decoderldriver that has four inputs for the BCD digit. Input D
is the most significant and inputA the least significant. The four-bit BCD digit is converted to
a seven-segment code with outputs a through g. The outputs of the 7447 are applied to the in-
puts of the 7730 (or equivalent) seven-segment display. This IC contains the seven light-emit-
ting diode (LED) segments on top of the package. The input at pin 14 is the common anode
(CA) for all the LEDs. A 47-51 resistor to VCC is needed in order to supply the proper current
to the selected LED segments. Other equivalent seven-segment display ICs may have additional
anode terminals and may require different resistor values.

Construct the circuit shown in Fig. 11.8. Apply the four-bit 3CD digits hough four switches,
and observe the decimal display from 0 to 9. Inputs 1010 through 111 1 have no meaning in BCD.

RGUUE 1 1 .I
BCD-toaewn-segment decoder (7447) and swen-qman

Chapter 1 1 Laboratmy Experiments

Depending w the decder, these value8 may cause either a blank m a meauhgless p m m to be
displayed. Observe and record the output patterns of the six unused input combinations.

1.7 E X P E R I M E N T 6 : DESIGN
WITH MULTIPLEXERS

In this experiment, you will design a oombimtional cirmit and implement it with multiplexers,
as explained in Section 4.11. The multiplexer to be used is IC type 7415 1, shown in Fig. 11.9.
The intend construction of the 74151 is similar to the diagram shown in Fig. 4.25, except that

Data
Inputs

Select inputs

X X X
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Function table

FIGURE 1 I .9
IC type 74151 38 x 1 mu-

Strobe
S

Seltct
C B A

output
Y

Section 1 1.8 Expcrlment 7: Addus and Subtractoa

there are eight inputs instead of four. The eight inputs are designated DO through D7. The three
selection lines--C, B, and A--select the particular input to be multiplexed and applied to the out-
put. A strobe control S acts as an enable signal. The function table specifies the value of output
Y as a hnction of the selection lines. Output W is the complement of Y. For proper operation,
the strobe input S must be connected to ground,

Design Specifications

A small corporation has 10 shares of stock, and each share entitles its owner to one vote at a
stockholder's meeting. The 10 shares of stock are owned by four people as follows:

Mr. X: 2 shares

Mr. Y 3 shares

Mrs. Z: 4 shares

Each of these persons has a switch to close when voting yes and to open when voting no for
his or her shares.

It is necessary to design a circuit that displays the total number of shares that vote yes
for each measure. Use a seven-segment display and a decoder, as shown in Fig. 11.8, to
display the required number, If all shares vote no for a measure, the display should be blank.
(Note that binary input 15 into the 7447 blanks out all seven segments.) If 10 shares vote
yes for a measure, the display should show 0, Otherwise, the display shows a decimal num-
ber equal to the number of shares that vote yes. Use four 74151 multiplexers to design the
combinational circuit that converts the inputs from the stock owners' switches into the BCD
digit for the 7447. Do not use 5 V for logic 1 . Use the output of an inverter whose input is
grounded.

11.8 EXPERIMENT 7: ADDERS AND SUBTRACTORS

In this experiment, you will construct and test various adder and subtractor circuits. The sub-
tractor circuit is then used to compare the relative magnitudes of two numbers. Adders are dis-
cussed in Section 4.3. Subtraction with 2's complement is explained in Section 1.6. A four-bit
parallel adder-subtractor is shown in Fig. 4.13, and the comparison of two numbers is ex-
plained in Section 4.8.

Half Addw

Fult Adder

Design, construct, and test a half-adder circuit using one XOR mad two NAND gates.
I ..

<-1 I

: *!: - ,

Design, construct, and test a fuI1-adder circuit using two ICs, 7 - a 741)[1,

A Chapter 11 M t w y

Parallel Adder

IC type 7483 is a four-bit binary parallel adder. The pin assignment is shown in Fq. 1 1.10. The
2 four-bit input binary numbers are A1 through A4 and 31 through B4. The four-bit sum is ob
tained from $1 through S4. CO is the input carry and C4 the output carry,

Test the four-bit binary adder 7483 by connecting the power supply and ground tcrmi-
nals. Then connect the four A inputs to a fixed binary number, such as 1001, and the B in-
puts and the input carry to five toggle switches. The five outputs are applied to indicator
lamps. Perform the addition of a few binary numbers and check that the ouput sum and out-
put carry give the proper values. Show that when the input casy is equal m 1, it adds 1 to the
output sum.

TWO binary numbers can be subtracted by taking the 2's complement of the rmbmhed arid
adding it to the minuend. The 2's complement can be obtained by taking the 1's complement
and adding 1. To perform A - B, we complement the four bits of B, add them to the four bits
of A, and add 1 though the h p t carry. This is done as shown in Fig. 1 1.11, The four XOR gates
complement the bits of B when he mode select M = 1 (hcawe x I = x') and leave the bits
of B unchanged when M = 0 @ecause x @ 0 = x). Thus, when the mode select M is equal to
1, the input carry CO is equal to 1 and the sum output is A plus the 2's complement of B. When
M is equal to 0, the input carry is equal to 0 and the sum generates A + B.

Data input
A

Section 1 1.8 Experiment 7: Addm and Subtractors 529

1 Data o q n t
s

Connect the adder-subtractor circuit and test it for proper operation. Connect the four A inputs
to a f ~ e d binary number 1001 and the B inputs to switches. P e r f m the following operations and
record the values of the output sum and the output carry C4:

9 t 5 9 - 5
9 + 9 9 - 9
9 + 1 5 9 - 1 5

Show that during addition, the output carry is equal to 1 when the sum exceeds 15. Also, show
that when A r 3, the subtraction operation gives the c o m t answer, A - 3, and the output
carry C4 is equal to 1, but when A < B, the subtraction gives the 2's complement of B - A
and the output carry is equal to 0.

Magnitude Comparator

The comparison of two numbers is an operation that dwermines wbetber = m m h is
than, equal to, or less than the other number. l k o numbs, A a d crp be compaFed by lkst
subtractingA - Basisdoneinfig. 11.11.IfthewtprdinSiscqdtumsfbenA = &The
output carry from C4 determines the relatlve magnitudes of tk nmnbar WbenCQ = 1, A r B;
whenC4 = 0 , A < B;andwhenC4 = lands # O.A> B.

Chapter 11 hboratoty Expert-

It is necessary to supplement the subtractor circuit of Fig. 11.11 ta provide the comparison
logic. This is done with a combinational circuit that has five inpueeSl through S4 and C&
and thnx weputs, designated by x, y, a d t, so that

The combinationaI circuit can be implemented with the 7404 and 7408 ICs.
Construct the compmtor circuit md test its o p d o n . Use at leut two sets of n u m b for

A and B to check eacb of the outputs x, y, and z.

11.9 EXPERIMENT 8: FLIP-FLOPS

In- aperimeat, youwillmmuct, t e s t , a n d i n v e s t i g a k t b e ~ o f v a r i ~ 1 ~ latchand
flipflops. The internal conmuaim ofhtches and flrpflops rn be fwmd in S~~~QIIS 5.3 d 5.4.

Construct an SR latch with two cross-coupled NAND gates. Connect the two inputs to switches
and the two outputs to indicator lamps. Set the two switches to logic 1, and then momentarily
turn each switch separately to the logic-0 position and back to 1. Obtain the functiw table of
the circuit.

Construct a D latch with four NAND gates (only one 7400 IC) and verify its function table.

Connect a master-slave D flip-flop using two D Iatches and an inverter. Connect the D input
to a switch and the clock input to a pulse^ Connect the output of the master latch to one indi-
cator lamp and the output of the slave latch to anodhar h h t o r lamp. Set the value of the input
to the complement value of the output. Press the push button in the pulser d then release it
to p r o b a single pulse. 0-a that the mas- changes when h e pulse gws positive and
the slave follows the change when the pulse goes negative. the push button again a few
times while observing the two indimtor lamps. Explain the. transfa from input to
master and from master to slave.

D i s m e c t the clock input from the pulser ad it to a c h k gemmtor. Connect the
complement output ofthe flipfkptotkDinpat. This causes the flipflop to be complenmwd
with each clock pulse. Using a daaZ-trace osci l losq~, obsave h wavefarms of& clock and
the master and slave outputs. V e that the delay htwem the master and the sIave outputs is
equal to the positive half of the clock cycIe. Obtain a timing diagram showing the relationship
between the clock waveform and the master and s l ~ v e outputs.

Sectlon 11.9 bprimtnt 8: Flip-Flops

Edge-Triggered Flip-Flop

Construct a D-type positive-edge-triggered flip-flop using six NAND gates. Connect the clcck
input to a pulser, the D input to a toggle switch, and the output Q to an indicator lamp. Set the
value of D to the complement of Q. Show that the flip-flop output changes only in response to a
positive transition of the clock pulse. Verify that the outpur does not change when the clmk input
is logic 1, when the clock goes through a negative transition, or when the clock input is logic 0.
Continue changing the D input to correspond to the complement of the Q output at all times.

Disconnect the input from the pulser and connect it to the clock generator. Connect the com-
plement output Q' to the D input. This causes the output to be complemented with each posi-
tive m i t i o n of the clock pulse. Using a dual-trace oscilloscope, observe and record the timing
relationship between the input clock and the output Q. Show that the output changes in re-
sponse to a positive edge transition.

IC type 7476 consists of two JK master-slave flip-flops with preset and clear. The pin assign-
ment for each flip-flop is shown in Fig. 11.12. The function table specifies the circuit's opera-
tion. The first three entries in the table specify the operation of the asynchronous preset and

vcc = p h 5
GND = pin 13

Function table
- - -

Inputs I Outputs

Preset CIear C lak J K I Q Q

FIGURE 11.12
IC type 7476 dual f l master-slave flipflops

532 Chapter 11 LPborstory ExpIwwmb

Function table

'3

v,, = pin 14
GND=pin7

FIGURE 11.13
K type 7474 dual P m e - t d g p d flip-flops

clear inputs. These inputs behave iike a NAND SR latch ad are indepeadent of &e clock or the
J and K inputs. (The X's indicate don'tcare conditions.) The last four eotriw in dx MW table
specify the operation of the c l d with both tbe preset and clear inputs ~~ at logic 1. The
clock value is shown as a single pulse. The positive transition of the puke changes the master
flip-flop, and the negative transition changes h e slave flipflop as well as the output of the eir-
cuit. With J = K = 0, the output does not change. The flipflop toggles, or is complemented,
when J = K = 1, Investigate the operation of one 7476 flipflop and verify its function table.

IC type 7474 consists of two D positiveedg~triggerod flip-flops with preset and clear. The
pin assignment is shown in Fig. 11.13. The funetion table s p i l l s the preset and clear oper-
ations and the clmk's operation. ' h e clwk is shown with an upward mow to indicate that it
is a positive-edge-triggered flipflop. Investigate the operation of me of the flipflops and ver-
ify its function table.

11 . I 0 EXPERIMENT 9: SEQUENTIAL CIRCUITS

In this experiment, you will design, construct, and test three synchronous sequential circuits.
Use IC type 7476 (Fig. 11.12) or 7474 (Fig. 11.13). Choose any type of gate that will mifiimize
the total number of ICs. The design of synchronous queptid circuits is covered in Section 5.7.

Section 1 1.1 0 Experiment 9: Sequentid Circuits 533

FIGURE 11.14
State diagram for ExpeFtment 9

U-n Counter wkh Enable

Design, construct, and test a two-bit counter that counts up or down. An enable input E deter-
mines whether the counter is on or off. If E = 0, the counter is disabIed and remains at its
present count even though clock pulses are applied to the flip-flops. If E = 1, the counter is
enabled and a second input, x, determines the direction of the count. If x = 1, the circuit counts
upward with the sequence 00,01, 10, 11, and the count repeats. If x = 0, the circuit counts
dawnward with the sequence 11,10,01,00, and the count repeats. Do not use E to disable the
clock, Design the sequential circuit with E and x as inputs.

State DIagram

Design, construct, and test a sequential circuit whose state diagram is shown in Fig. 11.14.
Designate the two flip-flops as A and B, the input as x, and the output as y.

Connect the output of the least significant flip-flop B to the input x, and predict the sequence
of states and output that will occur with the applicatian of clock pulses. Verify the state tran-
sition and output by testing the circuit.

Design of Counter

Design, construct, and test a counter that goes through the following seguence of binary stae:
0,1,2,3,6,7, 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , a n d b a c k t o O t o r e p e a t . N o b e ~ ~ ~ 4 , 5 , 8 ,
and 9 are not used. The counter must be self-starhg, that is. if tbt Ehmit shris fmm my o ~ l e
of the four invalid states, the count pulses must transfer the timiit& oae af ih wlid states to
continue the count correctly.

Check the circuit's operation for the required count sequepg. !WQ tbat tbe camtcr is
self-starting. This is done by initializing the circuit to eaob hy mrmn of dw prs
set and clear inputs and then applying pulses to see wbetha P b c m am of the
valid states.

In this w c ~ ~ you will cashwt and tat various ripple a d synchronous muitex circuits.
Rippleowaters arediscltssedinSection&3 d s ~ s ~ a r e c w e r e d i n W 1 $ 1 6 . 4 .

C o m c t a four-bit binary ripple counter using two 7476 ICs (Rg. 1 1.12). Connect all asp-
chromus clear and preset inputs to logic 1. Connect h e count-pulse input # a pulser and check
the OOUIIter for proper qmtion.

M d f y theco~~1tersothatitwill~downward~ofupward.~~eachiaput
pulse decrements the counter by I.

Synchronous Counter
Construct a s y n c h o u s four-bit binary amkr and check its +on. Use two 7476 ICs and
m e 7408 IC.

Design a synchronous BCD couwer dm counts from 0000 to 1001. Use two 7476 ICs and one
7408 IC. Test the counter for the proper sequence, Detamine whether the counter is self-
starting. This is done by inithhhg the c m k r to each of the six mused states by means of
the preset ~ c l e a r i n p u t a ~ a p p ~ a f p u l s e s ~ ~ t h t ~ t o o n e o f t h e valid
states if the counter is self-starting.

IC type 7416 I is a four-bit synchronous binary counter whh parallel load and asynchronous
clear. The internal logic is similar to that of the circuit sbown in Fig. 6.14. The pip asigmmtg
totheinputsandoutp~are.ShOWIlinF%g. 11.15.When~loadsignalisemabM,tbEfourdaCB
inputsarcmu&mdintofwrrintemalflipflop,@4~eD, withQDkhgthemostsig-
nificmt bit. There are two mm-eaable hpm d e d P and T. Both must be equal to 1 for the
counter to opuate. The function table is s h h r to Table 6.6, with one exception: The load
input in the 74161 is enabled when equal rn 0, To load the input dam, the clear input must be
equal to 1 and the load input must be equal to 0. The nvo count inputs have don't-care condi-
tions and may be equal to either 1 or 0. The internal flipflops trigger on tk positive transition
of the clock pulse. The circuit functions as a c m when the load input is equal to I and both
m t inputsP a d Tare equal to 1. If e i t b P o r T g o ~ s m 0 , theoutput does not change. The
--out outputisequalto I w h e n a l l f c m r d a t a ~ u t s a m ~ t o 1.Puformanexperiment
to verify the operation of the 74161 IC a c c d Q to tbe W o n tatrle.

Show how the 74161 IC, together with a two-input NAND gate, can be made to opeme
as a synchronous BCD mn&r that mmts h 0000 to 1001. Do not use the clear input,
Use the NAND gate to detect the count of 1001, which thea causes all 0's to be loaded into
the counter.

Function table

Function

Clear outputs to 0
Load input data
Count to next binary vdue

T No change in output

FIGURE 11.15
IC type 741 61 binary coyrrter with parallel load

In this experiment, you will investigate the operation of shift registers. The IC to be used is the
741 95 shift register with parallel I d . Shift registers are explained in Section 6.2.

IC type 741 95 is a four-bit shift register with pallel load d ,-i clee. Tbe piu rs-
signments to the inputs and outputs are shown in Fig. 11.16. Tbe d b W
SHILD (shiftnoad) determines the synchnons ~qmatim oftbe S H f W = 0,
the control input is in the load mode and the four dm inpm = jllLP Ibt h iP
ternal flip-flops, QA through @.When SHlLD = 1, t k d , r i i r - r b i l t d d
the information in the register is shifted right from QA tonrd Op..m mhl irpt *
during the shift is determined h m the J and imp&. Thc t m ~ v*L.rr ilr & J d
the complement of K of a JK flip-flop. When M 1 a d w w b O. @ L

536 Chapter 11 laboratory Ex@menb

Clock.

s m Serial
U ta t laad Clock J B inpm Fuaetiw

0 X X X X X Asynchronous clear
1 X 0 X X X Nodmgeinwtput
I 0 P X X X Lurid input data
1 1 T 0 0 0 w f t f r o m ~ tswardQD,Q~ = 0
1 1 t 1 1 1 Shih h t k QA toward QD, PA = I

cleared to 0 after the shift. Zf both inputs are qua1 to I. QA is set to 1 after the shift. Tbe other
two coaditions for the J and inputs provide a complement or no change in the output of flip-
flopQA after the shift.

The function table for the 74195 shows the mode of oftbe reghx. When the clear
input goes to 0, the four flipflv clear to 0 asynchronously-that is, without the raced of a clock.
Synchronous operations are a&td by a psitive. tnulsitioo of the clwk To l d the input data,
ShYLD must be equal to 0 and a positive clock-guise Wtim must a u r . To shift right, S M D
m w t b e e q u a l b 1 . ~ h e ~ a n d ~ ~ r n u s t b e ~ ~ t o f o r m ~ s e r i a l i n p u t .

Perform an experiment that will verify th operation of the 74195 IC. Show that it performs
all the operations listed in the W o n table. Wude in your function table the two conditions
for JZ = 01 and 10.

Section 11 -12 Experiment 11: Shlft Registers

Ring Counter

A ring counter is a circular shift register with the signal from the serial output QD going into
the serial input. Connect the J and K input together to form the serial input. Use the load con-
dition to preset the ring counter to an initial value of 1000. Rotate the single bit with the shift
condition and check the state of the register after each clock pulse.

A switch-tail ring counter uses the complement output of QD for the serial input. Preset the
switch-tail ring counter to 0000 and predict the sequence of states that will result from shift-
ing. Verify your prediction by observing the state sequence after each shift.

--

Feedback S Y f t Reglster

A feedback shift register is a shift register whose serial input is connected to some function of
selected register outputs. Comwt a feedback shiftregister whose serial input is the exclusive-
OR of outputs QC and QD. Predict the sequence of states of the register, starting from state 1000.
Verify your prediction by observing the state sequence after each clock pulse.

Bidlrectioml Shift Reglster

The 74195 IC can shift only right from QA toward QD. It is possible to convert the register to
a bidirectional shift register by using the load mode to obtain a shift-left operation (from QD
toward QA). This is accomplished by connecting the output of each flip-flop to the input of the
flip-flop on its left and using the load mode of the SH/LD input as a shift-left control. Input D
becomes the serial input for the shift-left operation.

Connect the 74 195 as a bidirectional shift register (without parallel load). Connect the se-
rial input for shift right to a toggle switch. Construct the shift left as a ring counter by connecting
the serial output QA to the serial input D. Clear the register and then check its operation by sluft-
ing a single 1 from the serial input switch. Shift right three more times and insert 0's from the
serial input switch. Then rotate left with the shift-left (load) control, The single 1 should remain
visible while shifting.

~idlrectional Shift Reglster with Parallel Load

The 74195 IC can be converted to a bidirectional shift register with parakl load in conjunc-
tion with a multiplexer circuit. We will use IC type 74 157 for this purpose. The 74 157 is a
quadruple two- to-one-line multiplexer whose internal Iogic is shown in Fig. 4.26. The p h as-
signments to the inputs and outputs of the 741 57 are shown in Fig. 1 1.17. Note that the enable
input is called a strobe in the 74157.

Construct a bidirectional shift register with parallel load using dm 74195- and tk
74 157 multiplexer. The circuit should be able to perform fbe fdlming

1. Asynchronous clear
2. Shift right
3. Shift left
4. Parallel load
5. Synchronous clear

Data 1 -

Data oucpm Y

Select data inputs A
Select data inputs B

Derive a table for ehe five o p d o n s as a fundm of the clear, clock, and SH&D inputs of the
7 4 1 9 5 a n d t h e a ~ a n d s e l ~ ~ o f t h e 7 4 1 5 7 . ~ ~ c i r w i t d v e t i f y y w t f u n c -
tion table. Use the parallel-load condition to pvidc aa initial value to the ~t@fer, and con-
n e c t t l B e d a l ~ t o t b e ~ ~ o f b P t h s h i f f s i n ~ n o t t o l r # r e t f a e b i n a r y ~ o a
whiIc shifting.

11 . I 3 E X P E R I M E N T 12: SERIAL ADDITION

In this exprhent, you will construct d test r & addex-s- circuit. Serial addition
of two binary numbers can be done by means of shift register$ and a full Itdder, as explained
in Section 6.2.

Section 11 -14 Experiment 13: Memory Unit

S e r i m l Addw
Starting from the diagxam of Fig. 6.6, design and consmct a four-bit serial adder using the
following 1Cs: 74195 (two), 7408,7486, and 7476. Provide a facility for register B to accept
parallel data from four toggle switches, and connect its serial input to ground so that 0's are
shifted into register 3 during the addition, Provide a toggle switch to clear the registers and the
flip-flop. Another switch will be needed to specify whether register B is to accept parallel data
or is to be shifted during the addition.

Testing the Adder

To test your serial adder, p e r f m the binary addition 5 + 6 + 15 = 26, This is done by first
clearing the registers and the carry flip-flop. Parallel load the binary value 0101 into register
3. Apply four pulses to add B to A serially, and check that the result in A is 0101. (Note that
clock pulses for the 7476 must be as shown in Fig. 11.12.) Parallel load 0110 into B and add
it to A serially. Check that A has the proper sum. Parallel load 1 1 1 1 into B and add to A. Check
that the value in A is 1010 and that the cany flip-flop is set.

Clear the registers and flip-flop and try a few other numbers to verify that your serial adder
is functioning properly,

Serial Adder-5,ubtractor

If we follow the procedure used in Section 6.2 for the design of a serial s u b a t o r (that sub-
tracts A - B) , we will find that the output difference is the same as the output sum, but that
the input to the J and K of the borrow flip-flop needs the complement of QD (available in the
74195). Using the other two XOR gates from the 7486, convert the serial dder to a serial
adder-subtractor with a mode control M. When M = 0, the circuit adds A + 3. When M = 1,
the circuit subtracts A - B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeating the operations recommended to ensure that the
modification did not change the operation. Test the serial subtractor part by performing the
subtraction 15 - 4 - 5 - 13 = -7. Binary 15 can be transferred to register A by first clear-
ing it to 0 and adding 15 from B. Check the intermediate results during the subtraction. Note
that -7 will appear as the 2's complement of 7 with a borrow of 1 in the flip-flop.

11.14 E X P E R I M E N T 13 : M E M O ~ Y UNIT

In this experiment, you will investigate the behavior of a random-access memory (RAM) unit
and its storage capability. The RAM will be used to simulate a d d y m y (ROW. The
ROM simulator will then be used to implement combjnat id &mi& as q h k d in !Section
7,s. The memory unit is discussed in Sections 7.2 aad 7.3.

IC RAM

ICtype74189isa16 X 4random-aocessmemory.TbeMw&*0~1Lem
showninFig.7.6fora4 X 4 R A M ~ p i n ~ m t b e ~ r P d ~ r a s b o w a m
Fig. 11.18. The four address inputs select 1 o f 1 6 w a r d s i n 1 k ~ T k l e r t ~ b a - .

Data outputs

Hghimpoaawre
Read Comptement ofsekted word

X W b l e

ofttae~isAd~most~cantisA3.~cAipgclect(CS)ioputmustbeequalmOto
~lethememory.ZfCSisequal~l,thememwyis~ledand~fourw1~~iDahigb-
~ s ~ . ~ e ~ e n a b l e (W E) i n p u t d e t e r m i n e s t h e t y p e o f ~ o ~ a s M ~ i n t h e
~ontable.~write~oaispePf~whWE = O.Tbis~onisamuferofthe
binarynumkftomthe&tBinputfinto~~wordinmewffy.Tbe~~timisper-
formedwlmWE = 1 . l h i s ~ ~ t k m q b m t e d ~ ~ k t h ~ d
into the output data lines. The memasy has ke-stak wtpts to Wtak mcmory expansion.

Testing the RAM
Since the outputs of the 74189 prodoce the wmplemented values, we need to insert four in-
vtrtcrs to change the outputs to their normal value. The RAM can be tested after making the

Section 11.15 bperlment 14: Lamp Handball

following connections: Connect the address inputs to a binary counter using the 7493 IC
(shown in Fig. 11.3). Connect the four data inputs to toggle switches and the data outputs to
four 7404 inverters. Provide four indicator lamps for the address and four more for the out-
puts of the inverters. Connect input CS to ground and WE to a toggle switch (or a pulser that
provides a negative pulse). Store a few words into the memory, and then read them to verify
that the write and read operations are functioning properly, You must be careful when using
the WE switch. Always leave the WE input in the read mode, unless you want to write into
memory. The proper way to write is first to set the address in the counter and the inputs in the
four toggle switches. Then, store the word in memory, flip the WE switch to the write posi-
tion and return it to the read position. Be careful not to change the address or the inputs when
WE is in the write mode.

ROM Simulator

A ROM simulator is obtained from a R4M operated in the read mode only. The pattern of 1's
and 0's is first entered into the simulating RAM by placing the unit momentarily in the write
mode. Simulation is achieved by placing the unit in theread mode and taking the address lines
as inputs to the RDM. The ROM can then be used to implement any combinational circuit.

Implement a combinational circuit using the ROM simulator thar converts a four-bit binary
number to its equivalent Gray code as defined in Table 1.6. This is done as follows: Obtain the
truth tabIe of the code converter. Store the truth tabIe into the 74189 memory by setting the
address inputs to the binary value and the data inputs to the corresponding Gray code value.
After all 16 entries of the table are written into memory, the ROM simulator is set by perma-
nently connecting the WE line to logic 1. Check the code converter by applying the inputs to
the address lines and verifying the correct outputs in the data output lines.

Memory Expanslm

Expand the memory unit to a 32 X 4 RAM using two 741 89 ICs. Use the CS inputs to select
between the two ICs. Note that since the data outputs are three-stated, you can tie pairs of ter-
minals together to obtain a logic OR operation between the two ICs. Test your circuit by using
it as a ROM simulator that adds a three-bit number to a two-bit number to produce a four-bit
sum, For example, if the input of the ROM is 10110, then the output is calculated to be
10 1 + 10 = 0 1 1 1. (The first three bits of the input represent 5, the last two bits represent 2,
and the output sum is binary 7.) Use the counter to provide four bits of h e d r e s s and a switch
for the fifth bit of the address.

11.15 E X P E R I M E N T 14: LAMP HANDBALL

In this experiment, you will construct an electrwic game of U a siagee light to
simulate the moving ball. The experiment demonshaw the of a b d k h d shift
register with parallel load. It also shows the operatim of the gwl r ranm imps of£lip£kp.
We will first introduce an IC that is needed for tk experinmt 9d then psmt tbe logic dia-
gram of the simulated lamp handball game.

This is a four-bit bidirectional shift register with parallel l d The intend logic is similar to
that shown in Fq. 6.7. The pin assignments to the inputs d orrtpmts are shown in Fig. 11.19.
The two mode-control inputs determine the type of e o n , as s p d e d in the function table.

T h e l o p i c d i a g n u n d ~ ~ l e m p ~ g a n z e i s ~ i n H g . 112O.Itconsistsof
two 74194 ICs, a dud D flipflop 7474 IC, slnd three gate ICs: the 7400,7404 and 77408. The
bdI is simulated by a moving light that is shiftsd left or right through the bidhedonal shift
register. rate at which the light moves i s &&mined by the bquency of thc clock. The

Psralkel data
inputs '

a d
Clear

Seridinput I 1'
for shift left

, Data
*w

F d n table

MdB
CIcarClock Sl SO Fudm

0 X X X C l t a r ~ t 0 0
1 T 0 0 N o ~ i n w t p n t
1 T 0 1 Shift right in tbe direaim &om

@4 to QD. SIR to QA
1 * 1 0 S h i f t l e f t i n t h e ~ w ~

QD to QA. SIL to QD
I T 1 1 ParaUel-ld inpm data

AGm 11.19
1C type 141M blQlnctlond shift rag- wtth p l ~ h n d ~

Section 11.15 Experiment 14: Lamp Handball 543

FIGURE 11.20
Lamp handball logic dlagram

544 Chapter 11 Laboratory Experiments

circuit is first initialized with the reset switch. The start switch stacts the game by placing the
ball (an indicator lamp) at the extreme right. The player must press the pulser push button to
start the ball moving to the left. The single light shifts to the left until it reaches the lefhnost
position (the wall). at which time tbe ball relmm to the player by reversing the dkction of shift
of the moving light. When the light is again at the rightmost position, the player must press the
pulser again to reverse the direction of shift. If the player presses the pulser too soon or too late,
the ball disappears and the light p s off. The game can be restarted by tumiug h e start switch
on and then off. The start switch must be opn (logic I) dmhg ?he game.

Prior to connecting the ciPcui4 analyze the logic diagram to emwe that you lmderstand how
the circuit operates. In particular, try to answer the following qustions:

1. What is the function of the reset switch?
2. How d m the light in the rightmost position come on when the start switch is grounded?

Why is it necessary to place the start switch in the logic-1 position before the game
starts?

3. What happens to the two rmdecontml inputs, Sl and SO, once the ball is set in motion?
4. What happens to the mode-control inputs and to the ball if the pulser is pressed while the

ball is moving to the left? What b a p if the ball is moving to the right, but has not yet
reached the rightmost position?

5. If the ball has rmmed to the rightmost p idon , but the pulser has not yet been pressed,
what is the state of the rnde-cmlml inputs if the pulser is pressed? What happens if it
is not pressed?

Playlng the Game

Wire the circuit of Fig. 1 1.20. Test the circuit for proper operation by playing the game. Note
that the pulser must provide a positiveedge Wit ion and that Imth the reset and start switches
must be open (i.e., must be in the logic-1 state) during the game. Start with a low clock rate,
and increase the clock frequency to make the handball game more challenging.

Counting the Number of Losses
Design a circuit that keeps score of the n u m h of times the player loses while playing the
game. Use a BCD-to-seven-segment dm& and a seven-segment display, as in Fig. 1 1 .a,
to display the count from 0 through 9. Counting is done with either the 7493 as a ripple
decimal counter or the 74 161 and a NAND gate as a synchronous decimal counter. Tbe dis-
play should show 0 when the circuit is reset. Every time the ball disappears and the ligbt
gms off, the display should increase by 1. If the light stays on during the play. the number
in the display should not change. The final design should be an automatic scoring circuit,
with the decimal display incrernented automatically each time the player loses when the
light disappears.

Sectlon 1 1.1 6 Experiment 15: Clock-Pulse Generator

Lamp Ping-Pong"

Modify the circuit of Fig. 11 -20 so as to obtain a Iamp Ping-Pong game. Two players can pw-
ticipate in this game, with each player having his or her own pulser. The player with the right
pulser returns the ball when it is in the extreme right position, and the player with the left pulser
returns the ball when it is in h e extreme left position. The only modification required for the
Ping-Pong game is a second pulser and a change of a few wires.

With a second start circuit, the game can be ma& to start by either one of the two players
(i.e., either one serves). This addition is optional.

1 1 .I6 E X P E R I M E N T 15: CLOCK-PULSE GENERATOR

In this experiment, you will use an IC timer unit and connect it to produce clock pulses at a given
frequency. The circuit requires the connection of two external resistors and two exterual ca-
pacitors. The cathode-ray oscil1oscope is used to observe the waveform and measure the fre-
quency of the pulses.

IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 11.21.
(The resistors, RA and RBI and the two capacitors are not part of the IC.) The circuit consists
of two voltage comparators, a flip-flop, and an internal transistor. The voltage division from
Vcc = 5 V through the three internal resistors to ground produces 3 and f of Vo (3.3 V and
1.7 V, respectively) into the fixed inputs of the comparators. When the threshold input at pin
6 goes above 3.3 V, the upper comparator resets the flip-flop and the output goes low to about
0 V. When the trigger input at pin 2 goes below 1.7 V, the lower comparator sets the flip-flop
and the output goes high to about 5 V. When the output is low, Q' is high and the b a s ~ m i t -
ter junction of the transistor is forward biased. When the output is bigh, Q' is low and the tran-
sistor is cut off. (See Section 10.3.) The timer circuit is capable of producing accurate time
delays controlled by an external RC circuit. In this experiment, the IC timer will be operated
in the astabIe mode to produce clock puIses,

C i ~ u i t Operat ion

Figure 1 1.2 1 shows the external connections for astable operation of the circuit. Capacitor C
charges through resistors RA and Rg when the transistor is cut off and discharges thrwgh RB
when the transistor is forward biased and condwhg. When he chmgjng voltage apc#rs ca-
pacitor C reaches 3.3 V, the threshold input at pin 6 causes lh eip- ro m and tbe lm~-
sistor turns on, When the discharging voltage rt%ches 1.7 V. tbe inprt at pin 2
the flip-flop to set and the transistor tums off. Thus, the ~oaptamhmnUy
two voltage levels at the output of the flipflop. The oqmt remaias high fa a dmatioa equal
to the charge time. This duration is determined from the equatim

7259 Timer

~ o u q > u t ~ s I o w f o r s ~ e q n a I t o t b e d i ~ ~ . T h i s ~ i s ~
from the equation

Starting with a capacitor C of 0.001 pF, calculate values for RA and RB to @UCZ clock pulses,
as &own in Fig. 1 1.22. The pulse widh is 1 ps in thc low level and repeats at a hquency rate
of 100 kHz (every 10 ps), Coataect the cimi t d check the output in the -.

Observe the output across thc cqwitm C, and record its two levels to verify that rhey are
between the trigga and threshold v d w .

S w t h 1 1.1 7 Experiment 16: Parallel Adder and Accumulator 547

FIGURE 11 2 2
Output waveform for dock generator

Observe the waveform in the collector of the transistor at pin 7 and record all pertinent in-
formation. Explain the waveform by analyzing the circuit" action,

Connect a variable resistor (gotentiometer) in series with RA to produce a variable-frequency
pulse generator. The low-level duration remains at 1 ps, The frequency shouId range from 20
to 100 kHz.

Change the low-level pulses to high-level pulses with a 7404 inverter, This will produce pos-
itive pulses of 1 ps with a variable-frequency range,

11.17 E X P E R I M E N T 16: P A R A L L E L ADDER
A N D ACCUMULATOR

In this experiment, you will construct a four-bit parallel adder whose sum can be loaded into
a register. The numbers to be added will be stored in a random-access memory. A set of binary
numbers will be selected from memory and their sum will be accumulated in the register.

Block Diagram

Use the RAM circuit from the memory experiment of Section 11.14, a four-bit parallel adder,
a four-bit shift register with parallel load, a carry flip-flop, and a multiplexer to construct the
circuit, The block diagram and the ICs to be used are shown in Fig, 11,23, Information can be
written into RAM from data in four switches or from the four-bit data available in the outputs
of the register, The selection is done by means of a multiplexer. The data in RAM can be added
to the contents of the register and the sum transferred back to the register,

Control of Register

Provide toggle switches to control the 74194 register and the 7476 carry flrpflop as hllows:

(a) A LOAD condition transfers the sum to the register ad the miput amy to tk flipflq
upon the application of a clck pulse.

(b) A SHIFT condition shifts the register right with the .aw drom tbc fiipm trms-
f i red into the leftmost position of the registernpon th wlidh of. TbE
value in the carry flipflop should not change h h g ib dGk '$2 -.A . .lC -

(c) A NO-CHANGE condition leaves the con- of rbe rrgista d W o p udm&
even when clock pulses are applied. . - '

-. - IL r . . f .%.e .!I4 " . & *-w . I- - I '.'

Count
(PUl=rl

Carry Circult

To conform with the preceding specfications, it is necessary to provide a circuit between the
output carry from the adder and the J and K inputs of the 7476 flipflop so that the output carry
is transferred into the flip-flop (whether it is equal to 0 or 1) only when the LOAD condition
is activated and a pulse is applied to the clock input of the flipflop. The carry flip-flop should
not change if the LOAD condition is -led or the SHIFT condition is enabled.

Detailed C i m . i t

Draw a detailed diagram showing all the wiring W e e n the ICs. Connect the circuit. and pro-
vide indicator lamps for the outputs of the register and carry flipflop and for the address and
output data of the RAM.

Checking the C l ~ u l t
Store the numbers 0110,1110,1101,0101, and 0011 in RAM and then add them to theregis-
ter w e at a time. Start with a cleared register and flip-flop. Predict the values in the output of
the register and carry after each &on in the following sum, and verify your results:

0110 + 1110 + 1101 + 0101 + 0011

Section 1 1.18 Experiment 1 7: Bina,ty Multiplier 549

Omit Operation

Clear the register and the carry flip-flop to zero, and store the foIlowing four-bit numbers in
RAM in the indicated addresses:

Content
0110
1110
1101
0101
0011

Now perform the following four operations:

1. Add the contents of address 0 to the contents of the register, using the LOAD
condition.

2. Store the sum from the register into RAM at address 1.
3. Shift right the contents of the register and carry with the SHIFT condition.
4. Store the shifted contents of the register at address 2 of RAM,

Check that the contents of the fust three locations in RAM are as follows:

Address
0
1
2

Contents
01 10
0110
0011

Repeat the foregoing four operatians for each of the other four binary numbers stored id
RAM. Use addresses 4,7, 10, and 13 to store the sum from the register in step 2. Use addresses
5 , 8, 11, and 14 to store the shifted value from the register in step 4. Predict what the contents
of RAM at adhesses 0 through 14 would be, and check to verify your results,

11.18 E X P E R I M E N T 17: B I N A R Y MULTIPLIER

In this experiment, you will design and construct a circuit that multiplies 2 four-bit un-
signed numbers to produce an eight-bit product. An algorithm for multiplying two binary
numbers is presented in Section 8.7. The algorithm implemented in this experiment differs
from the one described in Figures 8.14 and 8.15, by treating only a four-bit dataQath and by
incrementing, instead of decrementing, a bit counter.

Black Diagram

The ASMD chart and bIock diagram of the binary rn-Ik de I[38 mmmmdtd to
be used are shown in Fig. 1 1.24(a) and (b). The multip- It, i s s ~IUII hm switchas
instead of a register, The multiplier, Q, is obtaiaed h m a w h _ ' pfPBllrs&ch. The@-
uct is displayed with eight indicator lamps. Counter P is &$(I aid Umm '
after each partial product is formed. When the counter d d fam, ouqmt b m
becomes 1 and the multiplication operation terminates.

550 Chapter 1 1 Laboratory Expedments

(a) ASMD chart

FIGURE 1 1.24
A W O chart, block diagram of tht drtaprth, control state dlagr#n, a d regirter
opuablms of the b l n q rnuWpIk ddt

The ASMD cfiart for the binary multiplier in Figure 11.24(a) shows that the three registers and
the carry flip-flop of the datqmb unit are cwmlled with signals Load-mgs, Incry, A&>gs,
and Ship-regs. The external input sign& of the -1 unit are c h k , R M ~ J (active-low), and
Starb; another input to the control unit is the internal status signal, Done, which is formed by
the datapath unit to indicate that the cwnter has reached a count of four, m m q m d h g to the
n u m k of bits in the multiplier. U - m g s clears the product register (A) and the cany flipflop
(0, loads the multiplicand into register B, I& the multiplier into register Q, md clean the
bit counter, I t s c r y increments the bit wmkr c.mcmently with the ammulalion of a partial
product. Add-mgs adds the multiplicand to A, if the least sipdkmt bit of the shifted multiplier

Section 1 1.18 Experiment 17: Binary Multiplier

Multiplicand B
1 (4 switches) Dons = 1 on count of 4

Multiplier Q
(4 switches)

(b) Datapath block program

Done = 1
Start = 0

n n
Done = 0

(c) Control state diagram

(d) Rtgistcr apatiom

State Transition

Ts
S-idle

S-idle Lad

S-add Sshifr

S ~ k i f t

FCCURE 11.24
(Continued)

> ' 7

(Q[O]) is I , Flip-flop C acctrmmodates a cany that & a-
register CAQ is updated by storing the result of j a m -W 90 &
Shp-regs shifts CAQ one bit to the right, w M a h h

Register Operations

Initial state reached by reset action

A < = O , C < = O , P < = O

P < = P + l
i f (Q [m t h e n (A < = A + B . C < = m
shirt right (CAQ], C <= 0

Control id

-J*P
aPaS

wfm

552 Chapter 11 Laboratory Experiments

The state diagram for the control unit is shown in Fig. 11.24(c). Note that it does not show
the register operations of the datapath unit or the output signals that control them. That infor-
mation is apparent in Figure 11.24(d). Note that I n c r y and SM-regs are g e n d unmndi-
tionally in states S-add and Sshifl , mreapectively. Load-regs is genemted under the condition
that Sdarz is asserted conditiody while the state is in S-idk; Add-~gs is asserted condition-
ally in S-add if Q[O] = 1

Multlpllcat Ion Example

Before connecting the circuit, make sure that you understand the operation of the multiplier.
To do this, construct a table similar to Table 8.5, but wih B = 11 11 for the multiplicand and
Q = 101 1 for the multiplier. Along with each comment listed on the left side of the table,
specify the state.

Datapath Deslgn

Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin co~ections.
Generate the four control signals with switches, and use them to provide the required wnml
operations for the various registers. Cwnect the circuit and check that each component is fun=
tiwing proply. W~th the conml signals at 0, set the multiplicand switches to 11 11 and the mul-
tiplier switches to 1011. Assert the control sigaals manually by means of the control switches,
as specified by the state diagram of Fig. 11 .24~) . Apply a single pulse while in each cwml
state, and observe the outputs of registers A and Q and the values in C and P. Compare hese
outputs with the numbers in your numrical example to verify that the circuit is functioning
properly. Note that IC type 74161 has master-slave flipflops, To operate it manually, it is nec-
essary that the single clmk pulse be a negative p u k .

Deslgn of Control

Design the control circuit specified by the state diagram. You can use any method of cwtrol
implementation discussed in Sedtion 8.8.

Choose the method that the number of ICs. VezQ the operation of the control
circuit prior to its c o d o n to the datapatb unit.

Checking the Multiplier

Connect the outputs of the conjml circuit to the datapath u& and verify the total circuit op-
eration by repeating the steps of multiplying 11 11 by 1011. The single clmk pulses should
now sequence the control states as well. (Remove the m a n d switches.) The start signal (S t a ~)
can be generated with a switch that is on wbile the control is in state S-idle.

Generate the start signal (Start) with a pulser or my other shm pulse, a d operate the mul-
tiplier with continuous clock p u b fi-om a clock generator, m i n g the pulsw for S t m should
initiate the multiplication option, and upon its completion, the product shwld be displayed
in the A and Q registers. Note that the multiplication will be repeated as long as signal Start is
enabled. Make sure that Start goes back to 0. Then set the w h h e 6 to two other fa -b i t numbers

Section 11.20 Verilog HDL Simulation Experiments

and press Start again. The new product should appear at the outputs. Repeat the multiplication
of a few numbers to verify the operation of the circuit.

11.19 E X P E R I M E N T 18: ASYNCHRONOUS
SEQUENTIAL CIRCUITS

In this experiment, you will analyze and design asynchronous sequential circuits. These types
of circuits are presented in Chapter 9.

Analysis Example

The analysis of asynchronous sequential circuits with SR latches is outlined in Section 9.3.
Analyze the circuit of Fig. P9.9 (shown with Problem 9.9) by deriving the transition table and
output map of the circuit. From the transition table and output map, determine (a) what hap-
pens to output Q when input x l is a 1 irrespective of the value of input x2, (b) what happens
to output Q when input x:! is a 1 and x l is equal to 0, and (c) what happens to output Q when
both inputs go back to O?

Connect the circuit and show that it operates according to the way you analyzed it.

Design Example

The circuit of a positive-edge-triggered D-type flip-flop is shown in Fig, 5.10. The circuit of
a negative-edge T-type flip-flop is shown in Fig. 9.46. Using the six-step pmedure recom-
mended in Section 9.8, design, constsuct, and test a D-type flip-flop that triggers on both the
positive and negative transitions of the clock. The circuit has two inputs-D and C--and a
single output, Q. The value of D at the time C changes from 0 to 1 becomes the flip-flop out-
put Q. The output remains unchanged irrespective of the value of D, as long as C remains at
1. On the next clock transition, the output is again updated to the value of D when C changes
from 1 to 0. The output then remains unchanged as long as C remains at 0.

11.20 VERILOC HDL SIMULATION E X P E R I M E N T S
AND R A P I D PROTOTYPING WITH FPCAS

Field programmable gate mays (FPGAs) are used by hhsixy to irapleimnt logic w k n the sys-
tem is complex, the time-to-market is short, the perfamance (eg, speed) d an FPGA is ec-
ceptable, and the volume of potential sales does not wacmut the in- in a stawhrd
cell-based ASIC. Circuits can be rapidly ptolypd into an FPGA- r a m k tbt HDL
m d e l is verified, the demiption is sylltbesized and m;apped h u 1Le F¶GA H S A d pm
vide software tools for synthesizing the HDL -on of r i.ID m
level description and mapping (fitting) the resulting iaDD ILp -dW.IPIGX.
This process avoids the detailed assembly of ICs dmt is rn a
breadboard, and the process involves s i g g i h d y b S d m - kl I!
faster to edit an HDL description than to re-wine a . ..-

554 Chapter. I1 Laboratory E q m h e ~ s

Most of the hardware experiments outlined in this chapter can be supplemented by a cor-
responding software procedure using the Vedog hardware description language (HDL). A
Verilog compiler and simulator are necessary for these supplements. The supplemental ex-
periments have two levels of engagement. In the first, the circuits that are specified in the
hands-on laboratory experiments can Ix described, simulated and v d e d using Verilog and
a simulator. In the second, if a suitable FPGA prototyping bard is available (e.g., see
www.digilentinc.com), the hardware experiments can be done by synthesizing the Verilog de-
scriptions and implementing the circuits in an FPGA Where appropriate, the identity of the in-
dividual (structural) hardware units (e.g., a 4-bit counter) can be preserved by encapsulating
them in separate Verilog mdules whose internal detail is described behaviorally or by a mix-
ture of behavioral and structural modeIs.

Prototyping a circuit with an FPGA requires synthesizing a Verilog description to pmduce
a bit stream that can be downloaded to conffgure the internal resources (e.g., CLBS of a
Xilinx FPGA) and connectivity of the FPGA. Three details require attention: (1) The pins of
the prototyping board are connected to the pins of the FPGA, and the hardware implemen-
tation of the synthesized circuit requires that its input and output signals be associated with
the pins of the prototyping board (this association is made using the synthesis tool provided by
the vendor of the FPGA (such tools are avaiM1e e l) , (2) FPGA prototyping boards have a
clock generator, but it will be necessary, in some cases, to implement a clock divider (in Ver-
ilog) to obtain an intemal clock whose hquency is suitable for the experiment, and (3) inputs
to an FPGA-based circuit can be made using sw3ches and pushbuttwLs located on the promyping
board, but it might be necessary to implement a pulser circuit in software tu mml and ob
serve the activity of a counter or a state machine [see the supplement to Expimeat 1).

Supplement to Experiment 1 (JKtten 11.2)

The functionality of the counters s p d e d in Experiment 1 can be &bed in Venlog and
synthesized for implementation in an FPGA. Note that the circuit shown in Fig. 11.3 uses a
push-button pulser or a clock to cause the count to increment in a circuit built with standard
ICs. A software pulser circuit can be developed to work with a switch on the prototyping
board of an FPGA so that the -tion of the counters can Ix v d e d by visual inspection.

The software pulser has tbe ASM chart shown in Fig. 11 25, where the extend inprrt (Prrsk6)
is obtained from a mechanical switch or pushbuttun This circuit assem Start for one cycIe of the
clock and then waits for the switch to be opened (or the pushbutton to be released) ta ensure that
each action of the switch or pwhbuttm will produce only one pulse of Start. If the wunter, or a
state machine, is in the reset state (SS&) when the switch is closed, the pulse will lam& the
~vityof~muntermstrrtemachine.Itwillbenecessarytoopea~swi~(ok~~push-
bum) before Start can be rmmkcl Using the wftwm pulses will allow each vdue of the
count to be observed. If necessary, a simple synchmnizer circuit can be used with Pushed.

The various logic gates and their propagation delays were introduced in the hardware ex@-
ment. In Section 3.10, a simple circuit with gate delays was investigated. As an ~ u c t i o n

reset-b

FIGURE 1 1 .U
Pulser c i ~ u l t for FPGA implementation of Experiment 1

- . A .- ...

to the laboratory Verilog program, compile the circuit described in HDL Example 3 3 and then
run the simulator to verify the waveforms shown in Fig. 3 -38.

Assign the following delays to the exclusive-OR circuit shown in Fig. 3.32(a): 10 ns for an
inverter, 20 ns for an AND gate, md 30 us for an OR gate. The input of the circuit goes from
xy = Ooto ny = 01.

(a) Determine the signals at the output of each gate from t = 0 to t = 50 ns.
(3) Write the HDL description of the circuit including the delays.
(c) Write a stimulus module (similar to HDLExample 3.3) and simulate the cirmit to verify

the answer in part (a).

(d) Implement the circuit with an FPGA and test it^ upmion.

Supplement to Experiment 4 (Section 11.5)

The operation of a combinational circuit is verified by de lpd 4- it
with the truth table for the circuit. HDL Example 4.10 (Sectioa 112) b-s tbt
dure for obtaining the truth table of a combinational M bg -it

(a) In order to get acquainted with this pmdure, cm@k rd-EI%-klO
and check the output mth table. - ' I .

@) In Experiment 4, you designd a majority logic circuit. Write the HDL gate-level de-
scription of the majdty logic c h i t togdm with a stimulus for displaying tht tndh table.
Compile and simdate the circuit and check &he output response.

(c) Implement che majority logic d t units an FPGA and resr its opedon.

This experiment deals with rode conversioa A B ~ ~ c e s 3 converter was d-A in
Section 4.4. Use the d t of h design to chock it with an HDL simulator.

(a) Write an HDL gate-level dcmiption of the circuit shown in Fig. 4.4.

(b) Write a dataflow ckaiptim using the Bwlm exprasshs listed in Fig. 4.3.

(c) Write an HDL behaviord dcmiption of a BCD-to-excess-3 converter

(dl Write a test bench to simulate aad test the BCD-t-s -3 cmvater circuit in order to
verify the truth table. Check all three circuits.

(e) Implement the behavioral description with an FPGAand test the operation of the circuit.

A faur-bit adder-subtractm is developed in this experiment. AP adder--submcm circuit is also
developed in Section 4.5.

(a) Write the HDL behavioral description of the 7483 four-bit adder.

(b) Write a behavioral descripbiop of the adder-subtractor circuit shown in Fig. 11.1 1.

(c> Write the HDL h i e d c a l dmxiption ofthe four-bii de+&hmr shown in Fig. 4.13
(including V). This can be done by inatautiating a modified version of the forrr-bit adder
described in HDL Example 4.2 (Section 4.12).

(d) Write an HDL test bench to simulate and test the circuits of part (c). Check a d verify
the values that cause an overflow with V = 1.

(e) Implement the circuit of part (c) with m FPGA and test its opration.

The edptrigged D fipflop 7474 is shown in Fig. 11.13. The flip-flop has a s m a w s p
set and clear inputs.

(a) Write an HDL behavioral description d the 7474 D flipflop, using oaly the Q output.
(Note that when Preset = 0, Q ~ [K S to 1, and when Preset = 1 and Clear = 0, Q goes
to 0. Thus, Preset takes pzdence over Clear.)

@) Write au HDL behavioral description of the 7474 D flipflop, using both outputs. Label
the second output mot, and note that this is not always the complement of Q. (When
Preset = Clear = 0, both Q and Q ~ o t go to I.)

S M i m 11.20 Veribg HDL $im,dation Experiments

In this hardware experiment, you are asked to design and test a sequential circuit whase state
diagram is given by Fig. f 1.14. This is a Mealy model sequential circuit similar to the one
described in HDL Example 5 5 (Section 5.6).

(a) Write the HDL description of the state diagram of Fig. 1 1.14.
(b) Write the HDL structural description of the sequential circuit obtained from the &sign.

(This is similar ta HDL Example 5.7 in Section 5.6.)
(c) Figure 11.24(c) (Sectian 11.18) shows a control state diagram, Write the HDL descrip-

tion of the state diagram, using the one-hot binary assignment (see Table 5.9 in Section
5,7) and four outputs--To, T I , T z , and T 3 , where To asserts if the state is 4'b0001, T I as-
serts if the state is 4'b0010, etc.

(d) Write a behavioral model af the datapath unit, and verify that the interconnected conirol
unit and datapath unit operate correctly.

(e) Implement the integrated circuit with an FPGA and test its operation.

Supplement to Experiment 10 (Section 1 1 1)
The synchronous counter with parallel load IC type 74 16 1 is shown in Fig, 11.15. This circuit is
sunilar to the one described in HDL Example 6,3 (Section 6.61, with two exceptions: The load input
is enabled when equal to 0, and there are two inputs (P and T) that control the count. Write the HDL
description of the 74161 IC. Implement h e counter with an FPGA and test its operation.

Supplement to Experiment 1 1 (Section 1 1.12)

A bidirectional shift regster with parallel load is designed in this experiment by using the
74195 and 74157 IC types.

(a) Write the HDL description of the 741 95 shift register. Assume that inputs J and are con-
nected together to form the serial input.

(b) Write the HDL description of the 74 157 multiplexer,
(c) Obtain the HDL description of the four-bit bidirectional shift register h t bas been &-

signed in this experiment. (1) Write the smctaral descriptim by ' -
" " g the Cwo I&

and specifying their interconnection, and (2) write the b e h a d d tbe cir-
cuit, using the function table that is derived in this ~ES@ mpiukm~

(d) Implement the circuit with an FPGA and test its o p m t i m

Supplement to Experiment 13 (Scctlon 1 1.14)

This experiment investigates the operation of a r a u d o m - n .q~r a
memory is described in HDL is explained in Section 7.2 in w- d - B M m 7.1.

(a) Write the HDL description of IC type 741 89 IUM, shown in Fig. 11.18.

558 Chapter 11 hbontory Exprhmb

(b) Tat the operation of the memory by writing a s t i m u h ~ ~ program that stores b i i 3 in
&ss 0 and binary 1 in &es 14. Then d the stored numb from the two
to check whether the numbers were stored comctly.

(c) Xmplcment the RAM with an FPGA and t ~ s t its operation.

(a) Write the HDL behavioral -on of the 74194 bidirectional shift register with par-
allel load shown in Fig. 11.19,

(b) Implement the shift register with an FPGA and test its e o n .

A parallel adder with an accumulator register and a memory unit is shown in the block dia-
gram of Fig. 11.23. Write the structural description of the circuit specified by the block
d i a m The HDL structural description of h i s circuit can be obtained by instanthing the
various components. An example of a s m d description of a design can be f d in HDL
Example 8.4 in Section 8.6. First, it is necessary to write the behavioral description of each
component. Use counter 74161 instead of 7493, and substitute the D flipflop 7474 instead
of the JK flip-flop 7476. The block diagram of the various components can be found from the
list in Table 11.1. Write a test bench fm each model, and then write a test bench to verify the
entire de.sign. Implement the circuit with an FWA and test its operation.

Tbe block diagram of a few-bit binary multiplier is shown in Fig. 1 1.24. The multiplier can be
described in one of two ways: (1) by using the register transfer level statements listed in part
@) of the figure or (2) by using the block diagram shown in pan (a) of the QUE. The de-
scription of the multiplier in terms of the register transfer level af format is h o d out in
HDL Example 8.5 (Section 8.7).

(a) Use the integrated circuit mnpmnts specified in the b c k diagram to write the HDL
structural description of the binary multiplier. The structural description is obtained by
using the module description of each component and then instantiating dl h e compwents
to show how they are in- (See MWI 8 3 for m exampk) The HDL de-
scriptions of the components may be available f h m the solutio~ls to previous experi-
ments. The 7483 is described with a solution to Experiment 7(a), the 7474 with
Experiment 8(a), the 74162 with Expiment 10, and the 74194 with Experiment 14.
The description of the control is available from a solution to Experiment 9(c). Be sure
to verify each structural unit before atkern- to verify the multiplier.

(b) Impiement the binary multiplier with an FPGA. Use h e pulser &mibed in rhe supple-
ment to Experiment 1.

Chapter 12

Standard Graphic Symbols

12.1 R E C T A N G U L A R - S H A P E S Y M B O L S

Digital components such as gates, decoders, multiplexers, and registers are available com-
mercially in integrated circuits and ue classified as SSI or MSI circuits. Standard graphic sym-
bols have been hveloped for these and other components so that the user can recognize each
function from the unique graphic symbol assigned to it, This standard, known as ANSVIEEE
Std. 9 1 - 1984, has been approved by industry, government, and professional organizations and
is consistent with international standards.

The standard uses a rectangular-shape outline to represent each particular logic function.
Within the outline, there is a general qualifying symbol denoting the logical operation per-
formed by the unit. For example, the general qualifying symbol for a multiplexer is MUX. The
size of the outline is arbitrary and can be either a square or a rectangular shap with m arbi-
trary length-width ratio. Input lines are placed on the left and output lines are placed on tbe rigk
If the direction of signal flow is reversed, it must be indicated by amws.

The rectangular-shape graphic symhls for SSI gates are shown in Fig. 12 1. The pualifying
symbol for the AND gate is the ampersand (&I. The OR gate has h qualifying symbolthat k+
ignates great.terthanorequalto 1,indicatingthatatleastoneinpPtmastk~fmtka#mt
to be active. The symbol for the buffer gate is 1. showing hat& -iqpllC L w ' I b e a -
clusive-OR symbol designates tbe fzathatdy cm ingrrtmwtberriRbPrtkqmbc-
tive. The inclusion of the logic ntgaih small c k k in tbe ollrpll -e ID W
complement values. Although h e -- sgmbolt e h b J P r A . L *
standard also recognizes the dis-vbshspc s y d d s h lb pllni& 25-

An example of an MSI standard graphic symbol is tb v r d d a m
Fig. 12.2, The qualifying symbol formaddais - G n a k W - m f m
the arithmetic operands are P and Q. 'Ihe bit-& e - w d m ad

a

AND

NAND

p
r(',# h! A,.:

XOR

the sum output are the khd equivalents of the weights of the bits to the power of 2. Thus,
the input labeled 3 corresponds to the value of z3 = 8. The input carry is &sigm&d by CI
and the output carry by CO. When the digital component represented by the outline is also a
commercial integrated circuit, it is customary to write the IC pin number along each input and
output. Thus, 1C type 7483 is a fouf-bit adder with look-ahad a n y , It is enclod in a pack-
age with 16 pias. The pin numbers for the nine inputs and five outputs are shown in Fig. 12.2.
The other two pies are for the power supply.

4ectlon 121 Rsctangular-Shape Symbols 561

Before introducing the graphic symbols of other components, it is necessary to review some
terminology. As mentioned in Section 2.8, a positive-logic system defines the more positive of
two signal levels (designated by H) as logic 1 and the more negative signal level (designated
by L) ELS logic 0. Negative logic assumes the opposite assignment. A third alternative is to em-
ploy a mixed-logic convention, where the signals are considered entirely in terms of their H
and L values. At any point in the circuit, the user is allowed to define the logic polarity by as-
signing logic 1 to either the H or L signal. The mixed-logic notation uses a small right-angle-
triangle graphic symbol to designate a negative-logic polarity at any input or output terminal.
(See Fig. 2.10(f),)

Integrated-circuit manufacturers specify the operation of integrated circuits in terms of H
and L signals. When an input or output is considered in terms of positive logic, it is defined as
active high. When it is considered in terms of negative logic, it is defined as active low.
Active-low inputs or outputs are recognized by the presence of the small-triangle polarity-
indicator symbol. When positive logic is used exclusively throughout the entire system, the
small-triangle polarity symbol is equivalent to the small circle that designates negation. In this
book, we have assumed positive logic throughout and employed the small circle when draw-
ing Iogic diagrams. When an input or output line dots not include the small circle, we define
it to be active if it is logic 1. An input or output that includes the small-circle symbol is con-
sidered active if it is in the logic-0 state. However, we will use the small-triangle polarity sym-
bol to indicate active-low assignment in all drawings that represent standard diagrams. This will
c d o m with integrated-circuit data books, where the polarity symbol is usually employed. Note
that the h o r n four gates in Fig. 12.1 could have been drawn with a smdl triangIe in the out-
put lines instead of a small circle.

Another example of a graphic symbol for an MSI circuit is shown in Fig. 12.3. This is a
2-to-4-line decoder representing one-half of IC type 74155. Inputs are on the left and outputs
on the right. The identifying symbol X / Y indicates that the circuit converts from code X to code
Y. Data inputs A and B are assigned binary weights 1 and 2 equivalent to 2' and 2', respectively.
The outputs are assigned numbers h m 0 to 3, corresponding to outputs Do through D3, re-
spectively. The decoder has one active-low input El and one active-high input E;. These two
inputs go through an internal AND gate to enable the decoder. The output of the AND gate is
labeled EN (enable) and is activated when E, is at a low-level state and E2 at a high-level state.

F IGWE 1
Standard

2 3

graph k symbol for a b W krrvb [-Qt~-741*~

12 .2 Q U A L I F Y I N G SYMBOLS

The IEEE standard graphic symbols for logic fundons provide a list of qualifying symbols to
be used in conjunction with the outline. A qualifying symbol is added to the basic outhe to
designate the o v e d logic characteristics of h e element or the physical characteristics of an
input or output. Table 12.1 list8 some of the general q-g symbo1s specified in the stan-
dard. A general qualifying symbol defines the basic function performed by the device repre-
sented in the diagram. It is placed near the top center position of the lectangular-shape outline.
Tbe general qualtfying symbols for the gates, decder, and adder were shown in previous di-
agmms. The other symbols are self-explanatory and will be used later in diagrams represent-
ing the corresponding digital elements.

Table 12.1
C e m d QudHphg Sprabcls

Symbol

& AND gate or W o n
3 1 OR gate or function
1 B d e r gate m inverter

= 1 Exclusive-OR gate or function
2k Even function or even parity element

2k + 1 Odd fundon or odd parity element
X N Cak, decoder, or & converter

MtJX Multiplexer
D m DemuEpher

Z Addm
n Multiplier

C O W Magnitude cumparator
ALU Aridmetic logic unit
SRG Shift register
CTR Counter

RCTR Ripple counter
ROM Read-only memory
RAM Random-acms memory

SomeoftbequalifyingsymboIs~witbinpuf~atadoupnrts~sbowainFig. 12.4. Sym-
bols assaciated with inputs are placed on the left side of the column labeled gmbol. Symbols as-
sociated with outputs are placed on the right side of the colnmn. The active-low input or wtpm
symbl is the polarity indicator. As mentioned @ously, it is equivalent to the logic negation
when positive logic is d. The dynamic input is asmded wil& the clock mput in nipflop
circuits. It indicates thaI the input is active on a kmition from a low-&high-level si@. 'Ihe
--state output has a tbkd bigbimpedance which bas no logic s-. When dx cir-
cuit is enabled, the output is in the n d 0 or 1 logic state, but when the &wit is disabled, the
-state output is in a high-hpechw state. Tbis state is equivalent to an open c h i t .

The open-collector output bas one state that exhibits a high-impedance condition. An
externally connected resistor is sometimes requited in order to p d w e the proper logic level.

Symbol

Section 12.2 Qualifying Symbolr, 563

Description

El-

Active-low input or output

Logic negation input or output

Dynamic indicator input

Three-state output (see Fig. 10.16)

Open-collector output (sea Fig. 10.12)

Output with special amplification

Enable input

Data input to a storage elemant

Flip-flop inputs

Shift right

Shift left

Chapter 12 Standard Craphk SymWs

The diamond-shape symbl may have a bar on top [for high type) or on the bottom (for low
type). The high or low type specifies the logic level when the output is not in h e high--
state. For example, TTL-type integrated circuits have special owuts called openallector
outputs, These outputs are r e c o w by a diamond-shape symbol with a bar under it, This in-
Wthattheoutputcanbe*haw--smcgioah-kvelw.-used
as part of a distribution function, two m m open<ollector NAND gates w h c o d to
a common resistor perform a positive-logic AND function or a negativelogic OR function.

The output with special anpzitication is used in gates tbat provide special driving cqbil-
ities. Such gates are employed in mqmawts such as c l d d r i m or W e n t e d transmit-
ters. The EN symbol designates an enable inpw It hes the && of enabling dl outputs when
it is active. When the input madad wid^ EN is inactive, all outputs am disabled- The symbols
for fip-flop inputs have the usud naeaniag. ' h e D input is also associated with other storage
elements such as memory inpla.

The symbois for shift right and shift left are mows pointing to the right or the left, respec-
tively. The symbols for count-up d mmt4own countew are the plus and h n s symbols, re-
spectively. An output designated by CT = 15 will be active wben the contents of the register
reach the binary count of 15. When nonstandard information is shown inside the outline, it is
enclosed in square brackets [like this].

12.3 DEPENDENCY NOTATION

The most hpormt aspect of tbe standard logic sydmls is the dependency notation. Depen-
dency notation is used to provide the means of denociag the onsh ship between different in-
puts or outputs without actually showing all the elements and interconnections between them.
We will first hmonstrate the d e p h m y nomion with an example of the AND dependency
and then define all the other symbols aswhkd with this notation.

The AND dependency is represented with the Mkr G followed by a nun&, Any input or out-
putinadiagram t b a t i s l a b e l e d w i t h t h e ~ ~ w i t h G i s & M m b e A N D e d ~
it. F o r e x r u n p k , i f o n e h p u t h h & ~ ~ ~ ~ l G I de input i sEBbe1ed withthe
lwmber 1, dm the two inputs labeled G 1 d 1 am mndmd to be ANDed together intmdy.
AnexampleofANDQependencyissbwnhFig. 12.5.In(a),wehavea~ofagraphic

symbol with two AND dependency l a m , G 1 and G2. There are two inputs IakM with the
number 1 and one input labeled with the namber 2. The equivalent htexprctatiun is shown in
p a r t (b ~ o f t h e f i g u r e . l n p u t X ~ w i t h G 1 iscwsidcdtobeANklwitbinputsAand
B, which are labeled with a 1. S h h i y , input Y is ANDed with input C to conform with the
depen&ncy bween G 2 and 2.

The standard defines 10 other dependencies. Each ~~y is denoted by s letter sym-
bol (except EN). The letttr apprs at the input or output and is followed by a number. Each
i n p u t o r w t p u t a f f e c t e d b y ~ t ~ y i s W e d ~ ~ ~ ~ m b e r . T h e 1 1 d q d -
encies and their corresponding letter bignation are as follows:

G Denotes au AND (gate) relati-
V Denotes an OR relationship

(a) Bbck with G1 and G2

. -
F ~ U R E 12.5
Example of G (AND) dependency

Section 1 2 3 Dependency Notation 565

N Denotes a negate (exclusive-OR) relationship
EN Specifies an enable action
C Identifies a control dependency
S Specifies a setting action
R Specifies a resetting action

M Identifies a mode dependency

A Identifies an address dependency
Z Indicates an internal interconnectian
X Indicates a controlled transmission

The V and N dependencies are used to denote the B m h d OR md
sive-OR similar to the G that &naes the Bmleau AND. TIE EN I-T h lo tbt
quallfyiig symbol EN except that a number follows it (fa e*Pmple, EH2) lbe
marked with that number are disabled wben the hpt *EN i r e
The control dependency C is used to identify a c h k m 8 d &I h-

dicate which input is controlled by it The set S and R &, * - rt d b h-
ternal lode states of an SR flipflop. The C, S, and R depe ' '4 1 ~ l e m Sedim 125

in conjunctiw with the flip-flop c h i t . Tbe m& M dapendeney is usod to identify inputs that
selscttbe&of~maftheunit.Themade~is~hStction 12.6in
oomjmdm with reregisters and countus. Tbt ddms A d p m k a y is uFsd to idenlify the ddms
input of a mamy. It is M u c e d in Section 12.8 in mjlmction with the mtmoay unit.

The Z dependency is used to indicate inkrcomections inside the unit. It signifies the exis-
tence of internal logic codm between input% outputs, internal inputs, aad inkmd oat-
puts, in any ambination. The X h p d e n q is used to indicate the cmtmBed transhim path
in a CMOS tcaasmission gate.

12.4 S Y M B O L S FOR COMBINATIONAL ELEMENTS

T h e ~ 1 e s i n t h i s ~ 0 1 ~ m d ~ ~ o f t b i P ~ i l l ~ t b e u s e o f t b e ~ h ~
mthg various digital c o q m m t s withgraphic symbds. Theexamples dmmwak actual com-
~ i n t e ~ ~ t S w i t h k p b n ~ b g s i n c l ~ i t l t f i e i n p \ m s a n d ~ h d o o t o f t b t I C s
~ t e d i n ~ c h a p t e r a r t i n c l u d c d w i t h ~ ~ ~ t f o u t l i n e d i n Q x a p t c r I I .

The gmphic symbols for the adder and decwkr m shown in W o n 12.2. IC type 74155
can be connected as a 3 X 8 d e d m , ap &own in Fig. 12.6. (The truth tabIe of this decalex is
shown h Fig. 11.7.) Them are two C and two G inputs in the IC. Each pair must IE commd
together as shown in the diagram. Tbe enabIe input is active when in the Iow-level state. lh
outputs are all active low. The inputs rrre a & g d binary 1,2, and 4, equivalent to 2O.
2l, and z2, respectively. The outputt as- numbers fnrm 0 to 7, The sum of the weights
of the inputs determiacs the output that is wive. Thus, if the two hput lhes with weigh 1
and 4 we acliwted, the total weight is 1 4- 4 = 5 and output 5 is activated. Ofamme, tk EN
input must be activated for my output to be active.

T l a e ~ i s a ~ i a l c a s e d a ~ g e n e r a l c o m p o n e a t ~ t o ~ a ~ A&isa
device thatm&vcsan@ut binarycodeonanumberofhinputsand~adiffeFentbinarycode
on a numbes of outputs. Instead of using tbs quddyhg symbol X/Y, tk &mu be qmiW by

Section 12.4 Symbols for Cornbinatbnal Elements

the code name. For example, the 3-to-E-line deccdec &Fig, 12.6 can be symbolized with lhe name
B.!N/OCT since the circuit converts a 3-bit bhmynumber into 8 octal values, 0 through 7.

Before showing the graphic symbol for the multiplexer, it is necessary to show a variation
of the AND dependency. The AND dependency is sometimes represented by a shorthand no-
tation like G! . This symbol stands for eight AND dependency symbols from0 tb 7 as follows:

GO, G l , G2, G3, G4, G5, G 6 , G7

At any given time, only one out of the eight AND gates can be active. The active AND gate is
determined from the inputs associated with the G symbol. Theseinputs are marked with weights
equal to the powers of 2. For the eight AND gates just listed, the weights are 0, 1, and 2, cor-
responding to the numbers 2', 2', and 2', respectivety. The AND gate that is active at any given
time is determined from the sum of the weights of the active inputs. Thus, if inputs 0 and 2 are
active, then the AND gate that is active has the number 2' + 22 = 5. This makes G 5 active
and the other seven AND gates inactive.

The standard graphic symbol for a 8 X 1 multiplexer is shown in Fig, 12.7(a). The quali-
fying symbol MUX identifies the &vice as a multiplexer, The symbols inside the block are part
of the standard notation, but the symbols marked outside are user-&fined symbols. The func-
tion table of the 74155 1 IC can be found in Fig, 11 -9, The AND dependency is marked with
G and is associated with the inputs enclosed in brackets. These inputs have weights of 0, 1,

FIGURE 127
Graphic syrnb61s fot multiplexeB

and 2. They are acmdly what we have called th selection inputs. TIae ught data inputs art
m k a d with numbers from 0 to 7. The net weight of the active inputs associated with tbe G
symbol specifies the numhr in the data input tbat is active. For example, if selecrlon hpuw
CBA = 110, then inputs 1 and 2 a s d a d with G are active. 'Lbis gives a numerical value for
t h e ~ ~ ~ d e p m k n c y o f 2 ~ + 2' = 6,which&G6sctive.S~G6is~withdata
input number 6, it makes this input active. Thus, the output will be equal to data input D6 p
vided that the enable input is active.

Fig. 12,7@) represents thc quadruple 2 X 1 multiplexer IC type 74157 whose function cable
is listed in Fig. 11.17. The enable and selection inputs are common to all four multipIexm.
This is indicateti in the standard n d w by the ipdented box at the top of the diagram, which
represents a common confml MocR The inputs to a common control block conml all lower
d o n s of the diagram. me common enable input EN is active when in the low-level state.
The AND dependency, G 1, ddmnka wbich input is active in each multiplexer d o n . When
G1 = ~ , h ~ i n ~ t s r n ~ w i t b i ~ a c t i v e . ~ ~ l = 1,theBinputsmaakedwith 1
are active. The active inputs ate applied to the outputs if EN is active. Note that
the input symbols i and 1 an marked in the ap=only instead of repeating them in
e ~ h section.

12.5 S Y M B O L S FOR FLIP-FLOPS

The standard grapbic symbols for diffamt types of flip-flops are shown in Fig. 12.8. A flip
flop is represented by a m m g u b s h a p d block with inputs on the left and ouputs on the right.
One output designates the n o d state of the flip- and the other output with a small&k
negation symbol (or polarity indicator) designates the complemeot output. The graphic sym-
bols distinguish between three types of flipfIop9: the D latch whose internal constrrrction is
shown in Fig. 6.5; the m a s m 4 ~ t flipflop, shown in Fig, 6.9; and the edge-triggered flip
flop, in-uced in fig. 6.12. The graphic symbol for the D lab& or D flipfIop has inputs D
and C indicated inside the block. The graphic symbol for the JK flipflop has inputs J , K, a d
C inside. The natation C 1, l D, 1 J , and 1 K are examples of miml dtpendency. The input in
C 1 controls input 1 D in a D flipflop and inputs 1 J and 1 K in a JK flipflop.
The D latch has no other symbols beaides the 1 D and C 1 inputs. The edge-triggered flip-

flop has an arrowhead-shaped symbol in front of the conbol dependency C 1 to designate a
dynamic input. The dynamic indicator symbol denotes that the flip-flop responds to the pos-
itive-edge transition of the inpat clwk pulses. A small circle outside the block dong the
dynamic indicator designates a n e g a t i d g t transition for triggering the flip-flop. The
master-slave is considered to be a pukc-triggemd flip-flop mi is indicated as such with an
upside-down L symbol in front of tbe outputs. This is to show that tbe output signal changes
on the f d h g edge of the pulse. Note tbat the master-slave ftipflop is drawn witbout the dy-
namic indicator.

Flipflops available in integmW4rmit padages provide special inputs for setting and
iesettiog the flipflop rsydmously. inputs me usually d e d d k t set and direct reset.
They affect ?be output on the negative Ievel of the signal without the need of a clock. The
graphic symbol of a rnaster+lave JK flipflop with W t set and restt is shown in Fig. I2.91a).

LA-
D latch

FIGURE 1L8
st-d graphk -*flip-

(a) One-half 7476 JK atpflop

FIGURE 12.9
IC flip-flops with direct set and =set

The no&tions C 1 , 1 J , and 1 K represent -1 depdemy, showing that the clmk input at
C1mmJsiaputs lJmdlK.SdRhrrytwlhhtoftbe~an~tberefwe,~yare
not mtrolEed by the clock atC1. TheS and Rinputs haveasmallcircledong~ input tiws
to indicate dm they arc active w h in the logid) Icvel. 'he function table for the 7476 flip
flopisshownin Fig. 11.12.

The graphic symbol for a positive-edgetrigged D flip-flop with direct set and reset is
shown iP Fig. 12.9@). The ~ ~ g e tm9itim ofthe clmk at input C 1 controls input 1 D.
The S and R inputs are independat of the cl& 'IMs is IC type 7474, whose function mbk is
listed in Fig. 11.13.

12.6 S Y M B O L S F 0 . R REGISTERS

The standad graphic symbol for a register is equivalent to the symbol used for a group of flip
flops with a common clock input. Fig. 12.10 shows the standid graphic symbol of IC type
74175, consisting of four D flipflops with aommoo clock and clear mputs. The clmk input C 1
and the clear input R appear in thc common mtroI block. The inputs to the common wnmI
block arc connected to each dthe elements in the lower sections of the diagram. The notation
C 1 is the control dependency that mnmls dl thF 1 D inputs. 'Ihw, sacb flipflop is triggered

Sectlon 12.6 Symbols for Registers 571

by the common clock input. The dynamic input symbol associated with C 1 indicates that the
flip-flops are triggered on the positive edge of the input clock. The common R input resets all
flipflops when its input is at a low-level state, The 1 D symbol is placed only once in the upper
section instead of repeating it in each section. The complement outputs of the flip-flops in this
diagram are marked with the polarity symbol rather than the negation symbol.
The standard graphic symbol for a shift register with pardlel load is shown in Fig. 12.11.

This is IC type 74195, whose function table can be found in Fig. 11.16. The qualifying sym-
bol for a shift register is SRG followed by a number that designates the number of stages. Thus,
SRG 4 denotes a four-bit shift register. The common control block has two mode dependencies,
M 1 and M 2, for the sbift and load operations, respectively. Note that the IC has a single input
labeled SH/LD (shimoad), which is split into two lines to show the two modes. M 1 is active
when the SH/LD input is high and M 2 is active when the SH/LD input is low. M 2 is recog-
nized as active low from the polarity indicator along its input line. Note the convention in this
symbology: We must recognize that a single input actually exists in pin 9, but it is split into two
parts in order to assign to it the two modes, M 1 and M 2. The control dependency C 3 is for
the clock input. The dynamic symbol along the C3 input indicates that the flipflops trigger on
the positive edge of the clock. The symbol /1 + following C3 indicates that the register shifts
to the right or in the downward direction when mode M 1 is active.

The four sections below the common control block represent the four flip-flops. Flip-flop
QA has three inputs: Two are associated with the serial (shift) operation and one with the

Clock

FIGURE 12.1 1
Graphic symbol for a s h i i register wWI prrr# 1004 E m

Chapter 12 Standard Graphic S p W

padel (load) operation. The d input label 1,33 i n d i m that the 3 input of flip-flop Q A
is active when M 1 (shift) is active and C 3 goes though a ps i the clock transition. Tbc other
serial input with label 1,3K b s a p o l a r i t y s y m b o 1 i n i t s i n p a t l i a e ~ toheom-
pIcm8nt of input K in a JK flipflop. The third input of QA and the inpats of tbe other flipflops
am for the p d e l input h Each input is denoted by the a 1 2,3D. The 2 is for M 2 {load),
and3isforthec1dcC3. Ifhinputinpinrrumber9kinhlowleveI,Ml is&ve,anda
pogitivetrarasitionoftheclock&C3capsesaparalleltransferfromtbefwhputs. Admu&
D,into~fourflipfiop~QA~~QD.Notethattheparallelhput~labelodonly in the
first d second sections. It is assumed to be in hbe other two sections below.

Figure 12.I2shows tbpphicsymbolfortha biditectionalshiftregtgterwith pallel Ioad,
I C t y p e 7 4 1 9 4 . ~ e ~ m t a b l e f o r ~ I C i s ~ i n F i g . 11.19.~commonoonrrolblock
shows an R input for cl~seaing all flip-flops to 0 asynchronously. The mode s e h has two in-
pu~andthemode&p&ncyMmy~binaryvdttesfromOto3. This isiudicatcdbytht
symbol M Q , which stands for^^, MI, ~ 2 , ~3,andissimilarta them tat ion far the^ de-
p d m c y in multiple~ters. The symbol ass- with the clwk is

C4 is the control dependency for ~ I C cl& The /l + symbol indicates that d ~ t register shifts
right (down in this case) when the mode is Ml (s& = 01). The /'2 + symbol indicates that
r h e ~gist~rshi~tsIcPt(upin~ca~e)~n~mode~~~(~,Sp 10).Therigbtandkftdi-
d o n s are obtained when the page is turned 90 degrees counterdockwise.

Clear

so
$3

Qoek

SsrSafinppt

A

B

C

P

Serial-

Section 12.7 Symbols for Counters 573

The sections below the cornmoa control block represent the four flip-flops. The first flip-
flop has a serial input for shift right, denoted by 1,40 (mode M 1, clock C4, input D). The last
flip-flop has a serial input for shift left, denoted by 2 , 4 0 (mode M 2, clock C4, input D). All
four flip-flops have a parallel input denoted by the label 3 , 4 0 (mode M 3, clock C4, input D).
Thus, M 3 (s,s, = 11) is for paralleI load. The remaining mode MO (s ~ s ~ = 00) has no ef-
fect on the outputs because it is not included in the input labels,

1 2 . 7 S Y M B O L S FOR COUNTERS

The standard graphc symbol of a binary ripple counter is shown in Fig. 12.13. The qualifying
symbol for a ripple counter is RCTR. The designation DIV 2 stands for the divide-by-2 circuit
that is obtained from the single flip-flop QA, The DIV 8 designation ia for the divide-by-8
counter obtained from the other three flip-flops. The diagram represents IC type 7493, whose
internal circuit diagram is shown in Fig. 11.2. The common control block has an internaI AND
gate, with inputs R 1 and R2. When both of these inputs are equal to 1, the content of the
counter goes to zero. This is indicated by the symboI CT = 0. Since the count input does not
go to the clock inputs of all flip-flops, it: has no C 1 label and, instead, the symbol t is used to
indicate a count-up operation. The dynamic symbol next to the -k together with the polarity sym-
bol along the input line signify that the count is affected with a negative-edge transition of the
input signal. The bit grouping from 0 to 2 in the output represents values for the weights to the
power of 2. Thus, 0 represents the value of 2' = 1 and 2 represents the value 2' = 4.

The standard graphic symbol for the four-bit counter with parallel load, IC type 74161, is
shown in Fig. 12.14. The qualifying symbol for a synchronous counter is CTR followed by the
symbol DIV 16 (divide by 14), which gives the cycle Iength of the counter. There is a single

FIGURE
Graphic for ripple counter, IC t y p 7493

Chapter 12 Standard traphk Symbols

load input at pin 9 that is split into the two modes, M 1 and M2. M 1 is active when the load
input at pin 9 islow mdM2isactivewbnthe Winputatpin9ishigh. M1 ismagnhd
as active low from the polarity idcator along its input line. The count-tmble inputs use the
G dependencies. G 3 is a s s o c i a with the T input and G 4 with the P input of tht count en-
able, The lahl assaciated with the clwk is

This means that the circuit counts up (the + symhl) when M2, G3, and G4 are active
(load = 1, ENT = 1,andENP = l) a a d b c ~ i n C 5 g o e s ~ ~ a p w i t i w ~ e i o n .
l%s condition is spscified in the function Eatrle of the 74161 listed in Fig. 11-15, The p d k I
inputshavethelabel 1,5D,meaningtfiattheDiap~tsareactivewhenMlisactivefload = 0)
and the dock gms through a psiti* mmitim. Tfse ourput carry is desigaatad by tk label

This is interpreted tomeanmat t h e ~ c a r r y i s active (eqd to 1) ifG3 is active (ENT = 1)
and the content (CT) of the counter is 15 11 11). Note that the outputs have an hvmed
L symbol, indicating that all the flip-flops am of the master4vt type. T$e polarity s-1
in the C 5 input designates an inverted pulse fw Dhe input c W This means that the mas& is
triggered on the negative transition of the clock pulsc and the slave changes state on he
positive d t i o n . Thus, the output changes on the positive mansition of the cimk pulse. It
~ b e l p o t c d ~ I C t y p e 7 4 ~ 1 6 1 ~ w ~ S c h o t t l c y ~) h a s ~
flipflops.

Section Symbol f ~ r W 175

The standard graphic symbol for the random-access memory (RAM) 741 89 is shown in
Fig. 12.15. The numbers 16 X 4 that foUow the qualifying symbol RAM designate the num-
ber of words and the number of bits per word. The common control block is shown with four
address lines and two control inputs. Each bit of the word is shown in a separate section with
an input and output data line. The address dependency A is used to identify the address inputs
of the memory, Data inputs and outputs affected by the address are labeled with the letter A.
The bit puping from 0 through 3 provides the binary address that ranges from A0 through
A 15, The inverted triangle signifies three-state outputs. The polarity symbol specifies the in-
version of the outputs.

The operation of the memory is specified by means of the dependency notation. The
RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and C
(control). Input G 1 is to be considered ANDed with 1 E N and 1C 2 because GI has a 1
after the Ieuer G and the other two have a 1 in their label, The EN dependency is used to
identify an enable input that controls the data outputs. The dependency C 2 co~ltrols the
inputs as indicated by the 2 0 label. Thus, for a write operation, we have the G 1 and 1 C2
dependency (CS = 01, the C 2 and 2 0 dependency (WE = 01, and the A dependency,
which specifies the binary address in the four address inputs. For a read operation, we have
the G 1 and 1 EN dependencies (CS = 0, WE = 1) and the A dependency for the outputs.
The interpretsttion of these dependencies results in the operation of the memory as listed in
the function table of Fig. 1 1.1 8.

1.21 Figure 11.1 shows varicus s m d - d inkgation chub with pin assigumt. Using this in-
f d o n , draw the mmgdar-9haped grepbic symbols for tk 7400.74W. and 7486 ICs.

1 . a Define the followhg in your own words:
(a) Positive and negative logic. @) Active high aud a3ive low.

(c) Polar@ hdicam. (dl D y w n i c ~ .

(t) Dependency notation.

3- Show an example of a graphic symbol hat has the t b ~ BooIeau depep-, V, aad N.
Draw the equivaleat hmptai011.

124 h w t h e g r a p b i c s y m b o l o f a ~ ~ . ~ ~ s i m i l a r t o a d s c o d e r w i r h 4 i n -
puts and 10 outputs.

T;&5 Draw the graphic symbol for a b i - m decader with t h e e~&k inputs, E 1, E 2. and
E3.The~uitisenablcdifEl = 1,E2= O , m d E 3 = O(assumingpusitivelogic).

12.6 Draw the graphic symbol of dual -1-line multiplexers wilh common s e W n inputs and
a epmte enable input for each multip-.

1 Lf Draw the graphic -1 for tbe following flipflop:

(a) N c g a t i d ~ ~ D flipflop. (b) Masm4lave RS flip-flop.
(el Positive-edge-triggraed T flipflop.

1 Draw the graphic symbol of a four-bit register with p d l d load using the label M 1 for the
load input and C2 foa the dock

lXl.0 Explain all the symbols used in the standard graphic d k p m of Fig. 12.12.

121 1 Draw the graphic symbol of an u p b n synchronous binary counter with mode input (for up
or down) and countenable h p t with G dependency. Show tk orrtpu &es for* up cormt
and the down cwnt.

12.1 2 Draw the graphic symbol of a 2% X 1 RAM. Include the symbol for three-state oupts.

IEEE Strmdard Gmplric Synhhfor Logic Fmct iom (ANSUIEBfi Std 91-1984). 1984. New
York WtituI Ofmectrical aad Ekmaia Enghem.
KAMPEL,I.1985.A P m c t i c d I n t m d r r e t i o n r o t h e N e w L o g i c S ~ k &stair BunerwoEtb.
TYIANN, F. A. 1984. mhmuion qf New Logk Symbds. Mas: ' h a s Iwnmms.
7Xe ZTL Data Book, Volume 1.1985. D a l k Texas Itmumen&.

Asynchronous q u e n t i d c b i t ~ (ma)
design 415-416
flow table, 4 W 2 2
fundamental d, 417
haz& 452457

in combinafional circuits, 45-4
defined, 452
detection 4 453
essential, M 7
mplemsntatiw with SR

latches, 4 5 4 4 6
remedy for eliminating, 454
in sequential M t q 454

implementation example, -31
laboratory expimnt, 553
latch excitation table, 430
logic diagram, -37
primitive flow table, 4-35

reductim of, 435-436
race cwditimq 422424
race-free fltate nppirmme.nC 444452

four-row fiow-tabk example, 449-450
multiple-row metbod, 450452
throe-row flow-table example,
447-449

reduction of rsh@ and flow table&
439-444

clowd-cwering condition, 44H46
compatible p a i ~ 443444
implication table and implied state%

-2
maximal compatible 444-M
mergiug of the flow table, 442443

SR latch, 425-427,430431
analysis enample, 428-429
transition table., 4M

stability, 424425
transition tam, 417420,436437
unstable statm:

as-g outputs to, 437439
Aqnchronow sequential I+ 41MM

B
Base, 3-4
BCD 8rM ,21-22
BCD adder, 1W142
block diagram, 141

BCD addition, 10-20
BCD (W d d -1 code, 18-19
BCI3 ripple muntc~ 256-258

logic 257
state dhgram, 256

Behavioral modeling, 163-170,2W-210
BidirBctional shiff register, 251,537,

537-538
with pardel load, 537-538

Binary adder, 133-134
Binary adder-subtractor, 129-U9
binary adder, 133-134
binary ~ubtractor, 136-138
carry propagation, 134136
full &, 131-133
half adder, 13&131
wcrhw, 138-139

Binmy and d d n d mmkm (laboratory
exprimem), 516

BCD c~unt. 517-518
binary wunt, 516-517
cnw 518
cwhwqe display, 517
output pattern, 517418

Binary d, 25
Binary code l,l7-25
h Staadardcodtfw

rnfolmation 3*"rdmge

(Ascn),-
BCD 841,21-22
BCD addition, 19-20
Ba,(biMly+&ddcdmal)

code, 18-19
dedmd-m-2l
error-det- code, 25
Excsw3 Eode. 21-n
Gray W 2x5
a-bit k b a q 17-18
2421 mde, 21-Z!
weIgbd-3

Binary cwntdoarll mmbm, 255
Binary counter witb parallel h i , 262,265

Clear input, 262-264
CLK input, 264
Count inpuk 264
Load input, 2M

Bmary cpunters:
dtfinsd, 253
with padel lad, 534-535
Binary deck011 box, dgomdc $tare

mwhk3 I-1.m
Binarydigit&l
Biaaq logic, 2&31

cMJ=d,m
logic gateq 3&31

Binary multiplier, 142-143
control state dhgmm 6or, 376
HDL desuim 4 382389

datapath unik 382
next- bgic of the cmhdkq 382

laboratory -t. -53
b l m k ~ ~
checking, 552-553
mllw o f ~ 5 ~ 5 5 2
datapath desqp, S 2

OfmniIUl &mk,S52
mul- emnple,5s2

paraw rmdtiplier, behaviornl
buip4i!m*%390

tssting.sm
B h y A, >5

cwversiontooctalnlrmber$9
14-17

w m d 5
-, 14

Bimary operetm, 36
Binary ripple cwnterq 253-256

binargmunt 8cqueace,255 - 253
four-bit, 254

B i n a r y 8 t o r a g e a n d ~ 2 s B
Binary cell, 291-m
Binary mhwtor, 136-138
Binarg w-% 3-4
Bipalar IC mtlsistm 4n
Bipolar jumim ~ O T 0 . 4 7 3
Bipoaar ~ t m :

h c - m i t k r graphid
dma&riatic, 479 . . as4n4nl

cobctor and base amtm@ 478
& current gain, 479
graphid c o l l c c t o r ~

Eharacte* 479
puud down outpus 479
pulledwto-479
satwation region, 479

B i b 1,4,285
Bitwise operatOK& 338
Blaa -t. 112
Blmking wdgmuene 2IW214337
Boole,Gecage,%
BooleaoaWm2g.38

d t k law, 37
~ l k ~ m ~ 3 & 3 9
busit 4143

c a n o n i c a 1 ~ 4 & 5 5
Cmmrsion bttween. 5 2-53

mmmmalive la-37
-36-44
distr iLaw.37
d d i @ 41

37-38
iden* eknbmt, 37
in- 37
a d b g i c ~ 3 [M 1 , 3 & 3 9
mMipdation0£,4&47

Control unit, 345-344
Contdem, 335
count opelation qims , 334
Counters:

binarg mmtdown corn- 255
dcfincd, 242,253
divide-by -N aunter, 265
HDL far. -76
Johnson, 26%269
laboratory experiment, 533435

binary counter with prdd
load, -535

decimal cannter, 534
ripple muter, 534
s y n c h m m owatcr, 534

ring, 267-268
ripple, 253-258
BCD, 256258
bin*, 2534%

symbols, 572-574
w-2-
with unwed state&-

Critical race, 422423
avoiding, 447
examples ot 423

Crosspoint, 300
Cycle t"m, memory, 289
Cycles 423-424
Cyclic behavior, m,w

edge-wsitive, 3d4

as example of a sequmdal machine,
UlP212

D latch (tramparent latch), 187-188
Darlington pair, 4-1
Data selector, W
Dataflow modeling, 165-167
DaraIn, 288
DarrmON1,2SS
Datapnth unit, 345-346
Data-pmmiq pa* 34S346
De current gain, 479
Debounce cimii, 431
Decade counter, 256
Dtdma! adder, 139-142
BCD adder, 140-142

Decimal aritlm&,20-21

Decimal eouater, 534
Ddwabion, 110
Dccdem, 1&149,S66

o o m ~ d o n a t ~
impltmeutah~, 149

rr-mm-liae 146
thwa-migbt* 146

truth table for, 147
tw~t+fwr-he, with embh input,

147-148
Delay Cmnol opatw, aOS
DeMmp's theorem 43,474
Demult-

Mnd, 148
with enable input, 147-148

D e p e P d e a c y ~ 5 6 r C 5 6 6
Dosign:

a$ynchmous sequential c h i &
43-, 457463

logic &gml,46143
mer$ngofthefhwtaWe,~
~ w ~ ~ m 4 5 8
-th& 457
StaM-f-
transitiontaMc.M1

c m ~ a l cimita, 523
w r t h f o m p l e x ~ b l e l o g i c

dcvics (CPLD), 315
w i t h D m Z I 8
digilal-345
e lae tma ie~au tmat ioo

@DA),68
with 3dd-propmmble gate array

(FWA), 315
multiplexera 3-1

testing the onex counter, 4 0 4 1
me-hot design (one %ptlop per state),

380382
with w* array logic PAL),

309,311
*h401-403

~ ~ e r r e ~ 4 0 3
re~tmsferemupk,352-361

d g o f i ~ ~ ~
dcmiption, 362

behsvlmal &s+ioq 361
m b o e ~ 3 M L 3 6 1
wnboutr and daEapsth badware

d&p, 357-35%
data@ anit. 352
HDL &m@i[w @ 361-370
re- haagfer represen- 358
RTL 361-365
rquence of opah&S
state table, 358-360

aPtlcmrrtlde&ptiaa341.36#70
sVstemchm3s355
~ t h # ~ ~ p t i w .

365366
pimips--=

at re* mdcr l e d (RTL). 161,
334414

qachmms sequential logic. 161
topdown. 161

X p entry, 107
=C-C*-

~ ~ ~ 2 2 s W
-88t,1
Di&l Ewnputem 1-3

B=d-pwP=, 2
Di@l WpRd M t 4 471-510

b i p h lmdstm:
hc+mitter graphid

cbaractt*479
EharrtcPeriaier d4?748l
follodw mi base currents478
&mmatgain,479
g t a p h i c a l ~ ~ m i t t e r

charadcristiw479
pdw down output,479
puled out output 479
saturatiw re-479
w e d 4 7 7

CPlIOSW " gate ciffuita
sol-SW

~ d r c u i t o L S O l
bilatcd dtdI,rnl-5Qa - to inwrrer, 501-WZ
edusiw-OR gate, cmmmdon
4-

gad D latch mmluchl
oc 503-5[#

m a s t m r 4 a w D ~ c o m m l i o n
oZ5wms

' ' x u
-tarp MQS (CMOS) chi@

4 M 1
d l a r a c t e r i s t i g ~ ~ l
CMOS digital logic family, 501
CMOSt ' 'mlgatecircults,

W l S W
~ o t 4 9 @ - 5 0 0
fabflah-501
Brapbicsymbols.~
bv&u,4!M
m p u t NOR gatt, 500

& * 4 M
DTL digital logic fami@
d* oc 482-483
fPllwm

Index

NAND gate, 482
power dbipat iw of a DTL gate, 483

~mitteMOUpled lode (ECL) ,49H95
basic circuit, 493
dcfm.4 45r3
external WifBd connection of two OR

outpub 4%
graphic symw 495
internal temperature- and voltage-

compensated b L circuit, 493
internal wired connection of two OR

outputs, 495
propagation delay, 4-95

metaIsxide semiconductor (MOS),
49-

advantape oc 497
basic s m t u r e oc 495
channel+ 495
depletion mode, 4%
m d channel, 4%
drain, 49s
enhamment mode, 4%
gate, 495
gr*c symbol& 4%
m-channtl MOS, 4 9 6 4 7
p-channel MOS, 4 9 6 4 7
sowce, 495-7496
t y p oc 496

RTLdigitd logic family:
analysi~ of, 481
h-out, 481442
NOR gate, 481

writ&-level modeling, 505-508
b d o n gatc, 565W

bamhtor4amistor logic, 484-493
advamd low-power Schottky TTL

gate, 465
ch~racterktb (table), 484
fast TZZ family, 485
h i g h - p d TTL gate, 48.4485
low-power Schottky TTL, 485
low-power ?TL gate, 484
opcn-collccttrr output gate, 485488
W a l , 484
propagabon delay, 484
Schottky TTL gate, 4%4485,489491
s-M, 484
three-state gate, 491493
totem-pole output, 488-489

Wtal logic CirEuitg 27-28
Digital logic pt8g 5 7 6 2

excIUaiv0-OR gath 59
extension to multiple inpuh 5941
integrated CiTcuita, 6365

computer-aided design, 64-65

digital logic families G4-4
levels of integration, 63

laboratory experiment, 51SS20
NAND circuit, 520
propagation delay, 51%520
truth tables, 519
universal NAND gate, 520
waveforms, 519

NAND function, 59
positive and mgative logic, 61

Digital logic trainers 511-512
Digital system& 1-3

dehed, 2,334
logic design oE, 345
relationship between control logic and

data-procw3ing operatiom in,
S 3 4 6

Digital versatile disk (DVD), 2
Diminished radix, 10
Diminighed radix mmplement, 10
Diodes, 47-

symbol and characteristic, 480
Direct (dedicated) interconnect lines, 317
Direct inputs, flipflm 19&195
Direct reset input, £lip-flop4 194
Distributed RAM,317
Distributive law, 37
Divide-by-iV counter, 265
Don't-care conditim, 8 6 4
DRAM,Ses Dynamic RAM (DRAM)
DTL w t a l logic family:
analysis of, 482483
fan-out, 483
NAND gate, 482
power disgipation of a DTL gate, 483

DTL (diodetransistor logic), 471
Duality, 41
Dual-trace oscilloscope, 512
Dynamic hazard, 453
Dynamic memory, refreshing, 291
Dynamic RAM (DRAM), 291

address coding of, 295

E
ECL (emitteticoupled logic), 471
Edge-sensitive cyclic behavior, 344
Edp-~ggered D f ip-bp, 18%191,531

graphic symbol for, 191
hold time, 191
master, 18%190
rsetup time, 191
s l m , 189-190
with three SR latches, 19&191
with two D latches and an inverter,

189-190

l??&tr%$ erasable PROM
(EEPRO WE~PROM), 304

Electronic design automation (EDA), 65
Emitter-mupled logic (ECL), 493495

brtsic circuit, 4P3
dehed, 493
external wired connection of two OR

outputs 495
graphic symbol, 495
internal temperature- and voltags-

compensated bias circuit, 493
internal wired connection of two OR

outputs 495
propagation delay, 494495

Embb input.288
Encoderg 150-152

octal-to-binary, truth table for, 150
priority, 151-152

endrnodule (keyword), 109
Erasable PROM rEPROM1.304
Error detection ~ c h e m e , ~ a h t ~ bit as, 2%
Error detectionlcorrection, 296-299

Hamming code, 296-298; 299
single-error correction, double-em

detection, 29&299
Erro~correcting code, 2%
Errmdetecting code, 25
Essential hazards, 45-57
Event control operator, 208
E x e s 3 code, 21-22
Excitation equations, flip-flops, 200
Excitation table, 229
Exclusive-NOR function (XNOR), 57
ExclusiveOR gate, 59
Exclusive-OR symbol ($), 55
Exclusive-OR @OR) function, 57,

101-102,104

F
Fan-in, 64
Fan-out, 64 ,47M74
Fast 'lTL family, 485
Fault simulation, 108
Feedback shift register, 537
Feedback-free mtinuous assignment, 403
Field, 37-38
Fieldeffect transistor (FET), 473,495
Field-progammable gats array (FPGA),

65,284,311,315,343
design with, 315
logic b l d , 315
Xilinx FPGAs, 316
Xilinx Spartan I1 FPGh, 322-327
Xilinx Spartan XL FPGAs, 322-323
Xiljm Virtcx FPGAs, 327-329

Pield-progranmebh logic w q w m r
'3-)*313

Finite 8 t h machinw Mealy and M m m
m d b &206-20'7

Fmt-in, W-out regiswr &E (FIWs),
3XL321

Five-variable map, 81-83
Flash memory devioes, 304
Flip-flop, 183-184, I#-195,242

char- equaths, 194
characteri& t a b IS194
C W S ~ & 188-189
M u d , 183
dired inputs, 194-195
dynamic indieator, 191
edgetrigge& D apflop, 1-191
input equ- 1S2MI
JK itip-flops, 192
I~bmtory expimat. 5-
D latch, 530
edge-tdgpmd flipflop 531
IC flip-flops 531-532
master&# flipBop 530
SR latch, UO

operation & 189
operations prBMmtd dth, 192
as registers, 333
and signal transition, 189
symbol% S M O
T flip-flop, 192
timing of the response o t 191

Flow tabic, 42&422
d e w m
examples 4 420
obtainiag the I@ diagram 422
prhitive,421

ELowcbarta346
for loop, -341
aollePer Imp, W 3 4 1
Four-bit data-# re@m,244
Four-tme-Line multiFkm ls3
Four-variable map-

primeimplicants,71)-80
FPGA { ~ d - ~ b k gate

m y) , 284
Full adder, 130, U1-133,Sn
Function blocl;s 315

G
Gate array, 315
Gate ~ 1 1 0
Gate instantfadoa. 110
Gae-lewd mhkkation, W121

ANI)-OR-INVERT funch, %
implementation, 97-99

deiined, 70
don't- con&- &SE
exclu&OR (XOR) ffmdion, 101-102
five-variable 81-
four-* E q 7-

prime i h p l k d ~ ~ , M
p t e ddam 11&113
hardware dmcriwm mpagc OL).

16116
~ u g h m a p Q - m a p b ~ 7 1
naaprnmmn
m ~ l N A N D d r c n E $, 9 2 ~
NAND gate. 8P-90
no&genwattfoem497
NOR-=
0ddfunction.l~lQ
OR-ANBmvEmfumtim,%

impl&lnenEati0%9%1m
parity checker, 106106
parity gemaim, lac106
pradrrct-daums 83-86
three-variable -72-76
tw~level implementation, W92
mvariebk wn-n

Gate-level (strwtmd] mbdem 159
-a (GI, 4
Gray d e ZZ-23

H
Half *, 130-l3l, 527
l h m n T h g w J d e , ~ " ..

modi5ed, 299 . t n -
~ ~ o r 0 r ~ 2 ~

Hardware algorithm, 346
Hardware dmmiption hnguage (HDL),

65,16116,159,315
Boolean -iws, 113-114
d e w 1&
design esltry, lm
as documentation -, 107
fault sbdahmlotl

registermmsferlwei(~n~ia
336-34!i

f o r r q h t u s a n d ~ ~
switch-W modeliak

Pansmissiongate.54%-m
1- bench, la7
timinp vd ia im , 107-108
u s e f a p i im ihq 114116

~ ~ ~ 1 1 2
Hazard& 452457
in combinational ckd& 452454
defmed, 452

dstcEtionOt453
dynamifm
esenial ,4S457
h&mcntatioD with SR Iatcher

454456
remedy tbr elhim- 454
inqlmialrircuig454
static 0.- 453
static I-- 453

Hexadedmal~14 n m k r

&ZknH
I%& impodawe, 159
Hiphhpdmce state, 156
Wsbgpwa~gatr-
Hrmhgm&BV, 38

I
I C & @ a l l o g k ~ 4 7 1

b&aic & d s h, 471
bipotar juncciop haaQiwor 0 . 4 7 3
data lmk,471472
field+&[mnsbmr 0 . 4 7 3
NAND plea 47l-472
NOR ga- 471472
spodalchar-m-in

fan-out, 473-474
nohe margin 476-477
power dispipation,4741175
propgation &hy, 475-476

Identity tl~ment. 37
Implication table, 44H-41
ineomplnely e e d 87
~ t i m ~ , b e t w e w

mgkkrs. 335
W H d , 218
h p U t o ~ u a t i w s ~ p f l o p s 1 ~ 2 0 0
haantkiiml, 110.160
Witme of Ekmmk aud Ekmical

E m (IEEEl, 65
-data typc 342
hteptedchitRAMunig291
Inkpted cirertirr (ICI). 6365,471

wmputtr&ded d#i& M 4 s
~ ~ I a m i t i c a ~
k w i s o f i n ~ 6 3

Ia- -317-318
pm5mnabkfl

r n b d g m m l t deEay,n4
Inverse 37

anal* with, 201-204
~ a c t e t i s t i c table, 193

Johasw cornre* 24%269
Juncth &ldeEect trmsistor

I-, 495

K
K m * map &-map), 70-71,343
Keyword& 1Wl09
Kilo (k), 4

L
Laboratory experiments, 511-558

addem and subuactm
(experiment 71,527

adder-subtractm (feu-bit), 52E-529
full adder, 527
half adder, 527
magnitude comparator, 529430
parallel adder, 528

asynchronous sequential circuits
(tKpcriment la), 553

binq and decimal numbers
(qeriment I), 516

BCD munt, 517-518
binary count,S16-517
-ts,518
oacilloscape display, 517
output pattern, 517-518

binary multiplier (cxptriment 1 7 ,
H!?-553

block dingram, 549450
chasking, 552-553
control of rcgisttr~ 55G552
datapath dtsign, 552
desim of wnhol circuit, 552
mul&lication exmple, 552

Bookan function simplification
(experiment 3), i 2 ~ 5 2 2

Bmlcan functiws in sum-of-
m i n m form, 522

complement, 522
gate ICs, 521
logic diagram, 521-522

dock-pulse generator (experiment 15),
545-547

circuit operation, 545-546
dock-pulse generator operation,

544-547
IC timer, 545

oode mnvertws (experiment S),
-526

Oray cnde to equivalent binary, 524
h e ' s omplementer, 525
wen-nt displplay, 525-526

combinational circuits (experiment 4),
522-524

decoder and truth table block
diagram. 523-524

decoder implementation, 523-524
design example, 523
majority logic, 523
parity generator, 523

countcr~ (experiment 10),53%535
binary munter with parallel load,
5M-535

decimal counter, 534
ripple counter, 534
synchro~t~us counter, 534

digital logic gates (experiment 2),
519-520

NAND circuit, 520
propagation delay, $IS520
truth tables, 519
universal NAND gate, 520
waveforms, 519

diital logic train- 511-512
dual-tract d o s c o p e , 512
flip-flops (experiment 8), 53&532

D latch, 530
edge-biggered flip-flop, 531
IC flip-flops 531-532
masttr-slave flip-flop, 530
$17 latch, 530

gate 1 0 needed for, 512
grnphic symbols, 515
IC type 7493 ripple counter, 512

operation & 512-515
integrated drcuits required, 515
lamp handball (qerimmt IS), 541-545

circuit analysiq 544
counting the number of losses, 544
IC type 74194,542
Lamp Ping-Po@, 545
logic diagram, 542-544
pl~yhg the game, 544

Iogic breadboard suitable for
performing, 511

medium-sale integration (MSI)
cirmita, 512

memory unit (experiment 14), S3%541
IC RAM, 536-5443
memory expansion, 541
ROM simul~tor, 541
testing the RAM, 54&541

multiplexer d d g n (experiment 6),
526-527

spemlcations, 527
parallel adder and accumulator

(experiment 16), 547-549

b l d diagram, 547
carry circuit, 548
checking the circuit, 548
drmit operation, 549
control of register, 547
detailed diagram of circuit, 548

sequential dicuita (experiment 9),
532-533

counter design, 533
state diagram, 533
up-down counter with enable, 533

serial addition (experiment 121,
53a-539

serial adder, 539
fierid dder-mbtractor, 539
testing the adder, 539

sbift registers (experiment 11),535-538
bidirectional shift register, 537
bidirectional shift register with

pardel Ioad, 37-38
feedback shift regiter, 537
IC shift register, 535536
ring counter, 537

small-scale integration (=I)
c h i @ 512

Verilog HDl simulation experiments
and rapid prototyping with
FPGAa, 553

experiment 1,554
cxptriment 2,556555
experiment 4,555556
experiment 5,556
experiment 7,556
experiment 8,556
q t r i m n t 9,557
experiment 10,557
experiment 11,557
experiment 13,557-558
experiment 14,558
experiment 26,558
experiment 17,558

Lamp handball (laboratory experiment),
541-545

circuit analysis 544
counting the number of losses, 544
I C 74194,542
Lamp Ping-Pongm, 545
logic diagram, 542-544
playing the game, 544

Large-scak integration (LSI) devices, 63
Latches, 1W-188

D latch (transparent latch), 187-188
rwet state, 185
sensitivity of 184
set state, 185

Latches (m L)
SR latch, 185-187
trigger, 188

Latch-fra design, m404
Literals, 46
Load operation, registas,244,334
Logic cim&,See Digital sysIema
Logic *

obtaining output Boolean f r m h
k 124

of three-bit binrmFy counterJ34
Logic gates, 3531
Logic operatiom, digital B- 336
Logic operatnqVerilog 2001 HDL, 339
Logic operator& for binary work 338
h g i c simuhhon, lW
Logrc simulators, 122
Logic synthesis, W-345

advantap to designer, 345 '

a* datement. 343
1001s. 343

Logical operato~verilog 2001 HDL. 339
Loop statements W 1
Low+power Schottky lTL, 48s
Low-power TTL gate, 484

M
Magmetic dek, W 2 9 1
Magnitude Mmpkrator, 14>145,529-530

four-bit, 145
Mask programming, 303
Master-shve flip-flop, 530
Maximal c o m p a t i b l a W 5
Mealy FSM (Mealy machine), 206
Mealy m & l , S 2 0 7
Me~Iy~ZeroJetector, 215216
Medium-wle integration (MSI)

circuits, 512
Medium- inkgmtion (MU)

devioea 63
Mega (MI, 4
Mem, 288
Memory:

accem h e , 289
address, 286
architectore of, 285
wmmunimlion htwm the

environment and, 285
cycle -289
i n t e r n circuit RAhi units, 291
p r o g r d device (PLD1.W
randam- (RAM), ZSQ
~equential-accaq 290
B p of, -291

Memory all, 291-292

Memorychp,cootro l~ tq288
Memory cyde timing waveform%

28%290
Memorg de* 2'1-295

ad&- multiplexin& 294-295
coincident d e c d n & S 2 9 4
internal mnmudnq 291-292

-0ry-2=
Memory fltkmiplkm in HDL.m289
Memory eaabl%287,289
Memory system, mode of acce= of. 290
Memory thing, 289
Memory units., -287
block diapm,28E%
cap* o& 285
deGned,%285
laboratory expimat, 53%541
LC RAM, 53%540
memory expamion, 541
ROM simulator, 541
testing the RAM, -541

operation oc 288
reliability 06 296
volatile, 291
wordq 285,287

memord, 288
Merger diagram444
MetrmI-oxide ' ' WOS):

advantape of, 497
basic ~kuctlae oi 495
channel, 4%
depletion md54%
diffurred cbannd, 4%
drain, 495
enhancement mode, 496
gate, 495
graphic symbol& 4%
n-channel MOS, -97
p-chmd MO&4%497
souroe, 4954%
types of, 4%

M e t a l - m i b m m h n d w WeffeEt
transistor @owEq.473

Mdule, 207
module, (keyword

pair), l0l)
W U I e dedrnhl, 1w110
Modules, lm-1 lo, n7
Modul*N coamter.265
MollreFSM(Mo4mmachhe~.206
Moore m o d e l , ~ r n
MOS, S8e Meml-oxidE stmimndudor

WOS)
M u l t i l e w l W cirdQ9293
Mulfiple-mw meth&W452

~ 1 5 2 - ~ 3 U
B o o l e a n f t m a i o n ~

-I56
data ~ t h , W

designexample.300
*the o w colm1a,44%401

a e a i g n w i d l , ~ l
l a b o r a t m g ~ n t . 5 2 & 5 Z 7

four-tmline, l53
graphic3 fymboLp for, 567
bpkmenting a Boolean frmEtion

with, 156
~ a f o u r i n p u t f m c t i m

with, 157
input condition& 393
quadruple ~~~toone-line, 155
#hwdategates, I S 5 8
mt-line, 152-153.153

1Y
NAND gate, M
n-bit binary 17-18
Negatinn (-) operator, 338
=ww Q m l , m
Nets 164
Noise, defined, 476
Noisc margin, a, 476477
Nonblding :asigMmk, ~210,33i-338
Nomitical woe, 422
Nondegeme ftlrms, 97
NonvolrtWt memory* 291
NOR pate, W
NOToperatiw,29
npn type, bipdar mamistor, 477-478

silkon framkbr parametera 479
n-tnm-line decdcm, 146
N-cond-57

0
O d a l n u m b e r ~ 4
Odalnambers,mversionto

hexadedmal9
OcM-m-binary enmder, truth table for,

1%
Wd functiw. 102-1W
0w-h w m t . -225
owaol d&gq -382
opcn v* Intemahd (OW), 108
Opm-mg*.-

ANDaR-PlVE KT fundion. 487
~~W
formix1gammmonk~487488
NAND @e, 485
wid-AN4487

MIS

-prroedo=4-
OR pk, cwwntional and m a y logic

wram for,%
OR m t i o n , l
output qw~ons,tlip£lop$2Ml
ovdow, I S 1 3 9

P
PAL. k Rq$lmmbk amy

(PAL)
P d d adder, 528

l a h c m y exphmt, 547-549
block d i , 347
cmq cirEuitj548
Ebcdciag the eirmit, 548
-0pwatiaS49
mtrol of TqgiBbr, 547
&ailed diagram of circuit, 548

Parallel load:
bidirectional shift register with,

537-538
binary muntwn wfth,xw535

C h t iPpUt, 262264
C U input, 264
&N hput, 264
LoaB input. 264

re- with, 244-245
ParW multiplh, behavioral domiptbn

6 W 3 9 0
hrdld-load wnaol,W~@orq251

(k-)*213
Paritybit,Zs
aa wrordet&aakadltme,2%

Padq checker, IM-106
mity ~ ~ l W 1 0 6
Parity gentram, oombinalional

Eircuita 523
PlP-bsd inttmmmcth, architecture

0/ 31-
PLA, See -able hpic m y

-1
PLQ Set Pmgmmmnbb logic daviw
(W)

PQW type. Wok mmhm. 477478
~ (~ y w w d) , a O s
RDBihdg&trigged Dflip-flop

194-195
dldpation, 64,474475

-of two (Ubla), S
Pndsfinsd p h i d m 110
Prc#t input& f b p i l o ~ IN-195
- ~ t r 7 o c % o
Rimitivt flow taw4 4 2 3 , 4 5 7 4
R.imitiVcetates,llO
Aimi* 110

Riority 151-lS2
four-input, 1 2
map for, 151
truth table for, 151

Rocedutal a-enta, 337
Roductof slm&S4

cxpwaion, 95
3impMcadop, M

-bb array logic (PAL),
284-285, S 3 1 1

-*m
d e h 4 3 0 9
desigdng wifb, 309,3H
fuse map for, 311
pqmaming table, m 1 1

R0-k l0Ek-y rn) ,284,
xs3m

dehed, 305
d e s i m a di#tal wtem with, 307
bmapdW308
implemwtbg a combinatronal eiratit

with, m%308
iatemal logic 02305
-table:

generabiom oL 3OE
-63M

s i u d 3 0 7
Prograrnmeblt logic devicu (PLD), 65,

- 3 3
-315

-blc WY memw
(PROM), 303-304

prOmmming,2BrC285
Pmpnp!ion ddayy, 64,475476

disiW w &BtW w-w
eqmrhmt), 51-

eminer-ooupled logic @a),
4944%

IC disihl lo@ familk 47-76
Imdt-m lrrgic m 1 , 4 8 4

Rac+fmBkig&401*
s o i t w a r t r a C # d ~ 4 0 3

R a c c b # r t a t u ~ b ~ 2
four-row h-fabla cxpmple, 449-450
muldpIt-row mthod,45 W52
~ m w flow-taw MAmplc. 447449

Radix, w, 1b11
R d l x complement, l&ll
R A M , * R a n d m ~ m s m o r y

(RAM)
Raadom-mtmQ!y w),-l

~ommcrcial, word capadty ot 292
memory description in HXIL, 28&289
mory , types o & 2 W 1
symbol for, 574
timingwavcforo~s2s290
writ0 a d read apxationg 287-288

Read wle, 289
Read hput, 285
Read operation, 284
Redimly memory (ROM), 284 299305

block dapam,299-300 I\.

COmbimtional circnit
implememtim, 302

~~1 pmpammble I*
dwke(aDI,304305

dehmd, 299
electrically ermb1e PROM

(BEPROhUEZPROM), 3W
erasable PROM @FROM), 3W
f h b memorips, 304
iwmd binary & 3tM
inlsmal operation oE 302
mask progrrrmmiag, 303
numkofwordsin,299
programmabic readady m m q

(PROM), 303-3W
pm@mnh&m-m
truth bbk, 301
md=

~ l i l c i n p l y z s s
R e M t C @I& 289
R e c t a n g u l a p e symbo4 559-561
Rwhdca opentom 338
wvariab14542
Rc*OpTa~W
Regiskt symhh ms72
Regher traMfer,Z&28
Regher madm lnzl (RTL}, 2

dgorwmh atate macbiw (ASMS),
345-352

ddgn example, 352-361
binaty multlplim
~oatwl stat8 diagtam for, 376
H D L ~ p t i m d ~ 3 8 9

Index

Register hmfer level (RTL) (e m)
cont inm dgnmem&, 337
control logic 376381
design at, 334414
digital system represented at,334
in HDL, 336-345

HDL operator& 338-34
logic synthcais, 343-345
loop tatemen& 340-341

latch-kee desigu, 4 0 3 4 4
multiplexers design with, 3 9 0 4 1
notation, 334-335
procedural assignmen& 337438
race-& deign, 401403
se qumtial binary multiplier, 37&376

Register trauafer &pemtiow 334,336
Registers, 26,242453,334, Set a h

Regima h-ansfct level (RTL)
defined, 242,335
four-bit data-storage register, 244
HDL for, 265276

ripple counter, 274276
sbift rcgistcr, 26%273
synchronou~ counter, 272-274

loading, 244
with parad load, 244-245
shift rcgi~ttr4 245-253

defined, 245
serial addition, 243-250
serkl input, 246
serial output, 246
serial transfer, 244-244
simple, 245246
uniyeml, -253

types of, 242-243
uww 244

Relational operataVcrilog 2001
HDL, 339

repent loop, 340
Reset state, latches, 185
Ring oountetq %7-, 537
Ripple countem, 25%258,534

BCD. 256-258
binary, 253-256
defined. 253,256
HDL for, 27&276

ROM Iread-m&memory),
See Rcad-only memory @OM)

RTL digital logic family.
analysis OL 481
fan-out, 481432
NOR gat% 481

RTL (reItm-tramistor logic), 471

s
Schematic capture, 65
Schematic entry, 65

Schottky transistor, ddbd, 489
Schottky lTL gate, 48e485, #%Wl

symbol for Schottky
~ ~ C I i a d ~ m

Scratchpad memories, 321
~ v i t y ~ m
Seqaencehtmm
-for,=
state diapm far, 227
natt fable for, 228

ScqumW binary muldpkr, 37W376
ASMD cbart, 379-376
regism ~0digman.m-373

Seq~mW &&Q 182-184,4W70
&~ynchrOnou& 183
bl& 1Kz
hazards in, 454
laboratmy exprhent , 532433
cwn* dm@, 533
Btatt diagram, 533
up-down ww&r with -1% 533

synehrunouq 183
Saquenhl (or simpIe] prog-

logic deVic6 (SPLD), 311,3U
Sequential programmable

311-329
complex progr-le logic d#ia

((SPLD), 311,313-3l5
M i with. 315

logic b h k (CLB), 317
diskibututl RAM, 317
e&Mmn&4 m 3 2 1
fidd-pro-h gSb BrZCJ

{FPGA),65,284,311,315
design with, 3 s
lo& block, 315
Xilinx FPOA4 316
M h x Spmtau I1 P F G 4 3&327
xilinx SpnftanXLFPG&3&323
Xilinx V m FPG& 327-3B

in- -317418
VO bloct (IbB), 320
sequ8nM (or s h p h) p q p m m b k

lo& device (SPLD), 311,3U
Xilinx:

basic archikdwq 31&317
M A s , 316

Sequenti-' memOrg,m
Serial adder, 248,539

seormdimmaf,2W
state table for, 250

Scrial additton. 248-250
l a h t o r y eqmhmt,S31M39

Berial adder, 539
serial adder+hlmcmr, 539
tesfmg the adder, 539

%rid bit seeam, m

Serial input, 246
ScriaI oatprd, 246
&rialmusk,zM-24a
% 36
kt statc. 185
Shannon, C E, 38
S ~ - ~ 0 ~ m e ~ 4 5 1
Shift operation. registcrq 334
Sb i f topem~dqi td -336
Shiftopera~verilogmHDL339
Shiffmgistm,RDLfar,26%273
Shar 245253,321

bidirectional, 251
dear conm1,251
sock inpmt, 251
U 245
-ty =I=- 535-538

b&&md a 537-538
~ s h i n r e ~ w i t h

parallel M, 537438
feedback shift register, 537
1C shift -register, 535-536
ring wtmter, 537

p d h h d ~ o n f m L 251
d addition,2&250
-inp*m
4etbl output, 246
~ t r ~ , ~
ahw-Ieft mtrol, 251
shift-aght mntml,z51
aimple, 24KMti
uniMand, 251
uniwd,W)-253

~ - M ~ s h a t r e g k t e m 2 5 1
Shift-right wntml.shat registers, 251
Signed bkmy -lxq 1&17

arkhmeticaddmon,l6
~ s u b ~ l 7

~ c d ~ e n t system, 14
Sigutdaaguhde conpention, 14
Simple s M t r e ~ 2 4 % 2 4 6
S h p L - M J m p A & y , 111-112

c m m d m , d c u b h o r --
s i n g b p ~ v i o r , r n
S m a n 4 m t i O n (SSr) ckuits,512
Sman&jntepfh (ssr) devi-63
Sof fwareracecrmdi~m
Spartan chips, 32W321
S p & a n ~ ~ o o m ~ n

chart, 324
Spartan 317
spartanIImAs,525-m
device amibuta (table}, 324

XL FfGAa, 322-323
arChimN323
device a m t e e (table), 323

Index

SPLD, See Sequential (or simple)
programmable logic device (SPLD

SR latch, 185-187
SRAM, See Static RAM (SRAM)
Stable circuih 424-425
Standwd fmm

Boolean algebra, 48-55
defined, 54
expression of a Boolean function

in, 55
product of sums, 54
sum of products, S k 5 S

Standard graphic ~ymbols, 559-576
combinational element symbols,

566-568
counter gymbol~ 572-574
dependency notation, 5W566
flip-flop symbols, 568-570
qualifying symbols, 562-564
RAM ~ymbol, 574
rectangular-sbapt symbols, 55SS61
register symbols, 57&572

State assigmmt, -225
State diagram, 199,21>217

compared to a state table, 198
reducing, 223-224
for sequence detector, 227

Statc cqu~tiona, 196197
Bwlcan exprersim for, 197
defined, 196-197

State machine, defined, 346
State reduction, 22&223
State table, 197-198

binary form oE 225
compared to a state diagram, 198
md JK flip-flop inputs, 231
redu&g, 222-223
sections, 198
for sequence dtttctor, 228
for three-bit binary counter, 231-233

State table* reduction of, 439441
Static 0-hazard, 453
Static 1-hwrd,453
Static RAM (SRAM), 291
Storage dements:

defined, 184
flip-flops, 188-195
latches, 18C188

Sum of prcduct4 5 4 5 5
Switch-level modeling, 505-508

transmission gate, SWSO7
Switch matrices, and CLB architecture,

317-319
Switching algebra, 38
Synchronous countera, 25%264,534
BCD counter, 260-262

state table for, 2 6 M 6 2

binary counter, 258-260
11 four-bit, 259

binary counter with parallel load,
262-265

Clear input, 262-264
CLK input, 264
Count input, 264
Load input, 264

defined, 253
HDL for, 273-274
updown binary counter, 260

four-bit, 261
Synchrwoua RAM (SeIectRAM), 3m321
Synchronous sequential circuits, 183,225
Synchronous sequential logic, 182-241

clocked sequential circuits analysis o t
195-207

design prrxredure, 225-234
sequential circuits, 182-1M
state assignment, 224-225
state reduction, %223
storage elements:

defined, 184
flip-flops, 18E-195
latches, 184-188

synthesizable HDL models of
sequential circuit4 207-220

Syndrome, 296
Synthesig 226
Synthesis toolq315
Syntbeaizable HDL models of sequential

&mi@ 207-220
behavioral modeling, 207-210
clocked sequential circuits, structurd

demiption of, 217;520
flip-flop and latches, 210-213
state diagram, 199

System primitive6 114

T
T flipflop, 192

analysi~ of clocked sequential Eircuits
with, 204-206

analysis with, 204-206
characteristic table, 193-194

conditiong 194
r,Slmpk,Circdtprop&hy, 112
Tape unit, 290
Tera (T) , 4
Test access port (TAP) controller, 320
Test bench, 1(Y7,111
Test bench module, 218
Three-bit binary counter:

logic diagram of, 234
maps for, 234
state diagram oc 233
state table for, 231-233

k t - s h t e buffer gate, graphic p b o l
for, 157

mee-state gates, 15&158,491493
buffer gate, graphic symbol of,491492
bus, creation of, 493
inverter, 491492
output enable delay compared to

output disable delay, 493
output states,491

Three-to-eight-line decder, 146
truth ttrblc for, 147

'IAree-variable map, 72-76
Time un ia 110
Time-delay devices, 183
Timing verification, 107-lM
Timing waveforms, 28S290
Top-down design, 161
Total state, 419
Totem-pole output, 4 8 M 9

dcfincd, 488
wired-logic conncctiw, 489

namfer function, 57
Tkansfer operation& digital ayfltemg 336
llahsistorg 1
Transistor-transistor logic (Tn):

advanced low-power Schottky l T L
gate, 485

characteristics (table), 484
defined, 471
fast TTL family, 485
high-speed TTL gate, 484-485
low-power Schottky 'ITL, 485
low-power TTL gate,444
open-collector output gate, 485488
original, 484
propagation delay, 484
Schottky TTL gate, 484435,489491
standard, 484
three-state gate, 491493
totem-pole output, 4SW89
m gate, operation ot 471

Tiamition diagrsm, 447
Pansition equation, See Sate equations
'Raasiian table, 225,417-420, See State

table
of ugnchronoun rsequential circuitg

419-420
Transparent latch, 187-188
lligger, latches, 188
Ruth tables, 29
lTL, See Transistor-uafisistorr logic (TTL)
2421 wde, 21-22
Two-level implementation, 9b92
Two-to-four-line dewder, with enable

input, 147-148
'Ikro-to-one-line multiplexers,

152-153,153

W v a l u e d Bodean algebra,
38-41

-yeriabat 71-72

U
U r n See U80c&fined ptimitim

(UDA)
Unidiratbm1 shift register& 251
U n i ~ N A m ~ S Z O
U ~ a l a b i f t ~ ~ ~ 3

fourbit, 252
Unknown valw, 159
Ud@ted binary numbers, 14
Unstable circuit& 424-W
Unusd 8taW 224

wlmat% with, 265-266
Updating a wgimr, 244
Uscr-&find primitives (UDFp). 1 l H l 6

v
vectore, 160
v d o g HDL 1w 399,207,209,315

memmy W t i t m h288
opwtws, 185, -340
swit&-~modeliag,50M08

tmumksh g a t e * M
Very large& integration (VLSI)

-6343
VHDL, iOS, 315
VrrtGll WGh, 327-329
Volatilt memory urriCk291

lengtlh2S
Word location* 2#)
Wd4 285,287
Wrlrc iapt, 285
writs opwa(Boa4Z84

	intro.pdf
	0.tif
	iii.tif
	iv.tif
	v.tif
	vi.tif
	vii.tif
	ix.tif
	x.tif
	xi.tif
	xii.tif
	xiii.tif
	xiv.tif
	xv.tif

	chapter1.pdf
	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif
	21.tif
	22.tif
	23.tif
	24.tif
	25.tif
	26.tif
	27.tif
	28.tif
	29.tif
	30.tif
	31.tif
	32.tif
	33.tif
	34.tif
	35.tif

	chapter 2.pdf
	36.tif
	37.tif
	38.tif
	39.tif
	40.tif
	41.tif
	42.tif
	43.tif
	44.tif
	45.tif
	46.tif
	47.tif
	48.tif
	49.tif
	50.tif
	51.tif
	52.tif
	53.tif
	54.tif
	55.tif
	56.tif
	57.tif
	58.tif
	59.tif
	60.tif
	61.tif
	62.tif
	63.tif
	64.tif
	65.tif
	66.tif
	67.tif
	68.tif
	69.tif

	chapter 3.pdf
	70.tif
	71.tif
	72.tif
	73.tif
	74.tif
	75.tif
	76.tif
	77.tif
	78.tif
	79.tif
	80.tif
	81.tif
	82.tif
	83.tif
	84.tif
	85.tif
	86.tif
	87.tif
	88.tif
	89.tif
	90.tif
	91.tif
	92.tif
	93.tif
	94.tif
	95.tif
	96.tif
	97.tif
	98.tif
	99.tif
	100.tif
	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif
	108.tif
	109.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif
	116.tif
	117.tif
	118.tif
	119.tif
	120.tif
	121.tif

	chapter 4.pdf
	122.tif
	123.tif
	124.tif
	125.tif
	126.tif
	127.tif
	128.tif
	129.tif
	130.tif
	131.tif
	132.tif
	133.tif
	134.tif
	135.tif
	136.tif
	137.tif
	138.tif
	139.tif
	140.tif
	141.tif
	142.tif
	143.tif
	144.tif
	145.tif
	146.tif
	147.tif
	148.tif
	149.tif
	150.tif
	151.tif
	152.tif
	153.tif
	154.tif
	155.tif
	156.tif
	157.tif
	158.tif
	159.tif
	160.tif
	161.tif
	162.tif
	163.tif
	164.tif
	165.tif
	166.tif
	167.tif
	168.tif
	169.tif
	170.tif
	171.tif
	172.tif
	173.tif
	174.tif
	175.tif
	176.tif
	177.tif
	178.tif
	179.tif
	180.tif
	181.tif

	chapter 5.pdf
	182.tif
	183.tif
	184.tif
	185.tif
	186.tif
	187.tif
	188.tif
	189.tif
	190.tif
	191.tif
	192.tif
	193.tif
	194.tif
	195.tif
	196.tif
	197.tif
	198.tif
	199.tif
	200.tif
	201.tif
	202.tif
	203.tif
	204.tif
	205.tif
	206.tif
	207.tif
	208.tif
	209.tif
	210.tif
	211.tif
	212.tif
	213.tif
	214.tif
	215.tif
	216.tif
	217.tif
	218.tif
	219.tif
	220.tif
	221.tif
	222.tif
	223.tif
	224.tif
	225.tif
	226.tif
	227.tif
	228.tif
	229.tif
	230.tif
	231.tif
	232.tif
	233.tif
	234.tif
	235.tif
	236.tif
	237.tif
	238.tif
	239.tif
	240.tif
	241.tif

	chapter 6.pdf
	242.tif
	243.tif
	244.tif
	245.tif
	246.tif
	247.tif
	248.tif
	249.tif
	250.tif
	251.tif
	252.tif
	253.tif
	254.tif
	255.tif
	256.tif
	257.tif
	258.tif
	259.tif
	260.tif
	261.tif
	262.tif
	263.tif
	264.tif
	265.tif
	266.tif
	267.tif
	268.tif
	269.tif
	270.tif
	271.tif
	272.tif
	273.tif
	274.tif
	275.tif
	276.tif
	277.tif
	278.tif
	279.tif
	280.tif
	281.tif
	282.tif
	283.tif

	chapter 7.pdf
	284.tif
	285.tif
	286.tif
	287.tif
	288.tif
	289.tif
	290.tif
	291.tif
	292.tif
	293.tif
	294.tif
	295.tif
	296.tif
	297.tif
	298.tif
	299.tif
	300.tif
	301.tif
	302.tif
	303.tif
	304.tif
	305.tif
	306.tif
	307.tif
	308.tif
	309.tif
	310.tif
	311.tif
	312.tif
	313.tif
	314.tif
	315.tif
	316.tif
	317.tif
	318.tif
	319.tif
	320.tif
	321.tif
	322.tif
	323.tif
	324.tif
	325.tif
	326.tif
	327.tif
	328.tif
	329.tif
	330.tif
	331.tif
	332.tif
	333.tif

	chapter 8.pdf
	334.tif
	335.tif
	336.tif
	337.tif
	338.tif
	339.tif
	340.tif
	341.tif
	342.tif
	343.tif
	344.tif
	345.tif
	346.tif
	347.tif
	348.tif
	349.tif
	350.tif
	351.tif
	352.tif
	353.tif
	354.tif
	355.tif
	356.tif
	357.tif
	358.tif
	359.tif
	360.tif
	361.tif
	362.tif
	363.tif
	364.tif
	365.tif
	366.tif
	367.tif
	368.tif
	369.tif
	370.tif
	371.tif
	372.tif
	373.tif
	374.tif
	375.tif
	376.tif
	377.tif
	378.tif
	379.tif
	380.tif
	381.tif
	382.tif
	383.tif
	384.tif
	385.tif
	386.tif
	387.tif
	388.tif
	389.tif
	390.tif
	391.tif
	392.tif
	393.tif
	394.tif
	395.tif
	396.tif
	397.tif
	398.tif
	399.tif
	400.tif
	401.tif
	402.tif
	403.tif
	404.tif
	405.tif
	406.tif
	407.tif
	408.tif
	409.tif
	410.tif
	411.tif
	412.tif
	413.tif
	414.tif

	chapter 9.pdf
	415.tif
	416.tif
	417.tif
	418.tif
	419.tif
	420.tif
	421.tif
	422.tif
	423.tif
	424.tif
	425.tif
	426.tif
	427.tif
	428.tif
	429.tif
	430.tif
	431.tif
	432.tif
	433.tif
	434.tif
	435.tif
	436.tif
	437.tif
	438.tif
	439.tif
	440.tif
	441.tif
	442.tif
	443.tif
	444.tif
	445.tif
	446.tif
	447.tif
	448.tif
	449.tif
	450.tif
	451.tif
	452.tif
	453.tif
	454.tif
	455.tif
	456.tif
	457.tif
	458.tif
	459.tif
	460.tif
	461.tif
	462.tif
	463.tif
	464.tif
	465.tif
	466.tif
	467.tif
	468.tif
	469.tif
	470.tif

	chapter 10.pdf
	471.tif
	472.tif
	473.tif
	474.tif
	475.tif
	476.tif
	477.tif
	478.tif
	479.tif
	480.tif
	481.tif
	482.tif
	483.tif
	484.tif
	485.tif
	486.tif
	487.tif
	488.tif
	489.tif
	490.tif
	491.tif
	492.tif
	493.tif
	494.tif
	495.tif
	496.tif
	497.tif
	498.tif
	499.tif
	500.tif
	501.tif
	502.tif
	503.tif
	504.tif
	505.tif
	506.tif
	507.tif
	508.tif
	509.tif
	510.tif

	chapter 11.pdf
	511.tif
	512.tif
	513.tif
	514.tif
	515.tif
	516.tif
	517.tif
	518.tif
	519.tif
	520.tif
	521.tif
	522.tif
	523.tif
	524.tif
	525.tif
	526.tif
	527.tif
	528.tif
	529.tif
	530.tif
	531.tif
	532.tif
	533.tif
	534.tif
	535.tif
	536.tif
	537.tif
	538.tif
	539.tif
	540.tif
	541.tif
	542.tif
	543.tif
	544.tif
	545.tif
	546.tif
	547.tif
	548.tif
	549.tif
	550.tif
	551.tif
	552.tif
	553.tif
	554.tif
	555.tif
	556.tif
	557.tif
	558.tif

	chapter 12.pdf
	559.tif
	560.tif
	561.tif
	562.tif
	563.tif
	564.tif
	565.tif
	566.tif
	567.tif
	568.tif
	569.tif
	570.tif
	571.tif
	572.tif
	573.tif
	574.tif
	575.tif
	576.tif

	index.pdf
	598.tif
	600.tif
	601.tif
	602.tif
	603.tif
	604.tif
	605.tif
	606.tif
	607.tif
	608.tif

