
Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

1

SOLUTIONS MANUAL

DIGITAL DESIGN
FOURTH EDITION

M. MORRIS MANO
California State University, Los Angeles

MICHAEL D. CILETTI
University of Colorado, Colorado Springs

rev 01/21/2007

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Ahmad
Typewriter
UPLOADED BY Ahmad Jundi

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

2

CHAPTER 1

1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40
Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20
Base-13 A B C 10 11 12 13 14 15 16 17 18 19 23 24 25 26

1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674

1.3 (4310)5 = 4 * 53 + 3 * 52 + 1 * 51 = 58010

(198)12 = 1 * 122 + 9 * 121 + 8 * 120 = 26010

 (735)8 = 7 * 82 + 3 * 81 + 5 * 80 = 47710

 (525)6 = 5 * 62 + 2 * 61 + 5 * 60 = 19710

1.4 14-bit binary: 11_1111_1111_1111
Decimal: 214 -1 = 16,38310
Hexadecimal: 3FFF16

1.5 Let b = base

(a) 14/2 = (b + 4)/2 = 5, so b = 6

(b) 54/4 = (5*b + 4)/4 = b + 3, so 5 * b = 52 – 4, and b = 8

(c) (2 *b + 4) + (b + 7) = 4b, so b = 11

1.6 (x – 3)(x – 6) = x2 –(6 + 3)x + 6*3 = x2 -11x + 22

Therefore: 6 + 3 = b + 1m so b = 8
 Also, 6*3 = (18)10 = (22)8

1.7 68BE = 0110_1000_1011_1110 = 110_100_010_111_110 = (64276)8

1.8 (a) Results of repeated division by 2 (quotients are followed by remainders):

43110 = 215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
 Answer: 1111_10102 = FA16

(b) Results of repeated division by 16:

 43110 = 26(15); 1(10) (Faster)
 Answer: FA = 1111_1010

1.9 (a) 10110.01012 = 16 + 4 + 2 + .25 + .0625 = 22.3125

 (b) 16.516 = 16 + 6 + 5*(.0615) = 22.3125

(c) 26.248 = 2 * 8 + 6 + 2/8 + 4/64 = 22.3125

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

3

(d) FAFA.B16 = 15*163 + 10*162 + 15*16 + 10 + 11/16 = 64,250.6875

(e) 1010.10102 = 8 + 2 + .5 + .125 = 10.625

1.10 (a) 1.100102 = 0001.10012 = 1.916 = 1 + 9/16 = 1.56310

(b) 110.0102 = 0110.01002 = 6.416 = 6 + 4/16 = 6.2510

 Reason: 110.0102 is the same as 1.100102 shifted to the left by two places.

 1011.11
1.11 101 | 111011.0000
 101
 01001
 101
 1001
 101
 1000
 101
 0110

 The quotient is carried to two decimal places, giving 1011.11
 Checking: 1110112 / 1012 = 5910 / 510 1011.112 = 58.7510

1.12 (a) 10000 and 110111

 1011 1011
 +101 x101
 10000 = 1610 1011
 1011
 110111 = 5510

(b) 62h and 958h

 2Eh 0010_1110 2Eh
 +34 h 0011_0100 x34h
 62h 0110_0010 = 9810 B38
 82A
 9 5 8h = 239210

1.13 (a) Convert 27.315 to binary:

 Integer Remainder Coefficient
 Quotient
 27/2 = 13 + ½ a0 = 1
 13/2 6 + ½ a1 = 1
 6/2 3 + 0 a2 = 0
 3/2 1 + ½ a3 = 1
 ½ 0 + ½ a4 = 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

4

 2710 = 110112
 Integer Fraction Coefficient
 .315 x 2 = 0 + .630 a-1 = 0
 .630 x 2 = 1 + .26 a-2 = 1
 .26 x 2 = 0 + .52 a-3 = 0
 .52 x 2 = 1 + .04 a-4 = 1

 .31510 .01012 = .25 + .0625 = .3125

 27.315 11011.01012

(b) 2/3 .6666666667
 Integer Fraction Coefficient
 .6666_6666_67 x 2 = 1 + .3333_3333_34 a-1 = 1
 .3333333334 x 2 = 0 + .6666666668 a-2 = 0
 .6666666668 x 2 = 1 + .3333333336 a-3 = 1
 .3333333336 x 2 = 0 + .6666666672 a-4 = 0
 .6666666672 x 2 = 1 + .3333333344 a-5 = 1
 .3333333344 x 2 = 0 + .6666666688 a-6 = 0
 .6666666688 x 2 = 1 + .3333333376 a-7 = 1
 .3333333376 x 2 = 0 + .6666666752 a-8 = 0

 .666666666710 .101010102 = .5 + .125 + .0313 + ..0078 = .664110

 .101010102 = .1010_10102 = .AA16 = 10/16 + 10/256 = .664110 (Same as (b)).

1.14 (a) 1000_0000 (b) 0000_0000 (c) 1101_1010
 1s comp: 0111_1111 1s comp: 1111_1111 1s comp: 0010_0101
 2s comp: 1000_0000 2s comp: 0000_0000 2s comp: 0010_0110

(d) 0111_0110 (e) 1000_0101 (f) 1111_1111
 1s comp: 1000_1001 1s comp: 0111_1010 1s comp: 0000_0000
 2s comp: 1000_1010 2s comp: 0111_1011 2s comp: 0000_0001

1.15 (a) 52,784,630 (b) 63,325,600
 9s comp: 47,215,369 9s comp: 36,674,399
 10s comp: 47,215,370 10s comp: 36,674,400

(c) 25,000,000 (d) 00,000,000
 9s comp: 74,999,999 9s comp: 99,999,999
 10s comp: 75,000,000 10s comp: 00,000,000

1.16 B2FA B2FA: 1011_0010_1111_1010
 15s comp: 4D05 1s comp: 0100_1101_0000_0101
 16s comp: 4D06 2s comp: 0100_1101_0000_0110 = 4D06
1.17 (a) 3409 03409 96590 (9s comp) 96591 (10s comp)
 06428 – 03409 = 06428 + 96591 = 03019

(b) 1800 01800 98199 (9s comp) 98200 (10 comp)
 125 – 1800 = 00125 + 98200 = 98325 (negative)
 Magnitude: 1675
 Result: 125 – 1800 = 1675

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

5

(c) 6152 06152 93847 (9s comp) 93848 (10s comp)
 2043 – 6152 = 02043 + 93848 = 95891 (Negative)
 Magnitude: 4109
 Result: 2043 – 6152 = -4109

 (d) 745 00745 99254 (9s comp) 99255 (10s comp)
 1631 -745 = 01631 + 99255 = 0886 (Positive)
 Result: 1631 – 745 = 886

1.18 Note: Consider sign extension with 2s complement arithmetic.

(a) 10001 (b) 100011
 1s comp: 01110 1s comp: 1011100 with sign extension

 2s comp: 01111 2s comp: 1011101
 10011 0100010
 Diff: 00010 1111111 sign bit indicates that the result is negative
 0000001 2s complement
 -000001 result

 (c) 101000 (d) 10101
 1s comp: 1010111 1s comp: 1101010 with sign extension

 2s comp: 1011000 2s comp: 1101011
 001001 110000
 Diff: 1100001 (negative) 0011011 sign bit indicates that the result is positive
 0011111 (2s comp) Check: 48 -21 = 27
 -011111 (diff is -31)

1.19 +9286 009286; +801 000801; -9286 990714; -801 999199

(a) (+9286) + (_801) = 009286 + 000801 = 010087

(b) (+9286) + (-801) = 009286 + 999199 = 008485

(c) (-9286) + (+801) = 990714 + 000801 = 991515

(d) (-9286) + (-801) = 990714 + 999199 = 989913

1.20 +49 0_110001 (Needs leading zero indicate + value); +29 0_011101 (Leading 0 indicates + value)
-49 1_001111; -29 1_100011

 (a) (+29) + (-49) = 0_011101 + 1_001111 = 1_101100 (1 indicates negative value.)
 Magnitude = 0_010100; Result (+29) + (-49) = -20

(b) (-29) + (+49) = 1_100011 + 0_110001 = 0_010100 (0 indicates positive value)
(-29) + (+49) = +20

(c) Must increase word size by 1 (sign extension) to accomodate overflow of values:
 (-29) + (-49) = 11_100011 + 11_001111 = 10_110010 (1 indicates negative result)
Magnitude: 1_001110 = 7810
Result: (-29) + (-49) = -78

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

6

1.21 +9742 009742 990257 (9's comp) 990258 (10s) comp
+641 000641 999358 (9's comp) 999359 (10s) comp

 (a) (+9742) + (+641) 010383

 (b) (+9742) + (-641) 009742 + 999359 = 009102
 Result: (+9742) + (-641) = 9102

 (c) -9742) + (+641) = 990258 + 000641 = 990899 (negative)
 Magnitude: 009101
 Result: (-9742) + (641) = -9101

 (d) (-9742) + (-641) = 990258 + 999359 = 989617 (Negative)
 Magnitude: 10383
 Result: (-9742) + (-641) = -10383

1.22 8,723
BCD: 1000_0111_0010_0011

 ASCII: 0_011_1000_011_0111_011_0010_011_0001

1.23
1000 0100 0010 (842)

 0101 0011 0111 (+537)
 1101 0111 1001
 0110
 0001 0011 0111 0101 (1,379)

1.24 (a) (b)

6 3 1 1 Decimal
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
0 1 1 0 4 (or 0101)
0 1 1 1 5
1 0 0 0 6
1 0 1 0 7 (or 1001)
1 0 1 1 8
1 1 0 0 9

6 4 2 1 Decimal
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
1 0 0 0 6 (or 0110)
1 0 0 1 7
1 0 1 0 8
1 0 1 1 9

1.25 (a) 5,13710 BCD: 0101_0011_0111
 (b) Excess-3: 1000_0100_0110_1010

(c) 2421: 1011_0001_0011_0111
(d) 6311: 0111_0001_0100_1001

1.26 5,137 9s Comp: 4,862
2421 code: 0100_1110_1100_1000

 1s comp: 1011_0001_0011_0111 same as (c) in 1.25

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

7

1.27 For a deck with 52 cards, we need 6 bits (32 < 52 < 64). Let the msb's select the suit (e.g., diamonds,
hearts, clubs, spades are encoded respectively as 00, 01, 10, and 11. The remaining four bits select the
"number" of the card. Example: 0001 (ace) through 1011 (9), plus 101 through 1100 (jack, queen, king).
This a jack of spades might be coded as 11_1010. (Note: only 52 out of 64 patterns are used.)

1.28 G (dot) (space) B o o l e
 01000111_11101111_01101000_01101110_00100000_11000100_11101111_11100101

1.29 Bill Gates

1.30 73 F4 E5 76 E5 4A EF 62 73

 73: 0_111_0011 s
 F4: 1_111_0100 t
 E5: 1_110_0101 e
 76: 0_111_0110 v
 E5: 1_110_0101 e
 4A: 0_100_1010 j
 EF: 1_110_1111 o
 62: 0_110_0010 b
 73: 0_111_0011 s

1.31 62 + 32 = 94 printing characters

1.32 bit 6 from the right

1.33 (a) 897 (b) 564 (c) 871 (d) 2,199

1.34 ASCII for decimal digits with odd parity:

 (0): 10110000 (1): 00110001 (2): 00110010 (3): 10110011
 (4): 00110100 (5): 10110101 (6): 10110110 (7): 00110111
 (8): 00111000 (9): 10111001

1.35 (a)
a b c

f

g

a

b

c

f

g

1.36
a b

f

g

a

b

f

g

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

8

CHAPTER 2

2.1 (a)

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x + y + z

0
1
1
1
1
1
1
1

(x + y + z)'

1
0
0
0
0
0
0
0

x'

1
1
1
1
0
0
0
0

y'

1
1
0
0
1
1
0
0

z'

1
0
1
0
1
0
1
0

x' y' z'

1
0
0
0
0
0
0
0

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(xyz)

0
0
0
0
0
0
0
1

(xyz)'

1
1
1
1
1
1
1
0

x'

1
1
1
1
0
0
0
0

y'

1
1
0
0
1
1
0
0

z'

1
0
1
0
1
0
1
0

x' + y' + z'

1
1
1
1
1
1
1
0

 (b) (c)

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x + yz

0
0
0
1
1
1
1
1

(x + y)

0
0
1
1
1
1
1
1

(x + z)

0
1
0
1
1
1
1
1

(x + y)(x + z)

0
0
0
1
1
1
1
1

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x(y + z)

0
0
0
0
0
1
1
1

xy

0
0
0
0
0
0
1
1

xz

0
0
0
0
0
1
0
1

xy + xz

0
0
0
0
0
1
1
1

 (c) (d)

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x

0
0
0
0
1
1
1
1

y + z

0
1
1
1
0
1
1
1

x + (y + z)

0
1
1
1
1
1
1
1

(x + y)

0
0
1
1
1
1
1
1

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

yz

0
0
0
1
0
0
0
1

x(yz)

0
0
0
0
0
0
0
1

xy

0
0
0
0
0
0
1
1

(xy)z

0
0
0
0
0
0
0
1

(x + y) + z

0
1
1
1
1
1
1
1

2.2 (a) xy + xy' = x(y + y') = x

(b) (x + y)(x + y') = x + yy' = x(x +y') + y(x + y') = xx + xy' + xy + yy' = x

(c) xyz + x'y + xyz' = xy(z + z') + x'y = xy + x'y = y

(d) (A + B)'(A' + B') = (A'B')(A B) = (A'B')(BA) = A'(B'BA) = 0

 (e) xyz' + x'yz + xyz + x'yz' = xy(z + z') + x'y(z + z') = xy + x'y = y

(f) (x + y + z')(x' + y' + z) = xx' + xy' + xz + x'y + yy' + yz + x'z' + y'z' + zz' =
 = xy' + xz + x'y + yz + x'z' + y'z' = x y + (x z)' + (y z)'

2.3 (a) ABC + A'B + ABC' = AB + A'B = B

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

9

 (b) x'yz + xz = (x'y + x)z = z(x + x')(x + y) = z(x + y)

 (c) (x + y)'(x' + y') = x'y'(x' + y') = x'y'

 (d) xy + x(wz + wz') = x(y +wz + wz') = x(w + y)

 (e) (BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0

 (f) (x + y' + z')(x' + z') =xx' + xz' + x'y' + y'z' + x'z' + z'z' = z' + y'(x' + z') = z' + x'y'

2.4 (a) A'C' + ABC + AC' = C' + ABC = (C + C')(C' + AB) = AB + C'

 (b) (x'y' + z)' + z + xy + wz = (x'y')'z' + z + xy + wz =[(x + y)z' + z] + xy + wz =
 = (z + z')(z + x + y) + xy + wz = z + wz + x + xy + y = z(1 + w) + x(1 + y) + y = x + y + z

 (c) A'B(D' + C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD)
 = B(A'D' + A + A'D(C + C') = B(A + A'(D' + D)) = B(A + A') = B

 (d) (A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D) = A'(A + B + C'D)
= AA' + A'B + A'C'D = A'(B + C'D)

 (e) ABCD + A'BD + ABC'D = ABD + A'BD = BD

2.5 (a)
x y

F

Fsimplified

(b)
x y

F

Fsimplified

(c)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

10

x y z
Fsimplified

F

 (d)

B

F

Fsimplified

A 0

 (e)

x y z
Fsimplified

F

 (f)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

11

x y z

F

Fsimplified

2.6 (a)
A B C

F

Fsimplified

 (b)
x y z

F

Fsimplified

 (c)
x y

F

Fsimplified

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

12

(d)
w x y z

Fsimplified

F

 (e)
A B C D

Fsimplified = 0

F

 (f)
w x y z

Fsimplified

F

2.7 (a)
A B C D

Fsimplified

F

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

13

(b)
w x y z

Fsimplified

F

(c)
A B C D

Fsimplified

F

(d)
A B C D

Fsimplified

F

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

14

(e)
A B C D

F

Fsimplified

2.8 F' = (wx + yz)' = (wx)'(yz)' = (w' + x')(y' + z')

 FF' = wx(w' + x')(y' + z') + yz(w' + x')(y' + z') = 0
 F + F' = wx + yz + (wx + yz)' = A + A' = 1 with A = wx + yz

2.9 (a) F' = (xy' + x'y)' = (xy')'(x'y)' = (x' + y)(x + y') = xy + x'y'

 (b) F' = [(A'B + CD)E' + E]' = [(A'B + CD) + E]' = (A'B + CD)'E' = (A'B)'(CD)'E'
 F' = (A + B')(C' + D')E' = AC'E' + A D'E' + B'C'E' + B'D'E'

(c) F' = [(x' + y + z')(x + y')(x + z)]' = (x' + y + z')' + (x + y')' + (x + z)' =
 F' = xy'z + x'y + x'z'

2.10 (a) F1 + F2 = m1i + m2i = (m1i + m2i)

 (b) F1 F2 = mi mj where mi mj = 0 if i j and mi mj = 1 if i = j

2.11 (a) F(x, y, z) = (1, 4, 5, 6, 7)

(b) F(x, y, z) = (0, 2, 3, 7)

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

F

0
1
0
0
1
1
1
1

F = xy + xy' + y'z

x y z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

F

1
0
1
1
0
0
0
1

F = x'z' + yz

2.12 A = 1011_0001
 B = 1010_1100

(a) A AND B = 1010_0000
(b) A OR B = 1011_1101
(c) A XOR B = 0001_1101

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

15

(d) NOT A = 0100_1110
(e) NOT B = 0101_0011

2.13 (a)
A B C

Y = A + B + B'(a + C')

(b)
A B C

Y = A(B xor D) + C'

D

 (c)
A B C

Y = A + CD + ABC

D

 (d)
A B C

Y = (A xor C)' + B

 (e)
A B C

Y = (A'+ B')C + D')

D

 (f)
A B C

Y = (A+ B')C' + D)

D

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

16

2.14 (a)

x y

F =xy + x'y' + y'z

z

 (b)

x y

F = xy + x'y' + y'z

 = (x' + y')' + (x + y)' + (y + z')'

z

 (c)
x y

F = xy + x'y' + y'z

 = [(xy)' (x'y')' (y'z)']'

z

 (d)
x y

F = xy + x'y' + y'z

 = [(xy)' (x'y')' (y'z)']'

z

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

17

(e)
x y

F = xy + x'y' + y'z

 = (x' + y')' + (x + y)' + (y + z')'

z

2.15 (a) T1 = A'B'C' + A'B'C + A'BC' = A'B'(C' + C) +A'C'(B' + B) = A'B' +A'C' = A'(B' + C')

(b) T2 =T1' = A'BC + AB'C' + AB'C + ABC' + ABC
 = BC(A' + A) + AB'(C' + C) + AB(C' + C)
 = BC + AB' + AB = BC + A(B' + B) = A + BC

(3, 5, 6, 7) (0,1, 2, 4)

T1 = A'B'C' + A'B'C + A'BC'

A'B' A'C'

T1 = A'B' A'C' = A'(B' + C')

T2 = A'BC + AB'C' + AB'C + ABC' + ABC

AC

T2 =AC' + BC + AC = A+ BC

BC

AC'

2.16 (a) F(A, B, C) = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC
 = A'(B'C' + B'C + BC' + BC) + A((B'C' + B'C + BC' + BC)
 = (A' + A)(B'C' + B'C + BC' + BC) = B'C' + B'C + BC' + BC
 = B'(C' + C) + B(C' + C) = B' + B = 1

(b) F(x1, x2, x3, ..., xn) = mi has 2n/2 minterms with x1 and 2n/2 minterms with x'1, which can be factored
and removed as in (a). The remaining 2n-1 product terms will have 2n-1/2 minterms with x2 and 2n-1/2
minterms with x'2, which and be factored to remove x2 and x'2. continue this process until the last term is
left and xn + x'n = 1. Alternatively, by induction, F can be written as F = xnG + x'nG with G = 1. So F =
(xn + x'n)G = 1.

2.17 (a) (xy + z)(y + xz) = xy + yz + xyz + xz = (3, 5, 6, 7) = (0, 1, 2, 4)

(b) (A' + B)(B' + C) = A'B' + A'C + BC = (0, 1, 3, 7) = (2, 4, 5, 6)

(c) y'z + wxy' + wxz' + w'x'z = (1, 3, 5, 9, 12, 13, 14) = (0, 2, 4, 6, 7, 8, 10, 11, 15)

(d) (xy + yz' + x'z)(x + z) = xy + xyz' + xyz + x'z
 = (1, 3, 9, 11, 14, 15) = (0, 2, 4, 5, 6, 7, 8, 10, 12, 13)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

18

2.18 (a)
F = xy'z + x'y'z + w'xy + wx'y + wxywx y z

00 0 0
00 0 1
00 1 0
00 1 1
01 0 0
01 0 1
01 1 0
01 1 1
10 0 0
10 0 1
10 1 0
10 1 1
11 0 0
11 0 1
11 1 0
11 1 1

F

0
1
0
0
0
1
1
1
0
1
1
1
0
1
1
1

F = (1, 5, 6, 7, 9, 10 11, 13, 14, 15)

(b)
x
y'
z
x'
y'
z
w'
x
y
w
x'
y
w
x
y

F

5 - Three-input AND gates
2 - Three-input OR gates
Alternative: 1 - Five-input OR gate
4 - Inverters

(c) F = xy'z + x'y'z + w'xy + wx'y + wxy = y'z + xy + wy = y z + y(w + x)

(d) F = y'z + yw + yx) = (1, 5, 9, 13 , 10, 11, 13, 15, 6, 7, 14, 15)
= (1, 5, 6, 7, 9, 10, 11, 13, 14, 15)

(e)

w
x
z
y'

y
F

 1 – Inverter, 2 – Two-input AND gates, 2 – Two-input OR gates

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

19

2.19 F = B'D + A'D + BD

ABCD

-B'-D
0001 = 1
0011 = 3
1001 = 9
1011 = 11

A'--D
0001 = 1
0011 = 3
0101 = 5
0111 = 7

-B-D
0101 = 5
0111 = 7
1101 = 13
1111 = 15

ABCD ABCD

F = (1, 3, 5, 7, 9, 11,13, 15) = (0, 2, 4, 6, 8, 10, 12, 14)

2.20 (a) F(A, B, C, D) = (3, 5, 9, 11, 15)
 F'(A, B, C, D) = (0, 1, 2, 4, 6, 7, 8, 10, 12, 13, 14)

(b) F(x, y, z) = (2, 4, 5, 7)
 F' = (2, 4, 5, 7)

2.21 (a) F(x, y, z) = (2, 5, 6) = (0, 1, 3, 4, 7)

(b) F(A, B, C, D) = (0, 1, 2, 4, 7, 9, 12) = (3, 5, 6, 8, 10, 11, 13, 14, 15)

2.22 (a) (AB + C)(B + C'D) = AB + BC + ABC'D + CC'D = AB(1 + C'D) + BC
 = AB + BC (SOP form)
 = B(A + C) (POS form)

(b) x' + x(x + y')(y + z') = (x' + x)[x' + (x + y')(y + z')] =
= (x' + x + y')(x' + y + z')
= x + y + z

2.23 (a) B'C +AB + ACD
A B C

F

D

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

20

(b) (A + B)(C + D)(A' + B + D)

A B C

F

D

(c) (AB + A'B')(CD' + C'D)

B C D

F

A

(d) A + CD + (A + D')(C' + D)

B C D

F

A

2.24 x y = x'y + xy' and (x y)' = (x + y')(x' + y)

 Dual of x'y + xy' = (x' + y)(x + y') = (x y)'

2.25 (a) x| y = xy' y | x = x'y Not commutative
(x | y) | z = xy'z' x | (y | z) = x(yz')' = xy' + xz Not associative

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

21

(b) (x y) = xy' + x'y = y x = yx' + y'x Commutative

(x y) z = (1, 2, 4, 7) = x (y z) Associative

2.26

x y z

L L H
L H H
H L H
H H L

Gate
NAND

(Positive logic)

x y z

0 0 1
0 1 1
1 0 1
1 1 0

NOR
(Negative logic)

x y z

1 1 0
1 0 0
0 1 0
0 0 1

x y z

L L H
L H L
H L L
H H L

Gate
NOR

(Positive logic)

x y z

0 0 1
0 1 0
1 0 0
1 1 0

NAND
(Negative logic)

x y z

1 1 0
1 0 1
0 1 1
0 0 1

2.27 f1 = a'b'c + a'bc + abc' + abc

f2 = a'bc' + a'bc + ab'c' + ab'c + abc'

a'
b'
c'
a'
b
c
a
b
c'
a
b
c

f1

a'
b
c'
a
b'
c'
a
b'
c

f2

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

22

2.28 (a) y = a(bcd)'e = a(b' + c' + d')e

a bcde

0 0000
0 0001
0 0010
0 0011
0 0100
0 0101
0 0110
0 0111

0 1000
0 1001
0 1010
0 1011
0 1100
0 1101
0 1110
0 1111

a bcde

1 0000
1 0001
1 0010
1 0011
1 0100
1 0101
1 0110
1 0111

1 1000
1 1001
1 1010
1 1011
1 1100
1 1101
1 1110
1 1111

y

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

y = a(b' + c' + d')e = ab’e + ac’e + ad’e
 = (17, 19, 21, 23, 25, 27, 29)

y

0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0

(b) y1 = a (c + d + e)= a'(c + d +e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'

y2 = b'(c + d + e)f = b'cf + b'df + b'ef

y1 = a (c + d + e) = a'(c + d +e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'

y2 = b'(c + d + e)f = b'cf + b'df + b'ef

a'-c---
001000 = 8
001001 = 9
001010 = 10
001011 = 11

001100 = 12
001101 = 13
001110 = 14
001111 = 15

011000 = 24
011001 = 25
011010 = 26
011011 = 27

011100 = 28
011101 = 29
011110 = 30
011111 = 31

a'--d--
000100 = 8
000101 = 9
000110 = 10
000111 = 11

001100 = 12
001101 = 13
001110 = 14
001111 = 15

010100 = 20
010101 = 21
010110 = 22
010111 = 23

011100 = 28
011101 = 29
011110 = 30
011111 = 31

a-c'd'e'-
100000 = 32
100001 = 33
110000 = 34
110001 = 35

a'---e-
000010 = 2
000011 = 3
000110 = 6
000111 = 7

001010 = 10
001011 = 11
001110 = 14
001111 = 15

010010 = 18
010011 = 19
010110 = 22
010111 = 23

011010 = 26
011001 = 27
011110 = 30
011111 = 31

-b' c--f

001001 = 9
001011 = 11
001101 = 13
001111 = 15
101001 = 41
101011 = 43
101101 = 45
101111 = 47

-b' -d-f

001001 = 9
001011 = 11
001101 = 13
001111 = 15
101001 = 41
101011 = 43
101101 = 45
101111 = 47

-b' --ef

000011 = 3
000111 = 7
001011 = 11
001111 = 15
100011 = 35
100111 = 39
101011 = 51
101111 = 55

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

23

ab cdef

00 0000
00 0001
00 0010
00 0011
00 0100
00 0101
00 0110
00 0111

00 1000
00 1001
00 1010
00 1011
00 1100
00 1101
00 1110
00 1111

y1 y2

0 0
0 0
1 0
1 1
0 0
0 0
1 0
1 1

1 0
1 1
1 0
1 0
1 0
1 1
1 0
1 1

ab cdef

01 0000
01 0001
01 0010
01 0011
01 0100
01 0101
01 0110
01 0111

01 1000
01 1001
01 1010
01 1011
01 1100
01 1101
01 1110
01 1111

y1 y2

0 0
0 0
1 0
1 0
0 0
0 0
1 0
1 0

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0

ab cdef

10 0000
10 0001
10 0010
10 0011
10 0100
10 0101
10 0110
10 0111

10 1000
10 1001
10 1010
10 1011
10 1100
10 1101
10 1110
10 1111

y1 y2

1 0
1 0
1 0
1 1
0 0
0 0
0 0
0 1

0 0
0 1
0 0
0 1
0 0
0 1
0 0
0 1

ab cdef

11 0000
11 0001
11 0010
11 0011
11 0100
11 0101
11 0110
11 0111

11 1000
11 1001
11 1010
11 1011
11 1100
11 1101
11 1110
11 1111

y1 y2

0 0
0 0
0 0
0 1
0 0
0 0
0 0
0 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

y1 = (2, 3, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35)

y2 = (3, 7, 9, 13, 15, 35, 39, 41, 43, 45, 47, 51, 55)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

24

Chapter 3

3.1

(a) F = xy + x’z'

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1 m3

1
m2

m4 m5

1
m7

1
m6

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1

1
m3

1
m2

1
m4 m5 m7

1
m6

(b) F = z' + x'y

z

0

1

00 01 11 10

y
x

yz

x

1
m0

1
m1

1
m3

1
m2

m4 m5

1
m7 m6

0

1

00 01 11 10

z

y
x

yz

x

m0 m1

1
m3 m2

m4

1
m5

1
m7

1
m6

(c) F = x' + yz (d) F = xy + xz + yz

3.2

z
(a) F = x'y' + xz (b) F = y + x'z

0

1

00 01 11 10

y
x

yz

x

m0

1
m1

1
m3

1
m2

m4 m5

1
m7

1
m6

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1 m3 m2

m4

1
m5

1
m7 m6

(c) F = x'y' + xy (d) F = y' + x'z

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1

1
m3 m2

1
m4

1
m5 m7 m6

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1 m3 m2

m4 m5

1
m7

1
m6

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

25

(e) F = z (f) F = x + y' z

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1

1
m3 m2

m4

1
m5

1
m7 m6

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1 m3 m2

1
m4

1
m5

1
m7

1
m6

3.3

(a) F =xy + x'y'z' + x'yz'
F = xy + x' z'

(b) F = x'y' + yz + x'yz'
F = x' + yz

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1 m3

1
m2

m4 m5

1
m7

1
m6

z

0

1

00 01 11 10

y
x

yz

x

1
m0

1
m1

1
m3

1
m2

m4 m5

1
m7 m6

(c) F = x'y + yz' + y'z'
F = = x' y + z'

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1

1
m3

1
m2

1
m4 m5 m7

1
m6

(d) F = xyz + x'y'z + xyz'
F = x'y'z + xy

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1 m3 m2

m4 m5

1
m7

1
m6

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

26

3.4

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

1
m4 m5

1
m7

1
m6

m12 m13

1
m15 m14

m8 m9 m11 m10

0

1

00 01 11 10

z

y
x

yz

x

m0 m1
1

m3
1

m2

m4 m5
1

m7
1

m6

(a) F = y (b) F = BCD + A' BD'

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

1
m3 m2

m4 m5

1
m7 m6

m12

1
m13

1
m15

1
m14

m8 m9

1
m11 m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0 m1

1
m3

1
m2

m4 m5 m7 m6

1
m12

1
m13

1
m15

1
m14

m8 m9 m11 m10

(d) F = w'x'y +wx(c) F =CD + ABD + ABC

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1 m3 m2

1
m4

1
m5

1
m7

1
m6

m12

1
m13 m15 m14

m8 m9 m11 m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0

1
m1 m3 m2

m4

1
m5 m7 m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

(f) F = x'y' + w'y'z(e) F = w'x + w'y'z

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

27

3.5

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1 m3 m2

1
m4

1
m5 m7

1
m6

1
m12 m13

1
m15

1
m14

m8 m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1 m3 m2

m4

1
m5 m7 m6

m12 m13

1
m15

1
m14

m8

1
m9

1
m11

1
m10

(a) F =xz' + w'y'z+ wxy (b) F = A'C + A' C'D + B'C'D

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0

1
m1 m3 m2

1
m4

1
m5

1
m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

1
m4

1
m5

1
m7

1
m6

m12

1
m13

1
m15 m14

1
m8 m9 m11

1
m10

(c) F =w'y' + wx' y' + w'xy (d) F =BD + A'B + B' D'
or = BD + B'D' + A'D'

3.6

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

m4

1
m5

1
m7 m6

1
m12

1
m13 m15 m14

1
m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1

1
m3 m2

1
m4

1
m5 m7 m6

1
m12

1
m13 m15 m14

m8

1
m9

1
m11

1
m10

(a) F = B' D' +A'BD + ABC' (b) F = xy' +x'z + wx'y

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

28

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

m4

1
m5

1
m7

1
m6

m12 m13

1
m15 m14

1
m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

m4

1
m5 m7 m6

m12

1
m13 m15

1
m14

m8 m9

1
m11

1
m10

(c) F = B'D' + BCD + A'BD + A'BC
(d) F = A'B'D' + BC'D + ACD' + AB'C

3.7

1

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3

1
m2

m4

1
m5 m7 m6

1
m12

1
m13 m15 m14

m8

1
m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12

1
m13

1
m15 m14

m8 m9

1
m11

1
m10

(a) F = z + x'y (b) F = C'D + B'C + ABC'

1

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12 m13

1
m15

1
m14

1
m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0 m1

1
m3

1
m2

m4 m5

1
m7 m6

1
m12

1
m13

1
m15 m14

m8 m9

1
m11

1
m10

(c) F = B'D' + AC + A'BD + CD (or B'C) (d) F = wx + x'y + yz

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

29

3.8
(a) F(x, y, z) = (3, 5, 6, 7)

0

1

00 01 11 10

z

y
x

yz

x

m0 m1

1
m3 m2

m4

1
m5

1
m7

1
m6

(b) F = (1, 3, 5, 9, 12, 13, 14)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3 m2

m4

1
m5 m7 m6

1
m12

1
m13 m15

1
m14

m8

1
m9 m11 m10

(c) F = (0, 1, 2, 3, 11, 12, 14, 15)

00

01

11

10

00 01 11 10

x

y
wx

w

z

1
m0

1
m1

1
m3

1
m2

m4 m5 m7 m6

1
m12 m13

1
m15

1
m14

m8 m9

1
m11 m10

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

30

(d) F= (3, 4, 5, 7, 11, 12)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

1
m3 m2

1
m4

1
m5

1
m7 m6

1
m12 m13 m15 m14

m8 m9

1
m11 m10

3.9

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0 m1 m3

1
m2

1
m4

1
m5

1
m7

1
m6

m12

1
m13

1
m15 m14

1
m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12 m13

1
m15

1
m14

1
m8 m9

1
m11

1
m10

(a) (b)

Essential: xz, x'z' Essential: B'D', AC, A'BD
Non-essential: w'x, w'z' Non-essential: CD, B'C
 F = xz + x'z' + (w'x or w'z') F = B'D' + AC + A'BD + (CD OR B'C)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3 m2

1
m4

1
m5 m7 m6

1
m12

1
m13

1
m15

1
m14

m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1

1
m3 m2

m4 m5

1
m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9 m11 m10

(c) (d)

Essential: BC', AC, A'B'D Essential: wy', xy, w'x'z
 F = BC' + AC + A'B'D F = wy' + xy + w'x'z

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

31

11

100

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12

1
m13

1
m15 m14

1
m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0 m1 m3

1
m2

m4 m5

1
m7 m6

1
m12

1
m13

1
m15

1
m14

m8 m9 m11

1
m10

(e) (f)

Essential: BD, B'C, B'C'D' Essential: wy', wx, x'z', xyz
 F = BD + B'C + B'C'D' F = wy' + wx + x'z' + xyz

3.10

1

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12 m13

1
m15

1
m14

1
m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0 m1 m3

1
m2

1
m4

1
m5

1
m7

1
m6

m12

1
m13

1
m15 m14

1
m8 m9 m11 m10

(a) (b)

Essential: xz, w'x, x'z' Essential: AC, B'D', CD, A'BD
F = xz + w'x + x'z' F = AC + B'D' + CD + A'BD

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

32

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3 m2

1
m4

1
m5 m7 m6

1
m12

1
m13

1
m15

1
m14

m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1

1
m3 m2

m4 m5

1
m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9 m11 m10

(c) (d)

Essential: BC', AC Essential: wy', xy
Non-essential: AB, A B D, B CD, A C D Non-essential: wx, x'y'z, w'wz, w'x'z
F = BC + AC + A B D F = wy' + xy + w'x'z

1

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12

1
m13

1
m15 m14

1
m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0 m1 m3

1
m2

m4 m5

1
m7 m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9 m11

1
m10

(e) (f)

Essential: BD, B'C, AB'C Essential: wy', wx, xyz, x'yz'
Non-essential: CD F = wy' + wx + xyz + x=yz'
F = BD + B'C + AB'C

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

33

3.11 (a) F(A, B, C, D, E) = (0, 1, 4, 5, 16, 17, 21, 25, 29

F = A B D + AD E + B C D

m0: A'B'C'D'E' = 00000
m1: A'B'C'D'E = 00001
m4: A'B'CD'E' = 00100
m5: A'B'CD'E = 00101
m16: AB'C'D'E' = 10000
m17: AB'C'D'E = 10001
m21: AB'CD'E = 10101
m25: ABC'D'E = 11001
m29: ABCD'E = 11101

1 1

1 1

00

01

11

10

00 01 11 10

C

D

A = 0

B

BC
DE

E

1 1

1

00

01

11

10

00 01 11 10

C

D

A = 1

B

BC
DE

E

1

1

AB'D'

AD'E

B'C'D'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

34

(b) F(A, B, C, D, E) = A'B'CE' + B'C'D'E' + A'B'D' + B'CD' + A'CD + A'BD
F(A, B, C, D, E) = A'B'D' + B'D'E' + B'CD' + A'CD + A'BD

A'B'CE': AB'CDE' + A'B'CD'E'
B'C'D'E': AB'C'D'E' + A'B'C'D'E'
A'B'D': A'B'CD'E + A'B'CD'E' + A'B'C'D'E + A'B'C'D'E'
B'CD': AB'CD'E + AB'CD'E' + A'B'CD'E + A'B'CD'E'
A'CD: A'BCDE + A'BCDE' + A'B'CDE + A'B'CDE'
A'BD: A'BCDE + A'BCDE' + A'BC'DE + A'BC'DE'

1 1

1 1 1 1

1 1

1 1

00

01

11

10

00 01 11 10

C

D

A = 0

B

BC
DE

E

1

1 1

00

01

11

10

00 01 11 10

C

D

A = 1

B

BC
DE

E

A'B'D'

A'CD

A'BD

B'D'E'

B'CD'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

35

3.12

1

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0 m1

0
m3 m2

0
m4 m5

0
m7

0
m6

0
m12 m13

0
m15

0
m14

m8

0
m9

0
m11 m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0

1
m1 m3

1
m2

m4

1
m5 m7 m6

m12 m13 m15 m14

1
m8 m9 m11 m10

(a)

1

F = (0, 1, 2, 5, 8, 10, 13) F' = yz + xz' + xy + wx'z
 F = x'z' + w'x'y' + w'y'z F = (y' + z')(x' + z)(x' + y')(w' + x + z')

(b)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

0
m1

0
m3 m2

m4

0
m5

0
m7 m6

m12

0
m13

0
m15 m14

m8 m9 m11 m10

F = (1, 3, 5, 7, 13, 15)
F' = A'D + B'D
F = (A + D)(B + D)
F = C'D' + AB' + CD'

(c)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

0
m1

0
m3 m2

m4 m5 m7

0
m6

0
m12 m13 m15

0
m14

m8

0
m9

0
m11 m10

F = (1, 3, 6, 9, 11, 12, 14)
F' = B'D + BCD' + ABD'
F = (B + D')(B' + C' + D)(A' + B' + D)
F = BD + B'D' + A'C'D'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

36

3.13 (a) F = xy + z = (x + z)(y + z)

(b)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

0
m0

1
m1

0
m3

0
m2

0
m4

1
m5

0
m7

0
m6

1
m12

1
m13

1
m15

0
m14

1
m8

1
m9

1
m11

1
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

0
m0

1
m1

0
m3

0
m2

0
m4

1
m5

0
m7

0
m6

1
m12

1
m13

1
m15

0
m14

1
m8

1
m9

1
m11

1
m10

F = AC' + AD + C'D + AB'C F' A'D' + A'C + BCD'
 F = (A + D)(A + C')(B' + C' + D)

 (c)

10

0

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

0
m3 m2

m4 m5

0
m7 m6

m12

0
m13 m15 m14

m8 m9

0
m11

0
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1 m3

1
m2

1
m4

1
m5 m7

1
m6

1
m12 m13 m15

1
m14

m8 m9 m11 m10

F = (A + C' + D')(A' + B' + D')(A' + B + D')(A' + B + C')
 F' = A'CD + ABD + AB'D + AB'C
 F = A'C + A'D' + BD' + C'D'

 F' = AD + CD +AB'C
 F = (A' + D')(C + D')(A' + B + C')

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

37

 (d)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

m4 m5

1
m7 m6

1
m12

1
m13

1
m15 m14

m8

1
m9

1
m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

0
m0

0
m1

0
m3

0
m2

0
m4

0
m5 m7

0
m6

m12 m13 m15

0
m14

0
m8 m9 m11

0
m10

F =ABC' + AB'D + BCD F' = A'C' + A'B' + CD' + B'C'D'
F = AD + ABC' + BCD F = (A + C)(A + B)(C' + D)(B + C + D)

3.14

0

100

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

m4

1
m5

1
m7 m6

m12

1
m13 m15 m14

1
m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

0
m1

0
m3

0
m2

0
m4 m5 m7

0
m6

0
m12 m13

0
m15

0
m14

m8

0
m9 m11 m10

SOP form (using 1s): F = B'C'D' + AB'D' + BC'D + A'BD
 F = B'D'(A + C') + BD(A' + C')

 POS form (using 0s): F' = BD' + B'D + A'CD' + ACD
 F = [(B' + D)(B + D')][(A + C' + D)(A' + C' + D')]

Alternative POS: F' = BD' + B'D + A'CD' + A'B'C
F = [(B' + D)(B + D')][(A + C' + D)(A' + B + C)]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

38

3.15

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

x
m2

x
m4 m5 m7

1
m6

m12

1
m13 m15

1
m14

1
m8 m9 m11

x
m10

(a) (b)

0

1

00 01 11 10

z

y
x

yz

x

x
m0

x
m1

1
m3

1
m2

1
m4

x
m5

1
m7

1
m6

F = 1 F = B'D' + ABC'D
F = (0,1, 2, 3, 4, 5, 6, 7) F = (0, 2, 6, 8, 10, 13, 14)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

x
m1 m3 m2

1
m4

1
m5

1
m7 m6

1
m12

1
m13

x
m15

1
m14

m8

x
m9

x
m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

x
m0

1
m1

1
m3

x
m2

m4 m5 m7 m6

m12 m13

1
m15 m14

1
m8

x
m9 m11

1
m10

(c) (d)

 F = BC' + BD + AB F = B'D' + A'B' + ABCD
 F = (4, 5, 7, 12, 13, 14, 15) F = F = (0, 1, 2, 3, 8, 10, 15)

3.16 (a)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1

1
m3

1
m2

m4 m5 m7 m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

F = A + A'B'
F = (A'(A'B')')'

A'

A'
B'

F

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

39

(b)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1 m3 m2

m4 m5

1
m7

1
m6

1
m12

1
m13

1
m15

1
m14

m8 m9 m11 m10

F = BC + AB + A'B'C'D
F = ((BC)'(AB)'(A'B'C' D)')'

A

A'
B'

F

B
C

B

C'

D'

(c)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

1
m4

1
m5

1
m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

F' = A'B'D
F = (A'B'D)'

F
A'
B'
D

(d)

0

1

00 01 11 10

C

B
A

BC

A

m0 m1 m3 m2

m4

1
m5

1
m7

1
m6

F = AC + AB
F = ((AC)' (AB)')'

A
F

A
C

B

3.17

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

40

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1

1
m3

1
m2

1
m4 m5 m7 m6

1
m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

F = A'B' + C'D' + B'C' F' = BC + AC + BD

 F = (BC)'(AC)'(BD)'

D F'

A
C

B

B
C

3.18 F = (A)B'(C D) = (AB' + A'B)(CD' + C'D) = AB'CD' + AB'C'D + A'BCD' + A'BC'D

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

m4

1
m5 m7

1
m6

m12 m13 m15 m14

m8

1
m9 m11

1
m10

A
B

A'
B'

C
D

C'
D'

F

F = AB'CD' + AB'C'D + A'BCD' + A'BC'D and F' = A'B' + AB + C'D' + CD
F = (A'B')'(AB)'(C'D')'(CD)' = (A + B)(A' + B') (C' + D')(C + D)
F' = [(A + B)(A' + B')]' + [(C'+ D')(C + D)]'
F = ([(A + B)(A' + B')]' + [(C'+ D')(C + D)]')'
F = ([(A + B)' + (A' + B')'] + [(C'+ D')' + (C + D)'])'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

41

3.19 (a) F = (w + z)(x + z)(w + x + y)

1

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m0 m1 m3

1
m2

1
m4 m5 m7

1
m6

1
m12 m13 m15 m14

1
m8

1
m9

1
m11 m10

y
z

w
x

w
z

F

F = y'z' + wx' + w'z'
 F =[(y + z)' + (w' + x)' + (w + z)']

F' =[(y + z)' + (w' + x)' + (w + z)']'

(b)

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m0

1
m1 m3

1
m2

m4 m5 m7 m6

m12 m13 m15

1
m14

m8 m9 m11 m10

1

w'
x

w
x'

y'
z'

y
z

F

 F = (1, 2, 13, 14)
 F' = w'x + wx' + y'z' + yz = [(w +x')(w' + x)(y + z)(y' + z')]'
 F = (w +x')' + (w' + x)' + (y + z)' + (y' + z')

(c) F = [(x + y)(x' + z)]' = (x + y)' + (x' + z)'
 F' = [(x + y)' + (x' + z)']'

x
y

x'
z

F'

3.20 Multi-level NOR:
F = (AB' + CD')E + BC(A + B)

 F' = [(AB' + CD')E + BC(A + B)]'
F' = [[(AB' + CD')' + E']' + [(BC)' + (A + B)']']'
F' = [[((A' + B)' + (C' + D)')' + E']' + [(B' + C')' + (A + B)']']'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

42

C'

E'
F

D

A'

B

B'
C'

A
B

Multi-level NAND:
F = (AB' + CD')E + BC(A + B)

 F' = [(AB' + CD')E]' [BC(A + B)]'
F' = [((AB')'(CD')')'E]' [BC(A'B')']'

C

E
F

D'

A

B'

B
C
A'
B'

3.21 F = w(x + y + z) + xyz
F' = [w(x + y + z)]'[xyz]' = [w(x'y'z')')]'(xyz)'

x'

w

Fy'

z'

x
y

z

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

43

3.22

D
C

B

A

w

x

y

z

3.23

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

x
m0 m1 m3

1
m2

1
m4 m5 m7

1
m6

1
m12

x
m13 m15 m14

x
m8

x
m9 m11

1
m10

A'

D
F

B'

C'

 F = AC' + A'D' + B'CD'
 F' = D + ABC
 F = [D + ABC]' = [D + (A' + B' + C']')]'
3.24

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3 m2

1
m4 m5 m7 m6

1
m12 m13 m15

1
m14

1
m8

1
m9

1
m11

1
m10

(a) F = C'D' + AB' + AD'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

44

 F' = (C'D')'(AB')'(AD')'
AND-NAND:

C'
D'

A
B'

A
D'

F

(b) F' = [C'D' + AB' + AD']'
AND-NOR:

C'
D'

A
B'

A
D'

F’

(c) F = C'D' + AB' + AD' = (C + D)' + (A' + B)' + (A' + D)'
F' = (C'D')'(AB')'(AD')' = (C + D)(A' + B)(A' + D)
F = [(C + D)(A' + B)(A' + D)]'

OR-NAND:
C
D

A'
B

A'
D

F

(d) F = C'D' + AB' + AD' = (C + D)' + (A' + B)' + (A' + D)'
NOR-OR:

C
D

A'
B

A'
D

F

3.25
A
B

C
D

ABCD

AND-AND AND

A
B

C
D

A + B + C + D

OR-OR OR

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

45

A
B

C
D

(AB CD)'

AND-NAND NAND

A
B

C
D

(A + B + C + D)'

OR-NOR NOR

A
B

C
D

(A'B'C'D')'

NOR-NAND OR

A
B

C
D

[(AB)' + (C' D')]'

NAND-NOR AND

ABCDA + B + C + D

A
B

C
D

A'B'C'D'

NOR-AND NOR

A
B

C
D

NAND-OR NAND

(A + B + C + D)'

A'B'

C'D'

A' + B' + C' + D'
(A + B + C + D)'

The degenerate forms use 2-input gates to implement the functionality of 4-input gates.

3.26

00

01

11

10

00 01 11 10

b

c
ab

cd

a

d

m0

1
m1 m3

1
m2

m4

1
m5 m7

1
m6

1
m12

1
m13 m15 m14

m8

1
m9 m11

1
m10

00

01

11

10

00 01 11 10

b

c
ab

cd

a

d

1
m0

1
m1

0
m3

1
m2

1
m4

1
m5

1
m7

0
m6

1
m12

0
m13

1
m15

0
m14

1
m8

0
m9

1
m11

1
m10

f = abc' + c'd + a'cd'+ b'cd'
g = (a + b +c' + d')(b' + c' + d)(a'+ c + d')
g' = a'b'cd + bcd' + ac'd

 fg = ac'd + abc'd + b'cd'

3.27 x y = x'y + xy'; Dual = (x' + y)(x + y') = (x y)'

3.28

x
y

z

P

y
x

z
P

C

(a) 3-bit odd parity generator (b) 4-bit odd parity generator

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

46

3.29 D = A B C
 E = A'BC + AB'C = (A B)C
 F = ABC' + (A' + B')C = ABC' + (AB)'C = (AB) C
 G = ABC

Half-Adder
S

C
Half-Adder

S

C

Half-Adder
S

C

C

AB

A B
A

B

D = A B C

E = (A B)C

F = (AB) C

G = ABC

3.30 F = AB'CD' + A'BCD' + AB'C'D + A'BC'D
 F = (A B)CD' + (A B) C'D = (A B)(C D)

B
A

C
D

F

3.31 Note: It is assumed that a complemented input is generated by another circuit that
 is not part of the circuit that is to be described.

(a) module Fig_3_22a_gates (F, A, B, C, C_bar, D);
 output F;
 input A, B, C, C_bar, D;
 wire w1, w2, w3, w4;
 and (w1, C, D);
 or (w2, w1, B);
 and (w3, w2, A);
 and (w4, B, C_bar);
 or (F, w3, w4);

endmodule

(b) module Fig_3_22b_gates (F, A, B, C, C_bar, D);
 output F;
 input A, B, C, C_bar, D;
 wire w1, w2, w3, w4;
 not (w1_bar, w1);
 not (B_bar, B);
 not (w3_bar, w3);
 not (w4_bar, w4);
 nand (w1, C, D);
 or (w2, w1_bar, B_bar);
 nand (w3, w2, A);
 nand (w4, B, C_bar);
 or (F, w3_bar, w4_bar);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

47

(c) module Fig_3_23a_gates (F, A, A_bar, B, B_bar, C, D_bar);
 output F;
 input A, A_bar, B, B_bar, C, D_bar;
 wire w1, w2, w3, w4;
 and (w1, A, B_bar);
 and (w2, A_bar, B);

or (w3, w1, w2);
 or (w4, C, D_bar);
 or (F, w3, w4);

endmodule

(d) module Fig_3_23b_gates (F, A, A_bar, B, B_bar, C_bar, D);
 output F;
 input A, A_bar, B, B_bar, C_bar, D;
 wire w1, w2, w3, w4;
 nand (w1, A, B_bar);
 nand (w2, A_bar, B);
 not (w1_bar, w1);
 not (w2_bar, w2);

or (w3, w1_bar, w2_bar);
 or (w4, C, D_bar);
 not (w5, C_bar);
 not (w6, D);
 nand (F_bar, w5, w6);
 not (F, F_bar);

endmodule

(e) module Fig_3_26_gates (F, A, B, C, D, E_bar);
 output F;
 input A, B, C, D, E_bar;
 wire w1, w2, w1_bar, w2_bar, w3_bar;
 not (w1_bar, w1);
 not (w2_bar, w2);

not (w3_bar, E_bar);
nor (w1, A, B);

 nor (w2, C, D);
 nand (F, w1_bar, w2_bar, w3_bar);

endmodule

(f) module Fig_3_27_gates (F, A, A_bar, B, B_bar, C, D_bar);
 output F;
 input A, A_bar, B, B_bar, C, D_bar
 wire w1, w2, w3, w4, w5, w6, w7, w8, w7_bar, w8_bar;
 not (w1, A_bar);
 not (w2, B_bar);
 not (w3, A);
 not (w4, B_bar);
 not (w7_bar, w7);
 not (w8_bar, w8);

and (w5 w1, w2);
 and (w6, w3, w4);
 nor (w7, w5, w6);
 nor (w8, C, D_bar);
 and (F, w7_bar, w8_bar);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

48

3.32 Note: It is assumed that a complemented input is generated by another circuit that
 is not part of the circuit that is to be described.

(a) module Fig_3_22a_CA (F, A, B, C, C_bar, D);
 output F;
 input A, B, C, C_bar, D;
 wire w1, w2, w3, w4;
 assign w1 = C & D;
 assign w2 = w1| B;
 assign w3 = w2 & A);
 assign w4 = B & C_bar);
 assign F = w3 | w4);

endmodule

(b) module Fig_3_22b_CA (F, A, B, C, C_bar, D);
 output F;
 input A, B, C, C_bar, D;
 wire w1, w2, w3, w4;
 assign w1_bar = ~w1;
 assign B_bar = ~B;
 assign w3_bar = ~w3;
 assign w4_bar = ~w4;
 assign w1 = ~(C & D);
 assign w2 = w1_bar | B_bar;
 assign w3 = ~(w2 & A);
 assign w4 = ~(B & C_bar);
 assign F = w3_bar | w4_bar;

endmodule

(c) module Fig_3_23a_CA (F, A, A_bar, B, B_bar, C, D_bar);
 output F;
 input A, A_bar, B, B_bar, C, D_bar;
 wire w1, w2, w3, w4;
 assign w1 = A & B_bar;
 assign w2 = A_bar & B;

assign w3 = w1 | w2);
 assign w4 = C | D_bar;
 assign F = w3 | w4;

endmodule

(d) module Fig_3_23b_CA (F, A, A_bar, B, B_bar, C_bar, D);
 output F;
 input A, A_bar, B, B_bar, C_bar, D;
 wire w1, w2, w3, w4;
 assign w1 = ~(A & B_bar);
 assign w2 = ~(A_bar & B);
 assign w1_bar = ~w1;
 assign w2_bar = ~w2;

assign w3 = w1_bar | w2_bar;
 assign w4, C | D_bar;
 assign w5 = ~C_bar;
 assign w6 = ~D;
 assign F_bar = ~(w5 & w6);
 assign F = ~F_bar;

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

49

(e) module Fig_3_26_CA (F, A, B, C, D, E_bar);
 output F;
 input A, B, C, D, E_bar;
 wire w1, w2, w1_bar, w2_bar, w3_bar;
 not w1_bar = ~w1;
 not w2_bar = ~w2;

not w3_bar = ~E_bar;
nor w1 = (A | B;

 nor w2 = (C | D;
 nand F = ~(w1_bar & w2_bar & w3_bar);

endmodule

(f) module Fig_3_27_CA (F, A, A_bar, B, B_bar, C, D_bar);
 output F;
 input A, A_bar, B, B_bar, C, D_bar
 wire w1, w2, w3, w4, w5, w6, w7, w8, w7_bar, w8_bar;
 not w1 = ~A_bar;
 not w2 = ~B_bar;
 not w3 = ~A;
 not w4 = ~B_bar;
 not w7_bar = ~w7;
 not w8_bar = ~w8;

assign w5 = w1 & w2;
 assign w6 = w3 & w4;
 assign w7 = ~(w5 | w6);
 assign w8 = ~(C | D_bar);
 assign F = w7_bar & w8_bar;

endmodule
3.32 (a)

Initially, with xy = 00, w1 = w2 = 1, w3 = w4 = 0 and F = 0. w1 should change to 0 4ns after xy
changes to 01. w4 should change to 1 8 ns after xy changes to 01. F should change from 0 to 1 10 ns
after w4 changes from 0 to 1, i.e., 18 ns after xy changes from 00 to 01.

(b)
`timescale 1ns/1ps

module Prob_3_33 (output F, input x, y);
wire w1, w2, w3, w4;

and #8 (w3, x, w1);
not #4 (w1, x);
and #8 (w4, y, w1);
not #4 (w2, y);
or #10 (F, w3, w4);

endmodule

module t_Prob_3_33 ();
reg x, y;

 wire F;

F = x
y

x

y

w1

w

w3

w4

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

50

 Prob_3_33 M0 (F, x, y);

 initial #200 $finish;
 initial fork
 x = 0;
 y = 0;
 #20 y = 1;
 join
endmodule

(c) To simulate the circuit, it is assumed that the inputs xy = 00 have been applied sufficiently long for
the circuit to be stable before xy = 01 is applied. The testbench sets xy = 00 at t = 0 ns, and xy = 1 at t =
10 ns. The simulator assumes that xy = 00 has been applied long enough for the circuit to be in a stable
state at t = 0 ns, and shows F = 0 as the value of the output at t = 0. The waveforms show the response to
xy = 01 applied at t = 10 ns.

0.000ns 39.290ns 78.580ns 117.870nsName

x

w1

y

w2

w3

w4

F

t = 10 ns
t = 14 ns

t = 18 ns

t = 28 ns

Note: input change occurs at t = 10 ns.

 = 18 ns

3.34 module Prob_3_34 (Out_1, Out_2, Out_3, A, B, C, D);
 output Out_1, Out_2, Out_3;
 input A, B, C, D;
 wire A_bar, B_bar, C_bar, D_bar;
 assign A_bar = ~A;
 assign B_Bar = ~B;
 assign C_bar = ~C;
 assign D_bar = ~D;
 assign Out_1 = ~((C | B) & (A_bar | D) & B);
 assign Out_2 = ((C * B_bar) | (A & B & C) | (C_bar & B)) & (A | D_bar);
 assign Out_3 = C & ((A & D) | B) | (C & A_bar);

endmodule
3.35

module Exmpl-3(A, B, C, D, F) // Line 1
inputs A, B, C, Output D, F, // Line 2

 output B // Line 3
and g1(A, B, B); // Line 4
not (D, B, A), // Line 5
OR (F, B; C); // Line 6

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

51

endofmodule; // Line 7

Line 1: Dash not allowed, use underscore: Exmpl_3. Terminate line with semicolon (;).

Line 2: inputs should be input (no s at the end). Change last comma (,) to semicolon (;). Output is

declared but does not appear in the port list, and should be followed by a comma if it is intended

to be in the list of inputs. If Output is a mispelling of output and is to declare output ports, C

should be followed by a semicolon (;) and F should be followed by a semicolon (;).

Line 3: B cannot be declared as input (Line 2) and output (Line 3). Terminate the line with a semicolon

(;).

Line 4: A cannot be an output of the primitive if it is an input to the module

Line 5: Too many entries for the not gate (only two allowed).

Line 6: OR must be in lowercase: change to “or”.

Line 7: endmodule is mispelled. Remove semicolon (no semicolon after endmodule).

3.36 (a)
B
C
D d

A a
y

x

z w
F

 (b)
A1 A0 B1 B0

w1

w2

w3

A_lt_B

w6

w7

A_eq_B
w4

w5

A_gt_B

 (c)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

52

a b

y1

y2

3.37
 UDP_Majority_4 (y, a, b, c, d);

outputy;
input a, b, c, d;
table
// a b c d : y
 0 0 0 0 : 0;
 0 0 0 1 : 0;
 0 0 1 0 : 0;
 0 0 1 1 : 0;
 0 1 0 0 : 0;
 0 1 0 1 : 0;
 0 1 1 0 : 0;
 0 1 1 1 : 1;

 1 0 0 0 : 0;
 1 0 0 1 : 0;
 1 0 1 0 : 0;
 1 0 1 1 : 0;
 1 1 0 0 : 0;
 1 1 0 1 : 0;
 1 1 1 0 : 1;
 1 1 1 1 : 1;
 endtable
endprimitive

3.38
module t_Circuit_with_UDP_02467;
 wire E, F;

reg A, B, C, D;
 Circuit_with_UDP_02467 m0 (E, F, A, B, C, D);

 initial #100 $finish;
 initial fork
 A = 0; B = 0; C = 0; D = 0;
 #40 A = 1;
 #20 B = 1;
 #40 B = 0;
 #60 B = 1;
 #10 C = 1; #20 C = 0; #30 C = 1; #40 C = 0; #50 C = 1; #60 C = 0; #70 C = 1;
 #20 D = 1;
 join
endmodule

// Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);

output D;
input A, B, C;

// Truth table for D = f (A, B, C) = (0, 2, 4, 6, 7);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

53

table
// A B C : D // Column header comment
 0 0 0 : 1;
 0 0 1 : 0;
 0 1 0 : 1;
 0 1 1 : 0;
 1 0 0 : 1;
 1 0 1 : 0;
 1 1 0 : 1;
 1 1 1 : 1;

endtable
endprimitive
// Verilog model: Circuit instantiation of Circuit_UDP_02467
module Circuit_with_UDP_02467 (e, f, a, b, c, d);

output e, f;
input a, b, c, d;

 UDP_02467 M0 (e, a, b, c);
and (f, e, d); //Option gate instance name omitted

endmodule

Name 0 30 60 90

A
B
C
D

E
F

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

54

CHAPTER 4

4.1 (a) T1 = B'C, T2 = A'B, T3 = A + T1 = A + B'C,
T4 = D T2 = D (A'B) = A'BD' + D(A + B') = A'BD' + AD + B'D
F1 = T3 + T4 = A + B'C + A'BD' + AD + B'D
With A + AD = A and A + A'BD' = A + BD':
F1 = A + B'C + BD' + B'D
Alternative cover: F1 = A + CD' + BD' + B'D

F2 = T2 + D = A'B + D

 0000
 0001
 0010
 0011
 0100
 0101
 0110
 0111

 1000
 1001
 1010
 1011
 1100
 1101
 1110
 1111

T1 T2 T3 T4 F1 F2

0
0
1
1
0
0
0
0

0
0
1
1
0
0
0
0

ABCD

0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0

0
0
1
1
0
0
0
0

1
1
1
1
1
1
1
1

0
1
0
1
1
0
1
0

0
1
0
1
0
1
0
1

0
1
1
1
1
0
1
0

1
1
1
1
1
1
1
1

0
1
0
1
1
1
1
1

0
1
0
1
0
1
0
1

00

01

11

10

00 01 11 10

B

C
AB

CD

D

m0

1
m1

1
m3

1
m2

1
m4 m5 m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

F1 = A + CD' + B'D + BD'

A

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3 m2

1
m4

1
m5

1
m7

1
m6

m12

1
m13

1
m15 m14

m8

1
m9

1
m11 m10

F2 = A'B + D

00

01

11

10

00 01 11 10

B

CCD

D

m0

1
m1

1
m3

1
m2

1
m4 m5 m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

F1 = A + B'C+ B'D + BD'

A

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

55

4.2

A

B
C

D

BC

[(A'D)' A']'= A + DA'

(A'D)' = A + D’

BC + A'

F

G

F = (A + D)(A' + BC) = A'D + ABC + BCD += A'D + ABC

F = (A + D')(A' +BC) = A'D' + ABC + BCD' = A'D' + ABC

F = A'D + ABC + BCD = A'D + ABC

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

1
m4 m5 m7

1
m6

m12 m13

1
m15

1
m14

m8 m9 m11 m10

G = A'D' + ABC + BCD' = A'D' + ABC

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3 m2

m4

1
m5

1
m7 m6

m12 m13

1
m15

1
m14

m8 m9 m11 m10

4.3 (a) Yi = (AiS' + BiS)E' for i = 0, 1, 2, 3

(b) 1024 rows and 14 columns

4.4 (a)

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1 m3

1
m2

m4 m5 m7 m6

x'
y'

y'
x'

F

000
001
010
011
100
101
110
111

xyz

1
1
1
0
0
0
0
0

F

F = x'y' + x'z'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

56

(b)

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1

1
m3 m2

m4

1
m5

1
m7 m6

000
001
010
011
100
101
110
111

xyz

0
1
0
0
0
0
0
0

F

F = z

Fz

4.5

0

1

00 01 11 10

z

y
x

yz

x

m0 m1

1
m3

1
m2

m4 m5

1
m7 m6

x'
y

z
y

A

000
001
010
011
100
101
110
111

xyz

010
011
100
101
001
010
011
100

A

A = x'y + yz

ABC

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1 m3 m2

m4

1
m5 m7

1
m6

x
y'

z
y'

B

B

B = x'y' + y'z + xyz'

z'

x

y

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1

1
m3 m2

1
m4 m5 m7

1
m6

C

C

C= x'z + xz'

x
z

4.6

0

1

00 01 11 10

z

y
x

yz

x

m0 m1

1
m3 m2

m4

1
m5

1
m7

1
m6

x
z

y
x

F

000
001
010
011
100
101
110
111

xyz

0
0
0
1
0
1
1
1

A

F = xz + yz + xy

F

y
z

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

57

module Prob_4_6 (output F, input x, y, z);
 assign F = (x & z) | (y & z) | (x & y);

endmodule

4.7 (a)

0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

ABCD wxyz
0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1 m3 m2

m4 m5 m7 m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

w = A

00

01

11

10

00 01 11 10

B

CCD

D

m0 m1 m3 m2

1
m4

1
m5

1
m7

1
m6

m12 m13 m15 m14

1
m8

1
m9

1
m11

1
m10

x = AB' + A'B = A B

00

01

11

10

00 01 11 10

B

C
AB

CD

A

m0 m1

1
m3

1
m2

1
m4

1
m5 m7 m6

m12 m13

1
m15

1
m14

1
m8

1
m9 m11 m10

y = A'B'C A'BC' + ABC + AB'C'
 = A'(A B) + A(B C)'
 = A B C
 = X C

D

00

01

11

10

00 01 11 10

B

C
AB

CD

m0

1
m1 m3

1
m2

1
m4 m5

1
m7 m6

m12

1
m13 m15

1
m14

1
m8 m9

1
m11 m10

z = A B C D
 = y D

D

A

B

C

D

w
x

y

z

A

A

(b)

module Prob_4_7(output w, x, y, z, input A, B, C, D);
 always @ (A, B, C, D)
 case ({A, B, C, D})

4'b0000: {w, x, y, z} = 4'b0000;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

58

 4'b0001: {w, x, y, z} = 4'b1111;
 4'b0010: {w, x, y, z} = 4'b1110;
 4'b0011: {w, x, y, z} = 4'b1101;
 4'b0100: {w, x, y, z} = 4'b1100;
 4'b0101: {w, x, y, z} = 4'b1011;
 4'b0110: {w, x, y, z} = 4'b1010;
 4'b0111: {w, x, y, z} = 4'b1001;

 4'b1000: {w, x, y, z} = 4'b1000;
 4'b1001: {w, x, y, z} = 4'b0111;
 4'b1010: {w, x, y, z} = 4'b0110;
 4'b1011: {w, x, y, z} = 4'b0101;
 4'b1100: {w, x, y, z} = 4'b0100;
 4'b1101: {w, x, y, z} = 4'b0011;
 4'b1110: {w, x, y, z} = 4'b0010;
 4'b1111: {w, x, y, z} = 4'b0001;

endcase
endmodule

Alternative model:

module Prob_4_7(output w, x, y, z, input A, B, C, D);
 assign w = A;
 assign x = A ^ B);
 assign y = x ^ C;
 assign z = y ^ D;
endmodule

4.8

0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

ABCD wxyz
0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

x
m1

x
m3

x
m2

m4 m5 m7 m6

x
m12

x
m13

1
m15

x
m14

1
m8 m9 m11 m10

00

01

11

10

00 01 11 10

B

CCD

D

m0

x
m1

x
m3

x
m2

1
m4 m5 m7 m6

x
m12

x
m13 m15

x
m14

m8

1
m9

1
m11

1
m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

m0

x
m1

x
m3

x
m2

m4

1
m5 m7

1
m6

x
m12

x
m13 m15

x
m14

m8

1
m9 m11

1
m10

D

w = AB+AC'D'
x = B'C + B'D +BC'D'
y = CD' +C'D
z = D

A

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

59

Alternative model:

module Prob_4_8(output w, x, y, z, input A, B, C, D);
 assign w = (A&B) | (A & (~C)) & (~D) ;
 assign x = ((~B) & C) | ((~B) & D) | (B & (~C)) & (~D);
 assign y = C ^ D;
 assign z = D;
endmodule

4.9

1
0
1
1
0
1
1
1
1
1

ABCD a

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1
1
1
1
1
0
0
1
1
1

1
1
0
1
1
1
1
1
1
1

b c d

1
0
1
1
0
1
1
0
1
1

e

1
0
1
0
0
0
1
0
1
0

f

1
0
0
0
1
1
1
0
1
1

0
0
1
1
1
1
1
0
1
1

g

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5

1
m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1

1
m3

1
m2

1
m4 m5

1
m7 m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

a = A'C + A'BD + B'C'D' + AB'C' b = A'B' + A'C'D' + A'CD + AB'C'

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1

1
m3 m2

1
m4

1
m5

1
m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1

1
m3

1
m2

m4

1
m5 m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

c = A'B + A'D + B'C'D' + AB'C' d = A'CD' + A'B' C+ B'C'D' + AB'C' + A'BC'D

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3 m2

1
m4

1
m5 m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

1
m3

1
m2

1
m4

1
m5 m7

1
m6

m12 m13 m15 m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

C
AB

CD

A

1
m0 m1 m3

1
m2

m4 m5 m7

1
m6

m12 m13 m15 m14

1
m8 m9 m11 m10

e = A'CD' + B'C'D'
D

f = A'BC' + A'C'D' + A'BD + AB'C' g = A'CD' + A'B'C + A'BC' + AB'C'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

60

4.10

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

ABCD wxyz

0000
1111
1110
1101
1100
1011
1001
1000

1000
0111
0110
0101
0100
0011
0010
0001

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1

1
m3

1
m2

1
m4

1
m5

1
m7

1
m6

m12 m13 m15 m14

1
m8 m9 m11 m10

w = A'(B + C + D) + AB'C'D'
 = A (B + C + D)

00

01

11

10

00 01 11 10

B

CCD

D

m0

1
m1

1
m3

1
m2

1
m4 m5 m7 m6

1
m12 m13 m15 m14

m8

1
m9

1
m11

1
m10

x = B'(C + D) + CB'D'
 = B (C + D)

00

01

11

10

00 01 11 10

B

C
AB

CD

A

m0

1
m1 m3

1
m2

m4

1
m5 m7

1
m6

m12

1
m13 m15

1
m14

m8

1
m9 m11

1
m10

y = CD' + C'D = C D

D

00

01

11

10

00 01 11 10

B

C
AB

CD

m0

1
m1

1
m3 m2

m4

1
m5

1
m7 m6

m12

1
m13

1
m15 m14

m8

1
m9

1
m11 m10

z = D
D

A

A

For a 5-bit 2's complementer with input E and output v:

v = E (A + B + C + D)

4.11 (a)

Half Adder

x y

C S

Half Adder

x y

C S

Half Adder

x y

C S

Half Adder

x y

C S

A1 A0

1

A2A3

Note: 5-bit output

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

61

 (b)

Full Adder

x y

B D

Full Adder

x y

B D

Full Adder

x y

B D

Half Adder

x y

B D

A1 A0A2A3 1 1 1 1

Note: To decrement the 4-bit number, add -1 to the number. In 2's complement format (add Fh) to
the number. An attempt to decrement 0 will assert the borrow bit. For waveforms, see solution to
Problem 4.52.

4.12

(a)

0 0
0 1
1 0
1 1

0 0
1 1
0 1
0 0

x y B D

D = x'y + xy'
B = x'y

 (b)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0
1 1
1 1
1 0
0 1
0 0
0 0
1 1

x y Bin B D

Diff = x y z
Bout = x'y + x'z + yz

4.13 Sum C V

(a) 1101 0 1

(b) 0001 1 1

(c) 0100 1 0

(d) 1011 0 1

(e) 1111 0 0

4.14 xor AND OR XOR

10 + 5 + 5 + 10 = 30 ns

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

62

4.15 C4 = G3 + P3C3 = G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0C0)

 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

4.16 (a)

(C'G'i + p'i)' = (Ci + Gi)Pi = GiPi + PiCi
= AiBi(Ai + Bi) + PiCi

 = AiBi + PiCi = Gi + PiCi
 = AiBi + (Ai + Bi)Ci = AiBi + AiCi + BiCi = Ci+1

 (PiG'i) Ci = (Ai + Bi)(AiBi)' Ci = (Ai + Bi)(A'i + B'i) Ci

 = (A'iBi + AiB'i) Ci = Ai Bi Ci = Si

 (b)

 Output of NOR gate = (A0 + B0)' = P'0
 Output of NAND gate = (A0B0)' = G'0
 S1 = (P0G'0) C0
 C1 = (C'0G'0 + P'0)' as defined in part (a)

4.17 (a)
(C'iG'i + P'i)' = (Ci + Gi)Pi = GiPi + PiCi = AiBi(Ai + Bi) + PiCi

 = AiBi + PiCi = Gi + PiCi
 = AiBi + (Ai + Bi)Ci = AiBi + AiCi + BiCi = Ci+1

 (PiG'i) Ci = (Ai + Bi)(AiBi)' Ci = (Ai + Bi)(A'i + B'i) Ci

 = (A'iBi + AiB'i) Ci = Ai Bi Ci = Si
(b)

 Output of NOR gate = (A0 + B0)' = P'0
 Output of NAND gate = (A0B0)' = G'0

 S0 = (P0G'0) C0
 C1 = (C'0G'0 + P'0)' as defined in part (a)

4.18
Inputs
ABCD

Outputs
wxyz

1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

d(A, b, c, d) = (10, 11, 12, 13, 14, 15)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

63

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1 m3 m2

m4 m5 m7 m6

x
m12

x
m13

x
m15

x
m14

m8 m9

x
m11

x
m10

w = A'B'C'

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0 m1

1
m3

1
m2

1
m4

1
m5 m7 m6

x
m12

x
m13

x
m15

x
m14

m8 m9

x
m11

x
m10

x = BC' + B'C = B C

00

01

11

10

00 01 11 10

B

CCD

D

m0 m1

1
m3

1
m2

m4 m5

1
m7

1
m6

x
m12

x
m13

x
m15

x
m14

m8 m9

x
m11

x
m10

y = C

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0 m1 m3

1
m2

1
m4

1
m5 m7

1
m6

x
m12

x
m13

x
m15

x
m14

1
m8 m9

x
m11

x
m10

z = D'

4.19

9's Complementer
(See Problem 4.18)

Quadruple 2 x 1 MUX

Select = 1 Select = 0
A3 A2 A1 A0

BCD Adder (See Fig. 4.14)

Cin

Select

B3 B2 B1 B0

Mode = 0 FOR Add
Mode = 1 for Subtract

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

64

4.20 Combine the following circuit with the 4-bit binary multiplier circuit of Fig. 4.16.

4-bit Adder

B0B1B2B3

A3

Cout

D7 D6 D5 D4 D3

C6 C5 C4 C3 C2 C1 C0

D2 D1 D0

Augend

4.21
A0
B0

A1
B1

A2
B2

B3

A3

x

x = (A0 B0)'(A1 B1)'(A2 B2)'(A3 B3)'

4.22
XS-3
ABCD

Binary
wxyz
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

65

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

 x
m0

x
m1 m3 x

m4 m5 m7 m6

1
m12

x
m13

x
m15

x
m14

m8 m9

1
m11 m10

w = AB + ACD

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

X
m0

X
m1 m3

X
m2

m4 m5

1
m7 m6

m12

x
m13

x
m15

x
m14

1
m8

1
m9 m11

1
m10

x = B'C' + B'D' + BCD
y = C'D + CD'

z = D'
4.23

A1
A0

E

D0 = (A1 + A0 + E')' = A'1A'0E

D1 = (A1 + A'0 + E')' = A'1A0E

D2 = (A'1 + A0 + E') = A1A'0E

D3 = (A'1 + A'0 + E')' = A1A0E

4.24

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

D0

m0

D1

m1

D3

m3

D2

x

D4

m4

D5

m5

D7

m7

D6

m6

x
m12

x
m13

x
m15

x
m14

D8

m8

D9

m9

x
m11 x

m10

Inputs: A, B, C, D
Outputs: D0, D1, ... D9

D0 = A'B'C'D' D5 = BC'D
D1 = A'B'C'D D6 = BCD'
D2 = B'CD' D7 = BCD
D3 = B'CD D8 = AD'
D4 = BC'D' D9 = AD

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

66

4.25

3 x 8
Decoder

3 x 8
Decoder

3 x 8
Decoder

3 x 8
Decoder

2 x 4
Decoder

A1

A0

A2

A3

A4

20

21

0

1

2

3

E

E

E

E

D24 - D31

D16 - D23

D8 - D15

D0 - D7

8

8

8

8

4.26

2 x 4
Decoder

2 x 4
Decoder

2 x 4
Decoder

2 x 4
Decoder

2 x 4
Decoder

A0

A1

A2

A3

20

21

0

1

2

3

E

E

E

E

D12 - D15

D8 - D11

D4 - D7

D0 - D3

4

4

4

4

20

21

20

21

20

21

20

21

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

67

4.27
0
1
2
3
4
5
6
7

3 x 8
Decoder

F1 = (2, 4, 7)

A
B
C 20

21

22

F3 = (0, 2, 3, 4, 7)

F2 = (0, 3)

(F'3 = (1, 5, 6))

4.28 (a)

F1 = x(y + y')z = x'y'z' = (0, 5, 7)
F2 = xy'z' + x'y + x'y(z + z') = (2, 3, 4)
F3 = x'y'z + xy(z + z') = (1, 6, 7)

0
1
2
3
4
5
6
7

3 x 8
Decoder

F1

F2

F3

x
y
z 20

21

22

(b)

F2 = y' z' + xy' + yz' = (0, 2, 4, 5, 6)F1 = y' z + xz = (1, 5, 7)

0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1 m3 m2

m4

1
m5

1
m7 m6

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1 m3

1
m2

1
m4

1
m5 m7

1
m6

F3 = x' z + yz = (1, 3, 7)

0
1
2
3
4
5
6
7

3 x 8
Decoder

F1

F2

F3

x
y
z 20

21

22
0

1

00 01 11 10

z

y
x

yz

x

m0

1
m1

1
m3 m2

m4 m5

1
m7 m6

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

68

4.29
Inputs Outputs
D3 D2 D1 D0 X Y Z

0 0 0 0 x x 0
x x x 1 0 0 1
x x 1 0 0 1 1
x 1 0 0 1 0 1
1 0 0 0 1 1 1

00

01

11

10

00 01 11 10

D1D1D0

D3

x
m0 m1 m3 m2

1
m4 m5 m7 m6

1
m12 m13 m15 m14

1
m8 m9 m11 m10

D2

D0

D3D2

v = D0 + D1 + D2 + D3

00

01

11

10

00 01 11 10

D1D1D0

D3

x
m0 m1 m3

1
m2

m4 m5 m7

1
m6

m12 m13 m15 m14

1
m8 m9 m11

1
m10

D2

D0

D3D2

y = D'0D1 + D'0D'2

D0D1D2
D3

x

y

z

D2

D1

D0

4.30

D0

0
1
x
x
x
x
x
x
x

D1

0
0
1
x
x
x
x
x
x

D2

0
0
0
1
x
x
x
x
x

D3

0
0
0
0
1
x
x
x
x

D4

0
0
0
0
0
1
x
x
x

D5

0
0
0
0
0
0
1
x
x

D6

0
0
0
0
0
0
0
1
x

D7

0

0

0

0

0

0

0

0

1

x y z V

x x x 0
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 0 0 1
1 1 1 1

Inputs Outputs

If D2 = 1, D6 = 1, all others = 0
Output xyz = 100 and V = 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

69

4.31

8 x 1
MUX

s0
s1
s2
0
1
2
3
4
5
6
7

8 x 1
MUX

s0
s1
s2
0
1
2
3
4
5
6
7

2 x 1
MUX

s
0
1

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

s0
s1
s2
s3

y

4.32 (a) F = (0, 2, 5, 7, 11, 14)
Inputs
ABCD F

1
0
1
0
0
1
0
1
0
0
0
0
0
1
1
0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

F = D'

F = D

F = D

F = D

F = 0

F = 0

F = D

F = D'

8 x 1
MUX

s0
s1
s2
0
1
2
3
4
5
6
7

A
B
C

D

0

Y
F

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

70

(b) F = (3, 8, 12) = (A' + B' + C + D)(A + B' + C' + D')(A + B + C' + D')
 F' = ABC'D' + A'BCD + A'B'CD = (12, 7, 3)
 F = (0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15)

Inputs
ABCD F

1
1
1
0
1
1
1
0
1
1
1
1
0
1
1
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

F = 1

F = D'

F = 1

F = D'

F = 1

F = 1

F = D

F = 1

8 x 1
MUX

s0
s1
s2
0
1
2
3
4
5
6
7

A
B
C

D

1

Y
F

4.33

Dual
4 x 1
MUX

x

0

1

Y

S

0
1
2
3

0
1
2
3

C

S(x, y, z) = (1, 2, 4, 7)
C(x, y, z) = (3, 5, 6, 7)

I0 I1 I2 I3

0 1 2 3
4 5 6 7
x x' x' x

x'

x

I0 I1 I2 I3

0 1 2 3
4 5 6 7
0 x' x' 1

x'

x

S C

y z
4.34 (a)

A

0
0
1
1
0
0
1
1
1
1

B

1
1
0
0
0
0
0
0
1
1

C

1
1
1
1
0
0
0
0
0
0

D

0
1
0
1
0
1
0
1
0
1

F

1
1
1
1
0
1
0
1
1
0

I3 = 1

I5 = 1

I0 = D

I4 = D

I6 = D'

Other minterms = 0
since I1 = I2 = I7 = 0

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

m0

1
m1 m3 m2

m4 m5

1
m7

1
m6

1
m12 m13 m15 m14

m8

1
m9

1
m11

1
m10

F(A, B, C, D) = (1, 6, 7, 9, 10, 11, 12)

(b)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

71

A

0
0
0
0
0
0
1
1
1
1
0
0
1
1

B

0
0
1
1
1
1
1
1
0
0
0
0
1
1

C

1
1
0
0
1
1
1
1
0
0
0
0
0
0

D

0
1
0
1
0
1
0
1
0
1
0
1
0
1

F

0
0
0
0
1
1
1
1
0
1
1
0
1
0

I1 = 0

I2 = 0

I3 = 1

I7 = 1

I4 = D

Other minterms = 0
since I1 = I2 = 0

00

01

11

10

00 01 11 10

B

C
AB

CD

A

D

1
m0

1
m1 m3 m2

m4 m5

1
m7

1
m6

m12

1
m13

1
m15

1
m14

m8

1
m9 m11 m10

F(A, B, C, D) = (0, 1, 6, 7, 9, 13, 14, 15)

I0 = D'

I6= D'

4.35 (a)
Inputs
ABCD F

0
1
0
1
1
0
0
0
0
0
0
1
1
1
1
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

AB = 00
F = D

AB = 01
F = C'D'
 = (C + D)'

AB = 10
F = CD

AB = 11
F = 1

4 x 1
MUX

s0
s1

A

1

Y F

B

0
1
2
3

C
D

(b)
Inputs
ABCD F

0
1
1
0
1
0
0
1
1
1
1
1
0
1
0
1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

AB = 00
F = C'D + CD'

AB = 01
F = C'D' + CD

AB = 10
F = 1

AB = 11
F = D

4 x 1
MUX

s0
s1

A

1

Y F

B

0
1
2
3

C
D

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

72

4.36
module priority_encoder_gates (output x, y, V, input D0, D1, D2, D3); // V2001

 wire w1, D2_not;
 not (D2_not, D2);
 or (x, D2, D3);
 or (V, D0, D1, x);
 and (w1, D2_not, D1);
 or (y, D3, w1);

endmodule

Note: See Problem 4.45 for testbench)

4.37
module Add_Sub_4_bit (
 output [3: 0] S,

output C,
input [3: 0] A, B,
input M

);
wire [3: 0] B_xor_M;
wire C1, C2, C3, C4;
assign C = C4; // output carry
xor (B_xor_M[0], B[0], M);
xor (B_xor_M[1], B[1], M);
xor (B_xor_M[2], B[2], M);
xor (B_xor_M[3], B[3], M);

 // Instantiate full adders
 full_adder FA0 (S[0], C1, A[0], B_xor_M[0], M);
 full_adder FA1 (S[1], C2, A[1], B_xor_M[1], C1);
 full_adder FA2 (S[2], C3, A[2], B_xor_M[2], C2);
 full_adder FA3 (S[3], C4, A[3], B_xor_M[3], C3);
endmodule

module full_adder (output S, C, input x, y, z); // See HDL Example 4.2
wire S1, C1, C2;

 // instantiate half adders
 half_adder HA1 (S1, C1, x, y);
 half_adder HA2 (S, C2, S1, z);

or G1 (C, C2, C1);
endmodule

module half_adder (output S, C, input x, y); // See HDL Example 4.2
xor (S, x, y);
and (C, x, y);

endmodule

module t_Add_Sub_4_bit ();
 wire [3: 0] S;

wire C;
reg [3: 0] A, B;
reg M;

 Add_Sub_4_bit M0 (S, C, A, B, M);

initial #100 $finish;
initial fork

 #10 M = 0;
 #10 A = 4'hA;
 #10 B = 4'h5;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

73

 #50 M = 1;
 #70 B = 4'h3;

join
endmodule

Name 0 50 100

A[3:0]

B[3:0]

M

S[3:0]

C

x

x

x f 5

5

7

3

a

4.38
module quad_2x1_mux (// V2001
 input [3: 0] A, B, // 4-bit data channels
 input enable_bar, select, // enable_bar is active-low)
 output [3: 0] Y // 4-bit mux output
);
 //assign Y = enable_bar ? 0 : (select ? B : A); // Grounds output

assign Y = enable_bar ? 4'bzzzz : (select ? B : A); // Three-state output
endmodule
// Note that this mux grounds the output when the mux is not active.

module t_quad_2x1_mux ();
 reg [3: 0] A, B, C; // 4-bit data channels

 reg enable_bar, select; // enable_bar is active-low)
 wire [3: 0] Y; // 4-bit mux

 quad_2x1_mux M0 (A, B, enable_bar, select, Y);

initial #200 $finish;
initial fork

 enable_bar = 1;
 select = 1;
 A = 4'hA;
 B = 4'h5;
 #10 select = 0; // channel A
 #20 enable_bar = 0;
 #30 A = 4'h0;
 #40 A = 4'hF;
 #50 enable_bar = 1;
 #60 select = 1; // channel B
 #70 enable_bar = 0;
 #80 B = 4'h00;
 #90 B = 4'hA;
 #100 B = 4'hF;
 #110 enable_bar = 1;
 #120 select = 0;
 #130 select = 1;
 #140 enable_bar = 1;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

74

Name 0 70 140

A[3:0]
B[3:0]
enable_bar
select

Y[3:0] 0

a

a 0

0

f 0

5

5 0

0 a

a f 0

f
f

With three-state output:

Name 0 70 140

A[3:0]
B[3:0]
enable_bar
select

Y[3:0] z

a

a 0

0

f z

5

5 0

0 a

a f z

f
f

4.39 // Verilog 1995
module Compare (A, B, Y);
 input [3: 0] A, B; // 4-bit data inputs.
 output [5: 0] Y; // 6-bit comparator output.
 reg [5: 0] Y; // EQ, NE, GT, LT, GE, LE

 always @ (A or B)
if (A==B) Y = 6'b10_0011; // EQ, GE, LE
else if (A < B) Y = 6'b01_0101; // NE, LT, LE
else Y = 6'b01_1010; // NE, GT, GE

endmodule

// Verilog 2001, 2005

module Compare (input [3: 0] A, B, output reg [5:0] Y);
 always @ (A, B)

if (A==B) Y = 6'b10_0011; // EQ, GE, LE
else if (A < B) Y = 6'b01_0101; // NE, LT, LE
else Y = 6'b01_1010; // NE, GT, GE

endmodule

4.40
module Prob_4_40 (
output [3: 0] sum_diff, output carry_borrow,
input [3: 0] A, B, input sel_diff

);

assign {carry_borrow, sum_diff} = sel_diff ? A - B : A + B;
endmodule

module t_Prob_4_40;
wire [3: 0] sum_diff;

 wire carry_borrow;
reg [3:0] A, B;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

75

reg sel_diff;

integer I, J, K;
 Prob_4_40 M0 (sum_diff, carry_borrow, A, B, sel_diff);

initial #4000 $finish;
initial begin

 for (I = 0; I < 2; I = I + 1) begin
 sel_diff = I;

for (J = 0; J < 16; J = J + 1) begin
 A = J;

for (K = 0; K < 16; K = K + 1) begin B = K; #5 ; end
 end
 end

end
endmodule

4.41
module Prob_4_41 (
output reg [3: 0] sum_diff, output reg carry_borrow,
input [3: 0] A, B, input sel_diff

);

 always @ (A, B, sel_diff)
 {carry_borrow, sum_diff} = sel_diff ? A - B : A + B;

endmodule

module t_Prob_4_41;
wire [3: 0] sum_diff;

 wire carry_borrow;
reg [3:0] A, B;
reg sel_diff;

integer I, J, K;
 Prob_4_46 M0 (sum_diff, carry_borrow, A, B, sel_diff);

initial #4000 $finish;
initial begin

 for (I = 0; I < 2; I = I + 1) begin
 sel_diff = I;

for (J = 0; J < 16; J = J + 1) begin
 A = J;

for (K = 0; K < 16; K = K + 1) begin B = K; #5 ; end
 end
 end

end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

76

4.42 (a)
module Xs3_Gates (input A, B, C, D, output w, x, y, z);

wire B_bar, C_or_D_bar;
wire CD, C_or_D;
or (C_or_D, C, D);
not (C_or_D_bar, C_or_D);
not (B_bar, B);
and (CD, C, D);
not (z, D);
or (y, CD, C_or_D_bar);
and (w1, C_or_D_bar, B);
and (w2, B_bar, C_or_D);
and (w3, C_or_D, B);
or (x, w1, w2);
or (w, w3, A);

endmodule
 (b)

module Xs3_Dataflow (input A, B, C, D, output w, x, y, z);
assign {w, x, y, z} = {A, B, C, D} + 4'b0011;
endmodule

 (c)
module Xs3_Behavior_95 (A, B, C, D, w, x, y, z);
 input A, B, C, D;
 output w, x, y, z;
 reg w, x, y, z;

always @ (A or B or C or D) begin {w, x, y, z} = {A, B, C, D} + 4'b0011; end
endmodule

module Xs3_Behavior_01 (input A, B, C, D, output reg w, x, y, z);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

77

always @ (A, B, C, D) begin {w, x, y, z} = {A, B,C, D} + 4'b0011; end
endmodule

module t_Xs3_Converters ();
reg A, B, C, D;
wire w_Gates, x_Gates, y_Gates, z_Gates;
wire w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow;
wire w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95;
wire w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01;
integer k;
wire [3: 0] BCD_value;
wire [3: 0] Xs3_Gates = {w_Gates, x_Gates, y_Gates, z_Gates};
wire [3: 0] Xs3_Dataflow = {w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow};
wire [3: 0] Xs3_Behavior_95 = {w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95};
wire [3: 0] Xs3_Behavior_01 = {w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01};

assign BCD_value = {A, B, C, D};
 Xs3_Gates M0 (A, B, C, D, w_Gates, x_Gates, y_Gates, z_Gates);
 Xs3_Dataflow M1 (A, B, C, D, w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow);
 Xs3_Behavior_95 M2 (A, B, C, D, w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95);
 Xs3_Behavior_01 M3 (A, B, C, D, w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01);

initial #200 $finish;
initial begin

 k = 0;
repeat (10) begin {A, B, C, D} = k; #10 k = k + 1; end

end
endmodule

Name 0 30 60 90

k

A

B

C

D

BCD_value[3:0]
w_Gates

x_Gates

y_Gates

z_Gates

Xs3_Gates[3:0]

Xs3_Gates[3:0]

Xs3_Dataflow[3:0]

Xs3_Behavior_95[3:0]

Xs3_Behavior_01[3:0]

0

0011

3

3

3

3

0 1

4

4

4

0100

4

1 2

0101

5

5

5

5

2 3

6

6

6

0110

6

3 4

7

7

4

0111

7

7

8

8

8

1000

8

5

5

6

1001

9

9

9

9

6 7

a

a

a

1010

a

7 8

1011

b

b

b

b

8

9

c

c

c

c

1100

9

4.43 Two-channel mux with 2-bit data paths, enable, and three-state output.

4.44
module ALU (output reg [7: 0] y, input [7: 0] A, B, input [2: 0] Sel);

always @ (A, B, Sel) begin
 y = 0;

case (Sel)
 3'b000: y = 8'b0;
 3'b001: y = A & B;
 3'b010: y = A | B;
 3'b011: y = A ^ B;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

78

 3'b100: y = A + B;
 3'b101: y = A - B;
 3'b110: y = ~A;
 3'b111: y = 8'hFF;

endcase
end

endmodule

module t_ALU ();
wire[7: 0]y;
reg [7: 0] A, B;
reg [2: 0] Sel;

 ALU M0 (y, A, B, Sel);

initial #200 $finish;
initial fork

 #5 begin A = 8'hAA; B = 8'h55; end // Expect y = 8'd0
 #10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000 Expect y = 8'd0
 #20 begin Sel = 3'b001; A = 8'hAA; B = 8'hAA; end // y = A & B Expect y = 8'hAA = 8'1010_1010
 #30 begin Sel = 3'b001; A = 8'h55; B = 8'h55; end // y = A & B Expect y = 8'h55 = 8'b0101_0101
 #40 begin Sel = 3'b010; A = 8'h55; B = 8'h55; end // y = A | B Expect y = 8'h55 = 8'b0101_0101
 #50 begin Sel = 3'b010; A = 8'hAA; B = 8'hAA; end // y = A | B Expect y = 8'hAA = 8'b1010_1010
 #60 begin Sel = 3'b011; A = 8'h55; B = 8'h55; end // y = A ^ B Expect y = 8'd0
 #70 begin Sel = 3'b011; A = 8'hAA; B = 8'h55; end // y = A ^ B Expect y = 8'hFF = 8'b1111_1111
 #80 begin Sel = 3'b100; A = 8'h55; B = 8'h00; end // y = A + B Expect y = 8'h55 = 8'b0101_0101
 #90 begin Sel = 3'b100; A = 8'hAA; B = 8'h55; end // y = A + B Expect y = 8'hFF = 8'b1111_1111
 #110 begin Sel = 3'b101; A = 8'hAA; B = 8'h55; end // y = A – B Expect y = 8'h55 = 8'b0101_0101
 #120 begin Sel = 3'b101; A = 8'h55; B = 8'hAA; end // y = A – B Expect y = 8'hab = 8'b1010_1011
 #130 begin Sel = 3'b110; A = 8'hFF; end // y = ~A Expect y = 8'd0
 #140 begin Sel = 3'b110; A = 8'd0; end // y = ~A Expect y = 8'hFF = 8'b1111_1111
 #150 begin Sel = 3'b110; A = 8'hFF; end // y = ~A Expect y = 8'd0
 #160 begin Sel = 3'b111; end // y = 8'hFF Expect y = 8'hFF = 8'b1111_1111

join
endmodule

Name 0 60 120 180

Sel[2:0]

A[7:0]

B[7:0]

y[7:0]

55

00

aa

aa

aa

001

55

55

55

aa

aa

aa

010

55

00

55

aa

ff

011

55

00

55 ff

100

aa

55

55

101

55

ab 00

ff

ff

00

00

110

ff

aa

ff

111

Note that the subtraction operator performs 2's complement subtraction. So 8'h55 – 8'hAA adds the 2's
complement of 8'hAA to 8'h55 and gets 8'hAB. The sign bit is not included in the model, but hand
calculation shows that the 9th bit is 1, indicating that the result of the operation is negative. The
magnitude of the result can be obtained by taking the 2's complement of 8'hAB.

4.45
module priority_encoder_beh (output reg X, Y, V, input D0, D1, D2, D3); // V2001

always @ (D0, D1, D2, D3) begin
 X = 0;
 Y = 0;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

79

 V = 0;
casex ({D0, D1, D2, D3})

 4'b0000: {X, Y, V} = 3'bxx0;
 4'b1000: {X, Y, V} = 3'b001;
 4'bx100: {X, Y, V} = 3'b011;
 4'bxx10: {X, Y, V} = 3'b101;
 4'bxxx1: {X, Y, V} = 3'b111;

default: {X, Y, V} = 3'b000;
endcase

end
endmodule

module t_priority_encoder_beh (); // V2001
wire X, Y, V;
reg D0, D1, D2, D3;
integer k;

 priority_encoder_beh M0 (X, Y, V, D0, D1, D2, D3);

initial #200 $finish;
initial begin

 k = 32'bx;
 #10 for (k = 0; k <= 16; k = k + 1) #10 {D0, D1, D2, D3} = k;

end
endmodule

Name 0 60 120 180

k

D0

D1

D2

D3

X

Y

V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4.46 (a)
F = (0, 2, 5, 7, 11, 14)

 See code below.

(b) From prob 4.32:
F = (3, 8, 12) = (A' + B' + C + D)(A + B' + C' + D')(A + B + C' + D')
F' = ABC'D' + A'BCD + A'B'CD = (12, 7, 3)
F = (0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15)

module Prob_4_46a (output F, input A, B, C, D);
assign F = (~A&~B&~C&~D) | (~A&~B&C&~D) | (~A&B&~C&D) | (~A&B&C&D) | (A&~B&C&D) |
(A&B&C&~D);
endmodule

module Prob_4_46b (output F, input A, B, C, D);
assign F = (~A&~B&~C&~D) | (~A&~B&~C&D) | (~A&~B&C&~D) | (~A&B&~C&~D) | (~A&B&~C&D) |

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

80

(~A&B&C&~D) | (A&~B&~C&~D) | (A&~B&~C&D) | (A&~B&C&~D) | (A&~B&C&D) | (A&B&~C&D) |
(A&B&C&~D) | (A&B&C&D);
endmodule

module t_Prob_4_46a ();
wire F_a, F_b;
reg A, B, C, D;
integer k;
 Prob_4_46a M0 (F_a, A, B, C, D);
 Prob_4_46b M1 (F_b, A, B, C, D);

initial #200 $finish;
initial begin

 k = 0;
 #10 repeat (15) begin {A, B, C, D} = k; #10 k = k + 1; end

end
endmodule

Name 0 60 120 180

k

D0

D1

D2

D3

X

Y

V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4.47
module Add_Sub_4_bit_Dataflow (
 output [3: 0] S,

output C, V,
input [3: 0] A, B,
input M

);
 wire C3;

assign {C3, S[2: 0]} = A[2: 0] + ({M, M, M} ^ B[2: 0]) + M;
 assign {C, S[3]} = A[3] + M ^ B[3] + C3;
 assign V = C ^ C3;
endmodule

module t_Add_Sub_4_bit_Dataflow ();
 wire [3: 0] S;

wire C, V;
reg [3: 0] A, B;
reg M;

 Add_Sub_4_bit_Dataflow M0 (S, C, V, A, B, M);

initial #100 $finish;
initial fork

 #10 M = 0;
 #10 A = 4'hA;
 #10 B = 4'h5;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

81

 #50 M = 1;
 #70 B = 4'h3;

join
endmodule

Name 0 50 100

A[3:0]

B[3:0]

M

S[3:0]

C

x

x

x f 5

5

7

3

a

4.48
module ALU_3state (output [7: 0] y_tri, input [7: 0] A, B, input [2: 0] Sel, input En);

reg [7: 0] y;
assign y_tri = En ? y: 8'bz;
always @ (A, B, Sel) begin

 y = 0;
 case (Sel)
 3'b000: y = 8'b0;
 3'b001: y = A & B;
 3'b010: y = A | B;
 3'b011: y = A ^ B;
 3'b100: y = A + B;
 3'b101: y = A - B;
 3'b110: y = ~A;
 3'b111: y = 8'hFF;

endcase
end

endmodule

module t_ALU_3state ();
wire[7: 0] y;
reg [7: 0] A, B;
reg [2: 0] Sel;
reg En;

 ALU_3state M0 (y, A, B, Sel, En);

initial #200 $finish;
initial fork

 #5 En = 1;

 #5 begin A = 8'hAA; B = 8'h55; end // Expect y = 8'd0
 #10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000 Expect y = 8'd0
 #20 begin Sel = 3'b001; A = 8'hAA; B = 8'hAA; end // y = A & B Expect y = 8'hAA = 8'1010_1010
 #30 begin Sel = 3'b001; A = 8'h55; B = 8'h55; end // y = A & B Expect y = 8'h55 = 8'b0101_0101
 #40 begin Sel = 3'b010; A = 8'h55; B = 8'h55; end // y = A | B Expect y = 8'h55 = 8'b0101_0101
 #50 begin Sel = 3'b010; A = 8'hAA; B = 8'hAA; end // y = A | B Expect y = 8'hAA = 8'b1010_1010
 #60 begin Sel = 3'b011; A = 8'h55; B = 8'h55; end // y = A ^ B Expect y = 8'd0
 #70 begin Sel = 3'b011; A = 8'hAA; B = 8'h55; end // y = A ^ B Expect y = 8'hFF = 8'b1111_1111
 #80 begin Sel = 3'b100; A = 8'h55; B = 8'h00; end // y = A + B Expect y = 8'h55 = 8'b0101_0101
 #90 begin Sel = 3'b100; A = 8'hAA; B = 8'h55; end // y = A + B Expect y = 8'hFF = 8'b1111_1111
 #100 En = 0;
 #115 En = 1;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

82

#110 begin Sel = 3'b101; A = 8'hAA; B = 8'h55; end // y = A – B Expect y = 8'h55 = 8'b0101_0101
 #120 begin Sel = 3'b101; A = 8'h55; B = 8'hAA; end // y = A – B Expect y = 8'hab = 8'b1010_1011
 #130 begin Sel = 3'b110; A = 8'hFF; end // y = ~A Expect y = 8'd0
 #140 begin Sel = 3'b110; A = 8'd0; end // y = ~A Expect y = 8'hFF = 8'b1111_1111
 #150 begin Sel = 3'b110; A = 8'hFF; end // y = ~A Expect y = 8'd0
 #160 begin Sel = 3'b111; end // y = 8'hFF Expect y = 8'hFF = 8'b1111_1111

join
endmodule

4.49
// See Problem 4.1
module Problem_4_49_Gates (output F1, F2, input A, B, C, D);

wire A_bar = !A;
wire B_bar = !B;

and (T1, B_bar, C);
and (T2, A_bar, B);
or (T3, A, T1);
xor (T4, T2, D);
or (F1, T3, T4);
or (F2, T2, D);

endmodule

module Problem_4_49_Boolean_1 (output F1, F2, input A, B, C, D);
wire A_bar = !A;
wire B_bar = !B;
wire T1 = B_bar && C;
wire T2 = A_bar && B;
wire T3 = A || T1;
wire T4 = T2 ^ D;
assign F1 = T3 || T4;
assign F2 = T2 || D;

endmodule

module Problem_4_49_Boolean_2(output F1, F2, input A, B, C, D);
assign F1 = A || (!B && C) || (B && (!D)) || (!B && D);
assign F2 = ((!A) && B) || D;

endmodule

module t_Problem_4_49;
reg A, B, C, D;
wire F1_Gates, F2_Gates;
wire F1_Boolean_1, F2_Boolean_1;
wire F1_Boolean_2, F2_Boolean_2;

 Problem_4_48_Gates M0 (F1_Gates, F2_Gates, A, B, C, D);
 Problem_4_48_Boolean_1 M1 (F1_Boolean_1, F2_Boolean_1, A, B, C, D);
 Problem_4_48_Boolean_2 M2 (F1_Boolean_2, F2_Boolean_2, A, B, C, D);

initial #100 $finish;
integer K;
initial begin

for (K = 0; K < 16; K = K + 1) begin {A, B, C, D} = K; #5; end
end

endmodule

4.50
// See Problem 4.8 and Table 1.5.
// Verilog 1995

module Prob_4_50 (Code_8_4_m2_m1, A, B, C, D);
output [3: 0] Code_8_4_m2_m1;
input A, B, C, D;
reg [3: 0] Code_8_4_m2_m1;
...

// Verilog 2001, 2005

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

83

module Prob_4_50 (output reg [3: 0] Code_8_4_m2_m1, input A, B, C, D);

always @ (A, B, C, D) // always @ (A or B or C or D)
case ({A, B, C, D})

 4'b0000: Code_8_4_m2_m1 = 4'b0000; // 0 0
 4'b0001: Code_8_4_m2_m1 = 4'b0111; // 1 7
 4'b0010: Code_8_4_m2_m1 = 4'b0110; // 2 6
 4'b0011: Code_8_4_m2_m1 = 4'b0101; // 3 5
 4'b0100: Code_8_4_m2_m1 = 4'b0100; // 4 4
 4'b0101: Code_8_4_m2_m1 = 4'b1011; // 5 11
 4'b0110: Code_8_4_m2_m1 = 4'b1010; // 6 10
 4'b0111: Code_8_4_m2_m1 = 4'b1001; // 7 9
 4'b1000: Code_8_4_m2_m1 = 4'b1000; // 8 8
 4'b1001: Code_8_4_m2_m1 = 4'b1111; // 9 15

 4'b1010: Code_8_4_m2_m1 = 4'b0001; // 10 1
 4'b1011: Code_8_4_m2_m1 = 4'b0010; // 11 2
 4'b1100: Code_8_4_2_1 = 4'b0011; // 12 3
 4'b1101: Code_8_4_2_1 = 4'b1100; // 13 12
 4'b1110: Code_8_4_2_1 = 4'b1101; // 14 13
 4'b1111: Code_8_4_2_1 = 4'b1110; // 15 14

endcase
endmodule

module t_Prob_4_50;
 wire [3: 0] BCD;

reg A, B, C, D;
integer K;

 Prob_4_50 M0 (BCD, A, B, C, D); // Unit under test (UUT)

initial #100 $finish;
initial begin

for (K = 0; K < 16; K = K + 1) begin {A, B, C, D} = K; #5 ; end
end

endmodule

4.51 Assume that that the LEDs are asserted when the output is high.

module Seven_Seg_Display_V2001 (
 output reg [6: 0] Display,
 input [3: 0] BCD
);

 // abc_defg
 parameter BLANK = 7'b000_0000;
 parameter ZERO = 7'b111_1110; // h7e
 parameter ONE = 7'b011_0000; // h30
 parameter TWO = 7'b110_1101; // h6d
 parameter THREE = 7'b111_1001; // h79
 parameter FOUR = 7'b011_0011; // h33

 parameter FIVE = 7'b101_1011; // h5b
 parameter SIX = 7'b101_1111; // h5f
 parameter SEVEN = 7'b111_0000; // h70
 parameter EIGHT = 7'b111_1111; // h7f
 parameter NINE = 7'b111_1011; // h7b

 always @ (BCD)
case (BCD)

 0: Display = ZERO;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

84

 1: Display = ONE;
 2: Display = TWO;
 3: Display = THREE;
 4: Display = FOUR;
 5: Display = FIVE;
 6: Display = SIX;
 7: Display = SEVEN;
 8: Display = EIGHT;
 9: Display = NINE;

 default: Display = BLANK;
endcase

endmodule

module t_Seven_Seg_Display_V2001 ();
 wire [6: 0] Display;
 reg [3: 0] BCD;

 parameter BLANK = 7'b000_0000;
 parameter ZERO = 7'b111_1110; // h7e
 parameter ONE = 7'b011_0000; // h30
 parameter TWO = 7'b110_1101; // h6d
 parameter THREE = 7'b111_1001; // h79
 parameter FOUR = 7'b011_0011; // h33

 parameter FIVE = 7'b101_1011; // h5b
 parameter SIX = 7'b001_1111; // h1f
 parameter SEVEN = 7'b111_0000; // h70
 parameter EIGHT = 7'b111_1111; // h7f
 parameter NINE = 7'b111_1011; // h7b

initial #120 $finish;
initial fork

 #10 BCD = 0;
 #20 BCD = 1;
 #30 BCD = 2;
 #40 BCD = 3;
 #50 BCD = 4;
 #60 BCD = 5;
 #70 BCD = 6;
 #80 BCD = 7;
 #90 BCD = 8;
 #100 BCD = 9;

join

 Seven_Seg_Display_V2001 M0 (Display, BCD);
endmodule

Name 0 60 120

BCD[3:0]

Display[6:0]

x

xx 7e

0 1

30

2

6d 79

3 4

33

5

5b

6

5f 70

7 8

7f 7b

9

 Alternative with continuous assignments (dataflow):

module Seven_Seg_Display_V2001_CA (
 output [6: 0] Display,
 input [3: 0] BCD
);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

85

 // abc_defg
 parameter BLANK = 7'b000_0000;
 parameter ZERO = 7'b111_1110; // h7e
 parameter ONE = 7'b011_0000; // h30
 parameter TWO = 7'b110_1101; // h6d
 parameter THREE = 7'b111_1001; // h79
 parameter FOUR = 7'b011_0011; // h33

 parameter FIVE = 7'b101_1011; // h5b
 parameter SIX = 7'b101_1111; // h5f
 parameter SEVEN = 7'b111_0000; // h70
 parameter EIGHT = 7'b111_1111; // h7f
 parameter NINE = 7'b111_1011; // h7b
 wire A, B, C, D, a, b, c, d, e, f, g;

assign A = BCD[3];
assign B = BCD[2];
assign C = BCD[1];
assign D = BCD[0];

 assign Display = {a,b,c,d,e,f,g};
assign a = (~A)&C | (~A)&B&D | (~B)&(~C)&(~D) | A & (~B)&(~C);
assign b = (~A)&(~B) | (~A)&(~C)&(~D) | (~A)&C&D | A&(~B)&(~C);
assign c = (~A)&B | (~A)&D | (~B)&(~C)&(~D) | A&(~B)&(~C);
assign d = (~A)&C&(~D) | (~A)&(~B)&C | (~B)&(~C)&(~D) | A&(~B)&(~C) | (~A)&B&(~C)&D;
assign e = (~A)&C&(~D) | (~B)&(~C)&(~D);
assign f = (~A)&B&(~C) | (~A)&(~C)&(~D) | (~A)&B&(~D) | A&(~B)&(~C);
assign g = (~A)&C&(~D) | (~A)&(~B)&C | (~A)&B&(~C) | A&(~B)&(~C);

endmodule

module t_Seven_Seg_Display_V2001_CA ();
 wire [6: 0] Display;
 reg [3: 0] BCD;

 parameter BLANK = 7'b000_0000;
 parameter ZERO = 7'b111_1110; // h7e
 parameter ONE = 7'b011_0000; // h30
 parameter TWO = 7'b110_1101; // h6d
 parameter THREE = 7'b111_1001; // h79
 parameter FOUR = 7'b011_0011; // h33

 parameter FIVE = 7'b101_1011; // h5b
 parameter SIX = 7'b001_1111; // h1f
 parameter SEVEN = 7'b111_0000; // h70
 parameter EIGHT = 7'b111_1111; // h7f
 parameter NINE = 7'b111_1011; // h7b

initial #120 $finish;
initial fork

 #10 BCD = 0;
 #20 BCD = 1;
 #30 BCD = 2;
 #40 BCD = 3;
 #50 BCD = 4;
 #60 BCD = 5;
 #70 BCD = 6;
 #80 BCD = 7;
 #90 BCD = 8;
 #100 BCD = 9;

join

 Seven_Seg_Display_V2001_CA M0 (Display, BCD);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

86

endmodule

4.52 (a) Incrementer for unsigned 4-bit numbers

module Problem_4_52a_Data_Flow (output [3: 0] sum, output carry, input [3: 0] A);
assign {carry, sum} = A + 1;

endmodule

module t_Problem_4_52a_Data_Flow;
wire [3: 0] sum;
wire carry;
reg [3: 0] A;

 Problem_4_52a_Data_Flow M0 (sum, carry, A);

initial # 100 $finish;
integer K;
initial begin
for (K = 0; K < 16; K = K + 1) begin A = K; #5; end

end
endmodule

 (b) Decrementer for unsigned 4-bit numbers

module Problem_4_52b_Data_Flow (output [3: 0] diff, output borrow, input [3: 0] A);
assign {borrow, diff} = A - 1;

endmodule

module t_Problem_4_52b_Data_Flow;
wire [3: 0] diff;
wire borrow;
reg [3: 0] A;

 Problem_4_52b_Data_Flow M0 (diff, borrow, A);

initial # 100 $finish;
integer K;
initial begin
for (K = 0; K < 16; K = K + 1) begin A = K; #5; end

end
endmodule

Name 0 30 60 90

A[3:0]

diff[3:0]

borrow

0

f 0

1 2

1 2

3 4

3 4

5 6

5 6

7 8

7 8

9 a

9 a

b c

b c

d e

d e

f

4.53 // BCD Adder

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

87

module Problem_4_53_BCD_Adder (
 output Output_carry,
 output [3: 0] Sum,

input [3: 0] Addend, Augend,
input Carry_in);

 supply0 gnd;
wire [3: 0] Z_Addend;
wire Carry_out;
wire C_out;
assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (w2, Z_sum[3], Z_sum[1]);
or (Output_carry, Carry_out, w1, w2);

 Adder_4_bit M0 (Carry_out, Z_sum, Addend, Augend, Carry_in);
 Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: 0] a, b, input c_in);
assign {carry, sum} = a + b + c_in;

endmodule

module t_Problem_4_53_Data_Flow;
 wire [3: 0] Sum;
 wire Output_carry;

reg [3: 0] Addend, Augend;
reg Carry_in;

 Problem_4_53_BCD_Adder M0 (Output_carry, Sum, Addend, Augend, Carry_in);

initial # 1500 $finish;
integer i, j, k;
initial begin

for (i = 0; i <= 1; i = i + 1) begin Carry_in = i; #5;
for (j = 0; j <= 9; j = j +1) begin Addend = j; #5;

for (k = 0; k <= 9; k = k + 1) begin Augend = k; #5;
 end
 end
 end

end
endmodule

Name 68 98 128 158 188

Addend[3:0]

Augend[3:0]

Carry_in

Sum[3:0]

Output_carry

2

1 2

3 4

3 4

5 6

5 6

7 8

7 8

9

1

0

9

1 2

0 1

3

2

4 5

3 4

6

5

7 8

6 7

9

8

0

2

1

9

2

0

3 4

1 2

5 6

3 4

7 8

5

3

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

88

4.54
module Nines_Complementer (// V2001

output reg [3: 0] Word_9s_Comp,
input [3: 0] Word_BCD

);
always @ (Word_BCD) begin

 Word_9s_Comp = 4'b0;
case (Word_BCD)

 4'b0000: Word_9s_Comp = 4'b1001; // 0 to 9
 4'b0001: Word_9s_Comp = 4'b1000; // 1 to 8
 4'b0010: Word_9s_Comp = 4'b1111; // 2 to 7
 4'b0011: Word_9s_Comp = 4'b0110; // 3 to 6
 4'b0100: Word_9s_Comp = 4'b1001; // 4 to 5
 4'b0101: Word_9s_Comp = 4'b0100; // 5 to 4
 4'b0110: Word_9s_Comp = 4'b0011; // 6 to 3
 4'b0111: Word_9s_Comp = 4'b0010; // 7 to 2
 4'b1000: Word_9s_Comp = 4'b0001; // 8 to 1
 4'b1001: Word_9s_Comp = 4'b0000; // 9 to 0
 default: Word_9s_Comp = 4'b1111; // Error detection

endcase
end

endmodule

module t_Nines_Complementer ();
wire [3: 0] Word_9s_Comp;
reg [3: 0] Word_BCD;

 Nines_Complementer M0 (Word_9s_Comp, Word_BCD);

initial #11$finish;
initial fork

 Word_BCD = 0;
 #10 Word_BCD = 1;
 #20 Word_BCD = 2;
 #30 Word_BCD = 3;
 #40 Word_BCD = 4;
 #50 Word_BCD = 5;
 #60 Word_BCD = 6;
 #70 Word_BCD = 7;
 #20 Word_BCD = 8;
 #90 Word_BCD = 9;
 #100 Word_BCD = 4'b1100;

join
endmodule

Name 0 60

Word_BCD[3:0]
Word_9s_Comp[3:0]

0
9 8

1 2
f 6

3
9
4 5

4
6
3 2

7
0
9

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

89

4.55 From Problem 4.19:

9's Complementer
(See Problem 4.18)

Quadruple 2 x 1 MUX

Select = 1 Select = 0
A3 A2 A1 A0

BCD Adder (See Fig. 4.14)

Cin

Select

B3 B2 B1 B0

Mode = 0 FOR Add
Mode = 1 for Subtract

// BCD Adder – Subtractor
module Problem_4_55_BCD_Adder_Subtractor (

output [3: 0] BCD_Sum_Diff,
output Carry_Borrow,
input [3: 0] B, A,
input Mode

);
wire [3: 0] Word_9s_Comp, mux_out;

 Nines_Complementer M0 (Word_9s_Comp, B);
 Quad_2_x_1_mux M2 (mux_out, Word_9s_Comp, B, Mode);
 BCD_Adder M1 (Carry_Borrow, BCD_Sum_Diff, mux_out, A, Mode);
endmodule

module Nines_Complementer (// V2001
output reg [3: 0] Word_9s_Comp,
input [3: 0] Word_BCD

);
always @ (Word_BCD) begin

 Word_9s_Comp = 4'b0;
case (Word_BCD)

 4'b0000: Word_9s_Comp = 4'b1001; // 0 to 9
 4'b0001: Word_9s_Comp = 4'b1000; // 1 to 8
 4'b0010: Word_9s_Comp = 4'b0111; // 2 to 7
 4'b0011: Word_9s_Comp = 4'b0110; // 3 to 6
 4'b0100: Word_9s_Comp = 4'b1001; // 4 to 5
 4'b0101: Word_9s_Comp = 4'b0100; // 5 to 4
 4'b0110: Word_9s_Comp = 4'b0011; // 6 to 3
 4'b0111: Word_9s_Comp = 4'b0010; // 7 to 2
 4'b1000: Word_9s_Comp = 4'b0001; // 8 to 1
 4'b1001: Word_9s_Comp = 4'b0000; // 9 to 0

default: Word_9s_Comp = 4'b1111; // Error detection
endcase

end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

90

module Quad_2_x_1_mux (output reg [3: 0] mux_out, input [3: 0] b, a, input select);
always @ (a, b, select)

case (select)
 0: mux_out = a;
 1: mux_out = b;

endcase
endmodule

module BCD_Adder (
output Output_carry,
output [3: 0] Sum,
input [3: 0] Addend, Augend,
input Carry_in);
supply0 gnd;
wire [3: 0] Z_Addend;
wire Carry_out;
wire C_out;
assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (w2, Z_sum[3], Z_sum[1]);
or (Output_carry, Carry_out, w1, w2);

 Adder_4_bit M0 (Carry_out, Z_sum, Addend, Augend, Carry_in);
 Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: 0] a, b, input c_in);
assign {carry, sum} = a + b + c_in;

endmodule

module t_Problem_4_55_BCD_Adder_Subtractor();
wire [3: 0] BCD_Sum_Diff;
wire Carry_Borrow;
reg [3: 0] B, A;
reg Mode;

 Problem_4_55_BCD_Adder_Subtractor M0 (BCD_Sum_Diff, Carry_Borrow, B, A, Mode);

 initial #1000 $finish;

integer J, K, M;
initial begin

 for (M = 0; M < 2; M = M + 1) begin
 for (J = 0; J < 10; J = J + 1) begin

for (K = 0; K < 10; K = K + 1) begin
 A = J; B = K; Mode = M; #5 ;

end
end

 end
 end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

91

Name 258 288 318 348

M

A[3:0]

B[3:0]

Word_9s_Comp[3:0]

mux_out[3:0]

BCD_Sum_Diff[3:0]

Carry_Borrow

2

 2

 7

 7

 6

3

 8

 3

 9

4

 4

 9

 5

5

 0

 4

 1

6

 6

 3 2

7

 2

 7

8

 8

 1

 3

 5

 0

 9

9

 4 6

0

 0

 9

 1

1

 7

 8

 8

2

 2

 7 6

 3

 9

3 4

 4

 9

 0 1

 4

 5

5

 6

 3

 2

6

 3

 2

 7

7

 1

 4

8

 8

 6

 5

 9

9

 0 9

0

 0

 7

 1

1

 8

 8 7

 9

2

 2

 0

3

 3

 6

 7

0

Note: For subtraction, Carry_Borrow = 1 indicates a positive result; Carry_Borrow = 0 indicates a
negative result.

Name 768 798 828 858

M

A[3:0]

B[3:0]

Word_9s_Comp[3:0]

mux_out[3:0]

BCD_Sum_Diff[3:0]

Carry_Borrow

 5

9

 4

 9 4

 5

4

 0 9

3

 6

 3 2

2

 8

 7

1

 8

 1

 7

 5

 0

 9

0 9

 0

 9

 6 5

 8

 1

8 7

 2

 7

 4 3

 6

6

 3 4

 6

 9

9

 1

 4

 5

4 3

 6

 3

 0 9

 2

2

 7

1

 8

 1

 8

 0

 9

0

 6

 0

 9

 7

9 8

 6

 8

 1

 7

 5

7

 2

6

 4

 6

 3 4

9

 9

 7

 5

4

 2

 4

 7

1

4.56
assign match = (A == B); // Assumes reg [3: 0] A, B;

4.57
// Priority encoder (See Problem 4.29)
// Caution: do not confuse logic value x with identifier x.
// Verilog 1995

module Prob_4_57 (x, y, v, D3, D2, D1, D0);
output x, y, v;
input D3, D2, D1, D0;
reg x, y, v;
...

// Verilog 2001, 2005

module Prob_4_57 (output reg x, y, v, input D3, D2, D1, D0);
always @ (D3, D2, D1, D0) begin // always @ (D3 or D2 or D1 or D0)
 x = 0;
 y = 0;
 v = 0;

casex ({D3, D2, D1, D0})
 4'b0000: {x, y, v} = 3'bxx0;
 4'bxxx1: {x, y, v} = 3'b001;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

92

 4'bxx10: {x, y, v} = 3'b011;
 4'bx100: {x, y, v} = 3'b101;
 4'b1000: {x, y, v} = 3'b110;

endcase
end

endmodule

module t_Prob_4_57;
 wire x, y, v;

reg D3, D2, D1, D0;
integer K;

 Prob_4_57 M0 (x, y, v, D3, D2, D1, D0);
initial #100 $finish;
initial begin

for (K = 0; K < 16; K = K + 1) begin {D3, D2, D1, D0} = K; #5 ; end
end

endmodule

4.58
//module shift_right_by_3_V2001 (output [31: 0] sig_out, input [31: 0] sig_in);
 // assign sig_out = sig_in >>> 3;
//endmodule

module shift_right_by_3_V1995 (output reg [31: 0] sig_out, input [31: 0] sig_in);
always @ (sig_in)

 sig_out = {sig_in[31], sig_in[31], sig_in[31], sig_in[31: 3]};
endmodule

module t_shift_right_by_3 ();
 wire [31: 0] sig_out_V1995;
 wire [31: 0] sig_out_V2001;

 reg [31: 0] sig_in;

 //shift_right_by_3_V2001 M0 (sig_out_V2001, sig_in);

 shift_right_by_3_V1995 M1 (sig_out_V1995, sig_in);
integer k;

 initial #1000 $finish;
initial begin

 sig_in = 32'hf000_0000;
 #100 sig_in = 32'h8fff_ffff;
 #500 sig_in = 32'h0fff_ffff;

end
endmodule

Name 609 619 629 639

sig_in[31:0]

sig_out_V1995[31:0] 00000001111111111111111111111111

00001111111111111111111111111111

Name 34 44 54 64

sig_in[31:0]

sig_out_V1995[31:0] 11111110000000000000000000000000

11110000000000000000000000000000

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

93

4.59
//module shift_left_by_3_V2001 (output [31: 0] sig_out, input [31: 0] sig_in);
 // assign sig_out = sig_in <<< 3;
//endmodule

module shift_left_by_3_V1995 (output reg [31: 0] sig_out, input [31: 0] sig_in);
always @ (sig_in)

 sig_out = {sig_in[28: 0], 3'b0};
endmodule

module t_shift_left_by_3 ();
 wire [31: 0] sig_out_V1995;
 //wire [31: 0] sig_out_V2001;

 reg [31: 0] sig_in;

 //shift_left_by_3_V2001 M0 (sig_out_V2001, sig_in);

 shift_left_by_3_V1995 M1 (sig_out_V1995, sig_in);
integer k;

 initial #500 $finish;
initial begin

 #100 sig_in = 32'h0000_000f;
end

endmodule

Name 0 50 100 150

sig_in[31:0]

sig_out_V1995[31:0]

xxxxxxxx

xxxxxxxx 00000078

0000000f

4.60
module BCD_to_Decimal (output reg [3: 0] Decimal_out, input [3: 0] BCD_in);

always @ (BCD_in) begin
 Decimal_out = 0;

case (BCD_in)
 4'b0000: Decimal_out = 0;
 4'b0001: Decimal_out = 1;
 4'b0010: Decimal_out = 2;
 4'b0011: Decimal_out = 3;
 4'b0100: Decimal_out = 4;
 4'b0101: Decimal_out = 5;
 4'b0110: Decimal_out = 6;
 4'b0111: Decimal_out = 7;
 4'b1000: Decimal_out = 8;
 4'b1001: Decimal_out = 9;

default: Decimal_out = 4'bxxxx;
endcase

 end
endmodule

4.61
module Even_Parity_Checker_4 (output P, C, input x, y, z);

xor (w1, x, y);
xor (P, w1, z);
xor (C, w1, w2);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

94

xor (w2, z, P);
endmodule

See Problem 4.62 for testbench and waveforms.

4.62
module Even_Parity_Checker_4 (output P, C, input x, y, z);

assign w1 = x ^ y;
assign P = w1 ^ z;
assign C = w1 ^ w2;
assign w2 = z ^ P;

endmodule

Name 0 140 280 420

x

y

z

P

C

CHAPTER 5

5.1 (a)

D

CP C

R = D'C

S = DC

Q

Q'

 (b)

D

C

R = (D + C')' =D' C

Q

Q'

s = (D' + C')' =D C
(c)

D

C

S = (DC)' =D' + C'

Q

Q'

R = ((DC)' C)' =DC + C'
 = (D + C') = (D'C)'

CP

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

95

5.2

D Q

2 x 1
mux

0

1

s

J

K

Q
D = JQ' + K'Q

C

Y

5.3 Q'(t + 1) = (JQ' + K'Q)' = (J' + Q)(K + Q') = J'Q' + KQ

0

1

00 01 11 10

Q

K
J

KQ

J

0
m0

1
m1

0
m3

0
m2

1
m4

1
m5

0
m7

1
m6

5.4
P N

0 0
0 1
1 0
1 1

Q(t + 1)

0
Q(t)
Q'(t)

1

P N Q(t)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Q(t + 1)

0
0
0
1
1
0
1
1

(a) (b)

0

1

00 01 11 10

Q

N
P

NQ

P

m0 m1
1

m3 m2

1
m4 m5

1
m7

1
m6

Q(t+1) = PQ' + NQ

Q(t) Q(t+1)

0 0
0 1
1 0
1 1

P N(c)

0 x
1 x
x 0
x 1

(d) Connect P and N together.

5.5
The truth table describes a combinational circuit.
The state table describes a sequential circuit.
The characteristic table describes the operation of a flip-flop.
The excitation table gives the values of flip-flop inputs for a given state transition.
The four equations correspond to the algebraic expression of the four tables.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

96

5.6 (a)

D Q
Axy' + xA

C

D Q

B

z

x
y

CP

A B
0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0 0
1 0
0 0
0 0
0 1
1 1
0 0
0 0
0 0
1 0
1 1
1 1
0 1
1 1
1 1
1 1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

x y A B z

Pr
es

en
t

st
at

e

In
pu

ts

N
ex

t
st

at
e

O
ut

pu
t

00 01

10 11

00/0
10/0
11/0 10/1

11/1

00/1

01/100/100/001/0

01/0

10/0

11/0
01/1
10/1
11/1

(b) (c)

5.7

Q
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

x y Q S

Pr
es

en
t

st
at

e

In
pu

ts

N
ex

t
st

at
e

O
ut

pu
t

0 1

00/0
01/0
10/1 11/0

00/1

01/0
10/0
11/1

0
0
0
0
1
1
1
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

S = x y Q
Q(t + 1) = xy + xQ + yQ

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

97

5.8 A counter with a repeated sequence of 00, 01, 10.

A B
0 0
0 1
1 0
1 1

0 0
1 0
0 0
0 0

0
1
1
1

A B

Pr
es

en
t

st
at

e
N

ex
t

st
at

e FF
Inputs
TA TB

00 01

11 10

1
1
0
1

TA = A + B
TB = A' + B

Repeated sequence:
00 01 10

5.9

00 01

11 10

A(t+1) = JAA' + K'A = xA' + BA
B(t+1) = JBB' + K'BB = xB' + A'B

0 0

0

11

1

0, 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

98

5.10 (a) JA = Bx + B'y' JB = A'x
 KA = B'xy' KB = A + xy' z = Axy + Bx'y'

1

A B

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

1 0
0 0
1 1
0 1
0 1
0 1
1 0
1 1
1 0
1 0
0 0
1 0
1 0
1 0
1 0
1 0

0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1

x y A B z

Pr
es

en
t

st
at

e

In
pu

ts

N
ex

t
st

at
e

O
ut

pu
t

1 0
0 0
1 1
0 0
0 0
0 0
1 0
1 0
1 0
0 0
1 1
0 0
0 0
0 0
1 0
1 0

0 0
0 0
1 1
1 0
0 0
0 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1

FF
Outputs
JA KA JA JB

(b) (c)

00

01

11

10

00 01 11 10

B

x
AB

xy

A

y

m0 m1 m3 m2

1 1

m4 m5

1
m7

1
m6

1
m12

1
m13

1
m15

1
m14

1
m8

1
m9 m11 m10

00

01

11

10

00 01 11 10

B

xxy

y

m0 m1 m3 m2

1 1

1
m4

1
m5

1
m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

AB

A

A(t+1) = Ax' + Bx + Ay + A'B'y'

B(t+1) = A'B'x + A'B'(x' + y)

5.11 Present state: 00 00 01 00 01 11 00 01 11 10 00 01 11 10 10
Input: 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0

Output: 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
Next state: 00 01 00 01 11 00 01 11 10 00 01 11 10 10 00

5.12 Next state OutputPresent
state 0 1 0 1

 a f b 0 0
 b d a 0 0
 d g a 1 0
 f f b 1 1
 g g d 0 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

99

5.13 (a) State: a f b c e d g h g g h a
Input: 0 1 1 1 0 0 1 0 0 1 1

Output: 0 1 0 0 0 1 1 1 0 1 0

(b) State: a f b a b d g d g g d a
Input: 0 1 1 1 0 0 1 0 0 1 1

Output: 0 1 0 0 0 1 1 1 0 1 0

5.14
Present

state
A B C

Next
state

x=0 x=1
Output

x=1 x=0

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0

000 001
011 010
000 010
110 010
000 010

0 0
0 0
0 0
0 1
0 1

a
b
c
d
e

5.15 DQ = Q J + QK

Present
state

Q

Inputs

J K

Next
state

Q

0
0
0
0
1
1
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0
0
1
1
1
0
1
0

No change
Reset to 0
Set to 1
Complement
No change
Reset to 0
Set to 1
Complement

0

1

00 01 11 10

K

J
Q

JK

Q

m0 m1

1
m3

1
m2

1
m4 m5 m7

1
m6

Q(t+1) = DQ + Q'J + QK'

D Q Q

clk Q'

J

K
Q'

5.16 (a) DA = Ax + Bx

DB = A x + Bx

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

100

Present
state
A B

Input

x

Next
state
A B

0 0
0 1
0 1
1 1
1 0
0 0
1 1
1 0

0
1
0
1
0
1
0
1

0

1

00 01 11 10

x

B
A

Bx

A

m0 m1

1
m3 m2

1
m4 m5

1
m7

1
m6

DA = Ax' + Bx

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

0

1

00 01 11 10

x

B
A

Bx

A

m0

1
m1

1
m3

1
m2

m4 m5 m7

1
m6

DB = A'x + Bx'

(b) DA = A'x + Ax'

DB = AB + Bx'

Present
state
A B

Input

x

Next
state
A B

0 0
1 1
0 1
1 0
1 0
0 0
1 1
0 1

0
1
0
1
0
1
0
1

0

1

00 01 11 10

x

B
A

Bx

A

m0

1
m1

1
m3 m2

1
m4 m5 m7

1
m6

DA = A'x + Ax'

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

0

1

00 01 11 10

x

B
A

Bx

A

m0

1
m1 m3

1
m2

m4 m5

1
m7

1
m6

DB = AB + Bx'

5.17 The output is 0 for all 0 inputs until the first 1 occurs, at which time the output is 1. Thereafter, the output
is the complement of the input. The state diagram has two states. In state 0: output = input; in state 1:
output = input'.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

101

D Q y

clk

reset_b

A x A y
Pr

es
en

t s
ta

te

In
pu

t

N
ex

t s
ta

te

O
ut

pu
t

0 1

0/0

1/1

0/1
1/0

x

reset_b

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

DA = A + x
y = Ax' + A'x

5.18 Binary up-down counter with enable E.

Flip-flop inputs
JA KA

0 x
0 x
1 x
0 x
0 x
0 x
0 x
1 x
x 0
x 0
x 1
x 0
x 0
x 0
1 0
x 1

JB KB

0 x
0 x
1 x
1 x
x 0
x 0
x 1
x 1
1 0
1 0
x 1
x 1
x 0
x 0
x 1
x 1

Next
state

Present
state
A B

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

Input
x

0 1
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0 0
0 0
1 1
0 1
0 1
0 1
0 1
1 0
1 0
1 0
0 1
1 1
1 1
1 1
1 1
1 1

A B

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

102

00

01

11

10

00 01 11 10

B

E
AB

Ex

A

x

m0 m1 m3 m2

1

m4 m5

1
m7 m6

x
m12

x
m13

x
m15

x
m14

x
m8

x
m9

x
m11

x
m10

00

01

11

10

00 01 11 10

E

E
AB

Ex

A

x

m0 m1 m3 m2

1 1

x
m4

x
m5

x
m7

x
m6

x
m12

x
m13

x
m15

x
m14

m8 m9

1
m11

1
m10

JA = (Bx + B'x')E

00

01

11

10

00 01 11 10

B

C
AB

Cx

A

x

m0 m1 m3 m2

x x x x

x
m4

x
m5

x
m7 m6

m12 m13

1
m15 m14

m8 m9 m11

1
m10

KA = (Bx + B'x')E

00

01

11

10

00 01 11 10

E

E
AB

Ex

A

x

m0 m1 m3 m2

x x x x

m4 m5

1
m7

1
m6

m12 m13

1
m15

1
m14

x
m8

x
m9

x
m11

x
m10

JB = E KB = E

5.19 (a) Unused states (see Fig. P5.19): 101, 110, 111.

Present
state
ABC

Input

x

Next
state
ABC

0
1
0
1
0
1
0
1
0
1

000
000
001
001
010
010
011
011
100
100

011
100
001
100
010
000
001
010
010
011

0
1
0
1
0
1
0
1
0
1

Output
y

d(A, B, C, x) = (10, 11, 12, 13, 14, 15)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

103

00

01

11

10

00 01 11 10

B

C
AB

Cx

A

x

m0 m1 m3 m2

1 1

m4 m5 m7 m6

x
m12

x
m13

x
m15

x
m14

m8 m9

x
m11

x
m10

00

01

11

10

00 01 11 10

B

C
AB

Cx

A

x

m0 m1 m3 m2

1 1

m4 m5 m7

1
m6

x
m12

x
m13

x
m15

x
m14

m8

1
m9

x
m11

x
m10

DA = A'B'x

00

01

11

10

00 01 11 10

B

C
AB

Cx

A

x

m0 m1 m3 m2

1

1
m4 m5

1
m7 m6

x
m12

x
m13

x
m15

x
m14

1
m8

1
m9

x
m11

x
m10

DB = A + C'x' + BCx

00

01

11

10

00 01 11 10

B

C
AB

Cx

A

x

m0 m1 m3 m2

1 1

m4

1
m5

1
m7 m6

x
m12

x
m13

x
m15

x
m14

m8 m9

x
m11

x
m10

DC = Cx'+ Ax +A'B'x' y = A'x

111 110

0/0
1/0

0/0
1/0

1/0

011

101

010

0/0

The machine is self-correcting, i.e., the
unused states transition to known states.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

104

(b) With JK flip=flops, the state table is the same as in (a).

Flip-flop inputs
JA KA

0 x
1 x
0 x
1 x
0 x
0 x
0 x
0 x
x 1
x 1

JB KB

1 x
0 x
0 x
0 x
x 0
x 1
x 1
x 0
1 x
1 x

JC KC

1 x
0 x
x 0
x 1
0 x
0 x
x 0
x 1
0 x
1 x

JA = B'x
JB = A + C'x'
JC = Ax + A'B'x'
y = A'x

KA = 1
KB = C' x+ Cx'
KC = x

The machine is self-correcting
because KA = 1.

5.20 From state table 5.4: TA (A, B, x) = (2, 3, 6), TB(A, B, x) = (0, 3, 4, 6).

0

1

00 01 11 10

x

B
A

Bx

A

1
m0 m1

1
m3 m2

1
m4 m5 m7

1
m6

0

1

00 01 11 10

x

A
Bx

A

m0 m1

1
m3

1
m2

m4 m5 m7

1
m6

B

TA = A'B + Bx' TB = B'x' + A'x + A'Bx

5.21 The statements associated with an initial keyword execute once, in sequence, with the activity expiring
after the last statment competes execution; the statements assocated with the always keyword execute
repeatedly, subject to timing control (e.g, #10).

5.22

t
20 40 60 80 100 120 140 1600

(a)

(b)

5.23 (a) RegA = 125, RegB = 125
(b) RegA = 125, RegB = 30

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

105

5.24 (a)
module DFF (output reg Q, input D, clk, preset, clear);

always @ (posedge clk, negedge preset, negedge clear)
if (preset == 0) Q <= 1'b1;
else if (clear == 0) Q <= 1'b0;
else Q <= D;

endmodule

module t_DFF ();
wire Q;
reg clk, preset, clear;
reg D;

 DFF M0 (Q, D, clk, preset, clear);

initial #160 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #10 preset = 0;
 #20 preset = 1;
 #50 clear = 0;
 #80 clear = 1;
 #10 D = 1;
 #100 D = 0;
 #200 D = 1;

join
endmodule

Name 0 60 120

clk
preset
clear
D
Q

 (b) module DFF (output reg Q, input D, clk, preset, clear);
always @ (posedge clk)

if (preset == 0) Q <= 1'b1;
else if (clear == 0) Q <= 1'b0;
else Q <= D;

endmodule

Name 0 60 120

clk

preset

clear

D

Q

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

106

5.25
module Dual_Input_DFF (output reg Q, input D1, D2, select, clk, reset_b);

always @ (posedge clk, negedge reset_b)
if (reset_b == 0) Q <= 0;
else Q <= select ? D2 : D1;

endmodule

module t_Dual_Input_DFF ();
wire Q;
reg D1, D2, select, clk, reset_b;

 Dual_Input_DFF M0 (Q, D1, D2, select, clk, reset_b);
initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end

 initial fork
 select = 0;
 #30 select = 1;
 #60 select = 0;
 join

initial fork
 #2 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;
 D1 = 0;
 D2 = 1;

join
endmodule

0 30 60 90Name

clk
reset_b
select

D
1D
2
Q

5.26 (a)

 Q(t + 1) = JQ + K Q

 When Q = 0, Q(t + 1) = J
 When Q = 1, Q(t + 1) = K

module JK_Behavior_a (output reg Q, input J, K, CLK, reset_b);
 always @ (posedge CLK, negedge reset_b)

if (reset_b == 0) Q <= 0; else
 if (Q == 0) Q <= J;
 else Q <= ~K;
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

107

 (b)

module JK_Behavior_b (output reg Q, input J, K, CLK, reset_b);
 always @ (posedge CLK, negedge reset_b)

if (reset_b == 0) Q <= 0;
else

 case ({J, K})
 2'b00: Q <= Q;
 2'b01: Q <= 0;
 2'b10: Q <= 1;
 2'b11: Q <= ~Q;

endcase
endmodule

module t_Prob_5_26 ();
wire Q_a, Q_b;
reg J, K, clk, reset_b;
JK_Behavior_a M0 (Q_a, J, K, clk, reset_b);
JK_Behavior_b M1 (Q_b, J, K, clk, reset_b);

initial #100 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 J =0; K = 0;
 #20 begin J= 1; K = 0; end
 #30 begin J = 1; K = 1; end
 #40 begin J = 0; K = 1; end
 #50 begin J = 1; K = 1; end

join
endmodule

0 40 80Name

clk
reset_b

J
K

Q_a
Q_b

5.27
// Mealy FSM zero detector (See Fig. 5.16)
module Mealy_Zero_Detector (

output reg y_out,
input x_in, clock, reset

);
reg [1: 0] state, next_state;
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clock, negedge reset) // state transition
 if (reset == 0) state <= S0;

else state <= next_state;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

108

always @ (state, x_in) // Form the next state
case (state)

 S0: begin y_out = 0; if (x_in) next_state = S1; else next_state = S0; end
 S1: begin y_out = ~x_in; if (x_in) next_state = S3; else next_state = S0; end
 S2: begin y_out = ~x_in; if (~x_in) next_state = S0; else next_state = S2; end
 S3: begin y_out = ~x_in; if (x_in) next_state = S2; else next_state = S0; end

endcase

endmodule

module t_Mealy_Zero_Detector;
wire t_y_out;
reg t_x_in, t_clock, t_reset;

Mealy_Zero_Detector M0 (t_y_out, t_x_in, t_clock, t_reset);

initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork
 t_reset = 0;
 #2 t_reset = 1;
 #87 t_reset = 0;
 #89 t_reset = 1;
 #10 t_x_in = 1;
 #30 t_x_in = 0;
 #40 t_x_in = 1;
 #50 t_x_in = 0;
 #52 t_x_in = 1;
 #54 t_x_in = 0;
 #70 t_x_in = 1;
 #80 t_x_in = 1;
 #70 t_x_in = 0;
 #90 t_x_in = 1;
 #100 t_x_in = 0;
 #120 t_x_in = 1;
 #160 t_x_in = 0;
 #170 t_x_in = 1;

 join
endmodule

Note: Simulation results match Fig. 5.22.

6 46 86 126 166

0 1 3 0 1 0 0 1 0 1 3 2 0 1

Name

t_clock
t_reset

state[1:0]

t_x_in
t_y_out

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

109

5.28 (a)
module Prob_5_28a (output A, input x, y, clk, reset_b);
parameter s0 = 0, s1 = 1;
reg state, next_state;
assign A = state;

always @ (posedge clk, negedge reset_b)
 if (reset_b == 0) state <= s0; else state <= next_state;

always @ (state, x, y) begin
 next_state = s0;

case (state)
 s0: case ({x, y})
 2'b00, 2'b11: next_state = s0;
 2'b01, 2'b10: next_state = s1;
 endcase
 s1: case ({x, y})
 2'b00, 2'b11: next_state = s1;
 2'b01, 2'b10: next_state = s0;
 endcase

endcase
end

endmodule
module t_Prob_5_28a ();

wire A;
reg x, y, clk, reset_b;
Prob_5_28a M0 (A, x, y, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 x =0; y = 0;
 #20 begin x= 1; y = 1; end
 #30 begin x = 0; y = 0; end
 #40 begin x = 1; y = 0; end
 #50 begin x = 0; y = 0; end
 #60 begin x = 1; y = 1; end
 #70 begin x = 1; y = 0; end
 #80 begin x = 0; y = 1; end

join
endmodule

0 80 160N am e

clk
reset_b
x
y
A

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

110

(b)
module Prob_5_28b (output A, input x, y, Clock, reset_b);
 xor (w1, x, y);
 xor (w2, w1, A);
 DFF M0 (A, w2, Clock, reset_b);
endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Q <= 0;
else Q <= D;

endmodule

module t_Prob_5_28b ();
wire A;
reg x, y, clk, reset_b;
Prob_5_28b M0 (A, x, y, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 x =0; y = 0;
 #20 begin x= 1; y = 1; end
 #30 begin x = 0; y = 0; end
 #40 begin x = 1; y = 0; end
 #50 begin x = 0; y = 0; end
 #60 begin x = 1; y = 1; end
 #70 begin x = 1; y = 0; end
 #80 begin x = 0; y = 1; end

join
endmodule

0 60 120 180Name

Clock
reset_b

x
y

A

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

111

(c) See results of (b) and (c).
module t_Prob_5_28c ();

wire A_a, A_b;
reg x, y, clk, reset_b;
Prob_5_28a M0 (A_a, x, y, clk, reset_b);

 Prob_5_28b M1 (A_b, x, y, clk, reset_b);

initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 x =0; y = 0;
 #20 begin x= 1; y = 1; end
 #30 begin x = 0; y = 0; end
 #40 begin x = 1; y = 0; end
 #50 begin x = 0; y = 0; end
 #60 begin x = 1; y = 1; end
 #70 begin x = 1; y = 0; end
 #80 begin x = 0; y = 1; end

join
endmodule

0 60 120 180Name

clk
reset_b

x
y

A_a
A_b

5.29
module Prob_5_29 (output reg y_out, input x_in, clock, reset_b);
 parameter s0 = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;

reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
 y_out = 0;
 next_state = s0;

case (state)
 s0: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
 s1: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1; y_out = 0; end
 s2: if (x_in) begin next_state = s0; y_out = 1; end else begin next_state = s2; y_out = 0; end
 s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1; y_out = 0; end
 s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end

default: next_state = 3'bxxx;
endcase

end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

112

module t_Prob_5_29 ();
 wire y_out;

reg x_in, clk, reset_b;

 Prob_5_29 M0 (y_out, x_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 // Trace the state diagram and monitor y_out
 x_in = 0; // Drive from s0 to s3 to S1 and park
 #40 x_in = 1; // Drive to s4 to s3 to s2 to s0 to s4 and loop
 #90 x_in = 0; // Drive from s0 to s3 to s2 and part
 #110 x_in = 1; // Drive s0 to s4 etc

join
endmodule

0 40 80 120

3 1 4 3 2 0 4 2 0 4

Name

clk
reset_b
x_in
state[2:0]
y_out

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

113

5.30

With blocking (=) assignment operator:

D

C

A

B
D

C

C

E

CLK

Q

With non-blocking (<=) assignment operator:

A

B
D

C

C

CLK

Q

Note: The expression substitution implied by the sequential ordering with the blocking assignment operator results.
in the elimination of E by a synthesis tool. To retain E, it is necessary to declare E to be an output port of the
module.

5.31
module Seq_Ckt (input A, B, C, CLK, output reg Q);
 reg E;
 always @ (posedge CLK)
 begin
 Q = E | C;
 E = A & B;
 end
endmodule

Note: The statements must be written in an order than produces the effect of concurrent assignments.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

114

5.32

initial begin
 enable = 0; A = 0; B = 0; C = 0; D = 1; E = 1; F = 1;
 # 10 B = 1;
 C = 1;
 D = 0;
#10 A = 1;
 B = 0;
 D = 1;
 E = 0;
#10 B = 1;
 E = 1;
 F = 0;
#10 enable = 1;
 A = 0;
 B = 0;
 F = 0;
#10 B = 1;
#10 A = 1;
 B = 0;
#10 B = 1;
end

initial fork
 enable = 0; A = 0; B = 0; C = 0; D = 1; E = 1; F = 1;
 #40 enable = 1;
 #20 A = 1;
 #40 A = 0;
 #60 A = 1;
 #10 B = 1;
 #20 B = 0;
 #30 B = 1;
 #40 B = 0;
 #50 B = 1;
 #60 B = 0;
 #70 B = 1;
 #10 C = 1;
 #10 D = 0;
 #20 D = 1;
 #20 E = 0;
 #30 E = 1;
 #30 F = 0;
 #40 F = 1;
join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

115

5.33 Signal transitions that are caused by input signals that change on the active edge of the clock race with
the clock itself to reach the affected flip-flops, and the outcome is indeterminate (unpredictable).
Conversely, changes caused by inputs that are synchronized to the inactive edge of the clock reach
stability before the active edge, with predictable outputs of the flip-flops that are affected by the inputs.

5.34
module JK_flop_Prob_5_34 (output Q, input J, K, clk);
 wire K_bar;

D_flop M0 (Q, D, clk);
 Mux M1 (D, J, K_bar, Q);
 Inverter M2 (K_bar, K);
endmodule

module D_flop (output reg Q, input D, clk);
always @ (posedge clk) Q <= D;

endmodule

module Inverter (output y_bar, input y);
assign y_bar = ~y;

endmodule

module Mux (output y, input a, b, select);
assign y = select ? a: b;

endmodule

module t_JK_flop_Prob_5_34 ();
wire Q;
reg J, K, clock;

 JK_flop_Prob_5_34 M0 (Q, J, K, clock);
 initial #500 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork
 #10 begin J = 0; K = 0; end // toggle Q unknown
 #20 begin J = 0; K = 1; end // set Q to 0
 #30 begin J = 1; K = 0; end // set q to 1
 #40 begin J = 1; K = 1; end // no change
 #60 begin J = 0; K = 0; end // toggle Q
 join
endmodule

Name 0 30 60 90

clock

J

K

Q

5.35
initial begin
 enable = 0; A = 0; B = 0; C = 0; D = 1; E = 1; F = 1;
 #10 begin B = 1; C = 1; D = 0; end
 #10 begin A = 1; B = 0; D = 1; E = 0; end
 #10 begin A = 1; B = 0; E = 1; F = 0; end
 #10 begin enable = 1; A = 0; B = 0; F = 1; end
 #10 begin B = 1; end
 #10 begin A = 1; B = 0; end
 #10 B = 1;
end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

116

initial fork
 enable = 0;
 #40 enable = 1;
 #20 A = 1;
 #40 A =0;
 #60 A = 1;

 #10 B = 1;
 #20 B = 0;
 #30 B = 1;
 #40 B = 0;
 #50 B = 1;
 #60 B = 0;
 #70 B = 1;

 #10 C = 1;

 #10 D = 0;
 #20 D = 1;

 #20 E = 0;
 #30 E = 1;

 #30 F = 0;
 #40 F = 1;
join

5.36 Note: See Problem 5.8 (counter with repeated sequence: (A, B) = 00, 01, 10, 00

// See Fig. P5.8
module Problem_5_36 (output A, B, input Clock, reset_b);

or (T_A, A, B);
or (T_B, A_b, B);

 T_flop M0 (A, A_b, T_A, Clock, reset_b);
 T_flop M1 (B, B_b, T_B, Clock, reset_b);
endmodule

module T_flop (output reg Q, output QB, input T, Clock, reset_b);
assign QB = ~ Q;
always @ (posedge Clock, negedge reset_b)

if (reset_b == 0) Q <= 0;
else if (T) Q <= ~Q;

endmodule

module t_Problem_5_36 ();
wire A, B;
reg Clock, reset_b;

 Problem_5_36 M0 (A, B, Clock, reset_b);

initial #350$finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

117

0 30 60 90Name

Clock
reset_b

A
B

5.37
module Problem_5_37_Fig_5_25 (output reg y, input x_in, clock, reset_b);

 parameter a = 3'b000, b = 3'b001, c = 3'b010, d = 3'b011, e = 3'b100, f = 3'b101, g = 3'b110;
 reg [2: 0] state, next_state;

 always @ (posedge clock, negedge reset_b)
 if (reset_b == 0) state <= a;
 else state <= next_state;

 always @ (state, x_in) begin
 y = 0;
 next_state = a;
 case (state)
 a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end

 b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end

 c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end

 d: if (x_in == 0) begin y = 0; next_state = e; end
else begin y = 1; next_state = f; end

 e: if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state = f; end

 f: if (x_in == 0) begin y = 0; next_state = g; end
else begin y = 1; next_state = f; end

 g: if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state = f; end

 default: next_state = a;
 endcase
 end
endmodule
module Problem_5_37_Fig_5_26 (output reg y, input x_in, clock, reset_b);
 parameter a = 3'b000, b = 3'b001, c = 3'b010, d = 3'b011, e = 3'b100;
 reg [2: 0] state, next_state;

 always @ (posedge clock, negedge reset_b)
 if (reset_b == 0) state <= a;
 else state <= next_state;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

118

 always @ (state, x_in) begin
 y = 0;
 next_state = a;
 case (state)
 a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end

 b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end

 c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end

 d: if (x_in == 0) begin y = 0; next_state = e; end
else begin y = 1; next_state = d; end

 e: if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state = d; end

 default: next_state = a;
 endcase
 end
endmodule

module t_Problem_5_37 ();
wire y_Fig_5_25, y_Fig_5_26;
reg x_in, clock, reset_b;

 Problem_5_37_Fig_5_25 M0 (y_Fig_5_25, x_in, clock, reset_b);
 Problem_5_37_Fig_5_26 M1 (y_Fig_5_26, x_in, clock, reset_b);

wire [2: 0] state_25 = M0.state;
wire [2: 0] state_26 = M1.state;

initial #350 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 x_in = 0;
 #2 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;
 #20 x_in = 1;
 #40 x_in = 0; // abdea, abdea

 #60 x_in = 1;
 #100 x_in = 0; // abdf....fga, abd ... dea

 #120 x_in = 1;
 #160 x_in = 0;
 #170 x_in = 1;
 #200 x_in = 0; // abdf....fgf...fga, abd ...ded...ea

 #220 x_in = 1;
 #240 x_in = 0;
 #250 x_in = 1; // abdef... // abded...

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

119

0 110 220

0
0

1
1 3

3
4
4 1

1
3 5

3 4
6 0

0
3 5

3
5
3 4

6
0
0

1
1 4

4 3
5

Name

clock
reset_b

x_in

state_25[2:0]
state_26[2:0]

y_Fig_5_25
y_Fig_5_26

5.38 (a)
module Prob_5_38a (input x_in, clock, reset_b);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;

reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
 next_state = s0;

case (state)
 s0: if (x_in == 0) next_state = s0;

else if (x_in == 1) next_state = s3;

 s1: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

 s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

 s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;

default: next_state = s0;
endcase

end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

120

module t_Prob_5_38a ();
 reg x_in, clk, reset_b;

 Prob_5_38a M0 (x_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 #2 x_in = 0;
 #20 x_in = 1;
 #60 x_in = 0;
 #80 x_in = 1;
 #90 x_in = 0;
 #110 x_in = 1;
 #120 x_in = 0;
 #140 x_in = 1;
 #150 x_in = 0;
 #170 x_in= 1;

join
endmodule

0 60 120 180

0 3 1 2 0 3 1 2 0 3

Name

clk
reset_b

x_in
state[1:0]

 (b)
module Prob_5_38b (input x_in, clock, reset_b);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;

reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
 next_state = s0;

case (state)
 s0: if (x_in == 0) next_state = s0;

else if (x_in == 1) next_state = s3;

 s1: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

 s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

 s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;

default: next_state = s0;
endcase

end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

121

endmodule

module t_Prob_5_38b ();

reg x_in, clk, reset_b;

 Prob_5_38b M0 (x_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 #2 x_in = 0;
 #20 x_in = 1;
 #60 x_in = 0;
 #80 x_in = 1;
 #90 x_in = 0;
 #110 x_in = 1;
 #120 x_in = 0;
 #140 x_in = 1;
 #150 x_in = 0;
 #170 x_in= 1;

join
endmodule

0 60 120 180

0 3 1 2 0 3 1 2 0 3 1 2 0

Name

clk
reset_b

x_in
state[1:0]

5.39
module Serial_2s_Comp (output reg B_out, input B_in, clk, reset_b);
// See problem 5.17

parameter S_0 = 1'b0, S_1 = 1'b1;
reg state, next_state;
always @ (posedge clk, negedge reset_b) begin

if (reset_b == 0) state <= S_0;
else state <= next_state;

end

always @ (state, B_in) begin
 B_out = 0;

case (state)
 S_0: if (B_in == 0) begin next_state = S_0; B_out = 0; end

else if (B_in == 1) begin next_state = S_1; B_out = 1; end

 S_1: begin next_state = S_1; B_out = ~B_in; end
 default: next_state = S_0;

endcase
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

122

module t_Serial_2s_Comp ();
 wire B_in, B_out;

reg clk, reset_b;
reg [15: 0] data;
assign B_in = data[0];

 always @ (negedge clk, negedge reset_b)
if (reset_b == 0) data <= 16'ha5ac; else data <= data >> 1; // Sample bit stream

 Serial_2s_Comp M0 (B_out, B_in, clk, reset_b);

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #10 reset_b = 0;
 #12 reset_b = 1;

join
endmodule

Name 0 60 120

clk

reset_b

B_in

state

B_out

5.40

s0

s1

s2

s3 0x0x

0x

EF = 0x

11

1111

11

10

10
10

10

module Prob_5_40 (input E, F, clock, reset_b);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;

reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

123

always @ (state, E, F) begin
 next_state = s0;

case (state)
 s0: if (E == 0) next_state = s0;

else if (F == 1) next_state = s1; else next_state = s3;

 s1: if (E == 0) next_state = s1;
else if (F == 1) next_state = s2; else next_state = s0;

 s2: if (E == 0) next_state = s2;
else if (F == 1) next_state = s3; else next_state = s1;

 s3: if (E == 0) next_state = s3;
else if (F == 1) next_state = s0; else next_state = s2;

default: next_state = s0;
endcase

end
endmodule

module t_Prob_5_40 ();

reg E, F, clk, reset_b;

 Prob_5_40 M0 (E, F, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 #2 E = 0;
 #20 begin E = 1; F = 1; end
 #60 E = 0;
 #80 E = 1;
 #90 E = 0;
 #110 E = 1;
 #120 E = 0;
 #140 E = 1;
 #150 E = 0;
 #170 E= 1;
 #170 F = 0;

join
endmodule

0 100 200

0 1 2 3 0 1 2 3 2 1 0 3 2 1

Name

clk
reset_b

E
F

state[1:0]

5.41

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

124

module Prob_5_41 (output reg y_out, input x_in, clock, reset_b);
 parameter s0 = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;

reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
 y_out = 0;
 next_state = s0;

case (state)
 s0: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
 s1: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1; y_out = 0; end
 s2: if (x_in) begin next_state = s0; y_out = 1; end else begin next_state = s2; y_out = 0; end
 s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1; y_out = 0; end
 s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end

default: next_state = 3'bxxx;
endcase

end
endmodule

module t_Prob_5_41 ();
 wire y_out;

reg x_in, clk, reset_b;

 Prob_5_41 M0 (y_out, x_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0; // Initialize to s0
 #4 reset_b = 1;
 // Trace the state diagram and monitor y_out
 x_in = 0; // Drive from s0 to s3 to S1 and park
 #40 x_in = 1; // Drive to s4 to s3 to s2 to s0 to s4 and loop
 #90 x_in = 0; // Drive from s0 to s3 to s2 and part
 #110 x_in = 1; // Drive s0 to s4 etc

join
endmodule

0 40 80 120

3 1 4 3 2 0 4 2 0 4

Name

clk
reset_b
x_in
state[2:0]
y_out

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

125

5.42
module Prob_5_42 (output A, B, B_bar, y, input x, clk, reset_b);
// See Fig. 5.29
 wire w1, w2, w3, D1, D2;
 and (w1, A, x);
 and (w2, B, x);
 or (D_A, w1, w2);

 and (w3, B_bar, x);
 and (y, A, B);
 or (D_B, w1, w3);

DFF M0_A (A, D_A, clk, reset_b);
DFF M0_B (B, D_B, clk, reset_b);

 not (B_bar, B);
endmodule

module DFF (output reg Q, input data, clk, reset_b);
always @ (posedge clk, negedge reset_b)

 if (reset_b == 0) Q <= 0; else Q <= data;
endmodule

module t_Prob_5_42 ();
wire A, B, B_bar, y;
reg bit_in, clk, reset_b;
wire [1:0] state;
assign state = {A, B};
wire detect = y;

 Prob_5_42 M0 (A, B, B_bar, y, bit_in, clk, reset_b);

 // Patterns from Problem 5.45.

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0;
 #4reset_b = 1;
 // Trace the state diagram and monitor detect (assert in S3)
 bit_in = 0; // Park in S0
 #20 bit_in = 1; // Drive to S0
 #30 bit_in = 0; // Drive to S1 and back to S0 (2 clocks)
 #50 bit_in = 1;
 #70 bit_in = 0; // Drive to S2 and back to S0 (3 clocks)
 #80 bit_in = 1;
 #130 bit_in = 0; // Drive to S3, park, then and back to S0

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

126

0 50 100 150

0 1 0 1 2 0 1 2 3 0x

Name

reset_b

clk

A

B

B_bar

y

state[1:0]

detect

5.43
module Binary_Counter_3_bit (output [2: 0] count, input clk, reset_b)

always @ (posedge clk) if (reset_b == 0) count <= 0; else count <= next_count;
always @ (count) begin

case (state)
 3'b000: count = 3'b001;
 3'b001: count = 3'b010;
 3'b010: count = 3'b011;
 3'b011: count = 3'b100;
 3'b100: count = 3'b001;
 3'b101: count = 3'b010;
 3'b110: count = 3'b011;
 3'b111: count = 3'b100;

default: count = 3'b000;
endcase

end
endmodule

module t_Binary_Counter_3_bit ()
wire [2: 0] count;
reg clk, reset_b;

 Binary_Counter_3_bit M0 (count, clk, reset_b)

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 reset = 1;
 #10 reset = 0;
 #12 reset = 1;
endmodule

Name 0 50 100 150

reset_b

clk

count[2:0] x 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

127

Alternative: structural model.

module Prob_5_41 (output A2, A1, A0, input T, clk, reset_bar);
wire toggle_A2;

 T_flop M0 (A0, T, clk, reset_bar);
 T_flop M1 (A1, A0, clk, reset_bar);
 T_flop M2 (A2, toggle_A2, clk, reset_bar);

and (toggle_A2, A0, A1);
endmodule

module T_flop (output reg Q, input T, clk, reset_bar);
always @ (posedge clk, negedge reset_bar)

if (!reset_bar) Q <= 0; else if (T) Q <= ~Q; else Q <= Q;
endmodule

module t_Prob_5_41;
 wire A2, A1, A0;

wire [2: 0] count = {A2, A1, A0};
reg T, clk, reset_bar;

 Prob_5_41 M0 (A2, A1, A0, T, clk, reset_bar);

initial #200 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork reset_bar = 0; #2 reset_bar = 1; #40 reset_bar = 0; #42 reset_bar = 1; join
initial fork T = 0; #20 T = 1; #70 T = 0; #110 T = 1; join

endmodule

If the input to A0 is changed to 0 the counter counts incorrectly. It resumes a correct counting
sequence when T is changed back to 1.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

128

5.44
module DFF_synch_reset (output reg Q, input data, clk, reset);

always @ (posedge clk)
 if (reset) Q <= 0; else Q <= data;
endmodule

module t_DFF_synch_reset ();
reg data, clk, reset;
wire Q;

 DFF_synch_reset M0 (Q, data, clk, reset);

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 reset = 1;
 #20 reset = 1;
 #40 reset = 0;

 #10 data = 1;
 #50 data = 0;
 #60 data = 1;
 #100 data = 0;

join
endmodule

Name 0 50 100 150

reset

clk

data

Q

5.45
module Seq_Detector_Prob_5_45 (output detect, input bit_in, clk, reset_b);
parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3;
reg [1: 0] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= S0; else state <= next_state;

always @ (state, bit_in) begin
 next_state = S0;

case (state)
 0: if (bit_in) next_state = S1; else state = S0;
 1: if (bit_in) next_state = S2; else next_state = S0;
 2: if (bit_in) next_state = S3; else state = S0;
 3: if (bit_in) next_state = S3; else next_state = S0;

default: next_state = S0;
endcase

 end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

129

module t_Seq_Detector_Prob_5_45 ();
 wire detect;

reg bit_in, clk, reset_b;

Seq_Detector_Prob_5_45 M0 (detect, bit_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 #2 reset_b = 1;
 #3 reset_b = 0;
 #4reset_b = 1;
 // Trace the state diagram and monitor detect (assert in S3)
 bit_in = 0; // Park in S0
 #20 bit_in = 1; // Drive to S0
 #30 bit_in = 0; // Drive to S1 and back to S0 (2 clocks)
 #50 bit_in = 1;
 #70 bit_in = 0; // Drive to S2 and back to S0 (3 clocks)
 #80 bit_in = 1;
 #130 bit_in = 0; // Drive to S3, park, then and back to S0

join
endmodule

Name 0 40 80 120

reset_b

clk

bit_in

state[1:0]

detect

0 1 0 1 2 0 1 2 3 0x

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

130

CHAPTER 6

6.1 The structure shown below gates the clock through a nand gate. In practice, the circuit can exhibit two
problems if the load signal is asynchronous: (1) the gated clock arrives in the setup interval of the clock
of the flip-flop, causing metastability, and (2) the load signal truncates the width of the clock pulse.
Additionally, the propagation delay through the nand gate might compromise the synchronicity of the
overall circuit.

Connect to the
clock input of each
flip-flop.

Load

Clock

6.2 Modify Fig. 6.2, with each stage replicating the first stage shown below:

D Q A0

clk

I0

clear

load

Load Clear D Operation

0 0 A0 No change
0 1 0 Clear to 0
1 x I0 Load input

 Note: In this design, load has priority over clear.

6.3 Serial data is transferred one bit at a time. Parallel data is transferred n bits at a time (n > 1).

A shift register can convert serial data into parallel data by first shifting one bit a time into the register
and then taking the parallel data from the register outputs.

A shift register with parallel load can convert parallel data to a serial format by first loading the data in
parallel and then shifting the bits one at a time.

6.4 101101 1101; 0110; 1011; 1101; 0110; 1011

6.5 (a) See Fig. 11.19: IC 74194

 (b) See Fig. 11.20. Connect two 74194 ICs to form an 8-bit register.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

131

6.6 First stage of register:

D Q A0

clk

serial input

I0

load

shift

6.7 First stage of register:

D Q
Ai

clk

Se
le

ct

0
1
2
3

4 x 1
 Mux Y

Q'
A'i

0
Ii

S1
S0

6.8 A = 0010, 0001, 1000, 1100. Carry = 1, 1, 1, 0

6.9 (a) In Fig. 6.5, complement the serial output of shift register B (with an inverter), and set the initial
value of the carry to 1.

(b)

Present
state

x y
Inputs

Q

Next
state

JQ KQ

0 x
1 x
0 x
0 x
x 0
x 0
x 1
x 0

0
1
0
0
1
1
0
1

0

1

00 01 11 10

y

x
Q

xy

Q

m0

1
m1 m3 m2

x
m4

x
m5

x
m7

x
m6

JQ = x'y

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

0

1

00 01 11 10

x

x
Q

xy

Q

x
m0

x
m1

x
m3

x
m2

m4 m5 m7

1
m6

KQ = xy'

0
0
0
0
1
1
1
1

Q
Output

D

FF
inputs

0
1
1
0
1
0
0
1

D = Q x y

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

132

6.10 See solution to Problem 5.7.
Note that y = x if Q = 0, and y = x' if Q = 1. Q is set on the first 1 from x.
Note that x 0 = x, and x 1 = x'.

Q

clk

D Q

R

Shift Register

Reset to 0
initially

From
shift
control

x

Serial output

Serial input
y

6.11 (a) A count down counter.

(b) A count up counter.

6.12 Similar to diagram of Fig. 6.8.

(a) With the bubbles in C removed (positive-edge).

(b) With complemented flip-flops connected to C.

6.13

4-Bit
Ripple Counter

A1

A2

A3

A4Clear
Asynchronous, active-low)

0

1

1

0

6.14 (a) 4; (b) 9; (c) 10

6.15 The worst case is when all 10 flip-flops are complemented. The maximum delay is 10 x 3ns = 30 ns.

The maximum frequency is 109/30 = 33.3 MHz

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

133

6.16 Q8 Q4 Q2 Q1 : 1010 1100 1110 Self correcting
 Next state: 1011 1101 1111
 Next state: 0100 0100 0000

1010 1011 0100
1100 1101 0100
1110 1111 0000

6.17 With E denoting the count enable in Fig. 6.12 and D-flip-flops replacing the J-K flip-flops, the toggling
action of the bits of the counter is determined by: T0 = E, T1 = A0E, T2 = A0A1E, T3 = A0A1A2E. Since DA =
A TA the inputs of the flip-flops of the counter are determined by: DA0 = A0 E; DA1 = A1 (A0E); DA2 =
A2 (A0A1E); DA3 = A3 (A0A1A2E).

6.18 When up = down = 1 the circuit counts up.

Combinational Circuit

x

y

up

down

x

y

Add this to Fig. 6.13
up

down

up down x y Operation

0 0 0 0 No change
0 1 0 0 Count down
1 0 1 0 Count up
1 1 0 0 No change

x = up (down)'
y = (up)'down

6.19 (b) From the state table in Table 6.5:

DQ1 = Q'1
DQ2 = (1, 2, 5, 6)
DQ4 = (3, 4, 5, 6)
DQ8 = (7, 8)
Don't care: d = (10, 11, 12, 13, 14, 15)

Simplifying with maps:
DQ2 = Q2Q'1 + Q'8Q'2Q1
DQ4 = Q4Q'1 + Q4Q'2 + Q'4Q2Q1
DQ8 = Q8Q'1 + Q4Q2Q1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

134

(a)
Present

state

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

A8 A4 A2 A1

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
0 0 0 0

A8 A4 A2 A1

Next
state

0 x
0 x
0 x
0 x
0 x
0 x
0 x
1 x
x 0
x 1

0 x
0 x
0 x
1 x
x 0
x 0
x 0
x 1
0 x
0 x

0 x
1 x
x 0
x 1
0 x
1 x
x 0
x 1
0 x
0 x

1 x
x 1
1 x
x 1
1 x
x 1
1 x
x 1
1 x
x 1

JA8 KA8 JA4 KA4 JA2 KA2 JA1 KA1

Flip-flop inputs

d(A8, A4, A2, A1) = (10, 11, 12, 13, 14, 15)

JA1 = 1
KA1 = 1
JA2 = A1A'8
KA2 = A1
JA4 = A1A2
KA4 = A1A2
JA8 = A1A2A4
KA8 = A1

6.20 (a)

Fig. 6.14
Count
Load
CLK
Clear

C_out

Block diagram of 4-bit circuit:

16-bit counter needs 4 circuits
with output carry connected to
the count input of the next
stage.

(b)

Fig. 6.14 Fig. 6.14

0

26 = 64

Count = 1
Load
CLK
Clear = 1

Count
Load
CLK
Clear = 1

C_out

Load

6.21 (a)
JA0 = LI0 + L'C KA0 = LI'0 + L'C

(b)
J = [L(LI)']'(L + C) = (L' + LI)(L + C)

 LI + L'C + LIC = LI + L'C (use a map)
 K = (LI)' (L + C) = (L' + I')(L + C) = LI' + L'C

6.22

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

135

Fig. 6.14

Count = 1
Load
CLK
Clear = 1

C_out

Count sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Fig. 6.14

Count = 1
Load
CLK
Clear = 1

C_out

Count sequence: 4, 5, 6, 7, 8, 9, 10, 11, 1,2 13, 14, 15

0 0

1

Fig. 6.14

Count = 1
Load = 0
CLK
Clear

C_out

Count sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0

6.23 Use a 3-bit counter and a flip-flop (initially at 0). A start signal sets the flip-flop, which in turn enables
the counter. On the count of 7 (binary 111) reset the flip-flop to 0 to disable the count (with the value of
00 0).

6.24

Flip-flop inputs
Next
state
ABC
001
011
xxx
111
000
xxx
100
110

Present
state
ABC
000
001
010
011
100
101
110
111

TA TB TC

0
0
x
1
1
x
0
0

0
1
x
1
1
x
1
0

1
0
x
0
0
x
0
1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

136

010 101

No self-correcting

010101 100

Self-correcting

0

1

00 01 11 10

C

B
A

BC

A

m0 m1

1
m3

x
m2

1
m4

x
m5 m7 m6

0

1

00 01 11 10

C

B
A

BC

A

m0

1
m1 m3

x
m2

m4

x
m5 m7

1
m6

TB = B CTA = A B

0

1

00 01 11 10

C

B
A

BC

A

1
m0 m1 m3

x
m2

m4

x
m5

1
m7 m6

0

1

00 01 11 10

C

B
A

BC

A

1
m0 m1 m3

x
m2

m4

x
m5

1
m7 m6

TC = AC + A'B'C'TC = A C

6.25 (a) Use a 6-bit ring counter.

(b)

C
B
A

Counter of
Fig. 6.16

0
1
2
4
5
6

3 x 8
Decoder

20

21

22

T0
T1
T2
T4
T5
T6

6.26 The clock generator has a period of 12.5 ns. Use a 2-bit counter to count four pulses.

 80/4 = 20 MHz; cycle time = 1000 x 10-9 /20 = 50 ns.

6.27

Flip-flop inputs
Next
state
ABC
001
010
011
100
100
110
000
xxx

Present
state
ABC
000
001
010
011
100
101
110
111

JA KA

0 x
0 x
0 x
1 x
x x
x x
x x
x x

JB KB

0 x
1 x
x 0
x 1
0 0
1 x
x 1
x x

JC KC

1 x
x 1
1 x
x 1
1 x
x 1
0 x
x x

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

137

0

1

00 01 11 10

C

B
A

BC

A

m0 m1

1
m3 m2

x
m4

x
m5

x
m7

x
m6

0

1

00 01 11 10

C

B
A

BC

A

x
m0

x
m1

x
m3

x
m2

m4 m5

x
m7

1
m6

KA = BJA = BC

0

1

00 01 11 10

C

B
A

BC

A

m0

1
m1

x
m3

x
m2

m4

1
m5

x
m7

x
m6

0

1

00 01 11 10

C

B
A

BC

A

x
m0

x
m1

1
m3 m2

x
m4

x
m5

x
m7

1
m6

KB = A + CJB = C

111

Self-correcting

001

0

1

00 01 11 10

C

B
A

BC

A

1
m0

x
m1

x
m3

1
m2

1
m4

x
m5

x
m7 m6

0

1

00 01 11 10

C

B
A

BC

A

x
m0

1
m1

1
m3

x
m2

x
m4

1
m5

x
m7

x
m6

KC = 1JC = A' + B'

6.28
Next
state
ABC
001
010
100
xxx
110
xxx
000
xxx

Present
state
ABC
000
001
010
011
100
101
110
111

0

1

00 01 11 10

C

B
A

BC

A

m0 m1

x
m3

1
m2

1
m4

x
m5

x
m7 m6

DA = A B

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

138

0

1

00 01 11 10

C

B
A

BC

A

1
m0 m1

x
m3 m2

m4

x
m5

x
m7 m6

DC = A'B'C'

0

1

00 01 11 10

C

B
A

BC

A

1
m0

x
m1

x
m3

1
m2

1
m4

x
m5

x
m7 m6

DB = AB' + C

111Self-correcting 001

110

111

010

6.29 (a) The 8 valid states are listed in Fig. 8.18(b), with the sequence: 0, 8, 12, 14, 15, 7, 3, 1, 0,

The 8 unused states and their next states are shown below:

ABCEABCE

0000
0100
0101
0110
1001
1010
1011
1101

State Next
state

1001
1010
0010
1011
0100
1101
0101
0110

9
10
2
11
4
13
5
6

All
invalid
states

(b) Modification: DC = (A + C)B.

D Q

A
D Q

Q'

E

E'

D QD Q

clk

B C

The valid states are the same as in (a). The unused states have the following sequences: 2 9 4 8 and
10 13 6 11 5 0. The final states, 0 and 8, are valid.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

139

6.30

D Q

A E

E'

D QD Q

clk

B C D
D Q D Q

Q'

The 5-bit Johnson counter has the following state sequence:

00000 10000 11000 11100 11110
 A'E' AB' BC' CD' DE'

11111 01111 00111 00011 00001
 A'E' AB' BC' CD' DE'

ABCDE
decoded
output:

6.31
module Reg_4_bit_beh (output reg A3, A2, A1, A0, input I3, I2, I1, I0, Clock, Clear);

always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else {A3, A2, A1, A0} <= {I3, I2, I1, I0};

endmodule

module Reg_4_bit_Str (output A3, A2, A1, A0, input I3, I2, I1, I0, Clock, Clear);
 DFF M3DFF (A3, I3, Clock, Clear);
 DFF M2DFF (A2, I2, Clock, Clear);
 DFF M1DFF (A1, I1, Clock, Clear);
 DFF M0DFF (A0, I0, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)

if (clear == 0) Q <= 0; else Q <= D;
endmodule

module t_Reg_4_bit ();
wire A3_beh, A2_beh, A1_beh, A0_beh;
wire A3_str, A2_str, A1_str, A0_str;
reg I3, I2, I1, I0, Clock, Clear;
wire [3: 0] I_data = {I3, I2, I1, I0};
wire [3: 0] A_beh = {A3_beh, A2_beh, A1_beh, A0_beh};
wire [3: 0] A_str = {A3_str, A2_str, A1_str, A0_str};

 Reg_4_bit_beh M_beh (A3_beh, A2_beh, A1_beh, A0_beh, I3, I2, I1, I0, Clock, Clear);
 Reg_4_bit_Str M_str (A3_str, A2_str, A1_str, A0_str, I3, I2, I1, I0, Clock, Clear);

 initial #100 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial begin

for (K = 0; K < 16; K = K + 1) begin {I3, I2, I1, I0} = K; #10 ; end
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

140

Name 0 50 100

Clock

Clear

I_data[3:0]

I3

I2

I1

I0

A_beh[3:0]

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

A3_beh

A2_beh

A1_beh

A0_beh

A_str[3:0]

A3_str

A2_str

A1_str

A0_str

6.32 (a)

module Reg_4_bit_Load (output reg A3, A2, A1, A0, input I3, I2, I1, I0, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)

if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else if (Load) {A3, A2, A1, A0} <= {I3, I2, I1, I0};

endmodule

module t_Reg_4_Load ();
wire A3_beh, A2_beh, A1_beh, A0_beh;
reg I3, I2, I1, I0, Load, Clock, Clear;

wire [3: 0] I_data = {I3, I2, I1, I0};
wire [3: 0] A_beh = {A3_beh, A2_beh, A1_beh, A0_beh};

 Reg_4_bit_Load M0 (A3_beh, A2_beh, A1_beh, A0_beh, I3, I2, I1, I0, Load, Clock, Clear);

 initial #100 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial fork

 #20 Load = 1;
 #30 Load = 0;
 #50 Load = 1;

join
initial begin

for (K = 0; K < 16; K = K + 1) begin {I3, I2, I1, I0} = K; #10 ; end
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

141

0 50 100

0 1

0

2 3 4

2

5

5

6

6

7

7

8

8

9

9

I_data[3:0]

 I_data[3]

 I_data[2]

 I_data[1]

 I_data[0]

A_beh[3:0]

 A_beh[3]

 A_beh[2]

 A_beh[1]

 A_beh[0]

Name

Clock

Clear

Load

(b)

module Reg_4_bit_Load_str (output A3, A2, A1, A0, input I3, I2, I1, I0, Load, Clock, Clear);
 wire y3, y2, y1, y0;
 mux_2 M3 (y3, A3, I3, Load);
 mux_2 M2 (y2, A2, I2, Load);
 mux_2 M1 (y1, A1, I1, Load);
 mux_2 M0 (y0, A0, I0, Load);

 DFF M3DFF (A3, y3, Clock, Clear);
 DFF M2DFF (A2, y2, Clock, Clear);
 DFF M1DFF (A1, y1, Clock, Clear);
 DFF M0DFF (A0, y0, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)

if (clear == 0) Q <= 0; else Q <= D;
endmodule

module mux_2 (output y, input a, b, sel);
assign y = sel ? a: b;

endmodule

module t_Reg_4_Load_str ();
wire A3, A2, A1, A0;
reg I3, I2, I1, I0, Load, Clock, Clear;
wire [3: 0] I_data = {I3, I2, I1, I0};
wire [3: 0] A = {A3, A2, A1, A0};

 Reg_4_bit_Load_str M0 (A3, A2, A1, A0, I3, I2, I1, I0, Load, Clock, Clear);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

142

 initial #100 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial fork

 #20 Load = 1;
 #30 Load = 0;
 #50 Load = 1;
 #80 Load = 0;

join
initial begin

for (K = 0; K < 16; K = K + 1) begin {I3, I2, I1, I0} = K; #10 ; end
end

endmodule

0 60

0 1 2

x

3

3

4 5 6 7

4

8

8

9

Name

Clock

Clear

Load

I_data[3:0]

A[3:0]

(c)

module Reg_4_bit_Load_beh (output reg A3, A2, A1, A0, input I3, I2, I1, I0, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)

if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else if (Load) {A3, A2, A1, A0} <= {I3, I2, I1, I0};

endmodule

module Reg_4_bit_Load_str (output A3, A2, A1, A0, input I3, I2, I1, I0, Load, Clock, Clear);
 wire y3, y2, y1, y0;
 mux_2 M3 (y3, A3, I3, Load);
 mux_2 M2 (y2, A2, I2, Load);
 mux_2 M1 (y1, A1, I1, Load);
 mux_2 M0 (y0, A0, I0, Load);

 DFF M3DFF (A3, y3, Clock, Clear);
 DFF M2DFF (A2, y2, Clock, Clear);
 DFF M1DFF (A1, y1, Clock, Clear);
 DFF M0DFF (A0, y0, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)

if (clear == 0) Q <= 0; else Q <= D;
endmodule

module mux_2 (output y, input a, b, sel);
assign y = sel ? a: b;

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

143

module t_Reg_4_Load_str ();
wire A3_beh, A2_beh, A1_beh, A0_beh;
wire A3_str, A2_str, A1_str, A0_str;
reg I3, I2, I1, I0, Load, Clock, Clear;
wire [3: 0] I_data, A_beh, A_str;
assign I_data = {I3, I2, I1, I0};
assign A_beh = {A3_beh, A2_beh, A1_beh, A0_beh};
assign A_str = {A3_str, A2_str, A1_str, A0_str};

 Reg_4_bit_Load_str M0 (A3_beh, A2_beh, A1_beh, A0_beh, I3, I2, I1, I0, Load, Clock, Clear);
 Reg_4_bit_Load_str M1 (A3_str, A2_str, A1_str, A0_str, I3, I2, I1, I0, Load, Clock, Clear);

 initial #100 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial fork

 #20 Load = 1;
 #30 Load = 0;
 #50 Load = 1;
 #80 Load = 0;

join
initial begin

for (K = 0; K < 16; K = K + 1) begin {I3, I2, I1, I0} = K; #10 ; end
end

endmodule

0 60

0 1 2

x

x

3

3

3

4 5 6 7

4

4

8

8

8

9

Name

Clock

Clear

Load

I_data[3:0]

A_beh[3:0]

A_str[3:0]

6.33
// Stimulus for testing the binary counter of Example 6-3

module testcounter;
 reg Count, Load, CLK, Clr;
 reg [3: 0] IN;
 wire C0;
 wire [3: 0] A;
 Binary_Counter_4_Par_Load M0 (
 A, // Data output
 C0, // Output carry
 IN, // Data input
 Count, // Active high to count
 Load, // Active high to load
 CLK, // Positive edge sensitive
 Clr // Active low
);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

144

always
 #5 CLK = ~CLK;

initial
begin

 Clr = 0; // Clear de-asserted
 CLK = 1; // Clock initialized high
 Load = 0; Count = 1; // Enable count
 #5 Clr = 1; // Clears count, then counts for five cycles
 #50 Load = 1; IN = 4'b1100; // Count is set to 4'b1100 (12`0)
 #10 Load = 0;
 #70 Count = 0; // Count is deasserted at t = 135
 #20 $finish; // Terminate simulation
 end
endmodule
// Four-bit binary counter with parallel load
// See Figure 6-14 and Table 6-6
module Binary_Counter_4_Par_Load (

output reg [3:0] A_count, // Data output
output C_out, // Output carry
input [3:0] Data_in, // Data input
input Count, // Active high to count

 Load, // Active high to load
 CLK, // Positive edge sensitive
 Clear // Active low
);

assign C_out = Count & (~Load) & (A_count == 4'b1111);
always @ (posedge CLK, negedge Clear)
if (~Clear) A_count <= 4'b0000;
else if (Load) A_count <= Data_in;
else if (Count) A_count <= A_count + 1'b1;
else A_count <= A_count; // redundant statement

endmodule

// Note: a preferred description if the clock is given by:
// initial begin CLK = 0; forever #5 CLK = ~CLK; end

0 60 120

0 1 2 3 4

x

5 c d e f 0 1 2 3

c

Name

CLK

Clr

Load

IN[3:0]

Count

A[3:0]

C0

6.34
module Shiftreg (SI, SO, CLK);

input SI, CLK;
output SO;
reg [3: 0] Q;
assign SO = Q[0];
always @ (posedge CLK)

 Q = {SI, Q[3: 1]};
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

145

// Test plan
//
// Verify that data shift through the register
// Set SI =1 for 4 clock cycles
// Hold SI =1 for 4 clock cycles
// Set SI = 0 for 4 clock cycles
// Verify that data shifts out of the register correctly

module t_Shiftreg;
reg SI, CLK;
wire SO;

 Shiftreg M0 (SI, SO, CLK);

 initial #130 $finish;
 initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial fork
 SI = 1'b1;
 #80 SI = 0;

join
endmodule

Name 0 60 120

CLK

SI

SO

6.35 (a) Note that Load has priority over Clear.

module Prob_6_35a (output [3: 0] A, input [3:0] I, input Load, Clock, Clear);
 Register_Cell R0 (A[0], I[0], Load, Clock, Clear);
 Register_Cell R1 (A[1], I[1], Load, Clock, Clear);
 Register_Cell R2 (A[2], I[2], Load, Clock, Clear);
 Register_Cell R3 (A[3], I[3], Load, Clock, Clear);
endmodule

module Register_Cell (output A, input I, Load, Clock, Clear);
 DFF M0 (A, D, Clock);
 not (Load_b, Load);
 not (w1, Load_b);
 not (Clear_b, Clear);
 and (w2, I, w1);
 and (w3, A, Load_b, Clear_b);
 or (D, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <= D;
endmodule

module t_Prob_6_35a ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Load;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

146

 Prob_6_35a M0 (A, I, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

 I = 4'b1010;Clear = 1;
 #40 Clear = 0;
 Load = 0;
 #20 Load = 1;
 #40 Load = 0;

join
endmodule

0 60 120

0 a 0

a

Name

Clock

Clear

Load

I[3:0]

A[3:0]

(b) Note: The solution below replaces the solution given on the CD.
module Prob_6_35b (output reg [3: 0] A, input [3:0] I, input Load, Clock, Clear);
 always @ (posedge Clock)

if (Load) A <= I;
 else if (Clear) A <= 4'b0;
 //else A <= A; // redundant statement
endmodule

module t_Prob_6_35b ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Load;

 Prob_6_35b M0 (A, I, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

 I = 4'b1010; Clear = 1;
 #60 Clear = 0;
 Load = 0;
 #20 Load = 1;
 #40 Load = 0;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

147

0 60 120

0 a 0

a

Name

Clock

Clear

Load

I[3:0]

A[3:0]

(c)

module Prob_6_35c (output [3: 0] A, input [3:0] I, input Shift, Load, Clock);
 Register_Cell R0 (A[0], I[0], A[1], Shift, Load, Clock);
 Register_Cell R1 (A[1], I[1], A[2], Shift, Load, Clock);
 Register_Cell R2 (A[2], I[2], A[3], Shift, Load, Clock);
 Register_Cell R3 (A[3], I[3], A[0], Shift, Load, Clock);
endmodule

module Register_Cell (output A, input I, Serial_in, Shift, Load, Clock);
 DFF M0 (A, D, Clock);
 not (Shift_b, Shift);
 not (Load_b, Load);
 and (w1, Shift, Serial_in);
 and (w2, Shift_b, Load, I);

 and (w3, A, Shift_b, Load_b);
 or (D, w1, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <= D;
endmodule

module t_Prob_6_35c ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Shift, Load;

 Prob_6_35c M0 (A, I, Shift, Load, Clock);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

 I = 4'b1010;
 Load = 0; Shift = 0;
 #20 Load = 1;
 #40 Load = 0;
 #50 Shift = 1;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

148

0 60 120

x a 5 a 5 a 5 a 5 a 5

a

Name

Clock

Shift

Load

I[3:0]

A[3:0]

(d)
module Prob_6_35d (output reg [3: 0] A, input [3:0] I, input Shift, Load, Clock, Clear);
 always @ (posedge Clock)

if (Shift) A <= {A[0], A[3:1]};
else if (Load) A <= I;

 else if (Clear) A <= 4'b0;
 //else A <= A; // redundant statement
endmodule

module t_Prob_6_35d ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Shift, Load;

 Prob_6_35d M0 (A, I, Shift, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

 I = 4'b1010; Clear = 1;
 #100 Clear = 0;
 Load = 0;
 #20 Load = 1;
 #40 Load = 0;
 #30 Shift = 1;
 #90 Shift = 0;

join
endmodule

0 60 120

0 a 5 a 5 a 5 a 0

a

Name

Clock

Clear

Shift

Load

I[3:0]

A[3:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

149

(e)
module Shift_Register

(output [3: 0] A_par, input [3: 0] I_par, input MSB_in, LSB_in, s1, s0, CLK, Clear);
wire y3, y2, y1, y0;

 DFF D3 (A_par[3], y3, CLK, Clear);
 DFF D2 (A_par[2], y2, CLK, Clear);
 DFF D1 (A_par[1], y1, CLK, Clear);
 DFF D0 (A_par[0], y0, CLK, Clear);

 MUX_4x1 M3 (y3, I_par[3], A_par[2], MSB_in, A_par[3], s1, s0);
 MUX_4x1 M2 (y2, I_par[2], A_par[1], A_par[3], A_par[2], s1, s0);
 MUX_4x1 M1 (y1, I_par[1], A_par[0], A_par[2], A_par[1], s1, s0);
 MUX_4x1 M0 (y0, I_par[0], LSB_in, A_par[1], A_par[0], s1, s0);
endmodule

module MUX_4x1 (output reg y, input I3, I2, I1, I0, s1, s0);
always @ (I3, I2, I1, I0, s1, s0)

case ({s1, s0})
 2'b11: y = I3;
 2'b10: y = I2;
 2'b01: y = I1;
 2'b00: y = I0;

endcase
endmodule

module DFF (output reg Q, input D, clk, reset_b);
 always @ (posedge clk, negedge reset_b) if (reset_b == 0) Q <= 0; else Q <= D;
endmodule

module t_Shift_Register ();
wire [3: 0] A_par;
reg [3: 0] I_par;
reg MSB_in, LSB_in, s1, s0, CLK, Clear;

 Shift_Register M_SR(A_par, I_par, MSB_in, LSB_in, s1, s0, CLK, Clear);
initial #300 $finish;

 initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

 MSB_in = 0; LSB_in = 0;
 Clear = 0; // Active-low reset
 s1 = 0; s0 = 0; // No change
 #10 Clear = 1;
 #10 I_par = 4'hA;
 #30 begin s1 = 1; s0 = 1; end // 00: load I_par into A_par
 #50 s1 = 0; // 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
 #90 begin s1 = 1; s0 = 1; end // 11: reload A with 1010
 #100 s0 = 0; // 10: shift left (1010 to 0100 to 1000 to 000)
 #140 begin s1 = 1; s0 = 1; MSB_in = 1; LSB_in = 1; end // Repeat with MSB and LSB
 #150 s1 = 0;
 #190 begin s1 = 1; s0 = 1; end // reload with A = 1010
 #200 s0 = 0; // Shift left
 #220 s1 = 0; // Pause
 #240 s1 = 1; // Shift left

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

150

0 90 180 270

x

0 a 5 2 1 0 a 4 8 0 a d e f a 5 b 7 f

a

No
change Load

Shift
right

Name

CLK

Clear

s0

s1

I_par[3:0]

MSB_in

LSB_in

A_par[3:0]

Shift
leftLoad

(f)
module Shift_Register_BEH
(output [3: 0] A_par, input [3: 0] I_par, input MSB_in, LSB_in, s1, s0, CLK, Clear);

always @ (posedge CLK, negedge Clear) if (Clear == 0) A_par <= 4'b0;
else case ({s1, s0})

 2'b11: A_par <= I_par;
 2'b01: A_par <= {MSB_in, A_par[3: 1]};
 2'b10: A_par <= {A_par[2: 0], LSB_in};
 2'b00: A_par <=A_par;

endcase
endmodule

module t_Shift_Register ();
wire [3: 0] A_par;
reg [3: 0] I_par;
reg MSB_in, LSB_in, s1, s0, CLK, Clear;

 Shift_Register_BEH M_SR(A_par, I_par, MSB_in, LSB_in, s1, s0, CLK, Clear);
initial #300 $finish;

 initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

 MSB_in = 0; LSB_in = 0;
 Clear = 0; // Active-low reset
 s1 = 0; s0 = 0; // No change
 #10 Clear = 1;
 #10 I_par = 4'hA;
 #30 begin s1 = 1; s0 = 1; end // 00: load I_par into A_par
 #50 s1 = 0; // 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
 #90 begin s1 = 1; s0 = 1; end // 11: reload A with 1010
 #100 s0 = 0; // 10: shift left (1010 to 0100 to 1000 to 000)
 #140 begin s1 = 1; s0 = 1; MSB_in = 1; LSB_in = 1; end // Repeat with MSB and LSB
 #150 s1 = 0;
 #190 begin s1 = 1; s0 = 1; end // reload with A = 1010
 #200 s0 = 0; // Shift left
 #220 s1 = 0; // Pause
 #240 s1 = 1; // Shift left

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

151

0 90 180 270

x

0 a 5 2 1 0 a 4 8 0 a d e f a 5 b 7 f

a

Name

CLK

Clear

s1

s0

I_par[3:0]

MSB_in

LSB_in

A_par[3:0]

(g)

module Ripple_Counter_4bit (output [3: 0] A, input Count, reset_b);
reg A0, A1, A2, A3;
assign A = {A3, A2, A1, A0};

 always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~A0;

 always @ (negedge A0, negedge reset_b)
if (reset_b == 0) A1 <= 0; else A1 <= ~A1;

 always @ (negedge A1, negedge reset_b)
if (reset_b == 0) A2 <= 0; else A2 <= ~A2;

 always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <= 0; else A3 <= ~A3;

endmodule

module t_Ripple_Counter_4bit ();
wire [3: 0] A;
reg Count, reset_b;

 Ripple_Counter_4bit M0 (A, Count, reset_b);

initial #300 $finish;
initial fork

 reset_b = 0; // Active-low reset
 #60 reset_b = 1;

 Count = 1;
 #15 Count = 0;
 #30 Count = 1;
 #85 begin Count = 0; forever #10 Count = ~Count; end

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

152

0 90 180 270

0 1 2 3 4 5 6 7 8 9 a b

Name

Count

reset_b

A[3:0]

(h) Note: This version of the solution situates the data shift registers in the test bench.

module Serial_Subtractor (output SO, input SI_A, SI_B, shift_control, clock, reset_b);
// See Fig. 6.5 and Problem 6.9a (2s complement serial subtractor)

reg [1: 0] sum;
wire mem = sum[1];
assign SO = sum[0];

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin

 sum <= 2'b10;
end
else if (shift_control) begin

 sum <= SI_A + (!SI_B) + sum[1];
end

endmodule

module t_Serial_Subtractor ();
wire SI_A, SI_B;
reg shift_control, clock, reset_b;

 Serial_Subtractor M0 (SO, SI_A, SI_B, shift_control, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 shift_control = 0;
 #10 reset_b = 0;
 #20 reset_b = 1;
 #22 shift_control = 1;
 #105 shift_control = 0;
 #112 reset_b = 0;
 #114 reset_b = 1;
 #122 shift_control = 1;
 #205 shift_control = 0;

join
reg [7: 0] A, B, SO_reg;
wire s7;
assign s7 = SO_reg[7];
assign SI_A = A[0];
assign SI_B = B[0];
wire SI_B_bar = ~SI_B;
initial fork

 A = 8'h5A;
 B = 8'h0A;
 #122 A = 8'h0A;
 #122 B = 8'h5A;

join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

153

always @ (negedge clock, negedge reset_b)
if (reset_b == 0) SO_reg <= 0;
else if (shift_control == 1) begin

 SO_reg <= {SO, SO_reg[7: 1]};
 A <= A >> 1;
 B <= B >> 1;

end
wire negative = !M0.sum[1];
wire [7: 0] magnitude = (!negative)? SO_reg: 1'b1 + ~SO_reg;

endmodule

Simulation results are shown for 5Ah – 0Ah = 50h = 80 d and 0Ah – 5Ah = -80. The magnitude of the
result is also shown.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

154

0
40

80
12

0
16

0
20

0

x xx x x

0a 1
0

5a 9
0

05 52d 4
5

02 216 2
2

01 10b 1
1

2 00 0

05 5

 0

3

02 2 80 12
8

12
8

2

01 1 40 6
4

 6
4

3

a0 16
0

16
0

 8
0

50 8
0

00 0

00 0

0a 1
0

5a 9
0

05 5 2d 4
5

02 2 16 2
2

01 1 0b 1
1

2

 0

05 5

00 0

02 2 12
8

80 12
81

01 1 6
4

c0 19
2

0

16
0

60 9
6

 8
0

17
6

b01

 000

 000

N
am

e

D
ef

au
lt

cl
oc

k

re
se

t_
b

sh
ift

_c
on

tro
l

A
[7

:0
]

A
[7

:0
]

B
[7

:0
]

B
[7

:0
]

S
I_

B

S
I_

A

S
I_

B
_b

ar

S
O

m
em

su
m

[1
:0

]

S
O

_r
eg

[7
:0

]

S
O

_r
eg

[7
:0

]

ne
ga

tiv
e

m
ag

ni
tu

de
[7

:0
]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

155

 (i) See Prob. 6.35h.

(j)
module Serial_Twos_Comp (output y, input [7: 0] data, input load, shift_control, Clock, reset_b);

reg [7: 0] SReg;
reg Q;
wire SO = SReg [0];
assign y = SO ^ Q;
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) begin

 SReg <= 0;
 Q <= 0;

end
else begin

if (load) SReg = data;
else if (shift_control) begin

 Q <= Q | SO;
 SReg <= {y, SReg[7: 1]};

end
end

endmodule

module t_Serial_Twos_Comp ();
wire y;
reg [7: 0] data;
reg load, shift_control, Clock, reset_b;

 Serial_Twos_Comp M0 (y, data, load, shift_control, Clock, reset_b);

reg [7: 0] twos_comp;

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) twos_comp <= 0;
else if (shift_control && !load) twos_comp <= {y, twos_comp[7: 1]};

 initial #200 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin #2 reset_b = 0; #4 reset_b = 1; end

initial fork
 data = 8'h5A;
 #20 load = 1;
 #30 load = 0;
 #50 shift_control = 1;
 #50 begin repeat (9) @ (posedge Clock) ;
 shift_control = 0;

end
join

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

156

0 50 100

00 5a 2d

00

96

80

cb

c0

65

60

32

30

99

98

4c

4c

a6

a6

5a

Name

Clock
reset_b
data[7:0]
load
shift_control
SReg[7:0]
y
twos_comp[7:0]

(k) From the solution to Problem 6.13:

4-Bit
Ripple Counter

A1

A2

A3

A4Clear
Asynchronous, active-low)

0

1

1

0

module Prob_6_35k_BCD_Counter (output A1, A2, A3, A4, input clk, reset_b);
 wire {A1, A2, A3, A4} = A;
 nand (Clear, A2, A4);
 Ripple_Counter_4bit M0 (A, Clear, reset_b);
endmodule

module Ripple_Counter_4bit (output [3: 0] A, input Count, reset_b);
reg A0, A1, A2, A3;
assign A = {A3, A2, A1, A0};

 always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~A0;

 always @ (negedge A0, negedge reset_b)
if (reset_b == 0) A1 <= 0; else A1 <= ~A1;

 always @ (negedge A1, negedge reset_b)
if (reset_b == 0) A2 <= 0; else A2 <= ~A2;

 always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <= 0; else A3 <= ~A3;

endmodule
module t_ Prob_6_35k_BCD_Counter ();

wire [3: 0] A;
reg Count, reset_b;

 Prob_6_35k_BCD_Counter M0 (A1, A2, A3, A4, reset_b);
initial #300 $finish;
initial fork

 reset_b = 0; // Active-low reset
 #60 reset_b = 1;
/*
 Count = 1;
 #15 Count = 0;
 #30 Count = 1;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

157

 #85 begin Count = 0; forever #10 Count = ~Count; end*/
join

endmodule

(l)
module Prob_6_35l_Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else case ({Up, Down})

 2'b10: A <= A + 4'b0001; // Up
2'b01: A <= A - 4'b0001; // Down
default: A <= A; // Suspend (Redundant statement)

endcase
endmodule

module t_Prob_6_35l_Up_Dwn_Beh ();
wire [3: 0] A;
reg CLK, Up, Down, reset_b;

 Prob_6_35l_Up_Dwn_Beh M0 (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

 Down = 0; Up= 0;
 #10 reset_b = 0;
 #20 reset_b = 1;
 #40 Up = 1;
 #150 Down = 1;
 #220 Up = 0;
 #280 Down = 0;

join
endmodule

0 90 180 270

x 0 1 2 3 4 5 6 7 8 9 a b a 9 8 7 6 5

Name

CLK

reset_b

Up

Down

A[3:0]

6.36 (a)

// See Fig. 6.13., 4-bit Up-Down Binary Counter
module Prob_6_36_Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else if (Up) A <= A + 4'b0001;
else if (Down) A <= A - 4'b0001;

endmodule

module t_Prob_6_36_Up_Dwn_Beh ();
wire [3: 0] A;
reg CLK, Up, Down, reset_b;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

158

 Prob_6_36_Up_Dwn_Beh M0 (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

 Down = 0; Up= 0;
 #10 reset_b = 0;
 #20 reset_b = 1;
 #40 Up = 1;
 #150 Down = 1;
 #220 Up = 0;
 #280 Down = 0;

join
endmodule

0 80 160 240

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 1 0 f e d c

Name

CLK

reset_b

Up

Down

A[3:0]

(b)

module Prob_6_36_Up_Dwn_Str (output [3: 0] A, input CLK, Up, Down, reset_b);
wire Down_3, Up_3, Down_2, Up_2, Down_1, Up_1;
wire A_0b, A_1b, A_2b, A_3b;

 stage_register SR3 (A[3], A_3b, Down_3, Up_3, Down_2, Up_2, A[2], A_2b, CLK, reset_b);
 stage_register SR2 (A[2], A_2b, Down_2, Up_2, Down_1, Up_1, A[1], A_1b, CLK, reset_b);
 stage_register SR1 (A[1], A_1b, Down_1, Up_1, Down_not_Up, Up, A[0], A_0b, CLK, reset_b);
 not (Up_b, Up);
 and (Down_not_Up, Down, Up_b);
 or (T, Up, Down_not_Up);
 Toggle_flop TF0 (A[0], A_0b, T, CLK, reset_b);
endmodule

module stage_register (output A, A_b, Down_not_Up_out, Up_out, input Down_not_Up, Up, A_in,
A_in_b, CLK, reset_b);

 Toggle_flop T0 (A, A_b, T, CLK, reset_b);
 or (T, Down_not_Up_out, Up_out);
 and (Down_not_Up_out, Down_not_Up, A_in_b);
 and (Up_out, Up, A_in);
endmodule

module Toggle_flop (output reg Q, output Q_b, input T, CLK, reset_b);
always @ (posedge CLK, negedge reset_b) if (reset_b == 0) Q <= 0; else Q <= Q ^ T;
assign Q_b = ~Q;

endmodule

module t_Prob_6_36_Up_Dwn_Str ();
wire [3: 0] A;
reg CLK, Up, Down, reset_b;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

159

wire T3 = M0.SR3.T;
wire T2 = M0.SR2.T;
wire T1 = M0.SR1.T;
wire T0 = M0.T;

 Prob_6_36_Up_Dwn_Str M0 (A, CLK, Up, Down, reset_b);

initial #150 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork

 Down = 0; Up= 0;
 #10 reset_b = 0;
 #20 reset_b = 1;
 #50 Up = 1;
 #140 Down = 1;
 #120 Up = 0;
 #140 Down = 0;

join
endmodule

0 70 140 210 280

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 1 0 f e d c

Name

CLK

reset_b

Up

Down

A[3:0]

T0

T1

T2

T3

6.37
module Counter_if (output reg [3: 0] Count, input clock, reset);
 always @ (posedge clock , posedge reset)
 if (reset)Count <= 0;
 else if (Count == 0) Count <= 1;
 else if (Count == 1) Count <= 3; // Default interpretation is decimal
 else if (Count == 3) Count <= 7;
 else if (Count == 4) Count <= 0;
 else if (Count == 6) Count <= 4;
 else if (Count == 7) Count <= 6;
 else Count <= 0;
endmodule

module Counter_case (output reg [3: 0] Count, input clock, reset);
 always @ (posedge clock , posedge reset)
 if (reset)Count <= 0;
 else begin

Count <= 0;
 case (Count)
 0: Count <= 1;
 1: Count <= 3;
 3: Count <= 7;
 4: Count <= 0;
 6: Count <= 4;
 7: Count <= 6;

default: Count <= 0;
 endcase

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

160

 end
endmodule

module Counter_FSM (output reg [3: 0] Count, input clock, reset);
 reg [2: 0] state, next_state;

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4, s5 = 5, s6 = 6, s7 = 7;

 always @ (posedge clock , posedge reset)
 if (reset) state <= s0; else state <= next_state;

always @ (state) begin
 Count = 0;
 case (state)
 s0: begin next_state = s1; Count = 0; end
 s1: begin next_state = s2; Count = 1; end
 s2: begin next_state = s3; Count = 3; end
 s3: begin next_state = s4; Count = 7; end
 s4: begin next_state = s5; Count = 6; end
 s5: begin next_state = s6; Count = 4; end

default: begin next_state = s0; Count = 0; end
 endcase

 end
endmodule

6.38 (a)

module Prob_6_38a_Updown (OUT, Up, Down, Load, IN, CLK); // Verilog 1995
 output [3: 0] OUT;
 input [3: 0] IN;
 input Up, Down, Load, CLK;
 reg [3:0] OUT;

 always @ (posedge CLK)
 if (Load) OUT <= IN;
 else if (Up) OUT <= OUT + 4'b0001;
 else if (Down) OUT <= OUT - 4'b0001;
 else OUT <= OUT;
 endmodule

module updown (// Verilog 2001, 2005
 output reg [3: 0] OUT,

input [3: 0] IN,
 input Up, Down, Load, CLK
);

(b)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

161

module Prob_6_38b_Updown (output reg [3: 0] OUT, input [3: 0] IN, input s1, s0, CLK);

 always @ (posedge CLK)
 case ({s1, s0})

2'b00: OUT <= OUT + 4'b0001;
2'b01: OUT <= OUT - 4'b0001;

 2'b10: OUT <= IN;
 2'b11: OUT <= OUT;

endcase
 endmodule

 module t_Prob_6_38b_Updown ();
wire [3: 0] OUT;

 reg [3: 0] IN;
reg s1, s0, CLK;

 Prob_6_38b_Updown M0 (OUT, IN, s1, s0, CLK);

 initial #150 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
IN = 4'b1010;

#10 begin s1 = 1; s0 = 0; end // Load IN
#20 begin s1 = 1; s0 = 1; end // no change
#40 begin s1 = 0; s0 = 0; end // UP;
#80 begin s1 = 0; s0 = 1; end // DOWN
#120 begin s1 = 1; s0 = 1; end
join

endmodule

0 60 120

x a b c d e d c b a

a

Name

CLK

s1

s0

IN[3:0]

OUT[3:0]

6.39
module Prob_6_39_Counter_BEH (output reg [2: 0] Count, input Clock, reset_b);
 always @ (posedge Clock, negedge reset_b) if (reset_b == 0) Count <= 0;
 else case (Count)

0: Count <= 1;
 1: Count <= 2;
 2: Count <= 4;
 4: Count <= 5;
 5: Count <= 6;
 6: Count <= 0;

endcase
endmodule

module Prob_6_39_Counter_STR (output [2: 0] Count, input Clock, reset_b);
 supply1 PWR;
 wire Count_1_b = ~Count[1];

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

162

JK_FF M2 (Count[2], Count[1], Count[1], Clock, reset_b);
 JK_FF M1 (Count[1], Count[0], PWR, Clock, reset_b);
 JK_FF M0 (Count[0], Count_1_b, PWR, Clock, reset_b);
endmodule

module JK_FF (output reg Q, input J, K, clk, reset_b);
 always @ (posedge clk, negedge reset_b) if (reset_b == 0) Q <= 0; else
 case ({J,K})
 2'b00: Q <= Q;
 2'b01: Q <= 0;
 2'b10: Q <= 1;
 2'b11: Q <= ~Q;

endcase
endmodule

module t_Prob_6_39_Counter ();
 wire [2: 0] Count_BEH, Count_STR;
 reg Clock, reset_b;

 Prob_6_39_Counter_BEH M0_BEH (Count_STR, Clock, reset_b);
 Prob_6_39_Counter_STR M0_STR (Count_BEH, Clock, reset_b);

initial #250 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin Clock = 1; forever #5 Clock = ~Clock; end

endmodule

0 60 120

0

0

1

1

2

2 4

4

5

5 6

6

0

0

1

1

2

2 4

4

5

5 6

6

0

0

1

1

2

2 4

4

Name

Clock

reset_b

Count_BEH[2:0]

Count_STR[2:0]

6.40
module Prob_6_40 (output reg [0: 7] timer, input clk, reset_b);

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 8'b1000_0000; else
case (timer)

 8'b1000_0000: timer <= 8'b0100_0000;
 8'b0100_0000: timer <= 8'b0010_0000;
 8'b0010_0000: timer <= 8'b0001_0000;
 8'b0001_0000: timer <= 8'b0000_1000;
 8'b0000_1000: timer <= 8'b0000_0100;
 8'b0000_0100: timer <= 8'b0000_0010;
 8'b0000_0010: timer <= 8'b0000_0001;
 8'b0000_0001: timer <= 8'b1000_0000;

default: timer <= 8'b1000_0000;
endcase

endmodule

module t_Prob_6_40 ();
wire [0: 7] timer;
reg clk, reset_b;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

163

 Prob_6_40 M0 (timer, clk, reset_b);

initial #250 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin clk = 1; forever #5 clk = ~clk; end

endmodule

0 70 140 210

80

Name

clk

reset_b

timer[0:7]

 timer[0]

 timer[1]

 timer[2]

 timer[3]

 timer[4]

 timer[5]

 timer[6]

 timer[7]

6.41

module Prob_6_41_Switched_Tail_Johnson_Counter (output [0: 3] Count, input CLK, reset_b);
 wire Q_0b, Q_1b, Q_2b, Q_3b;

DFF M3 (Count[3], Q_3b, Count[2], CLK, reset_b);
 DFF M2 (Count[2], Q_2b, Count[1], CLK, reset_b);
 DFF M1 (Count[1], Q_1b, Count[0], CLK, reset_b);
 DFF M0 (Count[0], Q_0b, Q_3b, CLK, reset_b);
endmodule

module DFF (output reg Q, output Q_b, input D, clk, reset_b);
assign Q_b = ~Q;

 always @ (posedge clk, negedge reset_b) if (reset_b ==0) Q <= 0; else Q <= D;
endmodule

module t_Prob_6_41_Switched_Tail_Johnson_Counter ();
 wire [3: 0] Count;

reg CLK, reset_b;
wire s0 = ~ M0.Count[0] && ~M0.Count[3];
wire s1 = M0.Count[0] && ~M0.Count[1];
wire s2 = M0.Count[1] && ~M0.Count[2];
wire s3 = M0.Count[2] && ~M0.Count[3];
wire s4 = M0.Count[0] && M0.Count[3];
wire s5 = ~ M0.Count[0] && M0.Count[1];
wire s6 = ~ M0.Count[1] && M0.Count[2];
wire s7 = ~ M0.Count[2] && M0.Count[3];

 Prob_6_41_Switched_Tail_Johnson_Counter M0 (Count, CLK, reset_b);
 initial #150 $finish;
 initial fork #1 reset_b = 0; #7 reset_b = 1; join
 initial begin CLK = 1; forever #5 CLK = ~CLK; end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

164

0 60 120

0 8 c e f 7 3 1 0 8 c e f 7 3

Name

CLK

reset_b

Count[3:0]

s0

s1

s2

s3

s4

s5

s6

s7

6.42 Because A is a register variable, it retains whatever value has been assigned to it until a new
value is assigned. Therefore, the statement A <= A has the same effect as if the statement was
omitted.

6.43

Mux
DFF

QD
Mux

load

data

D_in

Clock

Shift_control

[

module Prob_6_43_Str (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
 supply0 gnd;
 wire SO_A;

 Shift_with_Load M_A (SO_A, SO_A, data, load, Shift_control, Clock, reset_b);
 Shift_with_Load M_B (SO, SO_A, data, gnd, Shift_control, Clock, reset_b);

endmodule

module Shift_with_Load (output SO, input D_in, input [7: 0] data, input load, select, Clock, reset_b);
 wire [7: 0] Q;
 assign SO = Q[0];
 SR_cell M7 (Q[7], D_in, data[7], load, select, Clock, reset_b);
 SR_cell M6 (Q[6], Q[7], data[6], load, select, Clock, reset_b);
 SR_cell M5 (Q[5], Q[6], data[5], load, select, Clock, reset_b);
 SR_cell M4 (Q[4], Q[5], data[4], load, select, Clock, reset_b);
 SR_cell M3 (Q[3], Q[4], data[3], load, select, Clock, reset_b);
 SR_cell M2 (Q[2], Q[3], data[2], load, select, Clock, reset_b);
 SR_cell M1 (Q[1], Q[2], data[1], load, select, Clock, reset_b);
 SR_cell M0 (Q[0], Q[1], data[0], load, select, Clock, reset_b);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

165

endmodule

module SR_cell (output Q, input D, data, load, select, Clock, reset_b);
 wire y;
 DFF_with_load M0 (Q, y, data, load, Clock, reset_b);
 Mux_2 M1 (y, Q, D, select);
endmodule
module DFF_with_load (output reg Q, input D, data, load, Clock, reset_b);

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Q <= 0; else if (load) Q <= data; else Q <= D;

endmodule

module Mux_2 (output reg y, input a, b, sel);
 always @ (a, b, sel) if (sel ==1) y = b; else y = a;
endmodule

module t_Fig_6_4_Str ();
wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;

 Prob_6_43_Str M0 (SO, data, load, Shift_control, Clock, reset_b);

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {M0.SO_A, Serial_Data [7: 1]};

 initial #200 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin #2 reset_b = 0; #4 reset_b = 1; end

initial fork
 data = 8'h5A;
 #20 load = 1;
 #30 load = 0;
 #50 Shift_control = 1;
 #50 begin repeat (9) @ (posedge Clock) ;
 Shift_control = 0;

end
join

endmodule
0 50 100

00 5a
00
00

2d 96

80
80

4b

40
40

a5

a0
a0

d2

d0
d0

69

68
68

b4

b4
b4

5a
5a

5a
2d
2d

5a

Name

Clock
reset_b
load
Shift_control
data[7:0]
SO_A
SO
Q[7:0]
Q[7:0]
Serial_Data[7:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

166

Alternative: a behavioral model for synthesis is given below. The behavioral description implies
the need for a mux at the input to a D-type flip-flop.

module Fig_6_4_Beh (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
 reg [7: 0] Shift_Reg_A, Shift_Reg_B;

assign SO = Shift_Reg_B[0];
always @ (posedge Clock, negedge reset_b)

if (reset_b == 0) begin
 Shift_Reg_A <= 0;
 Shift_Reg_B <= 0;

end
else if (load) Shift_Reg_A <= data;
else if (Shift_control) begin

 Shift_Reg_A <= { Shift_Reg_A[0], Shift_Reg_A[7: 1]};
 Shift_Reg_B <= {Shift_Reg_A[0], Shift_Reg_B[7: 1]};

end

endmodule
module t_Fig_6_4_Beh ();

wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;

 Fig_6_4_Beh M0 (SO, data, load, Shift_control, Clock, reset_b);

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {M0.Shift_Reg_A[0], Serial_Data [7: 1]};

 initial #200 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin #2 reset_b = 0; #4 reset_b = 1; end

initial fork
 data = 8'h5A;
 #20 load = 1;
 #30 load = 0;
 #50 Shift_control = 1;
 #50 begin repeat (9) @ (posedge Clock) ;
 Shift_control = 0;

end
join

endmodule

0 50 100 150

00 5a
00

2d

00

80
96

80

4b
40

40

a5
a0

a0

d2
d0

d0

69
68

68

b4
b4

b4

5a
5a

5a

2d
2d

5a

Name

Clock
reset_b
load
Shift_control
data[7:0]
Shift_Reg_A[7:0]
Shift_Reg_B[7:0]
SO
Serial_Data[7:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

167

6.44
// See Figure 6.5
// Note: Sum is stored in shift register A; carry is stored in Q
// Note: Clear is active-low.

module Prob_6_44_Str (output SO, input [7: 0] data_A, data_B, input S_in, load, Shift_control, CLK,
Clear);

 supply0 gnd;
 wire sum, carry;
 assign SO = sum;
 wire SO_A, SO_B;

 Shift_Reg_gated_clock M_A (SO_A, sum, data_A, load, Shift_control, CLK, Clear);
 Shift_Reg_gated_clock M_B (SO_B, S_in, data_B, load, Shift_control, CLK, Clear);
 FA M_FA (carry, sum, SO_A, SO_B, Q);
 DFF_gated M_FF (Q, carry, Shift_control, CLK, Clear);

endmodule

module Shift_Reg_gated_clock (output SO, input S_in, input [7: 0] data, input load, Shift_control,
Clock, reset_b);

 reg [7: 0] SReg;
 assign SO = SReg[0];

 always @ (posedge Clock, negedge reset_b)
 if (reset_b == 0) SReg <= 0;
 else if (load) SReg <= data;
 else if (Shift_control) SReg <= {S_in, SReg[7: 1]};
endmodule

module DFF_gated (output Q, input D, Shift_control, Clock, reset_b);
 DFF M_DFF (Q, D_internal, Clock, reset_b);
 Mux_2 M_Mux (D_internal, Q, D, Shift_control);
endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)

if (reset_b == 0) Q <= 0; else Q <= D;
endmodule

module Mux_2 (output reg y, input a, b, sel);
 always @ (a, b, sel) if (sel ==1) y = b; else y = a;
 endmodule

module FA (output reg carry, sum, input a, b, C_in);
always @ (a, b, C_in) {carry, sum} = a + b + C_in;

endmodule

module t_Prob_6_44_Str ();
wire SO;
reg SI, load, Shift_control, Clock, Clear;
reg [7: 0] data_A, data_B;

 Prob_6_44_Str M0 (SO, data_A, data_B, SI, load, Shift_control, Clock, Clear);

 initial #200 $finish;
 initial begin Clock = 0; forever #5 Clock = ~Clock; end
 initial begin #2 Clear = 0; #4 Clear = 1; end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

168

initial fork
 data_A = 8'hAA; //8'h ff;
 data_B = 8'h55; //8'h01;
 SI = 0;
 #20 load = 1;
 #30 load = 0;
 #50 Shift_control = 1;
 #50 begin repeat (8) @ (posedge Clock) ;
 #5 Shift_control = 0;

end
join

endmodule

0 60 120

00

00 55

aa

2a

d5

15

ea

0a

f5

05

fa

02

fd

01

fe

00
55

ff
aa

Name

Clock
Clear
load
Shift_control

data_A[7:0]
SReg[7:0]
Q
data_B[7:0]
SReg[7:0]
SO

aah + 55h = {carry, sum} = {0, ffh}

0 60 120

00

00

01

ff 7f 3f 1f 0f 07 03 01

00
01

00
ff

Name

Clock
Clear
load
Shift_control

data_A[7:0]
SReg[7:0]
Q
data_B[7:0]
SReg[7:0]
SO

ffh + 01h = {carry, sum} = {1, 00h}

6.45

module Prob_6_45 (output reg y_out, input start, clock, reset_bar);
parameter s0 = 4'b0000,

 s1 = 4'b0001,
 s2 = 4'b0010,
 s3 = 4'b0011,
 s4 = 4'b0100,
 s5 = 4'b0101,

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

169

 s6 = 4'b0110,
 s7 = 4'b0111,
 s8 = 4'b1000;

reg [3: 0] state, next_state;

 always @ (posedge clock, negedge reset_bar)
if (!reset_bar) state <= s0; else state <= next_state;

always @ (state, start) begin
 y_out = 1'b0;

case (state)
 s0: if (start) next_state = s1; else next_state = s0;
 s1: begin next_state = s2; y_out = 1; end
 s2: begin next_state = s3; y_out = 1; end
 s3: begin next_state = s4; y_out = 1; end
 s4: begin next_state = s5; y_out = 1; end
 s5: begin next_state = s6; y_out = 1; end
 s6: begin next_state = s7; y_out = 1; end
 s7: begin next_state = s8; y_out = 1; end
 s8: begin next_state = s0; y_out = 1; end

default: next_state = s0;
endcase

end
endmodule

// Test plan

// Verify the following:
// Power-up reset
// Response to start in initial state
// Reset on-the-fly
// Response to re-assertion of start after reset on-the-fly
// 8-cycle counting sequence
// Ignore start during counting sequence
// Return to initial state after 8 cycles and await start
// Remain in initial state for one clock if start is asserted when the state is entered

module t_Prob_6_45;
wire y_out;
reg start, clock, reset_bar;

 Prob_6_45 M0 (y_out, start, clock, reset_bar);

 initial #300 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork
 reset_bar = 0;
 #2 reset_bar = 1;
 #10 start = 1;
 #20 start = 0;
 #30 reset_bar = 0;
 #50 reset_bar = 1;
 #80 start = 1;
 #90 start = 0;
 #130 start = 1;
 #140 start = 0;
 #180 start = 1;
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

170

6.46

module Prob_6_46 (output reg [0: 3] timer, input clk, reset_b);

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 4'b1000; else
case (timer)

 4'b1000: timer <= 4'b0100;
 4'b0100: timer <= 4'b0010;
 4'b0010: timer <= 4'b0001;
 4'b0001: timer <= 4'b1000;

default: timer <= 4'b1000;
endcase

endmodule

module t_Prob_6_46 ();
wire [0: 3] timer;
reg clk, reset_b;

 Prob_6_46 M0 (timer, clk, reset_b);

 initial #150 $finish;
 initial fork #1 reset_b = 0; #7 reset_b = 1; join
 initial begin clk = 1; forever #5 clk = ~clk; end
endmodule

0 60 120

8 4 2 1 8 4 2 1 8 4 2 1 8 4

Name

clk

reset_b

timer [0:3]

 timer [0]

 timer [1]

 timer [2]

 timer [3]

6.47
module Prob_6_47 (

output reg P_odd,
input D_in, CLK, reset

);
wire D;

assign D = D_in ^ P_odd;
always @ (posedge CLK, posedge reset)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

171

if (reset) P_odd <= 0;
else P_odd <= D;

endmodule

 module t_Prob_6_47 ();
wire P_odd;
reg D_in, CLK, reset;

 Prob_6_47 M0 (P_odd, D_in, CLK, reset);

 initial #150 $finish;
 initial fork #1 reset = 1; #7 reset = 0; join
 initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial begin D_in = 1; forever #20 D_in = ~D_in; end

endmodule

0 60 120Name

CLK

reset

D_in

P_odd

6.48 (a)

module Prob_6_48a (output reg [7: 0] count, input clk, reset_b);
 reg [3: 0] state;

always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1;

always @ (state)
case (state)

 0, 2, 4, 6, 8, 10, 12: count = 8'b0000_0001;
 1: count = 8'b0000_0010;
 3: count = 8'b0000_0100;
 5: count = 8'b0000_1000;
 7: count = 8'b0001_0000;
 9: count = 8'b0010_0000;
 11: count = 8'b0100_0000;
 13: count = 8'b1000_0000;

default: count = 8'b0000_0000;
endcase

endmodule

module t_Prob_6_48a ();
wire [7: 0] count;
reg clk, reset_b;

 Prob_6_48a M0 (count, clk, reset_b);

 initial #200 $finish;
 initial begin clk = 0; forever #5 clk = ~clk; end
 initial begin reset_b = 0; #2 reset_b = 1; end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

172

0 60 120 180

02

1 2

01 04

3 4

01 08

5 6

01 10

7 8

01 20

9 a

01 40

b c

01 80

d e

00

f 0

01 02

1 2

01 04

3

Name

clk

reset_b

state[3:0]

count[7:0]

 count[7]

 count[6]

 count[5]

 count[4]

 count[3]

 count[2]

 count[1]

 count[0]

(b)

module Prob_6_48b (output reg [7: 0] count, input clk, reset_b);
 reg [3: 0] state;

always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1;

always @ (state)
case (state)

 0, 2, 4, 6, 8, 10, 12: count = 8'b1000_0000;
 1: count = 8'b0100_0000;
 3: count = 8'b0010_0000;
 5: count = 8'b0001_0000;
 7: count = 8'b0000_1000;
 9: count = 8'b0000_0100;
 11: count = 8'b0000_0010;
 13: count = 8'b0000_0001;

default: count = 8'b0000_0000;
endcase

endmodule

module t_Prob_6_48b ();
wire [7: 0] count;
reg clk, reset_b;

 Prob_6_48b M0 (count, clk, reset_b);

 initial #180 $finish;
 initial begin clk = 0; forever #5 clk = ~clk; end
 initial begin reset_b = 0; #2 reset_b = 1; end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

173

0 60 120 180

40

0

80 20

1

80 10

2

80 08

3

80 04

4

80 02

5

80 01

6

00

7

80 40

0

Name

clk

reset_b

state[3:1]

count[7:0]

 count[7]

 count[6]

 count[5]

 count[4]

 count[3]

 count[2]

 count[1]

 count[0]

6.49
// Behavioral description of a 4-bit universal shift register
// Fig. 6.7 and Table 6.3
module Shift_Register_4_beh (// V2001, 2005

output reg [3: 0] A_par, // Register output
 input [3: 0] I_par, // Parallel input
 input s1, s0, // Select inputs
 MSB_in, LSB_in, // Serial inputs
 CLK, Clear // Clock and Clear
);

always @ (posedge CLK, negedge Clear) // V2001, 2005
if (~Clear) A_par <= 4'b0000;
else

case ({s1, s0})
 2'b00: A_par <= A_par; // No change
 2'b01: A_par <= {MSB_in, A_par[3: 1]}; // Shift right
 2'b10: A_par <= {A_par[2: 0], LSB_in}; // Shift left
 2'b11: A_par <= I_par; // Parallel load of input

endcase
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

174

// Test plan:
// test reset action load
// test parallel load
// test shift right
// test shift left
// test circulation of data
// test reset on the fly

module t_Shift_Register_4_beh ();
reg s1, s0, // Select inputs

 MSB_in, LSB_in, // Serial inputs
 clk, reset_b; // Clock and Clear

reg [3: 0] I_par; // Parallel input
wire [3: 0] A_par; // Register output

 Shift_Register_4_beh M0 (A_par, I_par,s1, s0, MSB_in, LSB_in, clk, reset_b);

 initial #200 $finish;
 initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
 // test reset action load
 #3 reset_b = 1;
 #4 reset_b = 0;
 #9 reset_b = 1;

 // test parallel load
 #10 I_par = 4'hA;
 #10 {s1, s0} = 2'b11;

 // test shift right
 #30 MSB_in = 1'b0;
 #30 {s1, s0} = 2'b01;

 // test shift left
 #80 LSB_in = 1'b1;
 #80 {s1, s0} = 2'b10;

 // test circulation of data
 #130 {s1, s0} = 2'b11;
 #140 {s1, s0} = 2'b00;

 // test reset on the fly

 #150 reset_b = 1'b0;
 #160 reset_b = 1'b1;
 #160 {s1, s0} = 2'b11;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

175

0 60 120 180

x

0 a 5 2 1 0 1 3 7 f a 0 a

a

Name

clk

reset_b

I_par[3:0]

MSB_in

LSB_in

A_par[3:0]

s1

s0

Reset A_par
Load_A_par

Shift right

Shift left Load A_par
No change

Reset
Load A_par

6.50 (a) See problem 6.27.

module Prob_8_50a (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)

if (!reset_b) count <= 0;
else case (count)

 3'd0: count <= 3'd1;
 3'd1: count <= 3'd2;
 3'd2: count <= 3'd3;
 3'd3: count <= 3'd4;
 3'd4: count <= 3'd5;
 3'd5: count <= 3'd6;
 3'd4: count <= 3'd6;
 3'd6: count <= 3'd0;

default: count <= 3'd0;
endcase

endmodule

module t_Prob_8_50a;
wire [2: 0] count;
reg clock, reset_b ;

 Prob_8_50a M0 (count, clock, reset_b);

 initial #130 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork

reset_b = 0;
 #2 reset_b = 1;
 #40 reset_b = 0;
 #42 reset_b = 1;
 join
endmodule

0 40 80 120

0 1 2 3 4 0 1 2 3 4 5 6 0 1 2

Name

clock

reset_b

count[2:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

176

(b) See problem 6.28.

module Prob_8_50b (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)

if (!reset_b) count <= 0;
else case (count)

 3'd0: count <= 3'd1;
 3'd1: count <= 3'd2;
 3'd2: count <= 3'd4;
 3'd4: count <= 3'd6;
 3'd6: count <= 3'd0;

default: count <= 3'd0;
endcase

endmodule

module t_Prob_8_50b;
wire [2: 0] count;
reg clock, reset_b ;

 Prob_8_50b M0 (count, clock, reset_b);

 initial #100 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork

reset_b = 0;
 #2 reset_b = 1;
 #40 reset_b = 0;
 #42 reset_b = 1;
 join
endmodule

0 30 60 90

reset_b

clock

count[2:0] 0 1 2 4 6 0 1 2 4 6 0 1

6.51
module Seq_Detector_Prob_5_51 (output detect, input bit_in, clk, reset_b);

reg [2: 0] sample_reg;
assign detect = (sample_reg == 3'b111);
always @ (posedge clk, negedge reset_b) if (reset_b ==0) sample_reg <= 0;

else sample_reg <= {bit_in, sample_reg [2: 1]};
endmodule

module Seq_Detector_Prob_5_45 (output detect, input bit_in, clk, reset_b);
parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3;
reg [1: 0] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= S0; else state <= next_state;

always @ (state, bit_in) begin
 next_state = S0;

case (state)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

177

 0: if (bit_in) next_state = S1; else state = S0;
 1: if (bit_in) next_state = S2; else next_state = S0;
 2: if (bit_in) next_state = S3; else state = S0;
 3: if (bit_in) next_state = S3; else next_state = S0;

default: next_state = S0;
endcase

 end
endmodule

module t_Seq_Detector_Prob_6_51 ();
 wire detect_45, detect_51;

reg bit_in, clk, reset_b;

Seq_Detector_Prob_5_51 M0 (detect_51, bit_in, clk, reset_b);
 Seq_Detector_Prob_5_45 M1 (detect_45, bit_in, clk, reset_b);

initial #350$finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

 reset_b = 0;
 #4 reset_b = 1;
 #10 bit_in = 1;
 #20 bit_in = 0;
 #30 bit_in = 1;
 #50 bit_in = 0;
 #60 bit_in = 1;
 #100 bit_in = 0;

join
endmodule

0 60 120Name

clk

reset_b

bit_in

detect_51

detect_45

 The circuit using a shift register uses less hardware.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

178

Chapter 7

7.1 (a) 8 K x 32 = 213 x 16 A = 13 D = 16

 (b) 2 G x 8 = 231 x 8 A = 31 D = 8

(c) 16 M x 32 = 224 x 32 A = 24 D = 32

(d) 256 K x 64 = 218 x 64 A = 18 D = 64

 (e)

7.2 (a) 213 (b) 231 (c) 226 (d) 221

7.3 723 = 512 + 128 + 64 + 16 + 2 + 1

3451 = 2048 + 1024 + 256 + 64 + 32 + 16 + 8 + 2 + 1

Address: 10 1101 0011 = 2D316
Data: 0000 1101 0111 1011 = 0D7B16

7.4 f CPU = 100 MHz, TCPU = 1/fCPU = 10-8 Hz-1 = 10 x 10-9 Hz-1 = 10 ns

10 ns 10 ns 10 ns

Address validAddress

Memory select

CPU clock

Data valid for writeData from CPU

Data from memory

Data valid for read

25 ns

T1 T2 T3

7.5
// Testing the memory of HDL Example 7.1.
module t_memory ();

reg Enable, ReadWrite;
reg [3: 0] DataIn;
reg [5: 0] Address;
wire [3: 0] DataOut;

memory M0 (Enable, ReadWrite, Address, DataIn, DataOut);
initial #200 $finish;
initial begin

 Enable = 0; ReadWrite = 0; Address = 3; DataIn = 5;
repeat (8) #5 Enable = ~Enable;

end
initial begin

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

179

 #10 Address = 43; DataIn = 10;
 #10 ReadWrite = 1;
 #10 Address = 0;

end
initial

$monitor ("E = %b RW = %b Add = %b D_in = %b D_out = %b T = %d",
Enable, ReadWrite, Address, DataIn, DataOut, $time);

wire mem0 = M0.Mem[0];
wire mem1 =M0.Mem[1];
wire mem2 =M0.Mem[2];
wire mem3 =M0.Mem[3];
wire mem4 =M0.Mem[4];
wire mem5 =M0.Mem[5];
wire mem40 =M0.Mem[40];
wire mem41 =M0.Mem[41];
wire mem42 =M0.Mem[42];
wire mem43 =M0.Mem[43];
wire mem44 =M0.Mem[44];
wire mem45 =M0.Mem[45];

endmodule

//Read and write operations of Mem
//Mem size is 64 words of 4 bits each.
module memory (Enable, ReadWrite, Address, DataIn, DataOut);

input Enable, ReadWrite;
input [3: 0] DataIn;
input [5: 0] Address;
output [3:0] DataOut;
reg [3: 0] DataOut;
reg [3: 0] Mem [0: 63]; //64 x 4 Mem
always @ (Enable or ReadWrite)

if (Enable)
if (ReadWrite) DataOut = Mem[Address]; //Read
else Mem[Address] = DataIn; //Write

else DataOut = 4'bz; //High impedance state
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

180

0 30 60 90

x

00

5

x

z a

2b

z 5

x
x

x
x

a
x
x
x

x
x
x

5
z

a

00

Name

Address[5:0]
ReadWrite
Enable
DataIn[3:0]
DataOut[3:0]
\Mem[0] [3:0]
\Mem[1] [3:0]
\Mem[2] [3:0]
\Mem[3] [3:0]
\Mem[4] [3:0]
\Mem[5] [3:0]
\Mem[40] [3:0]
\Mem[41] [3:0]
\Mem[42] [3:0]
\Mem[43] [3:0]
\Mem[44] [3:0]
\Mem[45] [3:0]

7.6

4 x 4 RAM

4 x 4 RAM

4

4

4

4

E

E

3

3

4 x 4 RAM

4 x 4 RAM

4

4

8

4

4

E

E

3

3

A2

A'2

A2

A'2

R/W

A0

A1

A2

8 Data input lines

8 Data output lines

8

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

181

7.7 (a) 16 K = 214 = 27 x 27 = 128 x 128
Each decoder is 7 128

 Decoders require 256 AND gates, each with 7 inputs

(b) 6,000 = 0101110_1110000
 x = 46 y = 112

7.8 (a) 256 K / 32 K = 8 chips

(b) 256 K = 218 (18 address lines for memory); 32 K = 215 (15 address pins / chip)

(c) 18 – 15 = 3 lines ; must decode with 3 8 decoder

7.9 13 + 12 = 25 address lines. Memory capacity = 225 words.

7.10 01011011 = 1 2 3 4 5 6 7 8 9 10 11 12 13
 P1 P2 0 P4 1 0 1 P8 1 0 1 1 P13

 P1 = Xor of bits (3, 5, 7, 9, 11) = 0, 1, 1, 1, 1 = 0 (Note: even # of 0s)
 P2 = Xor of bits (3, 6, 7, 10, 11) = 0, 0, 1, 0, 1 = 0
 P4 = Xor of bits (5, 6, 7, 12) = 1, 0, 1, 1 = 1 (Note: odd # of 0s)
 P8= Xor of bits (9, 10, 11, 12) = 1, 0, 1, 1, = 1

Composite 13-bit code word: 0001 1011 1011 1

7.11 11001001010 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 P1 P2 1 P4 1 0 0 P8 1 0 0 1 0 1 0

 P1 = Xor of bits (3, 5, 7, 9, 11, 13, 15) = 1, 1, 0, 1, 0, 0, 0 = 1 (Note: odd # of 0s)
 P2 = Xor of bits (3, 6, 7, 10, 11, 14, 15) = 1, 0, 0, 0, 0, 1, 0 = 0 (Note: even # of 0s)
 P4 = Xor of bits (5, 6, 7, 12, 13, 14, 15) = 1, 0, 0, 1, 0, 1, 0 = 1
 P8= Xor of bits (9, 10, 11, 12, 13, 14, 15) = 1, 0, 0, 1, 0, 1, 0 = 1

Composite 15-bit code word: 101 110 011 001 010

7.12 (a) 1 2 3 4 5 6 7 8 9 10 11 12
 0 0 0 0 1 1 1 0 1 0 1 0

C1 (1, 3, 5, 7, 9, 11) = 0, 0, 1, 1, 1, 1 = 0
C2 (2, 3, 6, 7, 10, 11) = 0, 0, 1, 1, 0, 1 = 1
C4 (4, 5, 6, 7, 12) = 0, 1, 1, 1, 0 = 1
C8 (8, 9, 10, 11, 12) = 0, 1, 0, 1, 0 = 0

C = 0110
Error in bit 6.
Correct data: 0101 1010

(b) 1 2 3 4 5 6 7 8 9 10 11 12
 1 0 1 1 1 0 0 0 0 1 1 0

C1 (1, 3, 5, 7, 9, 11) = 1, 1, 1, 0, 0, 1 = 0
C2 (2, 3, 6, 7, 10, 11) = 0, 1, 0, 0, 1, 1 = 1
C4 (4, 5, 6, 7, 12) = 1, 1, 0, 0, 0 = 0
C8 (8, 9, 10, 11, 12) = 0, 0, 1, 1, 0 = 0

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

182

C = 0010
Error in bit 2 = Parity bit P2.
 3 5 6 7 9 10 11 12
Correct 8-bit data: 1 1 0 0 0 1 1 0

(c) 1 2 3 4 5 6 7 8 9 10 11 12
 1 0 1 1 1 1 1 1 0 1 0 0

 C = 0000)No errors)
C1 (1, 3, 5, 7, 9, 11) = 1, 1, 1, 0, 0, 1 = 0
C2 (2, 3, 6, 7, 10, 11) = 0, 1, 0, 0, 1, 1 = 1
C4 (4, 5, 6, 7, 12) = 1, 1, 0, 0, 0 = 0
C8 (8, 9, 10, 11, 12) = 0, 0, 1, 1, 0 = 0

 3 5 6 7 9 10 11 12
Correct 8-bit data: 1 1 1 1 0 1 0 0

7.13 (a) 16-bit data (From Table 7.2): 5 Check bits
 1 bit

 6 parity bits

 (b) 32-bit data (From Table 7.2): 6 Check bits
 1 bit

 7 parity bits

 (6) 16-bit data (From Table 7.2): 5 Check bits
 1 bit

 6 parity bits

7.14 (a) 1 2 3 4 5 6 7 P1 = Xor (3, 5, 7) = 0, 0, 0 = 1
 P1 P2 0 P4 0 1 0 P2 = Xor (3, 6, 7) = 0, 1, 0 = 0
 P4 = Xor (5, 6, 7) = 0, 1, 0 = 1

 7-bit word: 0101010

 (b) No error:

 C1 = Xor (1, 3, 5, 7) = 0, 0, 0, 0 = 0
 C2 = Xor (2, 3, 6, 7) = 1, 0, 1, 0 = 0
 C4 = Xor (4, 5, 6, 7) = 1, 0, 1, 0 = 0

 (c) Error in bit 5: 1 2 3 4 5 6 7
 0 1 0 1 1 1 0

 C1 = Xor (0, 0, 1, 0) = 1
 C2 = Xor (1, 0, 1, 0) = 0
 C4 = Xor (1, 1, 1, 0) = 1
 Error in bit 5: C = 101

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

183

(d) 8-bit word 1 2 3 4 5 6 7 8
 0 1 0 1 0 1 0 1
 Error in bits 2 and 5: 0 0 0 1 1 1 0 1
 C1 = Xor (0, 0, 1, 0) = 1
 C2 = Xor (0, 0, 1, 0) = 1
 C4 = Xor (1, 1, 1, 0) = 1
 P = 0
 C =(1, 1, 1) 0 and P = 0 indicates double error.

7.15

64 x 8 ROM

En

64 x 8 ROM

En

64 x 8 ROM

En

64 x 8 ROM

En

2 x 4
Decoder

6

Address
(8 bits)

6 6 6 6

8
8 8 8 8

Data
(8 bits)

Note: Outputs must be wired-OR or three-state outputs.

7.16

4096 x 8
ROM12

Pwr
Gnd

Inputs

CS
8 Outputs

Note: 4096 = 212

16 inputs + 8 outputs requires a 24-pin IC.
7.18 (a) 256 8 (b) 512 5 (c) 1024 4 (d) 32 7

7.17

0 0 0 0 0
0 0 0 0 1
…
…
0 1 0 0 0
0 1 0 0 1
…
…
1 1 1 1 0
1 1 1 1 1

0 0 0
0 0 0
…
…
0 0 1
0 0 1
…
…
1 1 0
1 1 0

0 0 0
0 0 1
…
…
0 1 1
1 0 0
…
…
0 0 0
0 0 1

0, 1
0, 1
…
…
0, 1
0, 1
…
…
0, 1
0, 1

0, 1
2, 3
…
…
16, 17
18, 19
…
…
60, 61
62, 63

I5 I4 I3 I2 I1 D6D5D4 D3D2D1 D0 (2
0) Decimal

Output of ROMInput Address

7.18 (a) 8 inputs 8 outputs 28 x 8 256 x 8 ROM

(b) 9 inputs 5 outputs 29 x 5 512 x 5 ROM

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

184

(c) 10 inputs 4 outputs 210 x 4 1024 x 4 ROM

(d) 5 inputs 7 outputs 25 x 7 32 x 7 ROM

7.19

0

1

00 01 11 10

z

y
x

yz

x

0
m0

1
m1

0
m3

1
m2

1
m4

0
m5

0
m7

1
m6

A = yz' + xz' + x'y'z
A' = yz + xz + x'y'z'

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1

0
m3

0
m2

0
m4

0
m5

1
m7

1
m6

B = xy + x'y'
B' = x'y' + x'y

0

1

00 01 11 10

z

y
x

yz

x

0
m0

0
m1

0
m3

1
m2

0
m4

0
m5

0
m7

1
m6

C = yz'
C' = y' + z

0

1

00 01 11 10

z

y
x

yz

x

0
m0

1
m1

1
m3

1
m2

0
m4

1
m5

1
m7

0
m6

D = z + x'y
D' = y'z' + xz'

yz'
xz'
x'y'z
xy'
x'y
z

1
2
3
4
5
6

- 1 0
1 - 0
0 0 1
1 0 -
0 1 -
- - 1

Inputs
x y z

Product
term

1
1
1
-
-
-

-
-
-
1
1
-

1
-
-
-
-
-

-
-
-
-
1
1

Outputs
A B C D

T C T T

7.20

1 1 0 1
0 1 1 1
0 0 0 0
1 0 0 0
1 0 0 1
0 0 1 1
1 1 0 0
0 1 0 1

A, B, C, D

Outputs

M[001] = 0111

M[100] = 1001

x y z

Inputs

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

185

7.21 Note: See truth table in Fig. 7.12(b).

0

1

00 01 11 10

A1A1A0

A2

0
m0

0
m1

0
m3

0
m2

0
m4

0
m5

1
m7

1
m6

F1 = A2A1
F'1 = A'2 + A'1

A2A1
A'2
A1A'0
A'2A1A0
A2A'1

1
2
3
4
5

Inputs
A2A1A0

Product
term

1
-
-
-
-

-
1
1
-
-

-
-
-
1
1

-
-
1
-
-

Outputs
F1 F2 F3 F4

A2

A0

0

1

00 01 11 10

A1

A2

0
m0

0
m1

0
m3

0
m2

1
m4

1
m5

1
m7

0
m6

F2 = A2A'1 + A2A0
F2' = A'2 + A1A'0

A2

A0

0

1

00 01 11 10

A1

A2

0
m0

0
m1

1
m3

0
m2

0
m4

1
m5

0
m7

0
m6

F3 = A'2A1A0 + A2A'1A0
F3' = A'0 + A'2A'1 +A2A1

A2

A0

0

1

00 01 11 10

A1

A2

0
m0

0
m1

0
m3

1
m2

0
m4

0
m5

0
m7

1
m6

F4 = A1A'0
F'4 = A'1 + A0

A2

A0

1
0
-
-
1

1
-
1
1
0

-
-
0
1
1

T C T T

Alternative: F'1, F'2, F3, F4
(5 terms)

A1A0

A1A0A1A0

7.22
w x y z

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Decimal

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 00
1
4
9
16
25
36
49
64
81

100
121
144
169
196
225

0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1

0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 1 0 0
0 1 1 1 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 1

Note: b0 = z, and b1 = 0.
ROM would have 4 inputs
and 6 outputs. A 4 x 8
ROM would waste two
outputs.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

186

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1

m4 m5 m7

1
m6

m12 m13 m15

1
m14

m8 m9 m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1

m4

1
m5 m7 m6

m12

1
m13 m15 m14

m8 m9

1
m11 m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

1
m4

1
m5

1
m7 m6

1
m12 m13 m15 m14

m8

1
m9

1
m11 m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m4 m5

1
m7

1
m6

m12

1
m13

1
m15 m14

m8 m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m4 m5 m7 m6

m12 m13

1
m15

1
m14

1
m8

1
m9

1
m11

1
m10

00

01

11

10

00 01 11 10

x

y
wx

yz

w

z

m4 m5 m7 m6

1
m12

1
m13

1
m15

1
m14

m8 m9 m11 m10

m0 m1 m3 m2m0 m1 m3 m2

m0 m1 m3 m2

m0 m1 m3 m2 m0 m1 m3 m2

m0 m1 m3 m2

b2 = yx' b3 = xy'z + x' yz

b4 = w'xz + xy'z' + wx' z b5 = w'xy + wxz + wx'y

b6 = wy + wx' b7 = wx

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

187

7.23

A
BC
BD
B'C'D'
CD
C'D'
D'

1
2
3
4
5
6
7

Inputs
A B C D

Product
term

1
1
1
-
-
-
-

-
1
1
1
-
-
-

-
-
-
-
1
1
-

-
-
-
-
-
-
1

Outputs
F1 F2 F3 F4

1
-
-
-
-
-
-

-
1
1
0
-
-
-

-
1
-
0
1
0
-

T C T T

-
-
1
0
1
0
0

From Fig. 4-3:
w = A + BC + BD
w' = A'B' + A'C'D'
x = B'C + B'D + BC'D'
x' = B'C'D' + BC BD
y = CD + C'D'
y' = C'D + CD'
z = D'
z' = D
Use w, x', y, z (7 terms)

7.24

1
2
3
4
5
6
7
8
9
10
11
12

AND
Inputs

A B C D
Product

term Outputs

1
-
-
-
-
-
-
-
-
-
-
-

-
1
1
0
0
1
-
-
-
-
-
-

-
1
-
1
-
0
1
0
-
-
-
-

-
-
1
-
1
0
1
0
-
0
-
-

w = A + BC + BD

x = B'C + B'D + BC'D'

y = CD + C'D'

z = D'

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

188

7.25

0

1

00 01 11 10

z

y
x

yz

x

0
m0

1
m1

0
m3

1
m2

1
m4

0
m5

0
m7

1
m6

A = yz' + xz' + x'y'z

0

1

00 01 11 10

z

y
x

yz

x

1
m0

1
m1

1
m3

0
m2

0
m4

0
m5

1
m7

1
m6

B = x'y' + xy + yz

0

1

00 01 11 10

z

y
x

yz

x

0
m0

1
m1

0
m3

1
m2

1
m4

0
m5

1
m7

1
m6

C = A + xyz

0

1

00 01 11 10

z

y
x

yz

x

0
m0

1
m1

1
m3

1
m2

0
m4

1
m5

1
m7

0
m6

D = z + x'y

1
2
3
4
5
6
7
8
9
10
11
12

AND
Inputs
x y z A

Product
term Outputs

-
1
0
0
1
0
0
1
0
0
0
-

1
-
0
0
1
1
-
1
-
-
1
-

0
0
1
-
-
1
-
1
-
1
-
-

-
-
-
-
-
-
1
-
-
-
-
-

A = yz' + xz' + x'y'z

B = x'y' + xy + yz

C = A + xyz

D = z + x'y

A = yz + xz + x y z
B = x y + xy + yz
C = A + xyz
D = z + x y

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

189

7.26

Q

Q
SET

CLR

D

x x' y' A'y A CLK OE = 1

A

x

y

7.27
The results of Prob. 6.17 can be used to develop the equations for a three-bit binary counter with D-type
flip-flops.

DA0 = A'0
DA1 = A'1A0 + A1A'0
DA2 = A'2 A1A0 + A2A'1 + A2A'0

Cout = A2A1A0

Q

Q
SET

CLR

D

8 9 11 1310 12 14 15

A0

clock

0 1 3 52 4 6 7

Q

Q
SET

CLR

D A1

clock

Q

Q
SET

CLR

D A2

clock

Cout A0 A1 A2

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

190

7.28
A B C

A'B

AC'

A'BC'

AC

AB

BC

F'2

F1

7.29

x'y'A
x'yA'
xy'A'
xyA

1
2
3
4

Inputs
x y A

Product
term

1
1
1
1

Output
DA

0
0
1
1

0
1
0
1

1
0
0
1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

191

CHAPTER 8

8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge. After the transfer, R2
holds the contents that were in R1 before the clock edge, and R2 holds its previous value incremented
by 1.

(b) Decrement the content of R3 by one.
(c) If (S1 = 1), transfer content of R1 to R0. If (S1 = 0 and S2 = 1), transfer content of R2 to R0.

8.2

clr_R

x

S1

1

0

1

y y

 S3 S2

1

incr_R

Controllerx

reset_b
clock

Datapath
R

y
...incr_R

clr_R

reset_b

R <= R + 1R <= 0

8.3

x

reset_b

S1

(a)

 S2

1add_by_2

x

reset_b

S1

(b)

 S2

1

 S3

x

reset_b

S1

(c)

1

y
 S3 1

 S2
R <= R + 2

8.4

x zy
1 1 1

yz
01

z z 11

1

111
110

110
100000

001

010
011

8.5 The operations specified in a flowchart are executed sequentially, one at a time. The operations specified
in an ASM chart are executed concurrently for each ASM block. Thus, the operations listed within a state
box, the operations specified by a conditional box, and the transfer to the next state in each ASM block
are executed at the same clock edge. For example, in Fig. 8.5 with Start = 1 and Flag = 1, signal Flush_R
is asserted. At the clock edge the state moves to S_2, and register R is flushed.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

192

8.6

{y, x}

reset_b

S_idle

Note: In practice, the asynchronous inputs x
and y should be synchronized to the clock to
avoid metastable conditons in the flip-flops..

incr

10
11

count <= count - 1 count <= count + 1

count <= 0

 S_in

{y, x}
10

11
S_in_out

00

01

incr

S_out

01

decr

11

01

{y, x}

00

incr

01

 S_out

{y, x}
00

10

decr

S_in

decr

10
00

S_idle

11

Note: To avoid counting a person more than
once, the machine waits until x or y is de-
asserted before incrementing or
decrementing the counter. The machine also
accounts for persons entering and leaving
simultaneously.

Controllerx

reset_b
clock

Datapath
count

y
...decr

incr

8.7 RTL notation:
S0: Initial state: if (start = 1) then (RA data_A, RB data_B, go to S1).
S1: {Carry, RA} RA + (2’s complement of RB), go to S2.
S2: If (borrow = 0) go to S0. If (borrow = 1) then RA (2’s complement of RA), go to S0.

Block diagram and ASMD chart:

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

193

Controller
Subtract

start

reset_b
clock

Datapath
Reg_A

borrow

carry

data_A

result

Convert

Load_A_B

done

data_B

...

...
Reg_B

...
result

8 8

8

 S0
 done

1

start

reset_b

Reg_A <= data_A
Reg_B <= data_B

Reg_A <= ~Reg_A + 1

 S2

borrow

Reg_A <= Reg_A + ~ Reg_B + 1

1

 S1
 Subtract

Load_A_B

Convert

module Subtractor_P8_7
 (output done, output [7:0] result, input [7: 0] data_A, data_B, input start, clock, reset_b);

 Controller_P8_7 M0 (Load_A_B, Subtract, Convert, done, start, borrow, clock, reset_b);
 Datapath_P8_7 M1 (result, borrow, data_A, data_B, Load_A_B, Subtract, Convert, clock, reset_b);
endmodule

module Controller_P8_7 (output reg Load_A_B, Subtract, output reg Convert, output done,
input start, borrow, clock, reset_b);
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10;
reg [1: 0] state, next_state;
assign done = (state == S0);

 always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= S0; else state <= next_state;

always @ (state, start, borrow) begin
Load_A_B = 0;

 Subtract = 0;
 Convert = 0;

case (state)
 S0: if (start) begin Load_A_B = 1; next_state = S1; end
 S1: begin Subtract = 1; next_state = S2; end
 S2: begin next_state = S0; if (borrow) Convert = 1; end

default: next_state = S0;
endcase

end
endmodule

module Datapath_P8_7 (output [7: 0] result, output borrow, input [7: 0] data_A, data_B,
input Load_A_B, Subtract, Convert, clock, reset_b);
reg carry;

reg [8:0] diff;
reg [7: 0] RA, RB;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

194

assign borrow = carry;
assign result = RA;

always @ (posedge clock, negedge reset_b)
if (!reset_b) begin carry <= 1'b0; RA <= 8'b0000_0000; RB <= 8'b0000_0000; end
else begin

if (Load_A_B) begin RA <= data_A; RB <= data_B; end
else if (Subtract) {carry, RA} <= RA + ~RB + 1;

 // In the statement above, the math of the LHS is done to the wordlength of the LHS
 // The statement below is more explicit about how the math for subtraction is done:
 // else if (Subtract) {carry, RA} <= {1'b0, RA} + {1'b1, ~RB } + 9'b0000_0001;
 // If the 9-th bit is not considered, the 2s complement operation will generate a carry bit,
 // and borrow must be formed as borrow = ~carry.

else if (Convert) RA <= ~RA + 8'b0000_0001;
end

endmodule

// Test plan – Verify;
// Power-up reset
// Subtraction with data_A > data_B
// Subtraction with data_A < data_B
// Subtraction with data_A = data_B
// Reset on-the-fly: left as an exercise

module t_Subtractor_P8_7;
 wire done;

wire [7:0] result;
reg [7: 0] data_A, data_B;
reg start, clock, reset_b;

 Subtractor_P8_7 M0 (done, result, data_A, data_B, start, clock, reset_b);

 initial #200 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork

reset_b = 0;
 #2 reset_b = 1;
 #90 reset_b = 1;
 #92 reset_b = 1;
 join

 initial fork
 #20 start = 1;
 #30 start = 0;
 #70 start = 1;
 #110 start = 1;
 join

 initial fork
data_A = 8'd50;

 data_B = 8'd20;

 #50 data_A = 8'd20;
 #50 data_B = 8'd50;

 #100 data_A = 8'd50;
 #100 data_B = 8'd50;
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

195

Name 0 40 80 120

clock
reset_b

state[1:0]

start
Load_A_B
Subtract
carry
borrow
Convert

data_A[7:0]
RA[7:0]
data_B[7:0]
RB[7:0]

done
borrow
result[7:0]

0 x

00

00

 0

0 1

 50

32

2

 50

 20

0

 30

1e

14

1

14

 20

2

226

e2
 20

0

 30

1e 32

1

 50

2 0

00

 0 50

32

1 2

32

 50

 50

8.8 RTL notation:
S0: if (start = 1) AR input data, BR input data, go to S1.
S1: if (AR [15]) = 1 (sign bit negative) then CR AR(shifted right, sign extension).
else if (positive non-zero) then (Overflow BR([15] [14]), CR BR(shifted left)
else if (AR = 0) then (CR 0).

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

196

Controller
start

reset_b
clock

Datapath
AR

AR_lt_0

data_AR

AR_gt_0

done

data_BR

...

...
BR

...
CR

16 16

 S0
 done

1

start

reset_b

AR <= data_A
BR<= data_B

AR > 0

CR <= BR << 1

 S1

Ld_AR_BR

AR_eq_0

Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

Ld_AR_BR

AR < 0 Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

1

1

CR <= {AR[15], AR[15:1]}

CR <= 0

Note: Division by 2 of a
negative number
represented in 16-bit 2s
complement format

Note: Multiplication by
2 of a positive number
represented in 16-bit 2s
complement format

module Prob_8_8 (output done, input [15: 0] data_AR, data_BR, input start, clock, reset_b);

 Controller_P8_8 M0 (
 Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, Clr_CR, done,
 start, AR_lt_0, AR_gt_0, AR_eq_0, clock, reset_b
);

 Datapath_P8_8 M1 (
 Overflow, AR_lt_0, AR_gt_0, AR_eq_0, data_AR, data_BR,
 Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, Clr_CR, clock, reset_b
);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

197

module Controller_P8_8 (
output reg Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, Clr_CR,
output done, input start, AR_lt_0, AR_gt_0, AR_eq_0, clock, reset_b

);
parameter S0 = 1'b0, S1 = 1'b1;
reg state, next_state;
assign done = (state == S0);

always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= S0; else state <= next_state;

always @ (state, start, AR_lt_0, AR_gt_0, AR_eq_0) begin
 Ld_AR_BR = 0;
 Div_AR_x2_CR = 0;
 Mul_BR_x2_CR = 0;
 Clr_CR = 0;

case (state)
 S0: if (start) begin Ld_AR_BR = 1; next_state = S1; end
 S1: begin
 next_state = S0;
 if (AR_lt_0) Div_AR_x2_CR = 1;
 else if (AR_gt_0) Mul_BR_x2_CR = 1;
 else if (AR_eq_0) Clr_CR = 1;
 end

default: next_state = S0;
endcase

end
endmodule

module Datapath_P8_8 (
output reg Overflow, output AR_lt_0, AR_gt_0, AR_eq_0, input [15: 0] data_AR, data_BR,
input Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, Clr_CR, clock, reset_b

);
reg [15: 0] AR, BR, CR;
assign AR_lt_0 = AR[15];
assign AR_gt_0 = (!AR[15]) && (| AR[14:0]); // Reduction-OR
assign AR_eq_0 = (AR == 16'b0);

always @ (posedge clock, negedge reset_b)
if (!reset_b) begin AR <= 8'b0; BR <= 8'b0; CR <= 16'b0; end
else begin

if (Ld_AR_BR) begin AR <= data_AR; BR <= data_BR; end
else if (Div_AR_x2_CR) CR <= {AR[15], AR[15:1]}; // For compiler without arithmetic right shift
else if (Mul_BR_x2_CR) {Overflow, CR} <= (BR << 1);
else if (Clr_CR) CR <= 16'b0;

end
endmodule

// Test plan – Verify;
// Power-up reset
// If AR < 0 divide AR by 2 and transfer to CR
// If AR > 0 multiply AR by 2 and transfer to CR
// If AR = 0 clear CR
// Reset on-the-fly

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

198

module t_Prob_P8_8;
wire done;
reg [15: 0] data_AR, data_BR;
reg start, clock, reset_b;
reg [15: 0] AR_mag, BR_mag, CR_mag; // To illustrate 2s complement math

// Probes for displaying magnitude of numbers
always @ (M0.M1.AR) // Hierarchical dereferencing

if (M0.M1.AR[15]) AR_mag = ~M0.M1.AR+ 16'd1; else AR_mag = M0.M1.AR;
always @ (M0.M1.BR)

if (M0.M1.BR[15]) BR_mag = ~M0.M1.BR+ 16'd1; else BR_mag = M0.M1.BR;
always @ (M0.M1.CR)

if (M0.M1.CR[15]) CR_mag = ~M0.M1.CR + 16'd1; else CR_mag = M0.M1.CR;

 Prob_8_8 M0 (done, data_AR, data_BR, start, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 reset_b = 0; // Power-up reset
 #2 reset_b = 1;
 #50 reset_b = 0; // Reset on-the-fly
 #52 reset_b = 1;
 #90 reset_b = 1;
 #92 reset_b = 1;

join

initial fork
 #20 start = 1;
 #30 start = 0;
 #70 start = 1;
 #110 start = 1;

join

initial fork
 data_AR = 16'd50; // AR > 0
 data_BR = 16'd20; // Result should be 40

 #50 data_AR = 16'd20;
 #50 data_BR = 16'd50; // Result should be 100

 #100 data_AR = 16'd50;
 #100 data_BR = 16'd50;

 #130 data_AR = 16'd0; // AR = 0, result should clear CR

 #160 data_AR = -16'd20; // AR < 0, Verilog stores 16-bit 2s complement
 #160 data_BR = 16'd50; // Result should have magnitude10

 #190 data_AR = 16'd20; // AR < 0, Verilog stores 16-bit 2s complement
 #190 data_BR = 16'hffff; // Result should have overflow

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

199

0 60 120 180 240

 0

0000

 0

0000

 0

 0

 0

0000

 0

 20

 50

 50

 20

 50

0032

 20

0014

 40

 40

 0

0000

 0

 0

 0

0000

 0

 0

0000

 20

 20

 20

0014

 50

 50

 50

0032

 100

 100

0064

 0

 0

0000

 0

 0

 0

0000

65516

 50

 50

0032

 50

65516

ffec

65526

fff6

 10 2

fffe

65534

 1

ffff

65535

65535

 20

0014

 20

 20

Name

reset_b

clock

start

AR_lt_0

AR_gt_0

AR_eq_0

state

Ld_AR_BR

Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

done

data_AR[15:0]

AR[15:0]

AR[15:0]

AR_mag[15:0]

data_BR[15:0]

BR[15:0]

BR[15:0]

BR_mag[15:0]

CR[15:0]

CR[15:0]

CR_mag[15:0]

Overflow

Reset on-the-fly

Multiply by 2 and xfer to CR Divide by 2 and xfer to CR

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

200

8.9
Design equations:
DS_idle = S_2 + S_idle Start'
DS_1 = S_idle Start + S_1 (A2 A3)'
DS_2 = A2 A3 S_1

HDL description:

module Prob_8_9 (output E, F, output [3: 0] A, output A2, A3, input Start, clock, reset_b);

 Controller_Prob_8_9 M0 (set_E, clr_E, set_F, clr_A_F, incr_A, Start, A2, A3, clock, reset_b);
 Datapath_Prob_8_9 M1 (E, F, A, A2, A3, set_E, clr_E, set_F, clr_A_F, incr_A, clock, reset_b);

endmodule

// Structural version of the controller (one-hot)
// Note that the flip-flop for S_idle must have a set input and reset_b is wire to the set
// Simulation results match Fig. 8-13

module Controller_Prob_8_9 (
output set_E, clr_E, set_F, clr_A_F, incr_A,
input Start, A2, A3, clock, reset_b

);

wire D_S_idle, D_S_1, D_S_2;
wire q_S_idle, q_S_1, q_S_2;

 wire w0, w1, w2, w3;
wire [2:0] state = {q_S_2, q_S_1, q_S_idle};

 // Next-State Logic
 or (D_S_idle, q_S_2, w0); // input to D-type flip-flop for q_S_idle
 and (w0, q_S_idle, Start_b);
 not (Start_b, Start);

 or (D_S_1, w1, w2, w3); // input to D-type flip-flop for q_S_1
and (w1, q_S_idle, Start);
and (w2, q_S_1, A2_b);
not (A2_b, A2);
and (w3, q_S_1, A2, A3_b);
not (A3_b, A3);

and (D_S_2, A2, A3, q_S_1); // input to D-type flip-flop for q_S_2

 D_flop_S M0 (q_S_idle, D_S_idle, clock, reset_b);
 D_flop M1 (q_S_1, D_S_1, clock, reset_b);
 D_flop M2 (q_S_2, D_S_2, clock, reset_b);

 // Output Logic
and (set_E, q_S_1, A2);
and (clr_E, q_S_1, A2_b);
buf (set_F, q_S_2);
and (clr_A_F, q_S_idle, Start);
buf (incr_A, q_S_1);

endmodule

module D_flop (output reg q, input data, clock, reset_b);
 always @ (posedge clock, negedge reset_b)
 if (!reset_b) q <= 1'b0; else q <= data;
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

201

module D_flop_S (output reg q, input data, clock, set_b);
 always @ (posedge clock, negedge set_b)
 if (!set_b) q <= 1'b1; else q <= data;
endmodule

/*
// RTL Version of the controller
// Simulation results match Fig. 8-13

module Controller_Prob_8_9 (
output reg set_E, clr_E, set_F, clr_A_F, incr_A,
input Start, A2, A3, clock, reset_b

);
parameter S_idle = 3'b001, S_1 = 3'b010, S_2 = 3'b100; // One-hot
reg [2: 0] state, next_state;

 always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, A2, A3) begin
set_E = 1'b0;

 clr_E = 1'b0;
 set_F = 1'b0;
 clr_A_F = 1'b0;
 incr_A = 1'b0;
 case (state)
 S_idle: if (Start) begin next_state = S_1; clr_A_F = 1; end

else next_state = S_idle;

 S_1: begin
 incr_A = 1;

if (!A2) begin next_state = S_1; clr_E = 1; end
else begin

set_E = 1;
 if (A3) next_state = S_2; else next_state = S_1;
 end
end

 S_2: begin next_state = S_idle; set_F = 1; end
default: next_state = S_idle;

 endcase
end

endmodule
*/
module Datapath_Prob_8_9 (

output reg E, F, output reg [3: 0] A, output A2, A3,
input set_E, clr_E, set_F, clr_A_F, incr_A, clock, reset_b

);
assign A2 = A[2];
assign A3 = A[3];

always @ (posedge clock, negedge reset_b) begin
if (!reset_b) begin E <= 0; F <= 0; A <= 0; end
else begin

if (set_E) E <= 1;
if (clr_E) E <= 0;
if (set_F) F <= 1;
if (clr_A_F) begin A <= 0; F <= 0; end
if (incr_A) A <= A + 1;

end
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

202

// Test Plan - Verify: (1) Power-up reset, (2) match ASMD chart in Fig. 8-9 (d),
// (3) recover from reset on-the-fly

module t_Prob_8_9;
wire E, F;
wire [3: 0] A;
wire A2, A3;
reg Start, clock, reset_b;

 Prob_8_9 M0 (E, F, A, A2, A3, Start, clock, reset_b);

 initial #500 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 #20 Start = 1;
 #40 reset_b = 0;
 #62 reset_b = 1;

join
endmodule

8.10

x

s0

0

1

x

y1

reset_b

s1

s2s3

x

0

0

y

1
0

1
y

1
1

module Prob_8_10 (input x, y, clock, reset_b);
reg [1: 0] state, next_state;
parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
always @ (posedge clock, negedge reset_b)

if (reset_b == 0) state <= s0; else state <= next_state;

always @ (state, x, y) begin
 next_state = s0;

case (state)
 s0: if (x == 0) next_state = s0; else next_state = s1;
 s1: if (y == 0) next_state = s2; else next_state = s3;
 s2: if (x == 0) next_state = s0; else if (y == 0) next_state = s2; else next_state = s3;
 s3: if (x == 0) next_state = s0; else if (y == 0) next_state = s2; else next_state = s3;

endcase
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

203

module t_Prob_8_10 ();
 reg x, y, clock, reset_b;

 Prob_8_10 M0 (x, y, clock, reset_b);

initial #150 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 reset_b = 0;
 #12 reset_b = 1;
 x = 0; y = 0; // Remain in s0
 #10 y = 1; // Remain in s0
 #20 x = 1; // Go to s1 to s3
 #40 reset_b = 0; // Go to s0
 #42 reset_b = 1; // Go to s2 to s3
 #60 y = 0; // Go to s2
 #80 y = 1; // Go to s3
 #90 x = 0; // Go to s0
 #100 x = 1; // Go to s1
 #110 y = 0; // Go to s2
 #130 x = 0; // Go to s0

join
endmodule

0 50 100 150

0 1 3 0 1 3 2 3 0 1 2 0

Name

clock
reset_b

x
y

state[1:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

204

8.11 DA = A B + Ax
DB = A B x + A By + xy

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

state inputs
next
state
0 0
0 0
0 1
0 1

1 0
1 1
1 0
1 1

0 0
0 0
1 0
1 1

0 0
0 0
1 0
1 1

00

01

11

10

00 01 11 10

B

x
AB

xy

m0 m1 m3 m2

1
m4

1
m5

1
m7

1
m6

m12 m13

1
m15

1
m14

m8 m9

1
m11

1
m10

y

A

00

01

11

10

00 01 11 10

B

x
AB

xy

m0 m1

1
m3

1
m2

m4

1
m5

1
m7 m6

m12 m13

1
m15 m14

m8 m9

1
m11 m10

y

A

DA = A'B + Ax

DB = A'B' x + A'By + xy

8.12 Modify the counter in Fig. 6.12 to add a signal, Clear, to clear the counter synchronously, as shown in the
circuit diagram below.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

205

A0

A1

A2

A3

J Q

QBK

J Q

QBK

J Q

QBK

J Q

QBK

Count enable

CLK

To next stage

Clear

module Counter_4bit_Synch_Clr (output [3: 0] A, output next_stage, input Count_enable, Clear, CLK);
wire A0, A1, A2, A3;
assign A[3: 0] = {A3, A2, A1, A0};

 JK_FF M0 (A0, J0, K0, CLK);
 JK_FF M1 (A1, J1, K1, CLK);
 JK_FF M2 (A2, J2, K2, CLK);
 JK_FF M3 (A3, J3, K3, CLK);

 not (Clear_b, Clear);
 and (J0, Count_enable, Clear_b);
 and (J1, J0, A0);
 and (J2, J1, A1);
 and (J3, J2, A2);

 or (K0, Clear, J0);
 or (K1, Clear, J1);
 or (K2, Clear, J2);
 or (K3, Clear, J3);

 and (next_stage, A3, J3);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

206

module JK_FF (output reg Q, input J, K, clock);
always @ (posedge clock)

case ({J,K})
 2'b00: Q <= Q;
 2'b01: Q <= 0;
 2'b10: Q <= 1;
 2'b11: Q <= ~Q;

endcase
endmodule

module t_Counter_4bit_Synch_Clr ();
 wire [3: 0] A;

wire next_stage;
reg Count_enable, Clear, clock;

 Counter_4bit_Synch_Clr M0 (A, next_stage, Count_enable, Clear, clock);

 initial #300 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial fork

Clear = 1;
 Count_enable = 0;
 #12 Clear = 0;
 #20 Count_enable = 1;
 #180 Clear = 1;
 #190 Clear = 0;
 #230 Count_enable = 0;
 join
endmodule

0 50 100 150 200 250

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4

Name

clock
Clear
Count_enable
J0
K0
A0

J1
K1
A1

J2
K2
A2

J3
K3
A3

A[3:0]

next_stage

8.13
// Structural description of design example (Fig. 8-10, 8-12)
module Design_Example_STR

 (output [3:0] A,
output E, F,
input Start, clock, reset_b

);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

207

 Controller_STR M0 (clr_A_F, set_E, clr_E, set_F, incr_A, Start, A[2], A[3], clock, reset_b);
 Datapath_STR M1 (A, E, F, clr_A_F, set_E, clr_E, set_F, incr_A, clock);
endmodule

module Controller_STR
(output clr_A_F, set_E, clr_E, set_F, incr_A,

input Start, A2, A3, clock, reset_b
);

wire G0, G1;
parameter S_idle = 2'b00, S_1 = 2'b01, S_2 = 2'b11;
wire w1, w2, w3;

not (G0_b, G0);
not (G1_b, G1);
buf (incr_A, w2);
buf (set_F, G1);
not (A2_b, A2);
or (D_G0, w1, w2);
and (w1, Start, G0_b);
and (clr_A_F, G0_b, Start);
and (w2, G0, G1_b);
and (set_E, w2, A2);
and (clr_E, w2, A2_b);
and (D_G1, w3, w2);
and (w3, A2, A3);

 D_flip_flop_AR M0 (G0, D_G0, clock, reset_b);
 D_flip_flop_AR M1 (G1, D_G1, clock, reset_b);
endmodule

// datapath unit

module Datapath_STR
(output [3: 0] A,

output E, F,
input clr_A_F, set_E, clr_E, set_F, incr_A, clock

);

 JK_flip_flop_2 M0 (E, E_b, set_E, clr_E, clock);
 JK_flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
 Counter_4 M2 (A, incr_A, clr_A_F, clock);

endmodule

module Counter_4 (output reg [3: 0] A, input incr, clear, clock);
always @ (posedge clock)

if (clear) A <= 0; else if (incr) A <= A + 1;
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);
output Q;
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= 1'b0;
else Q <= D;

endmodule

module JK_flip_flop_2 (Q, Q_not, J, K, CLK);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

208

output Q, Q_not;
input J, K, CLK;
reg Q;

assign Q_not = ~Q
;

always @ (posedge CLK)
case ({J, K})

 2'b00: Q <= Q;
 2'b01: Q <= 1'b0;
 2'b10: Q <= 1'b1;
 2'b11: Q <= ~Q;

endcase
endmodule

module t_Design_Example_STR;
 reg Start, clock, reset_b;

wire [3: 0] A;
wire E, F;

 wire [1:0] state_STR = {M0.M0.G1, M0.M0.G0};

 Design_Example_STR M0 (A, E, F, Start, clock, reset_b);

initial #500 $finish;
initial

begin
 reset_b = 0;
 Start = 0;
 clock = 0;
 #5 reset_b = 1; Start = 1;

repeat (32)
begin

 #5 clock = ~ clock;
end

end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);

endmodule

The simulation results shown below match Fig. 8.13.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

209

0 50 100 150 200

0

x 0 1 2 3 4 5 6 7 8 9 a b c

1 3

d

0 1

0

Name

clock
reset_b
Start
A2
A3

state_STR[1:0]

clr_A_F
set_E
clr_E
set_F
incr_A

A[3:0]
E
F

8.14 The state code 2'b10 is unused. If the machine enters an unused state, the controller is written with default
assignment to next_state. The default assignment forces the state to S_idle, so the machine recovers from
the condition.

8.15 Modify the test bench to insert a reset event and extend the clock.

// RTL description of design example (see Fig.8-11)

module Design_Example_RTL (A, E, F, Start, clock, reset_b);

 // Specify ports of the top-level module of the design
 // See block diagram Fig. 8-10

output [3: 0] A;
output E, F;
input Start, clock, reset_b;

 // Instantiate controller and datapath units

 Controller_RTL M0 (set_E, clr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
 Datapath_RTL M1 (A, E, F, set_E, clr_E, set_F, clr_A_F, incr_A, clock);

endmodule

module Controller_RTL (set_E, clr_E, set_F, clr_A_F, incr_A, A2, A3, Start, clock, reset_b);
output reg set_E, clr_E, set_F, clr_A_F, incr_A;
input Start, A2, A3, clock, reset_b;
reg [1:0] state, next_state;
parameter S_idle = 2'b00, S_1 = 2'b01, S_2 = 2'b11; // State codes

always @ (posedge clock or negedge reset_b) // State transitions (edge-sensitive)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

 // Code next state logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2, A3) begin // Next state logic (level-sensitive)
 next_state = S_idle;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

210

case (state)
 S_idle: if (Start) next_state = S_1; else next_state = S_idle;
 S_1: if (A2 & A3) next_state = S_2; else next_state = S_1;
 S_2: next_state = S_idle;

default: next_state = S_idle;
endcase

end

 // Code output logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2) begin
 set_E = 0; // default assignments; assign by exception
 clr_E = 0;
 set_F = 0;
 clr_A_F = 0;
 incr_A = 0;

case (state)
 S_idle: if (Start) clr_A_F = 1;
 S_1: begin incr_A = 1; if (A2) set_E = 1; else clr_E = 1; end
 S_2: set_F = 1;

endcase
end

endmodule

module Datapath_RTL (A, E, F, set_E, clr_E, set_F, clr_A_F, incr_A, clock);
output reg [3: 0] A; // register for counter
output reg E, F; // flags
input set_E, clr_E, set_F, clr_A_F, incr_A, clock;

 // Code register transfer operations directly from ASMD chart (Fig. 8-9d)

always @ (posedge clock) begin
if (set_E) E <= 1;
if (clr_E) E <= 0;
if (set_F) F <= 1;
if (clr_A_F) begin A <= 0; F <= 0; end
if (incr_A) A <= A + 1;

end
endmodule

module t_Design_Example_RTL;
reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

 // Instantiate design example

 Design_Example_RTL M0 (A, E, F, Start, clock, reset_b);

 // Describe stimulus waveforms

initial #500 $finish; // Stopwatch
initial fork

 #25 reset_b = 0; // Test for recovery from reset on-the-fly.
 #27 reset_b = 1;

join
initial

begin
 reset_b = 0;
 Start = 0;
 clock = 0;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

211

 #5 reset_b = 1; Start = 1;
 //repeat (32)

repeat (38) // Modify for test of reset_b on-the-fly
 begin
 #5 clock = ~ clock; // Clock generator

end
end

initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);

endmodule

0 40 80 120 160 200

x

0

0

1 0

1 0 1 2 3 4 5 6 7 8 9 a b

1

c

3

d

0

0 1

1

Name

Default
clock
reset_b

Start
A2
A3

state[1:0]

clr_A_F
set_E
clr_E
set_F
incr_A

A[3:0]
E
F

8.16 RTL notation:
s0: (initial state) If start = 0 go back to state s0, If (start = 1) then BR multiplicand, AR multiplier,

PR 0, go to s1.
s1: (check AR for Zero) Zero = 1 if AR = 0, if (Zero = 1) then go back to s0 (done) If (Zero = 0) then go
to s1, PR PR + BR, AR AR – 1.

The internal architecture of the datapath consists of a double-width register to hold the product (PR), a
register to hold the multiplier (AR), a register to hold the multiplicand (BR), a double-width parallel adder,
and single-width parallel adder. The single-width adder is used to implement the operation of decrementing
the multiplier unit. Adding a word consisting entirely of 1s to the multiplier accomplishes the 2's
complement subtraction of 1 from the multiplier. Figure 8.16 (a) below shows the ASMD chart, block
diagram, and controller of the circuit. Figure 8.16 (b) shows the internal architecture of the datapath.
Figure 8.16 (c) shows the results of simulating the circuit.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

212

Controller
start

reset_b
clock

Datapath
AR

zero

data_AR

done

data_BR

...

...
BR

...
PR

16 16

 s0
 done

1

start

reset_b

AR <= data_A
BR <= data_B
PR <= 0

 s1

Ld_regs

Add_decr

Ld_regs

ZeroAdd_decr
1

PR <= PR + BR
AR <= AR -1

16

PR

Zero

Start

reset_b
clock

s0 = s1'

D

Controller

done

Ld_regs

Add_decr

Note: Form Zero as the output of an OR gate whose inputs
are the bits of the register AR.

(a) ASMD chart, block diagram, and controller

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

213

AR

+

data_AR

Add_decr

Ld_regs+

data_BR

Ld_regs mux1 0

16

16

32

PR

BR

32

...All 0's

16
32

......

Note: all registers have active-low
asynchronous reset

mux

mux

32
0

Ld_regs
10

32

Add_decr1 0 16

mux1 0

16

......

mux1 0

16

16
16

16

A// 1s

(b) Datapath

Name 0 40 80 120 160 200

reset_b

clock

start

Ld_regs

Add_decr

zero

state

data_AR[7:0]

data_BR[7:0]

AR[7:0]

BR[7:0]

done

PR[15:0]

 0

 0 5

 0 20

 4 3

 40

 20

 5

 2

 60

 1

 80

 3

 0

 100

 20

 4

 0

 3

 9 18

 2 1

 27

 0

 36 0

 4

 9

 9

 4

(c) Simulation results

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

214

module Prob_8_16_STR (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b
);

Controller_P8_16 M0 (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_16 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter s0 = 1'b0, s1 = 1'b1;
reg state, next_state;
assign done = (state == s0);

always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin
Ld_regs = 0;
Add_decr = 0;
case (state)
s0: if (start) begin Ld_regs = 1; next_state = s1; end
s1: if (zero) next_state = s0; else begin next_state = s1; Add_decr = 1; end
default: next_state = s0;
endcase
end
endmodule

module Register_32 (output [31: 0] data_out, input [31: 0] data_in, input clock, reset_b);
Register_8 M3 (data_out [31: 24] , data_in [31: 24], clock, reset_b);
Register_8 M2 (data_out [23: 16] , data_in [23: 16], clock, reset_b);
Register_8 M1 (data_out [15: 8] , data_in [15: 8], clock, reset_b);
Register_8 M0 (data_out [7: 0] , data_in [7: 0], clock, reset_b);
endmodule

module Register_16 (output [15: 0] data_out, input [15: 0] data_in, input clock, reset_b);
Register_8 M1 (data_out [15: 8] , data_in [15: 8], clock, reset_b);
Register_8 M0 (data_out [7: 0] , data_in [7: 0], clock, reset_b);
endmodule

module Register_8 (output [7: 0] data_out, input [7: 0] data_in, input clock, reset_b);
D_flop M7 (data_out[7] data_in[7], clock, reset_b);
D_flop M6 (data_out[6] data_in[6], clock, reset_b);
D_flop M5 (data_out[5] data_in[5], clock, reset_b);
D_flop M4 (data_out[4] data_in[4], clock, reset_b);
D_flop M3 (data_out[3] data_in[3], clock, reset_b);
D_flop M2 (data_out[2] data_in[2], clock, reset_b);
D_flop M1 (data_out[1] data_in[1], clock, reset_b);
D_flop M0 (data_out[0] data_in[0], clock, reset_b);
endmodule

module Adder_32 (output c_out, output [31: 0] sum, input [31: 0] a, b);
assign {c_out, sum} = a + b;
endmodule

module Adder_16 (output c_out, output [15: 0] sum, input [15: 0] a, b);
assign {c_out, sum} = a + b;
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

215

module D_flop (output q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (!reset_b) q <= 0; else q <= data;
endmodule

module Datapath_P8_16 (
output reg [15: 0] PR, output zero,
input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b
);

reg [7: 0] AR, BR;
assign zero = ~(| AR);

always @ (posedge clock, negedge reset_b)
if (!reset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin
if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <= 0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end
end
endmodule

// Test plan – Verify;
// Power-up reset
// Data is loaded correctly
// Control signals assert correctly
// Status signals assert correctly
// start is ignored while multiplying
// Multiplication is correct
// Recovery from reset on-the-fly

module t_Prob_P8_16;
wire done;
wire [15: 0] PR;
reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

Prob_8_16_STR M0 (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_b = 0;
#12 reset_b = 1;
#40 reset_b = 0;
#42 reset_b = 1;
#90 reset_b = 1;
#92 reset_b = 1;
join

initial fork
#20 start = 1;
#30 start = 0;
#40 start = 1;
#50 start = 0;
#120 start = 1;
#120 start = 0;
join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

216

initial fork
data_AR = 8'd5; // AR > 0
data_BR = 8'd20;

#80 data_AR = 8'd3;
#80 data_BR = 8'd9;

#100 data_AR = 8'd4;
#100 data_BR = 8'd9;
join
endmodule

8.17 (2n – 1) (2n – 1) < (22n – 1) for n 1

8.18 (a) The maximum product size is 32 bits available in registers A and Q.
(b) P counter must have 5 bits to load 16 (binary 10000) initially.
(c) Z (zero) detection is generated with a 5-input NOR gate.

8.19

Multiplicand B = 110112 = 2710
Multiplier Q = 101112 = 2310
Product: CAQ = 62110

C A Q P
Multiplier in Q 0 00000 10111 101
Q0 = 1; add B 11011
First partial product 0 11011 10111 100
Shift right CAQ 0 01101 11011
Q0 = 1; add B 11011
Second partial product 1 01000 11011 011
Shift right CAQ 0 10100 01101
Q0 = 1; add B
Third partial product
Shift right CAQ

1
0

11011
01111
10111

01101
10110

010

Shift right CAQ
Fourth partial product

0
0

01011
01011

11011
11011 001

Q0 = 1; add B 11011
Fifth partial product 1 00110 11011 000
Shift right CAQ 0 10011 01101
Final product in AQ:
AQ = 10011_01101 = 62110

8.20 S_idle = 1t ns
The loop between S_add and S_shift takes 2nt ns)
Total time to multiply: (2n + 1)t

8.21

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

217

Mux_1

Mux_2

2 x 4 Decoder

C

D

C

D

0

1

Zero'

0

Start

0

0

0

s1 s0

s1 s0

clock
reset_b

G1

G0

Start

0

1

0

2

0

3

1

2

3

1

2

3

Load_regs

State codes: G1 G0
S_idle 0 0
S_add 0 1
S_shift1 0

 unused 0 0

Q[0]

Add_regs

Shift_regs

8.22 Note that the machine described by Fig. P8.22 requires four states, but the machine described byFig. 8.15
(b) requires only three. Also, observe that the sample simulation results show a case where the carry bit
regsiter, C, is needed to support the addition operation. The datapath is 8 bits wide.

module Prob_8_22 # (parameter m_size = 9)
(

output [2*m_size -1: 0] Product,
output Ready,
input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);
wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire Q0, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit M0 (A, Q, Q0, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);
Control_Unit M1 (Ready, Decr_P, Load_regs, Add_regs, Shift_regs, Start, Q0, Zero, clock, reset_b);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

218

module Datapath_Unit # (parameter m_size = 9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,
output Q0, Zero,
input [m_size -1: 0] Multiplicand, Multiplier,
input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
reg C;
reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

assign Q0 = Q[0];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin

 B <= 0;C <= 0;
 A <= 0;
 Q <= 0;
 P <= m_size;

end
 else begin

if (Load_regs) begin
 A <= 0;
 C <= 0;
 Q <= Multiplier;
 B <= Multiplicand;
 P <= m_size;
 end

if (Decr_P) P <= P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;

 end
endmodule

module Control_Unit (
output Ready, Decr_P, output reg Load_regs, Add_regs, Shift_regs, input Start, Q0, Zero, clock,

reset_b
);

reg [1: 0] state, next_state;
parameter S_idle = 2'b00, S_loaded = 2'b01, S_sum = 2'b10, S_shifted = 2'b11;
assign Ready = (state == S_idle);
assign Decr_P = (state == S_loaded);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Add_regs = 0;
 Shift_regs = 0;

case (state)
 S_idle: if (Start == 0) next_state = S_idle; else begin next_state = S_loaded; Load_regs = 1; end
 S_loaded: if (Q0) begin next_state = S_sum; Add_regs = 1; end
 else begin next_state = S_shifted; Shift_regs = 1; end
 S_sum: begin next_state = S_shifted; Shift_regs = 1; end
 S_shifted: if (Zero) next_state = S_idle; else next_state = S_loaded;

endcase
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

219

module t_Prob_8_22 ();
parameter m_size = 9; // Width of datapath
wire [2 * m_size - 1: 0] Product;
wire Ready;

 reg [m_size - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
integer Exp_Value;
reg Error;

 Prob_8_22 M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 reset_b = 1;

 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial begin #5 Start = 1; end

always @ (posedge Ready) begin
 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection

end
 always @ (negedge Ready) begin
 Error = (Exp_Value ^ Product) ;

end

initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (64) #10 begin Multiplier = Multiplier + 1;
repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

220

76811 76861 76911 76961 77011

0
0 9

1 3

 3

 3

000

1
8

2

003

3
7

 96001

 96001

0bb

1

101

2 3
6

119
080

1 3
5

 72000

 72000

08c

1

140

3
4

046

 36000

 36000

1

0a0

3
3

023

 18000

 18000

1

050

3
2

128
011

1

 9000

 9000

3
1

 4500

 4500

008
194

1 3

2244

375

0

0ca
004

 2250

 2250

0

177

1
9

3

2250

 3
 6

376

 3
003

000

178
8

1

Name

clock
reset_b
Ready
Start
Load_regs
Add_regs
Shift_regs
Decr_P
Q0
Zero
state[1:0]
P[3:0]
B[8:0]
C
A[8:0]
Q[8:0]
Product[17:0]

Multiplicand[8:0]
Multiplier[8:0]
Product[17:0]

Ready
Exp_Value
Error

8.23 As shown in Fig. P8.23 the machine asserts Load_regs in state S_load. This will cause the machine to
operate incorrectly. Once Load_regs is removed from S_load the machine operates correctly. The state
S_load is a wasted state. Its removal leads to the same machine as dhown in Fig. P8.15b.

module Prob_8_23 # (parameter m_size = 9)
(

output [2*m_size -1: 0] Product,
output Ready,
input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);
wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire Q0, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit M0 (A, Q, Q0, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);
Control_Unit M1 (Ready, Decr_P, Shift_regs, Add_regs, Load_regs, Start, Q0, Zero, clock, reset_b);
endmodule

module Datapath_Unit # (parameter m_size = 9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,
output Q0, Zero,
input [m_size -1: 0] Multiplicand, Multiplier,
input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
reg C;
reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

221

assign Q0 = Q[0];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin

 A <= 0;
 C <= 0;
 Q <= 0;
 B <= 0;
 P <= m_size;

end
 else begin

if (Load_regs) begin
 A <= 0;
 C <= 0;
 Q <= Multiplier;
 B <= Multiplicand;
 P <= m_size;
 end

if (Decr_P) P <= P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;

 end
endmodule

module Control_Unit (
output Ready, Decr_P, Shift_regs, output reg Add_regs, Load_regs, input Start, Q0, Zero, clock,

reset_b
);

reg [1: 0] state, next_state;
parameter S_idle = 2'b00, S_load = 2'b01, S_decr = 2'b10, S_shift = 2'b11;

assign Ready = (state == S_idle);
assign Shift_regs = (state == S_shift);
assign Decr_P = (state == S_decr);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Add_regs = 0;

case (state)
 S_idle: if (Start == 0) next_state = S_idle; else begin next_state = S_load; Load_regs = 1; end
 S_load: begin next_state = S_decr; end
 S_decr: begin next_state = S_shift; if (Q0) Add_regs = 1; end
 S_shift: if (Zero) next_state = S_idle; else next_state = S_load;

endcase
end

endmodule

module t_Prob_8_23 ();
parameter m_size = 9; // Width of datapath
wire [2 * m_size - 1: 0] Product;
wire Ready;

 reg [m_size - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
integer Exp_Value;
reg Error;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

222

 Prob_8_23 M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 reset_b = 1;

 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial begin #5 Start = 1; end
always @ (posedge Ready) begin

 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection

end
 always @ (negedge Ready) begin
 Error = (Exp_Value ^ Product) ;

end

initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (64) #10 begin Multiplier = Multiplier + 1;
repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
end

endmodule

21403 21433 21463 21493 21523 21553

3

000
013

1 2
 5

 4864

 4864

009

3

100

1 2
 4

 2432

 2432

004

3

180

1 2
 3

002

 1216

 1216

3

0c0

1 2
 2

001

 608

 608

3

060

1
 1

2

150

 304

 304

130

3

 76

04c
 0

0

 152

 152

098

1

152

 2
 2

 77

 2
002

000

04d
 9

Name

clock
reset_b
Ready
Start
Load_regs
Add_regs
Shift_regs
Decr_P
Q0
Zero
state[1:0]
P[3:0]
B[8:0]
C
A[8:0]
Q[8:0]
Product[17:0]

Multiplicand[8:0]
Multiplier[8:0]
Product[17:0]

Ready
Exp_Value
Error

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

223

8.24
module Prob_8_24 # (parameter dp_width = 5)
(

output [2*dp_width - 1: 0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);
wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, Q0;

 Controller M0 (
 Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, Q0,
 clock, reset_b
);

Datapath M1(Product, Q0, Zero,Multiplicand, Multiplier,
 Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);
endmodule

module Controller (
output Ready,
output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, Q0, clock, reset_b

);

parameter S_idle = 3'b001, // one-hot code
 S_add = 3'b010,
 S_shift = 3'b100;

reg [2: 0] state, next_state; // sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Decr_P = 0;
 Add_regs = 0;
 Shift_regs = 0;

case (state)
 S_idle: if (Start) begin next_state = S_add; Load_regs = 1; end
 S_add: begin next_state = S_shift; Decr_P = 1; if (Q0) Add_regs = 1; end
 S_shift: begin
 Shift_regs = 1;
 if (Zero) next_state = S_idle;
 else next_state = S_add;

end
default: next_state = S_idle;

endcase
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

224

module Datapath #(parameter dp_width = 5, BC_size = 3) (
output [2*dp_width - 1: 0] Product, output Q0, output Zero,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
// Default configuration: 5-bit datapath

reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size - 1: 0] P; // Bit counter

 assign Q0 = Q[0];
assign Zero = (P == 0); // Counter is zero

 assign Product = {C, A, Q};
 always @ (posedge clock, negedge reset_b)

if (reset_b == 0) begin // Added to this solution, but
 P <= dp_width; // not really necessary since Load_regs
 B <= 0; // initializes the datapath
 C <= 0;
 A <= 0;
 Q <= 0;
 end
 else begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;

end
endmodule

module t_Prob_8_24;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
integer Exp_Value;
reg Error;

 Prob_8_24 M0(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join
 always @ (negedge Start) begin
 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection

end
 always @ (posedge Ready) begin
 # 1 Error <= (Exp_Value ^ Product) ;

end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

225

initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (32) #10 begin
 Start = 1;
 #10 Start = 0;

repeat (32) begin
 Start = 1;
 #10 Start = 0;
 #100 Multiplicand = Multiplicand + 1;

end
 Multiplier = Multiplier + 1;

end
end

endmodule

45340 45380 45420 45460 45500

1

18

 600

18

25

19

0

 300

 9

300

5

 12

0c

4

 6

06
 0

3

 3

03

 835

26

2

13

 417

 7

 225

01

1

10
19

 624

26

18

0

 312

 9

1a

312

5

 12

0c

4

324

12
27

 0

1b

Name

clock
reset_b

Start
Load_regs
Add_regs
Shift_regs
Decr_P
Q0
Zero
P[2:0]

B[4:0]
C
A[4:0]
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]
Product[9:0]
Ready

Exp_Value
Error

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

226

8.25 (a)

1 1 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

015 8

8
0

9

+

7

7

16

Register B (Multiplicand)

Register A (Sum)C Register Q (Multiplier)

8

1 0 0 0

Register P (Counter)

Controller
Shift_regs

Load_regs

Start

clockreset

Decr_P

Q[0]

Add_regs

A

B

C

Q

P

Zero

Multiplicand Multiplier

Product

Datapath

Ready

Empty
S_idle
Ready

 S_add
 Decr_P

Zero

reset

Start

Q[0]

 S_shift
 Shift_regs

1

1

Add_regs

Load_regs

{C, A, Q} <= {C, A, Q} >> 1

{C, A} <= A + B

P <= P-1

A <= 0
C <= 0
B <= Multiplicand
Q <= Multiplier
P <= m_size

Empty Clr_P

Empty
1

1

1

 (b)
// The multiplier of Fig. 8.15 is modified to detect whether the multiplier or multiplicand are initially zero,
// and to detect whether the multiplier becomes zero before the entire multiplier has been applied
// to the multiplicand. Signal empty is generated by the datapath unit and used by the
// controller. Note that the bits of the product must be selected according to the stage at which
// termination occurs. The test for the condition of an empty multiplier is hardwired here for
// dp_width = 5 because the range bounds of a vector must be defined by integer constants.
// This prevents development of a fully parameterized model.
// Note: the test bench has been modified.

module Prob_8_25 #(parameter dp_width = 5)
(

output [2*dp_width - 1: 0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);
 wire Load_regs, Decr_P, Add_regs, Shift_regs, Empty, Zero, Q0;
 Controller M0 (
 Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Empty, Zero, Q0,
 clock, reset_b
);

Datapath M1(Product, Q0, Empty, Zero,Multiplicand, Multiplier,
 Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

227

module Controller (
output Ready,
output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Empty, Zero, Q0, clock, reset_b

);

 parameter BC_size = 3; // Size of bit counter
parameter S_idle = 3'b001, // one-hot code

 S_add = 3'b010,
 S_shift = 3'b100;

reg [2: 0] state, next_state; // sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Empty, Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Decr_P = 0;
 Add_regs = 0;
 Shift_regs = 0;

case (state)
 S_idle: if (Start) begin next_state = S_add; Load_regs = 1; end
 S_add: begin next_state = S_shift; Decr_P = 1; if (Q0) Add_regs = 1; end
 S_shift: begin
 Shift_regs = 1;
 if (Zero) next_state = S_idle;
 else if (Empty) next_state = S_idle;
 else next_state = S_add;

end
default: next_state = S_idle;

endcase
end

endmodule

module Datapath #(parameter dp_width = 5, BC_size = 3) (
output reg [2*dp_width - 1: 0] Product, output Q0, output Empty, output Zero,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
// Default configuration: 5-bit datapath

parameter S_idle = 3'b001, // one-hot code
 S_add = 3'b010,
 S_shift = 3'b100;

reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size - 1: 0] P; // Bit counter
wire [2*dp_width -1: 0] Internal_Product = {C, A, Q};

 assign Q0 = Q[0];
assign Zero = (P == 0); // Bit counter is zero

 always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin // Added to this solution, but

 P <= dp_width; // not really necessary since Load_regs
 B <= 0; // initializes the datapath
 C <= 0;
 A <= 0;
 Q <= 0;
 end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

228

 else begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;

end
 // Status signals

reg Empty_multiplier;
wire Empty_multiplicand = (Multiplicand == 0);
assign Empty = Empty_multiplicand || Empty_multiplier;

always @ (P, Internal_Product) begin // Note: hardwired for dp_width 5
 Product = 0;

case (P) // Examine multiplier bits
 0: Product = Internal_Product;
 1: Product = Internal_Product [2*dp_width -1: 1];
 2: Product = Internal_Product [2*dp_width -1: 2];
 3: Product = Internal_Product [2*dp_width -1: 3];
 4: Product = Internal_Product [2*dp_width -1: 4];
 5: Product = 0;

endcase
end

always @ (P, Q) begin // Note: hardwired for dp_width 5
 Empty_multiplier = 0;

case (P)
 0: Empty_multiplier = 1;
 1: if (Q[1] == 0) Empty_multiplier = 1;
 2: if (Q[2: 1] == 0) Empty_multiplier = 1;
 3: if (Q[3: 1] == 0) Empty_multiplier = 1;
 4: if (Q[4: 1] == 0) Empty_multiplier = 1;
 5: if (Q[5: 1] == 0) Empty_multiplier = 1;
 default: Empty_multiplier = 1'bx;

endcase
end

endmodule

module t_Prob_8_25;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
integer Exp_Value;
reg Error;

 Prob_8_25 M0(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

229

 always @ (negedge Start) begin
 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection

end
 always @ (posedge Ready) begin
 # 1 Error <= (Exp_Value ^ Product) ;

end

initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (32) #10 begin
 Start = 1;
 #10 Start = 0;

repeat (32) begin
 Start = 1;
 #10 Start = 0;
 #100 Multiplicand = Multiplicand + 1;

end
 Multiplier = Multiplier + 1;

end
end

endmodule

(c) Test plan: Exhaustively test all combinations of multiplier and multiplicand, using automatic error
checking. Verify that early termination is implemented. Sample of simulation results is shown below.

6902 6992 7082 7172

30

4

 0

30
15

1

 30

30

2

5

 1

4

31
 1

31

4

15

1

 31

16

31

5

2

 2

4

 0

 0

4

1

 1

0

2

5

 2

4

 0

 0

2

4

2

 2
 1

 1

 1

Name

reset_b
clock
Start
state[2:0]

Empty_multiplicand
Empty_multiplier
Empty
Clr_CAQ
Load_regs
Decr_P
Add_regs
Shift_regs
Q0
P[4:0]
Zero

B[4:0]
A[4:0]
C
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]
Product[9:0]
Ready
Exp_Value
Error

Early termination

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

230

8.26

S_idle
/Ready

 S_add_shift
 / Decr_P

Zero

reset

Start
1

Q[0] 1

1

Add_Shift

Load_regs

{C, A, Q} <= {A + B, Q} >> 1

P <= P-1

A <= 0
C <= 0
B <= Multiplicand
Q <= Multiplier
P <= m_size

Zero

1

module Prob_8_26 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
// Default configuration: 5-bit datapath
 parameter dp_width = 5; // Set to width of datapath

output [2*dp_width - 1: 0] Product;
output Ready;
input [dp_width - 1: 0] Multiplicand, Multiplier;
input Start, clock, reset_b;

 parameter BC_size = 3; // Size of bit counter
parameter S_idle = 2'b01, // one-hot code

S_add_shift = 2'b10;

reg [2: 0] state, next_state;
reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size -1: 0] P;
reg Load_regs, Decr_P, Add_shift, Shift;
assign Product = {C, A, Q};
wire Zero = (P == 0); // counter is zero
wire Ready = (state == S_idle); // controller status

// control unit
always @ (posedge clock, negedge reset_b)

if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Decr_P = 0;
 Add_shift = 0;
 Shift = 0;

case (state)
 S_idle: begin if (Start) next_state = S_add_shift; Load_regs = 1; end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

231

S_add_shift: begin
 Decr_P = 1;

if (Zero) next_state = S_idle;
else begin

next_state = S_add_shift;
if (Q[0]) Add_shift = 1; else Shift = 1;

 end
 end

default: next_state = S_idle;
endcase

end

// datapath unit
 always @ (posedge clock) begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Decr_P) P <= P -1;
if (Add_shift) {C, A, Q} <= {C, A+B, Q} >> 1;
if (Shift) {C, A, Q} <= {C, A, Q} >> 1;

end
endmodule

module t_Prob_8_26;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;
integer Exp_Value;
wire Error;

 Prob_8_26 M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #70000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

 initial fork
 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial begin #5 Start = 1; end

 always @ (posedge Ready) begin
 Exp_Value = Multiplier * Multiplicand;

end
assign Error = Ready & (Exp_Value ^ Product);
initial begin

 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

232

Sample of simulation results.
23982 24042 24102 24162

2

 9
 0 11

1

 4

231

0

22

22

18

 178

 5

7 5

 0
11

4

21
11 1

3

10

2

21
 0

1

26
11

242

0

23

 5
29

 189

7
23

5

 0
11 5

4

12 2

3

 2 1

2

 1

1

12
16

253

0

24

 8
 6

 200

7
24

5

 0
11

264

11
25

21
12

25
4

Name

clock
reset_b

Start
Load_regs
Shift
Add_shift
Decr_P

P[2:0]
B[4:0]
C
A[4:0]
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]

Product[9:0]
Exp_Value
Error

8.27 (a)
// Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;

 Sequential_Binary_Multiplier M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

 initial fork
 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial begin #5 Start = 1; end
initial begin

 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
Start = 0;

end

// Error Checker

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

233

reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin

 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand + 1; // Inject error to verify detection
 Error = (Exp_Value ^ Product);

end
endmodule

 module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
// Default configuration: 5-bit datapath
 parameter dp_width = 5; // Set to width of datapath

output [2*dp_width - 1: 0] Product;
output Ready;
input [dp_width - 1: 0] Multiplicand, Multiplier;
input Start, clock, reset_b;

 parameter BC_size = 3; // Size of bit counter
parameter S_idle = 3'b001, // one-hot code

 S_add = 3'b010,
 S_shift = 3'b100;

reg [2: 0] state, next_state;
reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size - 1: 0] P;
reg Load_regs, Decr_P, Add_regs, Shift_regs;

// Miscellaneous combinational logic

assign Product = {C, A, Q};
wire Zero = (P == 0); // counter is zero
wire Ready = (state == S_idle); // controller status

// control unit

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Decr_P = 0;
 Add_regs = 0;
 Shift_regs = 0;

case (state)
 S_idle: begin if (Start) next_state = S_add; Load_regs = 1; end
 S_add: begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
 S_shift: begin Shift_regs = 1; if (Zero) next_state = S_idle;

else next_state = S_add; end
default: next_state = S_idle;

endcase
end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

234

// datapath unit

 always @ (posedge clock) begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;

end
endmodule

Sample of simulation results:
99539 99579 99619 99659

11

 203

 465

4

0e

 8

08

0

 232

1

07

08

00

 29

5

2

 317

4

09

1d

2

4

04

 158

4

1e

 79

3

2

02

0f

0b

4

 367

2

 183

05

2

17

4

0e

 471

1

 235

2

07

0b

10

4

 523

 232

 9

0

05

08

 261

1

09
00

5

2

 29

4

1d

 261

29
10

0a

4

Name

clock
reset_b

Start
state[2:0]
Load_regs
Decr_P
Add_regs
Shift_regs

Zero
P[2:0]

B[4:0]
A[4:0]
C
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]
Product[9:0]

Ready

Exp_Value[9:0]
Error

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

235

(b) In this part the controller is described by Fig. 8.18. The test bench includes probes to display the
state of the controller.

// Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;

 Sequential_Binary_Multiplier M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

 initial fork
 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial begin #5 Start = 1; end
initial begin

 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
Start = 0;

end

// Error Checker
reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin

 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand + 1; // Inject error to verify detection
 Error = (Exp_Value ^ Product);

end

 wire [2: 0] state = {M0.G2, M0.G1, M0.G0};
endmodule

 module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
// Default configuration: 5-bit datapath
 parameter dp_width = 5; // Set to width of datapath

output [2*dp_width - 1: 0] Product;
output Ready;
input [dp_width - 1: 0] Multiplicand, Multiplier;
input Start, clock, reset_b;

 parameter BC_size = 3; // Size of bit counter
reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size - 1: 0] P;
wire Load_regs, Decr_P, Add_regs, Shift_regs;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

236

// Status signals

assign Product = {C, A, Q};
wire Zero = (P == 0); // counter is zero
wire Q0 = Q[0];

// One-Hot Control unit (See Fig. 8.18)
 DFF_S M0 (G0, D0, clock, Set);
 DFF M1 (G1, D1, clock, reset_b);
 DFF M2 (G2, G1, clock, reset_b);

or (D0, w1, w2);
and (w1, G0, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, G0);
and (w4, Zero_b, G2);

and (Load_regs, G0, Start);
and (Add_regs, Q0, G1);

 assign Ready = G0;
assign Decr_P = G1;
assign Shift_regs = G2;
not (Set, reset_b);

// datapath unit

 always @ (posedge clock) begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;

end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)

if (Set) Q <= 1'b1; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) Q <= 1'b0; else Q<= data;

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

237

Sample of simulation results:

ts:
40699 40739 40779 40819

17

0

11

 204

1

06

2

5

 12

4

0c

2

4

 6

4

06

 3

3

2

00

03

4

 579

12

 289

2

09

2

4

1b

 865

01

1

2

10

0d

 432

4

 204

18

18

0

 216

06

1

12

5

2

 12

4

0c

 216

12
19

00
13

4

Name

clock
reset_b

Start

state[2:0]

Load_regs
Decr_P
Add_regs
Shift_regs

P[2:0]
Zero

B[4:0]
A[4:0]
C
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]
Product[9:0]

Ready

Exp_Value[9:0]
Error

8.28
// Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;
 parameter dp_width = 5; // Width of datapath

wire [2 * dp_width - 1: 0] Product;
wire Ready;
reg [dp_width - 1: 0] Multiplicand, Multiplier;
reg Start, clock, reset_b;

 Sequential_Binary_Multiplier M0 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

238

initial begin #5 Start = 1; end
initial begin

 #5 Multiplicand = 0;
 Multiplier = 0;

repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end
Start = 0;

end

// Error Checker
reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin

 Exp_Value = Multiplier * Multiplicand;
 //Exp_Value = Multiplier * Multiplicand + 1; // Inject error to verify detection
 Error = (Exp_Value ^ Product);

end
 wire [2: 0] state = {M0.M0.G2, M0.M0.G1, M0.M0.G0}; // Watch state
endmodule

 module Sequential_Binary_Multiplier
 #(parameter dp_width = 5)
(

output [2*dp_width -1: 0] Product,
output Ready,
input [dp_width -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);
wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, Q0;

 Controller M0 (Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, Q0, clock, reset_b);
 Datapath M1(Product, Q0, Zero,Multiplicand, Multiplier, Start, Load_regs, Decr_P, Add_regs,
 Shift_regs, clock, reset_b);
endmodule

module Controller (
output Ready,
output Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, Q0, clock, reset_b

);
// One-Hot Control unit (See Fig. 8.18)
 DFF_S M0 (G0, D0, clock, Set);
 DFF M1 (G1, D1, clock, reset_b);
 DFF M2 (G2, G1, clock, reset_b);

or (D0, w1, w2);
and (w1, G0, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, G0);
and (w4, Zero_b, G2);

and (Load_regs, G0, Start);
and (Add_regs, Q0, G1);

 assign Ready = G0;
assign Decr_P = G1;
assign Shift_regs = G2;
not (Set, reset_b);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

239

module Datapath #(parameter dp_width = 5, BC_size = 3) (
output [2*dp_width - 1: 0] Product, output Q0, output Zero,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [BC_size - 1: 0] P;
assign Product = {C, A, Q};

 // Status signals
assign Zero = (P == 0); // counter is zero
assign Q0 = Q[0];

 always @ (posedge clock) begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;

end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)

if (Set) Q <= 1'b1; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) Q <= 1'b0; else Q<= data;

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

240

58738 58778 58818 58858

21

0

15

 357

1

0b
05

 17

2

00

5

16

4

 721

11

2

4

0b

 360

4

08

2

3

14
05

4

 180

2

2

02

 90

1a

4

1

2

 45

01
0d

4

17

 749

 357

22

0

16

 374

0b

1

16

5

2

00

 17

11

4

4

17
23

17

 374

Name

clock
reset_b

Start

state[2:0]

Load_regs
Decr_P
Add_regs
Shift_regs

P[2:0]
Q0
Zero

B[4:0]
C
A[4:0]
Q[4:0]

Multiplicand[4:0]
Multiplier[4:0]
Product[9:0]

Ready
Exp_Value[9:0]
Error

8.29 (a)

S0 S1 S2

S3 S4

S5S6S7

Inputs: xyEF

1---

00-- 01--

--0-

---1

--1-

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

241

(b) DS0 = x'y'S0 + S3 + S5 +S7
 DS1 = xS0

DS2 = x'yS0 + S1
DS3 = FS2
DS4 = F'S2
DS5 = E'S5
DS6 = E'S4
DS7 = S6

(c)

0 0 0
0 0 0
0 0 0

0 0 1

0 1 0
0 1 0

0 1 1

1 0 0
1 0 0

1 0 1

1 1 0

1 1 1

Present
state

G1 G2 G3

S0
S0
S0

S1

S2
S2

S3

S4
S4

S5

S6

S7

Output

Next
state

G1 G2 G3

0 0 0
0 0 1
0 1 0

0 1 0

1 0 0
0 1 1

0 0 0

1 1 0
1 0 1

0 0 0

1 1 0

0 0 0

0 0 x x
1 x x x
0 1 x x

x x x x

x x 0 x
x x 1 x

x x x x

x x x 0
x x x 1

x x x x

x x x x

x x x x

Inputs
x y E F

(d)
D Q

Q'

D Q

Q'

D Q

Q'

S0
S1
S2
S3
S4
S5
S6
S7

DG1

DG2

DG3

Clock

Reset

DG1 = F'S2 + S4 + S6
DG2 = x'yS0 + S1 + FS2 + E'S4 + S6
DG3 = xS0 + FS2 + ES4 + S6

(e)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

242

0 0 0
0 0 0
0 0 0

0 0 1

0 1 0
0 1 0

0 1 1

1 0 0
1 0 0

1 0 1

1 1 0

1 1 1

Present
state

G1 G2 G3

0

0

F'

0

1

0

1

0

Next
state

G1 G2 G3

0 0 0
0 0 1
0 1 0

0 1 0

1 0 0
0 1 1

0 0 0

1 1 0
1 0 1

0 0 0

1 1 0

0 0 0

Input
conditions

x’y’
x
x’y

None

F’
F’

None

E’
E’

None

None

None

Mux1 Mux2 Mux3

x'y

1

F

0

E'

0

1

0

x

0

F

0

E

0

1

0

(f)

F'

Clock
reset_b

D Q

Q'

D Q

Q'

S0
S1
S2
S3
S4
S5
S6
S7

3 x 8
Decoder

D Q

Q'

0
1
2
3
4
5
6
7

8 x 1
Mux

s2 s1 s0

8 x 1
Mux

s2 s1 s00
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8 x 1
Mux

s2 s1 s0

G3

G2

G1

1
0

x'
y

1

F

E'

x
0

1

F

E

0

(g)

module Controller_8_29g (input x, y, E, F, clock, reset_b);
 supply0 GND;
 supply1 VCC;

 mux_8x1 M3 (m3, GND, GND, F_bar, GND, VCC, GND, VCC, GND, G3, G2, G1);
 mux_8x1 M2 (m2, w1, VCC, F, GND, E_bar, GND, VCC, GND, G3, G2, G1);
 mux_8x1 M1 (m1, x, GND, F, GND, E, GND, VCC, GND, G3, G2, G1);
 DFF_8_28g DM3 (G3, m3, clock, reset_b);
 DFF_8_28g DM2 (G2, m2, clock, reset_b);
 DFF_8_28g DM1 (G1, m1, clock, reset_b);
 decoder_3x8 M0_D (y0, y1, y2, y3, y4, y5, y6, y7, G3, G2, G1);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

243

 and (w1, x_bar, y);
 not (F_bar, F);
 not (E_bar, E);
 not (x_bar, x);
endmodule

// Test plan: Exercise all paths of the ASM chart

module t_Controller_8_29g ();
 reg x, y, E, F, clock, reset_b;
 Controller_8_29g M0 (x, y, E, F, clock, reset_b);
 wire [2: 0] state = {M0.G3, M0.G2, M0.G1};

 initial #500 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin end
 initial fork
 reset_b = 0; #2 reset_b = 1;
 #0 begin x = 1; y = 1; E = 1; F = 1; end // Path: S_0, S_1, S_2, S_34
 #80 reset_b = 0; #92 reset_b = 1;
 #90 begin x = 1; y = 1; E = 1; F = 0; end
 #150 reset_b = 0;
 #152 reset_b = 1;
 #150 begin x = 1; y = 1; E = 0; F = 0; end // Path: S_0, S_1, S_2, S_4, S_5
 #200 reset_b = 0;
 #202 reset_b = 1;
 #190 begin x = 1; y = 1; E = 0; F = 0; end // Path: S_0, S_1, S_2, S_4, S_6, S_7
 #250 reset_b = 0;
 #252 reset_b = 1;
 #240 begin x = 0; y = 0; E = 0; F = 0; end // Path: S_0
 #290 reset_b = 0;
 #292 reset_b = 1;
 #280 begin x = 0; y = 1; E = 0; F = 0; end // Path: S_0, S_2, S_4, S_6, S_7
 #360 reset_b = 0;
 #362 reset_b = 1;
 #350 begin x = 0; y = 1; E = 1; F = 0; end // Path: S_0, S_2, S_4, S_5
 #420 reset_b = 0;
 #422 reset_b = 1;
 #410 begin x = 0; y = 1; E = 0; F = 1; end // Path: S_0, S_2, S_3
 join
endmodule

module mux_8x1 (output reg y, input x0, x1, x2, x3, x4, x5, x6, x7, s2, s1, s0);
always @ (x0, x1, x2, x3, x4, x5, x6, x7, s0, s1, s2)

case ({s2, s1, s0})
 3'b000: y = x0;
 3'b001: y = x1;
 3'b010: y = x2;
 3'b011: y = x3;
 3'b100: y = x4;
 3'b101: y = x5;
 3'b110: y = x6;
 3'b111: y = x7;

endcase
endmodule

module DFF_8_28g (output reg q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)

if (!reset_b) q <= 1'b0; else q <= data;
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

244

module decoder_3x8 (output reg y0, y1, y2, y3, y4, y5, y6, y7, input x2, x1, x0);
always @ (x0, x1, x2) begin

 {y7, y6, y5, y4, y3, y2, y1, y0} = 8'b0;
case ({x2, x1, x0})

 3'b000: y0= 1'b1;
 3'b001: y1= 1'b1;
 3'b010: y2= 1'b1;
 3'b011: y3= 1'b1;
 3'b100: y4= 1'b1;
 3'b101: y5= 1'b1;
 3'b110: y6= 1'b1;
 3'b111: y7= 1'b1;

endcase
 end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

245

Path: S_0, S_1, S_2, S_3 and Path: S_0, S_1, S_2, S_4, S_5

0 30 60 90 120

0 1 2 3 0 1 2 3 0 1 2 4 5 0

Name

clock
reset_b
x
y
E
F

state[2:0]

Path: S_0, S_1, S_2, S_4, S_6, S_7
120 150 180 210 240

4 5 0 1 0 1 2 4 6 7 0 1 2 4 6 7 0

Name

clock
reset_b
x
y
E
F

state[2:0]

Path: S_0 and Path , S_0, S_2, S_4, S_6, S_7
240 270 300 330 360

6 7 0 2 0 2 4 6 7 0 2 4 0 2 4

Name

clock
reset_b
x
y
E
F

state[2:0]

 Path: S_0, S_2, S_4, S_5 and path S_0, S_2, S_3
324 354 384 414 444

7 0 2 4 0 2 4 5 0 2 3 0 2 3 0 2

Name

clock
reset_b
x
y
E
F

state[2:0]

(h)
module Controller_8_29h (input x, y, E, F, clock, reset_b);

parameter S_0 = 3'b000, S_1 = 3'b001, S_2 = 3'b010,
 S_3 = 3'b011, S_4 = 3'b100, S_5 = 3'b101, S_6 = 3'b110, S_7 = 3'b111;
 reg [2: 0] state, next_state;

 always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= S_0; else state <= next_state;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

246

always @ (state, x, y, E, F) begin
 case (state)
 S_0: if (x) next_state = S_1;

else next_state = y ? S_2: S_0;
 S_1: next_state = S_2;
 S_2: if (F) next_state = S_3; else next_state = S_4;
 S_3, S_5, S_7: next_state = S_0;
 S_4: if (E) next_state = S_5; else next_state = S_6;
 S_6: next_state = S_7;

default: next_state = S_0;
 endcase

end
endmodule

// Test plan: Exercise all paths of the ASM chart

module t_Controller_8_29h ();
 reg x, y, E, F, clock, reset_b;

 Controller_8_29h M0 (x, y, E, F, clock, reset_b);

 initial #500 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin end
 initial fork
 reset_b = 0; #2 reset_b = 1;
 #20 begin x = 1; y = 1; E = 1; F = 1; end // Path: S_0, S_1, S_2, S_34
 #80 reset_b = 0; #92 reset_b = 1;
 #90 begin x = 1; y = 1; E = 1; F = 0; end
 #150 reset_b = 0;
 #152 reset_b = 1;
 #150 begin x = 1; y = 1; E = 0; F = 0; end // Path: S_0, S_1, S_2, S_4, S_5
 #200 reset_b = 0;
 #202 reset_b = 1;
 #190 begin x = 1; y = 1; E = 0; F = 0; end // Path: S_0, S_1, S_2, S_4, S_6, S_7
 #250 reset_b = 0;
 #252 reset_b = 1;
 #240 begin x = 0; y = 0; E = 0; F = 0; end // Path: S_0
 #290 reset_b = 0;
 #292 reset_b = 1;
 #280 begin x = 0; y = 1; E = 0; F = 0; end // Path: S_0, S_2, S_4, S_6, S_7
 #360 reset_b = 0;
 #362 reset_b = 1;
 #350 begin x = 0; y = 1; E = 1; F = 0; end // Path: S_0, S_2, S_4, S_5
 #420 reset_b = 0;
 #422 reset_b = 1;
 #410 begin x = 0; y = 1; E = 0; F = 1; end // Path: S_0, S_2, S_3
 join
endmodule

Note: Simulation results match those for 8.39g.

8.30 (a) E = 1 (b) E = 0

8.31 A = 0110, B = 0010, C = 0000.
A * B = 1100 A | B = 0110 A && C = 0
A + B = 1000 A B = 0100 | A = 1
A – B = 0100 &A = 0 A < B = 0
~ C = 1111 ~|C = 1 A > B = 1

A & B = 0010 A || B = 1 A ! B = 1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

247

8.32

4-bit
 Counter

4

+
Mux

R2

S1

R1

co
un

t
lo

ad

4

4
select

S2

clock

select = S1
load = S1 + S'1S'2
count = S'1S2

8.33

RegisterMux

R0

R4

lo
ad

s1 s0

clock

Assume that the states are encoded one-hot as T0, T1, T2,
T3. The select lines of the mux are generated as:

s1 = T2 + T3
s0 = T1 + T3

The signal to load R4 can be generated by the host
processor or by:

load = T0 + T1 + T2 + T3.

0

1

2

3

8 8

8

8

8

8

R1

R2

R3

4 x 2
Encoder

T0

T1

T2

T3

load

8.34 (a)
module Datapath_BEH
#(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count, output reg E, output Zero, input [dp_width -1: 0] data,

input Load_regs, Shift_left, Incr_R2, clock, reset_b);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

248

reg [dp_width -1: 0] R1;
 reg [R2_width -1: 0] R2;

assign count = R2;
assign Zero = ~(| R1);
always @ (posedge clock) begin

 E <= R1[dp_width -1] & Shift_left;
if (Load_regs) begin R1 <= data; R2 <= {R2_width{1'b1}}; end
if (Shift_left) {E, R1} <= {E, R1} << 1;
if (Incr_R2) R2 <= R2 + 1;

end
endmodule

// Test Plan for Datapath Unit:
// Demonstrate action of Load_regs
// R1 gets data, R2 gets all ones
// Demonstrate action of Incr_R2
// Demonstrate action of Shift_left and detect E

// Test bench for datapath

module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)
();
wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

 Datapath_BEH M0 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa;
 Load_regs = 0;
 Incr_R2 = 0;
 Shift_left = 0;
 #10 Load_regs = 1;
 #20 Load_regs = 0;
 #50 Incr_R2 = 1;
 #120 Incr_R2 = 0;
 #90 Shift_left = 1;
 #200 Shift_left = 0;
 join
endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

249

R2 increments while
Incr_R2 is asserted R1 shifts left

0 60 120 180

x

xx

x
f
f

0
0 1

1
2
2

aa

3
3

4

54

4

a8

5
5

50 a0 40 80
aa

6
6

00

Name

clock
reset_b

Load_regs
Incr_R2
Shift_left
Zero
E

data[7:0]
R1[7:0]

R1[7]
R1[6]
R1[5]
R1[4]
R1[3]
R1[2]
R1[1]
R1[0]
R2[3:0]
count[3:0]

R1gets data and R2 gets all ones

Zero asserts

Note that E matches previous
value of R1[7]

 (b) // Control Unit
module Controller_BEH (

output Ready,
output reg Load_regs,
output Incr_R2, Shift_left,
input Start, Zero, E, clock, reset_b

);
parameter S_idle = 0, S_1 = 1, S_2 = 2, S_3 = 3;
reg [1:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
 Load_regs = 0;
 case (state)
 S_idle: if (Start) begin Load_regs = 1; next_state = S_1; end
 else next_state = S_idle;
 S_1: if (Zero) next_state = S_idle; else next_state = S_2;

 S_2: next_state = S_3;
 S_3: if (E) next_state = S_1; else next_state = S_2;

endcase
end

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

250

endmodule

// Test plan for Control Unit
// Verify that state enters S_idle with reset_b asserted.
// With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
// Start is asserted.
// Verify that Incr_R2 is asserted in S_1.
// Verify that state returns to S_idle from S_1 if Zero is asserted.
// Verify that state goes to S_2 if Zero is not asserted.
// Verify that Shift_left is asserted in S_2.
// Verify that state goes to S_3 from S_2 unconditionally.
// Verify that state returns to S_2 from S_3 id E is not asserted.
// Verify that state goes to S_1 from S_3 if E is asserted.

// Test bench for Control Unit

module t_Control_Unit ();
 wire Ready, Load_regs, Incr_R2, Shift_left;

reg Start, Zero, E, clock, reset_b;

 Controller_BEH M0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 Zero = 1;
 E = 0;
 Start = 0;
 #20 Start = 1; // Cycle from S_idle to S_1
 #80 Start = 0;
 #70 Zero = 0; // S_idle to S_1 to S_2 to S_3 and cycle to S_2.
 #130 E = 1; // Cycle to S_3 to S_1 to S_2 to S_3
 #150 Zero = 1; // Return to S_idle
 join
endmodule

0 70 140 210

0 1 0 1 0 1 2 3 2 3 2 3 1 2 3 1 0

Name

clock
reset_b
Start
Zero
E
state[1:0]
Ready
Load_regs
Incr_R2
Shift_left

Go to S_1 and cyle to
S_idle while Zero = 1

Go to S_2 and cyle
to S_3 while E = 0

Go to S_1 and cyle to
S_3 while Zero = 0 Return to S_idle

Ready asserts while
state = S_idle Shift_left asserts while state = S_2Load_regs asserts while

state = S_idle and Start = 1
Incr_R2 asserts while state = S_1

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

251

(c)
// Integrated system
module Count_Ones_BEH_BEH
(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

 Controller_BEH M0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
 Datapath_BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

// Test plan for integrated system
// Test for data values of 8'haa, 8'h00, 8'hff.

// Test bench for integrated system

module t_count_Ones_BEH_BEH ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

 Count_Ones_BEH_BEH M0 (count, data, Start, clock, reset_b);
 initial #700 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa; // Expect count = 4
 Start = 0;
 #20 Start = 1;
 #30 Start = 0;
 #40 data = 8'b00; // Expect count = 0
 #250 Start = 1;
 #260 Start = 0;
 #280 data = 8'hff;
 #280 Start = 1;
 #290 Start = 0;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

252

0 70 140 210

x
xx

0

x

f

1

aa
aa

2 3

 0

1

0

2

54

3

a8

2 3

 1

1

1

2

50

3

a0

2 3

2

1

 2

2

40

3

80

2 3

 3

3

1 0

 4

4
00

00

Name

clock
reset_b

Ready
Start
Load_regs
Incr_R2
Shift_left
Zero
E

state[1:0]

data[7:0]
R1[7:0]
R2[3:0]

count[3:0]

188 248 308 368

2 3

 3

1

3

0

 4

4

1

15

f

00

0

0

 0

00

1

15

f
ff

2 3

0

1

 0

2

fe

3

1

1

 1

2

fc

3

 2

1

2

2

f8

3

 3

3
f0

ff

Name

clock
reset_b

Ready
Start
Load_regs
Incr_R2
Shift_left
Zero
E

state[1:0]

data[7:0]
R1[7:0]
R2[3:0]

count[3:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

253

258 318 378 438 498 558

f

1

00

 0

0

0

00

f

15

1

ff

2 3

0

1

 0

2

fe

3

1

1

 1

2

fc

3

 2

1

2

2

f8

3

3

1

 3

2

f0

3

4

1

 4

2

e0

3

 5

1

5

2

c0

3

 6

1

6

2

80

3

7

 7

1

 8

8

00

ff

0

Name

clock

reset_b

Ready

Start

Load_regs

Incr_R2

Shift_left

Zero

E

state[1:0]

data[7:0]

R1[7:0]

R2[3:0]

count[3:0]

 (d)
// One-Hot Control unit

module Controller_BEH_1Hot
(

output Ready,
output reg Load_regs,
output Incr_R2, Shift_left,
input Start, Zero, E, clock, reset_b

);
parameter S_idle = 4'b001, S_1 = 4'b0010, S_2 = 4'b0100, S_3 = 4'b1000;
reg [3:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
 Load_regs = 0;
 case (state)
 S_idle: if (Start) begin Load_regs = 1; next_state = S_1; end
 else next_state = S_idle;
 S_1: if (Zero) next_state = S_idle; else next_state = S_2;

 S_2: next_state = S_3;
 S_3: if (E) next_state = S_1; else next_state = S_2;

endcase
end

endmodule

Note: Test plan, test bench and simulation results are same as (b), but with states numbered with one-hot
codes.

(e)
// Integrated system with one-hot controller

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

254

module Count_Ones_BEH_1Hot
(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

 Controller_BEH_1Hot M0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
 Datapath_BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

Note: Test plan, test bench and simulation results are same as (c), but with states numbered with one-hot
codes.

8.35 Note: Signal Start is initialized to 0 when the simulation begins. Otherwise, the state of the structural model
will become X at the first clock after the reset condition is deasserted, with Start and Load_Regs having
unknown values. In this condition the structural model cannot operate correctly.

0 30 60

x 0

x
ff

X

Name

clock
reset_b

Start
Load_regs
Shift_left
Incr_R2
Zero
Ready

state[1:0]

data[7:0]
count[3:0]

module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b);
// Mux – decoder implementation of control logic
// controller is structural
// datapath is structural

parameter R1_size = 8, R2_size = 4;
output [R2_size -1: 0] count;
output Ready;
input [R1_size -1: 0] data;
input Start, clock, reset_b;
wire Load_regs, Shift_left, Incr_R2, Zero, E;

 Controller_STR M0 (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
 Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

255

module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
output Ready;
output Load_regs, Shift_left, Incr_R2;
input Start;
input E, Zero;
input clock, reset_b;
supply0 GND;
supply1 PWR;
parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11; // Binary code
wire Load_regs, Shift_left, Incr_R2;
wire G0, G0_b, D_in0, D_in1, G1, G1_b;
wire Zero_b = ~Zero;

wire E_b = ~E;
wire [1:0] select = {G1, G0};
wire [0:3] Decoder_out;

assign Ready = ~Decoder_out[0];
assign Incr_R2 = ~Decoder_out[1];
assign Shift_left = ~Decoder_out[2];
and (Load_regs, Ready, Start);

 mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);
 mux_4x1_beh Mux_0 (D_in0, Start, GND, PWR, E, select);
 D_flip_flop_AR_b M1 (G1, G1_b, D_in1, clock, reset_b);
 D_flip_flop_AR_b M0 (G0, G0_b, D_in0, clock, reset_b);
 decoder_2x4_df M2 (Decoder_out, G1, G0, GND);

endmodule

module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);
 parameter R1_size = 8, R2_size = 4;
 output [R2_size -1: 0] count;
 output E, Zero;
 input [R1_size -1: 0] data;
 input Load_regs, Shift_left, Incr_R2, clock;
 wire [R1_size -1: 0] R1;
 supply0 Gnd;

supply1 Pwr;
assign Zero = (R1 == 0);

 Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
 Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);
 D_flip_flop_AR M3 (E, w1, clock, Pwr);

and (w1, R1[R1_size -1], Shift_left);
endmodule

module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
parameter R1_size = 8;
output [R1_size -1: 0] R1;
input [R1_size -1: 0] data;
input SI_0, Shift_left, Load_regs;
input clock, reset_b;
reg [R1_size -1: 0] R1;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) R1 <= 0;
else begin

if (Load_regs) R1 <= data; else
if (Shift_left) R1 <= {R1[R1_size -2:0], SI_0}; end

endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

256

module Counter (R2, Load_regs, Incr_R2, clock, reset_b);
parameter R2_size = 4;
output [R2_size -1: 0] R2;
input Load_regs, Incr_R2;
input clock, reset_b;
reg [R2_size -1: 0] R2;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) R2 <= 0;
else if (Load_regs) R2 <= {R2_size {1'b1}}; // Fill with 1

else if (Incr_R2 == 1) R2 <= R2 + 1;
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);
output Q;
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= 1'b0;
else Q <= D;

endmodule

module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST);
output Q, Q_b;
input D, CLK, RST;
reg Q;
assign Q_b = ~Q;
always @ (posedge CLK, negedge RST)

if (RST == 0) Q <= 1'b0;
else Q <= D;

endmodule

// Behavioral description of 4-to-1 line multiplexer
// Verilog 2005 port syntax

module mux_4x1_beh
(output reg m_out,

input in_0, in_1, in_2, in_3,
input [1: 0] select

);

always @ (in_0, in_1, in_2, in_3, select) // Verilog 2005 syntax
case (select)

 2'b00: m_out = in_0;
 2'b01: m_out = in_1;
 2'b10: m_out = in_2;
 2'b11: m_out = in_3;

endcase
endmodule

// Dataflow description of 2-to-4-line decoder
// See Fig. 4.19. Note: The figure uses symbol E, but the
// Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (D, A, B, enable);
output [0: 3] D;

input A, B;
input enable;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

257

assign D[0] = ~(~A & ~B & ~enable),
 D[1] = ~(~A & B & ~enable),
 D[2] = ~(A & ~B & ~enable),
 D[3] = ~(A & B & ~enable);
endmodule

module t_Count_Ones;
parameter R1_size = 8, R2_size = 4;
wire [R2_size -1: 0] R2;

wire [R2_size -1: 0] count;
wire Ready;
reg [R1_size -1: 0] data;
reg Start, clock, reset_b;
wire [1: 0] state; // Use only for debug
assign state = {M0.M0.G1, M0.M0.G0};

 Count_Ones_STR_STR M0 (count, Ready, data, Start, clock, reset_b);

initial #4000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

 Start = 0;

 #1 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;
 data = 8'Hff;
 # 25 Start = 1;
 # 35 Start = 0;
 #310 data = 8'h0f;
 #310 Start = 1;
 #320 Start = 0;
 #610 data = 8'hf0;
 #610 Start = 1;
 #620 Start = 0;
 #910 data = 8'h00;
 #910 Start = 1;
 #920 Start = 0;
 #1210 data = 8'haa;
 #1210 Start = 1;
 #1220 Start = 0;
 #1510 data = 8'h0a;
 #1510 Start = 1;
 #1520 Start = 0;
 #1810 data = 8'ha0;
 #1810 Start = 1;
 #1820 Start = 0;
 #2110 data = 8'h55;
 #2110 Start = 1;
 #2120 Start = 0;
 #2410 data = 8'h05;
 #2410 Start = 1;
 #2420 Start = 0;
 #2710 data = 8'h50;
 #2710 Start = 1;
 #2720 Start = 0;
 #3010 data = 8'ha5;
 #3010 Start = 1;
 #3020 Start = 0;
 #3310 data = 8'h5a;
 #3310 Start = 1;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

258

 #3320 Start = 0;
join

endmodule

2184 2324 2464 2604 2744 2884

 1 2 3
55

0

 4 0 1
05

0

 2 0 1 2
50

0

Name

clock
reset_b

Start
Load_regs
Shift_left
Incr_R2
Zero
Ready

state[1:0]

data[7:0]
count[3:0]

8.36 Note: See Prob. 8.35 for a behavioral model of the datapath unit, Prob. 8.36d for a one-hot control unit.

(a) T0, T1, T2, T3 be asserted when the state is in S_idle, S_1, S_2, and S_3, respectively. Let D0, D1, D2, and
D3 denote the inputs to the one-hot flip-flops.

D0 = T0 Start' + T1 Zero
D1 = T0 Start + T3 E
D2 = T1 Zero' + T3 E'
D3 = T2

(b) Gate-level one-hot controller

module Controller_Gates_1Hot
(

output Ready,
output Load_regs, Incr_R2, Shift_left,
input Start, Zero, E, clock, reset_b

);
wire w1, w2, w3, w4, w5, w6;
wire T0, T1, T2, T3;
wire set;
assign Ready = T0;
assign Incr_R2 = T1;
assign Shift_left = T2;
and (Load_regs, T0, Start);

 not (set, reset_b);
 DFF_S M0 (T0, D0, clock, set); // Note: reset action must initialize S_idle = 4'b0001
 DFF M1 (T1, D1, clock, reset_b);
 DFF M2 (T2, D2, clock, reset_b);
 DFF M3 (T3, D3, clock, reset_b);

 not (Start_b, Start);
 and (w1, T0, Start_b);
 and (w2, T1, Zero);
 or (D0, w1, w2);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

259

 and (w3, T0, Start);
 and (w4, T3, E);
 or (D1, w3, w4);

 not (Zero_b, Zero);
 not (E_b, E);
 and (w5, T1, Zero_b);
 and (w6, T3, E_b);
 or (D2, w5, w6);

 buf (D3, T2);
endmodule

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)

if (reset_b == 0) Q <= 0;
else Q <= D;

endmodule
module DFF_S (output reg Q, input D, clock, set);

always @ (posedge clock, posedge set)
if (set == 1) Q <= 1;
else Q <= D;

endmodule

(c)

// Test plan for Control Unit
// Verify that state enters S_idle with reset_b asserted.
// With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
// Start is asserted.
// Verify that Incr_R2 is asserted in S_1.
// Verify that state returns to S_idle from S_1 if Zero is asserted.
// Verify that state goes to S_2 if Zero is not asserted.
// Verify that Shift_left is asserted in S_2.
// Verify that state goes to S_3 from S_2 unconditionally.
// Verify that state returns to S_2 from S_3 id E is not asserted.
// Verify that state goes to S_1 from S_3 if E is asserted.

// Test bench for One-Hot Control Unit

module t_Control_Unit ();
 wire Ready, Load_regs, Incr_R2, Shift_left;

reg Start, Zero, E, clock, reset_b;
wire [3: 0] state = {M0.T3, M0.T2, M0.T1, M0.T0}; // Observe one-hot state bits

 Controller_Gates_1Hot M0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 Zero = 1;
 E = 0;
 Start = 0;
 #20 Start = 1; // Cycle from S_idle to S_1
 #80 Start = 0;
 #70 Zero = 0; // S_idle to S_1 to S_2 to S_3 and cycle to S_2.
 #130 E = 1; // Cycle to S_3 to S_1 to S_2 to S_3
 #150 Zero = 1; // Return to S_idle
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

260

Note: simulation results match those for Prob. 8.34(d). See Prob. 8.34(c) for annotations.
0 60 120 180

1 2 1 2 1 2 4 8 4 8 4 8 2 4 8 2 1

Name

Default

clock
reset_b

Start
Zero
E

state[3:0]

Ready
Load_regs
Incr_R2
Shift_left

(d) Datapath unit detail:

Register
(D-type

Flip-
flops)

4 x 1
Mux

data
R1

s1 s0

clock

s1 = Shift_regs + Load_regs' Shift_regs'
s0 = Load_regs + Load_regs' Shift_regs'

0

1

2

3

8 8

8

8

8

8
R1

R1

R1 << 1

clk

D Q

Q'

R1_7 E

Zero

Shift_regs

Load_regs

Register
(D-type

Flip-
flops)

2 x 1
Mux
sel

0

1

R2

+

4

4'b0001

Incr_R2

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

261

// Datapath unit – structural model
module Datapath_STR
#(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count, output E, output Zero, input [dp_width -1: 0] data,
input Load_regs, Shift_left, Incr_R2, clock, reset_b);
supply1 pwr;
supply0 gnd;

 wire [dp_width -1: 0] R1_Dbus, R1;
wire [R2_width -1: 0] R2_Dbus;
wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7;
wire R1_0, R1_1, R1_2, R1_3, R1_4, R1_5, R1_6, R1_7;
wire R2_0, R2_1, R2_2, R2_3;
wire [R2_width -1: 0] R2 = {R2_3, R2_2, R2_1, R2_0};
assign count = {R2_3, R2_2, R2_1, R2_0};
assign R1 = { R1_7, R1_6, R1_5, R1_4, R1_3, R1_2, R1_1, R1_0};
assign DR1_0 = R1_Dbus[0];
assign DR1_1 = R1_Dbus[1];
assign DR1_2 = R1_Dbus[2];
assign DR1_3 = R1_Dbus[3];
assign DR1_4 = R1_Dbus[4];
assign DR1_5 = R1_Dbus[5];
assign DR1_6 = R1_Dbus[6];
assign DR1_7 = R1_Dbus[7];

nor (Zero, R1_0, R1_1, R1_2, R1_3, R1_4, R1_5, R1_6, R1_7);
 DFF D_E (E, R1_7, clock, pwr);

 DFF DF_0 (R1_0, DR1_0, clock, pwr); // Disable reset
 DFF DF_1 (R1_1, DR1_1, clock, pwr);
 DFF DF_2 (R1_2, DR1_2, clock, pwr);
 DFF DF_3 (R1_3, DR1_3, clock, pwr);
 DFF DF_4 (R1_4, DR1_4, clock, pwr);
 DFF DF_5 (R1_5, DR1_5, clock, pwr);
 DFF DF_6 (R1_6, DR1_6, clock, pwr);
 DFF DF_7 (R1_7, DR1_7, clock, pwr);

 DFF_S DR_0 (R2_0, DR2_0, clock, Load_regs); // Load_regs (set) drives R2 to all ones
 DFF_S DR_1 (R2_1, DR2_1, clock, Load_regs);
 DFF_S DR_2 (R2_2, DR2_2, clock, Load_regs);
 DFF_S DR_3 (R2_3, DR2_3, clock, Load_regs);

assign DR2_0 = R2_Dbus[0];
assign DR2_1 = R2_Dbus[1];
assign DR2_2 = R2_Dbus[2];
assign DR2_3 = R2_Dbus[3];

 wire [1: 0] sel = {Shift_left, Load_regs};
wire [dp_width -1: 0] R1_shifted = {R1_6, R1_5, R1_4, R1_3, R1_2, R1_1, R1_0, 1'b0};
wire [R2_width -1: 0] sum = R2 + 4'b0001;

 Mux8_4_x_1 M0 (R1_Dbus, R1, data, R1_shifted, R1, sel);
 Mux4_2_x_1 M1 (R2_Dbus, R2, sum, Incr_R2);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

262

module Mux8_4_x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, in1, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)

case (sel)
 2'b00: mux_out = in0;
 2'b01: mux_out = in1;
 2'b10: mux_out = in2;
 2'b11: mux_out = in3;

endcase
endmodule

module Mux4_2_x_1 #(parameter dp_width = 4) (output [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, in1, input sel);
assign mux_out = sel ? in1: in0;

endmodule

// Test Plan for Datapath Unit:
// Demonstrate action of Load_regs
// R1 gets data, R2 gets all ones
// Demonstrate action of Incr_R2
// Demonstrate action of Shift_left and detect E

// Test bench for datapath
module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)
();

wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

 Datapath_STR M0 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa;
 Load_regs = 0;
 Incr_R2 = 0;
 Shift_left = 0;
 #10 Load_regs = 1;
 #20 Load_regs = 0;
 #50 Incr_R2 = 1;
 #120 Incr_R2 = 0;
 #90 Shift_left = 1;
 #200 Shift_left = 0;
 join
endmodule

// Integrated system
module Count_Ones_Gates_1_Hot_STR
(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

 Controller_Gates_1Hot M0 (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
 Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

263

// Test plan for integrated system
// Test for data values of 8'haa, 8'h00, 8'hff.

// Test bench for integrated system

module t_count_Ones_Gates_1_Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [3: 0] state = {M0.M0.T3, M0.M0.T2, M0.M0.T1, M0.M0.T0};

 Count_Ones_Gates_1_Hot_STR M0 (count, data, Start, clock, reset_b);
 initial #700 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa; // Expect count = 4
 Start = 0;
 #20 Start = 1;
 #30 Start = 0;
 #40 data = 8'b00; // Expect count = 0
 #250 Start = 1;
 #260 Start = 0;
 #280 data = 8'hff;
 #280 Start = 1;
 #290 Start = 0;

join
endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

0 60 120 180

x
x

xx

f
f

0
0 1

1
2
2 3

3

aa

4
4

54 a8

5
5

50 a0 40 80

6
6

00
aa

Name

clock
reset_b

Load_regs
Incr_R2
Shift_left
Zero
E
data[7:0]
R1[7:0]
 R1[7]
 R1[6]
 R1[5]
 R1[4]
 R1[3]
 R1[2]
 R1[1]
 R1[0]
R2[3:0]
count[3:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

264

Simulations results for the integrated system match those shown in Prob. 8.34(e). See those results for
additional annotation.

0 150 300 450 600

x
x

1

xx
f
f

aa

0
0

54
1
1

50

2
2

40
3
3

4
4

1

f
f 0

0

00

1

00

f
f

ff
0
0

fe

1
1

fc

2
2

f8

3
3

f0
4
4

e0
5
5

c0

6
6

80
7
7 8

8
00

ff

1

Name

clock
reset_b

Ready
Start
Load_regs
Shift_left
Incr_R2
Zero
E

state[3:0]

data[7:0]
R1[7:0]
R2[3:0]
count[3:0]

8.37 (a) ASMD chart:

 S_idle
 /Ready

1

Start

1 Zero

S_running

reset_b

R1 <= data
R2 <= 0

R2 <= R2 + R1[0]
R1 <= R1 >> 1

Add_shift

Load_regs

(b) RTL model:

module Datapath_Unit_2_Beh #(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count,
output Zero,
input [dp_width -1: 0] data,
input Load_regs, Add_shift, clock, reset_b

);
reg [dp_width -1: 0] R1;
reg [R2_width -1: 0] R2;
assign count = R2;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

265

assign Zero = ~|R1;
always @ (posedge clock, negedge reset_b)
begin
if (reset_b == 0) begin R1 <= 0; R2 <= 0; end else begin
if (Load_regs) begin R1 <= data; R2 <= 0; end
if (Add_shift) begin R1 <= R1 >> 1; R2 <= R2 + R1[0]; end // concurrent operations

end
end

endmodule

// Test plan for datapath unit
// Verify active-low reset action
// Test for action of Add_shift
// Test for action of Load_regs

module t_Datapath_Unit_2_Beh();
parameter R1_size = 8, R2_size = 4;
wire [R2_size -1: 0] count;

 wire Zero;
reg [R1_size -1: 0] data;
reg Load_regs, Add_shift, clock, reset_b;

 Datapath_Unit_2_Beh M0 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

initial #1000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 #1 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;
join
initial fork

 data = 8'haa;
 Load_regs = 0;
 Add_shift = 0;
 #10 Load_regs = 1;
 #20 Load_regs = 0;
 #50 Add_shift = 1;
 #150 Add_shift = 0;

join
endmodule

Note that the operations of the datapath unit are tested independent of the controller, so the actions of
Load_regs and add_shift and the value of count do not correspond to data.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

266

R1 shifts, R2 adds

0 50 100 150

00 aa
0

55

 0

2a
1

15

 1

0a

 2

05
2

02
3

01

 3 4
4
00

aa

Name

clock
reset_b
Load_regs
Add_shift
Zero

data[7:0]
R1[7:0]
R2[3:0]
count[7:0]

Load R1, flush R2

module Controller_2_Beh (
output Ready,
output reg Load_regs,

 Add_shift,
input Start, Zero, clock, reset_b

);
parameter S_idle = 0, S_running = 1;
reg state, next_state;
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Add_shift = 0;

case (state)
 S_idle: if (Start) begin Load_regs = 1; next_state = S_running; end
 S_running: if (Zero) next_state = S_idle;

else begin Add_shift = 1; next_state = S_running; end
endcase

end
endmodule

module t_Controller_2_Beh ();
 wire Ready, Load_regs, Add_shift;

reg Start, Zero, clock, reset_b;

 Controller_2_Beh M0 (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 Zero = 1;
 Start = 0;
 #20 Start = 1; // Cycle from S_idle to S_1
 #80 Start = 0;
 #70 Zero = 0; // S_idle to S_1 to S_idle

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

267

 #90 Zero = 1; // Return to S_idle
 join
endmodule

Note: The state transitions and outputs of the controller match the ASMD chart.

0 50 100 150Name

clock
reset_b

Ready
Start
Load_regs
Add_shift
Zero

state

module Count_of_Ones_2_Beh #(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
output Ready,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Add_shift, Zero;

 Controller_2_Beh M0 (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
 Datapath_Unit_2_Beh M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

// Test plan for integrated system
// Test for data values of 8'haa, 8'h00, 8'hff.

// Test bench for integrated system

module t_Count_Ones_2_Beh ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

 Count_of_Ones_2_Beh M0 (count, Ready, data, Start, clock, reset_b);

 initial #700 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa; // Expect count = 4
 Start = 0;
 #20 Start = 1;
 #30 Start = 0;
 #40 data = 8'b00; // Expect count = 0
 #120 Start = 1;
 #130 Start = 0;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

268

 #140 data = 8'hff;
 #160 Start = 1;
 #170 Start = 0;

join
endmodule

0 60 120 180 240

00 aa
aa

0

55
0

2a

1

15
1

0a
2

05

2

02

3

01
3 4

4

00
00

0

ff
0

7f
1

1 2

2
3f 1f

3

3 4

4
0f

5

5

07

6

6
03 01

7

7

8

8
00

ff

Name

clock
reset_b

Start
Load_regs
Add_shift
Zero
Ready

state

data[7:0]
R1[7:0]
R2[3:0]

count[3:0]

(c) T0, T1 are to be asserted when the state is in S_idle, S_running, respectively. Let D0, D1 denote the inputs
to the one-hot flip-flops.

D0 = T0 Start' + T1 Zero
D1 = T0 Start + T1 E'

(d) Gate-level one-hot controller

module Controller_2_Gates_1Hot
(

output Ready, Load_regs, Add_shift,
input Start, Zero, clock, reset_b

);
wire w1, w2, w3, w4;
wire T0, T1;
wire set;
assign Ready = T0;
assign Add_shift = T1;
and (Load_regs, T0, Start);

 not (set, reset_b);
 DFF_S M0 (T0, D0, clock, set); // Note: reset action must initialize S_idle = 2'b01
 DFF M1 (T1, D1, clock, reset_b);

 not (Start_b, Start);
 not (Zero_b, Zero);
 and (w1, T0, Start_b);
 and (w2, T1, Zero);
 or (D0, w1, w2);

 and (w3, T0, Start);
 and (w4, T1, Zero_b);
 or (D1, w3, w4);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

269

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)

if (reset_b == 0) Q <= 0;
else Q <= D;

endmodule
module DFF_S (output reg Q, input D, clock, set);

always @ (posedge clock, posedge set)
if (set == 1) Q <= 1;
else Q <= D;

endmodule

// Test plan for Control Unit
// Verify that state enters S_idle with reset_b asserted.
// With reset_b de-asserted, verify that state enters S_running and asserts Load_Regs when
// Start is asserted.
// Verify that state returns to S_idle from S_running if Zero is asserted.
// Verify that state goes to S_running if Zero is not asserted.

// Test bench for One-Hot Control Unit

module t_Control_Unit ();
 wire Ready, Load_regs, Add_shift;

reg Start, Zero, clock, reset_b;
wire [3: 0] state = {M0.T1, M0.T0}; // Observe one-hot state bits

 Controller_2_Gates_1Hot M0 (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 Zero = 1;
 Start = 0;
 #20 Start = 1; // Cycle from S_idle to S_1
 #80 Start = 0;
 #70 Zero = 0; // S_idle to S_1 to S_idle
 #90 Zero = 1; // Return to S_idle
 join
endmodule

Simulation results show that the controller matches the ASMD chart.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

270

0 60 120 180

1 2 1 2 1 2 1

Name

clock
reset_b

Start
Zero

Load_regs
Add_shift
Zero
Ready

state[3:0]

// Datapath unit – structural model

module Datapath_2_STR
#(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
output Zero,
input [dp_width -1: 0] data,
input Load_regs, Add_shift, clock, reset_b);
supply1 pwr;
supply0 gnd;

 wire [dp_width -1: 0] R1_Dbus, R1;
wire [R2_width -1: 0] R2_Dbus;
wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7;
wire R1_0, R1_1, R1_2, R1_3, R1_4, R1_5, R1_6, R1_7;
wire R2_0, R2_1, R2_2, R2_3;
wire [R2_width -1: 0] R2 = {R2_3, R2_2, R2_1, R2_0};
assign count = {R2_3, R2_2, R2_1, R2_0};
assign R1 = { R1_7, R1_6, R1_5, R1_4, R1_3, R1_2, R1_1, R1_0};
assign DR1_0 = R1_Dbus[0];
assign DR1_1 = R1_Dbus[1];
assign DR1_2 = R1_Dbus[2];
assign DR1_3 = R1_Dbus[3];
assign DR1_4 = R1_Dbus[4];
assign DR1_5 = R1_Dbus[5];
assign DR1_6 = R1_Dbus[6];
assign DR1_7 = R1_Dbus[7];

nor (Zero, R1_0, R1_1, R1_2, R1_3, R1_4, R1_5, R1_6, R1_7);
 not (Load_regs_b, Load_regs);

 DFF DF_0 (R1_0, DR1_0, clock, pwr); // Disable reset
 DFF DF_1 (R1_1, DR1_1, clock, pwr);
 DFF DF_2 (R1_2, DR1_2, clock, pwr);
 DFF DF_3 (R1_3, DR1_3, clock, pwr);
 DFF DF_4 (R1_4, DR1_4, clock, pwr);
 DFF DF_5 (R1_5, DR1_5, clock, pwr);
 DFF DF_6 (R1_6, DR1_6, clock, pwr);
 DFF DF_7 (R1_7, DR1_7, clock, pwr);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

271

 DFF DR_0 (R2_0, DR2_0, clock, Load_regs_b); // Load_regs (set) drives R2 to all ones
 DFF DR_1 (R2_1, DR2_1, clock, Load_regs_b);
 DFF DR_2 (R2_2, DR2_2, clock, Load_regs_b);
 DFF DR_3 (R2_3, DR2_3, clock, Load_regs_b);

assign DR2_0 = R2_Dbus[0];
assign DR2_1 = R2_Dbus[1];
assign DR2_2 = R2_Dbus[2];
assign DR2_3 = R2_Dbus[3];

 wire [1: 0] sel = {Add_shift, Load_regs};
wire [dp_width -1: 0] R1_shifted = {1'b0, R1_7, R1_6, R1_5, R1_4, R1_3, R1_2, R1_1};
wire [R2_width -1: 0] sum = R2 + {3'b000, R1[0]};

 Mux8_4_x_1 M0 (R1_Dbus, R1, data, R1_shifted, R1, sel);
 Mux4_2_x_1 M1 (R2_Dbus, R2, sum, Add_shift);
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

272

module Mux8_4_x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, in1, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)

case (sel)
 2'b00: mux_out = in0;
 2'b01: mux_out = in1;
 2'b10: mux_out = in2;
 2'b11: mux_out = in3;

endcase
endmodule

module Mux4_2_x_1 #(parameter dp_width = 4) (output [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, in1, input sel);
assign mux_out = sel ? in1: in0;

endmodule

// Test Plan for Datapath Unit:
// Demonstrate action of Load_regs
// R1 gets data, R2 gets all ones
// Demonstrate action of Incr_R2
// Demonstrate action of Add_shift and detect Zero

// Test bench for datapath

module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)
();

wire [R2_width -1: 0] count;
wire Zero;
reg [dp_width -1: 0] data;

reg Load_regs, Add_shift, clock, reset_b;

 Datapath_2_STR M0 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

 initial #250 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa;
 Load_regs = 0;
 Add_shift = 0;
 #10 Load_regs = 1;
 #20 Load_regs = 0;
 #50 Add_shift = 1;
 #140 Add_shift = 0;
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

273

0 50 100 150

x
x
xx aa

0

55
0

2a

1

15
1

0a
2

05

2

02

3

01
3

4
4
00

aa

Name

clock
reset_b

Load_regs
Add_shift
Zero

data[7:0]
R1[7:0]
R2[3:0]
count[3:0]

// Integrated system

module Count_Ones_2_Gates_1Hot_STR
(parameter dp_width = 8, R2_width = 4)
(

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Add_shift, Zero;

 Controller_2_Gates_1Hot M0 (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
 Datapath_2_STR M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

// Test plan for integrated system
// Test for data values of 8'haa, 8'h00, 8'hff.

// Test bench for integrated system

module t_Count_Ones_2_Gates_1Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [1: 0] state = {M0.M0.T1, M0.M0.T0};

 Count_Ones_2_Gates_1Hot_STR M0 (count, data, Start, clock, reset_b);

 initial #700 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin reset_b = 0; #2 reset_b = 1; end
 initial fork
 data = 8'haa; // Expect count = 4
 Start = 0;
 #20 Start = 1;
 #30 Start = 0;
 #40 data = 8'b00; // Expect count = 0
 #120 Start = 1;
 #130 Start = 0;
 #150 data = 8'hff; // Expect count = 8
 #200 Start = 1;
 #210 Start = 0;

join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

274

0 80 160 240 320 400

x
x

1

xx
aa

0
0

1
1 2

2 3
3

2

4
4

1 2

00
00

1

0

ff
0

7f
1
1 2

2
3f 1f

3
3 4

4
0f

5
5 6

6
7
7

2

8
8
00

ff

1

Name

clock
reset_b

Start
Zero

Load_regs
Add_shift

state[1:0]

data[7:0]
R1[7:0]
R2[3:0]
count[3:0]

8.38
 module Prob_8_38 (
 output reg [7: 0] Sum,
 output reg Car_Bor,
 input [7: 0] Data_A, Data_B);

reg [7: 0] Reg_A, Reg_B;

 always @ (Data_A, Data_B)
 case ({Data_A[7], Data_B[7]})
 2'b00, 2'b11: begin // ++, --
 {Car_Bor, Sum[6: 0]} = Data_A[6: 0] + Data_B[6: 0];

 Sum[7] = Data_A[7];
end

default: if (Data_A[6: 0] >= Data_B[6: 0]) begin // +-, -+
 {Car_Bor, Sum[6: 0]} = Data_A[6: 0] - Data_B[6: 0];
 Sum[7] = Data_A[7];
end
else begin
 {Car_Bor, Sum[6: 0]} = Data_B[6: 0] - Data_A[6: 0];
 Sum[7] = Data_B[7];
end

endcase
endmodule

module t_Prob_8_38 ();
 wire [7: 0] Sum;
 wire Car_Bor;
 reg [7: 0] Data_A, Data_B;

wire [6: 0] Mag_A, Mag_B;
assign Mag_A = M0.Data_A[6: 0]; // Hierarchical dereferencing
assign Mag_B = M0.Data_B[6: 0];
wire Sign_A = M0.Data_A[7];
wire Sign_B = M0.Data_B[7];
wire Sign = Sum[7];
wire [7: 0] Mag = Sum[6: 0];

 Prob_8_38 M0 (Sum, Car_Bor, Data_A, Data_B);

initial #650 $finish;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

275

initial fork

 // Addition // A B
 #0 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b0, 7'd10}; end //+25, +10
 #40 begin Data_A = {1'b1, 7'd25}; Data_B = {1'b1, 7'd10}; end // -25, -10
 #80 begin Data_A = {1'b1, 7'd25}; Data_B = {1'b0, 7'd10}; end // -25, +10
 #120 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b1, 7'd10}; end // 25, -10
 // B A
 #160 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd10}; end //+25, +10
 #200 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd10}; end // -25, -10

 #240 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b0, 7'd10}; end // -25, +10
 #280 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b1, 7'd10}; end // +25, -10
 // Addition of matching numbers

 #320 begin Data_A = {1'b1,7'd0}; Data_B = {1'b1,7'd0}; end // -0, -0
 #360 begin Data_A = {1'b0,7'd0}; Data_B = {1'b0,7'd0}; end // +0, +0
 #400 begin Data_A = {1'b0,7'd0}; Data_B = {1'b1,7'd0}; end // +0, -0
 #440 begin Data_A = {1'b1,7'd0}; Data_B = {1'b0,7'd0}; end // -0, +0

 #480 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd25}; end // matching +
 #520 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd25}; end // matching –

 // Test of carry (negative numbers)
 #560 begin Data_A = 8'hf0; Data_B = 8'hf0; end // carry - -
 // Test of carry (positive numbers)
 #600 begin Data_A = 8'h70; Data_B = 8'h70; end // carry ++

join
endmodule

0 190 380 570

0a
19

23 a3

 35

8a

8f

99
0a

19

 10
 25

 15

0f

8a
0a

23

19

 35

8a

a3

99

8f

0a

 10
 25

8a

 15

0f

19
80
80

80

00

00

00
80 00

 0

 0
 0

80

80 32

19
19

b2

 25

99
99

 25

 50

f0

e0

f0

 96

60

112
112

70
70

Name

Data_A[7:0]
Data_B[7:0]
Sign_A
Sign_B
Mag_A[6:0]
Mag_B[6:0]

Car_Bor
Sum[7:0]
Sign
Mag[7:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

276

8.39 Block diagram and ASMD chart:

Controller
start

reset_b
clock

Datapath
AR

zero

data_AR

done

data_BR

...

...
BR

...
PR

16 16

 s0
 done

1

start

reset_b

AR <= data_A
BR <= data_B
PR <= 0

 s1

Ld_regs

Add_decr

Ld_regs

ZeroAdd_decr 1

PR <= PR + BR
AR <= AR -1

16

PR

module Prob_8_39 (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b

);

 Controller_P8_39 M0 (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_39 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter s0 = 1'b0, s1 = 1'b1;
reg state, next_state;
assign done = (state == s0);

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

277

always @ (posedge clock, negedge reset_b)
if (!reset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin
 Ld_regs = 0;
 Add_decr = 0;

case (state)
 s0: if (start) begin Ld_regs = 1; next_state = s1; end
 s1: if (zero) next_state = s0; else begin next_state = s1; Add_decr = 1; end

default: next_state = s0;
endcase

end
endmodule

module Datapath_P8_16 (
output reg [15: 0] PR, output zero,
input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b

);

reg [7: 0] AR, BR;
assign zero = ~(| AR);

always @ (posedge clock, negedge reset_b)
if (!reset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin

if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <= 0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end

end
endmodule

// Test plan – Verify;
// Power-up reset
// Data is loaded correctly
// Control signals assert correctly
// Status signals assert correctly
// start is ignored while multiplying
// Multiplication is correct
// Recovery from reset on-the-fly

module t_Prob_P8_16;
wire done;
wire [15: 0] PR;
reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

 Prob_8_16 M0 (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 reset_b = 0;
 #12 reset_b = 1;
 #40 reset_b = 0;
 #42 reset_b = 1;
 #90 reset_b = 1;
 #92 reset_b = 1;

join

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

278

initial fork
 #20 start = 1;
 #30 start = 0;
 #40 start = 1;
 #50 start = 0;
 #120 start = 1;
 #120 start = 0;

join

initial fork
 data_AR = 8'd5; // AR > 0
 data_BR = 8'd20;

 #80 data_AR = 8'd3;
 #80 data_BR = 8'd9;

 #100 data_AR = 8'd4;
 #100 data_BR = 8'd9;

join
endmodule

Name 0 30 60 90 120

reset_b

clock

start

Ld_regs

Add_decr

zero

state

data_AR[7:0]

data_BR[7:0]

AR[7:0]

BR[7:0]

done

PR[15:0]

 0

 0 5

 0

 4

 20 0

 0 5

 0 20

 4 3

 40

 5

 20

 2

 60

 1

 80

 3

 0

 100

 20

 9

 4

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

279

8.40

Controller

Shift_regs

Shift_in

Start

clock
reset_b

Decr_P

Q0 Note: Q0 = Q[0]

Add_regs

A

B

C

Q

P

Zero

Data_in[7: 0]

Data_out[7: 0]

Datapath
Ready

Done_Product

Shift_out

8

8

Run
Send_Data

Got_Data

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

280

S_idle
/Ready

 S_add
 / Decr_P

reset

Start
1

Q0

S_shift
/Shift_regs

1

1

Add_regs

Shift_in

{C, A} <= A + B

P <= P-1

Run

 S_Ld_0...6
 /Shift_in

 S_Ld__7
 /Got_Data

 S_Send_0...6
 /Shift_out

 S_wait_1

Run

S_product
 /Done_Product

1

Zero

Send_
Data

 S_wait_2

Send_
Data

Shift_out

Data_out <= P[7: 0] … P[31: 24]

B[7: 0] <= Data_in … B[31: 24] <= Data_in
Q[7: 0] <= Data_in … Q[31: 24] <= Data_in

Shift_out
1

1
1

The bytes of data will be read sequentially. Registers
Q and B are organized to act as byte-wide parallel
shift registers, taking 8 clock cycles to fill the pipe.
The least significant byte of the multiplicand enters
the most significant byte of Q and then moves
through the bytes of Q to enter B, then proceed to
occupy successive bytes of B until it occupies the
least significant byte of B, and so forth until both B
and Q are filled. Wait states are used to wait for Run
and Send_Data.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

281

module Prob_8_40 (
output [7: 0] Data_out,
output Ready, Got_Data, Done_Product,
input [7: 0] Data_in,
input Start, Run, Send_Data, clock, reset_b

);

Controller M0 (
 Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs, Shift_regs, Shift_out,
 Start, Run, Send_Data, Zero, Q0, clock, reset_b
);
Datapath M1(Data_out, Q0, Zero, Data_in,
 Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock
);
endmodule

module Controller (
output reg Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs,

 Shift_regs, Shift_out,
input Start, Run, Send_Data, Zero, Q0, clock, reset_b

);

parameter S_idle = 5'd20,
 S_Ld_0 = 5'd0,
 S_Ld_1 = 5'd1,
 S_Ld_2 = 5'd2,
 S_Ld_3 = 5'd3,
 S_Ld_4 = 5'd4,
 S_Ld_5 = 5'd5,
 S_Ld_6 = 5'd6,
 S_Ld_7 = 5'd7,
 S_wait_1 = 5'd8, // Wait state
 S_add = 5'd9,
 S_Shift = 5'd10,
 S_product = 5'd11,
 S_wait_2 = 5'd12, // Wait state
 S_Send_0 = 5'd13,
 S_Send_1 = 5'd14,
 S_Send_2 = 5'd15,
 S_Send_3 = 5'd16,
 S_Send_4 = 5'd17,
 S_Send_5 = 5'd18,
 S_Send_6 = 5'd19;

reg [4: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Run, Q0, Zero, Send_Data) begin
 next_state = S_idle; // Prevent accidental synthesis of latches
 Ready = 0;
 Shift_in = 0;
 Shift_regs = 0;
 Add_regs = 0;
 Decr_P = 0;
 Shift_out = 0;
 Got_Data = 0;
 Done_Product = 0;

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

282

case (state) // Assign by exception to default values
 S_idle: begin
 Ready = 1;
 if (Start) begin next_state = S_Ld_0; Shift_in = 1; end

end
 S_Ld_0: begin next_state = S_Ld_1; Shift_in = 1; end
 S_Ld_1: begin next_state = S_Ld_2; Shift_in = 1; end
 S_Ld_2: begin next_state = S_Ld_3; Shift_in = 1; end
 S_Ld_3: begin next_state = S_Ld_4; Shift_in = 1; end
 S_Ld_4: begin next_state = S_Ld_5; Shift_in = 1; end
 S_Ld_5: begin next_state = S_Ld_6; Shift_in = 1; end
 S_Ld_6: begin next_state = S_Ld_7; Shift_in = 1; end
 S_Ld_7: begin Got_Data = 1;
 if (Run) next_state = S_add;
 else next_state = S_wait_1;

end
 S_wait_1: if (Run) next_state = S_add; else next_state = S_wait_1;
 S_add: begin next_state = S_Shift; Decr_P = 1; if (Q0) Add_regs = 1; end
 S_Shift: begin Shift_regs = 1; if (Zero) next_state = S_product;

else next_state = S_add; end
 S_product: begin
 Done_Product = 1;
 if (Send_Data) begin next_state = S_Send_0; Shift_out = 1; end
 else next_state = S_wait_2; end
 S_wait_2: if (Send_Data) begin next_state =S_Send_0; Shift_out = 1; end

else next_state = S_wait_2;
 S_Send_0: begin next_state = S_Send_1; Shift_out = 1; end
 S_Send_1: begin next_state = S_Send_2; Shift_out = 1; end
 S_Send_2: begin next_state = S_Send_3; Shift_out = 1; end
 S_Send_3: begin next_state = S_Send_4; Shift_out = 1; end
 S_Send_4: begin next_state = S_Send_5; Shift_out = 1; end
 S_Send_5: begin next_state = S_Send_6; Shift_out = 1; end
 S_Send_6: begin next_state = S_idle; Shift_out = 1; end

default: next_state = S_idle;
endcase

end
endmodule

module Datapath #(parameter dp_width = 32, P_width = 6) (
output [7: 0] Data_out,
output Q0, Zero,
input [7: 0] Data_in,
input Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock

);
reg [dp_width - 1: 0] A, B, Q; // Sized for datapath
reg C;
reg [P_width - 1: 0] P;
assign Q0 = Q[0];
assign Zero = (P == 0); // counter is zero
assign Data_out = {C, A, Q};

always @ (posedge clock) begin
if (Shift_in) begin

 P <= dp_width;
 A <= 0;
 C <= 0;
 B[7: 0] <= B[15: 8]; // Treat B and Q registers as a pipeline to load data bytes
 B[15: 8] <= B[23: 16];
 B[23: 16] <= B[31: 24];
 B[31: 24] <= Q[7: 0];
 Q[7: 0] <= Q[15: 8];

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

283

 Q[15: 8] <= Q[23: 16];
 Q[23: 16] <= Q[31: 24];
 Q[31: 24] <= Data_in;

end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
if (Decr_P) P <= P -1;
if (Shift_out) begin {C, A, Q} <= {C, A, Q} >> 8; end

end
endmodule

module t_Prob_8_40;
parameter dp_width = 32; // Width of datapath
wire [7: 0] Data_out;
wire Ready, Got_Data, Done_Product;
reg Start, Run, Send_Data, clock, reset_b;

integer Exp_Value;
reg Error;
wire [7: 0] Data_in;
reg [dp_width -1: 0] Multiplicand, Multiplier;
reg [2*dp_width -1: 0] Data_register; // For test patterns

 assign Data_in = Data_register [7:0];
wire [2*dp_width -1: 0] product;
assign product = {M0.M1.C, M0.M1.A, M0.M1.Q};

 Prob_8_40 M0 (
 Data_out, Ready, Got_Data, Done_Product, Data_in, Start, Run, Send_Data, clock, reset_b
);

initial #2000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;

join
initial fork

 Start =0;
Run = 0;

 Send_Data = 0;
 #10 Start = 1;
 #20 Start = 0;

 #50 Run= 1; // Ignored by controller
 #60 Run = 0;
 #120 Run = 1;
 #130 Run = 0;

 #830 Send_Data = 1;
 #840 Send_Data = 0;

join
// Test patterns for multiplication

 initial begin
 Multiplicand = 32'h0f_00_00_aa;
 Multiplier = 32'h0a_00_00_ff;
 Data_register = {Multiplier, Multiplicand};

end

initial begin // Synchronize input data bytes

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

284

 @ (posedge Start)
repeat (15) begin

 @ (negedge clock)
 Data_register <= Data_register >> 8;

end
end

endmodule

Simulation results: Loading multiplicand (0f0000aaH) and multiplier (0a0000ffH), 4 bytes each, in sequence,
beginning with the least significant byte of the multiplicand.

Note: Product is not valid until Done_Product asserts. The value of Product shown here (25510) reflects the
contents of {C, A, Q} after the multiplier has been loaded, prior to multiplication.

Note: The machine ignores a premature assertion of Run.

Note: Got_Data asserts at the 8th clock after Start asserts, i.e., 8 clocks to load the data.

Note: Product, Multiplier, and Multiplicand are formed in the test bench.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

285

0 40 80 120 160

x

x

20

170

 0

x x

 1

 0

x

 2

X

 15

 3

170

xxxxxxxx

255

 4

 0

 5

 0

 15

 6

 10

 7 8

000000000a0000ff
 167772415

00000000

32

 9

0a0000ff

255

10

31

 9

127

 167772415
0a0000ff

 251658410
0f0000aa

0f0000aa
30

 0

10

Name

clock
reset_b
Start
Run
Send_Data
Zero
Q0
Ready
Got_Data
Done_Product
Shift_in
Shift_regs
Add_regs
Decr_P
Shift_out
state[4:0]

Data_in[7:0]
P[31:0]
B[31:0]
C
A[31:0]
Q[31:0]
Multiplicand[31:0]
Multiplicand[31:0]
Multiplier[31:0]
Multiplier[31:0]
product[63:0]
product[63:0]

Data_out[7:0]

Launch activity
at rising edge of
clock

Ignore Run Respond to
Run

Waiting for RunLoading 8 bytes
of data

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

286

Note: Product (64 bits) is formed correctly

735 785 835 885 935

10

 88

 9

 1

172

10 11

 86

009600159500a956
42221339200760150

00960015
9500a956

12 13

 0

14 15

 21

16 17

 0

18 19

 0

 0

 167772415
0a0000ff

 251658410
0f0000aa

00000000
00000000

0f0000aa
 0

 0

20

Name

clock
reset_b
Start
Run
Send_Data
Zero
Q0
Ready
Got_Data
Done_Product
Shift_in
Shift_regs
Add_regs
Decr_P
Shift_out
state[4:0]

Data_in[7:0]
P[31:0]
B[31:0]
C
A[31:0]
Q[31:0]
Multiplicand[31:0]
Multiplicand[31:0]
Multiplier[31:0]
Multiplier[31:0]
product[63:0]
product[63:0]

Data_out[7:0]

Multiplication complete Waiting for Send_Data Begin sending data bytes
of product.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

287

735 785 835 885 935

10

 88

 9

 1

172

10 11

 86

009600159500a956
42221339200760150

00960015
9500a956

12 13

 0

14 15

 21

16 17

 0

18 19

 0

 0

 167772415
0a0000ff

 251658410
0f0000aa

00000000
00000000

0f0000aa
 0

 0

20

Name

clock
reset_b
Start
Run
Send_Data
Zero
Q0
Ready
Got_Data
Done_Product
Shift_in
Shift_regs
Add_regs
Decr_P
Shift_out
state[4:0]

Data_in[7:0]
P[31:0]
B[31:0]
C
A[31:0]
Q[31:0]
Multiplicand[31:0]
Multiplicand[31:0]
Multiplier[31:0]
Multiplier[31:0]
product[63:0]
product[63:0]

Data_out[7:0]

Multiplication complete Waiting for Send_Data Begin sending data
bytes of product.

Data sent - {C, A, Q}
empty. State = S_idle

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

288

8.41 (a)

P1 <= Data
P0 <= P1

Ld

Ld 1

R0 <= {P1, P0}

S_1

En

S_full

P1 <= Data
P0 <= P1

S_wait

1

1

1rst

S_idle

{P1, P0} <= {0, 0}

En

1

8 8 8

Data

R0[15: 0]P1[7: 0] P0[7: 0]

P1[7: 0] P0[7: 0]

{P1, P0} <= {0, 0}

P1 <= Data
P0 <= P1

ld_P1_P0

Clr_P1_P0

Ld_R0

Ld_P1_P0

Ld_P1_P0

Clr_P1_P0

1

 (b) HDL model, test bench and simulation results for datapath unit.

module Datapath_unit
(

output reg [15: 0] R0, input [7: 0] Data, input Clr_P1_P0, Ld_P1_P0, Ld_R0, clock, rst);
reg [7: 0] P1, P0;

always @ (posedge clock) begin
if (Clr_P1_P0) begin P1 <= 0; P0 <= 0; end
if (Ld_P1_P0) begin P1 <= Data; P0 <= P1; end
if (Ld_R0) R0 <= {P1, P0};

 end
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

289

// Test bench for datapath
module t_Datapath_unit ();

wire [15: 0] R0;
reg [7: 0] Data;
reg Clr_P1_P0, Ld_P1_P0, Ld_R0, clock, rst;

 Datapath_unit M0 (R0, Data, Clr_P1_P0, Ld_P1_P0, Ld_R0, clock, rst);

 initial #100 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin rst = 0; #2 rst = 1; end
 initial fork
 #20 Clr_P1_P0 = 0;
 #20 Ld_P1_P0 = 0;
 #20 Ld_R0 = 0;
 #20 Data = 8'ha5;
 #40 Ld_P1_P0 = 1;
 #50 Data = 8'hff;
 #60 Ld_P1_P0 = 0;
 #70 Ld_R0 = 1;
 #80 Ld_R0 = 0;
 join
endmodule

0 5 0 1 0 0

x x
x x

a 5
a 5

x x
x x x x

f f

a 5
f f

f f a 5

N a m e

c lo c k
r s t

C lr _ P 1 _ P 0
L d _ P 1 _ P 0
L d _ R 0
D a ta [7 : 0]
P 1 [7 : 0]
P 0 [7 : 0]
R 0 [1 5 : 0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

290

(c) HDL model, test bench, and simulation results for the control unit.

module Control_unit (output reg Clr_P1_P0, Ld_P1_P0, Ld_R0, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 = 4'b0010, S_full = 4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;

always @ (posedge clock)
if (rst) state <= S_idle;
else state <= next_state;

always @ (state, Ld, En) begin
 Clr_P1_P0 = 0; // Assign by exception
 Ld_P1_P0 = 0;
 Ld_R0 = 0;
 next_state = S_idle;

case (state)
 S_idle: if (En) begin Ld_P1_P0 = 1; next_state = S_1; end

else next_state = S_idle;

 S_1: begin Ld_P1_P0 = 1; next_state = S_full; end

 S_full: if (!Ld) next_state = S_wait;
else begin

 Ld_R0 = 1;
 if (En) begin Ld_P1_P0 = 1; next_state = S_1; end
 else begin Clr_P1_P0 = 1; next_state = S_idle; end
 end

 S_wait: if (!Ld) next_state = S_wait;
else begin

 Ld_R0 = 1;
 if (En) begin Ld_P1_P0 = 1; next_state = S_1; end
 else begin Clr_P1_P0 = 1; next_state = S_idle; end
 end

default: next_state = S_idle;
endcase

end
endmodule

// Test bench for control unit
module t_Control_unit ();
 wire Clr_P1_P0, Ld_P1_P0, Ld_R0;

reg En, Ld, clock, rst;

 Control_unit M0 (Clr_P1_P0, Ld_P1_P0, Ld_R0, En, Ld, clock, rst);

 initial #200 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin rst = 0; #2 rst = 1; #12 rst = 0; end
 initial fork
 #20 Ld = 0;
 #20 En = 0;
 #30 En = 1; // Drive to S_wait
 #70 Ld = 1; // Return to S_1 to S_full tp S_wait
 #80 Ld = 0;
 #100 Ld = 1; // Drive to S_idle
 #100 En = 0;
 #110 En = 0;
 #120 Ld = 0;
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

291

0 50 100 150

x 1 2 4 8 2 4 8 1

Name

clock
rst

En
Ld
Clr_P1_P0
Ld_P1_P0
Ld_R0

state[3:0]

(c) Integrated system Note that the test bench for the integrated system uses the input stimuli from the
test bench for the control unit and displays the waveforms produced by the test bench for the
datapath unit.:

module Prob_8_41 (output [15: 0] R0, input [7: 0] Data, input En, Ld, clock, rst);
wire Clr_P1_P0, Ld_P1_P0, Ld_R0;

 Control_unit M0 (Clr_P1_P0, Ld_P1_P0, Ld_R0, En, Ld, clock, rst);
 Datapath_unit M1 (R0, Data, Clr_P1_P0, Ld_P1_P0, Ld_R0, clock);

endmodule

module Control_unit (output reg Clr_P1_P0, Ld_P1_P0, Ld_R0, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 = 4'b0010, S_full = 4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;

always @ (posedge clock)
if (rst) state <= S_idle;
else state <= next_state;

always @ (state, Ld, En) begin
 Clr_P1_P0 = 0; // Assign by exception
 Ld_P1_P0 = 0;
 Ld_R0 = 0;
 next_state = S_idle;

case (state)
 S_idle: if (En) begin Ld_P1_P0 = 1; next_state = S_1; end

else next_state = S_idle;

 S_1: begin Ld_P1_P0 = 1; next_state = S_full; end

 S_full: if (!Ld) next_state = S_wait;
else begin

 Ld_R0 = 1;
 if (En) begin Ld_P1_P0 = 1; next_state = S_1; end
 else begin Clr_P1_P0 = 1; next_state = S_idle; end
 end

 S_wait: if (!Ld) next_state = S_wait;
else begin

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

292

 Ld_R0 = 1;
 if (En) begin Ld_P1_P0 = 1; next_state = S_1; end
 else begin Clr_P1_P0 = 1; next_state = S_idle; end
 end

default: next_state = S_idle;
endcase

end
endmodule

module Datapath_unit
(

output reg [15: 0] R0,
input [7: 0] Data,
input Clr_P1_P0,

 Ld_P1_P0,
 Ld_R0,
 clock);

reg [7: 0] P1, P0;

always @ (posedge clock) begin
if (Clr_P1_P0) begin P1 <= 0; P0 <= 0; end
if (Ld_P1_P0) begin P1 <= Data; P0 <= P1; end
if (Ld_R0) R0 <= {P1, P0};

 end
endmodule

// Test bench for integrated system
module t_Prob_8_41 ();

wire [15: 0] R0;
reg [7: 0] Data;
reg En, Ld, clock, rst;

 Prob_8_41 M0 (R0, Data, En, Ld, clock, rst);

 initial #200 $finish;
 initial begin clock = 0; forever #5 clock = ~clock; end
 initial begin rst = 0; #10 rst = 1; #20 rst = 0; end
 initial fork

 #20 Data = 8'ha5;
 #50 Data = 8'hff;

 #20 Ld = 0;
 #20 En = 0;
 #30 En = 1; // Drive to S_wait
 #70 Ld = 1; // Return to S_1 to S_full tp S_wait
 #80 Ld = 0;
 #100 Ld = 1; // Drive to S_idle
 #100 En = 0;
 #110 En = 0;
 #120 Ld = 0;
 join
endmodule

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

293

0 40 80 120

x

xx
xx

1 2

xx

a5

4

a5

8

xxxx

2

a5

4

ff

a5a5
ff

8

ffff
00
00

ff

1

Name

clock
rst
En
Ld
Clr_P1_P0
Ld_P1_P0
Ld_R0
state[3:0]

Data[7:0]
P1[7:0]
P0[7:0]
R0[15:0]

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Digital Design – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

294

CHAPTER 9

9.1 (a) Asynchronous circutis do not use clock pulses and change state in response to input changes.
Synchronous circuits use clock pulses and a change of state occurs in reponse to the clock transition.

(b) The input signals change one at a time when the circuit is stable.

(c) The circuit is in a stable state when the excitation variables (Y) are equal to the secondary variables
(y) (see F. 9.1). Unstable otherwise.

(d) The total state is the combination of binary values of the internal state and the inputs.

9.2 Y1 = x1'x2 + y1x2 Y2 = x1y2 + x2

00

01

11

10

00 01 11 10

y1x1x2

00 11 01 00

00 11 01 01

00 11 11 01

00 11 11 00

x1

y1y2

x2

y2

x1x2 : 00, 10, 11, 01, 11, 10, 00

y1y2 : 00, 00, 01, 11, 11, 01, 00

9.3 (a)

x2

x1
Y = x1x' 2 + (x1 + x'2)y

y

z = y

 (b)

0

1

00 01 11 10y
x1x2

y

0 0 0 1

1 0 1 1

x2

x1

0

1

00 01 11 10y
x1x2

y

0 0 0 0

1 1 1 1

x2

x1

 (c)

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

