13-94.

SOLUTION

 $r = 5\theta = 5\left(\frac{5}{3}\pi\right) = 26.18$

 $\dot{r} = 5\dot{\theta} = 5(0.4) = 2$ $\ddot{r} = 5\ddot{\theta} = 5(0.8) = 4$

Determine the normal and frictional driving forces that the partial spiral track exerts on the 200-kg motorcycle at the instant $\dot{\theta} = \frac{5}{3}\pi$ rad, $\dot{\theta} = 0.4$ rad/s, and $\ddot{\theta} = 0.8$ rad/s². Neglect the size of the motorcycle.

 $\theta = \left(\frac{5}{3}\pi\right) = 300^{\circ}$ $\dot{\theta} = 0.4$ $\ddot{\theta} = 0.8$

 $a_r = \ddot{r} - r\dot{\theta}^2 = 4 - 26.18(0.4)^2 = -0.1888$

 $a_{\theta} = \dot{r\theta} + 2\dot{r\theta} = 26.18(0.8) + 2(2)(0.4) = 22.54$

 $\tan \psi = \frac{r}{dr/d\theta} = \frac{5\left(\frac{5}{3}\pi\right)}{5} = 5.236 \qquad \psi = 79.19^{\circ}$

 $F = 5.07 \, \text{kN}$

 $N = 2.74 \, \text{kN}$

 $= (5\theta) m$