SOLUTIONS MANUAL

INTRODUCTION TO

ROBOTICS

MECHANICS AND CONTROL

THIRD EDITION

JOHN J. CRAIG

Associate Editor: Alice Dworkin

Executive Managing Editor: Vince O'Brien
Managing Editor: David A. George
Production Editor: Craig Little

Supplement Cover Manager: Daniel Sandin
Manufacturing Buyer: llene Kahn

PEARSON © 2005 by Pe?rson Education, Inc.
gy Pearson Prentice Hall
Prentice Pearson Education, Inc.
Sl Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The author and pub-
lisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.

This work is protected by United States copyright laws and is provided solely for the use of
instructors in teaching their courses and assessing student learning. Dissemination or sale of any
part of this work (including on the World Wide Web) will destroy the integrity of the work and is
not permitted. The work and materials from it should never be made available to students except
by instructors using the accompanying text in their classes. All recipients of this work are expected
to abide by these restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

Printed in the United States of America
10987654321

ISBN 0201-543k2-1

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education—1Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Contents

Solutions Manual

Chapter 1 - Introduction

Chapter 2 - Spatial Descriptions and Transformations
Chapter 3 - Manipulator Kinematics

Chapter 4 - Inverse Manipulator Kinematics

Chapter 5 - Jacobians: Velocities and Static Forces
Chapter 6 - Manipulator Dynamics

Chapter 7 - Trajectory Generation

Chapter 8 - Manipulator Mechanism Design

Chapter 9 - Linear Control of Manipulators

Chapter 10 - Nonlinear Control of Manipulators
Chapter 11 - Force Control of Manipulators

Chapter 12 - Robot Programming Languages and Systems
Chapter 13 - Off-line Programming Systems

Solutions to the Programming Exercises (Parts 2-7, 9-11)

Matlab Exercises — Solutions

MATLAB EXERCISE 2A
MATLAB EXERCISE 2B
MATLAB EXERCISE 3
MATLAB EXERCISE 4
MATLAB EXERCISE 5
MATLAB EXERCISE 6A
MATLAB EXERCISE 6B
MATLAB EXERCISE 6C
MATLAB EXERCISE 7
MATLAB EXERCISE 8
MATLAB EXERCISE 9

il

14
21
28
38
49
54
59
63
68
72
73
75

107

109
112
119
123
127
131
135
137
139
143
146

Chapter 1

Introduction

Exercises

1.1) Here’s just an example of a reasonable response:
(ref. [8] in Chap. 1)

1955 Denavit & Hartenberg developed
methodology for describing linkages.

1961 George Devol patents design of rst robot.

1961 First unimate robot installed.

1968 Shakey Robot developed at S.R.I.

1975 Robot institute of America formed.

1975 Unimation becomes rst Robot Co. to be
protable.

1978 First Puma Robot shipped to GM.
1985 Total U.S. market exceeds 500 million
dollars (annual revenue).

Developments might be split into a technical list
and a business list.

1.2) (Based on 1981 numbers)

Source:

L. Conigliaro, “robotics presentation, institutional
investors conf.”, May 28, 1981, Bache Newsletter

Palletize/Packaging - 2.8%

81-249.:
- Machining - 6.8%
- Material Handling - 11.8%
1.3)
People Are Flexible,
But More Expensive Every Year
$60 -
U.S. Automotive
$50
$40
$30 - U.S. Electronic
| _Robot Labor (2 shifts)
520 U.S. Food
$10 1
Korea
S0 .

10860 1967 1w 1981 1918 1985

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.4) Kinematics is the study of position and derivatives
of position without regard to forces which cause
the motion. Workspace is the locus of positions
and orientations achievable by the end-effector of
a manipulator. Trajectory is a time based function
which specifies the position (and higher deriva-
tives) of the robot mechanism for any value of
time.

1.5) Frame is a coordinate system, usually specified in
position and orientation relative to some imbed-
ding frame. Degrees of freedom is the number
of independent variables which must be specified
in order to completely locate all members of a
(rigid-body) mechanism. Position control implies
the use of a control system, usually in a closed-
loop manner, to control the position of one or
more moving bodies.

1.6) Force control is the use of (usually closed-loop)
algorithms to control the forces of contact gener-
ated when a robot touches its work environment.
A robot programming language is a programming
language intended for use in specifying manipu-
lator actions.

1.7) Structural stiffnessis the “K”inF = KAX (AK.A
“Hooke’s law”) which describes the rigidity of
some structure. Nonlinear control refers to a closed
loop control system in which either the system
to be controlled, or the control algorithm itself is
nonlinear in nature. Off line programming is the
process of creating a program for a device without
access to that device.

1.8) See references. For example, in 1985 average labor
costs of $15 to $20 per hour are reasonable (depending
how fringe benefits are calculated).

1.9) Obviously it has increased dramatically. Recently
(1988-1990) the ratio doubles or even triples each
year.

1.10) See Figure 1.3, but use latest data you can find.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 2

Spatial Descriptions and Transformations

Exercises
2.1) R =rot(%, ¢) rot(z, 6)
1 0 0 coe -S6 0
=0 Cco -S¢ s Co 0
0 S¢p Co¢ 0 0 1

coO -S9 0
=[c¢se CoCo —S¢}
S¢S6 S¢Cod Co

2.2) R =rot(x, 45%) rot(y, 30°)
1 0 0 866 0 .5
=|0 .707 -.707 0 1 0
0 707 707]L-.5 0 .866

.866 0 5
= 353 707 —.612
—-.353 .707 612

2.3) Since rotations are performed about axes of the
framg being rotated, these are Euler-Angle style
rotations:

R = rot(z, 0) rot(x, ¢)
We might also use the following reasoning:
3RO, 9) =5R7'(6, ¢)
= [rot(%, —¢) rot(Z, —0)]~!
=rot~1(z, —0) rot~1(%X, —¢)
= rot(z, 9) rot(x, ¢)
Yet another way of viewing the same operation:

1st rotate by rot(z, 8)

2nd rotate by rot(z, 6) rot(%, ¢) rot~!(z, 8)

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.3) (continued)
(This is a similarity transform)

Composing these two rotations:
= rot(Z, 8) rot(%, ¢) rot ! (z, 6) - rot(2, H)
= rot(z, 0) rot(x, ¢)

coe -S6 011 0 0O
=[59 co o} {0 Co —s¢}
0 o 1]JLo s¢ ¢

5§ CoCé —COS¢

I:CQ —S6Cop S6S¢
Lo s Co }

2.4) This is the same as 2.3 only with numbers.
R = rot(z, 30°) rot(x, 45)

.50 612 —.612

I:.866 —.353 .353:|
0 107 707

2.5) If V; is an eigenvector of R, then
RV, =7V,
If the eigenvalue associated with V; is 1, then
RV; =V,

Hence the vector is not changed by the rotation R.
So V; is the axis of rotation.

2.6) Imagine a frame {A} whose Z axis is aligned with
the direction &:

Then, the rotation with rotates vectors about & by
6 degrees could be written:

R =YRrot(42,0)4R [1]

We write the description of {A} in {U} as:
A D K,

YR=|B E K,
C F K,

If we multiply out Eq. [1] above, and then simplify

using A2 + B2+ C?=1,D*+ E*4+ F?2 = 1,[ABC]-
[DEF]=0,[ABC]® [DEF]=[K.K,K,] we arrive
at Eq. (2.80) in the book. Also, see [R. Paul]*
page 25.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Rt Rip Ry
27) Let R=| Ry Rxn Rz
R3;1 Ry Rss

(1) Compute Ry} + Ry + R33 =N

N-1
(2) If N =3,thenf = Acos() = 0°. Since

rotation is zero, K is arbitrary.

(3) If N=—1, then 8 = Acos(—1) = 180°. In
this case Eq. (2.80) becomes:

2K2 -1 2K.K, 2K.K,

rot(K, 180°) = | 2K.K, 2K2—1 2K,K.
2K, K, 2K,K, 2K2-1

SO:
ZKf —1=Ry=K,=xJ(Ri1+1)/2
2K:Ky, = Ry = K, = Ri2/2K,

2K.K: = R31 = K; = R31/2K,

However, if K, = 0, then this is ill-defined,
so use a different column for solution (not
the first column as above).

@) If —1 <N <3 (so that 0 < 8 < 180°) the
use Eq. (2.82) in book.

2.8) Procedure RMTOAA is given essentially in the
solution to 2.7. However, writing clean code to
check the various cases is a good exercise in itself.
Procedure AATORM is given by Eq. (2.80) and is
easy.

2.9) The subroutines encode Eq. (2.64) and equations
(2.66), (2.67), and (2.68).

2.10) The subroutines follow from eq. (2.72) and equations
(2.74), (2.75), and (2.76).

2.11) When they represent rotations about the same
axis.

2.12) Velocity is a “free vector” and only will be affected
by rotation, and not by translation:

0.866 —0.5 07[10
AV =4RBV = |05 0.866 0 || 20
0o 0 1JL30

AV =[-1.34 2232 3007

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.13) By just following arrows, and reversing (by inver- {c}
sion) where needed, we have: U}

eT = {T 377 5T~ / (B);

Inverting a transform is done using eq. (2.40) in e P
book. Rest is boring.

2.14) This rotation can be written as:
AT = trans(* P, | P|) rot(K , 0)trans(—4 P, |4 P|)

Where rot(IE' , 0) is written as in eq. (2.77),

1 0 0 P,
And trans(AP, |AP|) = g (1) (1’ II}'
Z
00 0 1
1 0 0 —P,
And trans(—4P,14Pp =[O 1 9 ~H
Z
00 0 1
Multiplying out we get:
Riy Rz Ris O

Ry Ry Ry ! 0O,
4T =| Ru Ry Rs :

where the R;; are given be eq. (2.77). And:

Q; = P, — P,(K?V0 + CO) — P, (K. K,VO — K,56)
— P,(K.K,V6 + K, S6)

0,=P,— P.(K:K,VO + K,S0) — Py(KfVO + C0)
— P.(K,K,V6 + K,56)

Q. = P, — P,(K,K,V6 — K,560) — P,(K,K,V0 + K,S6)

— P,(K2V6 + C6)

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

xz x?

2.15) Recallthate"=1+x+?+§+-~-

1 1
s0 X% = I+ K6 + K207 + K267 + -

-K2-K? K.K, K.K,
K?= K.K, -K2-K? K,K,
K.K, KK, -K}-K?

Writing out the (1,2) element of ¢X? (as an example)
we have:

1 1
(€2 =0+ (—K)0 + 5(1<,(Ky)92 + §K293 T

Recall that:

. 6* 6
sm9=9—§+5_—!—~~
6% o4
cos@:l—aﬁ-ﬁ—---.
62 0% 6°
Vo=1-C0=— — —+ — —
21 41 6!

We can write:

1 1
(€X®)12 = (—K)6 + 51(293 - ;KZGS 4.

1 1
+ E(KXKY)GZ - Z(KxKy)a4 +..
Or:

(eKe)Lz =—K,56 + KXKyVQ

Which is the value given in (2.80). Other elements
may be checked similarly.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.16) In method 1, the multiplication of two 3 x 3
matrices requires 27 multiplications and 18 addi-
tions. the computation of 4R takes two matrix
multiplies, or 57 multiplications, 36 additions the
computation of 4 R B P is 9 mult. and 6 additions.
Hence, in one second this method will require:

30 x computation of 4R = 30 x 54 mult.

30 x 36 add.
100 x computation of 4 p = 100 x 9 mult.

100 x 6 add.
Total = 2520 mult., 1680 Add.
In method two, computation of gR D P requires
9 mult. and 6 add.; likewise the computation of
BRCP and 4R BP, for a total of 27 mult. and
18 add. These must occur 100 times/sec., so in
one second we have:

27 x 100 mult. = 2700 mult.

18 x 100 add. = 1800 add.

Therefore, method 1 is superior, but not by much.

P, R cosa cos B
218) “P=| P, | =| Rsinacosp
Rsinp

2.19) In the z-y-z Euler Angle set, the first rotation is:
R, = rot(z, @)

The second rotation expressed in fixed coordi-
nates is:

R, =rot(Z, @) rot(3, B) rot™1(Z, &)
The third is:

R3 = (RyRy) rot(Z, y)(RyRy) ™!
The result is:

R = R3RyRy = 1ot(3, &) rot($, B) rot(3, v)

Which can be multiplied out to give the result of
(2.72).

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.20) This is easily derived if you work backwards.
i.e, substitute into Rodriquez’s formula wherever
K® Q or K - Q occur, collect terms, and you’ll
get (2.80).

2.21) Just use the given approximations in (2.80) to

obtain:
1 —Kz60 Ky86
Rx(80) = | Kz86 1 —Kx66
—Ky86 Kxé0 1

More on this in Chapter 5.

2.22) So,given R; = R;(a) and R, = Rk (B) witha <«
1 and B < 1; show R) R, = R, R, if we form the
product R} R, and use of = 0 we have:

1 —.]Zc{—Kzﬂ Jy(X+Kyﬁ
R1R2= .]Za-f-Kzﬂ 1 —Jxa—Kxﬂ
—Jya — KyB Jxa+ KxB 1
We see that j and k, as well as « and S appear
symmetrically, so RjR; = Ry R;.

2.23) By definition Y Pyorg = Y P;. Next, the vector
from P, TO P, is a vector along the positive x-
axis, so: YX, = VP, — VP, which normalized
is: VX4 =YXa/lIVXall.

Now YV =UPp; —UP,. A vector parallel to the

positive Y,-axis, can be formed using the Gram-
Schmidt orthogonalization:

UYA =Uy — (UV . UXA)UXA
and
U¥p =UYa/|UYal

Finally, the unit vector UZ4 can be found by a
simple cross-product:

VZa=VX20@U7,

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.24) This is a bit tricky here’s most of it: 4P = 4 REP
doesn’t change length, so

L AP.AP_Bp.Bp—90

(“‘P-"P).(“P+PP)=0

F G

L FLG
F=@AR-1)PPG=(GR+1)BP
BpP = (4R + I)"'G (You can show 4R + I non-shawar)

~F=@R-DGR+D'G

B

so, F = BG

(Now, one can show thatif X - Y =0 andif X =
AY then a is skew-symmetric)

. B € skew-sym matrices
G3R—-D=BAGR+1)

(I — B)4R =1 + B (now can show (I-B) non-show)

4R=U-B)'d+B)| QED.

2.25) Def. of e-val: A;V; = RV; from physical insight
we know V; = RV; when V; is the axis of rota-

tion, .. from (2.80) one can show (with

some work) that det (R) = 1. From linear algebra
we have:

Y\ = trace(r) m;A; = det(r)
LMz =1lor =1 [1]
And compute the trace(r) from (2.80) to get
A+X+A3=1+4+2cosf or Ay + A3 =2cosf [2]

Now solve [1] & [2] above for A, and A3 to get

1
A+ o= 2cos6; A3—2cosfr+1=0
2

Ay =cos @ + +/cos?0 — 1
Ay =cosf £isinb
A =1

Ay =cosf +isinf = e’

A3 =cosf —isinf = e~ QE.D.

10

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.26) Somebody please send me a simple proof of this.
(For any given Euler convention it is not hard.)
-1 0 0 3
0 -1 0O
2.27) 4T = 0 01 0
0 0 0 1
0 -0.5 0.866 3
0 0.866 0.5 0
2.28) AT = -1 0 0o 2
0 0 0 1
0 0.5 —0.866 0
0 -0.866 -0.5 0
229) i1 = _i o o 5
0 0 0 1
0 0 -1 2
cpr_ | 05 0.866 0 3%x0.5
230) 4T = 0.866 —0.5 0 —3x%0.866
0 0 0 1
-1 0 00
0 0 -1 4
231) 4T = 0 -1 o0 2
0 0 0 1
0.866 0.5 0 -3
0.5 —0.866 0 4
232) ¢T=|", o -1 o
0 0 0 1
—-0.866 —0.5 0 3
B _ 0 0 +1 O
233) cT=| o5 086 0 0
0 0 0 1
0.866 0.5 0 -—-3*86+2
cr_ 105 —0.866 0 —4*86-1.5
234) (T = 0 0 ~1 2
0 0 0 1

11

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.35) Any R can be given: R = Rx(x)Ry(B)Rz(y)
and det(R) = det(Rx(«)) - det(Ry(B)) - det(Rz(y))

Using the formulas for rotation about a principle
axis ((2.77) — (2.79)) its easy to show

det(Ry(x)) =1 Va
det(R,(B) =1 V8B
det(R.(y)) =1 Vy

s dettRy=1-1-1=1 QE.D.

2.36) From Cayley’s formula, the number of parame-
ters needed to specify a rotation is the number
of free parameters in an NXN skew symmetric
matrix, which is J(N? — N). The translational
degrees of freedom are, of course n, so total is:

dof(N) = N + {(N? = N) = J(N>+ N) QED.

2.37) Form (2,4) element of —4RT4 Py,

To get: —6.4

2.38) VIT V, = cos 8, R preserves angles, so,
(RVDT(RVy) = V'V,

VIRTRV; =VIV, .. RTR=1= RT =R"!

12

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1
2.39) 85 = ;(1 +ri1 +rn+r3s)

€2 > epsilon?

Yes No
&y = \/;:g g, =0
&1 = (r3 — rn)/4ey e} = —1/2(rp +r33)
&2 = (r31 — ri3)/4ey % > epsilon?
e3 = (riz — ra1)/4ey Yes No
&1 = \/8_% g1 =0
& = ri2/2¢) &2 =11 -rx)
€3 = ri3/2¢ 2 > epsilon?
Yes No
& = \/;g g =0
e3 = ry/28; e3=1

2.40) Similar to algorithms of Section 2.8.

2.41) Similar to algorithms of Section 2.8.

13

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 3
Manipulator Kinematics
Exercises
3‘1) o;_1 a1 d,‘ Cl _Sl 0 0
0 0 0 o — M Cc; 00
0 L 0 1 0 0 10
0 L, 0 0 0 0 1
C, =S 0 L, C; =S 0 L,
Iy — S € 0 0 27 S C; 0 O
22710 0 1 0 710 0 1 0
0 0 0 1 0 0 0 1
Cis —Si;3 0 L1Ci+LCypp
07 =OTIT2T = 5623 %123 (1) LSy "(‘)LZSIZ
0 0 0 1
where:
Ci23 = cos(6; + 6, + 63)
S123 = sin(6; + 6, + 63), etc.
3.2) ai—l ai—l di 9[Z"
0 0 0 6,
—90° 0 dp) X,
90° 0 ds 180° .
0 as dy 64 £ !
90 0 0 8 L
—90 0 0 06 L d L,
L]
When d3 = 0 the origins of frames 2 and 3 coin- d. i
cide. Frame 3 is fixed to link 3. E
rCi =S 00
oT — Si cCi 0 0
1 0 0 1 0
0o 0 01
- C, —-S, 0 O -1 0 0 0
T — 0 0 1 4, 27 = 0 0 -1 —ds
2 -S —-C, 0 0 3 0 -1 0 0
L0 0 o0 1 0 0 0 1
[Cy —S; 0 a3 Cs —3Ss 00
s | S 0o 0| |0 0 -10
o710 0 1 ds 5T Ss Cs 00
0 0 0 1 0 0 0 1

14

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.2 (Continued)

[Cs —S¢ 0 O
ol =| _s5 —cs 0 of sl =sTel
) 0 0 1
[—-CiC, S C1S, —dpS) +dsCS;
op = | =51C2 =C1 518 hCi+dS5S,
3 S, 0 C, d;C,
0 0 0 1
[C4CsCs — S4Ss¢ —(C4Cs8s + S4Cs) —C4Ss a3
3 = (84C5Ce + C4Sg) —S4C5S¢ + C4Ce -85S O
6 S5Cs —S5Ss Cs ds
i 0 0 0 1
"Riy Riz Riz Py
o7 — Ryi Ry Ry Py
6 Ry Ry Ry P,
L O 0 0 1
where:

Ry = —C1CyC4C5C6 + C1C285486 + $154C5Ce + S1C4S6 + C15285S6
Rz = C1CC4CsS6 + C1C284Cs — 8184C5S6 + 51C4Cs — 51525556
Ri3 = C1C2C4Ss5 — 8518485 + C1.5,Cs

Ryp = =851C2C4CsCe + §1C284S6 — C1854Cs5Cs — C1CySg + 515255Cs
Ry = §1C2C4C586 + §1C284Cs + C154C586 — C1C4Cs — 5155556
Ry = $1C2C4Ss + C154S5 + 515:Cs

R3; = $,C4C5Cs — 528486 + C2.55C¢

Rz = —85,C4C586 — 5254C6 — C25556

R33 = —85,C4Cs + C,Cs

P, = —dbS1 + (d3 +dy)C1 S, — a3C1C;

Py =drCy + (d3 + ds) 515, — a35,C,

Pz = (d3 + d4)C2 + a3S2

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.3) (Continued)

C; -8 0 L,
S cC; 0 O
o R Y
Lo 0 0 1
[C1C3 —C1S3 1 LiCi+ L2CiCy
BT _ $1Cx3 =518 —Ci L1S1+ L2SiGy
w Y] Cos 0 LS,
0 0 0 1
34 @i a;i—y d; 6;
0 0 Li+ L, 6
90° 0 0 6,
0 L3 0 93
0 Ly 0 0
C; =S8 O 0
o7 — S$1 C; O 0
1 0 0 1 Li+L,
0o o0 o 1

[C; =S 0 Lj
| S G oo oo
=10 0o 1 0

0 0 0 1

3.5) The subroutine computes Eq. (3.13). By care-
fully grouping common terms, the multiplication
count can be reduced below the obvious brute-
force calculation.

3.6) The subroutine computes the product of matrices
given in Eq. (3.7). (About 30 mults)

3.7) The subroutine computes 5T given in the solu-
tion to Exercise 3.3. (About 43 mults)

16

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.8) When {G} = {T} we have:

so, T =8T718T%T

L,
3.9) °Prip =T Prip;*Prip = l: 0 :|
0

[CiC, —-CS, S LG Ly

op. | 1€ =515 =Ci LiS 0
rie S5 C, 0 0 0
0 0 0 1 1

=| L1S1+ L5C,
LS,

(Llcl + L2C1C2]

3.10) The computation can be structured as follows.
KKS5, KK6, K8, ETC. Are precomputed constants.

BEGIN
cp2:=sk2*a[2]+lambda2;
cp2:=(cp2*cp2+kk5) /kk6;
cp3:=sk3*a[3]+lambda3;
cp3:=(cp3*cp3+kk7)/kk8;
sp2:=sqrt(1.0-cp2*cp2);
sp3:=sqrt(1.0-cp3*cp3);
t[3,4]:=kk1*cp2+kk2*sp2+kk3*cp3-kk4*sp3+hb:
q:=-kk2*cp2+kk1*sp2+kk4*cp3+kk3*sp3;
thetal:=ski*a[1]+omegail;
c1:=cos (thetal);
s1:=sin (thetatl);
t[1,4]:=c1*q;
t[2,4]:=s1*q;
theta234:=k8-sk4*a[4];
theta5:=k9-sk5*a[5];
c234:=cos (theta234);
s234:=sin (theta234);
c5:=cos (theta5);
s5:=sin (theta5);

x1:=c1*c5;
X2:=s1*s5;
x3:=c1*s5;
X4:=s1*c5;

t[1,1]:=x1*c234-x2;
t[2,1]:=x4*c234+x3;
t[3,1]:=-¢c5*s234;
t[1,2]:=-x3*c234-x4;
t[2,2]:=-x2*c234+x1;
t[3,2] :=s5*s234;
t[1,3]:=c1*s234;
t[2,3]:=s1*s234;
t[3,3]:=c234;

END; { atox }

17

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.11) Mechanism lies in page as drawn. All X -axes are
normal to page.

3.12) No! an arbitrary transformation requires six parameters.

3.14) Draw a vector diagram of the situation, then not
to hard to find:

a=ABS((Q — P)-¢)
A Mo N

where C = ALMY
M N|

o =SGN(Q — P) - C)cos™ (M - N)

18

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

316) ay=0 a; =05° a; =0
Q) = 0] = 90° oy = —90°
di=0 d3 =0

6, =0°

3.17) As shown:

6 =0
6, =90°
d3=0

3.18) As shown:

0, = 0°
6, = 90°
6; =0°
3.19) As shown: 2,

oD
X, X; (Several ways to attach them.)

19

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.20) Shown: d
d =0
6, =0
6;:=0

3.21) (Many possibilities)

3.22) {y} could be placed differently. Namely, with Z
d3 > 0.

d2>0

d3; =0

ap > 0(a; > 0 always)

20

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 4

Inverse Manipulator Kinematics

Exercises

4.1)
Toroid

Workspace

4.2) This problem can have different solutions depending
how it is interpreted. I intended that a goal is
specified which includes a desired orientation of
the last link. In this case, the solution is fairly
easy.

;T is given, so compute:

4T = 8T3T YT

Now {,{,T =(3) T which we write out as:
Ri R R P

Ry Ryp Ry P

Ryi R Ry P
0 0 0 1

o =

From the solution of exercise 3 from chapter 3
we have:

CiCy —Ci1S3 81 Ci(CLr+ Ly)
S$1Co3 —81823 —C, Si(C2L,+ Ly)
S23 Cy 0 S2L,
0 0 0 1

o7 =

Equate elements (1, 3): S; = Ry3

Equate elements (2,3): —C; = Ry3

6, = atan2(Ry3, —‘Rzﬂ

Ifboth R13 = 0 and R,3 = 0 the goal is unattainable.

Equate elements (1,4): P, = C;(C,L, + L)

Equate elements (2,4): P, = 5;(C,L, + Ly)

21

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.2) (Continued)

1 P,
IfC1¢OthenC2=Z- — —L

2 \Ci
1 [P
Else C2 =— (2= L]
L, \ S
Equate Elements (3,4): P, = $;L, \J_I

P,
50, | By = atan2 | —, C»
L,

Equate elements (3, 1): S»3 = R3;

Equate elements (3,2): Cy3 = Ry

SO, 03 = atan2(R3;, R3;) — 6,

If both R3; and R3; are zero, the goal is unattainable.

A second interpretation of the problem is that
only a desired position is given (no orientation).
In this there may be up to four solutions:

Assume® P = L3)A(3, then
P, L\Cy + LyC1Cy + L3CiCy3
OPoot = | Py | =| L1S1+ L281C2 + L3S1Cx3
P, L3S + L3Sy
First,

P, P,

S = C =
L+ LyCr + L3Cxs Ly + Ly,Cy + L3Cys3

so, 6, = atan2(P,, P,) or atan2(—P,, —P;)

Since the sign of the “L; + L,C; 4+ L3Cy3” term
may be + or —.

Next, define:
Py .
F - Ll if Cl # 0
a= Pl
2L —L; ifS#0
Sy
And we have:
LyCy+ L3Cy3s =«
LS+ L3Sy = P,
Square and add these two equations to get:

L3+ L3+2L,L3C3 = o + P?

1

Gy (> + P?—L3-L%

= 2L,Ls

Sy=+/1-C% |6 =atan2(8;, C3)

22

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.2) (Continued)
Finally,

LiCp =a — L,y

L3S =P, — LS

50, |6 = atan2(P, — L;Ss,a — L,Cy) — 65 l

4.3) A flat disk of zero thickness with inner radius
equal to minimum extension, and outer radius
equal to maximum extension.

4.4) For an arm like this it is reasonable to specify a
goal by giving the desired x & y coordinates of
the tip and a value for 63, the wrist roll. After
transforming back to Py & Pr of the wrist (i.e.
remove offset due to L3) the solution is simple
and corresponds to the conversion between carte-
sian and polar coordinates.

4.5) Turn the results of section 4.7 into a computer
algorithm, plus check each solution to see if joints
are in range.

4.6) To derive the “nearest” solution, we would like
to minimize the rotation of each joint. Denote
the starting angle of each joint as 6;, (for j-th
joint), and the final position of each joint as 6;r.
For each proposed solution, compute:

S =301 16iF — 6ol

And choose the “nearest” as the one which mini-
mizes S. Sometimes a weighting factor is used
(to penalize motion of “large” joints, for example)
and so the score for each proposed solution is:

S =30 Wil6ir — 650l

4.7) Repeatability is affected by:

1) Stepoy state error is servo system
2) Flexibility of links

3) Backlash in gears

4) Looseness in bearings

5) Noise in sensor readings

6) Thermal effects

Accuracy is affected by all of the above, plus:

1) Imprecise knowledge of D.H. Parameters.

23

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.8) There are an infinite number of solutions. Imagine
fixing the last link in position and orientation:
Then, the first 3 links form a “4-bar linkage”
which can take on an infinity of positions since
it has a degree of freedom.

4.9) This is slightly trickier than it looks at first.
Approximately:

4.10) This subspace with be given in terms of an expres-
sion for gT which is a function of three indepen-
dent variables x, y, and 6. As these variables run
throughout their ranges, a subspace is swept out.

As in Example 4.2 the origin of the end-effector
frame (here, {3}) must have zero z-component.
Also, z3 must have no z-component and it’s direc-
tion is given by the coordinates of ® P3org. So we

have
A D a X
o7 — B E B Y
371 C F 0 0
0O 0 0 1
where:
X Y
¢0=————and f = ——

To find expressions for A,B,C,D,EF as a func-
tion of independent variable, 8, consider rotating
the vector [001]7 about Z3 (given by [aB0]7)
by amount 6. This serves as our expression for
X3 and can be found from eq. (2.80) Using K =
[«¢B0]7, and just taking the 3" column.

This yields:

X3 =[-BCOaCH SO]T

Then we compute }73 = 23 ®)?3 to get
—-BCO BSH a X

aCl —aS6 B Y

56 co 0
0 0 1

(=N

24

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.10) (Continued)

where:

X Y

RV R

4.11) V must be rotated into alignment with Zo:
0Zy =9 R?V

0 CiC;, —=CiS; STV
0= S, C 0 v,
1 -5C 518 ¢ V;

There are two solutions:

61 = atan2(—,/VZ + V2, V;)

6, = atan2(-V,, V;)

And

91 = atan2(/VXZ + VZ’ Vz)

6, = atan2(—V,, V,) 4+ 180°

If V, = V, = 0 then singular and 6, is arbitrary.

4.12) Find: the set of unattainable orientations

Solution: Starting with joint 3, spinning it, frame
3 can attain any orientation about its Z3 axis,
pointing upward. The problem thus reduces to
finding restrictions on the pointing direction of Z3.

Next, spinning about joint 2, Z3 can attain any
orientation on the surface of a cone of apex
angle 2¢:

Spinning this “cone” about joint 1, Z3 can attain
any orientation except in a cone shaped zone of
apex angle 360 — 4¢:

25

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.13) 1. Faster computationally
2. Finds all solutions
3. Sometimes more accurate

4.14) No. Pieper’s method gives the closed form solu-
tion for any 3-DOF manipulator. (See his thesis
for all the cases)

4.15) See references [8] and [9].

4.16) Since Sa; = 0, easy to use Pieper’s method:

z = K4 (see pages 129-131 of text)

or
°Py, = Ca1F3 + Cayd,
Py, = F3
° Py, = A3SapS3 + D3Cay (other terms are zero)

3 2
1707 = ﬁ%& + ﬂ%

1.707 = S5+ 1
S3 =1.707 -1 =0.707

since —180 < 03 < 180, there are 2 sols:

Le; = 45° or 6; = 135°

4.17) Since a; =0, we use Pieper’s method with
r = K3

3=34+2F; .. F3=0

0.707 §34+0.707=0 .. S3=—-1 ..03=-90
Continuing on yields. . ..

6 = [0, 0, —90]

26

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.20) 1

4.21) 2

4.22) 1

4.23) Just plug in the tan6/2 substitution and collect
terms. You’ll find you arrive at a quartic in U.
You’ll also see a condition in which the coeffi-
cients of U? and U become zero— so it becomes
quadratic in U?.

4.24) Revolute Linear
a;-1 = atan2(—Ty3, T33) a;j—1 = atan2(—Ty3, T33)
01 =Ty ai_1 =Ty

di = JTA + T 0; = atan2(~Ty,, Tyy)

27

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 5

Jacobians: Velocities and Static Forces

Exercises

5.1) The Jacobian in frame {o} is:

—L.Si — —L,S
070y = [LiS1—LyS12 —Lo 12]
® LiCi+ LoC; LaCyp

DET (°J(9)) = —(L2C12)(L1S1 + L2S12) + (L2S12)(L1Cy + L2Cra)
= —L1Ly8,C1p — L2S1,C12 + L1L2Cy Stz + L3S12Cn
= L1LyC1Si2 — L1L2S1Cr2 = L1 L2(C1S12 — $1Cr2)
=L,L,$;

.. The same result as when you start with *J (),
namely, the singular configurations are 6, = 0°
or 180°.

5.2) From exercise 3.3 we have:

[CiC —CiS; 81 LiCi+ L2CiCy
op — | 51 =518 —Ci LiSi+ La$iCy
3 523 C23 0 L2S2

L O 0 0 1
and:

1 0 0 Lj

01 0 O
iT=10 01 o |+ $T=3TiT

00 0 1

we could then find °J () quite easily by differen-
tiating © Pyorg. Finally, *J(6) can be calculated
as gR%J(9). This might be tedious, so lets try
“standard” velocity propagation as done in the
text:

0 0
e [{]]
6, 0
0 C, 0 $7T0 0
weien (1[5 8 E][E)-[1]
6, 0 -1 04L4 6,

5,6
2VV2 = C291 2V2 = %R(IVI + lVV] X 1P2)
0,

C, 0 S, 0 0 0
= =% 0 G 0|+ Lié):{ 0.]
0 -1 0 0 0 —L.6

28

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.2) (Continued)

0 Cs S35 07[S:6 0
3W3 = %RZWZ-F O =|-8 C3 0 Cgel + O
63 o o 1lL 6 65

[Sx6
Wi =| Cuby |3V3=3RCVo+2W, x 2P3)
L6+ 65
[G S 0 0 0
3V3 = -5 C; O 0 . + L6, .
L 0 0 1 —L.6; —L,Cy6,
i S3L6,
V= Cila6, |*Wy=°W;
| —L16, — L,C26,

4V4 :§R(3V3 +3W3 X 3Py) = 3V3 +3W3 X 3P4

$,L26, o
= C3L292 X + L3(92 + 93
—L6; — L,C26, —L3Cx6,

CS3L26,
= C3L20;, — L3(62 + 65)
—L16) — L2601 — L3Cp36,

0 S3L, 0
4]@ = 0 CiL,+ Ly L
(L1 — LGy — L3Cy3) 0 0

5.3) First, velocity analysis:
1W1 = (])ROWO -+ 91121 = 912
]VI = (I)R(OV() + OW() X OPI) =0

2W2 = %RIWI + 92222

C, 0 570 0 5,61
Wy=|-5 0 C||0[+]|0|=]|Ch
0 —1 0 91 92 92

2V2=%R(1V1 +1W1 X 1P2)

[GG

C, 0o S 0 0
Wy=|-8 0 G ||L§ |= 0
0 -1 0 0 —L,6,

29

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.3) (Continued)

3W; = 3R*W, 4 65375

C; S5 0 S,6, 0 $,C361 + C2536,
MWy=| =8 C; o} Ch |+ 0 | =] =586, + C2C36,
0 0 1 6, 65 6, + 65
[S
Wi =| Cub
[6, + 65

3V3 = 3RV, + 2W, x 2P3)

0 S:6, L,
V3 =3R 0 +| Gy | x [0]
—L16 6, 0
C; S3 0O 0 L7556,
3V3 = [—33 C3 0:| LZéZ = L2C392
0 01 —L16y — LG —L16y — L,Cr6

Wy =3R*Wi+0; 4R=1;, “W,=3W,

Vi =4RCVs+3W3 x *Py)

LS8, S2361 Ls
4V4 = gR L2C392 + C2391 X I: 0]
—L16; — LyCr6, 6, + 6 0
L,S36, 0
4V, = L,C36, + I:L3(92 + 9,3)]
—Llél - L2C2é1 —L3C36;
i L,536,
Wy = L2C36, + L3 (6 + 63)
L —L16 — L,Cr6) — L3Cx6,
Wy =418
0 L,S3 0
JO = 0 L,Cs+Ls Ls
—Ly — L,Cy — L3Cp 0 0
Next, using force analysis:
Fx 0
‘Fy=| Fy |*Ny=1]0
Fz 0
Fy
3B =3R'Fy = | Fy
Fz
Ls Fy 0
3N; = 2R4N4 +3Px3F=| 0 | x| Fy |=]| -L3F;
0 Fz L3 Fy
C; =8 0 Fx C3Fy — S3Fy
=R/ =S C; O||F |=|SFx+CsiFy
0 0 1 Fz Fz

30

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.3) (Continued)
2N2 = §R3N3 -+ 2P3 X 2F2

C; -8 O 0 L, C3Fx — S3Fy
2N2= S3 C; O —L3Fz |+ 0 | x| S3Fx + C3Fy

0 0 1 L3Fy 0 FZ
L3S3F;
IN, = —LyF7 — L3C5F5;
Lz(S3FX + C3Fy) + L3Fy

C, =S 0[CsFx—S3Fy
' =IR*FK=0 0 —1||SFx+CFy

Sz C2 0 FZ

'Fi = -Fz

[Cz(C3Fx — S3Fy) — $2(S3Fx + C3Fy)]
$2(C3Fx — S3Fy) + Co(S3Fx + C3Fy)

1N1 =§R2N2+1P2 X lF]

C2 —52 0 L3S3FZ Ll
INy=| 0 0 -1 —L,Fz — L3C3Fy + x 1Fy

S5 G 04 LLy(S3F; + C3Fy) + L3Fy

—Ly(S3Fx + C3Fy) — L3Fy

. l: CoL3S3Fz + S2LoFz + Ly S2CaF7]
Ny =
L35;83F7; — L,CyF7z — L3Cr,C5F 7

0
+ [—Llsz(C3Fx — 8$3Fy) — L,Co(S3Fx + C3Fy):|
—L,Fy

To compute torques, take the z-component of the
1N,’Z

7y = [=L1 — LyCy + L3(5:83 — C2,C3)1F
Ty = L S3Fx + (L2C3 + L3) Fy
T3 = L3Fy

Fy
£=4JT(Q)[FY:|

Fz

Which leads to same expression as before for

47(6).

Finally, by differentiation of kinematic equations:

*Prorc = | L1814+ L251C, + L3S1Cos

[LiCy + L2CiCs + L3c,c23] .
=P
L2S; + L3Sy

Coex dpx e
36, 06, 06,
36, 036, 065
L 06, 06, 005

O =

31

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.3) (Continued)

—L181 = L2$1Cy — L3S§1Cp3 —LyC1Sy — L3C1Sp;3 —L3Ci8y
°J@O) =| LiCi+ LyCiCy+ L3CiCys LyS1S — L3S1S3 —L3S1Sx3
0

LyCy + L3Cys
°Vy =°J(0)6:;*Vy = $R°J(0) J (0)8
N e’
. C1C23 S[C23 523
0R= —C1523 —SISZ3 C23
Sl _Cl 0

Multiplying out 3R°J (9) is tedious, but sure enough,
it leads again to the same expression for *J (6).

L3Cys

]

5.4) The mapping which potentially can be singular
is: Y = J(0)8 for the “position domain”, and
7 = JT(9)F for the “force domain”. Now since
transposition has nothing to do with the rank of
a (square) matrix, its clear that the singularities
of J(6) are the same as those of JT ().

5.5) See “differential kinematic control equations for
simple manipulators” by R. Paul, B. Shimand,
and G. Mayer in IEEE trans. On systems, man,
and cybernetics, Vol. smc-11, No. 6, June, 1981.
The answer is given in equation (18) in that
paper, but there are some typos, so I have included
a pascal listing below which is corrected. Actu-
ally, in the Puma 560 there is some mechanical
coupling between joints 4, 5, and 6 which is not
taken into account in these formulations.

Procedure Jacobian (VAR THETA: VECT6; VAR J:MAT6);

VAR
c2,c3,c4,c5,c6 : real;
s2,83,s4,85,s6 : real;
s23,c23 : real;
k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11: real;
J: maté;

BEGIN

fsc(theta[2],s2,c2); {Table lookup of sine-cosine}
fsc(theta[3],s3,c3); {pairs,first argument is input,}

fsc(theta[4],s4,c4); {second two are output.}
fsc(theta[5],s5,c5);

fsc(theta[6],s6,c6);

s23:=s2*c3+c2*s3;

c23:=c2*c3-s2*s3;

k1:=d4*s23+a3*c23+a2*c2; {note: 23 here}
k2:=c4*c5*c6-s4*s6;

k3:=c4*c5*s6+s4*s6; {has opposite sign}
k4:=a3+a2+*c3; {corrected} {OF a3 in text!}
k5:=d4+a2*s3; {corrected}

k6:=s4*c5*c6+c4*s6;
K7:=—-s4*c5*s6+c4*c6;
k8:=s5*Cc6;

32

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Kk9:=s5*s6;

k10:=s4*s5;

k11:=c4*s5;

j[1,1]:=k1*k6—-d3* (c23*k2—523*Kk8) ;
j[1,2]:=k4*Kk8+k5*K2;
j[1,3]:=a3*k8+d4*k2;

j[1,4]:=0.0;
j[1,5]:=0.0;
j[1,6]:=0.0;
jl2,1]:=k1*k7—-d3* (—c23*k3+s23*k9);
jl2,2] :=—k4*k9—Kk5*k3;
j[2,3]:=—a3*k9—-d4*k3;
j[2,4]:=0.0;
j[2,5]:=0.0;
j[2,6]:=0.0;
j[3,1]:=k1*k10-d3* (c23*k11+s23*C5);
j[3,2]:=k5*k11—k4*c5;
j[3,3]:=—a3*c5+d4*k11;
j[3,4]:=0.0;
j[3,5]:=0.0;
j[3,6]:=0.0;
jl4,1]:=—(s23*k2+c23*k8);
i[4,2]:=k6;
j[4,3]:=k6;
][4J4] :=_k8;
j[4,5]:=s6;
j[4,6]:=0.0;
j[5,1]:=523*k3+c23*K9;
i[5,2]:=k7;
i[5,3]:=k7;
j[5,41:=k9;
j[5,5]:=c6;
j[5,6]:=0.0;
j[6,1]:=—s28*k11+c23*c5;
j[6,2]:=k10;
j[6,3]:=k10;
j[6,4]:=c5;
j[6,5]:=0.0;
j[6,6]:=1.0;

END; { Jacobian }

{corrected}

{corrected}

{corrected}

{corrected}

5.6) I think this is true! see B. Shimano, “the kine-
matic design and force control of computer controlled
manipulators”, Stanford A.l. Lab, memo # 313,
1978.

5.7) See Figure 11.9-it must be a purely cartesian
manipulator:

) 1 0 07
Y=J6¥y=|01 0|6
0 0 1

must have 3 orthogonal prismatic joints, so 0=
[d1d2ds]".

33

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.8) The Jacobian of this 2-link is:

LS 0
3 _ 192
I® = [L1C2+L2 L2]
An isotropic point exists if 777777777777 777 777.
3;_[L2 O]
J = [0 L, so,
LS, =1L,
LiC,+L,=0
L, —L,

or, $, = —C = —=

2 I 2 I

Now $2 + C2 =1,

L* [-L;*

el) =1
=(5) (%
or L2=2L% - L, = /2L,

1
Under this condition S, = ﬁ = £.707

and C, = —.707

- An isotropic point exists if L; = /2L, and
in that case it exists when 6, = +135°

In this configuration, the manipulator looks momen-
tarily like a Cartesian manipulator.

5.9) Unsolved. A small part of the answer can be
found in Reference [7] of Chap. 15.

5.10) £=3JT3E "-3E=3]_T£

31:[Ly$; 0]
LiC,+L, L,

3T — [LISZ L1C2+L2]

0 L,
s0,
syt 1 [Lz —L1C2—L2]
L1L252 0 LISZ

34

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.11) From (5.103):

5. _[BR —ﬁRAPX] Ay

"Zlo BR
08 05 07[0 -5 0
BRAPX =|-05 086 0|5 0 -10
Lo o 1Jlo 10 o

=143 25 -86

25 —43 —5.0:|
L O 10 0

r0.8 05 0 -25 43 50 0
-05 08 0 —-43 -25 86 2
By — 0 0 1 0 -10 O -3
a 0 0 0 08 05 O 1.41
0 0 0 -05 08 O 1.41
L 0 0O 0 O 0 1 0
By =[3.52 —7.80 —17.1 1.91 0.51 0]7
5.12) “Workspace boundary” any angle set: {0y, 6,, 0}
“Workspace interior” any angle set such that:
L+ L,Cy + L3Cy3 = 0 (6 is arbitrary)
i
I
|
|
|
|
513) z=JT®°F
= [—LISI — LS LGy +L2C12] [10]
- —L2S12 L;Cypz 0
T = —-1051L1 - 10L2512
) = —10L2S12
5.14) So, at singular position: X,
dy
03 = —ATAN2(d,, a3) N
X, a 5
If a3 — 0, then 63 — —ATAN2(d,, 0) which i ?

is —90°.

35

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.15) The kinematics can be done easily to obtain:
(2 + Ly + L3) S
Pyorg = | —(d2+ L2 + L3)Cy
0
oy =976

- a0 0 0
3" Pyorgx 9" Pyorcx 9 Pyorcx

36, 36, 365

0y — 3 Pyorey 3°Pyorcy 9° Pyoray
36, 36, 365

3°Pyorcz 8°Pyorcz 8°Pyorcz
L a0, 36, 965

So,

J=|(d+L,+L3)S —-C, O
0 0 O

[(d2+ L+ L3)Cy S O:I

5.16) You’re in luck! The answer is given by Equation (5.42):

0 -5 CS1[4
w=|0 ¢ 8% |6
1 0 C, 65

5.17) For a prismatic joint i, the motion of the tool due
to the joint is:

0V, = d;%%;
‘'w,=0
Now,

"VrooL =Vi+ Vo + - + 0V

"WrooL = "W1 + "W, + - - - + W

so,

Ay v Ay v Az 0 Ay As Ag
JO =|---t-e--amne L

A = [0Z; ® CPuoot = °Piorg) if i revolute
l °Z; if i linear

B = OZ if i revolute
! (0] if i linear

36

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.18) Only the 47" column of 7 matters.
Just directly differentiate it w.r.t. 8:

0](9) = |: L,Cy+ L,CiC, —=Ly8S5, 0

—L1S1 — L,$5,C; —L2C152 O:|
0 L,C, 0

5.19) By partial differentiation:

o4 - [_‘_A_':“:_”’%?‘_ I][é.]
¥ doors AC —dS G dy
07(8)

det®J (0)) = —d,

.. Singular when d; = 0

5.20) At a singularity an N-DOF robot only has N-1
dof remaining. Hence, it can move freely in some
N-1 dimensional subspace. However, it is still
true that it has »n joints. Therefore, we have a
device which has one more joint than the dimen-
sionality of the space it’s described in — and that’s
what a redundant manipulator is.

37

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 6

Manipulator Dynamics

Exercises

N

6.1) Use (6.17), but written in polar form is easier.
For example, Iz7:

H/2 p2r pR
IZZ=/ / / X2+ Y¥)prdrdfdZ
-H/2J0 0

~>

]

>

X = Rcos,Y = Rsin6, X% + Y% = R2(r?)

H/2 p2r R
Izz =/ / / pridrdodZ
—updo Jo

177 = %R“Hp, Volume = 7r2H

.. Mass = M = prr?H | Izz = 1M R?

Similarly (only harder) is:

1 1
=Iyy = -MR?>+ —MH?
Ixx = Iyy 7 + =

From symmetry (or integration) | Ixy = Ixz = Iyz = ﬂ

1
lMR2 + —MH? 0 0
4 12 | |
Ol = -MR? + —MH? 0
0 4 12
0 0 lMR2
2

6.2) €I given by (6.27). | Cil;z; = %(Li2 + W2

Other moments will not matter.

1 ? 2 % Li
Pcl=r1X1, Pc2=r2X2 r,-=7

Derivation follows that of section 6.7 quite closely.
The answer is:

7 = (Izz1 + Iz22 + 2Mara Ly Co + Mo L3 + Myr} + MaraLo)é,

+ (MaraLa + Iz23 + MaL11r2C2)8) — MaLyr2S2(26,6, + 67)

+ MarogCra + MirigCy + ML, gCy

38

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.2) (Continued)

7 = (Izz2 + MaLyiraCy + MaLor)0y + (Izzo + MaLor)6s

+ MyL1r28,0% + MarygChy

L.
Further compaction could be done since r; = 7’

¢

6.3) This quite a bit of work, and I'm too lazy to write
it out. Problem 6.5 is similar, only simpler since
only 2 links, and a point-mass assumption. I will
do that solution in detail. This one is similar,
only more book keeping.

6.4) i+lWi+1 — £+1Ri“/i
YL, = R,
MV =FROW x Py + Wi x (Wi x TPiyy) + V)
+2W, x di " Zi + dipd T Zig
Yy = L X P iy

i+1 i+ i1y
X (T Wiy x "7 Pc) +' Vi

i+1 i1y
HFEa =mia'tVe,,
i+1 C; i+1 i+1 Ci i+1
TNt =" L T Wi T Wi x S LT Wi
i i i+1 i
fi =R fint+'FE
in_ _iN‘+i Ri+1n- +1P ><i F+1P Xi RH—lf'
i = i i+1 i+1 Ci i i+1 i+1 i+1
i rTi%
T = fl Z,'

39

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.5) @i-1 ai— d; 0;

0 0 0 6

90° L, 0 6,

0 L, 0 0
¢, =S 0 0 C, -5 0 L,

op_| S G 00| ip 0 0 -1 0

=10 010 LR) C 0 O
L O 0 01 0 0 0 1
(1.0 0 L,)

2p_ |0 10 0 P, = L&

37 (o001 o0 2ps=L,X,
L0 0 0 1

IPCl = L}Xl 2Pc2 = L2)22C111 S 0C212 =0
0V = gZO. (since gravity points in — Zo Dir.)
Wo=Wo=0 (base stationary)

F3 =x3 =0 (no forces on hand)
Forward Velocity & Acceleration Iterations:

Link 1

1W1=(1)ROW0-I-9.1121=91121=[0 0 61
lWl=lROVVo+(1)R°W0®9'11214-9'1121

"Wy =6,"Zy=[0 0 617

W, = JROWo @ P + "W ® Wy ® 1 Py) + V)

. C S 07[0 0
lyi={ -8 C 0 0|=1]0
0 0 1 g g
We, ='W @'Pe, +' W @ (Wi @1Pc) + 'V,

We, =621 LiX1 + 6,21 ® 612, @ L1 X)) + g2,

We, = Libi ¥y + 6,2, ® L16: Yy + g2,

—L,6?
We, = LibiY1 + (=Li6) X1 +8Z1 = | L4,
g
Link 2
2W2 = %lel +92222
C2 0 S2 0 0 S29:1
Wo=|=S 0 C||O0]+]0|=]CH
0O -1 O 6, 6, 6,

40

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.5) (Continued)
2W, = 2R'W, 4 2R'W, ® 6,2, + 6,2,
[$26) 526, 0 0
Wa=| GO |+ cfy |©] O +[0]

0 0 6, 6,

r S,0; C26,6, 0 5261 + C2616,
2W2 = C291:| + | =5616, | + [0] = | C0, — 5,0,6,
0 0 6, 9'2

Wy =R(Wy x 'R+ 'W @ (W1 ® 'Py) + 1))

I

2V2=%R("9.121®L1X'1+9.121®(9.121®L1f(1)+821)
2V, = %R(Llélf}l - L1912)21 +8Z1)

52
G 0 5[k
|-, o G|| L6

0 -1 0 g
2V = [—L1Co67 + $r8, L1567 + Crg, —L16; 1"
We, = W2 @ 2Pc, + W, ® (W, ® 2Pc,) + 2V

. 5,601 + C2616, L, S2é1
We,=| Coby — 5016, [®| 0 [+]| C26,

6, 0

0,
.6, L,
| GO | ® [0] +2V,
6, 0
-0 $26, 0
We,=| Lib, . .]+ by | ® L6, +2V,
L —L2Cr01 + L252616, 6> —L,Cr6,

r—(L,Cy + L2C22)912 - L2922 + S
We, = | (L1824 L2S:C2)67 + Lobr + Cog
L 21,8616, — L16, — L,C)6,

Inertial Equations:

Link 1
11:1 =‘—M11VC1
—M,L,6}
’Fl = |: M]L]é]]
Mg

INy =C0'Wy 4+ W @ C ' Wy
'Ny=[0 0 0]
Link 2

2F) = M2V,

41

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.5) (Continued)

Link 2

Link 1

lnl

1p2
2R ny

1p2
ZR ny

1Pc, ® 'Fy

IR?F,

IR2F,

1P2 ® %R 2F2

', ®IR2F,

In1

Il

—M,(L; + L2C2)C2é12 - M2L2922 + M,S,g
2Fy = | Ma(Ly + LyC2)S$20% + MLy, + MrCog
2M,L28,6016; — MyL6) — My Lo Chb)

2N, = CL2W, +2W, @ 2 12Wo =[0 0 017

Backward Force Iterations:

2F, = R*F3 4+ 2F, = ?F, (see above)
Zny = 2Ny + 2R%13 + 2P, ® °F, + 2Ps ® 1R*F;

2n2 = 2Pc2 ® 2F2 = szz (39 2F2

0

2ny = | MaLy1Lyby — 2M,L38,616, + My L2C26,
MyLy(Ly + LyC2)S26% — MagLoCy + M, L3265

'F) = JR?F, + ' Fy (not needed, so skip)

INi + 1R 2+ 1P, ® 'Fi + 'P, ®)R %F,

[C, =S 0
0 0 —1|%n

LS, C; 0

B *
. *
| MaL1LyC28, — 2M,L38,C26,6, + M, L3C26,

L, —M1L1"912 0
01® M,L,6, = “Mlglfl
L O Mlg M1L%91
rc, -5, Ojl —My(Ly + LyC)C20% — MyLo62 + My Srg

0 0 -I Mo (Ly + L2Co) 07 + MagCa
L SZ C2 0 2M2L2529192 e M2L191 - M2L2C291

B *
MyL,Cy6; + My L16; — 2M,L, 5,66,]
*

-Ll *
0] ® l:Mlegl —2M,L,5,6,0, + M, L,C56,]
0 *

_ . j'
*
L MyL36; — 2M, L1 L,5,6,6, + MyLyLyCob)

B *
*
| (M{L? + MyL2 + MR L3C, + 2M, Ly Ly Co)fy — 2(Ly + L2C2)M2L2529192:|

42

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.5) (Continued)

Joint Torque Equations
7 =in; -'Z; + Vi6; Added viscous friction term.
7 = (MiL} + Ma(Ly + L2C2)2)6,

= 2(Ly + LaCo) Mz L2616, + V16

Ty = MyL36, + (Ly + LyCo) My Ly $262 + MagLyCs + Vabs

or

T=M(@©)6+V@®,6)+G(®)

where:
— (MlLf + My(Ly + L,Cr)?) 0
o= [0 M,L?
V(6,0) = [_Z(Ll + L2C2)M2L252é;é2]
(L1 + LyCo) M,y Ly S)6;

GO = [Mzg(izcz]

6.6) The jacobian written in frame {0} is:

0 _[—LiS1 = LaSi; —LaSpp
16) = [L\Ci+ LyCyp chlz] (5-67)

The inverse:

07-1(9) = 1 [L,Crp Ly]
LiLyS, L—=L1Cy — L,Cyp —L1S1 — LaSio

And the time derivative of °J (8):

0j () = [—L1C19:1 — LyCpa(b1 +62) —LrCpa(6y + éz)]
—L15161 — L2S12(01 + 62) —L2S12(61 + 65)

Mx(©)=JTOM©G) ()

Mx(©) =

1 M L3C% + My (L1 Cy + LyCyp)? o
LIL3S3 « M11L3S%, + Mn(Ly Sy + Ly Si2)?

a = M1L3512C1p + My (L1 Sy + L2Si2)(L1Cy + LaCyp)
My = (M{L3 + My(Ly + L,C2)?) My = ML}
The rest is messy, but follows from (6.99):

Vx(610) =TT (0)(V(6:8) — M(8)°J~1(6)°J (8)6)

Gx(0) =°JT(6)G(6)

43

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.7) To describe the state (6, 6, 6) of a single joint
when each dimension of state is quantized to
16 “bins” requires 16 x 16 x 16 addresses. But
when joint 6; is in any one of these “bins”, joint
#; might be in 16 x 16 x 16 different states. So,
for general

T = f(8,86,6)for 3 joints
We would need (16 x 16 x 16)* locations. Each

location stores three values (ty, 13, 73), SO memory
size required is:

3(16 x 16 x 16)3 locations

6.8) For this manipulator:

¢t -5 00 1 00 O
o _ | S C; 00 1-_10 01 d
7= 0 0 10 o7 = 0 -1 0 O
0 0 0 1 0 0 0 1

0P, =0'Py=dy¥,'Pc, =0*Pc, =0

OV = gZeWo=Wo=0fs =n3 =0
Forward Vel. & Acc. Iterations:

Link 1

"Wy =§RWo+6:Z,=[0 0 61"

Wy = AROWo + ARWo ® 6,2, + 62,
'Wi=[0 0 61

W =§RCOWo ® Py + "Wy ® CWo @ 1 P2) + Vp)
i=[0 0 g]”

We, ='W ®'Pc, + W1 @ (W, ' Pc,) + 'V,
We, =10 0 g]°

Link 2 (Prismatic)

1 0 070 0
W, =2R'W;=|0 0 —-1([0]|=]|-6
01 o]L6 0

W, =2R'W, =[0 -6, 0]

Wy =iR(Wi@'P+' Wi @ (Wi ®@'Py) + W)

+ 22W2 ® ngz + t.j222

44

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.8) (Continued)
2V, =2R(~dob X + (~d2627) + g2)

+2(=d61 X) + drZ

. 1 0 07[—db —2dy6,
W,=|0 0 —1||—-d0} |+ 0
01 O g dy

. -2d2é1 — dzél
Wy = -8 .
—dz@lz +d,

2V, = *Vy(since 2P¢, = 0)
Inertial Equations:

Link 1
'Fi=M'"Ve, =[0 0 Mgl
INy=CLW + W, S I 'W,

INi=[0 0 Izzi 61

Link 2
_ —2M,dr6) — M,d,6y
F =M%V, = -Myg
—Mydy6} + Myd,

IN, = CL2W, +2W, @ 2,2 W, =[0 0 0]
Backward Force Iterations:

Link 2
see
2f2 = §R3F3 + 2F2 = 2F2 last
page
2)’12 = 2N2 + §R3n3 + ZPC2 ® 2F2 + 2P3 ® %RBF;;

2n,=[0 0 0

Link 1
1fi = JR?F, + ' Fi(not needed, so skip)

lnl = lNl +%R2n2 + lpcl Q 1F1 + IPZ ®;R2Fz

r 0 0 1 0 07[—2Mxd6y —Mrdr6,
lnl = 0 s d | ® 0 0 1 —-Mzg. .
| 17216, 0 0 -1 0L —Md0} +Myd,
[0 0 —2Myd261 — Mady6, 3
lnl = 0 . + dz ® —M2d2012 +M2d2
| 12216 0 Mg
i M,drg
'ny = } 0 i}
L 122161 + 2M,dyd20, + Mod36,

45

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.8) (Continued)

7 = Iz210) + 2Mydydr6) + M,d26,

T = —Mzdzélz + Mz(.jz

6.9) Very similar to 6.8. Assume the mass of link 3
is M5 although this was not stated.

6.10) First, find 2V,:

2, = 2R(V + W1 @ ' P) + d 2,

1 0 07T —d6 0
Y, =0 0 -1 0 |+]|0
01 0 0 d,

by, = [“’f‘]:[‘éb 1]

dy
<[4 1]

1 .
21—1<6>=[’£ 0] Jo =[G o
0 1
Mx©)=J"TM®)J!
1

1
—-— 0 1 Myd? 0 —— 0
MX(G)ZI: 4 :l[zzri(-) 2d; Mz][5]
0 1

0 1

Iz7

M+ 22 o

MX(9)=[2tz }
0 M,

Vx(610) = J-T(V(8,0) — M(6)J~1J6)
=JTV(6,0) — Mx(6)J6

=g O|[2akdt] o [k
[& 1] —Mydye? | T Mx@ | g

1771

~ —2M2d2{9,] 6rd <M2+—2)
- [—Mzdzelz + 0 d2

Iz 4 .

(Z—fl) b1d, — Mabrds

43 .
—M,02%d,

Vx(616)

Gx(©)=J"TG@®) =[0 0]"

46

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.11) By gear ratio of 100, I mean that the motor spins
100 times faster than the link.

The torque on the link is related to the accel-
eration of the link by: 7, = Iz W, the gears
increase torque by 100, so the motor torque, Ty,

is: Tty = —1661,1; the motor acc. is Wy = 100W,,.

1* .
Combini have: Ty = (—) Iz W,
om ll’lll’lg, we have: Ty (1()0) ZZ1 YWY M

2
1
Hence, inertia appears to motor as: (m> Iz7:1

6.12) 6,(t) = Bt + Ct?, 50

6, =B+2Ct, 6=2C

S0,

0
W, =62, =2CZ, = { 0]
2C

o3
7]

—2(B + 2Ct) :|

0
0

AR(HEH)

M, 0

6.13) 3My(0) = [L)]
0 (Ml (L1 + L,Cy)? + M

—M,L,6%S,

3) — 25 ..
Vx(6:9) —[MiLiL. +M2(2L1+L2(1+2C2))]9,6252

(L1 + L,Cy)?

3Gy (0) = [Mzgcz]

V26,

3Fx(616) = L,
x(616) V16,

L+ L,C,

47

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.14) The bogus terms are:
71 =+ Midfy + (M1doby + Mady)gC

Fy =+ Mydy6) — Mydyd, + Madrg S,

6.15) Well, the answer is the same as that shown in
Example 6.5.

6.16) Upon inspection, this problem quite simple.**

= [f‘] = M) + V(6:6) + G(©6)
2]

_[a
where 6 = [92]

then:

My+M, 0 :
M(e):[LM IZZZ],V(()]B):O,G(Q):O

6.17) See reference [22] from chapter 10, and the papers
that it references. See also example 10.6.

6.18) Any reasonable F (6, §) probably has the prop-
erty that the friction force (or torque) on joint i
depends only on the velocity of joint i, i.e.

F(0,60) = [£1(8,61) £26,65) ... fn (0, 6M]T

Also, each f; (6, é,-) should be “passive”, i.e. the
function should lie in the 1% & 3™ quadrants. **
solution written by candle light in aftermath of
7.0-earthquake, 17.0ct.89!

48

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 7

Trajectory Generation

Exercises

7.1) Three cubics are required to connect a start point,
two via points, and a goal point. That is, three for
each joint, for a total of 18 cubics. Each cubic has
four coefficients, so 72 coefficients are stored.

7.2) Use (7.6) with 6, = =5, 6 = 80,y = 4.0

a0=—5
a1:0
3x 85
a) =
16
85
a3 = ——
TR

7.3) Using (7.23) we see that the acceleration must

. 4(85 85 ..
be 6 > % =7 If we choose exactly 6 =

T deg / sec?, then the linear portion shrinks to
zero, and f, = 2 seconds.

Let’s instead choose § = 85 deg / sec?, then from
(7.22) we have tp = 2 — +/3. So, the linear portion
is 2+/3 seconds long, and the velocity during the
linear portion is 6 = (85)(2 — /3) deg / sec.

7.4) This is basically a programming exercise. The
data describing the path (via points, duration,
etc.) should be kept in a linked list, with one
node per path segment. Likewise, the planned
path (blend times, velocities, etc.) should be kept
in a second linked list. This linked list is the
output of the routine.

7.5) Use (7.15) to find coefficients.

49

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.6) Use (7.11) with the following for the first segment:
6,=5 6;,=15 6,=0 6, =175 t;=1
This gives:
ap=5a1=0 a;=125 a3=-25

And use (7.11) again for the second segment
with:

0, =15 6;=40 6,=175 6;=0 t;=1
which gives:
ap = 15 ay = 17.5 a) = 40.0 az = —-32.5

Then evaluate (7.3) to plot curves.

7.7) Neither segment is an “interior”” segment, so (7.26)
and (7.28) are used. From (7.26) calculate:

6, =80
/ 2(15-5 3
t1=1— 1__(—__)_:1_£
80 2
p 10 40
12: 3
L V3 2+43
2 2
From (7.28):

63 = SGN(15 — 40)80 = —80

2025) 5
h=1- 1422 1 [1-2
3 =1 +—80 3

25 50

Finally, ¢, is an interior point so its computed
from (7.24):

_ b3 — b1z

t
2 80

7.8) Use (7.15) to compute coefficients, and use (7.3)
to evaluate splines.

50

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.9) For first segment, use (7.11) with:
6,=5 6;=15 6,=0 6;=0 t;=2
This gives:

15 5
a=5 a=0 (,12=7 aa:._.z_

For second segment, use (7.11) with:
6, =15 6;=-10 6,=0 6, =0 t;=2
This gives:

75 25
a0=15 a1=0 a2=—T a3=—4—

Then evaluate (7.3) to plot curves.

7.10) This is like exercise 7.7. use (7.26) to calculate:

6, = sgn(15 — 5)60 = 60

pmg [0, [
=27V 760 " V3
10 20

From (7.28):

03 = sgn(15 — (—10))60 = 60

=2 ‘/4+—5O—2 1/19
= 60 6
25

—50

N AV N I
2—=-(2— — 2+,/—
2 6 6
Finally, from (7.24):
623 — 61
h=——=
—60

711) ‘Xg=[10 20 30 0 0 30]7

0 0 5
707 =707 =20
707 707 10

0 0 1

712) T =

[eNe NN

51

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.13) Programming exercise. Note: assume same trajec-
tory for each joint.

7.14) Programming exercise. Note: assume same trajec-
tory for each joint.

7.15) let, = L [3((% —6) L2 4366 - 9u)tf—l]
2(tf| + tfz) tr1 157)
Then:
ax =6,
az = év

3 .
ayn = —(0g — 6y,) — —06,
Ifa 12

-2 1.
ay = ;T(QG -0, + t79u

2 2
ayp =6,
aj =0

3 1 .
an = T(gv - 90) + —6,
tfl 1431

-2 1.
ai3 = =0y, — 6,) + 56,
1 I

3 6
7.16) ¢ max | — 6 —6,|, | —10r — 6,
) I > [29 |0f | 5 |0f |]

max max

Then, cubic coefficients given by (7.11).

7.17) By differentiation:
o(t) = 180t — 180z2
6(t) = 180 — 360¢
Then, evaluating at ¢t = 0 and ¢ = 1, we have:

9(0)=10 6@©0) =0 &(0) =180

8(1)=40 6(1)=0 6(1)=—180

52

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.18) Using same equations as for (7.17), and evalu-
ating at t = 2.

0(2) = —110 6(2) = —360 6(2) = —540

7.19) So,
6(t) = 5+ 140t — 135¢2
A(t) = 140 — 270t
60)=10 6(0)=5 6(0) =140

6(1) =40 6(1)=10 6(1)=—130

7.20) Using equations from 7.19, and evaluating at
t=2:

6(2) = —60 6(2) =—255 6(2) =—400

53

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 8

Manipulator Mechanism Design

Exercises

8.1) The laser beam can be considered a line in space.
In general, it takes 4 D.O.F.S to position a line
in space. So, the answer is 4. Note that this is
somewhat “theoretical” in that there is probably
no single 4-DOF design that could perform all
such cutting tasks —however, see problem 8.2
below for one example.

8.2)

Laser beam

8.3) Using (8.1) we have:

L= Z?=1(ai—l +d;)

=0+0)+©0+0+0O+U-L)=U—-L

A
4 4 4
W=-nU?-nl3®=-nU>-L% { “Hollow”
3 3 3 Sphere
U-L

0L =

N ;—171(U3 — L3

8.4) Let Ky, be stiffness of the 0.2 cm diameter shaft,
and ko3 be that of the 0.3 cm shaft. Then, using
(8.14) and (8.19):

1 1
=————5+—wheren=8
Kioa1 Koan Kos

54

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

From (8.15):

(7.5 x10'%)(7r)(0.002)*

Kooz = = 0.393 ntm/rad
(32)(0.30)
7.5 x 1010 0.003)4
Koz = (7.5)) = 1.988 ntm/rad
(32)(0.30)
1 1 1

Kow (3938 | 1988

1 1
= ——+ —— =0.5427
25.152 + 1.988

Kot = 1.8426 ntm/rad

8.5) Torsional load due to acceleration of the center
of mass about the joint axis is:

T = (0.30)(10)(2)(9.8) ntm = 58.8 ntm

A torsional spring is given by T = K A8, so needed
stiffness is

T 58.8
= — = —— = 588 ntm/rad
A6 0.1

From (8.15), solving for d gives:
de ./32LK
Gr
(32)(0.30)(588)
d=/————"= =10.01244
V (75 x 100 () "

or (d=1244cm

8.6) From (8.14):

! L L 4s33107
= — — = 4. X
Kow 1000~ 300

= Kot = 230.77 ntm/rad

8.7) If 3 of the attachment points on the top or bottom
plate coincide. For example, in fig. 8.22, if ¢; =
qj =gy for any i # j #k, or if pi = p; = p
for any i # j # k.

55

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.8) In Griibler’s formula (8.9) we have:
N = 18 (12 universal joints, 6 prismatic joints)

L =14 (2 parts per activator = 12, top plate,
bottom plate)

SR fi=12x34+6=42

so,F=6(14—18——1)+42:

8.9) Stiffness of input drive as seen at gear #1:

1 111
=t —— = 0.0225; Ky | = 44.44
Ko 1 100 400 100 gear 1

coupling #13 shaft3 coupling #2§
Assume that shaft from gear 2 to gear 3 is rigid.. . .

1 1

= +
ngar 3 2000 62 (ngar 1)

=1.125x 1073, Kpeor 3 = 888.88

1 1 1
= + = =53125 x 1074
ngar 4 2000 6 (ngar 3)

Kgear 4 = 1882.35 ntm/rad ’

2000 — 1882.35
8.10) E i ——— x 100 =
) Error is 38235 X 6.25%

8.11) See solution to exercise 4.12

812) Fori=1,2,...6

di = //5Tqi - pi// |

8.13) To maximize W = /L;L,S,/ over all configs
means maximizing W' = L, L,.

Since L1 + L, = C (C = some constant); L, = C — L,
so, W =L(C—L)=CLy - L?

dw’ d*w’
-2, =
a, ~ T

Maximum of W’ exists when C —24 =0

orL;=C/2 .. |L;=L,is optimal

56

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.14) Same as exercise 8.13 since 3™ dof is orthogonal
to first two.

L, = L, is optimal

8.15) LU-decomposition allows one to write the jaco-
bian in the form J(8) = UTQV where u and v
are orthogonal matrices. Determinant of a product
equals product of determinants, so

DET J = (DETUT)(DETQ)(DETV) = 1. DETQ.1

and det 2 is the product of the eigenvalues.
Q.E.D.

8.16) From (8.15)

K Grd* (0.33 x 7.5 x 101%)()(0.001)*
To3L (32)(0.40)

=1 0.006135 ntm/rad

Vert flimst, because diameter is 1 mm!

8.17) From (8.12) n = ry/ry = 12/2 = E}

8.18) From the general case of needing 6, subtract 2
because grasping “along” and “about” the cylinder’s

axis is a free variable. Hence, .

8.19) In Griibler’s formula:
N =12 (9 real joints, 3 ball-in-socket contacts)

L =11 (3 links per finger, base, ball)
Y2 fi=9+3x3=18

so,F=6(11—12—1)+18=-12+18=@

8.20) In Griiblers formula:
N = 6 (3 ball-in-socket, 3 universal)

L =5 (ground, object, 3 links)
Z.N=1fi=3><3+3x2=15

so,F=6(5—6—1)+15=—12+15=

57

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.21) Start with

F = Ksum(8X1 + 8X2)

And substitute in expressions for § X, 6 X»:

F F
F = Ksum ('—+ —)

K, K,
Multiply both sides b !
i i :
ply y FKor
1 1 1
Ksum Kl K2
8.22) From (8.22) we have
AE 1
K = A where L = Lgee + §Lcontacl

So the problem is to figure out Lgee and Leontact
for the general 2-pulley setup.

n

4] st

0.5Lfree = 4/d? — ABS(ry — r2)?

0,+ 6, = 180°
Lfree =2 dc2 - (n ——7‘2)2

Leontact = 2[(7w — 01)r1 + 6112]

- r
where 6; =cos™!(—) and r; > r,
d

(4

58

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 9

Linear Control of Manipulators

Exercises
9.1) In the general solution,

x(t) = cje’ + che™
The constants ¢} and ¢, must be (in general)
imaginary since the S; are and yet x(¢#) must of
course be real. Substituting for the S;:
x(t) — c/le(k+ui)t + clze(ko—ui)t
x(t) = c/le(“e’“" + c/ze“e_“"’
Using Euler’s relation (9.13) we have
x(t) = cje* (cos ut + i sinur) + chet (cos ut — i sin ut)
x(t) = (¢} + ch)e* cos ut + (] — ch)ie* sin ut

To satisfy the constraint that x(t) be real, we

have:

/ /o
it =c
/ /o .
Cy —Cp =Cl

where ¢ and ¢, are real. This leads to

x(t) = c1e* cos ut + c,e* sin ut Q.E.D.

9.2) From (9.5)

—6 V36 —4x2x4
S = +
2x2 2x2

=-15405=-10

S, =-15-05=-2.0

t '3

x(t) =cre”" + cpe™? and x(t) = —cie™" — 2cpe2
Att=0 x0)=1=c 4+ [1]

X0 =0=—c1 —2c; [2]

Adding [1] and [2] gives

59

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

9.3) [x(t) — 4(1 + 1)e!

9.4) I x(t) = 2e¢ ¥ cost + 4e " sint]

9.5) |x(1)=Je™¥ — 4™

9.6) Minimum when
o=—-1= L%Mz —2LL, M, + L%(Ml + M)

Maximum when
o=1= L%Mg + 2L, LM, + L%(M; + M>)

.omin=05-14+15=1;, max=054+1+15=3;

9.7) Minimum effective inertia:

Iin + 721, = 1.0 + (400)(0.01) = 5.0

Maximum effective inertia:

Imax — n2L, = 3.0 + (400)(0.01) = 7.0

Variation as % of maximum is 2 x 100 = | 28.57%

9.8) Closed loop system is:

MX"+B'X"+K'X=0 (9.38)

where BP=B+ K, and K'=K + K, and
B’ =2JVMK’

To achieve critical damping.

Using rule (9.72), if Wgrgs = 6 rad/sec then we
should design servo to have Wy = 3 rad/sec.
From (9.20) Wy = /K/M (in our case K’)

so,

3=JK'/M, 3=+K’; K =9

60

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

9.9) Min. effect. Inertia = 4 + (100)(0.01) =5
Max. effect. Inertia = 5 + (100)(0.01) = 6

Use lowest resonance, so Wy < (1/2)(8), or
Wy < 4 rad/sec to insure never underdamped,
design using max effect. Inertia, so use M =6

Since we didn’t provide info about any damping
or stiffness in the open-loop system, we’ll assume
its zero. Therefore:

Since o = 6 we now effectively

6
0
have a M = 1 system:

o
B

K, =Wy =JKJM, 4= JKJT;|K,=16

K, =2/MK,=2/Tx 16=8;

9.10) Using (8.24) and assuming aluminum:

 — (0333)(2x 10')(0.05* — 0.04%)

= 123, 000.0
(4)(0.50)

Using info from figure 9.13, the equivalent mass
is (0.23)(5) = 1.15 kg

s,

/123, 000.0
Wres = vK/M = 15 = | 327.04 rad/sec

This is very high—so the designer is probably
wrong in thinking that this link vibrating repre-
sents the lowest unmodeled resonance!

9.11) Wggs = /1000/1 = 31.62 rad/sec =

9.12) Shaft appears stiffer due to gears:

K =500 x 8% = 32000; Wggs = /32000/1

= 178.88 rad/sec =

9.13) Asinproblem 9.12, the effective stiffness is K = 32000.
Now, the effective inertia is

I'=1+4+(0.1)(64) =74

.. Wres = 4/32000/7.4 = 65.76 rad/sec = | 10.47 Hz

61

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

125 a=6

14) 95 p=0

X
=
I
£ o

r =

9.15) Stiffness of transmission is, as in Exercise 8.4:

1 1

1l Ll k= 1843 ntmirad
K n2K0A2 KO.S

1.843

Wiax = I = 1.357 rad/sec = | 0.2 Hz
1.843 ~

Winin = — = 0.679 rad/sec =|0.11 Hz

Very low because 0.2 and 0.3 cm shaft are floppy!

62

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 10

Nonlinear Control of Manipulators

Exercises
10.1) Lett =at’ + 8
o =2/0+1
B =36% —sinf
then: ©'=8p+ Kweé + Kpe
where e=6p—0

For closed loop stiffness, K¢y, use:
Ky = Kcp =10

Kw =2JKcr =2+4/10

10.2) Lett=cat'+ 8
a=28 B=0500—130°+5
and: v =0p+K,é+Kpe

where e=60p — 0

and: K,=10
K, =24/10
10.3) Where M(0), V (6, 6), and G(6) are as found 6

in section 6.7.

_[Ka1 0] _[KW1 0]
Ka_[0 Ko Kw=1"0 Kw»

Mo —EE)—T Am .
T :
V(8,6) + G(6)

¥ L)
| |
l Y
4
1

Where Kw,‘ = 2«/ K(;,‘

10.4) Where M, (9), Vi(8,6), G,(#) are as found . 0
o

in example 6.6. KIN(f) is the kinematics M(6)

(forward) for this simple two-link. Jo) | X
Also:

_[Kpr O] _ [K vi O] %y
k=" k] Ke=[9"]

with Ky; = 2/Kp;

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

105) t=Mé+V

_[M1L§ o] _|:M1L1L29192]

MzL% Mng VZéZ
So, as usual:
t=at’' + 8

witha =M B=V

' =0p+ Kyé+ Kpe

6291)—9
and:

_[Kp 0] _[KV] 0]
KP_[0 Kp Ky = 0 Ky

with Ky; = 2./ K p;

Since the mass matrix, M, is not symmetric this
can not represent a coupled mechanical system.

10.6) In steady state, the system error equation is:

1
er = A—(l/meg COSH)

ML?
so:
! (YmLgcosh)
e=—r—o g
K,mr2 "
Ygcosf
e=———
K, ML

Note that it is a function of M as well as the
other variables mentioned in problem.

It is maximum when 6 = 0° or 180°, since this
error comes from gravity loading, this is not
surprising.

10.7) Not stated in problem, but we will assume than
an activator (a gas rocket thruster) can apply
a force F; on each mass. Positive F; tends to
increase X;. That is:

Drawing free body diagrams leads to equations
of motion:

’fl =M X, + (Bi + B))X1 — BoX, + KX, — KX,
F, = MyX> + Bo(Xo — X)) — K(X, — X))

Mz[Ml 0] Q=[(Bl+B;;)X1732X2+K<X2—X1)]
0 M By(X2 — X1) — K(X2 — X))

64

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

10.7) (Continued)

Then let F =aF + Bwitha=M,B8=0

F=[fif]"
5 : X =[X1X2]"
F'=Xp+ K,E+ K,E
P PUVE = [eren)
e, = Xpi — Xi F, e
—] |e———’
K, = K 0 K,= Kpr 0 K(X,—X,) My B,(X,— X))
TLo Kol PTLO Kp ——
F
with K,, = 2,/K), K(X,—X,)
. . MlXI
By(X,— X)) M, < .
.hlel

10.8) We would like to say something about

adry o1y
or _| o0 o0,
a6 any a1y
36, 06,

[A]

First, note (from section 6.7) that the only 6;
dependence is in G(0), so we have:

G, 90t
dt 36, 86,
% - 3G2 a'Ez [B]
208, 06,
G
ﬁ- = —MLygS1 — (M1 + M)L,1gS5;
1
0G,
— =—M,L,gS
361 2028912

The second column of [B] above is given by:

IM(@©)8) 9B®) . . (C(BO)[6?2 3G (8
(())+ ()019”(()[])+)

36, 360, 96, 26,
which is
81: . . [
a_el = —Li1L,M,S,(26, + 65) — 2M>L1L,C»6,6,

2

— MyL Ly Cr62 — MaLogSiy

a1y o 12
%; = —L1L2M2S291 + M2L1L2C29] - MZLZgSIZ

65

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

10.8) (Continued)

To say more we need to make some assump-

tions: Lets say average velocity is 84, and lets

also assume that average acceleration 64 = 9/24.

For many robots this is about right (units are

rads). At this speed §6 = 04 At, where At is

update interval of configuration-dependent terms.
We then have:

1871| = At(83L1LaMa(3Ss +2C2) + 2MaLogS1264
+ (M) + M3)L18S164)

1872] = At(83L,LaMa(Ss + C2) + 2ML2851264)

From here things are quite heuristic, perhaps
the maximum value of 7 is found for “average”
trajectories, and 8t is required to be less than
5% of this max. Then a At might bell found
based on an expected 64 and other params.

10.9) Like exercise 10.8. Result will be in terms of
average cartesian velocity, rather than average
joint velocity. These might be converted using
some average norm of the Jacobian.

10.10) Let f =of' + B
withae =2, BB=5XX-12
and f' = Xp+K,é+Kpe, e=Xp—X

K, =20, K,=2+20.

10.11) Closed loop system, given by:
M(©)8 + Vi (8,6)0 + G(@) = —K,0 — M(0)K,0 + G(6)
V =16TM©6)6 + 16TK,0 (Lyapunov candidate)
V=16TM©)6 +6TM©®)6 +6TK,0
V =16TM©)6 +6T[-Vy(8,0)0 — G®) — K,0 — M(®)K,0 + G(6)]
+6TK,0

V=-0"TM®)K,0

This is non-positive if M(0)K, is positive defi-
nite. This matrix product is positive def. if K, =
kyIy, where K, is positive scalar. Q.E.D.

66

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

10.12) Completely analogous to exercise 10.11.

10.13) Use
1. . 52 86
V= 56’M(9)9 +/ M(9)Kp9;3—5d5 >0
1

To yield:

V=-6"M®KHO<0if K, =K,Iy,K, >0

10.14) Analogous to exercise 10.13.

10.15) Use
V =16"M©) + 36°K,0 + P(6)

where P () is the potential energy store in mech-
anism.

b= —6°GO) —6°K,0 + p(d)
a
Now, G(0) = M p(6)(from Lagrange)

. can show 687G (0) = p(6)

nV=-6K0

From which stability follows.

Do steady state analysis (set § = 6 = 0) to get
K,0+G@O)=0

or

6 = —K,'G(6) steady state error.

10.17 "

a, = ax‘x
B = bx? + c¢sinx0

k, =2k,

10.18 M6 + BO* + CO = M[fp + K.é + K el +sinf

Thats it. It can be re-written many ways.

67

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11.1)

Chapter 11

Force Control of Manipulators

Exercises

Note this problem asks for “Natural” constraints
only.

Natural Constraints
Vy = F;=0

11.2) The artificial constraints for the task above
would be:
VZ = —ay FX =0
Fy =
Nx =0
Ny =0
Nz=0
where “a,” is the speed of insertion.
11.3) F = MK]'[Fy+ Kyrér + Kprep] + Fu(11.14)

F=MK;'F,+ F. + Fux (11.9)

Setting (11.9) and (11.14) equal:

MK;'[Fy+ Kvrér + Kprepl + Fa = MK'F, + F, + Fuq
MK;'[ér + Kyrér + Kprep] = F. — Fi + Faig

ér + Kyrér + Kprer = M7'K.(—efp) + MK, Fyq

ér + Kyrér + (Kpr + M7 'K,)er = M™'K, Fyig

Hence, to damp properly (i.e. to choose Kyg) one
needs to know K, (which is generally unknown).

68

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Then:
Artificial
I\i/aturai) - - Vy = a; Fy
y = X = _ a_]
Vz=0 | Nz=0 Wz=— Fz
Wx =0 N
Wy =0 X
Ny =0

where “r” is radius of door (that is, distance from
hinge to origin of {C}). “a;” is linear speed of
manipulator hand.

69

11.4) Use (5.105) with frames {A} and {B} reversed.
First find 87, so invert 47
0.866 0.5 0 -—-8.66
By — —-0.5 0.866 0 5.0
A 0 0 1 =50
0 0 0 1
Now BF =BRAF =[1 1.73 -31"
BN =8Py @ BF + ERAN =[-6.3 309 -15.8]"
~B7=[10 173 -3 —63 =309 -158]"
11.5) Like 11.4.
0.866 —0.5 0 -—-8.66
BT _ 0.5 0866 0 -5
AT T 0 0 1 -5
0 0 0 1
BF =BRAF =[2.19 819 0]
BN =8Py ® BF + ERAN
=[41 —-11 —603]17 +[43 25 0]7
SB7=1[219 819 0 443 -85 —603]7
11.6) When crowded a good strategy (assuming a fairly
stiff book) is to put one corner of the book into
the crack and then twist the book towards the
vertical position while applying force to push it
into the slot. Students should give some version
of this strategy.
11.7) Good idea is to attach {C} to the door, so it moves ZZ7777
as the task progresses. %

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11.8) Pretty easy: © Z

Natural Constraints
Vy =0 F;=0 Y
Vy =0 X
Wy =0
Wy =0
Wz =0

Here I’ve assumed that because it is a very tight-
fitting cork, it is like a square peg in a square
hole, and rotation about 7 is not possible. This
assumption is not crucial, however. Then:

Vz =a Fx =0

Fy =0

Artificial constraints Nx=0
Ny =0

Nz=0

11.9) Use control law:
t=0p+JTKpxJE+KyE [A]

where E = 0p — 0, and the plant has already been
decoupled, that is, the plant is: v = 6 [B]

Equate [A] and [B] to get:
E+KyE+JTKpxJE =0

Choose the Lyapunov equation:
L=ETJTKpxJE+ETE

This is positive definite in both E&E (note JTKpxJ
is pos. def. If K px is pos. def. Since JTKpx J is a
“congruence” transform which cannot change the

sign of eigenvalues — see noble’s book on linear
algebra, or others.) Differentiating:

. . [Here we needed to
L =-2ETKyE| use approx. that
J=0

Which is negative definite iff Ky is positive defi-
nite. A few more things would need to be said to
make the proof rigorous, but this is the general
idea.

70

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11.10) This problem is really beyond the scope of the
book, as it involves multivariable control theory.
The system studied is a multi-input, multi-output
system which is coupled, so the first problem
is “what does “critical damping” mean in this
context. Let me just mention a damping scheme
which has given reasonable results in lab experi-
ments: In the same way that a scalar system with
stiffness k, is damped with the value 2,/k,, we

have used J72./KpxJ to damp the system with
stiffness of JTKpxJ. Note /Kpy Just has the
square roots of the diagonal elements of Kpx on
the diagonal.

11.11) Natural Constraints
Vx =0 Fy=0
Vz=0
Wx =0

71

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 12

Robot Programming Languages and Systems

In this chapter the exercises are of a programming nature. I have left the choice of which robot programming
language to use optional (with 8 or so suggestions). Thus it is hard to give solutions, and I have elected not to do
so. Instructors will probably choose to assign problems in the language of some available robot on campus (if any)
and the problem may use set-ups or fixtures local to that lab. Hence, I expect a lot of deviation from the suggested
problems in the text.

72

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Chapter 13

Off-line Programming Systems

Exercises

13.1) Collision detection (in this context) refers to an
algorithm capable of determining if two or more
object (spatially modelled) touch or intersect each
other. Collision avoidance is the (difficult) problem
of computing a path along which an object (or
manipulator) is to move such that no collisions
occur. Collision-free path planning is a more
descriptive term for collision avoidance.

13.2) A world model is a set of data stored in computer
memory which describes some aspects of the
manipulator or its environment. Path planning
emulation is a term used to describe an algo-
rithm in a simulation system which attempts to
model (or emulate) the path-planning algorithm
of the robot controller. Dynamic emulation is a
synonym for dynamic simulation — but implies
that the dynamic simulation is attempting to match
some physical system.

13.3) Automatic robot placement is the result of an
algorithm which can determine the relative place-
ment between a robot and a workpiece so as
to achieve certain objectives — kinematic reacha-
bility, singularity avoidance, collision avoidance,
etc. Time optimal paths are those which get from
A to B in minimum time. Error propagation anal-
ysis is an algorithm to compute estimates of certainty
of knowledge contained in a world model.

13.4) Wireframe graphics depict polyhedra by rendering
all of the edles of the polyhedra. In shaded
surface display, all the facets of polyhedra are
projected onto the screen as 2-D polygons and
then “filled” —i.e. all the pixels within those
polygons are illuminated. Often, polygon sorting
or A 2-buffer technique is used to perform hidden
line elimination. Also, hidden line elimination
can be performed with edle-based rendering by
the use of some fancy algorithms.

73

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

13.5) RPL — Robot Programming Languages are more-
or-less conventional computer languages with motion
statements and other robot-specific commands
added. TLP— Task Level Programming refers
to languages or systems in which it is possible
to program at a high level, such as “pick up bolt
B-127".

OLP — Off-Line Programming is defined in the
first sentence of Chapter 13!

13.6) Calibration (in the context of OLP systems) refers
to the task of bringing the simulated workcell
into close correspondence with the actual cell.
Coordinated motion is when two or more devices
must move together in kinematically synchro-
nized motion. Automatic scheduling is an algo-
rithm that can automatically divide tasks in an
automated setting up between multiple machines.

13.7) This is changing each year, so check the latest
news. In the late 80’s and into the early 90’s
graphic power is probably increasing by a factor
of 2 to 5 each year!

13.8) Placing components on a pc board, spot-welding
an automobile, arc-welding a part, painting an
automobile, deburring a casting.

13.9) The more “intelligent” a programming system
is, the larger the world model required (roughly
speaking!). However, the larger the world model,
the more ways it can be inaccurate.

74

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Solutions to the Programming Exercises (Parts 2-7, 9-11)

Programming Exercise (Part 2)

PROGRAM PP2 (INPUT,OUTPUT);

CONST PI=3.14159;
HALFPI=1.5707;
DTOR=0.017453;
RTOD=57.2957;

TYPE
FRAME=ARRAY[1..2,1..3] OF REAL;
VEC3=ARRAY [1..3] OF REAL;

VAR
UARELU, UARELB, UURELC, UCRELB: VEC3;
I.J:INTEGER;
IARELU, IARELB, IURELC, IURELA: FRAME;
IURELB, ICRELU, ICRELB: FRAME;

FUNCTION AT2 (A,B:REAL): REAL;
VAR ANS:REAL;
BEGIN
IF B=0.0 THEN
BEGIN
IF A=0.0 THEN ANS:=0.0
ELSE
IF A >0.0 THEN ANS:=HALFPI
ELSE ANS:=-HALFPI;
END
ELSE
BEGIN
ANS:=ARCTAN (A/B);
IF B<0.0 THEN
IF A<0.0 THEN ANS:=ANS-PI ELSE ANS:=ANS+PI;
END;
AT2:=ANS;
END;

PROCEDURE TMULT (VAR BRELA,CRELB,CRELA:FRAME);

VAR I,J,K: INTEGER;
BEGIN
FOR I:=1 TO 2 DO
BEGIN
CRELA[I,3]:=BRELA[I,3];
FOR J:=1 TO 2 DO
BEGIN
CRELA[I,3]:=CRELA[I,3]+BRELA[I,J]*CRELB[J,3];
CRELA[I,J]:=0.0;
FOR K:=1 TO 2 DO
CRELA[I,J]:=CRELA[I,J]+BRELA[I,K]*CRELB[K,J];
END;
END;
END;

PROCEDURE TINVERT (VAR BRELA,ARELB:FRAME);
VAR I,J:INTEGER;

BEGIN

ARELB[1,1]:=BRELA[1,1];
ARELB[1,2]:=BRELA[2,1];
ARELB[2,1]:=BRELA[1,2];

75

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

ARELB[2,2]:=BRELA[2,2];
FOR I: =1 TO 2 DO

BEGIN
ARELB[I,3]:=0.0;
FOR J:=1 TO 2 DO
ARELB[I,3]:=ARELB[I,3]-BRELA[J,I]*BRELA[J,3];
END;
END;

PROCEDURE UTOI (VAR UFORM:VEC3; VAR IFORM:FRAME):

BEGIN
IFORM[1,3] :=UFORM[1];
IFORM[2,3] :=UFORM[2];
IFORM[1,1]:=COS (UFORM[3]*DTOR);
IFORM[1,2] :=-SIN (UFORM[3]*DTOR);
IFORM[2,1] :=-IFORM[1,2];
IFORM[2,2] :=IFORM[1,1];

END;

PROCEDURE ITOU (VAR IFORM:FRAME; VAR UFORM: VEC3);

BEGIN

UFORM[1] :=IFORM[1,3];

UFORM[2] :=IFORM[2,3];

UFORM[3] :=AT2 (IFORM[2,1],IFORM[1,1])*RTOD;
END;

BEGIN {MAINPGM.}

WRITE (‘ENTER ELEMENTS OF ARELU,ARELB,AND URELC’);
FOR I:=1 TO 3 DO

READ (UARELU[I]);
FOR I:=1 TO 3 DO

READ (UARELB[I]);
FOR I:=1 TO 3 DO

READ (UURELC[I]);
UTOI (UARELU, IARELU) ;
UTOI (UARELB, IARELB) ;
UTOI (UURELC, IURELC) ;
TINVERT (IARELU,IURELA);
TINVERT (IURELC,ICRELU);
TMULT (IARELB,IURELA,IURELB);
TMULT (IURELB,ICRELU,ICRELB);

WRITELN (‘C REL B,INTERNAL FORM,ROW-WISE ’);

FOR I:=1 TO 2 DO

BEGIN
FOR J:=1 TO 3 DO
WRITE (ICRELB[I,J]:8:3);
WRITELN;

END;
ITOU(ICRELB,UCRELB);
WRITELN(‘CRELB,USER FORM’);
FOR I:=1 TO 3 DO
WRITE (UCRELB[I]:8:3);
END.

Programming Exercise (Part 3)

program pp3 (INPUT,OUTPUT);
CONST

pi=3.14159;
halfpi=1.5707;

76

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

dtor=0.017453292; { Conversion factors: rad/deg }
rtod=57.29578; { deg/rad }

TYPE

frame=ARRAY[1..2,1..3] OF REAL; { 2x 2 Rot. plus 2x 1 Pos. }
vec3=ARRAY [1..3] OF REAL;

VAR
i: integer;
theta: vec3; { Joint angles for the 3-link arm }
wrelb: frame; { Loc. of the wrist wrt the base }
11,12: REAL; { Link lengths of the arm }
trelw: frame; { Defines the tool location }

srelb,brels: frame; { Arm base location }
trels: frame;

trelwuser: vec3;

srelbuser: vec3;

trelsuser: vec3;

ans: char;

PROCEDURE WRITEFRAME (VAR foo: frame);
VAR i,j: integer;

BEGIN
FOR i:=1 TO 2 DO
BEGIN
WRITE (’[’);

FOR j:=1 TO 3 DO
WRITE (foo[i,j]: 10:3);
WRITELN(‘]’);
END;
END;

PROCEDURE WRITEVECT (VAR foo; vec3);
VAR i: integer;
BEGIN

FOR i: = 1 TO 3 do
WRITELN(‘[’,fo0[i]:10:3,¢]");
END;

FUNCTION AT2 (a,b: REAL): REAL; { 4 Quadrant Arc Tangent }
VAR ans: REAL;

BEGIN
IF b= 0.0 THEN
BEGIN
IF a=0.0 THEN ans:= 0.0
ELSE
IF a>0.0 THEN ans:=halfpi
ELSE
ans:=-halfpi;
END
ELSE
BEGIN
ans:=arctan (a/b); { Pascal defined arctan }
IF b< O THEN
IF a< O THEN ans:=ans-pi ELSE ans:=ans+pi;
END;
at2:=ans;

END; { atan2 }
PROCEDURE TMULT (VAR brela,crelb,crela: frame);
VAR 1i,j,k: INTEGER;
BEGIN
FOR i:=1 TO 2 DO
BEGIN

77

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

crela[i,3]:=brela[i,3];

FOR j:=1 TO 2 DO

BEGIN
crela[i,3]:=crela[i,3]+brela[i,j]*crelb[j,3];
crela[i,j]:=0.0;
FOR k:=1 TO 2 DO

crela[i,j]:=crela[i,j]+brela[i,k]*crelb[k,jl;
END;
END;
END; { tmult }

PROCEDURE TINVERT (VAR brela,arelb: frame);
VAR i,j: INTEGER;
BEGIN
arelb[1,1]:=brela[1,1]; { Transpose rotation part }
arelb[1,2]:=brela[2,1];
arelb[2,1]:=brela[1,2];
arelb[2,2]:=brela[2,2];
FOR i:=1 TO 2 DO { Calculate position part }
BEGIN
arelb[i,3]:=0.0;
FOR j:=1 TO 2 DO
arelb[i,3]:=arelb[i,3]-brelal[j,i]*brelalj,3];
END;
END; { tinvert }

PROCEDURE KIN (VAR theta: vec3; VAR wrelb: frame);
VAR beta: real;

BEGIN
wrelb[1,3]:=11*cos (theta[1]) + 12*cos (theta[1] + theta[2]);
wrelb[2,3]:=11*sin (theta[1]) + 12*sin (theta[1] + theta[2]);
beta:=theta[1] + theta[2] + theta[3]; { beta is the total wrist rotation }
wrelb[1,1]:=cos (beta);
wrelb[1,2]:=—sin (beta);
wrelb[2,1]:=—wrelb[1,2]; { note that 2x2 rotation matrices are anti- }
wrelb[2,2]:=wrelb[1,1]; { symmetric so that half of the matrix is }
{ already computed }
END:

PROCEDURE UTOI (VAR uform: vec3; VAR iform: frame);
BEGIN
iform[1,3]:=uform[1];
iform[2,3]:=uform[2];
iform[1,1]:=cos (uform[3]*dtor);
iform[1,2]:=—sin (uform[3]*dtor);

iform[2,1]:=—iform[1,2]; { Again, the 2x2 rotation matrix is anti-}
iform[2,2]:=iform[1,1]; { symmetric, simplifying the calculations }
END;

PROCEDURE ITOU(VAR iform: frame; VAR uform: vec3);
BEGIN

uform[1]:=iform[1,3];

uform[2]:=iform[2,3];

uform[3]:=at2(iform[2,1], iform[1,1])*rtod; { don’t forget to use degrees }
END;

PROCEDURE WHERE (VAR theta: vec3; VAR trels: frame); { Find the tool wrt station }
VAR trelb,wrelb: frame;

BEGIN
KIN(theta,wrelb);
TMULT (wrelb,trelw,trelb); { Get the tool relative to the base }
TMULT (brels,trelb,trels); { Get the tool relative to the station }
END;

78

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE INITDATA; { Set up the given data }

BEGIN
11:=0.5; { initialize link lengths }
12:=0.5;

trelwuser[1];=0.1; { initialize tool location in user-coordinates }
trelwuser[2]:=0.2;
trelwuser([3];=30.0;
srelbuser[1]:=—0.1; { initialize station location in user-coordinates }
srelbuser[2]:=0.3;
srelbuser([3]:=0.0;

UTOI (srelbuser,srelb); { convert base description to internal form }
TINVERT (srelb,brels); { get the description in the proper direction }
UTOI(trelwuser,trelw); { Get the tool location in internal form }

END; { initdata }

BEGIN { Main Test Program }

INITDATA;

WRITE(‘Care to do some robot kinematics?’);
READLN(ans);

WHILE ans = ‘y’ DO

BEGIN

WRITELN(‘Enter thetal,theta2,theta3:’);
READLN(theta[1],theta[2],theta[3]); { All I/O with user is in Degrees }
FOR i:=1 TO 3 DO
theta[i]:=theta[i]*dtor; { But internally I’1ll use radians }
WHERE (theta,trels);
WRITELN(‘The frame description of the tool relative to the base is:’);
WRITEFRAME (trels);
WRITELN;
ITOU(trels,trelsuser);
WRITELN(‘The user-coordinates are:’);
WRITEVECT (trelsuser);
WRITELN:
WRITELN;
WRITE(‘Would you like to do some more?’);
READLN(ans);
END;
END.

Programming Exercise (Part 4)

program pp4 (INPUT,OUTPUT);

CONST
pi=3.14159;
halfpi=1.5707;
dtor=0.0174532925,;
rtod=57.29578;

TYPE
vec3=ARRAY[1..3] OF REAL;
frame=ARRAY[1..2,1..3] OF REAL;

VAR
i: INTEGER;
11,12: REAL; { Link Lengths }
current, goal: vec3;
trelwuser: vec3;
srelbuser: vec3;
srelb,trelw,trels: frame;
near, far: vec3;
neard, fard: vec3; { solutions in degrees for user }
sol: BOOLEAN;
ans: char;

79

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

FUNCTION at2(a,b: REAL): REAL; { Atan2 }
VAR ans: REAL;
BEGIN
IF b=0.0 THEN
BEGIN
IF a=0.0 THEN ans:=0.0
ELSE
IF a > 0.0 THEN ans:=halfpi
ELSE
ans:=-halfpi;
END
ELSE
BEGIN
ans:=arctan(a/b); { Pascal defined arctan }
IF b<O THEN
IF a<0 THEN ans:=ans-pi ELSE ans:=ans+pi;
END;
at2;=ans;
END; { atan2 }

PROCEDURE WRITEFRAME (VAR foo: frame);
VAR i,j: integer;

BEGIN
FOR i:=1 TO 2 DO
BEGIN
WRITE(‘[’);

FOR j:=1 TO 3 DO
WRITE (foo[i,j]:10:3);
WRITELN(‘]’);
END;
END;

PROCEDURE WRITEVECT (VAR foo: vec3);
VAR i: integer;
BEGIN
FOR i:=1 TO 3 do
WRITELN(‘[’,foo[i]:10:3,‘]’);
END;

PROCEDURE ITOU(VAR iform: frame; VAR uform: vec3);
BEGIN
uform[1]:=iform[1,3];
uform[2]:=iform[2,3];
uform[3]:=at2(iform[2,1],iform[1,1])*rtod;
END;

PROCEDURE UTOI (VAR uform: vec3; VAR iform: frame);
BEGIN
iform[1,3]:=uform[1];
iform[2,3]:=uform[2];
iform[1,1]:=cos (uform[3]*dtor);
iform[1,2]:=—sin (uform[3]*dtor);
iform[2,1]:=—iform[1,2];
iform[2,2]:=iform[1,1];
END;

PROCEDURE TMULT (VAR brela,crelb,crela: frame);
VAR i,j,k: INTEGER;
BEGIN

FOR i:=1 TO 2 DO
BEGIN
crela[i,3]:=brela[i,3];
FOR j:=1 TO 2 DO
BEGIN
crela[i,3]:=crela[i,3] + brela[i,j]* crelb[j,3];

80

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

crelaf[i,j]:=0.0;
FOR k:=1 TO 2 DO
crela[i,j]:=crela[i,j]l+brela[i,k]*crelb[k,j];
END;
END;
END; { tmult }

PROCEDURE TINVERT(VAR brela,arelb: frame);
VAR i,j: INTEGER;
BEGIN
arelb[1,1]:=brela[1,1];
arelb[1,2]:=brela[2,1];
arelb[2,1]:=brela[1,2];
arelb[2,2]:=brela[2,2];
FOR i: =1 TO 2 DO
BEGIN
arelb[i,3]:=0.0;
FOR j:=1 TO 2 DO
arelb[i,3]:=arelb[i,3]-brela[j,i]* brela[j,3];
END;
END; { tinvert }

PROCEDURE KIN(VAR theta: vec3; VAR wrelb: frame);
VAR beta: real;
BEGIN
wrelb[1,3]:=11* cos (theta[1])+12* cos (theta[1] + theta[2]);
wrelb[2,3]:=11* sin (theta[1])+12* sin (theta[1] + theta[2]);
beta:=theta[1] + theta[2] + theta[3];
wrelb[1,1]:=cos (beta);
wrelb[1,2]:=—sin (beta);
wrelb[2,1]:=—wrelb[1,2];
wrelb[2,2]:=wrelb[1,1];
END;

PROCEDURE WHERE (VAR theta: vec3; VAR trels: frame);
VAR trelb,wrelb,brels: frame;
BEGIN
KIN(theta,wrelb);
TMULT (wrelb,trelw,trelb); { Get the tool rel base }
tinvert(srelb,brels);
TMULT (brels,trelb,trels); { Get the tool rel station }
END; { where }

{ Define a distance measure for two joint vectors }
function dist(VAR a,b: vec3): real;
VAR d,t: REAL;
i: INTEGER;
BEGIN
d:=0.0;
FOR i:=1 TO 3 DO
BEGIN
t:=abs(a[i]-b[i]);
d:=d+t;
END;
dist:=d;
END; { dist }

PROCEDURE range (VAR a: REAL); { puts angle in [—180 180] }
BEGIN

WHILE a>pi DO a:=a—-2* pi;
WHILE a<— pi DO a:=a+ 2* pi;
END; { range }

81

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE invkin (VAR wrelb:frame;
VAR current,near,far:vec3; VAR sol:boolean);

LABEL 5;
VAR c2,s2,k1,k2,temp: REAL;
i : INTEGER;

goal, swap: vec3;
solnear, solfar:BOOLEAN;
BEGIN
itou(wrelb, goal); { get x,y,and theta of goal point }
goal[3]:=goal[3]* dtor; { but put theta back into radians }
c2:=(goal[1]* goal[1]+goal[2]* goal[2]-11* 11— 12* 12)/(2.0* 11* 12);
IF abs(c2)>1.0 THEN sol:=FALSE ELSE sol:=TRUE;
IF NOT sol THEN GOTO 5; { No sol. - just exit with flag set }
s2:=sqrt(1.0 - c2* c2);
near{2]:=at2(s2,c2); { Assume Near - swap later if Far }
far[2]:=-near[2];
ki1:=11 + 12* c2;
k2:=12* s2;
temp:=at2(k2,k1); { temp, so we don’t calc. it twice }
near[1]:=at2(goal[2],goal[1])-temp;
far[1]:=at2(goal[2],goal[1])+temp;
near[3]:=goal[3]-near[1]-near[2];
far[3]:=goal[3] - far[1] - far[2];
FOR i:=1 TO 3 DO { Return all angles on range [-180,180] }
BEGIN
range(near[i]) ;
range(far[i]);
END;
IF dist(current, near)>dist(current, far)THEN { swap }
BEGIN
swap:=near;
near:=far;
far:=swap;
END;
solnear:=TRUE;
FOR i:1 TO 3 DO
BEGIN
IF (ABS(near[i]) >2.96) THEN
solnear:=FALSE;
END;

solfar:=TRUE;

FOR i:=1 TO 3 DO
BEGIN

IF (ABS(far[i]) >2.96) THEN
solfar:=FALSE ;

END;

IF ((NOT solnear) AND (NOT solfar)) THEN
s0l:=FALSE ;

IF (solnear AND (NOT solfar)) THEN
far:= near;

IF (solfar AND (NOT solnear)) THEN
near:=far ;

5:

END; { invkin }

PROCEDURE Solve (VAR trels:frame;
VAR current,near,far:vec3; VAR sol:boolean);
VAR trelb,wrelt,wrelb: frame;
BEGIN
tmult(srelb,trels,trelb);
tinvert(trelw,wrelt);
tmult(trelb,wrelt,wrelb);
invkin(wrelb,current,near,far,sol);
END; { Solve }

82

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE INITDATA; { Set up the given data }

BEGIN
11:=0.5; { initialize link lengths }
12:=0.5;

trelwuser[1]:=0.1;
trelwuser[2]:=0.2;
trelwuser([3]:=30.0;
srelbuser[1]:=-0.1;
srelbuser[2]:=0.3;
srelbuser([3]:=0.0;
UTOI(srelbuser,srelb);
UTOI(trelwuser,trelw);
END; { initdata }

BEGIN { Main test program }

initdata: { initialize TOOL and STATION definitions }
FOR i:=1 TO 3 DO current[i]:=0.0;

WRITE(‘Care to do some robot inverse kinematics? ’);

READLN(ans);

WHILE ans=‘y’ DO

BEGIN
WRITELN(‘Enter GOAL: x,y,phi: ’);
READLN(goal[1],goal[2],g0al[3]); { Degrees }
utoi(goal, trels);
Solve(trels,current,near,far,sol);
IF NOT sol THEN WRITELN(‘No solution!’);
current:=near;
WRITELN(‘The Near solution is:’);
FOR i:=1 to 3 do neard[i]:=near[i]*rtod;
WRITEVECT (neard);
WRITELN;
WRITELN(‘The Far solution is:’);
FOR i:=1 to 3 do fard[i]:=far[i]*rtod;
WRITEVECT (fard);
WRITELN; { Check if inverse of Where }
where(near, trels);
itou(trels, goal); { into user representation }
WRITELN(‘Calling Where(near) to check. ...”);
WRITELN(‘Goal is: ’);
writevect(goal);
WRITELN;
where(far,trels);
itou(trels, goal); { into user representation }
WRITELN(‘Calling Where(far) to check. ...”);
WRITELN(‘Goal is: ’);
writevect(goal);
WRITELN;
WRITE(‘Would you like to do some more? ’);
READLN(ans);

END;

END.

Programming Exercise (Part 5)

program pp5 (INPUT,OUTPUT);

CONST
pi=3.14159;
halfpi=1.5707;
dtor=0.0174532925;
rtod=57.29578;

83

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

TYPE
frame = ARRAY[1..2,1..3] OF REAL;
vec3 = ARRAY[1..3] OF REAL;
mat33 = ARRAY[1..3,1..3] OF REAL;

VAR
i: integer;
theta: vec3;
brelw,wrelb: frame;
11,12: REAL;
wrelt,trelw: frame;
srelb,brels: frame;
srelt,trels: frame;
trelwuser: vec3;
srelbuser: vec3;
trelsuser: vec3;
current,near,far: vec3;
thetadot: vec3;
JACnear,JACfar: mat33;
vrelt,vrelw: vec3;
sol: boolean;
ans: char;

PROCEDURE WRITEFRAME (VAR foo: frame);
VAR i,j: integer;

BEGIN
FOR i:=1 TO 2 DO
BEGIN
WRITE (°[’);

FOR j:=1 TO 3 DO
WRITE (foo[i,j]: 10 : 3);
WRITELN (’]1°);
END;
END;

PROCEDURE WRITEVECT (VAR foo: vec3);
VAR i: integer;
BEGIN
FOR i:=1 TO 3 do
WRITELN (’[’,foo[i]: 10 : 3,°]’);
END;

FUNCTION AT2 (a,b: REAL): REAL; { 4 Quadrant Arc Tangent }
VAR ans: REAL;
BEGIN
IF b=0.0 THEN
BEGIN
IF a=0.0 THEN ans:
ELSE
IF a>0.0 THEN ans:=halfpi
ELSE
ans:=- halfpi;
END
ELSE
BEGIN
ans:=arctan (a/b); { Pascal defined arctan }
IF b<O THEN
IF a<0 THEN ans:=ans-pi ELSE ans:=ans+pi;
END;
at2:=ans;
END; { atan2 }

0.0

PROCEDURE TMULT (VAR brela,crelb,crela: frame);
VAR i,j,k: INTEGER;

84

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

BEGIN
FOR i:=1 TO 2 DO
BEGIN
crela[i,3]:=brela[i,3];
FOR j:=1 TO 2 DO
BEGIN
crela[i,3):=crela[i,3]+brela[i,j]*crelb[j,3];
crela[i,j]l:= 0.0;
FOR k:=1 TO 2 DO
crelaf[i,j]:=crela[i,j]+brela[i,k]*crelb[k,]j];
END;
END;
END; { tmult }

PROCEDURE TINVERT (VAR brela,arelb: frame);
VAR i,j: INTEGER;
BEGIN
arelb[1,1]:=brela[1,1];
arelb([1,2]:=brela[2,1];
arelb[2,1]:=brela[1,2];
arelb[2,2]:=brelal[2,2];
FOR i:=1 TO 2 DO
BEGIN
arelb[i,3]:=0.0;
FOR j:=1 TO 2 DO
arelb[i,3]:=arelb[i,3]-brela[j,i]*brela[j,3];
END;
END; { tinvert }

PROCEDURE KIN (VAR theta: vec3; VAR wrelb: frame);
VAR beta: real;
BEGIN

beta:=theta [1]+theta [2] + theta [3];
wrelb[1,1]:=cos (beta);
wrelb[1,2]:=—sin(beta);
wrelb[2,1]:=—wrelb[1,2];
wrelb[2,2]:=wrelb[1,1];

END;

PROCEDURE UTOI(VAR uform: vec3; VAR iform: frame);
BEGIN
iform[1,3]:=uform[1];
iform[2,3]:=uform[2];
iform[1,1]:=cos (uform[3]*dtor);
iform[1,2]:=—sin (uform[3]*dtor);
iform[2,1]:=—iform[1,2];
iform[2,2]:=iform[1,1];
END;

PROCEDURE ITOU(VAR iform: frame; VAR uform: vec3);
BEGIN
uform[1]:=iform[1,3];
uform[2]:=iform[2,3];
uform[3]:=at2(iform[2,1],iform[1,1])*rtod;
END;

function dist (VAR a,b: vec3): real;
VAR d,t: REAL;

i : INTEGER;
BEGIN

d:=0.0;
FOR i:=1 TO 3 DO

85

wrelb[1,3]:=11*cos (theta[1])+12*cos (theta[1]+theta[2]);
wrelb[2,3]:=11*sin (theta[1])+12*sin (theta[1]+theta[2]);

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

BEGIN .
t:=abs(a[i]-b[i]);

d:=d+t;
END;
dist:=d;

END; { dist }

PROCEDURE range (VAR a: REAL);
BEGIN
WHILE a>pi DO a:=a—-2*pi;
WHILE a< -—pi DO a:=a+2*pi;
END; { range }

PROCEDURE invkin (VAR wrelb:frame;
VAR current,near,far:vec3; VAR sol:boolean);

LABEL 5;
VAR c2,s2,k1,k2,temp: REAL;
i: INTEGER;
goal,swap: vec3;
solnear,solfar : BOOLEAN;
BEGIN
itou(wrelb.goal);
goal[3]:=goal[3]*dtor;
c2:=(goal[1]*goal[1]+goal[2]*goal[2]-11*11-12*12)/(2.0*11*12);
IF abs(c2)>1.0 THEN sol:=FALSE ELSE sol:=TRUE;
IF NOT sol THEN GOTO 5;
s2:=sqrt(1.0-c2*c2);
near[2]:=at2 (s2,c2);
far[2]:=—near[2];
k1:=11+12*c2;
k2:=12*s2;
temp:=at2 (k2,k1);
near[1]:=at2(goal[2],goal[1])—temp;
far[1]:=at2(goal[2],goal[1])+temp;
near[3]:=goal[3]—near[1]—near[2];
far[3]:=goal[3]-far[1]-far[2];
FOR i:=1 TO 3 DO
BEGIN
range(near[i]);
range(far[i]);
END;
IF dist(current,near)>dist(current,far) THEN
BEGIN
swap:=near;
near:=far;
far:=swap;
END;

solnear:=TRUE;
FOR i:=1 TO 3 DO
BEGIN
IF (ABS(near[i])>2.96) THEN
solnear:=FALSE;
END;

solfar := TRUE;
FOR i:=1 TO 3 DO
BEGIN
IF (ABS(far[i])>2.96) THEN
solfar :=FALSE;
END ;
IF ((NOT solnear) AND (NOT solfar)) THEN
sol:=FALSE ;
IF (solnear AND (NOT solfar)) THEN
far:= near;

86

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

IF (solfar AND (NOT solnear)) THEN
near:=far ;

5:
END; { invkin }

PROCEDURE SOLVE (VAR trels:frame;
VAR current,near,far:vec3; VAR sol:boolean);

VAR trelb,wrelt,wrelb: frame;
BEGIN

tmult(srelb,trels,trelb);

tinvert(trelw,wrelt);

tmult(trelb,wrelt,wrelb);

invkin (wrelb,current,near,far,sol);
END; { Solve }

PROCEDURE WHERE (VAR theta: vec3; VAR trels: frame);
VAR trelb,wrelb: frame;

BEGIN
KIN (theta,wrelb);
TMULT (wrelb,trelw,trelb);
TMULT (brels,trelb,trels);
END;

PROCEDURE VELTRANS (VAR brela: frame; VAR vrela,vrelb: vec3);
VAR
W,pX,py: real;

BEGIN
w:=vrela[3]; { planar case,w is invariant }
px:=brela[1,3]; { px and py are the org. of B wrt A }
py:=brela[2,3];
vrelb[1]:=brela[1,1]*(vrela[1]—py*w)+brela[2,1]*(vrela[2]+px*W);
vrelb[2]:=brela[1,2]*(vrela[1]—-py*w)+brela[2,2]*(vrela[2]+pXx*W);
vrelb[3]:=w;
{ equation implemented is:

B AT A

V. = R* (V+ w*[-py])

B B A [px] }

END;

PROCEDURE JACOBIAN (VAR theta: vec3; VAR JAC: mat33);
VAR
s3,c3,523,c23: real;
BEGIN
s3:=sin (theta[3]); c3:=cos (theta[3]);
s23:=sin (theta[2] + theta[3]);
c23:=cos (theta[2] + theta[3]);

JAC[1,1]:=12*s3 + 11*s23; JAC[1,2]:=12*s3; JAC[1,3]:=0.0;
JAC[2,1]:=12*c3 + 11*c23; JAC[2,2]:=12*c3; JAC[2,3]:=0.0;
JAC[3,1]:=1.0; JAC[3,2]:=1.0; JAC[3,3]:=1.0;
END;
PROCEDURE VMULT (VAR M: mat33; VAR x,y: vec3); {y = M*x }
VAR

i,j: integer;
BEGIN
FOR i:=1 TO 3 DO

BEGIN

y[i]:=0.0;

FOR j:=1 TO 3 DO
ylil: = y[i] + M[i,j1*x[]];
END;
END;

PROCEDURE INITDATA; { Set up the given data }
BEGIN
11:=0.5;

87

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

12:=0.5;
trelwuser[1]:=0.1;
trelwuser[2]:=0.2;
trelwuser[3]:=30.0;
srelbuser[1]:=0.0;
srelbuser[2]:=0.0;
srelbuser([3]:=0.0;

UTOI (srelbuser,srelb);
TINVERT (srelb,brels);
UTOI (trelwuser,trelw);
TINVERT (trelw,wrelt);

END; { initdata }

BEGIN { Main Test Program }
INITDATA;
WRITE (‘Care to do some robot kinematics? ’);
READLN (ans);
WHILE ans=‘y’ DO
BEGIN
WRITELN (‘Enter cur pos (thetail,theta2,theta3):’);
READLN (current[1],current[2],current[3]);
FOR i: = 1 to 3 do
current[i]:=current[i]*dtor;
WRITELN (‘Enter tool rel station (x,y,theta):’);
READLN (trelsuser[1],trelsuser[2],trelsuser[3]);
UTOI (trelsuser,trels);
SOLVE (trels,current,near,far,sol);
IF sol THEN
BEGIN
WRITELN (‘The 2 solutions are (in radians):’);
WRITEVECT (near);
WRITELN (‘and:’);
WRITEVECT (far);
WRITELN (‘Enter joint vel (thetadot1,2,3):’);
READLN (thetadot[1],thetadot[2],thetadot[3]);
FOR i:=1 TO 3 DO
thetadot[i] :=thetadot[i]*dtcr;

WRITELN;

JACOBIAN (near,JACnear); { jacobian for the near sol }
VMULT (JACnear,thetadot,vrelw);

VELTRANS (trelw,vrelw,vrelt);

WRITELN (‘The tool vel for the near soln is:’);
vrelt[3]:=vrelt[3]*rtod;

WRITEVECT (vrelt);

WRITELN;
JACOBIAN (far,JACfar); { jacobian for the far sol }
VMULT (JACfar,thetadot,vrelw);
VELTRANS (trelw,vrelw,vrelt);
WRITELN (‘The tool vel for the far soln is:’);
vrelt[3]:=vrelt[3]*rtod; { convert to degrees/sec }
WRITEVECT (vrelt);
END

ELSE WRITELN (‘Sorry, no sol for those coords.’);

WRITE (‘Would you like to do some more?’);

READLN (ans);

END;

88

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Programming Exercise (Part 6)

PROGRAM pp6 (INPUT,OUTPUT);

CONST
dtor=0.0174532925;
rtod=57.29578;

11 =
12
mi =
m2
m3
Izz = 0.1; { Moment of inertia for link 3 about Z }
g = 9.8; { Gravity }

intstep = 0.005; { Integration Step Size (seconds) }

- N HhOO
oOwWwo uu

{ Mass of the links }

H
3
3
H
3

TYPE
vec3 = ARRAY [1..3] OF REAL;
mat33 = ARRAY[1..3,1..3] OF REAL;

VAR
b: vec3; { viscous friction coefficients }
theta,thetadot,thetadd : vec3; { pos.,vel.,acc. }
m: mat33; { manipulator mass matrix }
minv: mat33; { inverse of mass matrix }
V: vec3; { vector of dynamic terms }
tau: vecs3; { vector of joint torques }

s1,c1,s2,c2,s12,c12: REAL;

i,j: INTEGER;

len: REAL; { total length of time to simulate }
prnt: REAL; { how often to print (sec.) }

time: REAL; { time into simulation }

ans: char;

Procedure inv33(VAR a,ainv: mat33); { a is non-sing,sym }

VAR det: real;

BEGIN
det:=a[1,1]1*a[2,2]*a[3,3]+a[1,2]*a[2,3]*a[3,1];
det:=det+a[1,3]*a[2,1]*a[3,2];
det:=det-a[1,3]*a[2,2]*a[3,1]-a[1,2]*a[2,1]*a[3,3];
det:=det-a[1,1]*a[2,3]*a[3,2];
ainv[1,1]:=(a[2,2]*a[3,3]-a[2,3]*a[3,2])/det;
ainv[1,2]:=(a[1,3]1*a[3,2]-a[1,2]*a[3,3])/det;
ainv[1,3]:=(a[1,2]*a[2,3]-a[2,2]*a[1,3])/det;
ainv[2,2]:=(a[1,1]1*a[3,3]-a[3,1]*a[1,3]) /det;
ainv[2,3]:=(a[2,1]}*a[1,3]-a[1,1]*a[2,3])/det;
ainv[3,3]:=(a[1,1]1*a[2,2]—-a[1,2]*a[2,1]) /det;
ainv[2,1]:=ainv[1,2];
ainv[3,1]:=ainv[1,3];
ainv[3,2]:=ainv[2,3];

END; { inv33 }

PROCEDURE trig;
BEGIN
s1:=sin (theta[1]);
cil:=cos (theta[1]);
s2:=sin (theta[2]);
c2:=cos (theta[2]);
s12:=sin (theta[1]+theta[2]);
c12:=cos (theta[1]+theta[2]);
END;

89

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE calcm(VAR m: mat33); { Calculate the M Matrix }
VAR m23: REAL;

BEGIN
m23:=m2+m3;
m[1,1]:=12*12*m23+2*11*12*m23*c2+11*11* (m1+m23)+I1zz;
m[1,2]:=12*12*m23+11*12*m23*c2+1zz;
m[1,3]:=1zz;
m[2,1]:=m[1,2]; { M is symmetric }
m[2,2]:=12*12*m23+1zz,
m[2,3]:=1zz;
m(3,1]:=m[1,3]; { M is symmetric }
m[3,2]:=m[2,3]; { M is symmetric }
m[3,3]:=Izz;

END;

PROCEDURE calcsdt(VAR v: vec3); { Calculate V }
VAR m23: REAL; { b[i] are viscous friction coefficients. }
BEGIN
m23:=m2+m3;
v[1]:=—m23*11*12*s2*thetadot[2] *thetadot[2];
v[1]:=v[1]-2*m23*11*12*thetadot[1]*thetadot[2];
v[1]:=v[1]+m23*12*g*c12+(m1+m23)*11*g*cl;
v[1]:=v[1]+b[1]*thetadot[1];
v[2]:=m23*11*12*s2*thetadot[1]*thetadot[1];
v[2]:=v[2]+m23*12*g*c12+b[2] *thetadot[1];
v[3]:=b[3]*thetadot[3];

END;
PROCEDURE VMULT (VAR M: mat33; VAR x,y: vec3);
VAR
i,j: integer;
BEGIN
FOR i:=1 TO 3 DO
BEGIN
y[i]:=0.0;

FOR j:=1 TO 3 DO
y[i]:=y[i] + M[i,j1*x[j];
END;
END;

PROCEDURE update (VAR tau: vec3;
VAR period: REAL;
VAR theta,thetadot: vec3);
VAR i,j,k: INTEGER;
temp: vec3;
BEGIN
j:=round(period/instep);
FOR i:=1 TO j DO

BEGIN
trig; { do trig functions on current angles }
calcm(m); { calculate mass matrix }
inv33(m,minv); { invert mass matrix }
calcsdt(v); { calculate velocity,grav.,friction }

FOR k:=1 TO 3 DO temp[k]:=tau [k]-V[K];

vmult(minv,temp,thetadd); { compute joint acceleration }

FOR k:=1 TO 3 DO { do integration step }

BEGIN
theta[k]:=theta [k]+thetadot[k]*intstep

+0.5*intstep*intstep*thetadd[k];

thetadot[k]:=thetadot[k]+thetadd[k]*intstep;

END;

END;
END; { update }

90

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

BEGIN { Main. }

ans:=‘y’;
WHILE ans=‘y’ DO
BEGIN
WRITELN(‘Want to simulate joint friction?’);
READLN (ans) ;

IF ans=‘y’ THEN
FOR i:=1 TO 3 DO b[i]:=5.0 { friction }
ELSE
FOR i:=1 TO 3 DO b[i]:=0.0; { no friction }

WRITELN(‘How long to simulate?’);
READLN(1len);
WRITELN(‘How often to print? (sec.)’);
READLN(prnt);
WRITELN(‘Enter initial joint positions (degrees):’);
READLN(theta[1],theta[2],theta[3]);
FOR i:=1 TO 3 DO theta[i]:=theta [i]*dtor;
FOR i:=1 TO 3 DO tau[i]:=0.0;
FOR i:=1 TO 3 DO thetadot[i]:=0.0;
time:=0.0;
j:=round(len/prnt);
WRITELN(® Time Joint 1 Joint 2 Joint 37’);
FOR i:=1 TO j DO
BEGIN

update(tau,prnt,theta,thetadot);

time:=time+prnt;
writeln(time:9:2.theta [1]*rtod:12:3,

theta [2]*rtod:12:3,theta [3]*rtod:12:3);
END;
WRITELN(‘Want to Simulate the Robot?’);
READLN(ans) ;
END;
END.

Programming Exercise (Part 7)

program pp7 (INPUT,OUTPUT);

CONST
pi=3.14159;
halfpi=1.5707;
dtor=0.0174532925;
rtod=57.29578;

TYPE

frame = ARRAY[1..2,1..3] OF REAL;
vec3 = ARRAY[1..3] OF REAL;

vec4 = ARRAY[1..4] OF REAL;

pntlist = ARRAY[1..5] OF vec3;
seglist = ARRAY[1..5,1..3] of vec4;

VAR
i,j: integer;
theta: vec3;
brelw,wrelb: frame;
11,12: REAL;
wrelt,trelw: frame;
srelb,brels: frame;
srelt,trels: frame;
trelwuser: vec3;
srelbuser: vec3;
trelsuser: vec3;
place,current,far: vec3;

91

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

npnt: integer;

viapnt,viavel: pntlist;

path: seglist;

trajectory: array[1..300] of vec3;
deltat.s: real;

nticks: integer;

sol: boolean;

ans: char;

PROCEDURE WRITEFRAME (VAR foo: frame);
VAR i,j: integer;

BEGIN
FOR i: = 1 TO 2 DO
BEGIN

WRITE ('[’);

FOR j: = 1 TO 3 DO
WRITE (foo[i,j]: 10 : 3);
WRITELN (’1’);
END;
END;

PROCEDURE WRITEVECT (VAR foo: vec3);
VAR i: integer;

BEGIN
FOR i:=1 TO 3 do
WRITELN (’[’,foo[i]: 10 : 3,’]’);
END;

FUNCTION AT2 (a,b: REAL): REAL;
VAR ans: REAL;

BEGIN
IF b=0.0 THEN
BEGIN
IF a=0.0 THEN ans:=0.0
ELSE
IF a>0.0 THEN ans:=halfpi
ELSE
ans:=-halfpi
END
ELSE
BEGIN
ans:=arctan (a/b);
IF b<O THEN
IF a<0 THEN ans:=ans-pi ELSE ans:=ans+fpi;
END;
at2:=ans;

END; { atan2 }

PROCEDURE TMULT (VAR brela,crelb,crela: frame);
VAR i,j,k: INTEGER;
BEGIN
FOR i:= 1 TO 2 DO
BEGIN
crela[i,3]:=brela[i,3];
FOR j:=1 TO 2 DO
BEGIN
crela[i,3]:=crela[i,3]+brela[i,j] *crelb[j,3];
crela[i,j]: = 0.0;
FOR k:=1 TO 2 DO
crela[i,j]:=crela[i,j]+brela[i,k] *crelb[k,j];
END;
END;
END; { tmult }

92

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE TINVERT (VAR brela,arelb: frame);
VAR i,j: INTEGER;
BEGIN
arelb[1,1]:=brela[1,1];
arelb[1,2]:=brelaf[2,1];
arelb[2,1]:=brela[1,2];
arelb[2,2]:=brela[2,2];
FOR 1i:=1 TO 2 DO
BEGIN
arelb[i,3]:=0.0;
FOR j:=1 TO 2 DO
arelb[i,3]:=arelb[i,3]-brela[j,i] *brelalj,3];
END;
END; { tinvert }

PROCEDURE KIN(VAR theta: vec3; VAR wrelb: frame);
VAR beta: real;

BEGIN
wrelb[1,3]:=11 *cos (theta [1])+12 *cos (theta [1]+theta [2]);
wrelb[2,3]:=11 *sin (theta [1])+12 *sin (theta [1]+theta [2]);
beta:=theta[1]+theta [2]+theta [3];
wrelb[1,1]:=cos (beta);
wrelb[1,2]:=—sin (beta);
wrelb[2,1]:=—wrelb[1,2];
wrelb[2,2] :=wrelb[1,1];
END;

PROCEDURE UTOI(VAR uform: vec3; VAR iform: frame);
BEGIN
iform[1,3]:=uform[1];
iform[2,3]:=uform[2];
iform[1,1]:=cos (uform[3] *dtor);
iform[1,2]:=—sin (uform[3] *dtor);
iform[2,1]:=—iform[1,2];
iform[2,2]:=iform[1,1];
END;

PROCEDURE ITOU(VAR iform: frame; VAR uform: vec3);
BEGIN
uform[1]:=iform[1,3];
uform[2]:=iform[2,3];
uform[3]:=at2(iform[2,1],iform[1,1]) *rtod;
END;

PROCEDURE range (VAR a: REAL);
BEGIN
WHILE a>pi DO a:=a-—-2 *pi;
WHILE a< —pi DO a:=a+2 *pi;
END; { range }

PROCEDURE invk in(VAR wrelb:frame;
VAR current,near,far:vec3;
VAR sol:boolean);
LABEL 5;
VAR c2,s2,k1,k2,temp: REAL;
i: INTEGER;
goal,swap: vec3;
BEGIN
itou(wrelb,goal);
goal[3]:=goal[3] *dtor;
c2:=(goal[1] *goal[1]+goal[2] *goal[2]-11 *11-12 *12)/(2.0 *11 *12);
IF abs (c2)>1.0 THEN sol:=FALSE ELSE sol:=TRUE;
IF NOT sol THEN GOTO 5;
s2:=sqrt(1.0-c2 *c2);

93

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

near[2]:=at2(s2,c2);
far[2]:=—near[2];
k1:=11+12 *c2;
k2:=12 *s2;
temp:=at2(k2,k1);
near[1]:=at2(goal[2],goal[1])—temp;
far[1]:=at2(goal[2],goal[1])+temp;
near[3]:=goal[3]-near[1]-near[2];
far[3]:=goal[3]-far[1]-far[2];
FOR i:=1 TO 3 DO
BEGIN

range (near[i]);

range(far[i]);

END;
IF dist(current,near)>dist(current,far)THEN
BEGIN
swap:=near;
near:=far;
far:=swap;
END;
5:

END; { invkin }

PROCEDURE SOLVE (VAR trels:frame;
VAR current,near,far:vec3;
VAR sol:boolean);
VAR trelb,wrelt,wrelb: frame;
BEGIN
tmult(srelb,trels,trelb);
tinvert(trelw,wrelt);
tmult(trelb,wrelt,wrelb);
invkin(wrelb,current,near,far,sol);
END; { Solve }

PROCEDURE WHERE (VAR theta: vec3; VAR trels: frame):
VAR trelb,wrelb: frame;

BEGIN
KIN(theta,wrelb);
TMULT (wrelb,trelw,trelb);
TMULT (brels,trelb,trels);
END;

PROCEDURE INITDATA; { Set up the given data }

BEGIN
s$:=0.3333; { set time scaling constant }
deltat:=0.2;
11:=0.5; { initialize link lengths }
12:=0.5;
trelwuser[1]:
trelwuser([2]:
trelwuser([3]:
srelbuser[1]:
srelbuser[2]:
srelbuser([3]:=0.0;
UTOI (srelbuser,srelb);
TINVERT(srelb,brels);
UTOI(trelwuser,trelw);
TINVERT (trelw,wrelt);

END; { initdata }

{ This is done differently than in the text. In this program
a time scale factor is used instead of giving the total time
for a cubic segment. Its really simpler to do it just as in
the text, but this scaling business has some benefits too.}

nnnnu
oo wWwoo
SO .
COoO- N =
N e T

94

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE CUBCOEFF (VAR thO,thf,thdot0,thdotf: real;
VAR cc: vec4);

BEGIN

cc[1]:=tho0;

cc[2]:=thdotO/s;

cc[8]:=3 * (thf - th0) - 2 *thdotO/s - thdotf/s;

cc[4]:=—2 * (thf - th0) + thdotf/s + thdotO/s;

END;

PROCEDURE JOINTVEL (VAR vjapnt: pntlist; VAR npnt: integer;
VAR viavel: pntlist);
{ Compute the joint velocities at the via points }
VAR i,j: integer;
BEGIN
for j:=1 to 3 do
begin
viavel[1][j]:=0.0; viavel[npnt][]j]:=0.0;
end;
if npnt > 2 then
begin
for i:=2 to npnt - 1 do
for j:=1 to 3 do
viavel [1][j]:=0.5 *((viapnt[i][j]-viapnt[i-1][]j]) +
(viapnt[i+1][]j]-viapnt[i][]j])) *s;
{ The velocity chosen for each via point is the
average of the velocities
for each path segment if all the via points were
connected with straight
lines. See chap. 7. }

end;

END;

PROCEDURE RUNPATH (VAR path: seglist; VAR npnt: integer);
VAR k,i,j:integer;

time,tprime: real;

BEGIN
time:=0.0;

i:=1;

nticks:=round((npnt - 1) *3/deltat);
writeln (‘path in cartesian space (time,x,y,phi):’);
for k:=1 to nticks do
begin
time:=time + deltat;
tprime:=time *s;
for j:=1 to 3 do
theta [j]:=path[i,j][1] + path [i,j][2] *tprime +
path [i,j][3] * sqr (tprime)+path[i,j][4] * sqr (tprime) *tprime;
WHERE (theta,trels);
ITOU (trels,trajectory [k]);
write (time: 5 : 2);
for j:=1 to 3 do write (trajectory[k][j]:10:3);
writeln;
if time>3.0 then
begin
time:=0.0; { reset time each segment }
ir=i+1;
end;
end;
END;

{ here’s a hack to plot the path on a TTY }

PROCEDURE plotpath;
var i,k,j: integer;
xscale,yscale: real;

95

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

begin

ch: array[0..3] of char;
grid: array[1..60,1..80] of char;

xscale:=30.0; yscale:=22.5;

ch[0]:=‘<"; c¢h [1]:=°V’; c¢ch[2]:=>"; <ch[3]:=‘1";
for i:=1 to 60 do
for j:=1 to 80 do grid[i,j]:=" ’;
for j:=1 to 80 do grid [31,j]:=‘-";
for i:=1 to 60 do grid [1,40]:=‘1";
for k:=1 to nticks do
begin

i:=31-round (trajectory[k][2] * yscale);
j:=round(trajectory[k][1] * Xscale)+40;

grid[i,j]:=ch[(round(trajectory[k][3]+225) div 90) mod 4];

end;

for k:=1 to npnt do

begin

where (viapnt[k],trels);

itou (trels,place);

i:=81-round (place[2] * yscale);
j:=round (place[1] * xscale)+40;
gridfi,j]:=* *’

end;

for i:=1 to 57 do

begin

for j:=1 to 78 do write(grid[i,j]);
writeln;

end;

end;
BEGIN { Main Test Program }

INITDATA;
WRITE (‘Care to plan some swell robot paths? ’);
READLN (ans);
WHILE ans=‘y’ DO
BEGIN
npnt:=1;
for i:=1 to 3 do current[i]:=0.0;

{ enter the path via points and convert to joint angles }

WRITELN (‘Enter the initial position (x,y,phi): ’);
READLN (place[1],place[2],place[3]);
UTOI (place,trels);
SOLVE (trels,current,viapnt [npnt],far,sol);
while sol do
begin
npnt:=npnt+1;
writeln (‘Enter the next via point (x,y,phi): ’);
writeln (‘(enter a point with no sol to terminate)
readln (place [1],place[2],place[3]);
UTOI (place,trels);
SOLVE (trels,viapnt[npnt-1],viapnt[npnt],far,sol);
end;
npnt:=npnt-1;
JOINTVEL (viapnt,npnt,viavel);
for i:=1 to npnt-1 do
for j:=1 to 3 do
CUBCOEFF (viapnt[i][j],viapnt[i+1][]j],viavel[i][]j],
viavel[i+1][j],path[i,]]);

RUNPATH(path,npnt);
PLOTPATH;
WRITE (‘Would you like to do some more? ’);
READLN (ans);
END;
END.

96

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Programming Exercise (Part 9 and 10)

PROGRAM pp8(INPUT,OUTPUT);

CONST
dtor=0.0174532925;
rtod=57.29578;

11 = 0.5;

12 = 0.5;

mi = 4.6; { Mass of the links }

m2 = 2.3;

m3 = 1.0;

Izz = 0.1; { Moment of inertia for link 3 about Z }

g = 9.8; { Gravity }
intstep = 0.005; { Integration Step Size (seconds) }

TYPE
vec3 = ARRAY[1..3] OF REAL;
mat33 = ARRAY[1..3,1..3] OF REAL;
pathtype = ARRAY[1..3,1..3,1..4] OF REAL;

VAR
b: vec3; { viscous friction coefficients }
theta, thetadot, thetadd : vec3;
m: mat33; { manipulator mass matrix }
minv: mat33; { inverse of mass matrix }
V: vec3; { vector of state dependent dynamic terms }
tau: vec3; { vector of joint torques }

s1, c¢1, s2, c2, s12, c12: REAL;
i, j: INTEGER;
len: REAL; { total length of time to simulate }
nprnt: INTEGER; { how many ticks between printing }
serper: REAL; { servo period }
time: REAL; { time into simulation }
ans: char;
pos, vel, acc: vec3; { desired path }
kp, Kkv; vec3; { gains }
stepans, dynans: char;
tauprime, temp: vec3;

mm: mat33; { model of mass matrix used in control law }
vm: vec3;
path: pathtype; { storage of cubic coefficients }

{ Normally, this routine would do the path planning }
{ based on user input. Here, for simplicity, I have }
{ the constants from the last homework precomputed. }

{ Not elegant, but it was easiest... }
PROCEDURE initpath;

BEGIN

path[1,1, 1]:= 1.047;

path[1,1, 2]:= 0.000;
path[1,1, 3]:= -5.673;

path[1,1, 4]:= 3.167;

path[1,2, 1]:= -1.920;

path[1,2, 2]:= 0.000;
path[1,2, 3]:= 10.328;
path[1,2, 4]:= -6.994;
path[1,3, 1]:= 0.349;
path[1,3, 2]:= 0.000;
path[1,3, 3]:= -0.204;
path[1,3, 4]:= 0.161;
path[2,1, 1]:= -1.459;

97

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

path[2,1, 2]:= -1.845;

path[2,1, 3]:= -1.114;

path[2,1, 4]:= 1.776;

path[2,2, 1]:= 1.415;

path[2,2, 2]:= -0.324;

path[2,2, 3]:= -9.633;

path[2,2, 4]:= 5.974;

path[2,3, 1]:= 0.306;

path[2,3, 2]:= 0.075;

path[2,3, 3]:= 0.407;

path[2,3, 4]:= -0.289;

path[3,1, 1]:= -2.643;

path[3,1, 2]:= 1.253;

path[3,1, 3]:= 8.563;

path[3,1, 4]:= -6.127;

path[3,2, 1]:= -2.568;

path[3,2, 2]:= -1.667;

path[3,2, 3]:= 5.279;

path[3,2, 4]:= -2.964;

path[3,3, 1]:= 0.499;

path[3,3, 2]:= 0.022;

path[3,3, 3]:= -0.491;

path[3,3, 4]:= 0.320;

END; { initpath }

PROCEDURE trig;

BEGIN
s1:=sin(theta[1]);
c1:=cos(theta[1]);
s2:=sin(theta[2]);

c2:=cos(thetal[2]);

s12:=sin(theta[1]+ theta[2]);

c12:=cos(theta[1]+ theta[2]);
END;

PROCEDURE calcm(VAR m: mat33);

VAR m23: REAL;

BEGIN
m23:=m2+m3;
mi1,1]:=12*%12*m23+2*11*12*m23*c2+11*11* (m1+m23) +1zz;

mi1,2]:=12*12*m23+11*12*m23*c2+1zz;
m[1,3]:=Izz;
m{2,1]:=m[1,2]; { M is symmetric }
m[2,2]:=12*12*m23+1zz;
m[2,3]:=1zz;
m{3,1]:=m[1,3]; { M is symmetric }
m[3,2]:=m[2,3]; { M is symmetric }
m[3,3]:=1zz;

END;

PROCEDURE calcsdt (VAR v: vec3);
VAR m23: REAL;
BEGIN
m23:=m2+m3;
v[1]:=-m23*11*12*thetadot[2] *thetadot[2];

v[1]:
v[1]:
v[1]:
v[2]:
v[2]:
v[3]:
END;

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

=v[1]-2*m23*11*12*s2*thetadot[1]*thetadot[2];
=v[1]+m23*12*g*c12+(m1+m23)*11*g*ct;
=v[1]+b[1]*thetadot[1];
=m23*11*12*s2*thetadot[1] *thetadot([1];
=v[2]+m23*12*g*c12+b[2] *thetadot[2];
=b[3]*thetadot[3];

98

PROCEDURE VMULT (VAR M: mat33; VAR x, y: vec3);

VAR
i,j: integer;

BEGIN

FOR i:=1 TO 3 DO
BEGIN
y[i]:=0.0;

FOR j:=1 TO 3 DO
ylil:=y[i] + M[i,31*x[]];
END;
END;

PROCEDURE vadd(VAR a,b,c: vec3); { finds ¢ = a+b }
VAR i: INTEGER;
BEGIN
FOR i: = 1 TO 3 DO c[i]:=a[i]+b[i];
END; { vadd }

PROCEDURE update (VAR tau: vec3; VAR period: REAL;
VAR theta, thetadot: vec3);
VAR i,j,k: INTEGER;
temp: vec3;
BEGIN
j:=round(period/instep);
FOR i:=1 TO j DO
BEGIN
trig;
calcm(m);
inv33(m,minv);
calcsdt(v);
FOR k:=1 TO 3 DO temp[k]:=tau[k]-Vv[k];
vmult(minv,temp,thetadd);
FOR k:=1 TO 3 DO
BEGIN
theta[k]:=theta[k]+thetadot[k]*instep
+0.5*intstep*intstep*thetadd[k];
thetadot[k]:=thetadot[k]+thetadd[k]*intstep;
END;
END;
END; { update }

Procedure step: { Generate Step input at time = 3.0 }
BEGIN

IF time >= 3.00 THEN pos[2]:=-50.0*dtor;
END;

PROCEDURE spline;{ Generate Cubic Spline Path }
VAR i,j: INTEGER;
tim: REAL; { scaled time (always [0,1]) }
BEGIN
IF time < 9.0 THEN
BEGIN
IF time>6.00 THEN i:=3 ELSE
IF time>3.00 THEN i:=2 ELSE i:=1;
tim:=(time-(i-1)*3.0)/3.0;
FOR j:=1 TO 3 DO
BEGIN

pos[j]:=path[i,]j,1]+(path[i,]j,2]+(path[i,],3]
+path[i,j,4]1*tim)*tim)*tim;
vel[j]:=path[i,j,2]+(2.0*path[i,]j,3]
+3.0*path[i,j,4]*tim)*tim;
vel[j]:=0.33333*vel[j];
acc[j]:=2.0*path[i,j,3]+6.0*path[i,],4]*tim;

99

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

acc[j]:=0.3333*0.33333*acc[j];
END;

END;

END; { spline }

PROCEDURE servo; { tauprime based on desired path and errors }
BEGIN

FOR i: = 1 TO 3 DO

BEGIN

tauprime[i]:=acc[i]+kv[i]*(vel[i]-thetadot[i])
+kp[i]*(pos[i]-theta[i]);

END;

END; { servo }

BEGIN { Main. }
initpath; { plan the splined path }
ans:=‘y’;
WHILE ans=‘y’ DO
BEGIN
WRITELN(‘How long to simulate?’);
READLN(1len);
WRITELN(‘Print position every N servo periods... N=?’);
READLN(nprnt);
WRITELN(‘Spline path or Step? (y = Step)’);
readln(stepans);
writeln(‘Use dynamic compensation?’);
readln(dynans);

WRITELN(‘Enter velocity gains: kv[i] (3 vals):’);

READLN(kv[1], kv[2], kv[3]);

IF dynans = ‘y’ THEN

BEGIN
kp[1]: = 175.0; kp[2]:=110.0; kp[3]:=20.0;

END

ELSE

BEGIN
kp[1]:=100.0; kp[2]:=100.0; kp[3]:=100.0;

END;

theta[1]:=60.0; theta[2]:=-110.0; theta[3]:=20.0;

FOR i:=1 TO 3 DO theta[i]:=theta[i]*dtor;

FOR i:=1 TO 3 DO

BEGIN
pos[i]:=t
vel[i]:=0
acc[i]:=0

END;

FOR i:=1 TO 3 DO thetadot[i]:=0.0;

FOR i:=1 TO 3 DO b[i]:=5.0; { friction }

time:=0.0;

serper:=0.01;

j:=round(len/serper);

WRITELN(® Time Joint 1 Joint 2 Joint 3’);

writeln(time:9:2.theta[1]*rtod:12:3,

theta[2]*rtod:12:3,theta[3]*rtod:12:3);
FOR i:=1 TO j DO

heta[i]; { initialize desired path }
0;
0;

BEGIN
IF stepans=‘y’ THEN step ELSE spline;
servo; { Uses gains and errors to compute tauprime }
IF dynans=‘y’ THEN
BEGIN
calcm(mm);
calcsdt(vm);

vmult(mm,tauprime,temp);
vadd (temp,vm,tau);
END ELSE tau:=tauprime; { No dynamics used }

100

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

update (tau,serper,theta,thetadot);
time:=time+serper;

IF (i MOD nprnt)=0 THEN

BEGIN

writeln(time:9:2,theta[1]*rtod:12:3,

theta[2]*rtod:12:3,theta[3]*rtod:12:3);

END;

END;

WRITELN(‘Want to Simulate the Robot?’);

READLN(ans);

END;

Programming Exercise (Part 11)

PROGRAM sm9 (INPUT,OUTPUT);

CONST
dtor=0.0174532925;
rtod=57.29578;

11
12
m1
m2
m3
Izz = 0.

o n

intstep = 0.005;

TYPE
vec3 = ARRAY[1..3] OF REAL;
mat33 = ARRAY[1..3.1..3] OF REAL;
frame = ARRAY[1..2.1..3] OF REAL;
pathtype = ARRAY[1..3,1..3,1..4] OF REAL;

VAR
b: vec3;
theta,thetadot,thetadd: vec3;
m: mat33;
minv: mat33;
V: vec3;
tau: vec3;

s1,c1,s2,c2,s12,c12: REAL;

i,j: INTEGER;

len: REAL;

nprnt: INTEGER;

serper: REAL; servo period
time: REAL; time into simulation
ans: char;

pos,vel,acc: vec3; desired path
kp,Kkv: vec3;

stepans, dynans: char;
tauprime,temp: vec3;

fes: vec3; stored force acting on hand
fe: vec3; actual force acting on hand
eft: vec3; torque due to contact forces
wrelb: frame: wrist rel base

Kpx: vec3; desired Cartesian stiffness

gravtor: vec3; torques due to gravity

101

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE trig;

BEGIN
s1:=sin(thetaf1]);
ci1:=cos(theta[1]);
s2:=sin(theta[2]);
c2:=cos(theta[2]);
s12:=sin(theta[1]+theta[2]);
c12:=cos(theta[1]+theta[2]);

END;

PROCEDURE calcm(.VAR m: mat33);

VAR m23: REAL;

BEGIN
m23:=m2+m3;
mi1,1]:=12*12*m23+2*11*12*m23*c2+11*11* (m1+m23)+1zz;
m[1,2]:=12*12*m23+11*12*m23*c2+1zz;
m{1,3]:=1zz;
m{2,1]:=m[1,2];
m[2,2]:=12*12*m23+1zz;
m[2,3]:=1zz;
m[{3,1]:=m[1,3];
m[3,2]:=m[2,3];
m[3,3]:=1zz;

END;

PROCEDURE calcsdt (VAR v: vec3);

VAR m23: REAL;

BEGIN
m23:=m2+m3;
v[1]:=—m23*11*12*s2*thetadot[2] *thetadot[2];
v[1]:=v[1]-2*m23*11*12*s2*thetadot[1]*thetadot[2];
v[1]:=v[1]+m23*12*g*c12+(m1+m23)*11*g*c1;
v[1]:=v[1]+b[1]*thetadot[1];
v[2]:=m23*11*12*s2*thetadot[1]*thetadot[1];
v[2]:=v[2]+m23*12*g*c12+b[2] *thetadot[2];
v[3]:=b[3]*thetadot[3];

END;

PROCEDURE grav(VAR v: vec3);

VAR m23: REAL;

BEGIN
m23:=m2+m3;
v[1]:=m23*12*g*c12+(m1+m23)*11*g*c1;
v[2]:=m23*12*g*c12;

v[3]:=0.0;
END;
PROCEDURE VMULT (VAR M: mat33; VAR x,y: vec3);
VAR
i,j: integer;
BEGIN
FOR i:=1 TO 3 DO
BEGIN
y[i]:=0.0;

FOR j:=1 TO 3 DO
ylil:=y[i] + M[1i,i1*x[]j];
END;
END;

PROCEDURE vadd(VAR a,b,c: vec3);
VAR i: INTEGER;

BEGIN
FOR i:=1 TO 3 DO c[i]:=a[i]+b[i];
END; vadd

102

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE JACOBIAN (VAR theta: vec3; VAR JAC: mat33);
VAR

s3,c3,s23,c23; real;
BEGIN
s3:=sin(theta[3]); c3:=cos(theta[3]);
s23:=sin(theta[2] + theta[3]); c23:=cos(theta[2]+theta[3]);
JAC[1,1]:=12*s3+11*s23; JAC[1,2]:=12*s3; JAC[1,3]:=0.0;
JAC[2,1]:=12*c3+11*c23; JAC[2,2]:=12*c3; JAC[2,3]:=0.0;
JAC[3,1]:=1.0; JAC[3,2]:=1.0; JAC[3,3]:=1.0;
END;

PROCEDURE transpose (VAR x: mat33; VAR y: mat33);
VAR i,j: INTEGER;
BEGIN
FOR i:=1 TO 3 DO
FOR j:=1 TO 3 DO
yIi,i1:=x[],1];
END; transpose

PROCEDURE calceft (VAR torque: vec3); torque = J+T Fe
VAR jac,jact: mat33;
i: INTEGER;

BEGIN

jacobian(theta,jac);

transpose(jac,jact);

vmult(jact,fe,torque);

FOR i:=1 TO 3 DO torque[i]:=—torque[i];
END; calceft

PROCEDURE update (VAR tau: vec3; VAR period: REAL;
VAR theta,thetadot: vec3);
VAR 1i,j,k: INTEGER;
temp: vec3;
BEGIN
j:=round(period/intstep);
FOR i:=1 TO j DO
BEGIN
trig;
calcm(m);
inv33(m,minv);
calcsdt(v);
calceft(eft); calc. torques due to hand forces
FOR k:=1 TO 3 DO temp[k]:=tau[k]-v[k]-eft[k];
vmult(minv,temp,thetadd);
FOR k:=1 TO 3 DO
BEGIN
theta[k]:=theta[k]+thetadot[k]*intstep
+0.5*intstep*intstep*thetadd[K];
thetadot[k]:=thetadot[k]+thetadd[k]*intstep;
END;
END;
END; update

PROCEDURE KIN (VAR theta: vec3; VAR wrelb: frame);
VAR beta: real;
BEGIN
wrelb[1,3]:=11*cos(theta[1]) + 12*cos(theta[1] + theta[2]);
wrelb[2,3]:=11*sin(theta[1]) + 12*sin(theta[1] + theta[2]);
beta:=theta[1] + theta[2] + theta[3];
wrelb[1,1]:=cos (beta);
wrelb[1,2]:=—sin (beta);
wrelb[2,1]:=—wrelb[1,2];
wrelb[2,2]:=wrelb[1,1];
END;

103

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

PROCEDURE forcestep; make forces appear at t=3 secs
VAR i: INTEGER;

BEGIN
IF timeé=3.0 THEN
BEGIN
FOR 1i:=1 TO 3 DO fe[i]:=fes[i];
END;

END; forcestep

This control law is different than the one suggested in the
book in that the gravity model is used to feedforward some
torque to cancel the gravity effect. It will work without
this, but then the arm sags due to gravity if made compliant
in that direction.

PROCEDURE servo;
VAR e,edot: vec3;
tpe: vec3; torque to fix position errors
jac,jact: mat33; jacobian AND transpose
kpxmat: mat33;
temp, temp2: vec3;
BEGIN
kpxmat[1,1]:=kpx[1]; kpxmat[1,2]:=0.0; kpxmat[1,3]:=0.0;
kpxmat[2,1]:=0.0; kpxmat[2,2]:=kpx[2]; kpxmat[2,3]:=0.0;
kpxmat[3,1]:=0.0; kpxmat[3,2]:=0.0; kpxmat[3,3]:=kpx[3];
jacobian(theta, jac); for present position
transpose(jac,jact);
FOR i:=1 TO 3 DO e[i]:=pos[i] - theta[i];
vmult(jac,e,temp);
vmult (kpxmat,temp,temp2);
vmult(jact,temp2,tpe);
grav(gravtor); calculate gravity torques
FOR i:=1 TO 3 DO
BEGIN
edot[i]:=vel[i]-thetadot[i];
tauprime[i] :=tpe[i]+kv[i]*edot[i]+gravtor([i];
END;
END; servo
BEGIN Main.
ans:=‘y’;
WHILE ans=‘y’ DO
BEGIN
fe[1]:=0.0; fe[2];=0.0; fe[3]:=0.0;
fes[3]1:=0.0; no torques on hand
WRITE(‘Enter Cartesian Force to
apply (X and Y values in Newtons’);
READLN(fes[1],fes[2]);
WRITELN(‘Forces appear at t=3 s, How long to simulate?’);
READLN(len);
WRITELN(‘Print position every N servo periods ... N=?’);
READLN(nprnt);
WRITELN(‘Enter Stiffnesses: kpx[i] (3 vals):’);
READLN(kpx[1],kpx[2],kpx[3]);
kv[1]:=10.0; kv[2]:=10.0; kv[3]:=10.0;
theta[1]:=60.0; theta[2]:=-90.0; theta[3]:=30.0;
FOR i:=1 TO 3 DO theta[i]:=theta[i]*dtor;
FOR i:=1 TO 3 DO

BEGIN
pos[i]:=theta[il]; initialize desired path
vel[i]:=0.0;
acc[i]:=0.0;

END,

FOR 1i:=1 TO 3 DO thetadot[i]:=0.0;
FOR i:=1 TO 3 DO b[i]:=5.0;
time:=0.0;

serper:=0.01;

104

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

j:=round (len/serper);
WRITELN(® Time X pos Y pos’);
kin(theta,wrelb);
writeln(time:9:2,wrelb[1,3]:12:3,wrelb[2,3]:12:3);
FOR i:=1 TO j DO
BEGIN
forcestep; Make forces appear at t=3 secs
servo;
tau:=tauprime; No dynamics used
update (tau,serper,theta,thetadot);
time:=time+serper;
IF (i MOD nprnt)=0 THEN
BEGIN
kin(theta,wrelb;
writeln(time:9:2,wrelb[1,3]:12:3,wrelb[2,3]:12:3);
END;
END;
WRITELN(‘Want to Simulate the Robot?’);
READLN(ans) ;
END;
END.
Enter Cartesian Force to apply (X and Y values in Newtons
50
Forces appear at t=3 s, How long to simulate?
8
Print position every N servo periods... N=?
50
Enter Stiffnesses: kpx[i] (3 vals):
10 200 200
Time X pos Y pos
0.00 0.683 0.183
0.50 0.685 0.181
1.00 0.684 0.183
1.50 0.684 0.183
2.00 0.684 0.183
2.50 0.684 0.183
3.00 0.684 0.183
3.50 0.698 0.180
4.00 0.711 0.179
4.50 0.723 0.180
5.00 0.735 0.180
5.50 0.746 0.181
6.00 0.756 0.182
6.50 0.765 0.182
7.00 0.774 0.183
7.50 0.783 0.184
8.00 0.791 0.185
Want to Simulate the Robot?
y
Enter Cartesian Force to apply (X and Y values in Newtons
05
Forces appear at t=3 s. How long to simulate?
8
Print position every N servo periods... N=?
50
Enter Stiffnesses: kpx[i] (3 vals):
10 200 200
Time X pos Y pos
0.00 0.683 0.183
0.50 0.682 0.183
1.00 0.682 0.183
1.50 0.682 0.183
2.00 0.683 0.183

105

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.50 0.683 0.183
3.00 0.683 0.183
3.50 0.679 0.204
4.00 0.678 0.207
4.50 0.678 0.208
5.00 0.678 0.208
5.50 0.678 0.208
6.00 0.679 0.208
6.50 0.679 0.208
7.00 0.679 0.208
7.50 0.679 0.208
8.00 0.679 0.208

106

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercises — Solutions

Robert L. Williams 11

Mechanical Engineering
Ohio University
Athens, OH

107

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Craig Robotics Text Matlab Exercises — Solutions

Robert L. Williams II

Outline

2a) Orthonormal rotation matrices

2b) Homogeneous transformation matrices

3) Forward pose kinematics — Planar 3R
4) Inverse pose kinematics — Planar 3R
5) Jacobian, determinant, resolved-rate, inverse statics — Planar 3R

6a) Inverse dynamics simulation — Planar 2R
6b) Inverse dynamics snapshot — Planar 3R

6¢c) Forward dynamics trajectory — Planar 3R

7) Trajectory generation — 3", 3 w/ via, 5"
8) Resolved-rate with kinematic redundancy — Planar 4R, particular only
9) Single joint control Simulink simulation

All Matlab solutions were developed on a PC running Windows 98 and Matlab R12, and the beta version
7 of the Corke Robotics Toolbox . However, these exercises and solutions should be general for other
platforms, operating systems, and software version numbers (these versions or newer).

108

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 2A

a)
0.9254 0.0180 0.3785
i) Given @ =10°, f=20°, and y =30°; AR=| 0.1632 0.8826 -0.4410
-0.3420 0.4698 0.8138
Column-wise orthonormal demonstration (row-wise is similar):
0.9254] (0.0180 0.3785
AR pxA¥5 =4 0.1632 [x40.8826} =< -0.4410{="Z (3 scalar constraints)
~0.3420| |0.4698 0.8138
0.9254 (0.0180 0.3785
”“‘23”: 0.1632 Y =1 HA?B‘: 10.8826 4 =1 ||A23||: —0.4410Y =1
-0.3420 0.4698 0.8138

(3 scalar constraints)

Demonstrate the beautiful property fj R= j,f‘R “I-4RT.

09254 0.1632 -0.3420
fRzinv(;,ﬁ‘R): 0.0180 0.8826 04698 =pR"
03785 -0.4410 0.8138

0 -0.9962 0.0872
ii) Given a =30°, #=90°, and y =-55": gR = 0 0.0872 0.9962

-1 0 0
b)
0.9254 0.0180 0.3785
i) Given sR=| 0.1632 0.8826 —-0.4410|;
~0.3420 04698 0.8138
Solution a)i Y
1 10° 20° 30°
2 ~170° 160° ~150°

The second solution is not really needed — just included as an exercise. Plug the second solution row into
the a. code and it yields the same rotation matrix (circular check).

109

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

0 -0.9962 0.0872
i) Given fR=|0 00872 09962 |;

-1 0 0

Solution a B ¥
1 30° 90° ~55°
2 -150° 90° 125°

Again, plug the second solution row into the a. code and it yields the same rotation matrix (circular
check). This case is singular (artificial singularity) since f# =90° and the inverse solution must divide by
cos . Therefore, one should implement the alternate artificial singularity solution, equation (2.67).
However, in my solution, this was not necessary — I guess the cos terms were enough different from 0
to allow the Matlab atan function to work properly.

¢) Given @ =0°, 8=20,and y =0° also ’P={l 0 1};

09397 0 0.3420](1] (1.2817
AP=gR®P=| 0 1 0 [Ot=4 0
-0.3420 0 0.9397 (1) (0.5977

Sketch:
1
Xz 1
=
20° %
Zy
_—
y,, 0.5977 Z,

110

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

d) Check all results with the Corke Matlab Robotics Toolbox.

% Exercise 2A using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clear; clc;

DR = pi/180;

angs = input('enter alpha, beta, gamma (deg):);

alp = angs(1)*DR;

bet = angs(2)*DR;

gam = angs(3)*DR;

Tz = rotz(alp); Rz = Tz(1:3,1:3);

Ty = roty(bet); Ry = Ty(1:3,1:3);

Tx =rotx(gam); Rx = Tx(1:3,1:3);

% Parta

Rmult = Rz*Ry*Rx; % Z-Y-X a-b-g Euler angles a'la Craig

Trpy = rpy2tr(alp,bet,gam) % Same result - rpy corresponds to Z-Y-X a-b-g Euler
Rrpy = Trpy(1:3,1:3) % Extract 3x3 rotation matrix from 4x4

% Partb

ang = tr2rpy(Trpy); % Inverse solution - rpy corresponds to Z-Y-X a-b-g Euler
ang/DR % Display inverse solution results

% Partc

beta = input('enter beta (deg):);

Pb = input(‘enter [Pb] (column-wise): ’);

Tyc = roty(beta*DR); Ryc = Tyc(1:3,1:3);

Pa = Ryc*Pb;

Using this Matlab program, the answers check for part a. The function rpy2tr() corresponds to
the Z-Y-X a- -y Euler convention; i.e. roll-pitch-yaw is the same convention. The result returned is a 4x4
homogeneous transformation matrix with zeros in the translation vector column, so we extract the 3x3.

Also using this program, the inverse results check for part b. Only one solution is given, the
second possibility is ignored. Also, case ii is a singular case, so the result in this case is:

Solution a p ¥
1 0° 90° ~85°

Upon plugging this singular solution into the forward function rpy2tr(), the correct rotation matrix
results.
The result for part ¢ also agrees with the answer given above.

111

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 2B

a)
i) Given @ =10°, f=20°,and y =30° and “P; ={l 2 3} :

09254 00180 03785 1
| 01632 08826 —04410 2
B 3
1

BT 7103420 0.4698 0.8138
0 0 0

iiy Given f=20° (a=y=0"),and “P, =8 0 1}':

0.9397 0 03420 3
an | 0O 1 0 0

BY 7103420 0 09397 1
0 0 0 1

b) Given f=20° (a=y=0"),and “P; =3 0 1} ,and 2P={ 0 1}

09397 0 03420 3](1] ([4.2817
10 oflo 0
Ap=4T®P = =
~03420 0 09397 1|1 |1.5977
o o0 o 11 1
112

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3 Interpretations for Homogeneous Transformation Matrices:

1) Description of a frame

’gT describes the pose (position and orientation) of moving Cartesian coordinate frame {B},
w.r.t. to a reference frame, {A}. {APB} is the position vector giving the location of the origin of {B}

w.r.t. the origin of {A}, expressed in the basis (coordinates) of {A}. [éRJ is the rotation matrix giving

the orientation of {B} w.r.t. {A}; columns are the XYZ unit vectors of {B} projected onto the XYZ {A}
unit directions.

Figure for first interpretation:

Y, Z,

113

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2) Transform Mapping:

Matrix %T maps BP—)AP . Describes a vector known in one Cartesian coordinate frame {B}
in another frame {A}. There is both position and orientation (basis) difference in general. The
AP:QT BP math has already been done above immediately following b.

Figure for second interpretation:

Y, Z,

1.5977

114

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3) Transform Operator:
T operates on API to yield APZ. Same Cartesian coordinate frame {A}, there is no {B} for this
interpretation. The original vector API is translated and rotated to new vector AP2 via T. Order of

translation and rotation doesn't matter if we assume rotations always occur about the tail of vectors. Let
us use the same given numbers, i.e. f#=20° (a=y=0°),and P={3 0 I}T, and API ={ 0 I}T:

09397 0 0.3420 3|1 4.2817
0 1 0 0(l0 0
Ap, =T4p, = =
-0.3420 0 09397 1]||1 1.5977
0 0 0 111 1
Figure for third interpretation:
20°
Translated and
Rotated Vector
=
A Pz %
<
3
1
X,
API
1
1
Z
v, 4 1.5977
115

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

i) Both methods (symbolic formula, Matlab function inv) yield:

0.9254 0.1632 -0.3420 -0.2257

An-1 _|0.0180 0.83826 04698 -3.1927

B 7103785 -04410 0.8138 —1.9380
0 0 0 1

ii) Both methods (symbolic formula, Matlab function inv) yield:

09397 0 -0.3420 -2.4771
Ap-1 _ 0 1 0 0
B 03420 0 09397 -1.9658
0 0 0 1
For both cases, ‘?;T‘}}T_I:‘?;T_l ’gT =1, can be shown.
d)
i) Calculate éT and show the relationship via a transform graph. Ditto for iT .

0.9254 0.0180 0.3785 0.9397 0.3420

1
W aos | 01632 08826 -04410 2| 0 0
cT=T I =
3
1

—_— = O W

0
1
~0.3420 0.4698 0.8138 ~0.3420 0 0.9397
0 0 0 0 o0
0.7401 0.0180 0.6722 4.1548
03042 0.8826 —0.3586 2.0486
1-0.5997 04698 0.6477 2.7877
0 0 0 1

0

0.7401 03042 -0.5997 -2.0263
0.0180 0.8826 0.4698 -3.1927
Cr=Grir-Ar 4771 -
0.6722 -0.3586 0.6477 -—3.8641
0 0 0 1

116

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Transform graphs:

iii)

B B

Given éT and gT from d)i; assume you don't know ’;T - calculate it and compare with
the answer you know.

0.9254 0.0180 0.3785 1

0.1632 0.8826 -0.4410 2

sT=CT5T=cT el =
-0.3420 0.4698 08138 3
1

0 0 0

Given éT and gT from d)i; assume you don't know gT - calculate it and compare with

the answer you know.

09397 0 0.3420 3
0 1 0 o0
By BpAp Ap-1A
T="T -T=3T T =
CCTATCTET T 03420 0 09397 1
0 0 0 1
117

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

e) Check all results with the Corke Matlab Robotics Toolbox.

% Exercise 2B using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clear; clc;

DR = pi/180;

% Parta

angs = input('enter alpha, beta, gamma (deg):);

alp = angs(1)*DR;

bet = angs(2)*DR;

gam = angs(3)*DR;

Pba = input('enter Pba (column-wise):);

Trpy = rpy2tr(alp,bet,gam); % Rotation matrix 4x4, Z-Y-X a-b-g Euler convention
Ttrn = transl(Pba); % Translation matrix 4x4 with Pba

Tha = Ttrn*Trpy; % 4x4 Homogeneous transformation matrix Tbha

% Partb

Pb = input(‘enter Pb (column-wise):);

Pa = Tba*[Pb;1];

% Partc

Tba_inv= inv(Tba); % Inverse homogeneous transformation matrix - Matlab function
eye(4) - Tba*Tba_inv; % Check - should be zero

eye(4) - Tba_inv*Tba; % Check - should be zero

% Partd

angs2 = input(‘enter alpha2, beta2, gammaz2 (deg): ');
alp2 =angs2(1)*DR;
bet2 =angs2(2)*DR;
gam2 = angs2(3)*DR;

Pcb = input(’enter Pcb (column-wise): ');

Trpy2 = rpy2tr(alp2,bet2,gam2); % Rotation matrix 4x4, Z-Y-X a-b-g Euler convention
Ttrn2 = transl(Pcb); % Translation matrix 4x4 with Pcb

Tcb = Ttrn2*Trpy2; % 4x4 Homogeneous transformation matrix Tcb

Tca =Tba* Tcb % Part d.i

Tac = inv(Tcb) * inv(Tba)

Tac2 =inv(Tca) % Check - should be same as Tac

Tha2 = Tca *inv(Tcb) % Part d.ii

Tcb2 =inv(Tba) * Tca % Part d.iii

Using this Matlab program, the answers check for all parts. We use functions rpy2tr() and
transl() to build the overall homogeneous transformation matrices. There is no special toolbox function
to invert homogeneous transformation matrices so we use the Matlab function inv().

118

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 3

a) DH parameters:
i i ! d; 0;
1 0 0 0 6,
2 0 L 0 6,
3 0 L, 0 63
b) Neighboring homogeneous transformation matrices; Also %T and 1§T:
Cl _Sl 0 0 C2 —32 0 Ll C3 _S3 0 Lz
OlT: Sl Cl 0 0 %T:) C2 O 0 %T: S3 C3 0 0
0O 0 10 0 1 O 0 O 1 O
0O 0 01 0 0 0 1 0 0 0 1
1 0 0 Ly
3 010 O
H "o o1 o0
0 00 1
) Forward pose kinematics transformation:
ci23 —S123 0 Licp+Lyeyp
0 0 1 2 S123 G 0 Lisp+Lysyy
[ST]: [T (6,)IzT(92)I 3T (05)]:
0 0 1 0
0 0 0 1
23 —S13 0 Ly +Lycyp +Lscp;
0 Lisi+L +L
[lgT]Z[gT(91,92,93)I13T(L3)]: S123 €123 151 2512 35123
0 0 1 0
0 0 0 1

Where. S123 = Sin(Bl + 02 +03), C3 = COS(HI + 62 + 63), etc.

119

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

i) o=, 0, 6§ =fo o of

Sketch to verify:

S O = O
S = O O
— O O \0

/ L]

¢

From this drawing, the above values can be derived by inspection (position and orientation).

o o o T
iy @=fo° 200 30°]
05 -0866 0 6.5373
0 0.866 0.6 0 2.1946
3 =
0 0 1 0
0 0 0 1

Sketch to verify:

7

xXrn

-0.866 0 7.5373

0 3.9266
1 0
0 1

From this drawing, the above values can be derived by inspection (position and orientation).

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

iy ©=po° 90° 90°)

0O 1 0 -3 0O 1 0 -3
0. |-1 0 0 4 o |-1 0 0 2
3T: HT:

0 01 O 0 01 O

0 0 0 1 0 0 0 1

Sketch to verify:

7
X3,H

From this drawing, the above values can be derived by inspection (position and orientation).

121

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

d) Check all results with the Corke Matlab Robotics Toolbox.

% Exercise 3 using the Corke Matlab Robotics Toolbox

% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;
% Constants
DR = pi/180;

L1=4; L2=3; L3=2;

% DH parameters

alp(1) = 0; a(1)= 0; d(1) =0; th(1)=0;
alp(2) = 0; a(2) = L1; d(2) = 0; th(2) = 0;
alp(3) = 0; a(3)=L2; d(3)=0; th(3)=0;

L{1} = link([alp(1),a(1),th(1),d(1),0],'mod’);
L{2} = link([alp(2),a(2),th(2),d(2),0],'mod");
L{3} = link([alp(8),a(3),th(3),d(3),0],'mod’);

ThreeR = robot(L, 'Plan3R’);

q1 =[0 0 O]*DR;
92 = [10 20 30]DR;
q3 = [90 90 90]*DR;

% Forward Pose Kinematics
T30_1 = fkine(ThreeR,q1);
T30_2 = fkine(ThreeR,q2);
T30_3 = fkine(ThreeR,q3);

TH3=[100L3;,0100;,0010,0001};
THO_1 =T30_1* TH3;

THO_2 = T30_2 * THS;
THO_3 = T30_3 * TH3;

Using this Matlab program, the answers check for all parts. We use function link() to assign the
Craig-convention ('mod’ for modified, or Craig-convention) DH parameters for each link. Then we build

the Planar 3R robot object using function robot(). Finally, the basic forward pose transformation %T is

found with function fkine(). There is no special toolbox function to find ,‘}T so we do it in the same

manner as before.

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

% R joints and Craig DH convention

% Create 3R robot object

% T30

% THO

122

Matlab Exercise 4

a) The book presents three methods to solve this problem; I favor the tangent-half angle algebraic
approach, but all three will yield identical results. There are two solution sets for {#; 6, 6}, elbow

down and elbow up configurations in the plane of motion.

b)
1 0 0 9 1 0 0 7
01 0O 01 00
0 . 0p_ 0 -1
T = First calculate: T=T 317! =
Doow1T=0 01 o Yo 0010
0 0 01 00 0 1
Solution 6, 0, 03
Elbow Down 0 0 0
Elbow Up 0 0 0
0.5 -0.866 0 7.5373
. 0 0.866 0.6 0 3.9266
i) ul =
0 0 1 0
0 0 0 1
0.5 -0.866 0 6.5373
. 0 0 3.1 |0866 06 0 21946
First calculate: =T gl =
0 0 1 0
0 0 0 1
Solution 6, 0, 05
Elbow Down 10° 20° 30°
Elbow Up 27.1° -20° 52.9°
0 1 0 -3 0O 1 0 -3
-1 0 0 2 . -1 0 0 4
0 . 0p_ 0 -1
i T = First calculate: T=37 311 =
) m 0 01 0 STHTH 0 01 0
0 0 0 1 0 0 0 1
Solution 6, 0, 05
Elbow Down 90° 90° 90°
Elbow Up 163.7° -90° | -163.7°
123

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

iv) In this case, all joint angle solutions are imaginary; this means the solution does not exist.
The commanded position vector is outside of the reachable workspace of the robot.

For cases i-iii, the Elbow Down solution is the same as the Forward Pose Kinematics input in Exercise
3A cases i-iii, which validates the inverse pose solution. The Elbow Up solution checks out when

plugged into the forward pose program, i.e. the commanded gT and ,gT result. Note the Elbow Down

and Elbow Up cases are identical for case i, which means this case lies on the solution boundary between
multiple solutions; this is the elbow-straight singular case, i.e. the reachable workspace boundary.

124

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

d) Check all results with the Corke Matlab Robotics Toolbox.

% Exercise 4 using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;

% Constants
DR = pi/180;
L1=4; L2=3; L3=2;

% DH parameters

alp(1) =0; a(1) = 0; d(1)
alp(2) = 0; a(2) =L1; d(2)
alp(3) = 0; a(8) =L2; d(3)

=0; th(1)=0;
= 0; th(2) = 0;
= 0; th(3) = 0;

L{1} = link([alp(1),a(1),th(1),d(1),0],'mod); % R joints and Craig DH convention
L{2} = link([alp(2),a(2),th(2),d(2),0],'mod");
L{8} = link([alp(3),a(3),th(3),d(3),0],'mod');

ThreeR = robot(L, ‘Plan3R’); % Create 3R robot object
TH3=[100L3;0100;0010;000 1];

THO_1=[1009;0100;0010;000 1];

T30_1 = THO_1 * inv(TH3);

THO_2 = [0.5 -0.866 0 7.5373;0.866 0.5 0 3.9266;0 0 1 0;0 0 0 1];
T30_2 = THO_2 * inv(TH3);

THO_3=[010-3;-1002;0010;000 1];

T30_3 = THO_3 * inv(TH3);

THO_4 = [0.866 0.5 0 -3.1245;-0.5 0.866 0 9.1674;0 0 1 0;0 0 0 1];
T30_4 = THO_4 * inv(TH3);

% Inverse Pose Kinematics
M=[110001]; % Mask for planar motion

%Guess1 = [0 0 0]"DR;

Guess1 =[90 -90 90]*DR;

Q1 = ikine(ThreeR, T30_1, Guess1, M);
Q1D =Q1/DR

%Guess2 = [0 0 0]*DR; % For Elbow Down
Guess2 = [20 -10 50]*DR; % For Elbow Up
Q2 = ikine(ThreeR, T30_2, Guess2, M);

Q2D = Q2/DR

%Guess3 = [70 60 80]*DR; % For Elbow Down
Guess3 = [150 -80 -150]*DR; % For Elbow Up
Q3 = ikine(ThreeR, T30_3, Guess3, M);

Q3D = Q3/DR

Guess4 = [0 0 0]*DR,;

Q4 = ikine(ThreeR, T30_4, Guess4, M);
Q4D = Q4/DR

125

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Using this Matlab program, the answers check for all parts. We use the mask M to indicate planar
motion only (x and y translation, rotation about z). An initial guess is required for iterative function
ikine(). For case i, the solution converges to the same result for both initial guesses shown, as expected.
For cases ii and iii, different initial guesses were used to find the Elbow Down and Elbow Up solutions,
as shown.

For case iv, there was no convergence to a solution. This is expected since the commanded
position is out of reach for the robot. The Matlab error message is displayed below:

?7? Error using ==> ikine
Solution wouldn't converge

Error in ==> C:\mydocs\matfiles\Corke\Bob4A.m
Online 55 ==> Q4 = ikine(ThreeR, T30_4, Guess4, M);

126

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 5

a) solution, parts 1. through 5.
Joint rates
0.3 T ! ! T

02f S e e]

time

Joint angles

0 S T
3
L0] T T eI S
<% 1 2 3 4 5
time
127

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Cartesian pose
9 ! ! ! !

X

time

Jacobian determinant

128

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Joint torques
18 ! ! ; !

12p e s s R

“clof T N

time

Towards the end of the simulated time, this robot is approaching the elbow-straight singularity. If
the simulation time goes beyond 5 sec, the Jacobian matrix determinant will approach zero, and the joint
rates will approach infinity. For this exercise, this occurs after =5.4 sec, to the nearest one-tenth second.
The elbow-straight singularity corresponds to a loss in one translational freedom, in the direction of links
1 and 2 aligned in a straight line.

129

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b) Check your Jacobian matrix results for the initial and final joint angle sets.

% Exercise 5 using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;

% Constants

DR = pi/180;

L1=4; L2=3; L3=2;

% DH parameters

alp(1)=0; a(1)= 0; d(1)=0; th(1)=0;
alp(2) = 0; a(2) = L1; d(2) = 0; th(2) =0;
alp(3) = 0; a(3) =L2; d(3)=0; th(3)=0;
L{1} = link([alp(1),a(1),th(1),d(1),0],'mod"); % R joints and Craig DH convention

L{2} = link([alp(2),a(2),th(2),d(2),0],'mod");
L{3} = link([alp(8),a(3),th(3),d(3),0], mod’);

ThreeR = robot(L, 'Plan3R'); % Create 3R robot object

g0 =[10 20 30]*DR; % Initial angles

gf =[12.84 15.84 -27.12]*DR; % Final angles (from my Matlab solution)
% Jacobian {3} wrt {0}, expressed in {0}

J_00 = jacob0(ThreeR,q0); % Initial

J00 =J_00(1:2,:); JOO = [J00;J_00(6,:)]; % Extract 3x3 matrix

J_f0 = jacobO(ThreeR,qf); % Final

Jfo =J_{f0(1:2,:); JfO = [Jf0;J_fO(6,:)]; % Extract 3x3 matrix

Using this Matlab program, the following Jacobian matrices result:

-219 -150 0 -233 -144 0
Initial: °J5 =| 6.54 260 0 Final: °J; =| 653 263 0
1 11 1 11

Note the Corke toolbox results in the Jacobian matrix relating the motion of {3} with respect to
{03}, expressed in {0} coordinates. For the Jacobian matrix expressed in {3} coordinates, use function
jacobn() instead of jacobO(). The above matrices do not correspond to the symbolic Jacobian matrix
given in the problem statement since that was for motion of {H} with respect to {0}, expressed in {0}
coordinates; the rate equations for the Corke results are (motion of {3}, not {H}):

0

.X.,' —Llsl —L2S12 —L2S12 O é]
y ¢ =| Liecg+Lycy Lyeyp 036,
Wy}, 1 1 1|65

So, when using the Corke toolbox Jacobian matrices, one must first numerically transform Cartesian
velocities and force/moment vectors from {H} to {3} using the rigid-body velocity and static force
transformations given in the book (Section 5.11).

130

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 6A

solution, parts 1. through 5.

Joint Angles
90

80
70
60
50
40
30

0 (deg)

0 0.2 0.4 0.6 0.8 1
time (sec)

Joint Rates

o

I
l
{
|

@ dot (rad/s)

1
N
/

0 0.2 0.4 0.6 0.8 1
time (sec)

131

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

10

Joint Accelerations

ﬂ\
Y
3 0
=
IS N
8 8o] p S A U
= \
| \
D10 - "
N
\
-5 -~ S H
| | | \
20 | i ; |
0 0.2 0.4 0.6 0.8 1
time (sec)
Cartesian Pose
2 ! ! ! !
L e S
¢
B[
8 I 2 & 4 4 4 4 A h haahah e e e e e aaaaaaaaaaaaaaaaaeaeaaaat g aaaaaa —
g 1.4
Sio | :
< f -
: =
1—//// """"""""
X - -
0.8+ b T
- Y .
0.6 i i i i
0 0.2 0.4 0.6 0.8 1
time (sec)
132
© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Joint Torques
70 ! ! ! !

60
50
40

< 30
20

10

1% 0.2 0.4 0.6 0.8 1
time (sec)

Without Gravity Effect

Towards the end of the simulated time, this robot is approaching the elbow-straight singularity. If
the simulation time goes beyond 1 sec, the joint rates, accelerations, and torques will approach infinity.
For this exercise, this occurs after =1.09 sec, to the nearest one-hundredth second.

The above joint torque results are for robot dynamics without gravity (i.e. the plane of motion is
normal to gravity). The next plot shows the joint torque results for robot dynamics considering gravity
(i.e. g is in the negative Y direction). All of the other plots are identical.

133

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Joint Torques
300 T - '

2501 S SRR S SR

200F - S S S SRR
1500 SRR SRR S e
100F- -+ e S S e

501 e s e SR

0 0.2 0.4 0.6 0.8 1
time (sec)

With Gravity Effect

134

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 6B

a) For the given robot, parameters, and motion condition, the recursive Newton-Euler inverse
dynamics solution yields the following required driving joint torques:

7] (8536
T={r,+={6372}(Nm)
7] 2968

As a matter of interest, the required joint torques to resist gravity only (i.e. static condition, no joint
velocities or accelerations) are given below. These gravity joint torques may be easily verified using
FBDs and methods of statics. The above answer gives the total joint torques, i.e. gravity plus dynamics
torques.

e [1847.6
T, ={7g0 (=1 495.1 p (Nm)
Te3] | 49.1
135

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b) Check your a) results with the Corke Matlab Robotics Toolbox.

% Exercise 6B using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;
% Constants
DR = pi/180;

L1=4;, L2=3; L3=2;

% DH parameters

alp(1) =0; a(1)= 0; d(1)=0; th(1)=0;
alp(2) = 0; a(2) =L1; d(2)=0; th(2)=0;
alp(3) = 0; a(3)=L2; d(3)=0; th(3)=0;

L{1} = link([alp(1),a(1),th(1),d(1),0,20,L1/2,0,0,0,0,0.5,0,0,0,0,1,0,0,0]); % R joints and Craig DH convention
L{2} = link([alp(2),a(2),th(2),d(2),0,15,L2/2,0,0,0,0,0.2,0,0,0,0,1,0,0,0]); % ‘help DYN' to see what each term is
L{3} = link([alp(3),a(3),th(3),d(3),0,10,L3/2,0,0,0,0,0.1,0,0,0,0,1,0,0,0]);

L{1}mdh=1; L{2}.mdh=1; L{3}.mdh=1; % Specify modified (Craig) DH convention

ThreeR = robot(L, 'Plan3R’); % Create 3R robot object

grav = [0;9.81;0]; % To simulate g down, must accelerate entire robot up by same g mag
Q =[10 20 30]*DR; % Assigned motion conditions

Qd=[123];

Qdd =[0.51 1.5];
tau = me(ThreeR, [Q Qd Qdd], grav) % Newton-Euler recursion to calculate total dynamics joint torques

tau_G = gravload(ThreeR,Q,grav) % Calculate gravity joint torques only

Using this Matlab program, the same joint torques result as given above. Note the gravity vector
must be specified as g in the +Y direction as explained in the comment for grav above and also in Chapter
6.

136

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 6C

Forward dynamics solution given initial conditions and constant joint torques:
Joint Angles

150 ! r |
100F- -5 R I R
2 . L
' N-v-—-—_.._._n__:__%_____‘__*_»___"_:;74 —_—]
- 90~ - '_"__;.:f-’”""'/,ff """""""""""
> -
S -
S 3 |
Na) .
] S e R,
100 L E E
0 1 2 3 4

time (sec)

Joint Rates

\

..................... L
—-\06 : ///'
%) ' s
3 T
<04 - //"/T """""""""" 1
_§ I
S
0.2
O.,.
029 1 2 3 4

time (sec)

137

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Exercise 6C Corke Matlab Robotics Toolbox Program

% Exercise 6C using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;
% Constants
DR = pi/180;

L1=4; L2=3; L3=2;

% DH parameters

alp(1) = 0; a(1) = 0; d(1) =0; th(1)

alp(2) = 0; a(2) =L1; d(2)=0; th(2
3

= O,
alp(3) = 0; a(3)=L2; d(3)=0; th(3) =0;

)
)
L{1} = link([alp(1),a(1),th(1),d(1),0,20,L1/2,0,0,0,0,0.5,0,0,0,0,1,0,0,0]); % R joints and Craig DH convention

L{2} = link([alp(2),a(2),th(2),d(2),0,15,L.2/2,0,0,0,0,0.2,0,0,0,0,1,0,0,0]); % ‘help DYN' to see what each term is
L{3} = link([alp(3),a(3),th(3),d(3),0,10,L3/2,0,0,0,0,0.1,0,0,0,0,1,0,0,0]);

L{1}.mdh = 1;
L{2}.mdh = 1;
L{3}.mdh = 1;

ThreeR = robot(L, 'Plan3R"); % Create 3R robot object

t0=0; tf =4;

N=40; dt = (t1-t0)/N;

t = [tO:dt:tf]; % Specify time array

QO =[-60 90 30]*DR; % Initial joint angles and rates

Qdo0 =[0 0 0];

[tsim,Q,Qd] = fdyn(ThreeR, 10, tf, 'torgfun’, Q0, QdO0); % Solve forward dynamics numerically

% torgfun.m Function for Bob6c.m, torque profiles for forward dynamics of planar 3R

function tau = torgfun(t,Q,Qd)
tau = [20; 5; 1]; % Given constant joint torques

This program was used to generate the required forward dynamics simulation results for the given
planar 3R robot. Function ‘torgfun’ is used to specify the given constant driving joint torques. The
initial joint angles and rates are clearly visible in the resulting plots.

138

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 7

a) Third-order polynomial.
6(t)=120r> ~180¢ +120
N acn2
Result: ?(t)_ 36017 =360t (Note: deg units throughout)
6(t) =720t —360
6 (t)="720
1 20 T T T T
0 100) e e
<0 I
680 0.2 0.4 0.6 0.8 1
> B0 TR T

time

Note: though the Jerk J looks fine (constant of 720, the slope of the A plot), there is an infinite spike
(negative) at the start and also at the finish. This is due to the finite change in A with zero change in time
at those time locations. To fix this potential problem, use a 5™ order polynomial (next page).

139

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b) Fifth-order polynomial.

6(r)=-360t> +900t* — 600z +120

6(t) = -1800:* + 3600¢> —1800:>
(t)=—7200> +10800¢% — 3600t
)

. (Note: deg units throughout)
t)=
=-21600¢2 + 21600t — 3600

Result:
2]

o (t

time

Now there is a finite jump in J at the start and finish (the slope of A is non-zero at the start and finish),
but there are no longer infinite spikes in J at the start and finish. The cost is a higher-order polynomial.
Note the slope of V starts and ends at zero (zero A at the start and finish) as required; this was not the
case with the third-order polynomial since it was not required.

140

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

c) Two third-order polynomials with via point.

0,(t)=-142.5¢3 +202.5t* + 60 0,(t)=157.5t> —225t% —22.5¢ +120
oL 2 axcn
Result: 6,(t) = —427.5t> + 405t 6.?'2 (t)=472.5t* —450t - 22.5
6, (t) = —855t +405 6, (t) =945t — 450
6,(t) =855 0, (1) =945

(Note: deg units throughout)

time

Though it is difficult to see on the S plot, the slope of S is not flat at the via time; i.e., the velocity is not
zero at this point since it is not required. S peaks at 120.57° (slightly higher than the required 6, =120°)

just before the via time, so that S is sloping downwards at the via time.

The Jerk J has the same potential problem as with the 3 order polynomial: there is an infinite
spike in J at the start and also at the finish. Since we matched A at the via point (in addition to V), the
Jerk has a finite jump at the via point, but no infinite spike.

141

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

d) Check the a. and b. results with the Corke Matlab Robotics Toolbox.

% Exercise 7 using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;
tf =1; n=50; t=/[0:tf/n:tf]; % User-defined time array
g0 = 120; gf = 60; % Initial and final joint angles, single joint; degree units throughout

[q gD gDD] = jtraj(qo, qf, t) ; % Calculate 7”‘-orderjoint trajectory

figure; % Plot results
subplot(311); plot(t,q,'k’);

set(gca,'FontSize',16);

grid; axis([0 tf min(q) max(q)]); ylabel('S");
subplot(312); plot(t,qD,'k’);

set(gca, FontSize',16);

grid; axis([0 tf min(gD) max(qD)]); ylabel('V*);
subplot(313); plot(t,qDD,’k’);
set(gca,'FontSize',16);

grid; axis([0 tf min(qDD) max(qDD)]); ylabel('A');

Using this Matlab program, the following joint trajectory plots result. Note that the toolbox only
gives us access to the angle (S), angular rate (V), and angular acceleration arrays(A) (i.e., no angular
jerk). The toolbox uses a 7"™-order polynomial for joint trajectories, so the results should compare
closely, but not exactly, with the b) results; the results are different from the a) results due to the 3" order
polynomial’s inability to provide zero angular acceleration at the start and end. The 7™-order polynomial
should allow for zero jerk at the start and end; however, this does not appear to be the case from the plot
since the slope of A appears to be non-zero at the start and end.

120

100
w

80

142

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 8

0.3

0.2

0.4

0.35

0.3

0.25

Norm

0.15

0.1

0.05

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.

Joint Rates

1.5
time

Joint Rates Norm

e

N

e

143

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Joint Angles
100F- -~

¢ (rad)

144

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

b) Check your Jacobian matrix results for the initial and final joint angle sets.

% Exercise 8 using the Corke Matlab Robotics Toolbox
% Dr. Bob Williams, Ohio University, 2/2002

clc; clear;

% Constants
DR = pi/180;
L1=1; L2=1; L3=0.2; L4=0.2;

% DH parameters

alp(1)=0; a(1) = 0; d(1) =0; th(1) =0;
alp(2) =0; a(2) =L1; d(2)=0; th(2) =0;
alp(3) = 0; a(8) =L2; d(3)=0; th(3) =0;
alp(4) = 0; a(4) =L3; d(4)=0; th(4)=0;

L{1} = link([alp(1),a(1),th(1),d(1),0],'mod"); % R joints and Craig DH convention
L{2} = link([alp(2),a(2),th(2),d(2),0],'mod’);

L{3} = link([alp(3),a(3),th(3),d(3),0],'mod);

L{4} = link([alp(4),a(4),th(4),d(4),0],'mod);

FourR = robot(L, 'Plan4R'); % Create 4R robot object

q0 =[-30 70 30 40]"DR; % Initial angles

gf = [-69.65 102.62 56.15 55.26]*DR; % Final angles (from my Matlab solution)
% Jacobian {4} wrt {0}, expressed in {0}

J_00 = jacobO(FourR,q0); % Initial

JOO =J_00(1:2,:); JOO = [JOO;J_00(6,:)] % Extract 3x4 matrix

J_f0 = jacobO(FourR,qf); % Final

Jf0 = J_f0(1:2,:); JfO = [Jf0;J_{0(6,:)] % Extract 3x4 matrix

Using this Matlab program, the following Jacobian matrices result:

-0.33 -0.83 -0.19 0 0.19 -0.74 -020 0
Initial: °J, =| 1.70 0.83 0.07 0 Final: °J, =(1.19 084 000 0
1 1 1 1 1 1 1 1

Note the Corke toolbox results in the Jacobian matrix relating the motion of {4} with respect to
{0}, expressed in {0} coordinates. For the Jacobian matrix expressed in {4} coordinates, use function
Jacobn() instead of jacob0(). This issue is similar to that from Matlab Exercise 5. When using the Corke
toolbox Jacobian matrices, one must first numerically transform Cartesian velocities from {H} to {4}
using the rigid-body velocity transformation given in the textbook (Section 5.11).

145

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Matlab Exercise 9

Here is the Simulink implementation of the closed-loop feedback diagram:

Reference
Thetal

OVref
1

in_1

>l> -
Ka

Omegal
< ThetaE - Vref ;:[2\{ 1 > % >I:]
Sum2 PID Controller Integrator Thetal
Electrom echanical System
ThetaS 1 |< Thetal
Ke
where the Electromechanical system is the open-loop system:
Va-V 1 1
+ avb > 2 plaars >
= .00065+1. TauM ™ 9.00844s+0.00013
Sum — Km
RL Circuit JC Motor Dynamics
e
-K-
Kb

Now, for trial-and-error PID controller design with the step input, there are infinite solutions for “good”
performance. One possible solution is Kp = 2, K; = 4, Kp = 1; the resulting load angle output from the
closed-loop feedback control simulation is shown below:

146

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Simulated Joint Angle Control
90 T ! ; ! T

B N
00/ _— I IR
6o/ - S N

d0r | SRR L R EEETE ST PR P
30f [R N R
20 f R F ITEIRIE IR
L R IRIER

time (sec)

To plot the control effort (armature voltage V, with back emf V}, on the same graph), it is an easy matter
to connect the lines V, and V, on the Electromechanical system diagram to a multiplexer (Mux) and then
send the output of the Mux to a scope; this result is not shown for any cases.

1) As mentioned in the problem statement, it is very frustrating to do PID controller design for the
step input in this case; the above result is unacceptable for robot control; the percent overshoot is too big
and the settling time is too high. Therefore, let us use the ramped step input. The controller diagrams are
the same as those given above, but replace the step input with a ramped step input (HINT: turn on a ramp
at time 0 with a slope of +40; then add another ramp starting at time 1.5 sec with a slope of —40). For
this case, “good” values for PID gains are Kp = 16, K; = 8, Kp = 1; the resulting load angle output from
the closed-loop feedback control simulation is shown below:

147

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Simulated Joint Angle Control
90 s T e ! !

B0 R T .
700 SR S TR

60F T

T oo St IEIIRITII PPN SRR
300/ PR S
200/ SR S RRTE IEEIEIEE EIERIEIE RN
100/ S SRRt IETRIEI FIERIET SRR

time (sec)

As seen in the above figure, the control of the output shaft angle is much improved when using a
reasonable input, the ramped step. There is a small transient effect at the start and a small percent
overshoot at the 1.5 sec time where the ramp ends, but otherwise this simulated control output plot
overlays perfectly with the input command. The settling time is also much improved.

. . L
2) Usually the electrical system time constant X is small relative to the mechanical system time

J . . . o
constant ek This means that when voltage V,(¢) is applied to the armature circuit, the armature current

i4(t) rises much faster than the motor shaft angular velocity w,, (t) does when i.(?) is applied to generate
motor torque 7, (t) Therefore, the modeling of the inductor is not significant in this system and L can

be ignored in favor of R; this is equivalent to ignoring the circuit dynamics and including only Ohm’s law.
This can be verified via Simulink simulation.

3) This is left to the student — simply increase Ji. and Cp. by the same factor and re-run the simulation
several times, keeping the same PID gains from 1). Note the degradation in performance as the
parameters increase.

148

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4) From a statics free-body diagram, the disturbance torque acting at the load shaft is mgLsin 6 /2.

The gear ratio reduces this effect further by 1/n as felt at the motor shaft. The modified
Electromechanical system diagram to include the gravity disturbance at the motor shaft is shown below:

)

K- -K-| i -

O] <}< |¢_ an la]
D 1/n1 mglL/2 sin(ThL) Integrator

VaVb
TauDist
T Vref 42 Va + Va-Vb f la + Tau > 1 OmegaM K megal
- P prv— 4.378_Se—= Pt 008445-+0.00013 -
in_1 i S+1- Sum1 out_1
Ka Sum Km 1n
RL Circuit IC Motor Dynamics

Vb OmegaM
K-

Kb

Without changing the previous best PID gains from 1), the resulting load angle output is shown below
from the closed-loop feedback control simulation considering the gravity disturbance:

Simulated Joint Angle Control
90 T s ! ! !

B s T T
700 e ST T N R

3 4 5 6
time (sec)

Obviously, the gravity disturbance has a large effect; the simulated transient response for the ramped step
input is much degraded and there is significant steady-state error (the final angle is 65.5° instead of the
commanded 60°). Thus, the PID gains should be re-designed considering this effect.

149

© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

