Chapter 3 Manipulator Kinematics

Prepared by: Eng. Sima Rishmawi

Kinematics:

- Kinematics: the science of motion that treats the subject without regard to the forces that cause it. (Position, Velocity, Acceleration, Jerk ...)
- In this Chapter we will study the position and orientation of the manipulator links in static situations.
- The approach is to attach frames to the various parts and describe the relationships between these frames.
- Main Goal: Compute the manipulator's end-effector relative to the base of the manipulator as a function of the joint variables.

Link Descriptions:

- Manipulator: a set of links connected in a chain by joints.
- Joint: Connection between 2 links allowing restricted relative motion between the neighboring links.

- We will only consider joints with one DOF:
 - Revolute Joints
 - Prismatic Joints

Link Descriptions:

- The links are numbered starting from the fixed base $\rightarrow 0$
- The first moving body is numbered Link 1, and so on, out to the free end of the arm, which is Link n.
- Typical manipulators have 5 or 6 joints.
- Note:

In order to describe the position and orientation of the end-effector we need at least 6 joints.

Link Components:

- Joint Axis i: a vector direction about which link i rotates relative to link i − 1.
- Link Length a_{i-1}: a line along the length of the link that is perpendicular to both joint axes.
- Link Twist α_{i-1} : the angle measured from axis i - 1 to axis i in the right hand sense

Neighboring Links:

- Neighboring links have a common joint axis between them.
- Link Offset d_i: the vertical distance measured along the axis of joint *i* between the points of intersection of a_{i-1} and a_i with the joint axis *i*.
- Joint Angle θ_i: the angle that describes the amount of rotation of link *i* with respect to link *i* – 1. It is measured from a_{i-1} to a_i.

Link Parameters:

- Any robot can be described kinematically by giving the values of four quantities for each link:
- \rightarrow Link Length a_{i-1}
- → Link Twist α_{i-1}
- → Link Offset d_i
- → Joint Angle θ_i
- These parameters are called the **Denavit-Hartenberg** Parameters (**DH parameters**)
- For a revolute joint, all parameters are constants, except for $\theta_i \rightarrow$ Joint Variable
- For a prismatic joint, all parameters are constants except for $d_i \rightarrow$ Joint Variable
- Note that a_i and α_i depend on joint axes *i* and *i* + 1, thus at both ends of the chain: $a_0 = a_n = 0$ $\alpha_0 = \alpha_n = 0$

Convention for Attaching Frames to Links

- Frame *i* is rigidly attached to link *i*.
- \hat{Z}_i is coincident with the joint axis *i*.
- The origin of Frame *i* is placed at the point of intersection between *a_i* and the joint axis *i*.
- \hat{X}_i points along a_i in the direction from joint *i* to i + 1
- If $a_i = 0$, \hat{X}_i is normal to the plane including \hat{Z}_i and \hat{Z}_{i+1} .

First and Last Links in the Chain:

- Frame {0} is arbitrary, usually we define it to be coincident with frame {1} when $\theta_1 = 0$.
- This ensures that:
- $\rightarrow a_0 = 0$
- $\rightarrow \alpha_0 = 0$
- \rightarrow $d_1 = 0$ if joint 1 is revolute
- $\rightarrow \theta_1 = 0$ if joint 1 is prismatic
- In Frame {n} \hat{X}_n is chosen so that it aligns with \hat{X}_{n-1} when $\theta_n = 0$, and the origin of Frame {n} is chosen so that $d_n = 0$

Summary of DH-parameters

- $\rightarrow a_i$ is the distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i
- $\rightarrow \alpha_i$ is the angle from \hat{Z}_i to \hat{Z}_{i+1} measured about \hat{X}_i
- $\rightarrow d_i$ is the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i
- $\rightarrow \theta_i$ is the angle from \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_i

- Usually a_i is a positive value (distance)
- The rest of the parameters can be positive or negative.

Summary of Link Frame Attachment Procedure

- 1. Identify the joint axes and imagine infinite lines along them. For steps 2-5 consider 2 of these neighboring lines (at axes i and i + 1)
- 2. Identify the common perpendicular between them. At the point where the common perpendicular meets the i^{th} axis, assign the link-frame origin.
- 3. Assign the \hat{Z}_i axis pointing along the i^{th} joint axis.
- 4. Assign the \hat{X}_i axis pointing along the common perpendicular, or, if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes.
- 5. Assign the \hat{Y}_i axis to complete the right-hand coordinate system.
- 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is 0. For $\{n\}$, choose an origin location and \hat{X}_n direction freely, but generally so as to cause as many link parameters as possible to become zero.

Example: RRR (3R) Robot

Example: RRR (3R) Robot

i	α_{i-1}	a _{i - 1}	d_i	θ_{i}
1	0	0	0	θ_1
2	0	L_1	0	θ2
3	0	L ₂	0	θ_3

Example: RPR Robot

i	α_{i-1}	<i>a_{i – 1}</i>	d_i	θ_i
1	0	0	0	θ_1
2	90°	0	<i>d</i> ₂	0
3	0	0	L ₂	θ_3

Derivation of the Transformation Matrix

To find the transformation matrix ${}^{i}_{i-1}T$ we should define 3 intermediate frames between $\{i-1\}$ and $\{i\}$:

- 1. {R} differs from $\{i 1\}$ by a rotation about \hat{X}_{i-1} with an angle α_{i-1}
- 2. {Q} differs from {R} by a translation along \hat{X}_R with a distance a_{i-1}
- 3. {P} differs from {Q} by a rotation about \hat{Z}_Q with an angle θ_i
- 4. $\{i\}$ differs from $\{P\}$ by a translation along \hat{Z}_P with a distance d_i

Derivation of the Transformation Matrix

• Note that rotations and translations are happening with respect to the new axes (Euler angles)

$$i^{-1}{}_{i}^{T} = i^{-1}{}_{R}^{T} T = i^{-1}{}_{R}^{T} T = R_{x}(\alpha_{i-1}) D_{x}(\alpha_{i-1}) R_{z}(\theta_{i}) D_{z}(d_{i})$$

$$i^{-1}{}_{i}^{T} = R_{x}(\alpha_{i-1}, \alpha_{i-1}) R_{z}(\theta_{i}) D_{z}(d_{i})$$

$$f^{-1}{}_{i}^{T} = screw_{x}(\alpha_{i-1}, \alpha_{i-1}) screw_{z}(\theta_{i}, d_{i})$$

$$screw_{x}(\alpha_{i-1}, \alpha_{i-1}) \text{ represents a transformation matrix that includes a rotation about the x-axis}$$

$$Axis i$$

$$f^{-1}{}_{i}^{T} = R_{x}(\alpha_{i-1}, \alpha_{i-1}) R_{z}(\theta_{i}) D_{z}(d_{i})$$

$$f^{-1}{}_{i}^{T} = screw_{x}(\alpha_{i-1}, \alpha_{i-1}) R_{z}(\theta_{i}) R_{z}(\theta_{i}) R_{z}(\theta_{i})$$

*screw*_x(α_{i-1}, a_{i-1}) represents a transformation matrix that includes a rotation about the x-axis with an angle α_{i-1} and a translation along the xaxis with a distance a_{i-1}

Derivation of the Transformation Matrix

$${}^{i-1}_{i}T = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{i-1}_{i}T = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ c\alpha_{i-1}s\theta_{i} & c\alpha_{i-1}c\theta_{i} & -s\alpha_{i-1} & -s\alpha_{i-1}d_{i} \\ s\alpha_{i-1}s\theta_{i} & s\alpha_{i-1}c\theta_{i} & c\alpha_{i-1} & c\alpha_{i-1}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: RPR Robot

i	α_{i-1}	<i>a</i> _{i - 1}	di	θί
1	0	0	0	θ1
2	90°	0	<i>d</i> ₂	0
3	0	0	L ₂	θ3

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{1}_{2}T = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & -1 & -d_{2}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & 0\\ s\theta_{3} & c\theta_{3} & 0 & 0\\ 0 & 0 & 1 & L_{2}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Concatenating Link Transformations:

• After obtaining the Transformation Matrix of each 2 adjacent joints, we can get the total Transformation Matrix using:

$${}^{0}_{N}T = {}^{0}_{1}T {}^{1}_{2}T {}^{2}_{3}T \dots {}^{N-1}_{N}T$$

- The transformation is a function of all joint variables.
- If the joint variables are know for a certain instant, the Cartesian position and orientation of the last link can be calculated using the Transformation Matrix shown above.

Example: PUMA 560

Example: PUMA 560

i	$\alpha_i - 1$	<i>a_i</i> - 1	di	θi	$ \begin{bmatrix} c\theta_1 & -s\theta_1 & 0 & 0 \\ s\theta_1 & c\theta_1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, $
1	0	0	0	θ_1	$\begin{bmatrix} 1^{-} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{7}$
2	-90°	0	0	θ2	$\begin{bmatrix} c\theta_2 & -s\theta_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
3	0	a2	<i>d</i> ₃	θ3	$ \begin{bmatrix} 2^{2} \\ 2 \end{bmatrix} = \begin{bmatrix} -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $
4	-90°	<i>a</i> ₃	d_4	θ_4	$\begin{bmatrix} c\theta_3 & -s\theta_3 & 0 & a_2 \\ s\theta_3 & s\theta_4 & 0 & 0 \end{bmatrix}$
5	90°	0	0	θ_5	$\begin{bmatrix} 2\\3\\7 \end{bmatrix} T = \begin{bmatrix} 30_3 & 20_3 & 0 & 0\\0 & 0 & 1 & d_3\\0 & 0 & 0 & 1 \end{bmatrix},$
6	-90°	0	0	θ_6	

$$\begin{bmatrix} -s\theta_1 & 0 & 0 \\ c\theta_1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \quad \begin{bmatrix} 3\\4 \end{bmatrix} T = \begin{bmatrix} c\theta_4 & -s\theta_4 & 0 & a_3 \\ 0 & 0 & 1 & d_4 \\ -s\theta_4 & -c\theta_4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \begin{bmatrix} -s\theta_2 & 0 & 0 \\ 0 & 1 & 0 \\ -c\theta_2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \quad \begin{bmatrix} 4\\5 \end{bmatrix} T = \begin{bmatrix} c\theta_5 & -s\theta_5 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_5 & c\theta_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \begin{bmatrix} -s\theta_3 & 0 & a_2 \\ c\theta_3 & 0 & 0 \\ 0 & 1 & d_3 \\ 0 & 0 & 1 \end{bmatrix} , \quad \begin{bmatrix} 5\\6 \end{bmatrix} T = \begin{bmatrix} c\theta_6 & -s\theta_6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_6 & -c\theta_6 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$

Г

,

Example: Yasukawa L-3

i	$\alpha_i - 1$	$a_i - 1$	d_i	θ_i
1	0	0	0	θ_1
2	—90°	0	0	θ_2
3	0	L_2	0	θ_3
4	0	L_3	0	θ_4
5	90°	0	0	θ_5

Example: Yasukawa L-3

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$${}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & l_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$${}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & l_{3} \\ s\theta_{4} & c\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$${}^{4}_{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$

Frames with Standard Names:

- The base frame {B}: is located at a nonmoving part at the base of the manipulator.
- The station frame $\{S\}$: is located at a task-relevant point. It is universal and the actions of the robot are performed relative to it. $\{S\}$ is always specified with respect to $\{B\}$.
- The wrist frame {W}: is fixed to the last link of the manipulator and moves with it. It is usually specified with respect to {B}.
- The tool frame {T} is fixed to the end of the tool that the robot is holding. It is always specified with respect to {W}
- The goal frame $\{G\}$: it describes the end point of the motion. $\{T\}$ should coincide with $\{G\}$ to know that the manipulator did its job.

Frames with Standard Names:

