Chapter 3 Manipulator Kinematics

Prepared by: Eng. Sima Rishmawi

Kinematics:

- Kinematics: the science of motion that treats the subject without regard to the forces that cause it. (Position, Velocity, Acceleration, Jerk …)
- In this Chapter we will study the position and orientation of the manipulator links in static situations.
- The approach is to attach frames to the various parts and describe the relationships between these frames.
- Main Goal: Compute the manipulator's end-effector relative to the base of the manipulator as a function of the joint variables.

Link Descriptions:

- Manipulator: a set of links connected in a chain by joints.
- Joint: Connection between 2 links allowing restricted relative motion between the neighboring links.

- We will only consider joints with one DOF:
	- Revolute Joints
	- Prismatic Joints

Link Descriptions:

- The links are numbered starting from the fixed base $\rightarrow 0$
- The first moving body is numbered Link 1, and so on, out to the free end of the arm, which is Link n.
- Typical manipulators have 5 or 6 joints.
- Note:

In order to describe the position and orientation of the end-effector we need at least 6 joints.

Link Components:

- Joint Axis i: a vector direction about which link i rotates relative to link $i - 1$.
- Link Length a_{i-1} : a line along the length of the link that is perpendicular to both joint axes.
- Link Twist α_{i-1} : the angle measured from axis $i - 1$ to axis i in the right hand sense

Neighboring Links:

- Neighboring links have a common joint axis between them.
- Link Offset d_i : the vertical distance measured along the axis of joint i between the points of intersection of a_{i-1} and a_i with the joint axis *i*.
- **Joint Angle** θ_i **: the angle that** describes the amount of rotation of link *i* with respect to link $i - 1$. It is measured from a_{i-1} to a_i .

Link Parameters:

- Any robot can be described kinematically by giving the values of four quantities for each link:
- \rightarrow Link Length a_{i-1}
- \rightarrow Link Twist α_{i-1}
- \rightarrow Link Offset d_i
- \rightarrow Joint Angle θ_i
- These parameters are called the **Denavit-Hartenberg** Parameters (DH parameters)
- For a revolute joint, all parameters are constants, except for $\theta_i \rightarrow$ Joint Variable
- For a prismatic joint, all parameters are constants except for $d_i \rightarrow$ Joint Variable
- Note that a_i and a_i depend on joint axes *i* and $i + 1$, thus at both ends of the chain: $a_0 = a_n = 0$ $\alpha_0 = \alpha_n = 0$

Convention for Attaching Frames to Links

- Frame i is rigidly attached to link i .
- \hat{Z}_i is coincident with the joint axis *i*.
- The origin of Frame *i* is placed at the point of intersection between a_i and the joint axis i .
- \hat{X}_i points along a_i in the direction from joint *i* to $i + 1$
- If $a_i = 0$, \hat{X}_i is normal to the plane including \hat{Z}_i and \hat{Z}_{i+1} .

First and Last Links in the Chain:

- Frame $\{0\}$ is arbitrary, usually we define it to be coincident with frame $\{1\}$ when $\theta_1 = 0$.
- This ensures that:
- $\rightarrow a_0 = 0$
- $\rightarrow \alpha_0 = 0$
- $\rightarrow d_1 = 0$ if joint 1 is revolute
- $\rightarrow \theta_1 = 0$ if joint 1 is prismatic
- In Frame $\{n\}$ \hat{X}_n is chosen so that it aligns with \hat{X}_{n-1} when $\theta_n = 0$, and the origin of Frame $\{n\}$ is chosen so that $d_n = 0$

Summary of DH-parameters

- $\rightarrow a_i$ is the distance from \hat{Z}_i to \hat{Z}_{i+1} measured along \hat{X}_i
- $\rightarrow \alpha_i$ is the angle from \hat{Z}_i to \hat{Z}_{i+1} measured about \hat{X}_i
- $\rightarrow d_i$ is the distance from \hat{X}_{i-1} to \hat{X}_i measured along \hat{Z}_i
- \rightarrow θ_i is the angle from \hat{X}_{i-1} to \hat{X}_i measured about \hat{Z}_i

- Usually a_i is a positive value (distance)
- The rest of the parameters can be positive or negative.

Summary of Link Frame Attachment Procedure

- 1. Identify the joint axes and imagine infinite lines along them. For steps 2-5 consider 2 of these neighboring lines (at axes *i* and $i + 1$)
- 2. Identify the common perpendicular between them. At the point where the common perpendicular meets the i^{th} axis, assign the link-frame origin.
- 3. Assign the \hat{Z}_i axis pointing along the i^{th} joint axis.
- 4. Assign the \hat{X}_i axis pointing along the common perpendicular, or, if the axes intersect, assign \hat{X}_i to be normal to the plane containing the two axes.
- 5. Assign the \hat{Y}_i axis to complete the right-hand coordinate system.
- 6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is 0. For $\{n\}$, choose an origin location and \hat{X}_n direction freely, but generally so as to cause as many link parameters as possible to become zero.

Example: RRR (3R) Robot

Example: RRR (3R) Robot

Example: RPR Robot

Derivation of the Transformation Matrix

To find the transformation matrix $\frac{l-1}{c}$ $_{1}^{l}T$ we should define 3 intermediate frames between $\{i-1\}$ and $\{i\}$:

- 1. $\{R\}$ differs from $\{i-1\}$ by a rotation about \widehat{X}_{i-1} with an angle α_{i-1}
- 2. $\{Q\}$ differs from $\{R\}$ by a translation along \hat{X}_R with a distance a_{i-1}
- 3. $\{P\}$ differs from $\{Q\}$ by a rotation about \hat{Z}_Q with an angle θ_i
- 4. $\{i\}$ differs from $\{P\}$ by a translation along \hat{Z}_P with a distance d_i

Derivation of the Transformation Matrix

• Note that rotations and translations are happening with respect to the new axes (Euler angles)

$$
i-j_{i}T = k_{x}(\alpha_{i-1})D_{x}(\alpha_{i-1})R_{z}(\theta_{i})D_{z}(d_{i})
$$
\n
$$
i-j_{i}T = \text{screw}_{x}(\alpha_{i-1}, a_{i-1})D_{x}(\alpha_{i-1}, a_{i-1})\text{screw}_{z}(\theta_{i}, d_{i})
$$
\n
$$
i-j_{i}T = \text{screw}_{x}(\alpha_{i-1}, a_{i-1})\text{screw}_{z}(\theta_{i}, d_{i})
$$
\n
$$
e_{\text{screw}_{x}(\alpha_{i-1}, a_{i-1})\text{ represents a transformation}} = \sum_{\alpha_{i-1}}^{\alpha_{i-1}} \frac{a_{i} \sqrt{\sum_{i}^{\alpha_{i}} x_{i}}}{x_{i}} + \sum_{\alpha_{i}}^{\alpha_{i}} \frac{a_{i}}{x_{i}} + \sum_{i}^{\alpha_{i}} \frac{a_{i}}{x_{i}}}
$$
\n
$$
e_{\text{screw}_{x}(\alpha_{i-1}, a_{i-1})\text{ represents a transformation}} = \sum_{\alpha_{i-1}}^{\alpha_{i-1}} \frac{a_{i}}{x_{i}} + \sum_{\alpha_{i}}^{\alpha_{i}} \frac{a_{i}}{x_{i}} + \sum_{\alpha_{i}}^{\alpha_{i}} \frac{a_{i}}{x_{i}} + \sum_{i}^{\alpha_{i}} \frac{a_{i}}{x_{i}} + \sum_{i}^{\alpha_{
$$

with an angle α_{i-1} and a translation along the xaxis with a distance a_{i-1}

Derivation of the Transformation Matrix

$$
{}^{i-1}T = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
{}^{i-1}T = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ c\alpha_{i-1}s\theta_i & c\alpha_{i-1}c\theta_i & -s\alpha_{i-1} & -s\alpha_{i-1}d_i \\ s\alpha_{i-1}s\theta_i & s\alpha_{i-1}c\theta_i & c\alpha_{i-1} & c\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Example: RPR Robot

 $^{0}_{1}T =$ θ_1 –s θ_1 $s\theta_1$ $c\theta_1$ $0 \qquad 0$ $0 \qquad 0$ 0 0 0 0 1 0 0 1 $^{1}_{2}T =$ 1 0 $\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix}$ 0 0 -1 $-d_2$ 0 1 0 0 0 0 0 1 $_{3}^{2}T =$ θ_3 –s θ_3 $S\theta_3$ $C\theta_3$ $0 \qquad 0$ $0 \qquad 0$ 0 0 0 0 $1 \tL_2$ 0 1

Concatenating Link Transformations:

• After obtaining the Transformation Matrix of each 2 adjacent joints, we can get the total Transformation Matrix using:

$$
{}_{N}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T ... {}_{N}^{N-1}T
$$

- The transformation is a function of all joint variables.
- If the joint variables are know for a certain instant, the Cartesian position and orientation of the last link can be calculated using the Transformation Matrix shown above.

Example: PUMA 560

Example: PUMA 560

Example: Yasukawa L-3

Example: Yasukawa L-3

$$
{}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
$$

$$
{}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
$$

$$
{}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & l_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
$$

$$
{}^{3}_{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & l_{3} \\ s\theta_{4} & c\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
$$

$$
{}^{4}_{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

Frames with Standard Names:

- The base frame {B}: is located at a nonmoving part at the base of the manipulator.
- The station frame $\{S\}$: is located at a task-relevant point. It is universal and the actions of the robot are performed relative to it. {S} is always specified with respect to ${B}.$
- The wrist frame $\{W\}$: is fixed to the last link of the manipulator and moves with it. It is usually specified with respect to {B}.
- The tool frame $\langle T \rangle$ is fixed to the end of the tool that the robot is holding. It is always specified with respect to $\{W\}$
- The goal frame (G) : it describes the end point of the motion. (T) should coincide with {G} to know that the manipulator did its job.

Frames with Standard Names:

