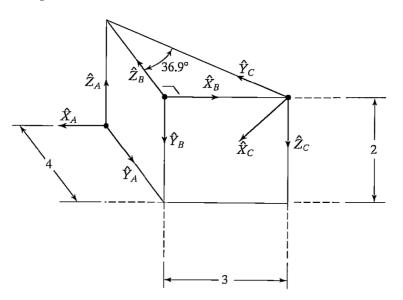
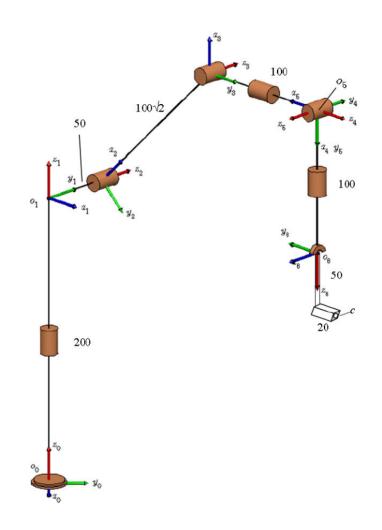
Robotics Assignment – Spatial Descriptions and Transformations

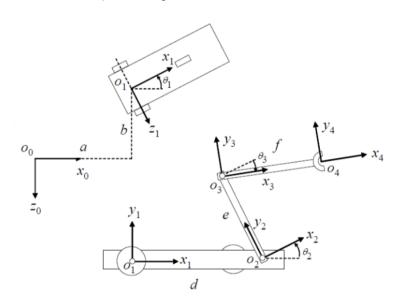

Sima Rishmawi, Birzeit University

February 24, 2017

1 A frame $\{B\}$ is initially coincident with frame $\{A\}$. We rotate frame $\{B\}$ about \hat{Y}_A by 30 degrees, then it is subsequently rotated about \hat{X}_A by 45 degrees. Give the rotation matrix that accomplishes these rotations in the given order.


2 A frame $\{B\}$ is initially coincident with frame $\{A\}$. We rotate frame $\{B\}$ about \hat{Z}_B by 30 degrees, then it is subsequently rotated about \hat{X}_B by 45 degrees. Give the rotation matrix that accomplishes these rotations in the given order.

3 Referring to the figure, find ${}^{A}_{C}T$.



4 The figure shows a schematic of a typical industrial robot with all angles multiples of $\pm \frac{\pi}{4}$ and the dimensions labeled. Frame 0 is attached to the ground and Frame 6 is attached to the end-effector to which a camera is fixed and pointing in the $-y_6$ direction.

- (a) Determine the matrices $\sum_{i=1}^{i-1} T$.
- (b) Calculate the matrix ${}_{6}^{0}T$ and check if it makes sense by inspection.
- (c) The end-effector is rotated in a circle about x_6 from the shown starting position through the angle $0 \le \theta \le 2\pi$.
 - (i) Determine the end-effector motion ${}_{6}^{0}T$ as a function of θ .
 - (ii) For the camera mounted to the end-effector, determine the motion of point c at the lens (${}^{0}P_{c}$) as a function of θ .

5 For the robot vehicle shown in the Figure, find ${}^{0}_{4}T$

