Sima Rishmawi, Birzeit University

February 26, 2017

1 The arm with three DOF shown in the figure has joints 0 and 1 perpendicular to joints 2 and 3. As pictured, all joints are at their zero location. Note that the positive sense of the joint angle is indicated. Assign link frames $\{0\}$ through $\{3\}$ for this arm, then derive the DH-parameters. Find the transformation matrices ${}_{1}^{0}T$, ${}_{2}^{1}T$, and ${}_{3}^{2}T$.

2 Assign link frames to the RPR planar robot shown in the figure and give the DH-parameters.

3 Show the attachment of link frames of the 5-DOF manipulator shown schematically in the figure.

4 For the two-link manipulator shown in the figure, obtain the link transformation matrix. Find an expression for the vector⁰ P_{tip} which locates the tip of the arm relative to the base frame.

5 In the figure, the location of the tool, ${}_{T}^{W}T$, is not accurately known. Using force control, the robot feels around with the tool tip until it inserts it into the socket (or Goal) at location ${}_{G}^{S}T$. Once in this calibration configuration in which $\{G\}$ and $\{T\}$ are coincident, the position of the robot, ${}_{W}^{B}T$, is figured out by reading the joint angle sensors and computing the kinematics. Assuming ${}_{S}^{B}T$ and ${}_{G}^{S}T$ are known, give the transform equation to compute the unknown tool frame ${}_{T}^{W}T$.

