1 Sketch the fingertip workspace of the manipulator shown in the figure.



2 Derive the inverse kinematics of the three-link manipulator shown in the figure.



**3** A 4R manipulator is shown schematically in the figure. The non-zero link parameters are  $a_1 = 1$ ,  $\alpha_2 = 45^\circ$ ,  $d_3 = \sqrt{2}$ , and  $a_3 = \sqrt{2}$ , and the mechanism is pictured in the configuration corresponding to  $\Theta = [0, 90^\circ, -90^\circ, 0]^T$ . Each joint has a  $\pm 180^\circ$  as limits. Find all values of  $\theta_3$  such that  ${}^0P_{4ORG} = [1.1, 1.5, 1.707]^T$ .



4 Write a MATLAB script file using the Robotics Toolbox that solves the inverse kinematics problem of the PUMA560. Use the following values of the joint variables to find the desired end-effector location, then find all other possible solutions  $q = [30900 - 3000]^T$ . Plot all different solutions.