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Downloading the toolbox: 

• Go to www.petercorke.com

• Click on Robotic Toolbox

• From Contents, choose 2 Downloading the Toolbox

• Click on here to download the Toolbox in .zip format

• Choose robot-9.10.zip

• When the download is complete, extract the .zip file and save 
it in the c:\ directory. It will have the name rvctools

http://www.petercorke.com/


Importing the toolbox to MATLAB: 

• Open Matlab.

• In the Command Window type:

>> addpath c:\rvctools

• Now Matlab knows where to look for functions and 
commands.

• To start using the toolbox you have to run the startup 
command, just type:

>> startup_rvc



Commands:

• 3X3 homogeneous Rotation matrix

>> rotx(theta) : rotates a frame about the x-axis with an angle theta.  

>> roty(theta) : rotates a frame about the y-axis with an angle theta. 

>> rotz(theta) : rotates a frame about the z-axis with an angle theta. 

• 4X4 homogeneous Transformation matrix

>> transl(x,y,z) : translates a frame with x, y, z along respective 
axes.

>> trotx(theta) : rotates a frame about the x-axis with an angle 
theta. 

• To get the complete transformation matrix:

>>transl(x,y,z)*trotx(theta)



Commands:

>> trplot(R) : plots the coordinate system in the orientation specified 
by the Rotation matrix R

>> tranimate(R1,R2) : animates the rotation of the coordinate 
system specified by R2 with respect to the coordinate system specified by 
R1. If R1 is not specified, its default value is:

𝑅1 =
1 0 0
0 1 0
0 0 1

which represents the orientation of the universal coordinate system.

>> tripleangle : opens a GUI where you can simulate the Euler 
convention 



rotx(theta)

function R = rotx(t, deg)

if nargin > 1 && strcmp(deg, 'deg')

t = t *pi/180;

end

ct = cos(t);

st = sin(t);

R = [

1   0    0

0   ct -st

0   st ct

];



Object-Oriented Programming:

• OOP is based on the concept of objects which may contain data in the 
form of fields often known as attributes. The code comes in the form of 
procedures known as methods.

• Each object has a number of specific methods that do not apply to other 
objects. Methods can access the attributes of the object to read them or 
write on them.

• The computer program is usually made out of objects that interact with 
each other.

• Most popular OOP languages are class-based meaning that objects are 
instances of classes.



Classes in the Robotic Toolbox:

• The Peter Corke robotic toolbox is an Object-Oriented Toolbox.

• Examples of Classes: 

1. Link

To create an instance of this class (object):

>> L = Link(attributes)

Attributes of a link are: ‘d’, ‘a’, ‘alpha’, ‘theta’ …

• If a joint is revolute  theta is variable  remove from attributes

• If a joint is prismatic  d is variable  remove from attributes

>> L = Link(‘a’,1,’d’,0.5,’alpha’,pi/2)



Classes in the Robotic Toolbox:

• The Peter Corke robotic toolbox is an Object-Oriented Toolbox.

• Examples of Classes: 

2. SerialLink

To create an instance of this class (object):

>> myRobot = SerialLink(attributes)

Attributes of a Serial link are: links …

>> myRobot = SerialLink(L,’name’,’myRobot’)



Some Useful Functions:

• SerialLinkName.isspherical gives 1 if the robot has a spherical wrist 
and 0 if it does not have a spherical wrist.

• SerialLinkName.fkine(q) gives the Transformation matrix that 
describes the position and orientation of the end-effector with respect to the 
base frame for a set of joint variables specified in the vector q. Dimensions of 
q should be equal to the number of DOF.

• SerialLinkName.ikine(T,q0,m) gives the set of joint variables that 
solves the inverse kinematic problem. T describes the desired orientation and 
position of the end-effector with respect to the base frame. q0 specifies the 
initial estimate of the joint variables. m is called the mask (see next slide).

• SerialLinkName.plot(q) draws a schematic picture of the manipulator at 
a certain pose that depends on the values of the joint variables described in 
the vector q



Using a Mask with ikine

• For the case were the manipulator has fewer than 6 DOF the solution 
space has more dimensions than can be spanned by the manipulator 
joint variables.

• A mask vector should be used to specify the Cartesian DOF that will be 
ignored when trying to reach a solution. 

• The mask vector has six elements, 3 correspond to translation in X, Y, 
Z, and 3 correspond to rotation about X, Y, Z respectively.

• For example, when using a 3 DOF manipulator, orientation may be 
ignored: m = [1 1 1 0 0 0]



Standard vs. Modified DH-notation:

• Standard DH notation:

𝑎𝑖 𝛼𝑖 𝑑𝑖 𝜃𝑖  𝑎6 = 𝛼6 = 0

• Modified DH notation:

𝑎𝑖−1 𝛼𝑖−1 𝑑𝑖 𝜃𝑖

• The robotics toolbox uses Standard DH 
notation.



Building a PUMA560 using the Robotics Toolbox

% The next step is to combine all the 
six links into one seriallink (i.e.,

% serial chain manipulator arm.

MyPuma=SerialLink(L, 'name', 'MyPuma')

% Initial pose

q=[0 0 0 0 0 0];

% Find the pose that corresponds to 
these set of angles.

T=MyPuma.fkine(q);

% Plot the manipulator

MyPuma.plot(q)

% Build a six degree of freedom PUMA560 

robot with six links.

addpath c:\rvctools

startup_rvc

L(1)=Link('d', 0, 'a', 0, 'alpha', -pi/2);  

L(2)=Link('d', 0, 'a', 0.432, 'alpha', 0); 

% a2=432 mm

L(3)=Link('d', 0.149, 'a', 0.0203, 'alpha', 

-pi/2); %a3=20.3 mm, d3=149 mm 

L(4)=Link('d', 0.433, 'a', 0, 'alpha', 

pi/2); %d4=433 mm

L(5)=Link('d', 0, 'a', 0, 'alpha', -pi/2);

L(6)=Link('d', 0, 'a', 0, 'alpha', 0);



Building a PUMA560 using the Robotics Toolbox

MyPuma = 

MyPuma (6 axis, RRRRRR, stdDH, fastRNE)                          

+---+-----------+-----------+-----------+-----------+-----------+

| j |     theta |         d |         a |     alpha |    offset |

+---+-----------+-----------+-----------+-----------+-----------+

|  1|         q1|          0|          0|     -1.571|          0|

|  2|         q2|          0|      0.432|          0|          0|

|  3|         q3|      0.149|     0.0203|     -1.571|          0|

|  4|         q4|      0.433|          0|      1.571|          0|

|  5|         q5|          0|          0|     -1.571|          0|

|  6|         q6|          0|          0|          0|          0|

+---+-----------+-----------+-----------+-----------+-----------+

grav =    0  base = 1  0  0  0   tool =  1  0  0  0              

0         0  1  0  0           0  1  0  0              

9.81         0  0  1  0           0  0  1  0              

0  0  0  1           0  0  0  1 



Building a PUMA560 using the Robotics Toolbox



Forward Kinematic Animation (PUMA560)

• Adding these lines to the previous code creates an animation of the 
robot arm as the joint variables change from qi to qf.

• Keep in mind that this is a Forward Kinematic Problem. Robot is 
dumb, you are telling it where to go.

qi = [0 0 0 0 0 0];

qf = [pi/2 -pi/2 0 0 0 0];

t = [0:0.01:2];

qq = jtraj(qi,qf,t);

MyPuma.plot(qq)



Inverse Kinematics of a 4 DOF robot:

% Find the pose that corresponds to 
these set of angles.

T=FOURDOF.fkine(q)

% Change the pose slightly by chaning
the x of the origin.

T(1,4)=0.5

% Prepare the mask

m=[1 1 1 1 0 0]

% Carry out the inverse kinematics.

qi=FOURDOF.ikine(T, q, m)

FOURDOF.plot(qi)

% Build a four degree of freedom robot with 
four links.

% this is basically the first four links of 
the puma 560.

L(1)=Link('d', 0, 'a', 0, 'alpha', -pi/2);  

L(2)=Link('d', 0, 'a', 0.432, 'alpha', 0); 
% a2=432 mm

L(3)=Link('d', 0.149, 'a', 0.0203, 'alpha', 
-pi/2); %a3=20.3 mm, d3=149 mm 

L(4)=Link('d', 0.433, 'a', 0, 'alpha', 
pi/2); %d4=433 mm

% the next step is to combine all the four 
links into one seriallink (i.e.,

% serial chain manipulator arm.

FOURDOF=SerialLink(L, 'name', 'FourDof')

%initial pose

q=[0 0 0 0]



Trajectory Planning 

• There are two functions to perform trajectory planning: 

Tc = ctraj(T1,T2,n)

This is a Cartesian Trajectory from pose T1 to pose T2 with n 
points that follow a trapezoidal velocity profile along the path.

[q qd qdd] = jtraj(q1,q2,n)

This is a Joint Trajectory from q1 to q2. A 5th order polynomial is 
used with zero boundary conditions for velocity and 
acceleration.



Singularities
• This code will be used to plot joint angle changes around a singularity: 

% This example shows the problem of a path 
passing near a singularity, we first do this for 
a cartesian path moving in a straight line from 
the first pose to the second pose.

% This is then repeated for the case of joint 
space trajectory.

addpath c:\rvctools

startup_rvc

% Generate a puma 560 model

mdl_puma560

% Generate a time vector over 2 seconds.

t=[0:0.1:2] 

% Set the first pose

T1=transl(0.5, 0.3, 0.44)*troty(pi/2)

% Set the second pose

T2=transl(0.5, -0.3, 0.44)*troty(pi/2)

% Generate a number of intermediate poses 
between the two poses

Ts=ctraj(T1, T2, length(t))

% Find the inverse kinematics trajectory for the 
joints to achieve these intermediate poses.

qc =p560.ikine6s(Ts)

% Plot the joint angles against time.

qplot(t,qc)

hold on

pause

% Start a new figure

figure

% Do a joint space trajectory betweent the two 
poses

q1=p560.ikine6s(T1)

q2=p560.ikine6s(T2)

[qj qjd qjdd]=jtraj(q1,q2,length(t))

% Plot the set of joint angles against time.

qplot(t,qj)

pause

close

qplot(t,qjd)

pause

close

qplot(t,qjdd)



Manipulability
• This code will be used to calculate the manipulability of the PUMA560 in 4 different poses

% This code finds the manipulability of the Puma560 robot 
for 4 

% pre-defined poses in the Puma560 model 

addpath c:\rvctools

startup_rvc

% Load Puma560 Model 

mdl_puma560

% Display 4 pre-defined poses of the model 

qz % All joint angles are zero

qs % Manipulator is fully stretched out horizontally

qr % Manipulator is fully stretched out vertically

qn % Nominal location that is far from singularities

p560.plot(qz)

pause

p560.plot(qs)

pause 

p560.plot(qr)

pause

p560.plot(qn)

% Calculating Manipulability

mz = p560.maniplty(qz)

ms = p560.maniplty(qs)

mr = p560.maniplty(qr)

mn = p560.maniplty(qn)



Skew Symmetric Matrix

• To find the Skew Symmetric Matrix of 3 elements, use:

S = skew(a,b,c)

• To find the 3 elements that create the Skew Symmetric Matrix, 
use:

[a b c] = vex(S)



Finding the Jacobian using RTB: 

• To find the Jacobian Matrix for a certain pose use:

J = p560.jacob0(q)

• To know if a singularity exists, use:

jsingu(J)



Torque Calculations
% This code calculates the joint torques for the 
Puma560 in different configurations.

% Access the Robotic Toolbox and Start using it

addpath c:\rvctools

startup_rvc

% Define the Puma560 model 

mdl_puma560

% Set a time vector:

t = [0:0.5:10]; 

% Calculate the angles, angular velocities and 
accelerations for a certain joint trajectory (robot 
is supposed to move from the zero position to the 
nominal position

[q, qd, qdd] = jtraj(qz,qn,length(t));

% Plot the angles, angular velocities and 
accelerations

figure(1)

qplot(q)

figure(2)

qplot(qd)

figure(3)

qplot(qdd)

% Scaling velocity and acceleration to 10 s

qd = (1/10)*qd;

qdd = (1/10)*qdd;

% Calculate the Motor Torques required to 
account for gravitation loads(Static Loads)

Qstat = p560.gravload(q)

% Calculate the Motor torques required to move 
the joints with the calculated speeds and 
accelerartions:

Qdyn = p560.rne(q,qd,qdd)

% Calculate the Motor Torques required to move 
the joints with the calculated speeds and 
accelerations with a load at the end-effector:

% Add a load at the tip

p560.payload(2.5,[0 0 0.1]) %load is 2.5 N, its 
center of gravity is at 10 cm from the end-
effector

Qload = p560.rne(q,qd,qdd)


