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Mechanical vibrations

• Defined as oscillatory motion of bodies in response to disturbance.

• Oscillations occur due to the presence of a restoring force

• Vibrations are everywhere:

• Human body: eardrums, vocal cords, walking and running

• Vehicles: residual imbalance of engines, locomotive wheels

• Rotating machinery: Turbines, pumps, fans, reciprocating machines

• Musical instruments

• Excessive vibrations can have detrimental effects:

• Noise

• Loosening of fasteners

• Tool chatter

• Fatigue failure

• Discomfort

• When vibration frequency coincides with natural frequency, resonance occurs.
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Mechanical vibrations

• Aeolian, wind-induced or vortex-induced vibration of the Tacoma Narrows bridge on 7 November 1940 caused it 

to resonate resulting in catastrophic failure.

Tacoma Narrows Bridge Collapse Video

Mechanical Vibrations - Introduction
UPLOADED BY AHMAD JUNDI

http://www.youtube.com/watch?v=3mclp9QmCGs


5 V. Rouillard  2003 - 2013

04:36:37

Mechanical vibrations

• Millennium Bridge, London: Pedestrians, in reaction to lateral motion of the bridge, altered their gait and started 

behaving in concert to induce the structure to resonate further (forced periodic excitation):

Video link
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Fundamentals

• In simple terms, a vibratory system involves the transfer of potential energy to kinetic energy and vice-versa in 

alternating fashion.

• When there is a mechanism for dissipating energy (damping) the oscillation gradually diminishes.

• In general, a vibratory system consists of three basic components:

• A means of storing potential energy (spring, gravity)

• A means of storing kinetic energy (mass, inertial component)

• A means to dissipate vibrational energy (damper)
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Fundamentals

• This can be observed with a pendulum:

• At position 1: the kinetic energy is zero and the potential energy is 

mgl(1 cos )θ−

• At position 2: the kinetic energy is at its 

maximum 

• At position 3: the kinetic energy is again 

zero and the potential energy at its 

maximum.

• In this case the oscillation will eventually stop 

due to aerodynamic drag and pivot friction → 

HEAT
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Degrees of Freedom

• The number of degrees of freedom : number of independent coordinates required to completely determine the 

motion of all parts of the system at any time.

• Examples of single degree of freedom systems:
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Degrees of Freedom

• Examples of two degree of freedom systems:
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Degrees of Freedom

• Examples of three degree of freedom systems:
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Discrete and continuous systems

• Many practical systems small and large or structures can be describe with a finite number of DoF.  These are 

referred to as discrete or lumped parameter systems

• Some large structures (especially with continuous elastic elements) have an infinite number of DoF These are 

referred to as continuous or distributed systems.

• In most cases, for practical reasons, continuous systems are approximated as discrete systems with sufficiently 

large numbers lumped masses, springs and dampers.  This equates to a large number of degrees of freedom 

which affords better accuracy.
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Classification of Vibration

• Free and Forced vibrations

• Free vibration: Initial disturbance, system left to vibrate without  influence of external forces.

• Forced vibration: Vibrating system is stimulated by external forces.  If excitation frequency coincides with 

natural  frequency, resonance occurs. 

• Undamped and damped vibration

• Undamped vibration: No dissipation of energy.  In many cases, damping is (negligibly) small (steel 1 – 

1.5%).  However small, damping has critical importance when analysing systems at or near resonance. 

• Damped vibration: Dissipation of energy occurs  - vibration amplitude decays.

• Linear and nonlinear vibration

• Linear vibration: Elements (mass, spring, damper) behave linearly. Superposition holds - double 

excitation level = double response level,  mathematical solutions well defined.

• Nonlinear vibration: One or more element behave in nonlinear fashion (examples). Superposition does 

not hold, and analysis technique not clearly defined.  
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Classification of Vibration

• Deterministic and Random vibrations

• Deterministic vibration: Can be described by implicit mathematical function as a function of time. 

• Random vibration: Cannot be predicted.  Process can be described by statistical means.
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Vibration Analysis

• Input (excitation) and output (response) are wrt time

• Response depend on initial conditions and external forces

• Most practical systems very complex – (mathematical) modelling requires simplification

• Procedure:

→ Mathematical modelling

→ Derivation / statement of governing equations

→ Solving of equations for specific boundary conditions and external forces

→ Interpretation of solution(s)

Mechanical Vibrations - Introduction
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Vibration Analysis

Example (1.3 Ed.3)
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Spring Elements

• Pure spring element considered to have negligible mass and damping

• Force proportional to spring deflection (relative motion between ends):

= ∆F k x

• For linear springs, the potential energy stored  is:

( ) 21
2= ∆U k x

• Actual springs sometimes behave in 

nonlinear fashion

• Important to recognize the presence and 

significance (magnitude) of nonlinearity

• Desirable to generate linear estimate

Mechanical Vibrations - Introduction
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Spring Elements

• Equivalent spring constant.

• Eg: cantilever beam: Mass of beam assumed negligible cf lumped mass

• Deflection at free end:

3

3
mgl

EI
δ =

• This procedure can be applied for various geometries and 

boundary conditions.  (see appendix)

3
3mg EI

k
lδ

= =

• Stiffness (Force/defln):
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Spring Elements

• Equivalent spring constant.

• Springs in parallel:

1 2w =mg=kδ k δ+

• where

eq 1 2k =k + k

eqw=mg=k δ

• In general, for n springs in parallel:

∑
i=n

eq i
i=1

k = k
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Spring Elements

• Equivalent spring constant.

• Springs in series:

+t 1 2δ =δ δ

• Both springs are subjected to the same 

force:

δ δ= =1 1 2 2mg k k

• Combining the above equations:

δeq tmg=k

δ δ δ= =1 1 2 2 eq tk k k

δ δ
δ δeq t eq t

1 2
1 2

k k
= and =

k k
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Spring Elements

• Substituting into first eqn:

δ δ
δ = +eq t eq t

t
1 2

k k

k k

• Dividing by keqδt throughout:

= +
eq 1 2

1 1 1

k k k

• For n springs in series:

 
 
 

∑
i=n

eq ii=1

1 1
=

k k

• Springs in series (cont’d):
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Spring Elements

• Equivalent spring constant.

• When springs are connected to rigid components such as pulleys and gears, the energy equivalence 

principle must be used.

• Example:

Example (1.10 Ed.3)
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Mass / Inertia Elements

• Mass or inertia element assumed rigid (lumped mass)

• Its energy (kinetic) is proportional to velocity.

• Force ∝ mass * acceleration

• Work = force * displacement

• Work done on mass is stored as Kinetic Energy

• Modelling with lumped mass elements.  Example: assume 

frame mass is negligible cf mass of floors.

Mechanical Vibrations - Introduction
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Mass / Inertia Elements

• Equivalent mass - example:

32
2 1 3 1

1 1

ll
x = x and x = x

l l
& & & &

eq 1x = x& &

• To determine the equivalent mass at position l1:

• The velocities of the mass elements can be written as:

Mechanical Vibrations - Introduction
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Mass / Inertia Elements

+ + =2 2 2 21 1 1 1
1 1 2 2 3 3 eq eq2 2 2 2

m x m x m x m x& & & &

• Equating the kinetic energies:

   
= + + ÷  ÷

   

2 2
32

eq 1 2 3
1 1

ll
m m m m

l l

• Substituting for the velocity terms:

• Equivalent mass – example (cont’d)
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Damping Elements

• Absorbs energy from vibratory system  → vibration amplitude decays.

• Damping element considered to have no mass or elasticity

• Real damping systems very complex, damping modelled as:

• Viscous damping:

• Based on viscous fluid flowing through gap or orifice.

• Eg: film between sliding surfaces, flow b/w piston & cylinder, flow thru orifice, film around journal 

bearing.

• Damping force ∝ relative velocity between ends

• Coulomb (dry Friction) damping:

• Based on friction between unlubricated surfaces

• Damping force is constant and opposite the direction of motion

Mechanical Vibrations - Introduction
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Damping Elements

• Hysteretic (material or solid)  damping:

• Based on plastic deformation of materials (energy loss due to slippage b/w grains)

• Energy lost due to hysteresis loop in force-deflection (stress-strain) curve of element when load is 

applied:

Mechanical Vibrations - Introduction
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Damping Elements

• Equivalent damping element:

• Combinations of damping elements can be replace by equivalent damper using same procedures as 

for spring and mass/inertia elements.
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Damping Elements
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Harmonic Motion

x Asin( ) A sin( t )θ ω= =

• Its velocity and acceleration are:

2
2 2

2

dx
A cos( t )

dt
and

d x
A sin( t ) x

dt

ω ω

ω ω ω

=

= − = −

• Harmonic motion: simplest form of periodic motion 

(deterministic).

• Pure sinusoidal (co-sinusoidal) motion

• Eg: Scotch-yoke mechanism rotating with angular 

velocity ω - simple harmonic motion:

• The motion of mass m is described by:

Mechanical Vibrations - Introduction
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Harmonic Motion

• Sinusoidal motion emanates from cyclic motion

• Can be represented by a vector (OP) with a magnitude, angular velocity 

(frequency) and phase.

• The rotating vector generates a sinusoidal and a co-sinusoidal components along 

mutually perpendicular axes.

Mechanical Vibrations - Introduction
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Harmonic Motion

• Often convenient to represent sinusoidal and co-sinusoidal components (mutually 

perpendicular) in complex number format

• Where a and b denote the sinusoidal (x) and co-sinusoidal (y) components

• a and b = real and imaginary parted of vector X

Mechanical Vibrations - Introduction
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Harmonic Motion

Definition of terms:

• Cycle: motion of body from equilibrium position → extreme position → equilibrium position → extreme position 

in other direction → equilibrium position .

• Amplitude: Maximum value of motion from equilibrium.  (Peak – Peak = 2 x amplitude)

• Period: Time taken to complete one cycle 2πτ
ω

=

ω = circular frequency

• Frequency: number of cycles per unit time.

1
f

2
ω

τ π
= =

ω : radians/s      f Hertz (cycles /s)

Mechanical Vibrations - Introduction
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Harmonic Motion

• Phase angle: the difference in angle (lead or lag) by which two harmonic motions of the same frequency 

reach their corresponding value (maxima, minima, zero up-cross, zero down-cross)

Mechanical Vibrations - Introduction
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Harmonic Motion

• Phase angle: the difference in angle (lead or lag) by which two harmonic motions of the same frequency 

reach their corresponding value (maxima, minima, zero up-cross, zero down-cross)
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Harmonic Motion

• Natural frequency: the frequency at which a system vibrates without external forces after an initial 

disturbance.  The number of natural frequencies always matches the number of DoF.

• Beats: the effect produced by adding two harmonic motions with similar (close) frequencies. 

1 2

t 1 2

t

x A sin( t ) x A sin( t t )

x x x A [sin( t ) sin( t t )]

M N M N
Since sin M sin N 2 sin cos

2 2
t t

x 2A sin t cos
2 2

ω ω δω
ω ω δω

δω δωω

= = +
= + = + +

+ −+ =

   = + ÷  ÷   
Eg: ω=40 Hz and δ= -0.075

• In mechanical vibratory systems, beats occur when the (harmonic) excitation (forcing) frequency is close to 

the natural frequency.

Mechanical Vibrations - Introduction
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Harmonic Motion

• Octave: doubling of any quantity.   Used mainly for frequency.

• Octave band (frequency): maximum is double of minimum. Eg: 64 – 128 Hz,  1000 – 2000 Hz.

• Decibel: defined as 10 x log(power ratio)

0

P
dB 10Log

P

 
=  ÷

 
In electrical systems (as in mechanical vibratory systems) power is proportional to the value squared hence:

0

X
dB 20Log

X

 
=  ÷

 

Mechanical Vibrations - Introduction
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Harmonic (Fourier) Analysis

• Many vibratory systems not harmonic but often periodic

• Any periodic function can be represented by the Fourier series – infinite sum of sinusoids and co-sinusoids.

o
1 2

1 2

o
n n

n 1

a
x( t ) a cos( t ) a cos( 2 t ) ........

2
b sin( t ) b sin( 2 t ) .......

a
[a cos( n t ) b sin( n t )]

2

ω ω

ω ω

ω ω
∞

=

= + + +

+ + +

= + +∑

• To obtain an and bn  the series is multiplied by cos(nωt) and sin(nωt) respectively and integrated over one 

period.

Mechanical Vibrations - Introduction
UPLOADED BY AHMAD JUNDI



38 V. Rouillard  2003 - 2013

04:36:37

Harmonic (Fourier) Analysis

• Example:

Mechanical Vibrations - Introduction
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Harmonic (Fourier) Analysis

• Example:

Mechanical Vibrations - Introduction
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Harmonic (Fourier) Analysis

• As for simple harmonic motion, Fourier series can be expressed with complex numbers:

i t

i t

i t i t

i t i t

e cos( t ) i sin( t )

e cos( t ) i sin( t )

e e
cos( t )

2

e e
sin( t )

2i

ω

ω

ω ω

ω ω

ω ω

ω ω

ω

ω

−

−

−

= +

= −

+=

−=

o
n n

n 1

a
x( t ) [a cos( n t ) b sin( n t )]

2
ω ω

∞

=
= + +∑

• The Fourier series:

Can be written as:

i t i t i t i t
o

n n
n 1

a e e e e
x( t ) a b

2 2 2i

ω ω ω ω− −∞

=

    + − = + + ÷  ÷  ÷  ÷     
∑
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Harmonic (Fourier) Analysis

• Defining the complex Fourier coefficients

n n n n
n n 1

a ib a ib
c and c

2 2−
− += =

in t
n

n

x( t ) c e ω
∞

=−∞
= ∑

• The (complex) Fourier series is simplified to:

Mechanical Vibrations - Introduction
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Harmonic (Fourier) Analysis

• The Fourier series is made-up of harmonics.

• Their amplitudes and phases are defined as:

2 2
n n n

n
n

n

A ( a b )

b
atan

a
φ

= +

 
=  ÷

 

o
n n

n 1

a
x( t ) [a cos( n t ) b sin( n t )]

2
ω ω

∞

=
= + +∑

harmonics
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Harmonic (Fourier) Analysis

• The amplitudes (magnitudes) and phases of the harmonics can be plotted as a function of frequency to form 

the frequency spectrum of spectral diagram:

An

Mechanical Vibrations - Introduction
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Free undamped vibration single DoF

• Recall: Free vibrations → system given initial disturbance and oscillates free of external forces.

• Undamped: no decay of vibration amplitude

• Single DoF:

• mass treated as rigid, limped (particle)

• Elasticity idealised by single spring

• only one natural frequency.

• The equation of motion can be derived using

• Newton’s second law of motion

• D’Alembert’s Principle, 

• The principle of virtual displacements and,

• The principle of conservation of energy.

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

• Using Newton’s second law of motion to develop the equation of motion.

1. Select suitable coordinates

2. Establish (static) equilibrium position

3. Draw free-body-diagram of mass

4. Use FBD to apply Newton’s second law of motion:

“Rate of change of momentum = applied force”

d dx( t )
F( t ) m

dt dt
 =  ÷ 

As m is constant
2

2
d x( t )

F( t ) m mx
dt

= = &&

For rotational motion

M( t ) Jθ= &&

For the free, undamped single DoF system 

F( t ) kx mx

or

mx kx 0

= − =

+ =

&&

&&

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

Principle of virtual displacements:

• “When a system in equilibrium under the influence of forces is given a virtual displacement. The total 

work done by the virtual forces = 0”

• Displacement is imaginary, infinitesimal, instantaneous and compatible with the system

• When a virtual displacement dx is applied, the sum of work done by the spring force and the inertia force 

are set to zero:
( kx ) x ( mx ) x 0δ δ− − =&&

• Since dx ≠ 0 the equation of motion is written as:

kx mx 0+ =&&

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

Principle of conservation of energy:

• No energy is lost due to friction or other energy-dissipating mechanisms.

• If no work is done by external forces,  the system total energy = constant

• For mechanical vibratory systems:

• Since

( )

KE PE cons tan t

or

d
KE PE 0

dt

+ =

+ =

2 2

2 2

1 1
KE mx and PE kx

2 2
then

d 1 1
mx kx 0

dt 2 2

or

mx kx 0

= =

 + = ÷ 

+ =

&

&

&&
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Free undamped vibration single DoF

Vertical mass-spring system:

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

Vertical mass-spring system:

• From the free body diagram:, using Newton’s second law of motion:

st

st

mx k( x ) mg

sin ce k mg

mx kx 0

δ
δ

= − + +
=

+ =

&&

&&

mg

• Note that this is the same as the eqn. of motion for the horizontal mass-spring system

∀ ∴ if x is measured from the static equilibrium position, gravity (weight) can be ignored

• This can be also derived by the other three alternative methods.

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

• The solution to the differential eqn. of motion.

• As we anticipate oscillatory motion, we may propose a solution in the form:

n n

n n

i t i t

n

st

x( t ) Acos( t ) B sin( t )

or

x( t ) Ae Be

alternatively, if we let s i

x( t ) C e

ω ω

ω ω

ω

−

±

= +

= +
= ±

=

• By substituting for x(t) in the eqn. of motion:
2

2

n

n

sin ce

Characteristic equation

a

C( ms k ) 0

c 0,

ms k 0

k
s

nd

roots eigenvalues

or

i
m

k
m

ω

ω

+ =
≠

+ =

= ± = ± ¬

=

¬

=
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Free undamped vibration single DoF

• The solution to the differential eqn. of motion.

• Applying the initial conditions to the general solution:

( t 0 ) 0

( t 0 ) n 0

initial displacement

initial velo

x A

c yx B x i

x

tω
=

=

= =

= =& &

• The solution becomes:

n nx( t ) Acos( t ) B sin( t )ω ω= +

1
2

o
0 n n

n

2
2 0 0 n

0 0
n o

0 n

x
x( t ) x cos( t ) sin( t )

x x
A x a tan

x

x( t

if we let and the

) A sin( t )

n

ω ω
ω

ωφ
ω

ω φ

= +

     = + = ÷  ÷
     

= +

&

&

&

• This describes motion of harmonic oscillator:

• Symmetric about equilibrium position

• Thru equilibrium: velocity is maximum & acceleration is zero

• At peaks and valleys, velocity is zero and acceleration is maximum

∀ ωn = √(k/m)  is the natural frequency

Mechanical Vibrations – Single Degree-of-Freedom systems
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Free undamped vibration single DoF

• Note: for vertical systems, the natural frequency can be written as:

n

st

n n
st st

k
m

mg
sin ce k

g 1 g
or f

2

ω

δ

ω
δ π δ

=

=

= =
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Free undamped vibration single DoF

• Torsional vibration.

• Approach same as for translational system.  Laboratory exercise.
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Free undamped vibration single DoF

• Compound pendulum.

• Given an initial angular displacement or velocity, system will 

oscillate due to gravitational acceleration.

• Assume rigid body → single DoF

o
n

o

n
o

d

Restoring torque:

Equation of motion :

nonlinear2 order ODE

Linearity is approximated if Therefore

mgd sin

J mgd sin 0

sin

J mgd

:

Natural frequ

0

m

enc

g

y

d
J

:

θ

θ θ

θ θ

θ θ

ω

+ =

≈

¬

+

∴

=

=

&&

&&
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Free undamped vibration single DoF

n
o

n

2o
o o

2
o

n 2
o

2 2 2
o G

2
G

n 2
o

2
G

Natural frequency :

sin ce for a simple pendulum

Then, and since then

A

mgd
J

g
l

J
l J mk

md
kgd

and l
dk

k k d

k
l d

d
l GA d OA

g g g
l OAk / d

k
GA

d

pplying the parallel axis theorem

Let

The location A

ω

ω

ω

ω

=

=

= =

= =

= +

= +

= + =

= = =

 
=

is the " centre of percussion÷÷
′′
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Free undamped vibration single DoF

• Stability.

• Some systems may have inherent instability
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Free undamped vibration single DoF

• Stability.

• Some systems may have inherent instability

• When the bar is deflected by θ,

2

o

2

The spring force is :

The gravitational force thru G is :

The inertial moment about O due to the angular acceleration is :

The eqn.of motion is written as

2kl sin

mg

ml
J

3

ml l
( 2kl sin ) l cos mg sin 0

3

:

2

θ

θ θ

θ θ θ θ

θ

=

+ − =

&& &&

&&

&&
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Free undamped vibration single DoF

2
2

2

2

For small oscillations, .Thesin and cos 1

ml mgl
2kl 0

3 2

12kl 3mgl
0

2ml

refore

or

θ θ θ

θ θ θ

θ θ

= =

+ − =

 −+ = ÷ ÷ 
&&

The solution to the eqn. of motion depends of the sign of ( )

(1)  If ( ) >0, the resulting motion is oscillatory (simple harmonic) 

with a natural frequency 

2

n 2

12kl 3mgl

2ml
ω =

 −
 ÷ ÷ 
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Free undamped vibration single DoF

2

2

12kl 3mgl
0

2ml
θ θ

 −+ = ÷ ÷ 
&&

(2)  If ( ) =0, the eqn. of motion reduces to: 

θ

θ
θ θ θ θ

θ θ

θ

θ

=

= +
=

=

= = =

= +

1 2

0 0

0 0

0

0

( t ) C t C

( t 0 ) and ( t 0 )

( t ) t

The solution is obtained by int egrating twice yielding :

Applying initial conditions

Which shows a linear increase of angular displ. at cons tan t velocity.

And if 0 the bar r

&&

&

&

&

&

θ θ= 0emains in static equilibrium at ( t )
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Free undamped vibration single DoF

2

2

12kl 3mgl
0

2ml
θ θ

 −+ = ÷ ÷ 
&&

(3)  If ( ) < 0, we define: 

( ) ( )

α α

α α

α

θ
θ θ θ θ

θ αθ θ αθ θ
α

θ

−

−

   − −= − = ÷  ÷
   

= +

= = = =

 = + + − 

2 2

2 2

t t
1 2

0 0

t t
0 0 0 0

The solution of the eq.of motion is :

Applying in

12kl 3mgl 3mgl 12kl

2ml 2ml

( t ) B e B e

( t 0 ) and ( t 0 )

1
( t ) e

itial conditions

which shows that ( t ) incr ase

e
2

e s

& &

& &

−

exponentially with time

and is therefore unstable because the restoring moment ( springs )

is less than the non restoring moment due to gravity.
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Free undamped vibration single DoF

• Rayleigh’s Energy method to determine natural frequency

• Recall:  Principle of conservation of energy:

1 1 2 2T U T U+ = +

• Where T1 and U1 represent the energy components at the time when the kinetic energy is at its maximum 

(∴ U1=0) and T2 and U2 the energy components at the time when the potential energy is at its maximum 

(∴ T2=0)

1 2T 0 0 U+ = +

• For harmonic motion

max maxT U=
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Free undamped vibration single DoF

• Rayleigh’s Energy method to determine natural frequency: Application example:

• Find minimum length of mercury u-tube manometer tube so that fn of 

fluid column < 2 Hz.

• Determine Umax and Tmax:

• Umax = potential energy of raised fluid column + potential energy of 

depressed fluid column.

( ) ( )

raised depressed

raised depressed

2

A : cross sec tional area a

x x
U mg mg

2

nd

2

: specific weight of mercur

x x
Ax Ax

2 2

A x

yγ

γ γ

γ

= +

= +

=

2

2

1
T ( mass of mercury col ) vel

2

1 Al
x

2 g

γ

=

 =  ÷ 
&

• Kinetic energy:
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Free undamped vibration single DoF

• Rayleigh’s Energy method to determine natural frequency: Application example:

n

n

n n

x( t ) X cos( 2 f t )

x( t ) 2 f X sin( 2 f

where X is the max .displacement

where 2 f X is the max .velocitt ) y

π
π π π

=
=&

• If we assume harmonic motion:

• Substituting for the maximum displacement and velocity:

( )

( )

22 2
max max n

22 2
max max n

n

1 Al
U A X and T 2 f X

2 g

1 Al
U T A X 2 f X

2 g

1 2g
f

2 l

γγ π

γγ π

π

 = =  ÷ 
 = ∴ =  ÷ 

 =  ÷ 

• Minimum length of column:
n

1 2g
f 1.5 Hz

2 l

l 0.221 m

π
 = ≤ ÷ 

≥
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Free single DoF vibration + viscous damping

• Recall: viscous damping force ∝ velocity:

[ ]

ω

= −

= − − + + =

= = ±

=

=

st
n

st

F cx

mx cx kx o

c damping cons tan t or

r mx cx kx

coefficient Ns / m

Applying Newton' s second law of motion to obtain the eqn.of motion :

I

0

x( t )

f the solution is as

Ce where s i

then : x( t ) sCe an

sumed to take the form :

d

&

&& & && &

& & =

+ + =

− ± −    = = − ± − ÷  ÷   

= =1 2

2 st

2

22

1,2

s t s t
1 1 2 2

Substituting for x, x and x in the eqn.of motion

The root of the characteristic eqn. are :

The two solutions are :

x( t ) s Ce

ms cs k 0

c c 4mk c c k
s

2m 2m 2m m

x ( t ) C e and x ( t ) C e

& &&

&
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Free single DoF vibration + viscous damping

1 2

2 2

s t s t
1 2

c c k c c k
t t

2m 2m m 2m 2m m

1 2

1 2

or

where C and C are arbitrary cons tants

det er mined from the i

x( t ) C

n

e C

itial conditions

e

x( t ) C

.

e C e

             − + − − − −    ÷  ÷  ÷  ÷             

= +

= +

• The general solution to the Eqn. Of motion is:

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



66 V. Rouillard  2003 - 2013

04:36:37

Free single DoF vibration + viscous damping

2
c

c n
c k k

0 c 2m 2m 2 kmr
2m m m

o ω   − = = = = ÷ ÷   

• Critical damping (cc): value of c for which the radical in the general solution is zero:

( )
2 2

n n

c
n

c c

2
2

1,2 n

1 t 1 t

1 2

cc c c

c 2m c 2m

c c k
s 1

2m 2m m

or

The roots can be re written :

And the solution beco

x( t ) C e C e

mes :

ζ ζ ω ζ ζ ω

ζ ζω

ζ ζ ω

   − + − − − − ÷  ÷   

= = =

   = − ± − = − ± − ÷  ÷   

= +

−

• Damping ratio (ζ):  damping coefficient : critical damping coefficient.

• The response x(t) depends on the roots s1 and s2 → the behaviour of the system is dependent on the 

damping ratio ζ .
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Free single DoF vibration + viscous damping

2 2
n n1 t 1 t

1 2x( t ) C e C e
ζ ζ ω ζ ζ ω   − + − − − − ÷  ÷   = +

• When ζ  <1, the system is underdamped.  (ζ2-1) is negative and the roots can be written as:

( ) ( )

( ) ( ) ( ) ( ){ }

2 2
n n

2 2
n n

n

n

2 2
1 n 2 n

i 1 t i 1 t

1 2

i 1 t i 1 t
t

1 2

t 2 2
1 2 n 1 2 n

s i 1 and s i 1

x( t ) C e C e

x( t )

And the solution

e C e C e

x( t ) e C C cos 1 t i C C s

bec

in 1 t

x(

omes

t

:

ζ ζ ω ζ ζ ω

ζ ω ζ ωζω

ζω

ζ ζ ω ζ ζ ω

ζ ω ζ ω

   − + − − − − ÷  ÷   

   − − − ÷  ÷−    

−

= − + − = − − −

= +

  = + 
  

= + − + − −

( ) ( ){ }
( ) ( )

n

n n

t ' 2 ' 2
1 n 2 n

t t2 2
n 0 n o

) e C cos 1 t C sin 1 t

x( t ) Xe sin 1 t or x( t ) X e cos 1 t

ζω

ζω ζω

ζ ω ζ ω

ζ ω φ ζ ω φ

−

− −

= − + −

= − + = − −

Where C’1, C’2;  X, φ  and Xo, φo are arbitrary constant determined from initial conditions.
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Free single DoF vibration + viscous damping

( ) ( ){ }nt ' 2 ' 2
1 n 2 nx( t ) e C cos 1 t C sin 1 tζω ζ ω ζ ω−= − + −

• For the initial conditions:

( ) ( )n

0 0

' ' 0 n 0
1 0 2 2

n

t 2 20 n 0
0 n n2

n

Then

Therefore the soluti

x( t 0 ) x and x( t 0 ) x

x x
C x and C

1

x x
x( t ) e x cos 1 t sin 1 t

on becomes

1

ζω

ζω

ζ ω

ζωζ ω ζ ω
ζ ω

−

= = = =

+= =
−

 + = − + − 
−  

& &

&

&

• This represents a decaying (damped) harmonic motion with angular frequency √(1-ζ2)ωn also known as 

the damped natural frequency.  The factor e-( ) causes the exponential decay.
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d
d

2πτ
ω

=

Free single DoF vibration + viscous damping

Exponentially decaying harmonic – free SDoF vibration with viscous damping .

Underdamped oscillatory motion and has important engineering applications.

ntXe ζω−
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Free single DoF vibration + viscous damping

( ) ( )n nt t2 2
n 0 n ox( t ) Xe sin 1 t or x( t ) X e cos 1 tζω ζωζ ω φ ζ ω φ− −= − + = − −

( ) ( )
0 0

2 2' '
0 1 2

' '
1 2

0' '
2 1

The cons tan ts ( X , ) and ( X , ) representing the magnitude and phase be

X X C C

C C
a tan and a tan

come :

C C

φ φ

φ φ

= = +

   
= = − ÷  ÷

   
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Free single DoF vibration + viscous damping

• When ζ = 1, c=cc , system is critically damped and the two roots to the eqn. of motion become:

( )[ ]

n

n

c
1 2 n

t
1 2

0 0

1 0

2 0 n 0

t
0 0 n 0

and solution is

Applying the initial conditions

c
s s

2m

x( t ) ( C C t )e

x( t 0 ) x x( t 0 ) x

C x

C x x

x( t ) x x x t e

and yields

The solution becomes :

ω

ω

ω

ω

ω

−

−

= = − = −

= +
= = = =

=
= +

= + +

& &

&

&

• As t→∞ , the exponential term diminished toward zero and depicts aperiodic motion
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Free single DoF vibration + viscous damping

• When ζ > 1, c>cc , system is overdamped and the two roots to the eqn. of motion are real and negative:

( )
( )

( )

( )

2 2
n n

2
1 n

2
2 n

2 1 0 0

1 t 1 t

1 2

2
0 n 0

1 2
n

2
0 n 0

2 2
n

with and the initial conditions and

the solution becomes

s 1 0

s 1 0

s s x( t 0 ) x x( t 0 ) x

x( t ) C e C e

x 1 x
C

2 1

x 1 x
C

:

w

2

here

ζ ζ ω ζ ζ ω

ζ ζ ω

ζ ζ ω

ω ζ ζ

ω ζ

ω ζ ζ

ω ζ

   − + − − − − ÷  ÷   

= − + − <

= − − − <

= = = =

= +

− + − +
=

−

− − − − −
=

& &=

&

&

1−

Which shows aperiodic motion which diminishes exponentially with time.
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Free single DoF vibration + viscous damping

n

2π
ω

d

2π
ω

Overdamped ( 1)ζ >
Underdamped ( 1)ζ <

Underdamped ( 0 )ζ =

Critically
damped ( 1)ζ =

Critically damped systems have lowest required damping for aperiodic motion and mass returns to equilibrium 

position in shortest possible time.
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Free single DoF vibration + viscous damping

Example

Mechanical Vibrations – Single Degree-of-Freedom systems
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• Logarithmic decrement: Natural logarithm of ratio of two successive peaks (or troughs) in an 

exponentially decaying harmonic response.

• Represents the rate of decay

• Used to determine damping constant from experimental data.

• Using the solution for underdamped systems:

( )

n 1

n 2

n 1
n d

n 1 d

t
0 d 1 01

t
2 0 d 2 0

2 1 d 1
d

d 2 0 d 1 0 d 1 0

t
1

t
2

X e cos( t )x

x X e cos( t )

2
Let t t t then

cos( t ) cos( 2 t ) cos( t )

and

x e

Applying the natural ln on both sides,

the log arithmic

e
x e

decrement i

ζω

ζω

ζω
ζω τ

ζω τ

ω φ
ω φ

πτ
ω

ω φ ω ω φ

δ

π φ

−

−

−

− +

−=
−

= + = +

− = + − = −

= =

1
n d n 2 22 dn

x 2 2 2
ln

x 1 1

s obtained :

π πζ πζδ ζω τ ζω
ωζ ω ζ

 = = = = = ÷
  − −

Free single DoF vibration + viscous damping

t1
t2

x1

x2

τd
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• Logarithmic decrement:

1

2

x
ln 2

x

For low damping ( 1)

Valid for .3ζ

δ

ζ

πζ = = ÷
 

<<

<

Free single DoF vibration + viscous damping

0
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8

10
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14
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δ

ζ
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• Logarithmic decrement after n cycles:

Free single DoF vibration + viscous damping

• Since the period of oscillation is 

constant:

( )

n d

n d n d

3 m1 1 2

m 1 2 3 4 m 1

j

j 1

m m1

m 1

1

m 1

Since then

The log arithmic decrement can therefore
be obtained from a number m of
successive deca

x xx x x
....

x x x x x

x

ying oscill

e
x

x

ation

e e
x

x1
l

m x

s

n

ζω τ

ζω τ ζω τ

δ

+ +

+

+

+

=

=

= =

 
=  ÷

 

x1

x2

Xm+1
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Free single DoF vibration + Coulomb damping

for free s tan ding systems

where is the coefficient o

F N

F mg

f friction.µ

µ
µ −

=
=

• Coulomb or dry friction dampers are simple and convenient

• Occurs when components slide / rub

• Force proportional to normal force:

• Force acts in opposite direction to velocity and is independent of displacement and velocity.

•  Consider SDOF system with dry friction:

Case 1. Case 2.
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Free single DoF vibration + Coulomb damping

1 n 2 n

nd

n 1 2

mx kx N or mx kx N

N
x( t ) A cos( t ) A sin( t )

2 order homogeneous DE

For which the general solution is :

k
where the fre quency of vibration is and A  and A  are constants dependent on the initial

m

( 1)
k

condition

µ µ

ω

µω ω

= − − + = −

+

¬

= −

&& &&

s of this portion of the cycle.

• Case 1: Mass moves from left to right. x = positive and x’ is positive or x = negative and x’ is positive.

• The eqn. of motion is:

n 3 4

3 n 4 n

For which the general solution is :

k
where the fre quency of vibration is again and A  and A  are consta

mx kx N or

nts dep

m

endent
m

on the initial condition

x kx N

N
x( t ) A cos( t ) A sin( t ) (

s of this port

2
k

i

)

o

µ µ

µω ω

ω

= − + + =

= + +

&& &&

n of the cycle.

• Case 2: Mass moves from right to left. x = positive and x’ is negative or x = negative and x’ is negative.

• The eqn. of motion is:
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Free single DoF vibration + Coulomb damping

• The term  µN/k [m] is a constant representing the virtual displacement of the spring k under force µN.  The 

equilibrium position oscillates between +µN/k  and -µN/k 1 for each harmonic half cycle of motion.
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Free single DoF vibration + Coulomb damping

• To find a more specific solution to the eqn. of motion we apply the simple initial conditions:

( )

µω ω

ω ω ω ω

µ

= = = =

= + +

= − + +

= − =

=

& &

&

0 0

3 n 4 n

3 n n 4 n n

3 0 4

x( t 0 ) x and x( t 0 ) x

N
x( t ) A cos( t ) A sin( t ) ( 2 )

k

x( t ) A sin

The motion starts fr

( t ) A cos(

om the extreme right ( ie. velocity is zero )

Substituting int o

and

gives

Eqn. 2 be

t ) 0

N
A x and

comes

A 0
k

x( t ) ωµ µω π  ≤− + ÷ 
≤ n0 n

N N
valid for 0x cos( t ) (

k
t2 ) /a

k
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Free single DoF vibration + Coulomb damping

= Initial displacement for next half cycle

0 n n
N N

x( t ) x cos( t val) id for 0 t /
k k

µ µ πω ω  ≤ ≤= − + ÷ 
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Free single DoF vibration + Coulomb damping

• The displacement at π/ωn becomes the initial displacement for the next half cycle, x1.

( )

1 0 0
n

1

n

n 2 n

and the initial velocity x t 0 is x t in eqn ( 2a )

Substituting these initial conditions int

N N 2 N
x x t x cos( ) x

k k k

N
x( t ) A cos( t ) A sin(

o eqn.( 1)

and its derivative

t ) ( 1)
k

π
ω

π µ µ µπ
ω

µω ω

=

 = =

     − = = − + = − − ÷  ÷ ÷     

= + −

= ÷
 

& &

& n 1 n n 2 n

1

n0 n

0 2

n

gives

such that eqn.(

x( t ) A sin( t ) A cos( t )

3 N
A x and A 0

k

3 N N
x

1) becomes :

valid for / t 2( t ) x cos( t ) (
k k

/1a ) π ω π

ω ω ω ω

µ

µ µω ω

= − +

= − =

 = ≤− ≤− ÷ 
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Free single DoF vibration + Coulomb damping

= Initial displacement for next half cycle

0 n n
N N

x( t ) x cos( t val) id for 0 t /
k k

µ µ πω ω  ≤ ≤= − + ÷ 

nn n0
3 N N

x( t ) x cos( t ) valid for
k

2 /
k

/ tπ ω πµ ωµω = − ≤ ≤− ÷ 

This method can be applied to successive half cycles until the motion stops.
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Free single DoF vibration + Coulomb damping

• During each half period π/ωn the reduction in magnitude (peak height) is  2µN/k

• Any two succesive peaks are related by:

0

0

2 N N
x r

k k

or

N
x

kr
2 N

k

µ µ

µ

µ

   − ≤ ÷  ÷   

 
−  ≥     ÷   

• The motion will stop when xn < µN/k 

• The total number of half vibration cycles, r, is obtained from:

m m 1
4 N

x x
k

µ
−

 = −  ÷ 
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Free single DoF vibration + Coulomb damping

0 n n
N N

x( t ) x cos( t val) id for 0 t /
k k

µ µ πω ω  ≤ ≤= − + ÷ 

= Initial displacement for next half cycle

nn n0
3 N N

x( t ) x cos( t ) valid for
k

2 /
k

/ tπ ω πµ ωµω = − ≤ ≤− ÷ 

Final position
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Free single DoF vibration + Coulomb damping

• Important features of Coulomb damping:

1. The equation of motion is nonlinear (cf. linear for viscous damping)

2. Coulomb damping does not alter the system’s natural frequency (cf. damped natural frequency for viscous 

damping).

3. The motion is always periodic (cf. overdamped for viscous systems)

4. Amplitude reduces linearly (cf. exponential decay for viscous systems)

5. System eventually comes to rest – number of vibration cycles finite (cf. sustained vibration with viscous 

damping)

6. The final position is the permanent displacement (not equilibrium) equivalent to the friction force (cf. 

approaches zero for viscous systems)
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Forced (harmonically excited) single DoF vibration

• External energy supplied to system as applied force or imposed motion (displacement, velocity or acceleration)

• This section deals only with harmonic excitation which results in harmonic response  (cf. steady-state or 

transient response from non-harmonic excitation).

• Harmonic  forcing function takes the form:

( )i t
0 0 0F( t ) F e or F( t ) F cos( t ) or F( t ) F sin( t )ω φ ω φ ω φ+= = + = +

• Where F0 is the amplitude, ω the frequency and φ the phase angle.

• The response of a linear system subjected to harmonic excitation is also harmonic.

• The response amplitude depends on the ratio of the excitation frequency to the natural frequency.

• Some “common” harmonic forcing functions are:

• Rotating machine / element with (large) residual imbalance

• Regular shedding of vortices caused by laminar flow across slender structures (VIV) – ie: chimneys, 

bridges, overhead cables, mooring cables, tethers, pylons…

• Vehicle travelling on pavement corrugations or sinusoidal surfaces

• Structures excited by regular (very narrow banded) ocean / water waves

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



89 V. Rouillard  2003 - 2013

04:36:37

Forced (harmonically excited) single DoF vibration

• Equation of motion when a force is applied to a viscously damped SDOF system is:

( )mx cx kx F t non homogeneous differential eqn.+ + = ¬&& &

• The general solution to a nonhomogeneous DE is the sum if the homogeneous solution xh(t) and the particular 

solution xp(t).

• The homogeneous solution represents the solution to the free SDOF which is known to decay over time for all 

conditions (underdamped, critically damped and overdamped).

• The general solution therefore reduces to the particular solution xp(t) which represents the steady-state vibration 

which exists as long as the forcing function is applied.
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Forced (harmonically excited) damped single DoF vibration

• Example of solution to harmonically excited damped SDOF system:

Homogenous solution: decaying vibration @ natural frequency

Particular solution: steady-state vibration @ excitation 

frequency

Complete solution
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Forced (harmonically excited) single DoF vibration – undamped.

• Let the forcing function acting on the mass of an undamped SDOF system be:

0F( t ) F cos( t )ω=

• The eqn. of motion reduces to:

0mx kx F cos( t )ω+ =&&

• Where the homogeneous solution is:

n

h 1 n 2 nx ( t ) C cos( t ) C s

wher

in( t )

e k / mω

ω ω=

=

+

• As the excitation is harmonic, the particular solution is also harmonic with the same frequency:

px ( t ) X cos( t )ω=

• Substituting xp(t) in the eqn. of motion and solving for X gives:

0
2

F
X

k mω
=

−

• The complete solution becomes

0
h p 1 n 2 n 2

F
x( t ) x ( t ) x ( t ) C cos( t ) C sin( t ) cos( t )

k m
ω ω ω

ω
= + = + +

−
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Forced (harmonically excited) single DoF vibration – undamped.

• Applying the initial conditions                                                                         gives:0 0x( t 0 ) x and x( t 0 ) x= = = =& &

0 0
1 0 22

n

F x
C x and C

k m ωω
= − =

−
&

• The complete solution becomes:

• The maximum amplitude of the steady-state solution can be written as:

0
st2

st

n

FX 1
where

k
1

δ
δ ω

ω

= =
 −  ÷
 

• X/δst is the ratio of the dynamic to the static amplitude and is known as the amplification factor or amplification 

ratio and is dependent on the frequency ratio r = ω/ωn. 

0 0 0
0 n n2 2

n

F x F
x( t ) x cos( t ) sin( t ) cos( t )

k m k m
ω ω ω

ωω ω
  = − + + ÷  ÷ − − 

&
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Forced (harmonically excited) single DoF vibration – undamped.

• When ω/ωn < 1 the denominator of the steady-

state amplitude is positive and the amplification 

factor increases as ω approaches the natural 

frequency ωn.  The response is in-phase with 

the excitation.  

• When ω/ωn > 1 the denominator of the steady-

state amplitude is negative an the amplification 

factor is redefined as:

n
r

ω
ω

=

stX / δ

2
st

n

p

and the steady state response becomes :

X 1

1

x ( t ) X cos( t )

δ ω
ω

ω

=
  − ÷


= −
−



which shows that the response is out-of-phase with 
the excitation and decreases (→ zero ) as ω increases 
(→ ∞)
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Forced (harmonically excited) single DoF vibration – undamped.

• When ω/ωn < 1 the denominator of the steady-

state amplitude is positive and the amplification 

factor increases as ω approaches the natural 

frequency ωn.  The response is in-phase with 

the excitation.  

• When ω/ωn > 1 the denominator of the steady-

state amplitude is negative an the amplification 

factor is redefined as:

2
st

n

p

and the steady state response becomes :

X 1

1

x ( t ) X cos( t )

δ ω
ω

ω

=
  − ÷


= −
−



which shows that the response is out-of-phase with 
the excitation and decreases (→ zero ) as ω increases 
(→ ∞)

stX / δ
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Forced (harmonically excited) single DoF vibration – undamped.

• When ω/ωn = 1 the denominator of the steady-

state amplitude is zero an the response 

becomes infinitely large.  This condition when 

ω=ωn is known as resonance.

stX / δ
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Forced (harmonically excited) single DoF vibration – undamped.

• The complete solution

0 0 0
0 n n2 2

n

F x F
x( t ) x cos( t ) sin( t ) cos( t )

k m k m
ω ω ω

ωω ω
  = − + + ÷  ÷ − − 

&

can be written as:

st
n n2

n

0

st
n2

n

0

n

x( t ) Acos( t ) cos( t ) for / 1

1

x( t ) Acos( t ) cos( t ) for / 1

1

where A and are functions of x and x as before.

δω φ ω ω ω
ω
ω

δω φ ω ω

ω
φ

ω
ω

= + + <
 −  ÷
 

= + − >
 −  ÷
 

&

• The complete solution is a sum of two cosines with frequencies corresponding to the natural and forcing 

(excitation) frequencies.
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Forced (harmonically excited) single DoF vibration – undamped.

ω /ωn < 1

ω /ωn > 1
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Forced (harmonically excited) single DoF vibration – undamped.

• When the excitation frequency ω is close but not exactly equal to the natural frequency ωn  beating may 

occur. 

• Letting the initial conditions x0= x’0 =0 , the complete solution:

( )
( ) [ ] ( )

( )

ω ω ω
ωω ω

ω ω ω ωω ω
ω ω ω ω

  = − + + ÷  ÷ − − 

+ −       = − = ×    ÷  ÷       − −  

&0 0 0
0 n n2 2

n

0 0 n n
n2 2 2 2

n n

F x F
x( t ) x cos( t ) sin( t ) cos( t )

k m k m

F / m F / m
x( t ) cos( t ) cos

reduces to :

If we let the excitat

( t ) 2 sin

ion fre

t sin t
2 2

quency

( ) ( )

( )

ω ω ε

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ε

ε

ω ω

ω

− =

≈ + =

− +

−

= − =

+ −

=

2 2
n

n

n n

n n

2 2
n n n

0

 be slightly less than the natural frequency: 

where is a small positive number. Then

t

and

Substituting for , and in the complete solution yields :

2

2

4

F / m
x( t )

herefore :

2( ) ( ) ( )ε ω
εω

×sin t sin t
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Forced (harmonically excited) single DoF vibration – undamped.

• Since ε is small, sin(ε t) has a long period.  The solution can then be considered as harmonic motion with a 

principal frequency ω  an a variable amplitude equal to

( )
( ) ( )ε

εω
= 0F / m

X ( t ) sin t
2

( )
( ) ( ) ( )0F / m

x( t ) sin t sin t
2

ε ω
εω

= ×

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



100 V. Rouillard  2003 - 2013

04:36:37

Forced (harmonically excited) single DoF vibration – Damped.

• Steady-state Solution

• If the forcing function is harmonic:

0F( t ) F cos( t )ω=

• The equation of motion of a SDOF system with viscous damping is:

0mx cx kx F cos( t )ω+ + =&& &

• The steady-state response is given by the particular solution which is also expected to be harmonic:

p

where the amplitude X and the phase angle ar

x ( t ) X c

e to be d

os(

et e

t )

r min edφ

ω φ= −
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Forced (harmonically excited) single DoF vibration – Damped.

• Substituting xp into the steady-state eqn. of motion yields:

( )

( )
( )

2
0

2
0

2

applying the trigonometric relationships :

cos( t ) cos( t )cos(

X k m cos( t ) c sin( t ) F cos( t )

X k m co

) sin( t ) sin( )

sin( t ) sin( t )cos( ) cos( t ) sin( )

we obtain :

s( ) c sin( ) F

X k m sin(

ω φ ω φ

ω ω φ ω ω φ ω

ω φ ω φ

ω

ω φ
ω φ ω φ ω φ

 − − − − = 

−

 − + = 

= +
−

−

= −

( ) ( )

0
1 2

2 222

p

) c cos( ) 0

F c
X and a t

which gives :

for the particular s

an
k m

k m c

x ( t ) X cos(

olutio

t

n

)

φ ω φ

ωφ
ω

ω ω

ω φ

 − = 

 = =  ÷ − − −  

= −
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Forced (harmonically excited) single DoF vibration – Damped.

• Alternatively, the amplitude and phase can be written in terms of the frequency ratio r = ω/ωn and the 

damping coefficient ζ:

[ ]
1 1

st 2 22 222 2 2

n n

n
2 2

n

X 1 1

1 r 2 r
1 2

2
2 r

a tan a tan
1 r

1

δ
ζω ωζ

ω ω

ωζ
ω ζφ
ω
ω

= =
      − +        − +    ÷         

 
 ÷

  ÷= =  ÷ ÷  −  ÷−  ÷ ÷  
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Forced (harmonically excited) single DoF vibration – Damped.

[ ]
1 2

st 2 222

X 1 2 r
a tan

1 r
1 r 2 r

ζφ
δ

ζ

 = =  ÷ −  − +   
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Forced (harmonically excited) single DoF vibration – Damped.

• The magnification ratio at all frequencies is reduced 

with increased damping.

• The effect of damping on the magnification ratio is 

greatest at or near resonance.

• The magnification ratio approaches 1 as the frequency 

ratio approaches 0 (DC)

• The magnification ratio approaches 0 as the frequency 

ratio approaches ∞

• For 0 < ζ < 1/ √2  the magnification ratio maximum 

occurs at  r = √(1 - 2ζ2)    or   ω = ωn √(1 - 2ζ2) which is 

lower than both the undamped natural frequency ωn and 

the damped natural frequency ωd = ω n √(1 - ζ2) 

• When r = √(1 - 2ζ2)  Mmax= 1/[2ζ √(1 - ζ2)]  → if Mmax can 

be measured, the damping ratio can be determined.

• When ζ = 1/√2 dM/dr = 0 at r = 0.

• When ζ > 1/√2 M decreases monotonically with 

increasing frequency.
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Forced (harmonically excited) single DoF vibration – Damped.

• For undamped systems (ζ = 0) the phase angle is 0o 

(response in phase with excitation) for r<1 and 180o 

(response out of phase with excitation) for r>1.

• For damped systems (ζ > 0) when r < 1 the phase 

angle is less than 90o and response lags the excitation 

and when r >1 the phase angle is greater than 90o and 

the response leads the excitation (approaches 180o for 

large frequency ratios..

• For damped systems (ζ > 0) when r =1 the phase lag is 

always 90o. 
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Forced (harmonically excited) single DoF vibration – Damped.

• Complete Solution

• The complete solution is the sum of the homogeneous solution xh(t) and the particular solution xp(t):

nt

2
d

0 d

n 0 0

0

where 1 , X and are given as before,and X and a

x( t ) X e cos(

re det er min ed from

the initial co

t

nditi

) X cos( t

ons

)ζω ω φ ω φ

ω ω ζ φ φ

−

−

= − −

=

+
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Forced (harmonically excited) single DoF vibration – Damped.

• Quality Factor & Bandwidth

• When damping is small (ζ < 0.05) the peak magnification ratio corresponds with resonance (ω =ωn).

• The value of the magnification ratio (Quality factor or Q factor) becomes:

n
1

st 2 22 2

n n

X 1 1
Q

2

1 2

ω ωδ ζ
ω ωζ
ω ω

=

 
= = = ÷

         − +  ÷         

1
Q

2ζ
=

1R 1 2R

Q

2

• The points where the magnification ratio falls 

below Q/√2, are called the half power points R1 

and R2.  (Power is proportional to amplitude 

squared:  Power = Fv = cv2 = c(dx/dt)2

• The Quality factor Q can be used to estimate 

the equivalent viscous damping of systems.

• The difference between the half power 

frequencies is called the bandwidth. Bandwidth
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Forced (harmonically excited) single DoF vibration – Damped.

• The values of the half power frequencies are determined as follows:

2st 2 2

n n

4 2 2 2

2 2

2

2 2 2 2
1 2

In terms of the frequency ratio r :

Which, when solved gives :

X 1 Q 1

2 2 2

1 2

r r ( 2 4 ) ( 1 8 ) 0

r 1 2 2 1 and r

When is small , is negligible and the solu

2

i

1 1

t

2

δ ζ
ω ωζ
ω ω

ζ ζ

ζ ζ

ζ

ζ ζ ζ ζ

ζ

  = = = ÷
       − + ÷       

− − + − =

= − − + = − + +

( )

2 2
2 2 2 21 2

1 1 2 2
n n

2 2 2 2 2 2
2 1 2 1 n n

r R 1 2 and r R

on

1 2

R R 4

s can be reduced to :

ω ωζ ζ
ω ω

ω ω ω ζω

   
= = − = = + ÷  ÷

   

∴ − = −

; ;

;
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Forced (harmonically excited) single DoF vibration – Damped.

( ) ( )

22

2 22 1
n 2 1 2 1

2
n2 1

n
2 1 n

n

2 1

2 1

Since and ,
2

the bandwidth can be written as :

The qualily factor Q can then be exp ressed in terms of the natural frequency and b

4
2

2

1
Q

2

andwidth :

ζωω ω∆ω ζω
ω ω ω

ω ω ω ω ω ω

ω
ζ ∆

ω ω ω

∆ω ω

ω

ω

+ = −

−=
+

= + −

= −

; ;

; ;
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Forced (harmonically excited) single DoF vibration – Damped.

• Complex notation.

• Recall that a harmonic function may expressed as follows:

i t
0F F e ω=

• The equation of motion for a damped SDOF system becomes:
i t

0mx cx kx F e ω+ + =&& &

• The actual excitation function is real and is represented by the real part of the complex function.  

Consequently, the steady-state response is also real and is represented by the real part of the complex 

particular solution which takes the form:

i t
p

i t i t
p p

x ( t ) Xe

x ( t ) i Xe and

Therefo

x ( t ) X

:

e

re

ω

ω ωω ω

=

= = −& &&

• Substituting in the eqn. of motion gives:

• If the harmonic forcing function is expressed in complex form:

( )i t
0 0 0F( t ) F cos( t ) F sin( t ) F e ω φω φ ω φ += + = + =

ω ω ω ωω ω− + + =2 i t i t i t i t
0m Xe ic Xe kXe F e
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Forced (harmonically excited) single DoF vibration – Damped.

• The response amplitude becomes:

( )
( )

( ) ( )

0
0
2

2

0 2 22 2 2 2 2 2

2

X / F is called the RECEPTANCE ( Dynamic compliance )

multiplying the numerator & deno min ator on the RHS by k m ic
and separating real and imaginary comp

F
X

k m ic

k m c
X F i

k m c k m c

onents :

ω ω

ω ω

ω

ω

ω

ω

ω ω

=
 

¬

− −

− + 

 
− = − 

− + − + 

( )

i 2 2

i0
1 2

2 22 2 2

p

applying the complex relationships :

The magnitude of the response can be written as :

And the steady state solution

y
x i

become

y Ae where A x y and a tan
x

F c
X e where a tan

k m

s :

k m c

x ( t

φ

φ

φ

ωφ
ω

ω ω

−


 + = = + =  ÷ 

 = =  ÷ − − +  
−

( )
i( t )0

1
2 22 2 2

F
) e

k m c

ω φ

ω ω

−=
 − +  
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Forced (harmonically excited) single DoF vibration – Damped.

• As before the response amplitude:

( )

( ) ( )

0
2

2
0

2 20 2

can be written in terms of the frequency ratio r and the damping ratio :

Complex Frequency Re sponse Function ( FRF )

The magnitude of H( i ) is given

F
X

k m ic

kX 1
H( i )

F 1 r i2 r

kX 1
H( i )

by :

which is the same
F

1 r 2 r

ω ω

ω
ζ

ζ

ω

ω
ζ

=
 − + 

= ≡
− +

= =
− +

¬

i i
2

0
p

2 r
H( i ) H( i ) e where

as the magnification ratio M :

It can be shown that the complex FRF and its magnitude are related by :

The steady state response can therefore be exp ress

e cos i sin and a tan
1 r

e

F
x ( t ) H( i

k

d as :

φ φ ζω ω φ φ φ− −  = = + =

=

−

 ÷ −

i( t )) e ω φω −

• Measurements of the magnitude FRF can be used to experimentally determine the values of m, c and k.
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Forced (harmonically excited) single DoF vibration – Damped.

• When the excitation function is described by: 0F( t ) F cos( t )ω=
• The steady-state response is given by the real part of the solution:

( ) ( )
i( t )0 0

p 1 1
2 22 22 2 2 2 2 2

i t0

i( t )0

F F
x ( t ) e cos( t )

k m c k m c

F
Re H( i )e

k

F
Re H( i ) e

k

ω φ

ω

ω φ

ω φ

ω ω ω ω

ω

ω

−

−

= = −
   − + − +      

 =   
 =   

• Conversely, when the excitation function is described by:

( ) ( )
i( t )0 0

p 1 1
2 22 22 2 2 2 2 2

i t0

i( t )0

F F
x ( t ) e sin( t )

k m c k m c

F
Im H( i )e

k

F
Im H( i ) e

k

ω φ

ω

ω φ

ω φ

ω ω ω ω

ω

ω

−

−

= = −
   − + − +      

 =   
 =   

• The steady-state response is given by the imaginary part of the solution:
0F( t ) F sin( t )ω=
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Forced (harmonically excited) single DoF vibration – Damped.

• Complex Vector Notation of Harmonic Motion:

• Harmonic excitation and response can be represented in the complex plane

( )

i( t )0
p

i( t )0
p p

2 i( t ) 20
p p

F
x ( t ) H( i ) e

k

F
x ( t ) i H( i ) e i x ( t )

Steady state displacement :

Steady state velocity :

Steady state acceleration
k

F
x ( t ) i H( i )

:

Since i and 1 resp

e x

ectively can be writte

( t )
k

n as :

ω φ

ω φ

ω φ

ω

ω ω ω

ω ω ω

−

−

−

−

−

=

= =

= =

−

−

−

&

&&

( ) ( )
i i2i cos i sin e and 1 cos i sin e

2 2

π
ππ π π π   = + = − = + = ÷  ÷   

• It can be seen that:

• The velocity leads the displacement by 90o and is multiplied by ω.

• The acceleration leads the displacement by 180o and is multiplied by ω2.
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Forced (harmonically excited) single DoF vibration – Damped.

• Complex Vector Notation of Harmonic Motion:

i( t ) 20
p p p p p

F
x ( t ) H( i ) e x ( t ) i x ( t ) x ( t ) x ( t )

k
ω φω ω ω−= = = −& &&
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Forced (harmonically excited) single DoF vibration – Damped.

• Response due to base motion (harmonic)

• In this case, the excitation is provided by the imposed harmonic motion of the supporting base.

• The displacement of the base about a neutral position is denoted by y(t) and the response of the mass from 

its static equilibrium position by x(t).

• At any time, the length of the spring is x – y and 

the relative velocity between the two ends of the 

damper is x’ – y’. 

• The equation of motion is:

y( t ) Y sin( t )ω=

k( x y )−

c( x y )−& &
2 2

mx c( x y ) k( x y ) 0

mx cx kx cy ky

c Y cos( t )

If y( t

kY sin( t )

Asin( t )

c
where

) Y sin( t )

A Y k ( c ) and a

the eqn.of motion

tan

become

k

s :

ω ω ω
ω α

α

ω

ωω

+ − + − =

+ + = +
= +
= −

 = + = − ÷

=

 

&& & &

&& & &

• The applied displacement has the same effect of 

applying a harmonic force of magnitude A to the 

mass.
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Forced (harmonically excited) single DoF vibration – Damped.

• The steady-state response of the mass is given by the particular solution xp(t):

( )

( ) ( )

2 2

p 11
2 22 2 2

1 2

p

1
2

2 2 2

2 22 2 2 2 2

The solution can be simplified to :

Y k ( c )
x ( t ) sin( t )

k m c

c c
where a tan and a tan

k k m

x ( t ) X sin( t )

where

X k ( c ) 1 ( 2 r )
Y k m c 1 r ( 2 r )

ω ω φ α

ω ω

ω ωα φ
ω

ω φ

ω ζ

ω ω ζ

+= − −
 − +  

  = − = ÷  ÷   −

= −

  
+ +  = =  

− + − +    

( )

1
2

3 3

2 22 2

Displacement Transmissibi

and

mc 2 r
a tan a tan

1 ( 4 1)rk k m ( c

y

)

lit

ω ζφ
ζω ω






    ÷= =  ÷ ÷ + −

¬

− +   
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Forced (harmonically excited) single DoF vibration – Damped.

( )

1
2

2 3

2 2 22 2

X 1 ( 2 r ) 2 r
and a tan

Y 1 ( 4 1)r1 r ( 2 r )

ζ ζφ
ζζ

 
 + = =  ÷  + − − +  
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Forced (harmonically excited) single DoF vibration – Damped.

• Characteristics of the displacement 

transmissibility:

• The transmissibility is 1 when r = 0 (DC) and 

close to 1 when r is small.

• For undamped systems (ζ = 0), Td → ∞ at 

resonance (r = 1)

• For all damping values  Td<1 for r >√2  and  

Td = 1 for r  = √2

• For r <√2 Td is inversely proportional to ζ

• For r >√2 Td is proportional to ζ
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Forced (harmonically excited) single DoF vibration – Damped.

• Transmitted Force

• The force transmitted to the base/support is caused by the reaction of the spring and damper:

y( t ) Y sin( t )ω=

k( x y )−

c( x y )−& &

p

2
T

Since the steady state ( particular ) solution is x ( t ) X sin( t ) ,F can be written as :

F k( x y ) c( x y ) mx

F m X sin( t ) F sin( t )ω ω φ φ

ω φ

ω

= − + − = −

=

−

=

=

− −

−
& & &&

• Where FT is the amplitude of the transmitted force and is given by:
1

2 2
2T

2 2 2
F 1 ( 2 r )

r
kY ( 1 r ) ( 2

Force Transmissibility
r )

ζ
ζ

 +=  
− +

¬


• Note that the transmitted force is always in–phase with 

the motion of the mass x(t):
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Forced (harmonically excited) single DoF vibration – Damped.

1
2 2

2T
2 2

F 1 ( 2 r )
r

kY ( 1 r ) ( 2 r )

ζ
ζ

 +=  
− + 
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Forced (harmonically excited) single DoF vibration – Damped.

• Relative Motion

• If z = x – y represents the motion of the mass relative to the base, the eqn. of motion:

( ) ( )

( ) ( )

2

2
1

11
2 222

2

2 22

can be written as :

The ( steady state ) solution of which is :

mx c( x y ) k( x y ) 0

mz cz kz my m Y sin( t )

m Y sin( t )
z( t ) Z sin( t )

k

where the amplitude Z is given by

m c

m Y
Z

k m c

:

ω ω

ω ω φ ω φ

ω ω

ω

ω ω

+ − + − =

+ + = − =

−= = −
 − +  

=
 − + 

−

 

&& & &

&&&& &

( ) ( )

1

2

1 1
22 222

1 2 2

and the phase is give

r
Y

1 r 2 r

c 2 r
a tan a tan

k m 1 r

n by :

ζ

ω ζφ
ω

φ

=
 − +  

   = =  ÷ ÷   − −

k( x y )−

c( x y )−& &
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Forced (harmonically excited) single DoF vibration – Damped.

• Relative Motion

( ) ( )

2

1
2 222

1 2

Z r
Y

1 r 2 r

2 r
a tan

1 r

ζ

ζφ

=
 − +  

 =  ÷ −
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Forced (harmonically excited) single DoF vibration – Damped.

• Rotating Imbalance Excitation

• With the horizontal components cancelled the vertical component of the excitation is:

( ) ( )

2

2

2
i( t )

p
n

2

2 22

F( t ) me sin( t )

Mx cx kx me sin( t )

me
x ( t ) X sin( t ) Im H( i ) e

The eqn. of motion is :

and the steady state solution becomes :

The response amplitude and phase are gi

M

me
X

k M

v n by :

c

e

ω φ

ω ω

ω ω

ωω φ ω
ω

ω

ω ω

−

=

+ + =

   = − =  ÷   

=
 − +

−
&& &

( ) ( )

2 2
2

1 1
n 22 222

2 2

me MX r
H( i ) or r H( i )

M me
1 r 2 r

c 2 r
a tan a tan

k M 1 r

ω ω ω
ω

ζ

ω ζφ
ω

 
= = = ÷

   − +      
   = =  ÷ ÷   − −

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



125 V. Rouillard  2003 - 2013

04:36:37

Forced (harmonically excited) single DoF vibration – Damped.

• Rotating Imbalance Excitation

( ) ( )

2

1
2 222

2

2

MX r
me

1 r 2 r

r H( i )

2 r
a tan

1 r

ζ

ω
ζφ

=
 − +  

=

 =  ÷ −
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Forced (harmonically excited) single DoF vibration – Damped.

• Forced Vibration with Coulomb Damping

• The equation of motion for a SDOF with Coulomb damping subjected to a harmonic force is:

0Mx kx N F sin( t )µ ω+ ± =&&

• Solution complicated.

• If µN is large cf F0, motion of mass m is discontinuous

• If µN << F0 motion of mass m will approximate harmonic motion

• When µN << F0 an approximate solution to eqn. of motion may be used to determine equivalent viscous 

damping ratio.

• This is achieved by equating dissipated energy for both cases.

• For Coulomb damping, the energy dissipated during a cycle of amplitude X is:

W 4 ( NX ) 4 quarter cycles∆ µ= −
• For viscous damping, the energy dissipated during a cycle of amplitude X is:

2 / 2 / 22
2 2

eq eq
t 0 t 0 t 0

2
eq

dx
W Fv dt c dt c X cos ( t ) d( t )

dt

c X

π ω π ω π
∆ ω ω ω

π ω
= = =

 = = = ÷ 

=

∫ ∫ ∫
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Forced (harmonically excited) single DoF vibration – Damped.

• Equating the dissipated energies:

• And the equivalent damping ratio is defined as:

• The amplitude X and the phase φ of the response becomes:

eq 2
4 N

c
X

µ
πω

=

eq eq
eq

c n n n

c c 4 N 2 N

c 2m 2m X m X

µ µζ
ω ω πω π ω ω

= = = =

1 2
2

00 0
2 1 22 2

n 0

4 N 4 N
1 1

FF F
X a tan

k
4 N

1 1
F

µ µ
π πφ
ω µ
ω π

   
    − ± −    ÷

    = =
               − −    ÷  ÷               

• These approximations are only valid for 0N Fµ <<
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SDoF systems – General forcing functions

• Methods to solve response due to general (nonharmonic) forcing functions.

• General forcing function may be periodic (nonharmonic) or aperiodic.

• Aperiodic forcing functions may be finite or infinite

• When the duration of a transient forcing function << natural period of system, forcing function called 

SHOCK.

• When forcing function is periodic (not harmonic), it can be described with a series (sum) of harmonic or 

Fourier components.
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Types of deterministic forcing functions.

DeterministicDeterministic

PeriodicPeriodic

Complex PeriodicComplex PeriodicSinusoidal          Sinusoidal          

Non-periodicNon-periodic

Almost  PeriodicAlmost  Periodic TransientTransient
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DeterministicDeterministic

PeriodicPeriodic

Complex 
Periodic

Complex 
Periodic

Sinusoidal          Sinusoidal          

Non-periodicNon-periodic

Almost  PeriodicAlmost  Periodic TransientTransient

Can be defined mathematically.  Waveform contains harmonics which are multiples if the 
fundamental frequency  (show spectrum)  Signal factory.vee

Types of deterministic forcing functions.
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DeterministicDeterministic

PeriodicPeriodic

Complex PeriodicComplex PeriodicSinusoidal          Sinusoidal          

Non-periodicNon-periodic

Almost  PeriodicAlmost  Periodic TransientTransient

Contains sine wave of arbitrary frequencies which frequency ratios are not rational numbers (show 
spectrum) Signal factory.vee

Types of deterministic forcing functions.
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DeterministicDeterministic

PeriodicPeriodic

Complex PeriodicComplex PeriodicSinusoidal          Sinusoidal          

Non-periodicNon-periodic

Almost  PeriodicAlmost  Periodic TransientTransient

All other deterministic data that can be described by a suitable function

Sin(x)/x
Exp(T-x)

Half-sine pulse

Types of deterministic forcing functions.
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SDoF systems – General forcing functions - Periodic

• For periodic forcing functions, the response of system is obtained by using the principle of superposition: 

• The total response consists of sum of response functions due to individual harmonic functions in forcing 

function.

• The periodic forcing function (period τ = 2π/ω) can be expressed as a Fourier series:

o
j j

j 1 j 1

j
0

j
0

a
F( t ) a cos( j t ) b sin( j t )

2

where

2
a F( t )cos( j t ) dt for j 0,1, 2.....

2
b F( t )sin( j t ) dt , for j 1, 2, 3.....

τ

τ

ω ω

ω
τ

ω
τ

∞ ∞

= =
= + +

= =

= =

∑ ∑

∫

∫

• The eqn. of motion can be written as:

o
j j

j 1 j 1

a
mx cx kx a cos( j t ) b sin( j t )

2
ω ω

∞ ∞

= =
+ + = + +∑ ∑&& &

• The RHS is a constant + a sum of harmonic functions.
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SDoF systems – General forcing functions - Periodic

• Using the principle of superposition, the steady-state solution is the sum of the steady-state solution for the 

following equations:

• The steady-state solutions of  (1), (2) and (3) are

( )

( )

o
p

j
p j

22 2 2

j
p j

22 2 2

a
x ( t )

2k
a k

x ( t ) cos( j t )

1 j r ( 2 jr )

b k
x ( t ) sin( j t )

1 j r ( 2 jr )

ω φ
ζ

ω φ
ζ

=

= −
− +

= −
− +

o

j
j 1

j
j 1

a
mx cx kx (1)

2

mx cx kx a cos( j t ) ( 2 )

mx cx kx b sin( j t ) ( 3 )

ω

ω

∞

=
∞

=

+ + =

+ + =

+ + =

∑

∑

&& &

&& &

&& &

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



135 V. Rouillard  2003 - 2013

04:36:37

SDoF systems – General forcing functions - Periodic

• The entire steady-state solution is given by:

( ) ( )
j jo

p j j
2 22 2 2 2 2 2j 1 j 1

j 2 2
n

a k b ka
x ( t ) cos( j t ) sin( j t )

2k
1 j r ( 2 jr ) 1 j r ( 2 jr )

where

2 jr
a tan and r

1 j r

ω φ ω φ
ζ ζ

ζ ωφ
ω

∞ ∞

= =
= + − + −

− + − +

 
= = ÷

− 

∑ ∑

• The response amplitude and phase for each harmonic (jth term) depend on j.

• When r = 1 the response amplitude is relatively high for any value j  (more so when both j and ζ are small)

•  As j becomes larger (higher harmonics) the amplitude response becomes smaller  → the first few terms are 

usually needed to generate a reasonably accurate response.

• Complete Solution

• The complete solution is obtained by including the transient part of the solution which is dependent on the 

initial conditions.

• This requires setting the complete solution and its derivative to the specified initial displacement and velocity 

which produces a complicated expression for the transient part of the solution.

Example: Triangular forcing function.  Vee & Excel
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SDoF systems – General forcing functions - Periodic

• Situation sometimes arises when the periodic forcing function is given (obtained) experimentally (eg:  wave, 

wind , seismic, topography..) and represented by discrete measurement data.

• When the (measured) data cannot be readily described by a mathematical function

• The discrete measurement data can be integrated numerically to obtain the Fourier coefficients.

N N N
i i

0 i j i j i
i 1 i 1 i 1

2 j t 2 j t2 2 2
a F a F cos and b F sin for j 1, 2.....

N N N

π π
τ τ= = =

   = = = = ÷  ÷   
∑ ∑ ∑

• The Fourier coefficients can then be used to find the solution with the excitation frequency taken as the 

lowest frequency component of the data. 2πω
τ

=
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SDoF systems – General forcing functions – Nonperiodic

• When the forcing function is arbitrary and nonperiodic (aperiodic) it cannot be represented with a Fourier 

series

• Alternative methods for determining the response must be used:

• Representation of the excitation function with a Convolution integral

• Using Laplace Transformations

• Approximating F(t) with a suitable interpolation method then using a numerical procedure

• Numerical integration of the equations of motion.
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SDoF systems – General forcing functions – Nonperiodic

• When the forcing function is arbitrary and nonperiodic (aperiodic) it cannot be represented with a Fourier 

series

• Alternative methods for determining the response must be used:

• Representation of the excitation function with a Convolution integral

• Using Laplace Transformations

• Approximating F(t) with a suitable interpolation method then using a numerical procedure

• Numerical integration of the equations of motion.
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SDoF systems – General forcing functions – Nonperiodic

• Convolution integral

• Consider one of the simplest nonperiodic exciting force:  Impulsive force: which has a large magnitude F 

which acts for a very short time ∆t.

• An impulse can be measured by the resulting change in momentum:

1 2

2 1

where x and x represent the velocity of the lumped mass befor

Im pulse F t m

e and after t

x

he impulse

mx

.

∆= = −&

& &

&

• For Fdt to have a finite value, F approaches infinity as ∆t nears zero.

t t

t

t t

t 0
t

and a unit impulse is def

F F dt

f lim F dt Fd

ined

t 1

as

∆

∆

∆

+

+

→

=

= = =

∫

∫

%

%

• The magnitude of the impulse F∆t is represented by

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



140 V. Rouillard  2003 - 2013

04:36:37

SDoF systems – General forcing functions – Nonperiodic

• Convolution integral – Impulse response

• Consider a (viscously) damped SDoF (mass-spring-damper system) subjected to an impulse at t=0.

• For an underdamped system, the eqn. of motion is:

mx cx kx 0+ + =&& &

• And its solution:

( ) ( )nt 0 n 0
0 d d2

n

2
2

d n n
n

x x
x( t ) e x cos t sin

wher

t
1

e

c k c k
1

2m m 2m m

ζω ζωω ω
ζ ω

ζ ω ω ζ ω
ω

−
 + = + 

−  

 = = − = − = ÷ 

&

• If, prior to the impulse load being applied, the mass is at rest, then:

x( t 0 ) 0 and x( t 0 ) 0 or x( t 0 ) 0 and x( t 0 ) 0− −< = < = = = = =& &

• The impulse-momentum  equation gives:

0
f 1 mx( t 0 ) mx( t 0 ) mx−= = = − = =& & &
%

• And the initial conditions are given by:

0 0
1

x( t 0 ) x 0 and x( t 0 ) x
m

= = = = = =& &
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SDoF systems – General forcing functions – Nonperiodic

• Convolution integral – Impulse response

• The solution reduces to:

( )
nt

d
d

e
x( t ) g( t ) sin t

m

ζω
ω

ω

−
= =

• g(t) is the impulse response function an represents the response of a viscously damped single degree of 

freedom system subjected to a unit impulse.
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SDoF systems – General forcing functions – Nonperiodic

• Convolution integral – Impulse response

• If the magnitude of the impulse is F instead of unity, the initial 

velocity x’0 = F/m and the response becomes:

( )
nt

d
d

Fe
x( t ) sin t F g( t )

m

ζω
ω

ω

−
= =%

%

• If the impulse is applied to a stationary system at an 

arbitrary time t = τ the response is

x( t ) F g( t )τ= −
%
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SDoF systems – General forcing functions – Nonperiodic

• Convolution integral – Arbitrary exciting force

• If we consider the arbitrary force to comprise of a series of impulses of varying magnitudes such that at time 

τ, the force F(τ) acts on the system for a short period ∆ τ.

• The impulse acting at t = τ is given by F(τ )∆τ.

• At any time t the elapsed time is t - τ

• The system response at t due to the impulse is

x( t ) F g( t ) F( ) g( t )τ τ ∆τ τ= − = −
%

• The total response at time t is determined by summing 

the responses caused by the impulses acting al all 

times τ :

( )[ ]n

t

0

t
( t )

d
d 0

Making 0 the response can be exp ressed as :

Substituting the imp

x( t ) F( ) g( t )

x( t ) F( ) g( t ) d

1
x( t ) F(

ulse response function g( t ) :

Convolution or Duhamel i)e sin t d
m

nt egralζω τ

τ τ ∆τ

τ τ τ

τ ω τ τ
ω

∆τ

τ

− −

= −

= −

= − ¬

→

−

∑

∫

∫
• This solution does not account for initial conditions.

• Can be integrated explicitly or numerically depending on F(t)
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SDoF systems – General forcing functions – Nonperiodic

• Convolution integral – Arbitrary exciting force

• In the case where the excitation is provided by an arbitrary imposed motion of the base, y(t),  the relative 

displacement is given by:

( )[ ]n
t

( t )
d

d 0

1
z( t ) y( )e sin t dζω ττ ω τ τ

ω
− −= −∫&&

Example: Step load
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SDoF systems – General forcing functions – Nonperiodic

• When the forcing function is arbitrary and nonperiodic (aperiodic) it cannot be represented with a Fourier 

series

• Alternative methods for determining the response must be used:

• Representation of the excitation function with a Convolution integral

• Using Laplace Transformations

• Approximating F(t) with a suitable interpolation method then using a numerical procedure

• Numerical integration of the equations of motion.
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SDoF systems – General forcing functions – Nonperiodic

• Laplace Transformation 

• Efficient method to generate solution of linear differential equations

• Converts differential equations into algebraic equations to facilitate solving

• Can be applied to discontinuous functions

• Can be used for any type of excitation including periodic & harmonic

• Automatically accounts for initial conditions

• The Laplace transform of x(t) is given by:

st

0

x( s ) x( t ) e x( t ) dt
∞

−= = ∫L

• Where s the subsidiary variable and is usually complex.

• To use Laplace Transform:

1. Write the equation of motion

2. Compute or look-up the Laplace transform of each term using known initial conditions

3. Solve the transformed (algebraic ) equation of motion

4. Use the inverse Laplace transform to obtain the response (solution) 
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SDoF systems – General forcing functions – Nonperiodic

• When the forcing function is arbitrary and nonperiodic (aperiodic) it cannot be represented with a Fourier 

series

• Alternative methods for determining the response must be used:

• Representation of the excitation function with a Convolution integral

• Using Laplace Transformations

• Approximating F(t) with a suitable interpolation method then using a numerical procedure

• Numerical integration of the equations of motion.
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SDoF systems – General forcing functions – Nonperiodic

• Numerical Methods (interpolation)

• Used when the nonperiodic forcing function cannot be described mathematically

• It may be possible to “fit” a mathematical approximation (say polynomial) to data then use the convolution 

integral

• Often more practical to represent the digitised data with a series of incremental functions:

• Step functions

• The arbitrary function is 

represented by a series of step 

functions of varying magnitudes 

∆F1, ∆F2, ∆F3… and start times t1, 

t2, t3….

• Note that the polarity of ∆F 

changes with the slope of the 

function

• Smaller intervals yield better 

accuracy.

• The approximation is also 

improved by choosing the 

subsequent start times so that 

F(t) intersects the step at mid-

height of the step.  

Mechanical Vibrations – Single Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



149 V. Rouillard  2003 - 2013

04:36:37

SDoF systems – General forcing functions – Nonperiodic

• Numerical Methods (interpolation) - Step functions

• The system response due to a step excitation ∆Fi for any time interval ti - 1 < t < ti  (i = 1, 2, 3 …..j-1) can 

be determined from the previous example:

( ) ( )( ) ( )( )n i
j 1

t t n
i d i d i

di 1

1
x( t ) F 1 e cos t t sin t t

k
ζω ζω∆ ω ω

ω

−
− −

=

  
= − − + −  

  
∑

• When t = tj the response is:

( ) ( )( ) ( )( )n j i
j 1 t t n

i d j i d j i
di 1

1
x( t ) F 1 e cos t t sin t t

k

ζω ζω∆ ω ω
ω

− − −

=

  
= − − + −  

  
∑
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SDoF systems – General forcing functions – Nonperiodic

• Numerical Methods (interpolation) - Rectangular impulses

• The arbitrary function is represented by a series of rectangular impulses Fi the polarity of which depends on the 

polarity of F(t) at that instant.

•  The response of the system in any time interval ti - 1 < t < ti is obtained by adding the response caused by Fj  

(applied over ∆tj to the response at t = tj  which represent the initial condition:
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SDoF systems – General forcing functions – Nonperiodic

• Numerical Methods (interpolation) – Ramps (linear) approximation

• The arbitrary function is represented by a series of linear functions and the response of the system in any time 

interval ti - 1 < t < ti is obtained by adding the response caused by the linear (ramp) during a specified interval to 

the response due to the previous ramp (initial condition)
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SDoF systems – General forcing functions – Nonperiodic

• (Shock) Response Spectrum

• Shows the variation in maximum response of a damped SDOF due to a particular transient (shock) 

excitation.

• The Shock Response Spectrum (SRS) is plotted for a range of natural frequencies usually at fractional 

octave intervals.

• The SRS is used to determine the effect of a particular (shock) excitation function on damped SDoF 

systems.

• Given the nature of real shocks, the SRS is usually computed using numerical means.
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• Two degree of freedom systems:
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• Two degree of freedom systems:
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• No. of DoF of system = No. of mass elements x number of motion types for each mass 

• For each degree of freedom there exists an equation of motion – usually coupled differential equations.

• Coupled means that the motion in one coordinate system depends on the other

• If harmonic solution is assumed, the equations produce two natural frequencies and the amplitudes of the 

two degrees of freedom are related by the natural, principal or normal mode of vibration.

• Under an arbitrary initial disturbance, the system will vibrate freely such that the two normal modes are 

superimposed.

• Under sustained harmonic excitation, the system will vibrate at the excitation frequency.  Resonance occurs 

if the excitation frequency corresponds to one of the natural frequencies of the system
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• Equations of motion

• Consider a viscously damped system:

• Motion of system described by position x1(t) and x2(t) of masses m1 and m2

• The free-body diagram is used to develop the equations of motion using Newton’s second law
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• Equations of motion

1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 2 2 1 2 2 1 3 2 3 2 2

1 1 1 2 1 2 2 1 2 1 2 2 1

2 2 2 1 2 3 2 2 1 2 3 2 2

o

m x c x k x c ( x x ) k ( x x ) F

m x c ( x x ) k ( x x ) c x k x F

m x ( c c )x c x ( k k )x k x F

m x c x ( c c )x k x ( k k )x F

r

+ + − − − − =
+ − + − + + =

+ + − + + − =
− + + − + + =

&& & & &

&& & & &

&& & &

&& & &

• The differential equations of motion for mass m1 and mass m2 are coupled.

• The motion of each mass is influenced by the motion of the other.
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• Equations of motion

1 1 1 2 1 2 2 1 2 1 2 2 1

2 2 2 1 2 3 2 2 1 2 3 2 2

m x ( c c )x c x ( k k )x k x F

m x c x ( c c )x k x ( k k )x F

+ + − + + − =
− + + − + + =

&& & &

&& & &

• The coupled differential eqns. of motion can be written in matrix form:

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]1 2 2 1 2 21

2 2 3 2 2 32

m x( t ) c x( t ) k x( t ) F( t )

c c c k k km 0
m c k

c c c k k k0 m

+ + =

+ − + −    = = =     − + − +     
rr rr

& &&

rr r r&& &

where m , c and k are the mass,damping and stiffness matrices respectively and are given by:

x(t), x(t), x(t) andF(t) are th

1 1 1 1

2 2 2 2

x ( t ) x ( t ) x ( t ) F ( t )
x( t ) x( t ) x( t ) and F( t )

x ( t ) x ( t ) x ( t ) F ( t )
       = = = =       
       

rr r& &&r
& &&

& &&

e displacement, velocity,acceleration and force vectors

respectively and are givenby :

• Note: the mass, damping and stiffness matrices are all square and symmetric  [m] = [m]T and consist of the 

mass, damping and stiffness constants.
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• Free vibrations of undamped systems

• The eqns. of motion for a free and undamped TDoF system become:

1 1 1 2 1 2 2

2 2 2 1 2 3 2

m x ( k k )x k x 0

m x k x ( k k )x 0

+ + − =
− + + =

&&

&&

• Let us assume that the resulting motion of each mass is harmonic:  For simplicity, we will also assume that 

the response frequencies and phase will be the same:

1 1 2 2x ( t ) X cos( t ) and x ( t ) X cos( t )ω φ ω φ= + = +

• Substituting the assumed solutions into the eqns. of motion:

( ){ }
( ){ }

( ){ }
( ){ }

2
1 1 2 1 2 2

2
2 1 2 2 3 2

2
1 1 2 1 2 2

2
2 1 2 2 3 2

m k k X k X cos( t ) 0

k X m k k X cos( t ) 0

m k k X k X 0

k X m k k X 0

ω ω φ

ω ω φ

ω

ω

 − + + − + = 
 − + − + + + = 

− + + − =

− + − + + =

As these equations must be zero for all values of t, the cosine terms cannot be zero. Therefore:

• Represent two simultaneous algebraic equations with a trivial solution when X1 and X2 are both zero – no vibration.
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• Free vibrations of undamped systems

• Written in matrix form it can be seen that the solution exists when the determinant of the mass / stiffness 

matrix is zero:

( ){ }
( ){ }

( ) ( ){ } ( ) ( )

2
1 1 2 2 1

2 22 2 2 2

4 2 2
1 2 1 2 2 2 3 1 1 2 2 2 2

m k k k X
0

Xk m k k

m m k k m k k m k k k k

r

k

o

0

ω

ω

ω ω

 − + + −    =    − − + +  

− + + + + + + − =

• The solution to the characteristic equation  yields the natural frequencies of the system.

• The roots of the characteristic equation are:

( ) ( )

( ) ( ) ( ) ( )

2 2 1 2 2 2 3 1
1 2

1 2

1
2 22

1 2 2 2 3 1 1 2 2 3 2

1 2 1 2

k k m k k m1
,

2 m m

k k m k k m k k k k k1
4

2 m m m m

ω ω
+ + + =  

 

  + + + + + −    ± −   
      

• This shows that the homogenous solution is harmonic with natural frequencies ω1 and ω2
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• Free vibrations of undamped systems

• Because the system is coupled, the constants X1 and X2  are a function of both natural frequencies ω1 and 

ω2

• Let the values of X1 and X2 corresponding to ω1 be X1
(1)

 and X2
(1) and those corresponding to ω2 be X1

(2)
 and 

X2
(2)

• Since the simultaneous algebraic equations are homogeneous only the amplitude ratios r1 = (X2
(1)/X1

(1))  and 

r2 = (X2
(2)/X1

(2)) can be determined.

• Substituting ω1 and ω2 gives:

• The normal modes of vibration corresponding to the natural frequencies ω1 and ω2 can be expressed in 

vector form known as the modal vectors:

( ){ }
( ){ }

2
1 1 2 1 2 2

2
2 1 2 2 3 2

m k k X k X 0

k X m k k X 0

ω

ω

− + + − =

− + − + + =

( )
( )

( )
( )

( 1 ) 2
1 1 1 22 2

1 ( 1) 2
2 2 1 2 31

( 2 ) 2
1 2 1 22 2

2 ( 2 ) 2
2 2 2 2 31

X m k k k
r

k m k kX

X m k k k
r

k m k kX

ω
ω

ω
ω

− + +
= = =

− + +

− + +
= = =

− + +

( 1 ) ( 1 ) ( 2 ) ( 2 )
( 1 ) ( 2 )1 1 1 1

( 1) ( 1) ( 2 ) ( 2 )
1 22 1 2 1

X X X X
X and X

X r X X r X

              = = = =       
              

r r

• The modal vectors describe the relative amplitude of vibration of each mass for each of the natural 

frequencies.
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• Free vibrations of undamped systems

• The motion (free vibration) of each mass is given by:

( 1 ) ( 1 )
1 1( 1) 1 1

( 1) ( 1 )
1 1 12 1

( 2 ) ( 2 )
2 2( 2 ) 1 1

( 2 ) ( 2 )
2 2 22 1

First mod e
x ( t ) X cos( t )

x ( t )
x ( t ) r X cos( t )

x ( t ) X cos( t )
x ( t )

x ( t ) r X cos(
First mod e

t )

ω φ

ω φ

ω φ

ω φ

   +   = =   
+      

   +   = =   
+   

→
  

→r

r

• The constants X1
(1)

 , X1
(2) ,φ1 and φ2  are determined from the initial conditions.
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• Free vibrations of undamped systems

• Two initial conditions for each mass need to be specified (second order D.E.s)

• The system can be made to vibrate freely in either mode (i = 1, 2) by applying the appropriate initial 

conditions
( i )

1 11
( i )

2 1 21

x ( t 0 ) X x ( t 0 ) 0

x ( t 0 ) r X x ( t 0 ) 0

= = = =

= = = =

&

&

• Any other combination of initial conditions will result in the excitation of both modes

• Two initial conditions for each mass need to be specified (second order D.E.s)

• The resulting motion is obtained by superposition of the normal modes:
( 1 ) ( 2 )

( 1 ) ( 2 )( 1 ) ( 2 )
1 1 1 1 1 2 21 1

( 1 ) ( 2 )( 1 ) ( 2 )
2 2 2 1 1 1 2 2 21 1

x( t ) x ( t ) x ( t )

x ( t ) x ( t ) x ( t ) X cos( t ) X cos( t )

x ( t ) x ( t ) x ( t ) r X cos( t ) r X cos( t )

ω φ ω φ

ω φ ω φ

= +

= + = + + +

= + = + + +

or

r r r

r r r

r r r

• If the initial conditions are:

1 1 1 1

2 2 2 2

x ( t 0 ) x ( 0 ) x ( t 0 ) x ( 0 )

x ( t 0 ) x ( 0 ) x ( t 0 ) x ( 0 )

= = = =
= = = =

& &

& &

• The constants X1
(1)

 , X1
(2) ,φ1 and φ2  can be by substituting the initial conditions in the combined motion eqns.
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( 1 ) ( 2 )
1 1 1 2 21 1

( 1 ) ( 2 )
2 1 1 1 2 2 21 1

( 1 ) ( 2 )
1 1 21 1

( 1 ) ( 2 )
1 1 1 2 21 1

( 1 )
2 1 1

x ( t ) X cos( t ) X cos( t )

x ( t ) r X cos( t ) r X cos( t )

x ( 0 ) X cos( ) X cos( )

x ( 0 ) X sin( ) X sin( )

x ( 0 ) r X cos

ω φ ω φ

ω φ ω φ

φ φ

ω φ ω φ

= + + +

= + + +

= +

= − −

=

substituting the initial conditions:

r

&

( 2 )
1 2 21

( 1 ) ( 2 )
2 1 1 1 2 2 21 1

1

1 1 2

2 1 2

( ) r X cos( )

x ( 0 ) r X sin( ) r X sin( )

x ( 0 )

x ( 0 )

x ( 0 ) r r

φ φ

ω φ ω φ

ω ω

+

= − −

= +

= − −

= +

The followingunknowns can be identified:

(2)
21

(2

(1)
11

(1)

(1)
1

)

(2

1

2

1

)

21

11X sin(φ

X cos(φ )

X cos(

X

X cos(φ )

X

sin(φ )

cos()

)

)φ φ

&

&

& 2 1 1 2 2x ( 0 ) r rω ω= − −(1) (2
11

)
21X sin(φ X sin(φ) )

• Free vibrations of undamped systems
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( ) ( )

{ } { }

( 1 ) ( 2 )2 1 2 1 1 2
1 21 1

2 1 2 1

( 1 ) ( 2 )2 1 2 1 1 2
1 21 1

1 2 1 2 2 1

2( 1 ) ( 1 ) ( 1 )
1 11 1 1

r x ( 0 ) x ( 0 ) r x ( 0 ) x ( 0 )
X cos( ) X cos( )

r r r r

r x ( 0 ) x ( 0 ) r x ( 0 ) x ( 0 )
X sin( ) X sin( )

r r r r

X X cos( ) X sin( )

φ φ

φ φ
ω ω

φ φ

   − − += =   − −   
   − + −= =   − −   

= +

& & & &

Therefore:

{ } { }

2

2 2( 2 ) ( 2 ) ( 2 )
2 21 1 1

( 1 )
11

1 ( 1)
11

( 2 )
21

2 ( 2 )
21

X X cos( ) X sin( )

X sin( )
a tan

X cos( )

X sin( )
a tan

X cos( )

φ φ

φ
φ

φ

φ
φ

φ

= +

  =  
  
  =  
  

• Free vibrations of undamped systems

• Solving for the identified constants yields:

( 1 )
11X cos( )φ

φ

(1
)

1
1

X
si

n(
)

φ

( 1 )
1X
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( ) { } { }

( ) { } { }

[ ]

[ ]

2
2( 1) 2 1 2

2 1 21 2
2 1 1

2
2( 2 ) 1 1 2

1 1 21 2
2 1 2

2 1 2
1

1 2 1 2

1 1 2
2

2 1 1 2

r x ( 0 ) x ( 0 )1
X r x ( 0 ) x ( 0 )

r r

r x ( 0 ) x ( 0 )1
X r x ( 0 ) x ( 0 )

r r

r x ( 0 ) x ( 0 )
a tan

r x ( 0 ) x ( 0 )

r x ( 0 ) x ( 0 )
a tan

r x ( 0 ) x ( 0 )

ω

ω

φ
ω

φ
ω

− +
= − +

−

+
= − − +

−

 − +=  − 
 +=  − − 

& &

& &

& &

& &

• Free vibrations of undamped systems

• In terms of the amplitude ratios ri and natural frequencies ωI:
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• Free vibrations of undamped system

• Example:
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• Free vibrations of undamped system

• Example:

Masses: 0.71 kg each

Middle spring: 175 N/m

Bottom spring: 350 N/m

Animations courtesy Tom Irvine 

(Vibrationdata)
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• Coordinate Coupling

• Whenever possible, the coordinates are chosen so that they are independent based from the equilibrium 

position.

• In some cases, another pair of coordinates may be used – generalised coordinates

• The lathe can be simplified to be represented by a 2DoF with the bed considered as a rigid body with two 

lumped masses representing the headstock and tailstock assemblies.  The supports are represented by two 

springs.

• The following set of coordinates can be used to describe the system:
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• Coordinate Coupling

• (1): the deflection at each extremity of the lathe x1(t) and x2(t)

• (2): the deflection at the centre of gravity x(t) and the rotation θ(t)

• (3): the deflection at extremity A x1(t) and the rotation θ(t)
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• Coordinate Coupling

• Equations of motion using x(t) and θ(t)

• Using the FBD, in the vertical direction and about the C.G. respectively:

•  

( )
( ) ( )

1 1 2 2 o 1 1 1 2 2 2

1 2 1 1 2 2

2 2
o 1 1 2 2 1 1 2 2

mx k ( x l ) k ( x l ) and J k ( x l )l k ( x l )l

k k k l k lm 0 x x 0

0 J 0k l k l k l k l

θ θ θ θ θ

θ θ

= − − − + = − − +

+ − −        + =        − − +         

inmatrix form:

&&&&

&&
&&

• As each eqn. contains both x and θ  the system is 

coupled – Elastic or static coupling

• Whenever a displacement or torque is applied thru 

the C.G. the resulting motion will contain both 

translation and rotation.

• The system is uncoupled (eqns. independent) only 

when k1l1 = k2l2 

• Only then can pure translation or rotation be 

generated by a displacement or torque thru the C.G.
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• Coordinate Coupling

• (1): the deflection y(t) at point P located at distance e to the left of the C.G. and the rotation θ(t)
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• Coordinate Coupling

• Using the FBD, the translational and rotational equations of motion are:

( )
( ) ( )

' ' ' ' ' '
1 1 2 2 p 1 1 1 2 2 2

' '
1 2 2 2 1 1

' ' ' 2 ' 2p 2 2 1 1 1 1 2 2

my k ( y l ) k ( y l ) me and J k ( y l )l k ( y l )l mey

k k k l k lm me y y 0

me J 0k l k l k l k l

θ θ θ θ θ θ

θ θ

= − − − − − = − − − −

 + −        + =               − +  

&& &&&& &&

&&
&&

inmatrix form:

• As each eqn. contains both y, y’’, θ and θ’’ the 

system is coupled with both elastic (static) and  

mass (dynamic) coupling

• When k1l’1 = k2l’2 , the system is dynamically 

coupled only → the inertial force my’’ produced 

by vertical motion will induce a rotational motion 

(my’’e) and vice verca.
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• Coordinate Coupling

• General case for viscously damped 2DoF:

11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

m m x c c x k k x 0

m m x c c x k k x 0

            + + =                        

&& &

&& &

• System has elastic (static) coupling if the stiffness matrix is not diagonal

• System has damping or velocity (dynamic) coupling if the damping matrix is not diagonal

• System has mass or inertial (dynamic) coupling if the mass matrix is not diagonal

• The system behaviour does not depend on the choice of coordinates!

• There exists a set of coordinates which will produce (statically and dynamically) uncoupled equations 

of motions → principal or natural coordinates.  These uncoupled equations can be solved 

independently.
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• Harmonically forced vibrations – undamped

• The harmonic excitation forces are:

m1

k1

m2

k2

F1

F2

m1

x1 k1

m2

F1+k2(x2-x1)

F2

k2(x2-x1)

1 1 f 2 2 fF ( t ) F sin( t ) and F ( t ) F sin( t )ω ω= =

whereω is the forcing frequency.f

• Applying Newton’s 2nd law gives the eqns. of motion:

1 1 1 2 1 2 2 1 f

2 2 2 2 2 1 2 f

m x ( k k )x k x F sin( t )

m x k x k x F sin( t )

ω

ω

+ + − =

+ − =

&&

&&

• Assuming that the solutions will take the form of the excitation – harmonic:

1 1 f 2 2 fx X sin( t ) and x X sin( t )ω ω= =

• Substituting for x1 and x2 in the eqns. of motion:

2
1 f 1 2 1 f 2 2 f 1 f

2
2 f 2 2 f 2 1 f 2 f

( m k k )X sin( t ) k X sin( t ) F sin( t )

( m k )X sin( t ) k X sin( t ) F sin( t )

ω ω ω ω

ω ω ω ω

− + + − =

− + − =
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• Harmonically forced vibrations – undamped

( )
( )

2
1 2 1 f 2 1 1

2 2 22 2 2 f

11 12 1 1
11 1 12 2 1 21 1 22 2 2

21 22 2 2

k k m k X F

X Fk k m

d d X F
d X d X F and d X

or

d X F
d d X F

ω

ω

 + − −      =        − −  

     = → + = + =         

Dividing throughout by sin(ω t) and putting in matrix form :f

The response amplitude

1 12 11 1

2 22 21 222 1 12 2 11 2 21 1
1 2

11 12 11 1211 22 21 12 11 22 21 12

21 22 21 22

F d d F

F d d Fd F d F d F d F
X X

d d d dd d d d d d d d

d d d d

− −= = = =
− −

s X and X can be determinedusing Cramer's rule:1 2

and

• Note: the determinant (characteristic equation) can be equated to zero (d11d22 – d21d12 = 0 ) to define the 

system natural frequencies.

• Under forced excitation, when d11d22 – d21d12 = 0 the response amplitudes X1 and X2  → ∞

• This defines resonance conditions (excitation frequency corresponds to either natural frequencies)

• Note: Due to coupling both masses will exhibit resonance when the excitation force is applied to only one 

mass:

Mechanical Vibrations – Two Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



177 V. Rouillard  2003 - 2013

04:36:37

• Harmonically forced vibrations – undamped absorber

• A mass-spring assembly added to a single degree of freedom with a natural frequency ωn tuned to the 

forcing frequency ωf will act as a vibration absorber and reduce the vibration of the main mass to zero.

• Undamped vibration absorbers are designed so that the natural frequencies of the resulting system are 

displaced away from the excitation frequency.

• The equations of motion of the main mass m1 and the 

auxiliary mass m2 are:

m2

( )

1 1 1 1 2 1 2 0

2 2 2 2 1

1 1 1 2 1 2 2 0

2 2 2 2 2 1

t )j j

2
1 1 1

m x k x k ( x x ) F sin( t )

m x k ( x x ) 0

m x k k x k x F sin( t )

m x k x k x 0

x ( t ) X sin( j 1, 2

m X k

ω

ω

ω

ω

−

+ + − =
+ − =

+ + − =
+ − =

= =

+

&&

&&

&&

&&

Rearranging

Assumingharmonic solutions

And substituting into the eqns.of motion:

( ) 1 2 2 02

2
2 2 2 2 2 1

k X k X sin( t ) F sin( t )

m X k X k X 0

ω ω

ω

 
  

+ − =

+ − =−
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• Harmonically forced vibrations – undamped absorber

( )2
1 1 2 2 1 0

2 22 2 2

1 12 11 1

2 22 21 222 1 12 2
1 2

11 12 11 1211 22 21 12

21 22 21

m k k k X F

X 0k m k

F d d F

F d d Fd F d F
X X

d d d dd d d d

d d d

ω

ω

 − + + −    =     
  − − +  

−= = =
−

In matrix form :

Using Cramer's rule to determine the response amplitudes X and X :1 2

and

( )
( ) ( ) ( ) ( )

11 2 21 1

11 22 21 12

22

2
2 2 0 2 0

1 22 2 2 2 2 2
1 2 1 2 2 2 1 2 1 2 2 2

d F d F

d d d d

d

k m F k F
X X

k k m k m k k k m k m k

ω

ω ω ω ω

−=
−

−
= =

+ − − − + − − −

Or

and

• In order to minimise the amplitude of mass 1, the numerator of  X1 should be equated to zero which 

produces:

2 2

2

k

m
ω =
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• Harmonically forced vibrations – undamped absorber

2 2 1
1

1

2 2 1

2 1

k

m

k k

m m

ω ω

ω

=

= =

If the original machine was operating near resonance :

If the absorber is designed so that its natural frequency corresponds to the forcing frequency :

The amplitude of the machine 

;

0 1 2
1 2

1 1 2

2

21

F k k
, andst k m m

1
X

st

δ ω ω

ω
ω

δ

= = =

 −  ÷
 =

(m ) at its original resonant frequency will be zero.1

Since

The dynamic response (magnification factor) of the main mass and the auxiliary mass (absorber) are :

2
2 2 2 2

2 2 2 2

1 1 2 1 1 1 2 1

X 1

k k k kst
1 1 1 1

k k k k

δω ω ω ω
ω ω ω ω

=
                     + − − − + − − − ÷  ÷  ÷  ÷
                     

and
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• Harmonically forced vibrations – undamped absorber

• The size of the auxiliary mass m2 is 

governed by the allowable deflection X2.

• These systems can be quite effective 

over a reasonable frequency band ± 5 

%.

• The new system has an added degree 

of freedom hence two resonance 

peaks.

• The system will pass thru the first 

resonance during startup, it is essential 

that the run-up time is minimised.

• Otherwise, introduce damping to 

prevent large vibrations of m1 if the 

excitation frequency is likely to vary. 

• At ω= ω1   X1 = 0 and X2 = -k1 δst/k2 = 

-F0/k2 which shows that the force 

exerted by the absorber mass is out of 

phase with (counteracts)  the exciting 

force which causes X1 to reduce to 

zero.  
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• Harmonically forced vibrations – damped absorber

• Introducing a viscous damper produces the following eqns. 

of motion:

( )
( ) ( )

1 1 1 1 2 1 2 2 1 2 0

2 2 2 2 1 2 2 1

i tej j

2
0 2 2 2

1 2 2
1 1 2 2 2 2

m x k x k ( x x ) c ( x x ) F sin( t )

m x k ( x x ) c ( x x ) 0

x ( t ) X j 1, 2

F k m ic
X

k m k m m k

ω

ω

ω ω

ω ω ω
=

+ + − + − =
+ − + − =

= =

− +

− − −

&& & &

&& & &

Assumingharmonic solutions in the form :

Yields the steady-state amplitudes:

( )
( )

( )

2 2 2
2 1 1 2

1 2 2
2 2

2 2 2

ic k m m

X k ic
X

k m ic

ω ω ω

ω
ω ω

  + − − 
+=

− +
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• Harmonically forced vibrations – damped absorber

2 1

st 0 1

2
a 2 2

2
n 1 1

a n

Mass ratio m m

Static deflection : F k

Square absorber natural frequency : k m

Square main mass natural frequency : k m

Natural frequency ratio : f /

Forced frequency ratio

: µ
δ

ω

ω
ω ω

=
=

=

=
=

Using the following definitions :

( ) ( )
( ) ( ) ( ) ( ){ }

( )
( ) ( ) ( ) ( ){ }

n

c 2 n

2 c

22 2 2
1

222 2 2 2 2 2 2 2st

2 4
2

222 2 2 2 2 2 2 2st

: g /

Critical damping cons tan t : c 2m /

Damping ratio : c / c

2 g g fX

2 g g 1 g f g g 1 g f

2 g fX

2 g g 1 g f g g 1 g f

ω ω
ω ω

ζ

ζ

δ ζ µ µ

ζ
δ ζ µ µ

=

=

=
=

=

+ −

− + + − − −

+

− + + − − −

The magnitude ratios can be written as :
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• Harmonically forced vibrations – damped absorber

( ) ( )
( ) ( ) ( ) ( ){ }

22 2 2
1

222 2 2 2 2 2 2 2st

2 g g fX

2 g g 1 g f g g 1 g f

ζ

δ ζ µ µ
=

+ −

− + + − − −
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• Harmonically forced vibrations – damped absorber

• When damping is infinite, the two masses are rigidly coupled and the system behaves as an undamped single 

DoF system with mass m1 + m2 and stiffness k1

• X1 approaches ∞ when ζ = 0 and ζ = ∞

• The amplitude of the absorber mass is always greater that that of the main mass.  Allow for large vibration 

amplitudes and consider fatigue issues for design of absorber springs.

• X1 will have a minimum 

• All damping values produce curves which intersect at A and B

• The frequencies of  A and B can be located by substituting the extreme conditions ζ = 0 and ζ = ∞ into the 

magnitude ratio equation.

• It has been shown that vibration absorbers operate optimally when the ordinates of A and B are equal for which:

( ) ( )a n
2 1

1 1
f /

1 1 m m
ω ω

µ
= = =

+ +

• Such systems are known as tuned vibration absorbers. 
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• Vibration analysis of continuous systems require solution to partial differential equations which do not 

always exist

• Analysis of multi DoF systems requires solution of a collection of ordinary differential equations.

• Continuous systems are often approximated by MDoF systems.

• Previous principles apply:

• One eqn. of motion for each degree of freedom

• One generalised coordinate for each degree of freedom

• The number of natural frequencies and mode shapes are equal to the number of DoFs

• The natural frequencies are determined by equating the determinant to zero (solution to characteristic 

equations becomes more complex as number of DoF increases)

• Eqns. of motion obtained from Newton’s second law, influence coefficients or Lagrange’s equations.
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• Modelling continuous systems as MDoF systems:

• Finite element models:

• The geometry of a distributed mass system is replaced by a large number of small structural 

elements (m,c,k)

• A simple solution is assumed for each element

• Inter-element compatibility and equilibrium is used to approximate the solution

• Lumped-mass or discrete-mass models:

• The (distributed) mass or inertia of the system is replaced by a finite number of rigid bodies 

(lumped mass)

• These lumped mass are connected by mass-less spring and damping elements.

• Linear or angular coordinates are used to describe the motion of each lumped mass element

• Better accuracy is usually achieved when more lumped masses are used
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• Lumped-mass or discrete-mass models:
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• Equations of Motion – Newton’s second law.

1. Define suitable coordinates to describe the position of each lumped mass in the model

2. Establish the static equilibrium of the system and determine the displacement of each lumped mass 

wrt to their respective static equilibrium position.

3. Draw the free-body diagram for each lumped mass in the model.  Indicate the spring, damping and 

external forces on each mass element when a positive displacement and velocity is applied to each 

mass element.

4. Generate the equation of motion for each mass element by applying Newton’s second law of motion 

with reference to the free-body diagrams:

• Example: Consider the specific MDoF system:

i i ij i i i ij
j j

m x F ( for mass m ) and J M ( for rigid body of inertia J )θ= =∑ ∑&&&&
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• Equations of Motion – Newton’s second law.

( ) ( ) ( ) ( )

( ) ( )

i i i i i 1 i 1 i 1 i i i i 1 i 1 i 1 i i

i i i i 1 i 1 i i i 1 i 1

m x k x x k x x c x x c x x F for i 1,2,3...,n 1

m c c c c k k k k for i 1,2,3...,n 1

− + + − + +

+ + + +

= − − + − − − + − + = −

− + + − − + + − = = −
Rearranging:

i i-1 i i+1 i-1 i i+1 ix x x x x x x F

&& & & & &

&& & & &

• Note that the system has both stiffness and damping coupling

• The equations of motion of masses m1 and mn at the extremities of the system are obtained by setting   

 i  = 1 &  xi-1 = 0   and  i = n & xn+1 = 0 

( ) ( )
( ) ( )

1 1 2 2 1 2 2

n n n n 1 n n n 1

m c c c k k k

m c c c k k k+ +

+ + − + + − =
− + + − + + =

1 1 2 1 2 1

n n-1 n n-1 n n

x x x x x F

x x x x x F

&& & &

&& & &

• In matrix form:

[ ] [ ] [ ]m x c x k x F+ + =
rr r r&& &
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• Equations of Motion – Newton’s second law.

• Where the mass matrix [m], the damping matrix [c] and the stiffness matrix [k] are given by:

[ ]

[ ]

( )
( )

( )

( )

1

2

3

n

1 2 2

2 2 3 3

3 3 4

n n n 1

m 0 0 . . . 0 0

0 m 0 . . . 0 0

0 0 m . . . 0 0

. .m

. .

. .

0 0 0 . . . 0 m

c c c 0 . . . 0 0

c c c c . . . 0 0

0 c c c . . . 0 0

. . .c

. . .

. . .

0 0 0 . . . c c c +

 
 
 
 
 =  
 
 
 
  

+ − 
 − + − 

− + 
 =  
 
 
 
 − + 
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• Equations of Motion – Newton’s second law.

[ ]

( )
( )

( )

( )

1 2 2

2 2 3 3

3 3 4

n n n 1

k k k 0 . . . 0 0

k k k k . . . 0 0

0 k k k . . . 0 0

. . .k

. . .

. . .

0 0 0 . . . k k k +

+ − 
 − + − 

− + 
 =  
 
 
 
 − + 

1 1 1 1

2 2 2 2

n n n n

x ( t ) x ( t ) x ( t ) F ( t )

x ( t ) x ( t ) x ( t ) F ( t )

. . . .
x x x F

. . . .

. . . .

x ( t ) x ( t ) x ( t ) F ( t )

       
       
       
       

= = = =       
       
       
       
       

& &&

&&

rr r r& &&

& &&

• And the displacement. Velocity, acceleration and excitation force vectors are given by:
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• Equations of Motion – Newton’s second law.

• In general terms:

[ ] [ ] [ ]

11 12 13 1n 11 12 13 1n 11 12 13 1n

21 22 23 2n 21 22 23 2n 21 22 23

n1 n1 n3 nn n1 n2 n3 nn

m m m . . . m c c c . . . c k k k . . . k

m m m . . . m c c c . . . c k k k . .

. . . . . . . . . . . . . .
m c k

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

m m m . . . m c c c . . . c

   
   
   
   

= = =   
   
   
   
   

2n

n1 n2 n3 nn

. k

. . . . . . .

. . . . . . .

. . . . . . .

k k k . . . k

 
 
 
 
 
 
 
 
 
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• Influence coefficients.

• It is sometimes practical to express the eqns. of motion of MDoF systems in terms of influence 

coefficients

• The elements of the stiffness matrix are known as the stiffness influence coefficients and relate the force at 

a point in the system with the displacement applied at another point in the system.

• The stiffness influence coefficient kij is defined as the force at point i due to a unit displacement at point j 

when all other points, except j, are fixed.

• The total force at i is the sum of the forces due to all applied displacements.: 

[ ] [ ]

11 12 13 1n

21 22 23 2n
n

i ij j
j 1

n1 n2 n3 nn

k k k . . . k

k k k . . . k

. . . . . . .
F k x i 1,2,3...n F k x k

. . . . . . .

. . . . . . .

k k k . . . k

=

 
 
 
 

= = = =  
 
 
 
 

∑ or where
r r
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• Influence coefficients – stiffness.

• Example:

• Use static equilibrium to determine the stiffness influence coefficients.

• Step 1: x1 = 1,  x2 = 0,  x3 = 0.

• For which the free–body diagram is:

11 1 11 1 1 2

21 2

31

k F x F k k

k k

k 0

= = = +
= −
=
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• Influence coefficients – stiffness.

• Step 2: x1 = 0,  x2 = 1,  x3 = 0.

• For which the free–body diagram is:

12 2

22 2 3

32 3

k k

k k k

k k

= −
= +
= −
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• Influence coefficients – stiffness.

• Step 3: x1 = 0,  x2 = 0,  x3 = 1.

• For which the free–body diagram is:

13

23 3

33 3

k 0

k k

k k

=
= −
=
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• Influence coefficients – stiffness.

• The calculation of n stiffness influence coefficients require the solution of n simultaneous equations.

• Thus the computation of stiffness influence coefficients for a system with n degrees of freedom may require 

a significant effort (up to n2 computations)

• The system stiffness matrix is:

[ ]
( )

( )
33

11 12 13 1 2 2

21 22 23 2 2 3 3

31 32 3 3

k k k k k k 0

k k k k k k k k

k k k 0 k k

+ −  
  = = − + −  

−     

Multi-level building example
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• Influence coefficients - flexibility.

• It is sometimes easier to define the system in terms of the flexibility influence coefficients

• The flexibility influence coefficients relates the displacement at a point in the system with the force applied 

at another point in the system.

• The flexibility influence coefficient aij is defined as the deflection at point i due to a unit force point j with no 

other forces acting on the system.

• For a linear system: 

• When several forces act at various points in the system, Fj for j = 1, 2, 3….n, the total deflection at point i is 

the sum of the deflections caused by each individual applied force: 

ij ij jx a F=

[ ]

[ ]

[ ]

x F a

n n

i ij ij j
j 1 j 1

11 12 13 1n

21 22 23 2n

n1 n2 n3

x x a F i 1,2,3.....n x a F

a a a . . . a

a a a . . . a

. . . . . . .a

. . . . . . .

a a a .

= =
= = = =

=

∑ ∑ in  matrix form :  

where  and  are the displacement and force vectors and  is the flexibility matrix:
rr

rr

nn. . a

 
 
 
 
 
 
  
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• Influence coefficients - flexibility.

• Not unexpected that the flexibility matrix is related to the stiffness matrix.

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

1 1

1

1

a x a F a

F a x k x

a k

− −

−

−

=

= =

=

rr

r r r

• Reciprocity theorem:

• Consider the work done by forces Fi andf Fj

ij jia a=For a linear system :

iF

i ii ix a F=j ij ix a F=

jF

i ji jx a F=j jj jx a F=

21 1
i i i ii i2 2

21 1
j j j jj j2 2

2 2 2 21 1 1 1
ij ii i jj j j i ii i jj j ij j i2 2 2 2

1
ji jj2

W F x a F

W F x a F

W a F a F x F a F a F a F F

W a

= =

= =

= + + = + +

=

Case 1:

Case 2 :

WhenF andF are applied sequentially the total work is:i j

and whenF is applied before F the total work is:j i

2 2 2 21 1 1
j ii i i j ii i jj j ji i j2 2 2

ij ji ij ji

F a F x F a F a F a F F

W W a a

+ + = + +

= =
Since the total work done is not dependent onthe sequence of applied force :

hence
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• Influence coefficients - flexibility.

• Example:  Use static equilibrium to determine the flexibility matrix of the system.

• Step 1: Apply a unit load at point 1 only and calculate the deflections of each mass due to the unit load at 1.

11 11 1 11

1 11 2 21 11 1

1 11 2 21 11

2 21 11 3 31 21

3 31 21

11 21 31
1 1 1

a x / F x

k a k ( a a ) F

k a k ( a a ) 1

k ( a a ) k ( a a )

k ( a a ) 0

1 1 1
a , a , a ,

k k k

= =

= − +
= − +

− = −

− =

= = =

Mass1:

Mass 2 :

Mass 3 :

Solving :
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• Influence coefficients - flexibility.

• Example:  Use static equilibrium to determine the flexibility matrix of the system.

• Step 2: Apply a unit load at point 2 only and calculate the deflections of each mass due to the unit load at 2.

1 12 2 22 1

2 22 13 3 32 22

3 32 22

12 22 32
1 1 2 1 2

k a k ( a a )

k ( a a ) k ( a a ) 1

k ( a a ) 0

1 1 1 1 1
a , a , a

k k k k k

= −

− = − +

− =

= = + = +

Mass1:

Mass 2 :

Mass 3 :

Solving :
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• Influence coefficients - flexibility.

• Example:  Use static equilibrium to determine the flexibility matrix of the system.

• Step 3: Apply a unit load at point 3 only and calculate the deflections of each mass due to the unit load at 3.

1 13 2 23 3

2 23 13 3 33 23

3 33 23

13 23 33
1 1 2 1 2 3

k a k ( a a )

k ( a a ) k ( a a )

k ( a a ) 1

1 1 1 1 1 1
a , a , a

k k k k k k

= −

− = −

− =

= = + = + +

Mass1:

Mass 2 :

Mass 3 :

Solving :
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• Influence coefficients - flexibility.

• Example:  Use static equilibrium to determine the flexibility matrix of the system.

• The flexibility matrix of the system is:

[ ] ( ) ( )
( ) ( )33

11 12 13 1 1 1

21 22 23 1 1 2 1 2

31 32 1 1 2 1 2 3

a a a 1 k 1 k 1 k

a a a a 1 k 1 k 1 k 1 k 1 k

a k a 1 k 1 k 1 k 1 k 1 k 1 k

  
  = = + +  

+ + +     

[ ]
( )

( )
1 2 2

2 2 3 3

3 3

k k k 0

k k k k k

0 k k

+ − 
 = − + − 

−  

• It can be verified that the inverse of this flexibility matrix is the system stiffness matrix:
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• Influence coefficients - flexibility.

• Example:  Use static equilibrium to determine the flexibility matrix of the system.

• Step 1: Apply a unit load at point 1 only and 

calculate the deflections at points 1, 2 and 3 due 

to the unit load at 1.

3 3 3

11 11 1 11 12 13
9 l 11 l 7 l

a x / F x a a
768 EI 768 EI 768 EI

    
= = = = =÷ ÷ ÷  ÷ ÷ ÷    

• Step 2: Apply a unit load at point 2 only and 

calculate the deflections at points 1, 2 and 3 due 

to the unit load at 2.
3 3 3

21 12 22 23
11 l 1 l 11 l

a a a a
768 EI 48 EI 768 EI

     
= = = = ÷  ÷  ÷

     
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• Influence coefficients - flexibility.

• Step 3: Apply a unit load at point 3 only and 

calculate the deflections at points 1, 2 and 3 due 

to the unit load at 3.

3 3 3

31 13 32 23 33
7 l 11 l 9 l

a a a a a
768 EI 48 EI 768 EI

     
= = = = = ÷  ÷  ÷

     

[ ]
33

11 12 13 3

21 22 23

31 32

a a a 9 11 7
l

a a a a 11 16 11
768EI

a k a 7 11 9

   
   = =   

     

• The system flexibility matrix is:

Mechanical Vibrations – Multi Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



206 V. Rouillard  2003 - 2013

04:36:37

• Influence coefficients - inertia.

• The elements of the mass matrix are referred to as the inertia influence coefficients.

• The inertia influence coefficients of a system can be determined by applying the impulse-momentum 

equations.

• The inertia influence coefficients m1j, m2j, m3k…..mnj are defined as the impulses applied at points 1, 2,3…n 

to produce a unit velocity at point j and zero velocity at every other point in the system.

• The total impulse at point i is:

[ ] [ ]

11 12 13 1n

21 22 23 2n
n

i ij j
j 1

n1 n2 n3 nn

m m m . . . m

m m m . . . m

. . . . . . .
F m x i 1,2,3...n F m x m

. . . . . . .

. . . . . . .

m k k . . . m

F x

=

 
 
 
 

= = = =  
 
 
 
 

∑ or where

and and are the impulse and velocity vectors.

r r
& &

% %

r r
&

%
• The inertia influence coefficients of linear systems are symmetrical:

ij jim m=
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• Influence coefficients - inertia.

• Example: Determine the inertia influence coefficients (mass matrix) of the 2DoF system:

• Step 1: Apply impulses F1 (trailer) along 

x(t) and F2 (pendulum) along θ(t) which 

will result in a unit velocity along x (x’ = 

1) and zero velocity along θ (θ’ = 0).

1 11 1 11

11

2 21 1 21

2

21

F m x m

l
m ( M m )x m ( M m )

2

F m x m

l ml l
m mx m

2 3 2

θ

θ

= =

= + + = +

= =

 
= + == ÷

 

Applying the linear impulse - momentum eqn :

Applying the angular impulse - momentum eqn about O :

&

&&

&

&&
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• Influence coefficients - inertia.

• Example: Determine the inertia influence coefficients (mass matrix) of the 2DoF system:

• Step 2: Apply impulses F1 (trailer) along 

x(t) and F2 (pendulum) along θ(t) which 

will result in zero velocity along x (x’ = 

0) and a unit velocity along θ (θ’ = 1).

1 12 2 12

12

2 22 2 22

2 2

22

F m x m

l l
m ( M m )x m m

2 2

F m x m

l ml ml
m mx

2 3 3

θ

θ

= =

= + + =

= =

 
= + = ÷

 

Applying the linear impulse - momentum eqn :

Applying the angular impulse - momentum eqn about O :

The mass or inertia matrix of the system is

&

&&

&

&&

[ ]
( )

2

ml
M m

2
m

ml ml
2 3

 + 
=  

 
  

 therefore :
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• Eigenvalues and Eigenvectors

• The solution to the eqn. of  motion of a free undamped MDoF system

i i

i

j

x ( t ) X T( t ) i 1,2,3.....n

x ( t )

x ( t )

= =

  
 
  

where X is a constant and T is a function of time.i

The amplitude ratio of any two coordinates is independent of time.

Which signify that the motion (vibration) of all the degrees of fr

1

2

n

X

X

.
X

.

.

X

 
 
 
 

=  
 
 
 
 

eedom are synchronised - mode shape is fixed

and is written as :

r

[ ] [ ]m x k x 0+ =r r&&

• defines the (steady-state) harmonic vibration of the system due to an initial disturbance (initial conditions).

• The solution is established by assuming a solution in the form:
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• Eigenvalues and Eigenvectors

• Substituting the assumed solution into the eqn. of  motion gives:

[ ] [ ]

n n

ij j ij j
j 1 j 1

n

ij j
j 1
n

ij j
j 1

n

ij j
j 1 2 2
n

ij j
j 1

m XT( t ) k XT( t ) 0

m X T( t ) k X T( t ) 0 i 1,2,3.....,n

k X
T( t )

i 1,2,3.....,n
T( t )

m X

k X
T( t )

T( t )
T( t )

m X

ω ω

= =

=

=

=

=

+ =

   
+ = = ÷  ÷ ÷  ÷   

− = =

− = = +

∑ ∑

∑

∑

∑

∑

in scalar form:

which gives:

or :

rr r
&&

&&

&&

&&
&& T( t ) 0=
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• Eigenvalues and Eigenvectors

( )

[ ] [ ]

n
2

ij ij j
j 1

2

1

k m X 0 i 1,2,3.....,n

k m X 0 ( a )

T( t ) C cos( t )

ω

ω

ω φ

=
− = =

 − = 

= +

∑

Then :

or inmatrix form:

as found previously, the solution to the above can be written as :

rr

• This solution reveals that the degrees of freedom can vibrate harmonically at the same frequency ω and phase 

angle φ as long as the frequency satisfies eqn. (a) which represents a set on n linear homogeneous equations.

• For non-trivial solutions, the determinant of the coefficient matrix must be zero which gives the characteristic 

equation:

[ ] [ ]2 2
ij ijk m k m 0ω ω− = − =

• This is known as the eigenvalue problem, where ω2 is the eigenvalue and ω the natural frequency of the 

system.

• Expansion of the characteristic equation gives an nth order polynomial in terms of ω2 the solution of which 

produces n real and positive roots when the mass and stiffness matrices are symmetric and positive.

• The n natural frequencies are in ascending order ω1 ≤ ω2 ≤ ω3 ≤ …. ≤ ωn with ω1 being the fundamental 

natural frequency.

Mechanical Vibrations – Multi Degree-of-Freedom systems
UPLOADED BY AHMAD JUNDI



212 V. Rouillard  2003 - 2013

04:36:37

• Eigenvalues and Eigenvectors

[ ] [ ][ ]
[ ]

[ ] [ ][ ]

[ ] [ ]
[ ] [ ] [ ]

2

1

1

k m X 0

I D X 0

I X D X

D k m

λ
ω

λ

λ

λ
−

=

− =

− =

=

=

If we let :

Equation (a) becomes:

-1and  multiplying both sides by k  gives :

or

where is the .

for a non-trivial solution the determinant of the characteris

rr

rr

r r

dynamical  matrix

[ ] [ ]I D 0λ − =
tic eqn. must be zero:

• Expanding gives an nth degree polynomial in terms of λ

• This form lends itself to obtaining solutions by numerical (computer) methods to determine the roots of a 

polynomial equation.
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• Eigenvalues and Eigenvectors

• Example: Find the natural frequencies and mode shapes of the system when k1 = k2 = k3 = k and m1 = m2 = m3 = m.

• The dynamical matrix is given by:

[ ] [ ] [ ] [ ] [ ]1D k m a m−= ≡
• And the flexibility and mass matrix were determined previously:

[ ] ( ) ( )
( ) ( )

[ ] [ ]

1 1 1

1 1 2 1 2

1 1 2 1 2 3

1 k 1 k 1 k 1 1 1
1

a 1 k 1 k 1 k 1 k 1 k 1 2 2
k

1 k 1 k 1 k 1 k 1 k 1 k 1 2 3

1 0 0 1 1 1
m

m m 0 1 0 therefore : D 1 2 2
k

0 0 1 1 2 3

   
   = + + =   

+ + +     

   
   = =   
      
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• Eigenvalues and Eigenvectors

• Example: Find the natural frequencies and mode shapes of the system when k1 = k2 = k3 = k and m1 = m2 = m3 = 

m.

• Equating the C.E. determinant to zero:

[ ] [ ] 2

0 0 1 1 1
m 1

I D 0 0 1 2 2 0
k

0 0 1 2 3

m m m
1

k k k

m 2m 2m
1 0

k k k

m 2m 3m
1

k k k

λ

λ
λ λ λ

ωλ

λ λ λ

λ λ λ

λ λ λ

   
    − = − = = ÷     

      

     − − − ÷  ÷  ÷     
     = − − − = ÷  ÷  ÷     
     − − − ÷  ÷  ÷     

subtracting and dividing throughout by :
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• Eigenvalues and Eigenvectors

• Example: Find the natural frequencies and mode shapes of the system when k1 = k2 = k3 = k and m1 = m2 = m3 = m.

ωα
λ

α α α
α α α α α α
α α α

ωα ω

ωα ω

ωα ω

= =

− − −
− − − = − + − =
− − −

= = =

= = =

= = =

2

3 2

2
1

1 1

2
2

2 2

2
3

3 3

m m
k k
1

1 2 2 5 6 1 0

2 1 3

m k
0.198 0.445

k m

m k
1.555 1.247

k m

m k
3.249 1.803

k m

If

whose roots (eigenvalues) are:
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• Eigenvalues and Eigenvectors

[ ] [ ][ ]λ

λ
ω

− =

= =

    
   −   
      

( i )
i

1 2
1

I D X 0 (

1 m
5.049

k

1 0 0 1 1 1
m m

5.049 0 1 0 1 2 2
k k

0 0 1 1 2 3

The mode shapes are determined by calculating the eigenvectors :

 denotes the i mode shape)

First mode : substituting gives :  

th
i

rr

   − −              = − − =             − −             

+ = − =

( 1 ) ( 1 )
1 1
( 1 ) ( 1 )
2 2
( 1 ) ( 1 )
3 3

( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )
2 3 1 2 3 1

X X4.049 1 1 0

X 1 3.049 2 X 0

1 2 2.049 0X X

X X 4.049X and 3.049 X 2X X

From the first and second rows :

Solving

=

= =

 
 =  
  

( 1 ) ( 1 ) (

( 1 ) ( 1 ) ( 1 ) (

1 )
X

1)
2 1 3 1

( 1 )

X X2 3 1

( 1 )
1

X 1.802X and X 2.247 X

1

X X 1.802

2.247

for and in terms :

Therefore the first mode shape is :
r
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• Eigenvalues and Eigenvectors

λ
ω

= =

   − − −                − = − − −          − − −                 

2 2
2

( 2 ) ( 2 )
1 1
( 2 ) ( 2 )
2 2
( 2 ) ( 2 )
3 3

1 m
0.643

k

X X1 0 0 1 1 1 0.357 1 1
m m

0.643 0 1 0 1 2 2 X 1 1.357 2 X
k k

0 0 1 1 2 3 1 2 2.357X X

Second mode : substituting gives :  

   =  
   

− − = − − =

= = −

( 2 ) (

( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )
2 3 1 2 3 1

( 2 ) ( 2

2 )

) ( 2 ) ( 2 )

( 2 )
X X X2

2 1

1

1

3

3

0

0

0

X X 0.357 X and 1.357 X 2X X

X 0.445X and X 0.802X

From the first and second rows :

Solving for and in terms :

Therefore the second mode shape =

 
 =  
 − 

( 2 ) ( 2 )
1

1

X X 0.445

0.802

 is :
r
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• Eigenvalues and Eigenvectors

λ
ω

= =

   − − −                − = − − −           − − −                 

3 2
3

( 3 ) ( 3 )
1 1
( 3 ) ( 3 )
2 2
( 3 ) ( 3 )
3 3

1 m
0.308

k

X X1 0 0 1 1 1 0.692 1 1
m m

0.308 0 1 0 1 2 2 X 1 1.692 2 X
k k

0 0 1 1 2 3 1 2 2.692X X

Third mode : substituting gives :  

   =  
   

− − = − − =

= − =

( 3 ) ( 3 ) ( 3 ) ( 3 ) ( 3 ) ( 3 )
2

( 3 ) ( 3 ) ( 3 )

3 1 2 3 1

( 3 ) ( 3 ) ( 3 ) ( 3 )
2 1 3 1

X X X2 3 1

0

0

0

X X 0.692X and 1.692X 2X X

X 1.247 X and X 0.554 X

From the first and second rows :

Solving for and in terms :

Therefore the third mode shape is =

 
 = − 
  

( 3 ) ( 3 )
1

1

X X 1.247

0.554

:
r
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• Eigenvalues and Eigenvectors

( 1 )
1

( 2 )
1

( 3 )
1

1

X 1.802

2.247

1

X 0.445

0.802

1

X 1.247

0.554

 
 =  
  

 
 =  
 − 

 
 = − 
  

1.

0

2.24

7
1.802

1.

0 -0.8020.445

Node

1.

0

0.554

-1.247

NodeNode
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• Eigenvalues and Eigenvectors

( )

( )

( )

1
n 1

2
n 1

3
n 1

1
k

Mode # 1 0.45 X 1.802
m

2.247

1
k

Mode # 2 1.25 X 0.445
m

0.802

1
k

Mode # 3 1.80 X 1.247
m

0.554

ω

ω

ω

 
 = =  
  

 
 = =  
 − 

 
 = = − 
  
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• Eigenvalues and Eigenvectors

( )

( )

( )

1
n 1

2
n 1

3
n 1

1
k

Mode # 1 0.45 X 1.802
m

2.247

1
k

Mode # 2 1.25 X 0.445
m

0.802

1
k

Mode # 3 1.80 X 1.247
m

0.554

ω

ω

ω

 
 = =  
  

 
 = =  
 − 

 
 = = − 
  
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• Eigenvalues and Eigenvectors

( )

( )

( )

1
n 1

2
n 1

3
n 1

1
k

Mode # 1 0.45 X 1.802
m

2.247

1
k

Mode # 2 1.25 X 0.445
m

0.802

1
k

Mode # 3 1.80 X 1.247
m

0.554

ω

ω

ω

 
 = =  
  

 
 = =  
 − 

 
 = = − 
  
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Mechanical Vibrations

Some Figures Courtesy Addison Wesley

Good luck for the exam!
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