## Birzeit University Mechanical & Mechatronics Engineering Department Heat Transfer ENME 431 Homework 11 Heat exchangers

## Instructor: Dr. Afif Akel Hasan

**11.9** A finned-tube, cross-flow heat exchanger is to use the exhaust of a gas turbine to heat pressurized water. Laboratory measurements are performed on a prototype version of the exchanger, which has a surface area of  $10m^2$ , to determine the overall heat transfer coefficient as

a function of operating conditions. Measurements made under particular conditions, for which  $m_h$ 

= 2 kg/s,  $T_{hi}$  = 325°C, m<sub>c</sub> = 0.5 kg/s, and  $T_{ci}$  = 25°C, reveal a water outlet temperature of  $T_{co}$  = 150°C. What is the overall heat transfer coefficient of the exchanger?

**11.14** A shell-and-tube exchanger (two shells, four tube passes) is used to heat 10,000 kg/h of pressurized water from 35 to 120°C with 5000 kg/h pressurized water entering the exchanger at  $300^{\circ}$ C. If the overall heat transfer coefficient is 1500 W/m<sup>2</sup>. K, determine the required heat exchanger area.

**11.23** A concentric tube heat exchanger for cooling lubricating oil is comprised of a thin-walled inner tube of 25-mm diameter carrying water and an outer tube of 45-mm diameter carrying the oil. The exchanger operates in counter flow with an overall heat transfer coefficient of 60  $W/m^2$ .K and the tabulated average properties.



(a) If the outlet temperature of the oil is 60°C, determine the total heat transfer and the outlet temperature of the water.

(b) Determine the length required for the heat exchanger.