Birzeit University Mechanical & Mechatronics Engineering Department Heat Transfer ENME 431 Final exam formula sheet

Instructor: Dr. Afif Akel Hasan

1st. semester 2018/2019

Conduction

$$q_x'' = -k\frac{dT}{dx} \qquad q_x'' = k\frac{T_1 - T_2}{L} = k\frac{\Delta T}{L}$$

$$R_{t,cond} = \frac{T_{s,1} - T_{s,2}}{q_x} = \frac{L}{kA}$$

$$q'' = h(T_s - T_{\infty})$$

$$R_{t,conv} = \frac{T_s - T_{\infty}}{q} = \frac{1}{hA}$$

$$q_{Tad}'' = \frac{q}{A} = \varepsilon E_b(T_s) - \alpha G = \varepsilon \sigma (T_s^4 - T_{sur}^4)$$

$$R_{t,rad} = \frac{T_s - T_{sur}}{q_{rad}} = \frac{1}{h_rA}$$

$$\dot{E}_{st} = \frac{dE_{st}}{dt} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_g$$

$$\alpha = \frac{k}{\rho c_p}$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Steady state conduction

$$q = \frac{\Delta T_{overall}}{R_{th}}, \quad q_x = \frac{T_{\infty,1} - T_{\infty,4}}{\Sigma R_t}$$
$$R_{tot} = \sum R_t = \frac{\Delta T}{q} = \frac{1}{UA}$$

equation with	no generation		
	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^a
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$
Temperature distribution	$T_{z,1} - \Delta T \frac{x}{L}$	$T_{s,2} + \Delta T \frac{\ln{(r/r_2)}}{\ln{(r_1/r_2)}}$	$T_{z,1} - \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$
Heat flux (q'')	$k\frac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln\left(r_2/r_1\right)}$	$\frac{k\Delta T}{r^2[(1/r_1) - (1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk\Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k\Delta T}{(1/r_1)-(1/r_2)}$
Thermal resistance $(R_{t,cond})$	$\frac{L}{kA}$	$\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4 \pi k}$
$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2}\right)$	$+\frac{T_{s,2}-T_{s,1}}{2}\frac{x}{L}+\frac{T_s}{2}$	$\frac{\dot{q}L^2}{2}$ $T(x) = \frac{\dot{q}L^2}{2k}$	$\left(1 - \frac{x^2}{L^2}\right) + T_s$
$\langle \rangle$,	

TABLE 3.3	One-dimensional, steady-state solutions to the heat
equation	with no generation

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{\dot{q}}{k} = 0$$

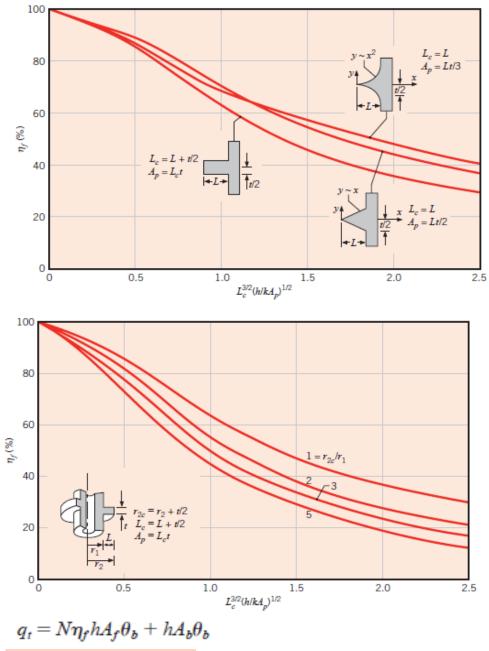
$$T(r) = -\frac{\dot{q}}{4k}r^{2} + C_{1}\ln r + C_{2} \qquad T(r) = \frac{\dot{q}r_{o}^{2}}{4k}\left(1 - \frac{r^{2}}{r_{o}^{2}}\right) + T_{s}$$

<u>Fins</u>

$$\varepsilon_f = \frac{q_f}{hA_{c,b}\theta_b}$$
 $\eta_f \equiv \frac{q_f}{q_{\max}} = \frac{q_f}{hA_f\theta_b}$ $\eta_f = \frac{\tanh mL_c}{mL_c}$

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Case	$\begin{array}{l} \text{Tip Condition} \\ (x = L) \end{array}$	Temperature Distribution θ/θ_b		Fin Heat Transfer Rate	q_f
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x-L}$	$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$ (3.75)		$M\frac{\sinh mL + (h/mk)}{\cosh mL + (h/mk)}$	$\frac{\cosh mL}{\sinh mL}$ (3.77)
В	Adiabatic: $d\theta/dx _{x-L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	(3.80)	M tanh mL	(3.81)
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L)}{\sinh mL}$		$M\frac{(\cosh mL - \theta)}{\sinh mL}$	
-			(3.82)		(3.83)
D	Infinite fin $(L \to \infty)$: $\theta(L) = 0$	e ^{-max}	(3.84)	М	(3.85)
	$T_{\infty} \qquad m^2 \equiv hP/kA_c$ = $T_b - T_{\infty} \qquad M \equiv \sqrt{hPkA_c}\theta_b$				



$$\eta_o = 1 - \frac{NA_f}{A_t} (1 - \eta_f)$$

External flow

$$\overline{h}_m = \frac{1}{A_s} \int_{A_s} h_m dA_s$$

$$Re_{x,c} \equiv \frac{\rho u_{\infty} x_{c}}{\mu} = 5 \times 10^{5}$$
$$\overline{N}u_{L} = C Re_{L}^{m} Pr^{n}$$
$$\overline{N}u_{x} \equiv \frac{\overline{h}_{x} x}{k}$$
$$Re_{D} \equiv \frac{\rho VD}{\mu} = \frac{VD}{\nu}$$

TABLE 7.7Summary of convection heat transfer correlations for external flow a,b

Correlation		Geometry	Conditions ^e
$Nu_x = 0.332 \ Re_x^{1/2} \ Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, $T_f, Pr \gtrsim 0.6$
$\overline{Nu_x} = 0.664 \ Re_x^{1/2} \ Pr^{1/3}$	(7.30)	Flat plate	Laminar, average, $T_f, Pr \gtrsim 0.6$
$Nu_x = 0.564 Pe_x^{1/2}$	(7.32)	Flat plate	Laminar, local, $T_f, Pr \leq 0.05, Pe_x \geq 100$
$Nu_x = 0.0296 \ Re_x^{4/5} \ Pr^{1/3}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \le 10^8$, $0.6 \le Pr \le 60$
$\overline{Nu}_L = (0.037 Re_L^{4/5} - 871) Pr^{1/3}$	(7.38)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$
$\overline{Nu}_D = C Re_D^m Pr^{1/3}$ (Table 7.2)	(7.52)	Cylinder	Average, T_f , $0.4 \leq Re_D \leq 4 \times 10^5$, $Pr \geq 0.7$
$\overline{Nu_D} = C Re_D^m Pr^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.53)	Cylinder	Average, T_{∞} , $1 \leq Re_D \leq 10^6$, $0.7 \leq Pr \leq 500$
$\overline{Nu_D} = 0.3 + [0.62 \ Re_D^{1/2} \ Pr^{1/3} \\ \times [1 + (0.4/Pr)^{2/3}]^{-1/4}] \\ \times [1 + (Re_D/282,000)^{5/8}]^{4/5}$	(7.54)	Cylinder	Average, T_f , $Re_D Pr \gtrsim 0.2$
$\overline{Nu_D} = 2 + (0.4 Re_D^{1/2} + 0.06 Re_D^{2/3}) Pr^{0.4} \times (\mu/\mu_5)^{1/4}$	(7.56)	Sphere	Average, T_{∞} , $3.5 \leq Re_D \leq 7.6 \times 10^4$, $0.71 \leq Pr \leq 380$, $1.0 \leq (\mu/\mu_S) \leq 3.2$
$\overline{Nu}_D = 2 + 0.6 \ Re_D^{1/2} \ Pr^{1/3}$	(7.57)	Falling drop	Average, T_{∞}
$\overline{Nu}_{D} = C_{1}C_{2} Re_{D\max}^{m} Pr^{0.36} (Pr/Pr_{s})^{1/2}$ (Tables 7.5, 7.6)	(7.58), (7.59)	Tube bank ^d	Average, \overline{T} , $10 \leq Re_D \leq 2 \times 10^6$, $0.7 \leq Pr \leq 500$

$$V_{\max} = \frac{S_T}{S_T - D} V \qquad V_{\max} = \frac{S_T}{2(S_D - D)} V$$
$$S_D = \left[S_L^2 + \left(\frac{S_T}{2}\right)^2\right]^{1/2} < \frac{S_T + D}{2}$$

$(Re_{D,m})$	$a_{\rm ax} \gtrsim 10^{\circ}$)[16]							
NL	1	2	3	4	5	7	10	13	16
Aligned	0.70	0.80	0.86	0.90	0.92	0.95	0.97	0.98	0.99
Staggered	0.64	0.76	0.84	0.89	0.92	0.95	0.97	0.98	0.99

TABLE 7.6Correction factor C_2 of Equation 7.59 for $N_L < 20$ $(Re_{D,max} \ge 10^3)$ [16]

TABLE 7.2 Constants of Equation 7.52 for the circular cylinder in cross flow [11, 12]

ReD	С	m
0.4-4	0.989	0.330
4-40	0.911	0.385
40-4000	0.683	0.466
4000-40,000	0.193	0.618
40,000-400,000	0.027	0.805

TABLE 7.4 Constants of	
Equation 7.53 for the circu	ılar
cylinder in cross flow [17]	

eymaer me.	1000 1000 [11	1
Re _D	С	m
1-40	0.75	0.4
40-1000	0.51	0.5
$10^{3}-2 \times 10^{5}$	0.26	0.6
$2 \times 10^{5} - 10^{6}$	0.076	0.7

$$Nu_{x} = \frac{Nu_{x}|_{\xi=0}}{[1 - (\xi/x)^{3/4}]^{1/3}}$$

with unheated section laminar local

$$Nu_{x} = \frac{Nu_{x}|_{\xi=0}}{[1 - (\xi/x)^{9/10}]^{1/9}}$$

with unheated section turbulent local

Internal flow

$$Re_{D} = \frac{4\dot{m}}{\pi D\mu}$$
$$\left(\frac{x_{\text{fd},t}}{D}\right)_{\text{lam}} \approx 0.05 Re_{D} Pr \qquad (x_{\text{fd},t}/D) = 10.$$

$$D_h \equiv \frac{4A_c}{P}$$

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform q_z''
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_D = 3.66 + \frac{0.0668 \ Gz_D}{1 + 0.04 \ Gz_D^{2/3}}$	(8.57)	Laminar, thermal entry (or combined entry with $Pr \ge 5$), uniform T_5 , $Gz_D = (D/x) Re_D Pr$
$\overline{Nu_D} = \frac{\frac{3.66}{\tanh[2.264 Gz_D^{-1/3} + 1.7 Gz_D^{-2/3}]} + 0.0499 Gz_D \tan(2.432 Pr^{1/6} Gz_D^{-1/6})}{\tanh(2.432 Pr^{1/6} Gz_D^{-1/6})}$	$h(Gz_D^{-1})$ (8.58)	Laminar, combined entry, $Pr \gtrsim 0.1$, uniform T_z , $Gz_D = (D/x) Re_D Pr$
$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \leq Re_D \leq 5 \times 10^6$
$Nu_D = 0.023 Re_D^{4/5} Pr^n$	(8.60) ^d	Turbulent, fully developed, $0.6 \leq Pr \leq 160$, $Re_D \geq 10,000, (L/D) \geq 10, n = 0.4$ for $T_5 > T_m$ and $n = 0.3$ for $T_5 < T_m$
$Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.61) ^d	Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000, L/D \ge 10$
$Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	(8.62) ^d	Turbulent, fully developed, $0.5 \leq Pr \leq 2000$, $3000 \leq Re_D \leq 5 \times 10^6$, $(L/D) \geq 10$
$Nu_D = 4.82 + 0.0185(Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform $q_{s}^{\prime\prime}$, $3.6 \times 10^{3} \leq Re_{D} \leq 9.05 \times 10^{5}$, $3 \times 10^{-3} \leq Pr \leq 5 \times 10^{-2}$, $10^{2} \leq Re_{D} Pr \leq 10^{4}$
$Nu_D = 5.0 + 0.025 (Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform T_s , $Re_D Pr \gtrsim 100$
$q = \dot{m} c_p (T_{\rm out} - T_{\rm in})$		
$q_{\rm conv} = \overline{h}A_s \Delta T_{\rm lm} = \frac{\Delta T_o}{\ln\left(\Delta T_{\rm lm}\right)}$	$\frac{-\Delta T_i}{T_o/\Delta T_i}$	
$T_m(x) = T_{m,i} + \frac{q_s''P}{\dot{m}c_p}x \qquad \frac{T_s - T_m(x)}{T_s - T_{m,i}} =$	$= \exp\left(-\frac{Px}{mc_p}\overline{h}\right)$	$\frac{\Delta T_o}{\Delta T_i} = \frac{T_{\infty} - T_{m,o}}{T_{\infty} - T_{m,i}} = \exp\left(-\frac{\overline{U}A_z}{\dot{m}c_p}\right)$
$q = \overline{U} A_s \Delta T_{ m lm}$		

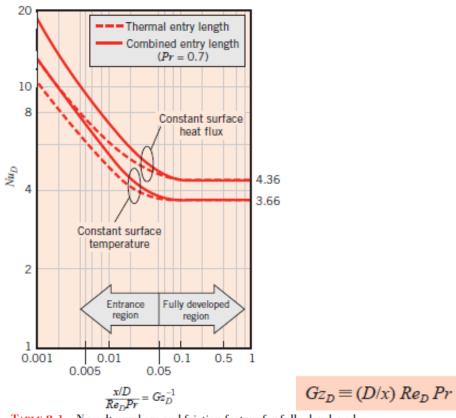


 TABLE 8.1
 Nusselt numbers and friction factors for fully developed laminar flow in tubes of differing cross section

		Nup	$=\frac{hD_h}{k}$	
Cross Section	$\frac{b}{a}$	(Uniform q_s'')	(Uniform T _s)	Re Dh
\bigcirc	—	4.36	3.66	64
a b	1.0	3.61	2.98	57
a b	1.43	3.73	3.08	59
a b	2.0	4.12	3.39	62
a b	3.0	4.79	3.96	69
a b	4.0	5.33	4.44	73
	8.0	6.49	5.60	82
	00	8.23	7.54	96
Heated	80	5.39	4.86	96
\bigtriangleup	_	3.11	2.49	53

D_i/D_o	Nu _i	Nu _o	Comments
0	_	3.66	See Equation 8.55
0.05	17.46	4.06	
0.10	11.56	4.11	
0.25	7.37	4.23	
0.50	5.74	4.43	
≈1.00	4.86	4.86	See Table 8.1, $b/a \rightarrow \infty$

TABLE 8.2	Nusselt number for fully developed laminar
flow in a	circular tube annulus with one surface insulated
and the	other at constant temperature

Free convection $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{p} = \frac{1}{\rho} \frac{p}{RT^{2}} = \frac{1}{T}$ $Gr_{L} \equiv \frac{g\beta(T_{s} - T_{\infty})L^{3}}{\nu^{2}}$ $Ra_{L} = Gr_{L}Pr = \frac{g\beta(T_{s} - T_{\infty})L^{3}}{\nu\alpha}$

Vertical wall

$$\overline{Nu}_{L} = \frac{\overline{h}L}{k} = \frac{4}{3} \left(\frac{Gr_{L}}{4}\right)^{1/4} g(Pr)$$
$$\overline{Nu}_{L} = \frac{\overline{h}L}{k} = CRa_{L}^{n}$$

Typically, n = 1/4, and 1/3 for laminar and turbulent flows, respectively. $\overline{Nu}_{L} = \left\{ 0.825 + \frac{0.387 Ra_{L}^{1/6}}{[1 + (0.492/Pr)^{9/16}]^{8/27}} \right\}^{2}$

Horizontal plate

$$L \equiv \frac{A_s}{P}$$

Upper Surface of Hot Plate or Lower Surface of Cold Plate [19]:

$$\overline{Nu}_L = 0.54 \, Ra_L^{1/4} \quad (10^4 \le Ra_L \le 10^7, \, Pr \ge 0.7)$$

 $\overline{Nu}_L = 0.15 Ra_L^{1/3}$ (10⁷ $\leq Ra_L \leq 10^{11}$, all Pr)

Lower Surface of Hot Plate or Upper Surface of Cold Plate [20]:

 $\overline{Nu}_L = 0.52 \, Ra_L^{1/5} \quad (10^4 \le Ra_L \le 10^9, Pr \ge 0.7)$

Horizontal Cylinder

$$\overline{Nu}_D = \frac{\overline{h}D}{k} = CRa_D^n$$

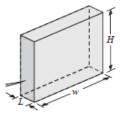
 TABLE 9.1
 Constants of Equation 9.33 for free convection on a horizontal circular cylinder [22]

Ra _D	С	n
10 ⁻¹⁰ -10 ⁻²	0.675	0.058
10^{-2} -10 ²	1.02	0.148
10 ² -10 ⁴	0.850	0.188
10 ⁴ -10 ⁷	0.480	0.250
107-1012	0.125	0.333

$$\overline{Nu}_{D} = \left\{ 0.60 + \frac{0.387 \, Ra_{D}^{1/6}}{\left[1 + (0.559/Pr)^{9/16}\right]^{8/27}} \right\}^{2} \qquad Ra_{D} \lesssim 10^{12}$$

Sphere

 $\overline{Nu}_{D} = 2 + \frac{0.589 \, Ra_{D}^{1/4}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}}$



$$Ra_{L} = \frac{g\beta(T_{1} - T_{2})L^{3}}{\alpha\nu} \qquad \overline{Nu}_{L} = 0.42 \ Ra_{L}^{1/4} \ Pr^{0.012} \left(\frac{H}{L}\right)^{-0.3}$$

Heat exchanger

$$q = \dot{m}_{h}c_{p,h} (T_{h,i} - T_{h,o})$$

$$q = \dot{m}_{c} c_{p,c} (T_{c,o} - T_{c,i})$$

$$q = UA\Delta T_{m}$$

$$\Delta T_{lm} = \frac{\Delta T_{2} - \Delta T_{1}}{\ln \Delta T_{2} / \Delta T_{1}} = \frac{\Delta T_{1} - \Delta T_{2}}{\ln \Delta T_{1} / \Delta T_{2}}$$

$$\Delta T_{lm} = F\Delta T_{lm,CF}$$

$$\frac{1}{UA} = R_{\text{conv},h} + R_w + R_{\text{conv},c}$$
$$\frac{1}{UA} = \left(\frac{1}{hA}\right)_h + R_w + \left(\frac{1}{hA}\right)_c$$

$$\varepsilon \equiv \frac{q}{q_{\text{max}}}$$

$$q_{\text{max}} = C_{\min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = \frac{C_h(T_{h,i} - T_{h,o})}{C_{\min}(T_{h,i} - T_{c,i})} \qquad \varepsilon = \frac{C_c(T_{c,o} - T_{c,i})}{C_{\min}(T_{h,i} - T_{c,i})}$$

$$q = \varepsilon C_{\min}(T_{h,i} - T_{c,i})$$

$$\text{NTU} \equiv \frac{UA}{C_{\min}}$$

TABLE 11.3 Heat Exchanger Effectiveness Relations [5]

Flow Arrangement	Relation		
Parallel flo	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 + C_r)\right]}{1 + C_r}$		
Counterflo	$\varepsilon = \frac{1 - \exp[-\text{NTU}(1 - C_7)]}{1 - C_7 \exp[-\text{NTU}(1 - C_7)]}$	$(C_r < 1)$	
	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}}$	$(C_r = 1)$	
Shell-and-tube			
One shell pass (2, 4, tube passes)	$\varepsilon_{1} = 2 \left\{ 1 + C_{r} + (1 + C_{r}^{2})^{1/2} \times \frac{1 + \exp\left[-(\text{NTU})_{1}(1 + C_{r}^{2})^{1/2}\right]}{1 - \exp\left[-(\text{NTU})_{1}(1 + C_{r}^{2})^{1/2}\right]} \right\}^{-1}$		
<i>n</i> shell passes $(2n, 4n, \ldots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$		
Cross-flow (single pass			
Both fluids unmixed	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(\mathrm{NTU})^{0.22} \left\{\exp\left[-C_r(\mathrm{NTU})^{0.78}\right] - 1\right\}\right]$		
C_{\max} (mixed), C_{\min} (unmixed)	$\varepsilon = \left(\frac{1}{C_r}\right) (1 - \exp\left\{-C_r [1 - \exp\left(-\text{NTU}\right)]\right\})$		
C _{min} (mixed), C _{max} (unmixed)	$\varepsilon = 1 - \exp(-C_r^{-1}\{1 - \exp[-C_r(\text{NTU})]\})$		
All exchangers $(C_r = 0)$	$\varepsilon = 1 - \exp(-\text{NTU})$		

Page **10** of **12**

Flow Arrangement	Relation			
Parallel flo	$\mathrm{NTU} = -\frac{\ln\left[1 - \varepsilon(1 + C_{\gamma})\right]}{1 + C_{\gamma}}$			
Counterflo	$\mathrm{NTU} = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right)$	$(C_r < 1)$		
	$NTU = \frac{\varepsilon}{1 - \varepsilon}$	$(C_r = 1)$		
Shell-and-tube				
One shell pass (2, 4, tube passes)	$(\text{NTU})_1 = -(1 + C_r^2)^{-1/2} \ln\left(\frac{E}{E}\right)$ $E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$	$(\text{NTU})_{1} = -(1 + C_{7}^{2})^{-1/2} \ln\left(\frac{E-1}{E+1}\right)$ $E = \frac{2/\varepsilon_{1} - (1 + C_{7})}{(1 + C_{7}^{2})^{1/2}}$		
<i>n</i> shell passes ($2n, 4n, \ldots$ tube passes)	•	Use Equations 11.30b and 11.30c with $\varepsilon_1 = \frac{F-1}{F-C_r} F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n} \text{NTU} = n(\text{NTU})_1$		
Cross-flow (single pass				
C_{\max} (mixed), C_{\min} (unmixed)	(mixed), C_{\min} (unmixed) $NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$			
C_{\min} (mixed), C_{\max} (unmixed)	$\mathrm{NTU} = -\left(\frac{1}{C_r}\right)\ln[C_r\ln(1-\varepsilon)]$	$\mathrm{NTU} = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$		
All exchangers ($C_7 = 0$)	$NTU = -\ln(1-\varepsilon)$	$NTU = -\ln(1-\varepsilon)$		

TABLE 11.4 Heat Exchanger NTU Relations

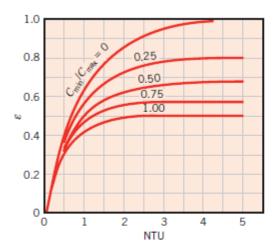


FIGURE 11.10 Effectiveness of a parallelflow heat exchanger (Equation 11.28).

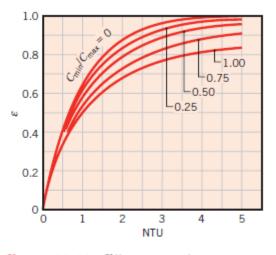


FIGURE 11.11 Effectiveness of a counterflow heat exchanger (Equation 11.29).

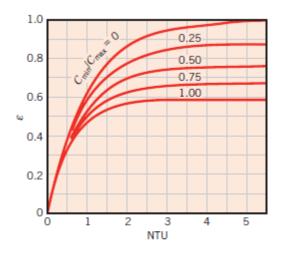


FIGURE 11.12 Effectiveness of a shell-andtube heat exchanger with one shell and any multiple of two tube passes (two, four, etc. tube passes) (Equation 11.30).

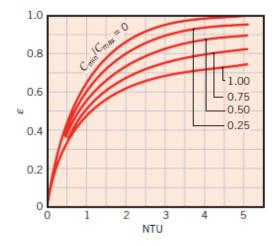


FIGURE 11.14 Effectiveness of a singlepass, cross-flow heat exchanger with both fluids unmixed (Equation 11.32).

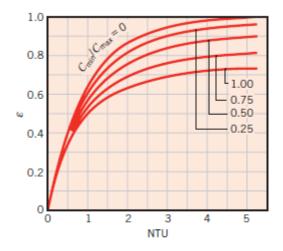


FIGURE 11.13 Effectiveness of a shell-andtube heat exchanger with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes) (Equation 11.31 with n = 2).

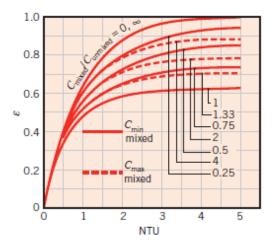


FIGURE 11.15 Effectiveness of a singlepass, cross-flow heat exchanger with one fluid mixed and the other unmixed (Equations 11.33, 11.34).