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What is Discrete Math?

- Discrete mathematics is the branch of mathematics dealing with objects that
can assume only distinct, separated values

- Itiis a branch of mathematics concerned with the study of objects that can
be represented finitely (or countable)

- Discrete mathematics is the mathematical language of computer science



What is Discrete Math?

- Concepts and notations from discrete mathematics are useful in studying
and describing objects and problems in all branches of computer science,
such as algorithms, artificial intelligence, programming languages, security
and cryptography, automated theorem proving, and software development
in general

- Mathematical reasoning is interesting but also a great way to increase
creative mathematical thinking. It helps in your personal life as much as your

output as a software developer



Propositional Logic



What is Logic?

Logic is concerned with the methods of reasoning

Logic provides rules and techniques to determine whether a given
argument is valid

Logic is the language used for most formal specification languages
Programs can be described with mathematics, and Propositional logic can
be used to reason about their correctness (design and analysis of

algorithms)



Proposition

* The basic building blocks of logic—propositions
* A proposition is a statement (that is, a sentence that declares a fact) that is either true or

false, but not both

 Examples:

Amman is the capital of Jordan.
1+1=2.

2+2=3.



Proposition

* Consider the following examples, are they propositions?

- What time is it?
- Read this carefully.
-x+1=2.

-X+Vy =2z



Negation

¢ Definition

If p is a statement variable, the negation of p is “not p” or “It is not the case that
p’” and is denoted ~p. It has opposite truth value from p: if p is true, ~p 1s false;
if p is false, ~p is true.
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Conjunction

If p and g are statement variables, the conjunction of p and ¢ is “p and ¢,” denoted

p A g. Itis true when, and only when, both p and ¢ are true. If either p or g is false,
or if both are false, p A ¢ is false.
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Disjunction

If p and g are statement variables, the disjunction of p and g 1s “p or g,” denoted
p V q. Itis true when either p is true, or g is true, or both p and ¢ are true; it is false

only when both p and ¢ are false.




Truth Table for Exclusive Or

p@g or pXORg

(pVa)A ~(pAg)
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Truth Table for Exclusive Or

p®Dqg or pXORg

(pVa)A ~(pAg)

q ~(p Aq)
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Logical Equivalence

Two statement forms are called logically equivalent if, and only if, they have identical
truth values for each possible substitution of statements for their statement variables.
The logical equivalence of statement forms P and Q is denoted by writing P = Q.

Two statements are called logically equivalent if, and only if, they have logically
equivalent forms when identical component statement variables are used to replace
identical component statements.
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p Aqandg A p always
have the same truth
values, so they are

logically equivalent



Logical Equivalence
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p and ~(~p) always have

the same truth values, so they

are logically equivalent
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~(p A q)and ~p A ~q have

different truth values in rows 2 and 3,

so they are not logically equivalent



Negations of And and Or: De Morgan’s Laws

~(pANGg)=~pV . ~(pVq)=~pN~q.
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Negations of And and Or: De Morgan’s Laws

~(pANg)=~pV ~q. ~(pVq)=~pAN~q.

P q ~p ~Nq PAq ~pAagq)  ~p Vg
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T
(p A g) and ~p Vv ~q always

have the same truth values, so they

are logically equivalent



Tautologies and Contradictions

A tautology is a statement form that is always true regardless of the truth values of
the individual statements substituted for its statement variables. A statement whose
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth val-
ues of the individual statements substituted for its statement variables. A statement
whose form is a contradication is a contradictory statement.
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Summary of Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, ¢, and r, a tautology t and a contradiction ¢, the following logical equivalences
hold.
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Commutative laws:
Associative laws:
Distributive laws:
Identity laws:
Negation laws:
Double negative law:

Idempotent laws:

Universal bound laws:

De Morgan’s laws:

Absorption laws:

. Negations of t and c¢:

PNg=qNp

(pAg)ANr=pA(gNr)
pA@Vr)=(pAg)V(pAr)

pAt=p
pVv~p=t
~(~p)=p
PAP=Dp
pvt=t
~(pANgq)=~pV ~q
pvVpArg) =p

~t=c¢

pVqg=qVp
(pVvVg)Vr=pVvi(gVr)
pV@Ar)=(pVg)AN(pVr)

pPVC=p
pAN~p=C¢C
PVPp=Dp
PAC=C

~(pVg)=~pA~q
pPA(pVg)=p

~c=1t
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Simplifying Statement Forms

~(~pAq) A (pVq) = p
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~(~p N q)

AN(pVQq)

Simplifying Statement Forms

~(~pAq) A (pVq) = p

(~
(
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2% (f! A ~q) by the commutal
pV
P

(~p)V ~q) AN(pV q) byDeMorgan's laws
pNv~q)N(pVq) by the double negative law
(~qg N q) by the distributive law
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