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In this Lecture

We will learn
» [ Partl: Negations of Quantified Statements;
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1 Part 2: Contrapositive, Converse and inverse Quantified Statements;

 Part 3: Necessary and Sufficient Conditions, Only If
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Negations of Quantified Statements

How to negate a universal statement:

All Palestinians like Zatar
Some Palestinians do not like Zatar

Theorem 3.2.1 Negation of a Universal Statement
The negation of a statement of the form
vxin D,Q(x)
Is logically equivalent to a statement of the form
dxin D such that ~Q(X).
Symbolically, ~(Vx & D, Q(x)) = dx& D such that ~Q(x).




Negations of Quantified Statements

How to negate an extensional statement:

Some Palestinians Like Zatar
All Palestinians do not like Zatar

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form
dxin D such that Q(x)

Is logically equivalent to a statement of the form
Vxin D, ~Q(Xx).
Symbolically, ~(dx €D such that Q(x)) = ¥xeD, ~Q(x).




Negations of Quantified Statements

V p€ Prime . Odd(p)

Some computer hackers are over 40

All computer programs are finite



Negations of Quantified Statements

V p€ Prime . Odd(p)
3p € Prime . ~Odd(p)

Some computer hackers are over 40
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Negations of Quantified Statements

V p€ Prime . Odd(p)
3dp € Prime . ~Odd(p)

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite



Negations of Quantified Statements

V p€ Prime . Odd(p)
dp € Prime . ~Odd(p)

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite

Some computer programs are not finite



Negations of Quantified Statements

No politicians are honest

Vx . P(x) - Q(x)

Vvp € Person . Blond(p) — BlueEyes(p)

If a computer program has more than 10000 lines then it contains
a bug
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No politicians are honest
Some politicians are honest
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Negations of Quantified Statements

No politicians are honest
Some politicians are honest

Vx . P(x) - Q(x)
3Ax . P(X) A ~Q(X)

Vvp € Person . Blond(p) — BlueEyes(p)

If a computer program has more than 10000 lines then it contains a bug
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Negations of Quantified Statements

No politicians are honest

Some politicians are honest
Vx . P(x) - Q(x)

3Ax . P(X) A ~Q(X)

Vvp € Person . Blond(p) — BlueEyes(p)
dp € Person . Blond(p) A ~BlueEyes(p)

If a computer program has more than 10000 lines then it contains a bug

13



Negations of Quantified Statements
No politicians are honest
Some politicians are honest
Vx . P(x) - Q(x)

3Ax . P(X) A ~Q(X)

Vvp € Person . Blond(p) — BlueEyes(p)
dp € Person . Blond(p) A ~BlueEyes(p)

If a computer program has more than 10000 lines then it contains a bug
A computer program has more than 10000 and does not contains a bug
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In this Lecture

We will learn
 Partl: Negations of Quantified Statements;

-1 Part 2: Contrapositive, Converse and Inverse Quantified

é’ Statements;

 Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of
Universal Statements, Necessary and Sufficient Conditions
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Variants of Universal Conditional Statements

1. Its contrapositive is the statement:

Consider a statement of the form:  VxeD, if P(x) then Q(x).

2. Its converse is the statement: VxeD, if Q(x) then P(x).

3. Itsinverse is the statement: VxeD, if ~P(x) then ~Q(Xx).

VXED, if ~Q(x) then ~P(x).

VX € Person

Contrapositive:
P VxePerson

Converse: “xcPerson

\'x__.-'"ll - .
Inverse: VX<Person

Palestinian(x) — Smart(x)

~ Smart(x) — ~Palestinian(x)
Smart(x) — Palestinian(x)

~Palestinian(x) — ~Smart(x)
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Variants of Universal Conditional Statements

VXxeR. x>2->x2 > 4,
VX € R. MoreThan(x,2) - MoreThan(x2,4)

Contrapostive: 7Vx=R . x’' <4 — x<?2

Converse: . R 2-4_, v

2

Inverse: VxeR . x<2 — x7<4
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Variants of Universal Conditional Statements

Logically -

equivalent

Consider a statement of the form: VxeD, if P(x) then Q(x). -

1. Its contrapositive is the statement: VxeD, if ~Q(x) then ~P(x)./
2. Its converse is the statement: VxeD, if Q(x) then P(x).

3. Itsinverse is the statement: VxeD, if ~P(x) then ~Q(x).

Vx €D, if P(x) then Q(x) = WxeD, if ~Q(x) then~P(x)

Vx €D, if P(x) then Q(x) = VxeD, if Q(x) then P(Xx).

Vx €D, if P(x) then Q(x) = VxeD, if ~P(x) then ~Q(X).
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In this Lecture

We will learn
 Partl: Negations of Quantified Statements;

1 Part 2: Contrapositive, Converse and inverse Quantified Statements;

 Part 3: Necessary and Sufficient Conditions, Only If
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Necessary and Sufficient Conditions

- “Vx, r(x) is a sufficient condition for s(x)” means “Vx, r(x) — s(x).”
. “VX, r(x) is a necessary condition for s(x)” means “Vx, ~r (x) — ~s(x)” ot,
equivalently, “Vx, s(x) — r(x).”

Example:

Squareness is a sufficient condition for rectangularity.
If something is a square, then it is a rectangle.

vV X . Square(x) — Rectangular(x)

To get a job it Is sufficient to be loyal.
If one is loyal (s)he will get a job
Vv x . Loyal(x) — GotaJob(x)
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Necessary and Sufficient Conditions

- “Vx, r(x) is a sufficient condition for s(x)” means “Vx, r(x) — s(x).”
. “VX, r(x) is a necessary condition for s(x)” means “Vx, ~r (x) — ~s(x)” ot,
equivalently, “Vx, s(x) — r(x).”

Example:

Being smart is necessary to get a job.

If you are not smart you don’t get a job

If you got a job then you are smart

VX . ~Smart(x) — ~GotaJob(x)

vx . GotaJob(x) — Smart(x)

Being above 40 years is necessary for being president of Palestine
vx . ~Above(x, 40) — ~CanBePresidentOfPalestine(x)

vx . CanBePresidentOfPalestine(x) — Above(x, 40)
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