Lecture Notes on **Discrete Mathematics**. Birzeit University, Palestine, 2015

First Order Logic

Mustafa Jarrar

1. Predicates and Quantified Statements I

,

2. Predicates and Quantified Statements II

3. Statements with Multiple Quantifiers

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

,

This lecture is based on, but not limited to, chapter 3 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

In this Lecture

We will learn

1

Part1: Negations of Quantified Statements;

□ Part 2: Contrapositive, Converse and inverse Quantified Statements;

□ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

How to negate a universal statement:

All Palestinians like Zatar Some Palestinians do not like Zatar

1

Theorem 3.2.1 Negation of a Universal Statement The negation of a statement of the form $\forall x \text{ in } D, Q(x)$ is logically equivalent to a statement of the form $\exists x \text{ in } D \text{ such that } \sim Q(x).$ Symbolically, $\sim (\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that } \sim Q(x).$

How to negate an extensional statement:

Some Palestinians Like Zatar All Palestinians do not like Zatar

1

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form

 $\exists x \text{ in } D \text{ such that } Q(x)$

is logically equivalent to a statement of the form

 $\forall x in D, \sim Q(x).$

Symbolically, $\sim (\exists x \in D \text{ such that } Q(x)) \equiv \forall x \in D, \sim Q(x).$

 $\forall p \in \text{Prime} . \text{Odd}(p)$

Some computer hackers are over 40

All computer programs are finite

 $\forall p \in \text{Prime} . \text{Odd}(p)$ $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

Some computer hackers are over 40

All computer programs are finite

 $\forall p \in \text{Prime} . \text{Odd}(p)$ $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite

 $\forall p \in \text{Prime} . \text{Odd}(p)$ $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

1

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite Some computer programs are not finite

No politicians are honest

 $\forall x . P(x) \rightarrow Q(x)$

 $\forall p \in \text{Person}$. $\text{Blond}(p) \rightarrow \text{BlueEyes}(p)$

1

No politicians are honest Some politicians are honest

1

 $\forall x . P(x) \rightarrow Q(x)$

 $\forall p \in \text{Person}$. $\text{Blond}(p) \rightarrow \text{BlueEyes}(p)$

No politicians are honest Some politicians are honest

1

 $\forall x . P(x) \rightarrow Q(x) \\ \exists x . P(x) \land \sim Q(x) \\ \end{cases}$

 $\forall p \in \text{Person}$. $\text{Blond}(p) \rightarrow \text{BlueEyes}(p)$

No politicians are honest Some politicians are honest

1

 $\forall x . P(x) \rightarrow Q(x) \\ \exists x . P(x) \land \sim Q(x) \\ \end{cases}$

 $\forall p \in \text{Person}$. $\text{Blond}(p) \rightarrow \text{BlueEyes}(p)$ $\exists p \in \text{Person}$. $\text{Blond}(p) \land \sim \text{BlueEyes}(p)$

No politicians are honest Some politicians are honest

1

 $\forall x . P(x) \rightarrow Q(x) \\ \exists x . P(x) \land \sim Q(x) \\ \end{cases}$

 $\forall p \in \text{Person}$. $\text{Blond}(p) \rightarrow \text{BlueEyes}(p)$ $\exists p \in \text{Person}$. $\text{Blond}(p) \land \sim \text{BlueEyes}(p)$

If a computer program has more than 10000 lines then it contains a bug A computer program has more than 10000 and does not contains a bug

In this Lecture

We will learn

1

□ Part1: Negations of Quantified Statements;

Part 2: Contrapositive, Converse and Inverse Quantified Statements;

□ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

Variants of Universal Conditional Statements

Definition

1

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

1. Its **contrapositive** is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.

2. Its converse is the statement: $\forall x \in D$, if Q(x) then P(x).

3. Its **inverse** is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

$$\forall x \in Person$$
. Palestinian(x) \rightarrow Smart(x)

Contrapositive: $\forall x \in \text{Person}$ $\sim \text{Smart}(x) \rightarrow \sim \text{Palestinian}(x)$ Converse: $\forall x \in \text{Person}$ $\text{Smart}(x) \rightarrow \text{Palestinian}(x)$ Inverse: $\forall x \in \text{Person}$ $\sim \text{Palestinian}(x) \rightarrow \sim \text{Smart}(x)$

Variants of Universal Conditional Statements

 $\forall x \in \mathbf{R}. \quad x > 2 \rightarrow x^2 > 4.$ $\forall x \in \mathbf{R}. \text{ MoreThan}(x,2) \rightarrow \text{MoreThan}(x^2,4)$

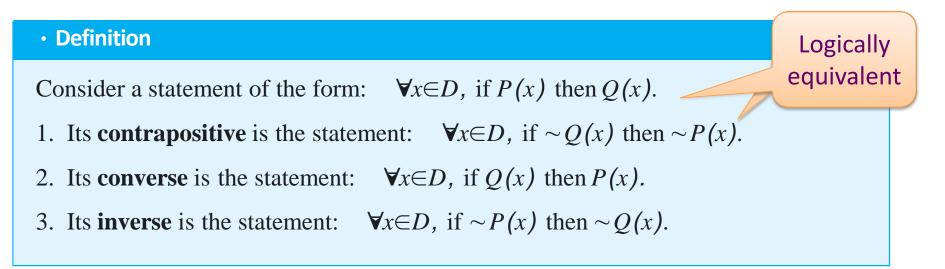
Contrapostive: $\forall x \in \mathbf{R}$. $x^2 \leq 4 \rightarrow x \leq 2$

1

Converse: $\forall x \in \mathbb{R}$. $x^2 > 4 \rightarrow x > 2$

Inverse: $\forall x \in \mathbb{R}$. $x \leq 2 \rightarrow x^2 \leq 4$

Variants of Universal Conditional Statements



 $\forall x \in D$, if P(x) then $Q(x) \equiv \forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$

 $\forall x \in D$, if P(x) then $Q(x) \not\equiv \forall x \in D$, if Q(x) then P(x).

 $\forall x \in D$, if P(x) then $Q(x) \not\equiv \forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

In this Lecture

We will learn

1

□ Part1: Negations of Quantified Statements;

□ Part 2: Contrapositive, Converse and inverse Quantified Statements;

□ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

Necessary and Sufficient Conditions

Definition

• " $\forall x, r(x)$ is a sufficient condition for s(x)" means " $\forall x, r(x) \rightarrow s(x)$."

• " $\forall x, r(x)$ is a **necessary condition** for s(x)" means " $\forall x, \sim r(x) \rightarrow \sim s(x)$ " or, equivalently, " $\forall x, s(x) \rightarrow r(x)$."

Example: Squareness is a sufficient condition for rectangularity. If something is a square, then it is a rectangle. $\forall x . Square(x) \rightarrow Rectangular(x)$

To get a job it is sufficient to be loyal. If one is loyal (s)he will get a job $\forall x . Loyal(x) \rightarrow GotaJob(x)$

Necessary and Sufficient Conditions

• Definition

• " $\forall x, r(x)$ is a sufficient condition for s(x)" means " $\forall x, r(x) \rightarrow s(x)$."

• " $\forall x, r(x)$ is a **necessary condition** for s(x)" means " $\forall x, \sim r(x) \rightarrow \sim s(x)$ " or, equivalently, " $\forall x, s(x) \rightarrow r(x)$."

Example: Being smart is necessary to get a job. If you are not smart you don't get a job If you got a job then you are smart $\forall x . \sim Smart(x) \rightarrow \sim GotaJob(x)$ $\forall x . GotaJob(x) \rightarrow Smart(x)$ Being above 40 years is necessary for being president of Palestine $\forall x . \sim Above(x, 40) \rightarrow \sim CanBePresidentOfPalestine(x)$ $\forall x . CanBePresidentOfPalestine(x) \rightarrow Above(x, 40)$