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4.1 Introduction to Number Theory
& Proofs Methods

In this lecture:

Part 1: Why Number theory for programmers 

Part 2: Odd-Even & Prime-Composite Numbers  

Part 3: How to prove statements; 

Part 4: Disprove by counterexample; 

Part 5: Direct proofs
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Why Number Theory for Programmers?

 How to learn to be precise in thinking and in programing?

 Mistakes and bugs in programs: e.g., medical applications, 

military applications, …

 We use numbers everywhere in programs especially in loops 

and conditions.

 Studying number theory (properties of numbers) is very 

helpful, especially how to prove and disapprove

 For example: (dis/)approve the following properties: 

 The product of any two even integers is even? 

 The sum/difference of any two odd integers is even?

 The product of any two odd integers is odd?
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Odd and Even Numbers

Is 0 even?

Is -301 odd?

If a and b are integers, is 6a2b even?

Ifa and b are integers, is 10a + 8b + 1  odd?

Is every integer either even or odd?

Examples
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Odd and Even Numbers

Is 0 even? ✓

Is -301 odd? ✓

If a and b are integers, is 6a2b even? ✓

If a and b are integers, is 10a + 8b + 1 odd? ✓

Is every integer either even or odd? ✓

Examples
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Prime and Composite Numbers

Is 1 prime? ❌

Is it true that every integer greater than 1 is either 

prime or composite? ✓

Example
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xD .  Q(x) 

Proving Disapproving 

xD . Q(x) 

One example

Counter exampleDirect proof

How to (dis)approve statements

Before (dis)approving, write a math statements as a Universal or an 
Existential Statement:

Negate then direct proof

This chapter: Direct proofs 
with numbers
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Disproof by Counterexample 

a,b  R .  a2 = b2  a = b.
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Counterexample: 

Let a = 1 and b = -1. Then a2 = 12 = 1 and b2 = (-1)2 = 1,

and so a2 = b2. But a  b since 1  -1.

Disproof by Counterexample 

a,b  R .  a2 = b2  a = b.
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Proving Universal Statements
The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

xD . P(x)  Q(x) 

One way to prove such statements is called The Method of Exhaustion,

by listing all cases. 
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Proving Universal Statements
The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

xD . P(x)  Q(x) 

One way to prove such statements is called The Method of Exhaustion,

by listing all cases. 

Example Use the method of exhaustion to prove the following:

∀n ∈ Z, if n is even and 4 ≤ n ≤ 26, then n can be 

written as a sum of two prime numbers.
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Proving Universal Statements
The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

xD . P(x)  Q(x) 

One way to prove such statements is called The Method of Exhaustion,

by listing all cases. 

Example Use the method of exhaustion to prove the following:

∀n ∈ Z, if n is even and 4 ≤ n ≤ 26, then n can be 

written as a sum of two prime numbers.

4 = 2 + 2 6 = 3 + 3 8 = 3 + 5 10 = 5 + 5

12=5+7 14=11+3 16=5+11 18=7+11

20=7+13 22=5+17 24=5+19 26=7+19

 This method is obviously impractical, as we cannot 

check all possibilities. 
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Direct Proofs
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Example

Prove that the sum of any two even integers is even. 

Formal Restatement:

Starting Point:

We need to Show: 

[This is what we needed to show.]
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Example

Prove that the sum of any two even integers is even. 

Formal Restatement:

Starting Point:

We need to Show: 

[This is what we needed to show.]

m,n Z . Even(m) Even(n)  Even(m + n) 

Suppose m and n are even [particular but arbitrarily chosen] 

m+n is even

m = 2k

n = 2j

m+n = 2k + 2j = 2(k+j)

(k+j) is integer 

Thus:  2(k+j)  is even 
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In the next sections
we will practice proving more examples


