Lecture Notes on **Discrete Mathematics**. Birzeit University, Palestine, 2021

Number Theory and Proof Methods

Mustafa Jarrar

&

Radi Jarrar

4.2 Rational Numbers

4.3 Divisibility

1

4.4 Quotient-Remainder Theorem

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

1

This lecture is based on, but not limited to, chapter 3 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

4.1 Introduction to Number Theory & Proofs Methods

In this lecture:

,

Part 1: Why Number theory for programmers

Part 2: Odd-Even & Prime-Composite Numbers

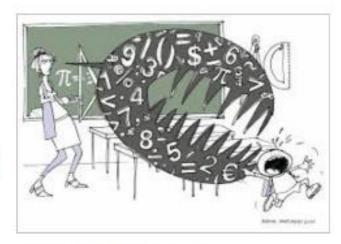
□ Part 3: How to prove statements;

□ Part 4: Disprove by counterexample;

Part 5: Direct proofs

Why Number Theory for Programmers?

- How to learn to be precise in thinking and in programing?
- Mistakes and bugs in programs: e.g., medical applications, military applications, ...



- We use numbers everywhere in programs especially in loops and conditions.
- Studying number theory (properties of numbers) is very helpful, especially how to prove and disapprove
- For example: (dis/)approve the following properties:
 - The product of any two even integers is even?
 - The sum/difference of any two odd integers is even?
 - The product of any two odd integers is odd?

4.1 Introduction to Number Theory & Proofs Methods

In this lecture:

,

□ Part 1: Why Number theory for programmers

Part 2: Odd-Even & Prime-Composite Numbers

□ Part 3: How to prove statements;

□ Part 4: Disprove by counterexample;

Part 5: Direct proofs

Odd and Even Numbers

• **Definitions**

An integer *n* is **even** if, and only if, *n* equals twice some integer. An integer *n* is **odd** if, and only if, *n* equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even $\Leftrightarrow \exists$ an integer *k* such that n = 2k. *n* is odd $\Leftrightarrow \exists$ an integer *k* such that n = 2k + 1.

Examples

1

Is 0 even? Is -301 odd? If a and b are integers, is $6a^{2}b$ even? Ifa and b are integers, is 10a + 8b + 1 odd? Is every integer either even or odd?

Odd and Even Numbers

• **Definitions**

An integer *n* is **even** if, and only if, *n* equals twice some integer. An integer *n* is **odd** if, and only if, *n* equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even $\Leftrightarrow \exists$ an integer *k* such that n = 2k. *n* is odd $\Leftrightarrow \exists$ an integer *k* such that n = 2k + 1.

Examples

Is 0 even? \checkmark Is -301 odd? \checkmark If a and b are integers, is 6a²b even? \checkmark If a and b are integers, is 10a + 8b + 1 odd? \checkmark Is every integer either even or odd? \checkmark

Prime and Composite Numbers

• **Definition**

An integer *n* is **prime** if, and only if, n > 1 and for all positive integers *r* and *s*, if n = rs, then either *r* or *s* equals *n*. An integer *n* is **composite** if, and only if, n > 1 and n = rs for some integers *r* and *s* with 1 < r < n and 1 < s < n.

In symbols:

<i>n</i> is prime	\Leftrightarrow	\forall positive integers <i>r</i> and <i>s</i> , if $n = rs$ then either $r = 1$ and $s = n$ or $r = n$ and $s = 1$.
<i>n</i> is composite	\Leftrightarrow	\exists positive integers <i>r</i> and <i>s</i> such that $n = rs$ and $1 < r < n$ and $1 < s < n$.

Example

Is 1 prime? X

Is it true that every integer greater than 1 is either prime or composite? \checkmark

4.1 Introduction to Number Theory & Proofs Methods

In this lecture:

□ Part 1: Why Number theory for programmers

□ Part 2: Odd-Even & Prime-Composite Numbers

,

□ Part 3: How to prove statements;

□ Part 4: Disprove by counterexample;

□ Part 5: Direct proofs

How to (dis)approve statements

Before (dis)approving, write a math statements as a Universal or an Existential Statement:

	Proving	Disapproving
∃x∈D . Q(x)	One example	Negate then direct proof
∀x∈D .Q(x)	Direct proof	Counter example
	This chapter: Direct proofs with numbers	

1

4.1 Introduction to Number Theory & Proofs Methods

In this lecture:

,

□ Part 1: Why Number theory for programmers

□ Part 2: Odd-Even & Prime-Composite Numbers

□ Part 3: How to prove statements

Part 4: Disprove by counterexample

Part 5: Direct proofs

Disproof by Counterexample

 $\forall a,b \in \mathbf{R} : a^2 = b^2 \rightarrow a = b.$

1

Disproof by Counterexample

 $\forall a,b \in \mathbf{R} : a^2 = b^2 \rightarrow a = b.$

1

Counterexample: Let a = 1 and b = -1. Then $a^2 = 1^2 = 1$ and $b^2 = (-1)^2 = 1$, and so $a^2 = b^2$. But $a \neq b$ since $1 \neq -1$.

4.1 Introduction to Number Theory & Proofs Methods

In this lecture:

,

Part 1: Why Number theory for programmers

Part 2: Odd-Even & Prime-Composite Numbers

□ Part 3: How to prove statements;

□ Part 4: Disprove by counterexample;

Part 5: **Direct proofs**

Proving Universal Statements

The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

 $\forall x \in D : P(x) \rightarrow Q(x)$

One way to prove such statements is called The Method of Exhaustion, by listing all cases.

1

Proving Universal Statements

The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

 $\forall x \in D . P(x) \rightarrow Q(x)$

One way to prove such statements is called The Method of Exhaustion, by listing all cases.

Example

1

Use the method of exhaustion to prove the following:

 $\forall n \in \mathbb{Z}$, if *n* is even and $4 \le n \le 26$, then *n* can be written as a sum of two prime numbers.

Proving Universal Statements

The Method of Exhaustion

The majority of mathematical statements to be proved are universal.

 $\forall x \in D . P(x) \rightarrow Q(x)$

One way to prove such statements is called The Method of Exhaustion, by listing all cases.

1

Example	Use the method of exhaustion to prove the following:						
	∀ <i>n</i> ∈ Z, if <i>n</i> is even and 4 ≤ <i>n</i> ≤ 26, then <i>n</i> can be written as a sum of two prime numbers.						
	4 = 2 + 2 12 = 5 + 7 20 = 7 + 13	6 = 3 + 3 14=11+3 22=5+17	8 = 3 + 5 16=5+11 24=5+19	10 = 5 + 5 18 = 7 + 11 26 = 7 + 19			

→ This method is obviously impractical, as we cannot check all possibilities.

Direct Proofs

Method of Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a *particular* but *arbitrarily chosen* element of the set, and show that x satisfies the property.

Method of Direct Proof

- 1. Express the statement to be proved in the form " $\forall x \in D$, if P(x) then Q(x)." (This step is often done mentally.)
- 2. Start the proof by supposing x is a particular but arbitrarily chosen element of D for which the hypothesis P(x) is true. (This step is often abbreviated "Suppose $x \in D$ and P(x).")
- 3. Show that the conclusion Q(x) is true by using definitions, previously established results, and the rules for logical inference.

Example

Prove that the sum of any two even integers is even.

Formal Restatement:

Starting Point:

1

We need to Show:

[This is what we needed to show.]

Example

Prove that the sum of any two even integers is even.

Formal Restatement: $\forall m, n \in \mathbb{Z}$. Even $(m) \land \text{Even}(n) \rightarrow \text{Even}(m+n)$

Starting Point: Suppose *m* and *n* are even [particular but arbitrarily chosen]

We need to Show: m+n is even

1

$$m = 2k$$

$$n = 2j$$

$$m+n = 2k + 2j = 2(k+j)$$

$$(k+j) \text{ is integer}$$

Thus: $2(k+j)$ is even

[This is what we needed to show.]

In the next sections we will practice proving more examples