Lecture Notes on **Discrete Mathematics**. Birzeit University, Palestine, 2021

Number Theory and Proof Methods

Mustafa Jarrar

4.1 Introduction

4.2 Rational Numbers

4.3 Divisibility

1

4.4 Quotient-Remainder Theorem

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: <u>http://www.jarrar.info</u>

Acknowledgement:

1

This lecture is based on, but not limited to, chapter 3 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

Mustafa Jarrar: Lecture Notes on **Number Theory and Proofs**. Birzeit University, Palestine, 2021

Number Theory

4.2 Rational Numbers

In this lecture:

,

Part 1: Rational and irrational Numbers;

□ Part 2: Proving Properties of Rational Numbers;

□ Part 3: Using rational numbers in Programing

Relational and Irrational Numbers

الاعداد النسبية

Definition

A real number r is **rational** if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational. More formally, if *r* is a real number, then

r is rational $\Leftrightarrow \exists$ integers a and b such that $r = \frac{a}{b}$ and $b \neq 0$.

Example

- \checkmark Is 10/3 a rational number?
- \checkmark Is -(5/39) a rational number?
- \checkmark Is 0.281 a rational number?
- \checkmark Is 7 a rational number?
- \checkmark Is 0 a rational number?
- X Is 2/0 a rational number?

X Is 2/0 an irrational number?

Not number

 \checkmark Is 0. 1212... a rational number (where 12 are assumed to repeat forever)? 12/99 ✓ If *m*, *n* are integers and neither *m* nor *n* is zero, is (m + n)/mn a rational number? X Is (Sqr root of 2) an rational number?

Integers are rational numbers

Theorem 4.2.1

1

Every integer is a rational number.

$$n = \frac{n}{1}$$
 which is a quotient of integers and hence rational.

$$7 = \frac{7}{1}$$
 which is a quotient of integers and hence rational.

$$-12 = \frac{-12}{1}$$
 which is a quotient of integers and hence rational.

 $0 = \frac{0}{1}$ which is a quotient of integers and hence rational.

Mustafa Jarrar: Lecture Notes on **Number Theory and Proofs**. Birzeit University, Palestine, 2021

Number Theory

4.2 Rational Numbers

In this lecture:

□ Part 1: Rational and irrational Numbers;

,

Part 2: Proving Properties of Rational Numbers;

□ Part 3: Using rational numbers in Programing

Proving Properties of Rational Numbers

Theorem 4.2.2

1

The sum of any two rational numbers is rational.

r

Proof:

$$+s = \frac{a}{b} + \frac{c}{d}$$
 by substitution
 $= \frac{ad + bc}{bd}$ by basic algebra.

Let p = ad + bc and q = bd.

$$r + s = \frac{p}{q}$$
 where p and q are integers and $q \neq 0$.

نسطيع استخدام نظريات مثبتة لإثبات نظريات جديدة

Example

Derive the following as a corollary of Theorem 4.2.2.

Corollary 4.2.3

1

The double of a rational number is rational.

Solution:

Suppose *r* is any rational number. Then 2r = r + r is a sum of two rational numbers. So, by Theorem 4.2.2, 2r is rational.

Deriving Additional Results about Even and Odd Integers

Suppose you already proved the following properties of even and odd integers:

- 1. The sum, product, and difference of any two even integers are even.
- 2. The sum and difference of any two odd integers are even.
- 3. The product of any two odd integers is odd.
- 4. The product of any even integer and any odd integer is even.
- 5. The sum of any odd integer and any even integer is odd.
- 6. The difference of any odd integer minus any even integer is odd.
- 7. The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if *a* is any even integer and *b* is any odd integer, then $\frac{a^2+b^2+1}{2}$ is an integer. Try it at home

Real Numbers in Real Life

Two mechanics were working on a car. One can complete a given job in 6 hours. But, the new guy takes 8 hours. They work together for first two hours. But then, the first guy left to help another mechanic on a different job. How long will it take for the new guy to finish the car work?

The first guy can do 1/6 part of job per hour and the second guy can do 1/8 part of job per hour and together they can do 1/6 + 1/8part of job per hour. Now, let 't' hours is the time to complete the car job. So, 1/t job will be completed per hour, Equating the two expressions, we get:

1/6 + 1/8 = 1/t

7/24 = 1/t

As they work for 2 hours, 2 \cdot 7/24 = 14/24 part of job will be done.

The work remaining is 1 - 1/t = (1 - 14/24)

= 10/24

 \therefore 10/24 job is left which has to be completed by the second guy, who will take 10/24 \div 1/8

= 40/12

= 10/3

= 3.33 hours to complete the car job.